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Abstract

The paper develops a method for the systematic integration of the
relativistic wave equations for the coupling of electrons and protons
with each other and with the electromagnetic field. It is shown that,
when the velocity of light is made infinite, these equations reduce to
the Schroedinger equation in configuration space for the many body
problem. It is further shown that it is impossible on the present theory
to eliminate the interaction of a charge with its own field, and that the
theory leads to false predictions when it is applied to compute the
energy levels and the frequency of the absorption and emission lines of
an atom.

The relativistic theory of the interaction of electrons and protons with
each other and with the electromagnetic field has been developed in two
papers.1 The theory is developed in close analogy to the corresponding clas-
sical theory: the field is on the one hand determined by the configuration of
the charges; and the motion of the charges is affected by the field. The in-
teraction between two charges is not then, on this theory, expressed directly
as a function of the configuration of the charges, but as the effect on each
of the charges of the field induced by the other. On the classical theory this
procedure involves grave difficulties, because each charge reacts also with its
own field. The proper energy of this interaction is, for point charges infinite;
and it depends upon the motion of the charge. On the classical theory one

1W. Heisenberg and W. Pauli, Zeit. f. Physik 56, 1 (1929); ibid. in press. The
second of these two papers is referred to in this work as LC. I am glad greatly indebted
to Professor Heisenberg and Professor Pauli, not only for the opportunity of seeing their
work before its publication, but also for their very valuable criticism and advice

1



tried to avoid this difficulty by ascribing to the elementary charges a finite
size; but it was not possible to carry through the theory in a way that was
not completely arbitrary; nor was it possible to make the work relativisti-
cally invariant. One of the purposes of the present paper is to see in how far
these difficulties persist in the quantum theory, and in what measure they
render impossible the application of the theory.

We may recapitulate briefly the main points of divergence between the
present quantum theoretic treatment and the classical theory. In the first
place the state of the matter is here represented, not by a trajectory, but
by a wave function. Further, the Hamiltonian for the matter is that derived
from Dirac’s linear wave equation, and not from the quadratic wave equation
which would follow from the classical relativistic Hamiltonian. Finally, both
the material waves and the electromagnetic waves are quantized, the matter
to make the particles satisfy the exclusion principle, the field to make the
quanta satisfy the Einstein-Bose statistics. This procedure leads to a formal
difficulty; for the fourth Maxwell equation

div E− 4πρ = 0 (1)

is inconsistent with the quantum conditions, according to which there are
functions of the electromagnetic potentials which do not commute with div E
but which must commute with the charge density. The two papers of Heisen-
berg and Pauli are distinguished chiefly by different methods of resolving this
difficulty. In the former paper new terms were added to the fourth Maxwell
equation to make the new equation consistent with the quantum conditions;
in obtaining physical results these terms were to be made to vanish. In
the second paper a much more satisfactory method has been used, which
takes advantage of the fact that the left hand side of (1) is a constant of
the motion for all systems involving matter and radiation; and it is shown
that this constancy follows from the gauge invariance of the Hamiltonian
for all such systems. The solution of the dynamical problem thus reduces
to finding a wave function for the coupled system of field and matter, which
makes the Hamiltonian for the coupled system a diagonal matrix, and which
in addition makes the left hand side of (1) vanish. The wave function has
thus to satisfy not only the Hamiltonian wave equation, but also a series of
wave equations which express the fact that (1) is satisfied at all points in
space. It is from this set of wave equations that we shall start in this paper;
we shall write them first in the form given in LC Eq. (68), in which the
wave function is taken as a function of the Cartesian coordinates

qP = (q
(1)
P , q

(2)
P , q

(3)
P ); P = 1, 2, . . . , N
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and spin variables
σP ; P = 1, 2, . . . , N

of the N particles in the system, the number of quanta

Mrλ

of frequency
νr

vector of propagation Kr = (K1
r ,K

2
r ,K

3
r ); Kr = νr/c and polarization λ,

and finally a third set of variables Pr3, which are essentially the constant
components of the electric field parallel to the vectors of propagation Kr. We
shall first show that it is possible to eliminate the Pr3’s from the wave equa-
tions in such a way that (1) is automatically satisfied. The reason why this
is possible is that the condition (1) determines div E precisely–instead of de-
termining only the relative probabilities of different values of div E, – when
the configuration of the charges is known, so that the values of the P ’s so
determined can be put at once into the Hamiltonian. When this is done
the variables Qr3 canonically conjugate to the P ’s must disappear from the
Hamiltonian, since otherwise the Hamiltonian would not be consistent with
(1); we shall show that this is in fact the case, and then proceed to an
investigation of the resulting Hamiltonian.

It should be observed that the wave functions must satisfy, in addition
to the wave equations in configuration space, the condition that they be
antisymmetric in all the electrons of the system, and antisymmetric in all
the protons of the system. Only wave functions satisfying these conditions
are to be considered in this paper; and it will therefore be unnecessary to
indicate the antisymmetry of the wave functions explicitly. The fact that
electrons and protons satisfy the exclusion principle is largely irrelevant to
the difficulties discussed in this work;for these difficulties persist even in the
one-electron problem. On the other hand it is to be hoped that the resolution
of the errors in the present theory will make the heuristic postulate of the
exclusion principle unnecessary.

