
An Introduction to Adaptive Logic Networks
With an Application to
Audit Risk Assessment

Kenneth O. Cogger
Professor Emeritus, University of Kansas

Peak Consulting, Inc.
6650 E. Alameda Ave.

Denver, CO 80224
cogger@compuserve.com

Kurt Fanning
College of Business & Economics
Central Missouri State University

Warrensburg, MO 64093-5070
fanning@cmsuvmb.cmsu.edu

2

Overview

An Adaptive Logic Network (ALN) is a new analytical tool introduced in early 1996. Since
then, ALN’s have been applied to a wide variety of problem areas, including economic analysis,
financial decision making, robotic control, audit risk assessment, sales forecasting, pattern
classification, exploratory data analysis, machine maintenance, rehabilitation of spinal cord injury
patients, machine learning, automated ECG interpretation, bankruptcy prediction, and subatomic
particle recognition. See the reference section for an extensive list of publications.

It is useful to think of ALN’s as being both (1) a powerful new type of neural network
from the field of artificial intelligence, and (2) a significant generalization of the general linear
model found in classical statistics. The problem areas mentioned above have, in fact, all been
studied with traditional neural networks, the general linear statistical model, or both. With this
interpretation, an ALN is an analytical tool combining and expanding the power of neural
networks and classical statistics.

As a type of neural network, ALN’s offer distinct advantages over past
approaches. First, it is far more efficient from a computational viewpoint. Second, the results are
far easier to interpret. Third, ALN’s offer the potential for examining the properties of the
network for compliance with any desired specification, such as in safety-critical applications; this
is not possible with previous neural network models.

As a generalization of the classical linear statistical model, the understanding of an ALN
is enhanced by the applicability of such standard tools as hypothesis tests and confidence
intervals on critical parameters, which is problematical for standard neural networks. With
ALN’s, we may formally test whether parts of a network may be removed without losing
significant explanatory power. We may also eliminate inputs which are statistically unimportant.
A final important aspect of an ALN is its ability to incorporate apriori restrictions on the nature of
the fitted model. For example, monotonicity or convexity constraints are easily imbedded.

In the remainder of this introduction, we shall describe the basic structure of an ALN,
show how it relates to neural networks and the linear statistical model, illustrate the unique
parameter estimation scheme for ALN’s, and work through an application to a real data set.

The Basic Elements of an ALN

The Adaptive term in an ALN refers to the changeable, or adaptive, parameters in an
arbitrary number of linear functions. These linear functions are of the form

An ALN adapts, or changes, the weights (ijw) in each of these linear functions to produce

desired results. Usually, to allow model flexibility, we require a constant term in each function
therefore .10 ≡X

In the context of the linear statistical model, the X’s are the independent or explanatory
variables, while Y is the dependent variable. In the context of a typical neural network model, the
X’s are the input variables while Y is the network output. The restriction on 0X is often referred
to as the inclusion of a bias term in the neural network.

If 0=jL , we have the definition of a straight line (if n=1), plane (n=2), or hyperplane

(n>2). Thus, at such a zero threshold, we have the equation

∑
=

−=
n

i
iijj YXwL

0

3

∑
=

=
n

i
iij XwY

0

An ALN incorporates these linear functions into the leaf nodes of a decision tree. Each leaf
of the tree evaluates whether 0≥jL , resulting in a value of True(1) or False(0). Thus an

evaluation of True(1) means that a linear threshold has not been reached and therefore

∑
=

≤
n

i
iij XwY

0

for that particular combination of values for the input and output variables. Thus a central
feature of an ALN is the inclusion of linear threshold units (ltu’s) at the leaf node level.

The logic term in ALN refers to the parent nodes of the ltu’s, which are restricted to be
either And or Or logic functions. All other parent nodes in the decision tree have the same
restriction. Thus the ltu’s are the children of these logic functions as are all other nodes in the

decision tree. Figure 1 portrays a simple ALN with a particular set of ltu’s.

This figure describes the structure of a three-layer ALN. Our convention in counting
layers is to count only the layers incorporating linear threshold and logic functions. There is also
a convenient shorthand notation to describe ALN decision trees. In this notation, the tree in
Figure 1 may be described as Or(And(2),And(2)). The reader interested in an exercise may wish
to construct the tree described by And(ltu,Or(And(2),Or(2)).

4

As mentioned previously, ALN’s are closely related to the linear statistical model. To
see this, note that an ALN consisting of just a single linear threshold unit would, at the zero
threshold boundary, define a multiple regression equation. The general linear statistical model is
therefore a special case of an ALN.

The number of possible ALN structures is boundless, but fortunately in practice only a
reasonable number need be considered. This is true for at least two reasons. First, the size of the
data set which is used to estimate parameters dictates a limit on the number of linear pieces
employed in an ALN. If there are n independent (X) variables, each linear piece will have n+1
variable weights, and clearly we should not have more weights to be estimated than there are
observations in our estimation sample. Second, many ALN structures which on the surface
appear different are really equivalent. For example, And(ltu,And(2)) describes the same tree as
And(3). These and other considerations effectively reduce the number of trees that might be
explored in any given situation.