We shall look for a solution of the wave equation in which both wave
function and characteristic values are expanded in powers of v/c. It has al-
ready been shown by Breit2 that, when the interaction of the particles may
be treated as small, and radiation processes may be neglected, that these
interaction terms give a contribution to the energy of the system, which, in

2G. Breit, Phys. Rev. 34, 553 (1929).
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second order in v/c, agrees with that computed from Breit’s equation.3 We
shall not retain the assumption that the interaction terms are small, and
shall show, somewhat more generally, that when the proper energy terms
are systematically neglected, the characteristic energy levels and the wave
function are determined by Breit’s equation. This equation is, of course, not
relativistically invariant; and it takes no account of radiation processes. In
order to remedy these defects one must retain the proper energy terms; and
we shall show that it is then possible to make a formally satisfactory theory
to give the shape and position of all spectral lines, and the energy of the
normal state. The theory, is, however, wrong, since it gives a displacement
of the spectral lines from the frequency predicted on the basis of the nonrel-
ativistic theory which is in general infinite. This displacement arises from
the infinite interaction of the electron with itself; this interaction depends
upon the state of the material system; and the difference in the energy for
two different states is not in general finite. Thus the present theory gives
no more than the non-relativisitic theory of Jordan, Klein and Wigner.4 It
seems improbable that Breit’s equation gives the energy levels of an atom
correct to second order terms in v/c; but we shall see that there is ground
for supposing that it does give the separation of the fine structure levels cor-
rectly in this order. On the other hand the displacement in the frequency
of the spectral lines which arises from the proper energy should be of the
second order in v/c, and is thus larger than the natural line breadth, which
is of the third order; and on the present theory it is not possible to com-
pute this displacement. We shall return later to a consideration of these
difficulties.

1. The condition that the left hand side of (1), regarded as an operator
on the wave function ψ of the variables

qP , σP ,Mrλ, Pr3

shall make the wave function vanish at every point in space, gives a series
of wave equations

I CrΨ =

[

Pr3 +
∑

P

eP v
r0(qP )

]

ψ(qP , σP ,Mrλ, Pr3) = 0

which must hold for all values of the Kr consistent with the boundary con-

3Breit, ibid., Eq. (6).
4P. Jordan and 0. Klein, Zeits. f. Physik 45, 751 (1927). P. Jordan and E. Wigner,

ibid. 47, 631 (1928).
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ditions. Here the vr0 are functions denned in LC (54):

vr0(qP ) =
2

π
(ck3

rL
3)−1/2 sinπk(1)

r q
(1)
P sinπk(2)

r q
(2)
P sinπk(3)

r q
(3)
P (2)

Here L is the length of the fundamental cube, or Hohlraum, and is taken
finite in LC to avoid the introduction of a continuous manifold of normal
coordinates; in all our results we shall make L become infinite. Furthermore
the Hamiltonian for the coupled system, regarded as an operator on the
same wave function, gives the wave equation

II

{

−E +
∑

r

[
∑

λ=1,2

Mrλhνr + πνrP
2
r3

]

+
N∑

P=1

[
hc
2πi(a

P gradP ) +mPα
P
0 c

2
]}

ψ

+

{
N∑

P=1

[ePA
0
0(qP ) + eP (aP ·A0(qP ))]

}

ψ

+

{

i
∑

r

∑

λ=1,2

N∑

P=1

µrλP [(Mrλ + 1)1/2∆−1
rλ −M

1/2
rλ ∆rλ]

}

ψ

+

{
∑

r

N∑

P=1

µr3P Qr3

}

ψ = (+H − E)ψ = 0.

Here A0
0 is the external scalar potential, and A0 the external vector potential;

and ∆rλ is an operator which transforms Mrλ into Mrλ − 1, and leaves all
other variables unchanged; the αP ’s are operators which operate only on
σP , and are derived from the Dirac matrices αlρσ by the definition

αPl F (σP ) =
∑

ρP

αlσP ρP
F (ρP ); αP0 F (σP ) =

∑

ρP

α0
σP ρP

F (ρP ).

Further the Qr3 are canonically conjugate to the Pr3 so that

[Pr3Qr′3] =
h

2πi
δrr′ (3)

Finally the functions µrλp , µ
r3
p are defined in LC (59):

µr3P = eP c
(νr

2

)1/2
3∑

l=1

αPl v
r3
l (qP )
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µrλP = eP c

(
h

2πνr

)1/2 3∑

l=1

αPl v
rλ
l (qP ); λ = 1, 2 (4)

vrλl (qP ) =

(
8

L3

)1/2

F rlλ cosπklq
(l)
P sinπkl′q

(l′)
P sinπkl′′q

(l′′)
P ;

l = 1, 2, 3.
λ = 1, 2, 3.

The quare matrix F rlλ is given by the scheme

λ = 1 2 3
l

1 εr2/(ε
2
1 + ε22)1/2 ε1ε3/(ε

2
1 + ε22)1/2 ε1

2 −ε1/(ε21 + ε22)1/2 ε2ε3/(ε
2
1 + ε22)1/2 ε2

3 0 −(ε21 + ε22)1/2 ε3

(5)

where the εrl ’s are the direction cosines of the vector Kr. It should be
observed that

hc

2πi
(aP gradP )eP v

r0(qP ) =
h

2πi
µr3P . (6)

This equation, together with (3), shows that

[HCr] = 0 (7)

for all r, so that all the Cr’s are constants of the motion. The equations I
and II are those given5 in LC (68).

From I we see that the wave function must be singular in the P ’s. We
may avoid the use of singular functions by making a contract transformation
from the variable P to Q, and writing the wave function as:

ψ(qP , σP ,Mrλ, Qr3).

For we may then solve (3) by taking

Pr3 =
h

2πi

∂

∂Qr3
.

If now we set

ψ(qP , σP ,Mrλ, Qr3) = e
−2πi/h

∑

r

∑

P

eP v
r0(qP )Qr3

φ(qP , σP ,Mrλ, Qr3) (8)

5In LC 68) the A’s are dropped.
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the equations I give us
∂φ

∂Qr3
= 0 (9)

for all r so that
φ = φ(qP , σP ,Mrλ).

Further the Hamiltonian II becomes

e−2πi/h
∑

r

∑

P

eP v
r0(qP )Qr3 {−E

+
∑

r




∑

λ=1,2

Mrλhνr + πνr

N∑

P,P ′

eP eP ′v
r0
0 (qP )vr0(qP ′)





+ih
∑

r

∑

P

νreP v
r0(qP )

∂

∂Qr3
−
h2

4π

∑

r

νr
∂2

∂Qr3

+
∑

P

[
hc

2πi
(αP gradP ) +mP c

2αP0

]

−c
∑

r

∑

P

eP (αP gradP )vr0(qP )Qr3+
∑

P

eP [A0
0(qP )+(αP ·A0(qP ))] (10)

+
∑

r

∑

P

µr3P Qr3 + i
∑

r

∑

λ=1,2

∑

P

µrλP [(Mrλ + 1)1/2∆−1
rλ

−M1/2
rλ ∆rλ]

}
φ(qPσPMr) = 0.

The terms in Q drop out because of (6); the terms in ∂/∂Q give nothing
because of (9). The equations I and II thus reduce to the single system

{

−E +H0 +
∑

rλ

Mrλhνr + i
∑

rλP

µrλ[(Mrλ + 1)1/2∆−1
rλ −M

1/2
rλ ∆rλ]

}

φ = 0

(11)

H0 =
∑

P

{
hc

2πi
(αP gradP ) +mP c

2αP0 + ρP [A0
0(qP ) + (αP ·A0(qP ))

]

+π
∑

P ′

∑

r

eP eP ′νrvr0(qP )vr0(qP ′)

}

.

It is this system which we must now investigate.
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The terms
G(qP , qP ′) =

∑

r

πνrv
r0(qP )vr0(qP ′)

may readily be evaluated,6 and give for L→∞

G(qP , qP ′)→ −
1

2rPP ′
; rPP ′ = |qP −QP ′ |. (12)

The terms for P and P ′ different give the electrostatic interaction of the two
particles; the terms for P = P ′ give the infinite electrostatic proper energy
of the particles; on the present theory it is not possible, as it was on the
non-relativistic theory,4 to eliminate these terms; the physical group for this
impossibility has already been indicated, and lies in the fact that the field
acting on any particle is the sum of the field induced by all particles; it is
a consequence of the principle of superposition for the field. These electro-
static proper energy terms do not, however, interfere with the application of
the theory, since they are constants, and may be dropped from (11) without
altering the form of the wave function. We shell find other infinite proper
energy terms in the course of the work; but these will turn out not to be
constants, but to depend upon the configuration of the system; dropping
them does alter the form of the wave function.

If we now neglect the coupling between matter and the light quantum
field the wave equation reduced to

[

−E +H0 +
∑

rλ

Mrλhνr

]

φ = 0 (13)

and for the case that no quanta are present we have

{

−E +
∑

P

[
hc

2πi
(αP gradP ) +mP c

2αP0 + eP [A0
0(qP ) + (αP ·A(qP )]

}

(14)

−
∑

PP ′

eP eP ′

2rPP ′

}

φ(σP , qP ) = 0.