Appendix A describes all unique trees with four or fewer ltu’s. There are only 17 such
trees. In practice, we have found that the descriptive ability of many trees is nearly equivalent, so
the large potential number of trees is not a significant problem.

Modeling Power of ALN’s

We stated in the overview that ALN’s represent a significant advance over traditional
linear statistical models (the general linear model is the simplest possible ALN), while retaining
their ease of interpretation. We also suggested that ALN’s represent a new, more
computationally efficient, form of a neural network. Let us see why this is so. Consider again the
fairly simple ALN of Figure 1. Figure 2 portrays the two-dimensional output space for this
network; the shaded area corresponds to all points (X,Y) where the output of the network is
True(1).

5

The first And evaluates as True only for points below two lines, giving a “pup-tent”
shaped shaded region corresponding to the minimum of two linear functions. The second And
gives half of a “cabin-tent” shaped region. The Or evaluates as True for points in either of these
two regions, thus corresponding to the maximum of these two tent boundaries. This points out
an important insight into the use of logic functions with linear threshold units: And equates to
Minimum and Or equates to Maximum. The net result is that the boundary between 0-space and
1-space for the output of an ALN is a piecewise linear function. In higher dimensions, ALN’s are

6

joining hyperplanes. In our simple example, there are four pieces, the function is continuous(as
are all ALN’s), but is neither monotone, convex, or concave.

Such a piecewise linear function is easily interpreted, for within the domain of each piece,
changes in the output are directly proportional to changes in each input, and the coefficients in
each linear piece represent partial derivatives. In a standard neural network, the partial
derivative of the output with respect to any input variable is impossible to compute unless all
other variables are assigned fixed values, and even a slight change in any of those fixed values
may dramatically alter the desired partial derivative. Thus ALN’s offer an ease of interpretation
not possible with standard neural networks. Piecewise linear functions are inherently easier to
interpret.

Since any continuous function can be approximated arbitrarily closely by a piecewise
linear function, an ALN with a sufficient number of linear threshold units can approximate
arbitrary continuous functions. Those familiar with the Kolmogorov Representation Theorem for
standard neural networks will appreciate the simplicity of this (informal) parallel proof for
ALN’s.

There is yet another advantage to the ALN approach. While the piecewise linear
response of the ALN in Figure 1 turned out not to be monotone, convex, or concave, these
properties could be imposed easily by modifying the type of tree and/or constraining coefficients
in the ltu’s. Using the same number of ltu’s, with no restrictions on the weights, a convex surface
is produced with And(4), and a concave surface with Or(4). With currently available software, it
is also possible to restrict part of the output space to be convex and part to be concave. This
ability is desired when modeling “S-shaped” curves such as sales growth over time.
Monotonicity can also be imposed by restricting coefficients within ltu’s to be positive or
negative. The estimation algorithm for ALN’s permits such restrictions to be easily imposed.

Estimation or Learning in ALN’s

Now that we understand the basic elements of an ALN, we need to examine how
appropriate parameter values can be determined for any particular application. In statistics, this
process is called parameter estimation; in neural networks, it is called supervised learning. What is
required is a sample set of observed X and Y variables which have representative values. These
values might come from carefully planned experiments, unplanned but nevertheless regular
observations (such as from economic data), or from fixed patterns such as alphabetic characters
corresponding to (encoded) handwritten versions of those characters. We shall call this the
estimation or training sample.

In statistics, the most widely used estimation scheme adopts the principle of least
squares. There, parameter values are chosen which minimize, within the estimation sample, the
total squared difference between the observed and estimated Y values. An ALN also uses least
squares as its estimation criteria, but in a sequential fashion. We will describe it using a simple
numerical example.

First, parameter values are randomly assigned to all linear functions in the ALN (Other
assignments are possible if apriori knowledge exists) . Next, sequentially, training values

),(tt YX in the estimation sample are input to the ALN. Truth values are then propagated
through the tree, producing the tree output. An example is given in Figure 3, which portrays the
initial tree from Figures 1 and 2 being presented with the training pair),(tt YX = (3,2).

7

8

For 3=tX , it is seen visually in Figure 2 that the active surface is defined by

6212 =−= tXY . Since YYt ≠= 2 , iterative least squares is used to modify the active surface

Y, moving it closer to the target, or training,value.
Assuming a learning rate (this is identical to the “smoothing constant” used in

exponential smoothing; as the smoothing constant approaches zero, “batch” and “iterative” least
squares produce the same solution) of α = 0.2, the necessary formulas are:

()25.0 tYYE −=

4)()(
00

=−=−= tt YY
w
Y

YY
w
E

∂
∂

∂
∂

12)()(
11

=−=−= ttt XYY
w
Y

YY
w
E

∂
∂

∂
∂

∆w

0
= −α

∂E

∂w 0

= −0 .8 ∴w 0 (new) = w 0 (old) − 0 .8 = 12 − 0 .8 = 11 .2

∆w 1 = −α

∂E

∂w 1

= −2 .4 ∴w 1 (new) = w 1 (old) − 2 .4 = −2 .0 − 2 .4 = −4 .4

and the active surface changes to XY 442.11 −= , moving it incrementally toward the current
target output. The next),(tt YX training pair is then presented to the network and the above
steps are repeated. After passing through the entire training sample, a training epoch is said to be
completed. Learning typically consists of passing throught the training sample for many epochs.