We shell show that the terms which we have neglected in (12) are small of
the order (v/c)2; and by neglecting other terms of the same order, (13) can

6W. Heisenberg and W. Pauli, Zeits. f. Physik 56, 1 (1929). Eq. (115); G. Breit,
reference 2 Eq. 57). Breit has independently evaluated the Pr3 terms in the Hamiltonian;
and I am much intebted to him for informing me of his result.
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be considerably simplified. For consider first the equation

{

−E +
∑

P

[
hc

2πi
(αP · gradP ) +mP c

2αP0

]}

φ = 0. (15)

For N -free particles. If we choose all matrices ||αρlP σ′P || of the form







0 0 b a

0 0 c d

b̄ c̄ 0 0
ā d̄ 0 0





 (16)

and all the ||αρ0
νσP
|| of the form:







+1 0 0 0
0 +1 0 0
0 0 −1 0
0 0 0 −1





 (16)

and satisfying of course

[αµ,Pαν,P
′
] = 0 for P 6= P ′; [αµ,Pαν,P ]+ = 2δµν (17)

then any φ(σP ) in which n of the σP ’s have either of the values 3 or 4 will be
small compared with any of the φ’s for which all of the σ’s have the values
1 or 2 of the order (v/c)n. Now the terms

−
∑

PP

′
eP eP ′

2rPP ′
, ePA

0
0(qP )

in (14) do not involve the αν ’s, while the terms

eP (αP ·A(qP ))

are small of the order (v/c); thus as v/c is made to vanish, all the solutions
of (14) vanish expect those for which all the σP ’s have the values 1 or 2; and
(14) reduces to

[

−E +
∑

P

{

mP c
2 + ePA

0
0(qP )−

h2

8πmP
∆P −

∑

P ′

′
eP eP ′

2rPP ′

}]

φ(σP qP ) = 0

(18)
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for all σP ’s = 1 or 2 and

φ(σP qP ) = 0 for any σP = 3 or 4

which is the Schroedinger equation for the N -body problem.7 It would thus
be possible to take (18) as the starting point for our systematic solution
of (11) in powers of v/c. We shell not do this, however, as it would com-
plicate the analysis, and lead to no new results. We shall thus give up the
assumption that the α’s are written in the form (16), and aks for our zero’th
approximation to (11), the solutions of (14).8

2. We may write the equations (11) seriatim:

∑

rλ

Mrλ = M = 0; (−E +H0)φ = −i
∑

rλP

µrλP φ(1rλ); φ = φ(0rλ) (11.1)

M = 1






(−E + hνr +H0)φ(1rλ) = (11.2)

+i
∑

P

µrλP φ−
[
i
∑

r′λ′
∑

P µr
′λ′

P φ(1rλ, 1r′λ′)
]
−21/2i

∑

P

µrλφ(2rλ)

M = 2






(−E + h(νr + νr′) +H0)φ(1rλ, 1r′λ′) = +i
∑

P

[µrλP φ(1r′λ′)

+µr
′λ′
p φ(1rλ)]− i

∑′
r′′λ′′

∑

P

µr
′′λ′′

P φ(1rλ, 1r′λ′ , 1r′′λ′′) (11.3)

−21/2i
∑

P

[µrλp φ(2rλ, 1r′λ′) + µr
′λ′
p φ(1rλ, 2r′λ′)]






(−E + 2hνr +H0)φ(2rλ) = +21/2i
∑

P

µrλP φ(1rλ)

−i
∑

r′λ′

∑

P

µr
′λ′

P φ(2rλ, 1r′λ′)− 31/2i
∑

P

µrλP φ(3rλ) (11.4)

etc.
Now for fixed r, and fixed Kr,

µrλP = 0(c−1/2)

7It is possible to write the two component wave equation when the magnetic interac-
tions are retained up to the order (v/c)2, as has been shown by Breit, reference 2.

8We shall not make explicit use of the fact that the α’s are in the form (16); we
shall, however, retain the assumption that the α’s are small of the order v/c, to obtain
µrλP = 0(c−1/2).
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whereas
νr = 0(c).

Thus we should expect φ(1rλ) to be small of the order c−3/2, φ(1rλ, 1r′λ′) to
be of the order c−3, and so on, and we should try to find a solution of (11)
of the form

E = E(0) + E(1) + E(2) . . .

φ(Mrλ) = φ(0)(Mrλ) + φ(1)(Mrλ) . . .
(19)

with
E(n) = 0(c−n)

φ(n)(Mrλ) = 0(c−n−3/2M ).

It should be observed that in general there will be certain frequencies for
which φ(1rλ), φ(1r′λ′) etc. will not converge uniformly for c→∞ and that
for these frequencies the expansions (19) will be illegitimate. The frequencies
for which this convergence is non-uniform are those for which

+E −
∑

rλ

Mrλhνr

is a characteristic value of the homogeneous equations

(H0 − λ)φ = 0. (20)

Such frequencies will not occur if (20) has no solutions for λ < E i.e. if the
material system is in a normal state; but in general the expansions (19) must
be modified; we shall return to this modification later, and shall see that it
gives a satisfactory theory of the absorption and emission of radiation; but
for the present we shall assume that the atom is in a normal state, so that
(19) is justified.

On the present theory there is no normal state for the matter, because
states of infinite negative energy are possible; one may in fact show that, on
the present theory, Dirac jumps to such states from states of positive energy,
jumps in which the energy and momentum lost by the matter are taken up
by the field, are not only possible, but infinitely probable. But that the
theory should predict this is a token of an error in the theory; and since the
Dirac jumps do not seem to be directly responsible for the difficulties with
which we are, in this work, most concerned, we shall for the present neglect
them.

We shall first give a complete solution for the case that we drop all proper
energy terms, for the case, that is, that in all double sums of the form

∑

PP ′

(qP , σP , qP ′ , σP ′)

11



we may set the terms with p equal to p′ equal to zero. This solution is not
unique beyond terms of the second order in v/c; for in the higher orders
it is no longer possible uniquely to separate proper energy and interaction
energy. But we may readily obtain a possible solution:

φ(Mrλ) = Π
rλ







−i
∑

P

µrλP

hνr







Mrλ

φ (21)

where [

−E +H0 −
∑

rλ

∑

PP ′

′
µrλP µ

rλ
P ′

hνr

]

φ = 0. (22)

For if we put these values, for example, in (11.2) we get

+i
∑

P

µrλP

hνr

[

−E +H0 −
∑

r′λ′

∑

PP ′

µr
′λ′

P µr
′λ′

P ′

hνr′λ′
+ hνr

]

φ

+ i
hνr

[

H0,
∑

P

µrλP

]

φ = i
∑

P

µrλP φ.

(23)

Now in

∑

P

[H,µrλP ] =
∑

PP ′

[(
hc

2πi
(αP · gradP ) +mP c

2αP0 + eP (αP ·A(qP )

)

, µrλP ′

]

(24)
and in ∑

PP ′

µr
′λ′

P µr
′λ′

P ′

we may put
∑

PP ′

−→
∑

PP ′

′

so that ∑

P

[H,µrλP ] = 0 (25)

and (11.2) is satisfied. In a similar way it may be shown that all the equations
(11) are satisfied.

We may evalute the terms

∑

rλ

µrλP µ
rλ
P ′

hνr
= eP eP ′

c2

2π

∑

ll′

αPl α
P ′

l′

∑

rλ

vrλl (qP )vrλl′ (qP ′)

ν2
r

12



in (22) by observing that for l 6= l′

∑

rλ

vrλl (qP )vrλl′ (qp′)

ν2
r

=
∂

∂qlP ′

∂

∂ql
′

P ′
F (qP qP ′); ∆PF =

π

c2rPP ′

and
∑

rλ

vrλl (qP )vrλl (qP ′)

v2
r

=
−π

2c2rPP ′
−

∂2

∂qlP
2 F (qP , QP ′)

so that

∑

rλ

µrλP µ
rλ
P ′

hνr
=
−eP eP ′

4

{
(αP ·αP

′
)

rPP ′
+

(αP · rPP ′)(αP
′
· rPP ′)

r3
PP ′

}

(27)

This gives for φ0
{

−E +H0 +
1

4

∑

PP ′

′
eP eP ′

r3
PP ′

[(αP ·αP
′
)r2
PP ′

+(αP · rPP ′)(α
P ′ · rPP ′)]

}
φ = 0 (28)

This is the equation used by Breit.3 It is patently not relativistically invari-
ant; this means that the proper energy terms are not invariant, and forces
us to retain these terms, at least in part. Furthermore, we have not, in the
deduction of (28), used the fact that the atom is in its normal state; in spite
of this there is no sign, in the solution, of processes involving the emission
or absorption of radiation; for these processes arise from the interaction of
the particles with their own field. We have, therefore, to consider the solu-
tion of (11) when the proper energy is not neglected; the retention of these
terms will preserve the invariance of the theory, and give us an account of
radiation processes, but it leads to results in contradiction with experiment;
it makes the validity of (28), even to the second order in v/c, doubtful.

3. We can readily find a solution of the form (19) when E0 and φ0

correspond to a normal state for the matter; but we cannot find this solution
in closed form; nor is there an equation in configuration space, corresponding
to (28), for φ. If put (19) in (11.2) etc. we get

φ(0)(1rλ) = i
∑

m

brλ0mφ
(0)
m

hνr + E
(0)
m − E

(0)
0

;






brλ0m =
∑

P

∫
. . .
∫
dq

(1)
1 . . . dq

(3)
N

[
∑

σ′...σN

φ̄
(0)
m µrλP φ

(0)
0

]

(H0 − E
(0)
m )φ

(0)
m = 0

(29)
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and further

φ(0)(1rλ, 1r′λ′) = −
∑

mn

brλ0mb
r′λ′

mn φ
(0)
n

[hνr + E(0)
m − E

(0)
0 ][h(νr + νr′) + E(0)

n − E
(0)
0 ]

−
∑

mn

br
′λ′

0m brλmnφ
(0)
n

[hνr′ + E(0)
m − E

(0)
0 ][h(νr + νr′) + E(0)

n − E
(0)
0 ]

(30)

φ(0)(2rλ) = −21/2
∑

mn

brλ0mb
rλ
mn

[hνr + E(0)
m − E

(0)
0 ][2hνr + E(0)

r − E
(0)
0 ]
· etc.

Further E(1
0) and φ(1

0) vanish, and

E
(2)
0 = −

∑

rλ

∑

m

|brλ0n|
2

hνr + E
(0)
m − E

(0)
0

φ
(2)
0 =

∑

rλ

∑

m

∑

n=0

brλ0mb
−rλ
mn φ

(0)
n

[hνr + E
(0)
m − E

(0)
0 ][E

(0)
n − E

(0)
0 ]

.

Moreover φ1(r1λ), φ(3
0) and E(3

0) vanish, and

φ(2)(1rλ) = i
∑

r′λ′

∑

mk

∑

n 6=0

br
′λ′

0m b−r
′λ′

mn brλnkφ
(0)
k

[hνr′ + E
(0)
m − E

(0)
0 ][hνr + E

(0)
k − E

(0)
n ][E

(0)
n − E

(0)
0 ]

(32)

E
(4)
0 = −

∑

rλ

∑

r′λ′

∑

mk

∑

n 6=0

br
′λ′

0m b−r
′λ′

mn brλnkb
−rλ
k0

[hνr′ + E
(0)
m − E

(0)
0 ][hνr + E

(0)
k − E

(0)
n ][E

(0)
n − E

(0)
0 ]

etc.
The terms

−E(3)
0 φ(0)(1rλ)

and
−i
∑

P

∑

λ′r′

µr
′λ′

P φ(0)(1rλ1r′λ′)− 21/2i
∑

P

µrλp φ
(0)(2rλ)

in the equation for φ(3)(1rλ) cancel, so that

φ(3)(1rλ) = 0

and
φ

(5)
0 = 0, E

(5)
0 = 0.

The expansion for E(0) and φ(0) can be continued, and only terms of even
order in v/c appear.
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It will be observed that the interaction terms in (31)

−
∑

rλ

∑

m

[hνr + E(0)
m − E

(0)
0 ]−1

∣
∣
∣
∣
∣

∫
φ̄(0)
n µrλP φ

(0)
0 dq

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∫
φ(0)
n µrλP ′φ

(0)
0 dq

∣
∣
∣
∣
∣

(33)

[

we write

∫
dq for

∫
. . .

∫
dq

(1)
1 . . . dq

(3)
N

∑

σ′...σN

]

differ from those computed for the second order from 28):

−
∑

rλ

∑

m

(hνr)
−1

∣
∣
∣
∣
∣

∫
φ̄(0)
n µrλP φ

(0)
0 dq

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∫
φ̄(0)
n µrλP ′φ

(0)
0 dq

∣
∣
∣
∣
∣

(34)

It is possible to express

∑

rλ

µrλP µ
rλ
P ′

hνr + E
(0)
m − E

(0)
0

in terms of the confluent hypergeometric functions, but the expressions are
too complicated to be suitable for calculation.

The proper energy terms

−
∑

rλ

∑

P

∑

m

∣
∣
∣
∣
∫
φ̄

(0)
m µrλP φ

(0)
0 dq

∣
∣
∣
∣

2

hνr + E
(0)
m − E

(0)
0

= −
∑

rλPm

T rλ0m,P

do not exist, although both ∑

rλ

T rλ0m,P

and ∑

m

T rλ0m,P

converge; for large νr, ∑

m

T rλ0m,P = 0(1)

and for large E
rλ∑
T rλ0m,P = 0(1).

The energy level of the normal state is thus infinitely displaced by the in-
teraction of the particles with the field; the question which we have now
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to consider is whether or not the energy differences between two states are
displaced by a finite or an infinite amount.

In order to answer this question we must treat the case of energies which
do not correspond to a normal state for the matter; and we have to modify
(19), and take account of the emission of radiation by the system. And for
this purpose it is convenient to make the dimensions L of the Hohlraum
infinite, because that makes the physical interpretation of the solution more
immediate. For then νr becomes continuous and we may normalize the
vrλl (qP ) to the intervals ∆ν∆ω, where ∆ω is the element of solid angle of
the unit vector εr. Furthermore we may treat here, to simplify the writing,
the case that E corresponds to the first excited state of the atom, so that
there is only one energy E0 lower than E for which (20) is soluble.

We define the energy of the normal state by

E0 = E
(0)
0 + E

(2)
0 + E

(4)
0 . . . (35)

where E
(2)
0 and E4

0 are given by (31) and (32), and we define the correspond-
ing wave function

u0 = φ
(0)
0 + φ

(2)
0 + φ

(4)
0 . . . (36)

where φ
(2)
0 is given by (31). We can then extend this definition formally to

obtain the energy and wave function of excited states:

Em = E(0)
m + E(2)

m + E(4)
m . . . ;

E(2)
m = −

∫
dνr

∫
sωr

∑

λ

∑

n

∣
∣brλmn

∣
∣2

hνr + E
(0)
n − E

(0)
m

(37)

um = φm(0) + φ(2)
m + φ(4)

m . . . etc.

But in the expressions for E
(2)
m etc, and φ

(2)
m etc, the integrals over ν are

now improper, and we have to displace the path of integration around the
singularities. This is equivalent to replacing

1

hν + E
(0)
n − E

(0)
m

for E(0)
n < E(0)

m

by
1

hν + E
(0)
n − E

(0)
m

± iπδ(hν + E(0)
n − E

(0)
m ) (38)
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and then taking the principal value of the integrals over v. Then in general
all the Em’s except E0 are complex. We now transform the φ(Mrλ, qPσP )
by the formulae

φ(Mrλ,m) =
∑

σP

∫
. . .

∫
dq

(1)
1 . . . dq

(3)
N um(qP , σP ) (39)

φ(Mrλ, qP , σP )

and introduce

µrλmn,P =
∑

σP

∫
. . .

∫
dq

(1)
1 . . . dq

(3)
N ūmµ

rλ
P un. (40)

Then if the φ(M,m) satisfy the equations, which follow from (11):

(−E+Em)φ(0,m) = −i
∫
dνr

∫
dωr

∑

λ

∑

P

µrλ0m,PF1(ωrλ)δ

(

νr +
E0 − E
n

)

−
∫
dνr

∫
dωr

∑

λ

∑

P

µrλnm,P

∫
dν ′r

∫
dω′r

∑

λ′

∑

P ′

µr
′λ′

0n,P ′F2(ωr, ω
′
r, ν
′
r, λ, λ

′)

(41)

δ

(

νr + ν ′r +
E0 − E

h

)

+ . . .

φ(1rλ, 1m) = i
∑

Pn

µrλnm,Pφ(0, n)

{
1

−E + hνr + Em
+
iπδm0

h
δ

(

νr +
Em − E

h

)}

+F1(ωrλ)δ

(

νr +
Em − E

h

)

− i
∑

P

∫
dν ′r

∫
dω′r

∑

λ′

µrλ0m,P (42)

F2(ω′r, ωr, ν
′
r, λ, λ

′)δ

(

νr + ν ′r +
E0 − E

h

)

. . .

φ(1rλ, 1r′λ′ ,m) = i
∑

Pm

{
mr′λ′

nm,Pφ(1r′λ′ , n) + µrλnm,Pφ(1r′λ′ , n)
}

{
1

−E + h(νr + νr′) + Em
±
iπδm0

h
δ

(

νr + νr′ +
Em − E

h

)}

+F2(ωr, ω
′
r, ν
′
r, λ, λ

′)δ

(

νrν
′
r +

E0 − E
h

)

. . .
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where now the functions F are completely arbitrary, then the φ(Mrλ, qP , σP )
satisfy (11); for each choice of these F ’s we can obtain a solution of (11).
Now the terms

µrλnm,Pφ(0, n)

−E + hνr + Em
etc.

give a radiation field which does not extend to infinity; and the terms

±iπµrλnm,P
h

φ(0, n)δm0δ

(

νr +
E0 − E

h

)

etc.

represent outgoing9 electromagnetic waves, so that by the choice of the F ’s
we may determine the radiation incident upon the system. The simplest
case is that in which only quanta of the single frequency

ν =
1

h
(E − E0) = νr (43)

are incident upon the system, so that all the F ’s vanish except

F1(ω, λ).

For this case

φ(0,m) = +

i
∑

λ

∑

P

∫
dωrµ

rλ
0m,PF1(ω, λ)

E − Em
=

iGmν

E − Em
. (44)

Now by hypothesis E is to be chosen that only one Em−E, that for m = 1,
say, is to be small, so that only

φ(0, 1) =
iG1ν

E − E1
(45)

is large. The probability of absorption to this state is thus proportional to

|G1ν |2

|E − E1|2
=

|G1ν |2

|hν + E0 − E1|2
(46)

so that the shape of the absorption line is given by

const.
∣
∣
∣
∣ν + 1

h(E0 − E1)

∣
∣
∣
∣

2 (47)

9P. A. M. Dirac, Zeits. f. Physik 44, 585 (1927).
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since Gνr , varies slowly with ν.
If we evaluate E0, E1 to the second order in v/c, and drop the higher

terms–and this is equivalent to neglecting transitions in which more than
one quantum plays a part – (47) reduced to

const.
[
ν + 1

h
(E

(0)
0 − E(0)

1 ) + 1
h

(E
(2)
0 − 1

2E
(2)
1 − 1

2Ē
(2)
1 )
]

+ 1
4h2 |E

(2)
1 − Ē(2)

1 |
2
.

(48)
The absorption line is thus of the same shape as that predicted on the basis
of the correspondence principle, and that found, for this case, by Dirac8,
and the half-breadth of the line is

∣
∣
∣
∣
∣
E1(2) − Ē(2)

1

2h

∣
∣
∣
∣
∣

=
π

h

∫
dω
∑

λ

|brλ01 |
2 =

1

4πτ1
(49)

where, τ1 is the natural life time of the state 1. The center of the absorption

line is displaced to the red from (1/h)(E
(0)
1 − E(0)

0 ) by an amount

1

h

(

E
(2)
0 −

1

2
E

(2)
1 −

1

2
Ē

(2)
1

)

=
1

h

∫
dν

∫
dω
∑

λ

∑

n

{
|brλ1n|

2

hν + E
(0)
n − E

(0)
1

−
|brλ0n|

2

hν + E
(0)
n − E

(0)
0

}

∼
1

h

∫
dν

∫
dω
∑

λ

∑

n

∑

PP ′

{
µrλ1n,P · µ

rλ
n1,P ′

hν + E
(0)
n − E

(0)
1

−
µrλ0n,P · µ

rλ
n0,P ′

hν + E
(0)
n − E

(0)
0

}

.(50)

Here the principle values are to be taken for all improper integrals over ν.
The terms for p 6= p are just those to be expected from (33) for the

displacement of the energy levels by the magnetic interaction of the particles.
The terms

1

h

∫
dν

∫
dω
∑

λ

∑

n

{
|µrλ1n,P |

2

hν + E
(0)
n − E

(0)
1

−
|µrλ0n,P |

2

hν + E
(0)
n − E

(0)
0

}

(51)

must be ascribed to the effect of the interaction of the particle with its own
field. They may be compared with the formula obtained8 for the same effect
by Dirac, who finds a displacement

1

h

∫
dν

∫
dω
∑

λ

|µrλ01,P |
2

hν + E
(0)
0 − E(0)

1

. (52)
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There does not appear to be any justification for this result, because in its
derivation terms were neglected that are of the same order as those retained.
But it is of interest to observe that the integral in (52) exists, and gives a
finite displacement of the line of the second order in v/c. This displacement
is thus larger than the natural line breadth, which is of the third order.
It can be computed10 when the u’s are known. Thus for the first Lyman
doublet of hydrogen we find the same displacement, in this order, for both
components; it turns out to be

+
ch

32π2e2

1

τ1
=

ch

32π2e2
A10

which is about forty times the line breadth. The fact that this term, and the
similar terms in (51), are the same, in second order, for the two components
of the doublet, suggests that the formulae (33) in which the proper energy is
neglected, will give the atomic fine structure splitting correct to the second
order.

If we try to compute the displacement from (51), we find that the in-
tegrals over ν diverge logarithmically for high frequencies. One can readily
see that this is not the result of the neglect of higher order terms, nor of
any of the approximations made in the work. The theory thus leads to the
false prediction that spectral lines will be infinitely displaced from the values
computed by the Bohr frequency condition. The behavior of the expression
(51) calls for some comment. As the formula stands, the integral over ν
diverges absolutely; this may be verified by evaluating the terms for a free
particle. But the question arises whether it is possible so to rearrange the
order of the integration over ν the summation over n and the two integra-
tions involved in the evaluation of the µmn’s by (40), that the limit n→∞,
ν →∞ exists. This cannot be effected by an interchange of the sum over n
and the integral over ν; but there is a procedure which, when the E’s in the
resonance denominators of (51) are dropped, does give an absolutely con-
vergent result. This procedure was suggested by Heisenberg, who showed
that, if we first perform the integration over ν and ω and the summation
over λ, then sum over all the states n of the same energy, then sum these
up to some large but finite energy E. take the difference of the two terms
for the state (0) and the state (1), then perform the two integrations over
the configuration space, and finally allow E to become infinite, the limit
E →∞ exists, and (51) tends to zero. But if we try to apply this procedure

10The calculations of the displacements predicted by the results of Dirac were carried
through in collaboration with Harvey Hall; and I am indebted to him for permission to
quote them here. One must use the retarded potentials to obtain a convergent integral.
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to (51) when the E terms are not dropped, we get for the leading term the
divergent result

4l2P /hc · (E
(0)
1 − E(0)

0 )/h ·
∫ ∞

dx/x (53)

Nor is there any method for obtaining an absolutely convergent expression
for (51). It should be observed that (53) gives us another justification for
using (33) to get the fine structure separations correct to the second order.

One can see quite simply that (47) ought not to give a finite line displace-
ment. For consider two states of a free particle; in one let the particle be at
rest; in the other let it have the velocity v. Then if the energy of the particle
at rest be E, the energy of the moving particle in proper coordinates moving
with the particle will also be E. But we know how this energy transforms
under a Lorentz transformation; in the original coordinates it will be

Eβ β = [1− (ν/c)2]−1/2

and in the same coordinates the difference in energy of the two states, which
gives the line displacement, will be

E(β − 1)

But this can only be finite if E is finite which, by (31), it is not.
We have treated these difficulties in some detail, because they show that

the present theory will not be applicable to any problem where relativistic
effects are important, where, that is, we cannot be guided throughout by
the limiting case c→∞. The theory can thus not be applied to a discussion
of the structure of the nuclei. It appears improbable that the difficulties
discussed in this work will be soluble without an adequate theory of the
masses of electron and proton; nor is it certain that such a theory will be
possible on the basis of the special theory of relativity.
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