 It is often recommended to utilize a series of such training runs, at decreasing learning
rates α . For example, a training run with a coarse learning rate (e.g. α = 0.5) for 500 epochs
might be followed by 300 epochs with a learning rate ofα = 0.1. The rationale is that a coarse
learning rate allows widely varying linear pieces to be tested; once a reasonable set of pieces has
been coarsely estimated, smaller learning rates fine tune the fit. It may be shown that the limiting
behavior of this approach is equivalent to batch least squares.

Note that the ALN training process modifies only the weights on a single linear piece at
each iteration. This is the key to the speed of ALN learning. With standard backpropagation
networks, usually every parameter in a network is responsible for any output error and learning
computations are comparatively slow because every weight in the network must be modified at
each iteration. Readers unfamiliar with backpropagation networks may refer to Appendix B for a
brief summary of this type of neural network and a simple example of how many parameters
must be changed at each iteration.

Of course, our preceding example used a visual inspection of Figure 2 to determine
which linear piece was active and responsible for the output error. In practice, such a
determination must be made with a computer algorithm. Fortunately, this is trivially easy to
program given the structure of an ALN. First, every logic node in an ALN can be assigned
formal responsibility using the rules of logic. The assignment of responsibility proceeds from the
output node backwards. First, by definition, the output node is always responsible. Second, the
upper And node (see Figure 3) is responsible since a change in its truth value (from 1 to 0) would

9

change the output of the network. The lower And node is not responsible, since a change in its
truth value (from 0 to 1) would not alter the output of the network.

This eliminates the entire bottom half of the network from potential responsibility. No
change, however large, in the weights of the bottom two linear threshold functions would change
the output of the network. Thus responsibility is narrowed to the two linear threshold functions
that are inputs to the upper And node. Since both are True(1), a change in either one would
change the output of this And node. Thus both linear pieces are formally responsible. To
determine which is the active surface, since this is an And(minimum) node, the minimum
threshold exceedance (4) indicates that 12-2X-Y=0 is the active surface.

This algorithm is quite general and efficient. Formal rules for responsibility of logic
nodes with binary inputs are used to greatly reduce the number of nodes that must be evaluated,
and the Minimum(Maximum) dualities of And(Or) nodes eliminate all but the one active linear
piece.

Another less efficient algorithm for determining the active piece does not rely upon
responsibility of logic nodes, but is easier to describe. For any training vector, compute the value
of each linear piece. For our ALN, this produces the values 8,4,1,-8 (reading from top to bottom).
Take the minimum(And) of (8,4) = 4, the minimum of (1,-8) = –8, then take the maximum(Or) of
(4,-8) = 4. Keeping track of which piece (12-2X-Y) produced this value, the active surface is again
identified.

In such an iterative estimation scheme, it is easy to incorporate apriori constraints on the
parameters in the weight vectors. Such constraints allow enforcement of monotonicity conditions
desired by the user.

Testing ALN’s With Standard Regression Tools

Statistical testing for most neural networks is problematical given the complicated nature
of the input-output relationship. Such is not the case with ALN’s given their piecewise linear
nature. Standard regression software packages may easily be used to refine the weight estimates
of an ALN and even test for the appropriate number of linear pieces. Below, we demonstrate this
for a simple ALN. The general approach is in Cogger and Armstrong(1997).

Suppose an ALN of the form And(ltu,Or(2)) has been determined based on a training set
of data. Then the output of this ALN will be given by

)),(,(321 LLMaxLMinY = ,

 where each of the linear functions utilize weights on the independent variables determined by
the estimation process described in the previous section. For any particular value of the
independent variable(s), the responsible linear piece may be determined. To identify the
responsible linear piece, define two indicator variables

{)),(,(:1
:01

3211 LLMaxLMinL
otherwisez == ; {)),(,(:1

:02
3212 LLMaxLMinL

otherwisez ==

Then it follows that in the training sample, we have the identified model

2321313)()(zLLzLLLY −+−+=

The contrasts,)(31 LL − and)(32 LL − , between linear pieces in this expression have an
interesting interpretation. In the case of a single independent variable X, a contrast will be of the
form a(X-b), where a is some constant and b is the abscissa or joint point X=b where the linear

10

pieces intersect. Thus the above expression is a generalization of the usual indicator variable
approach to defining a piecewise linear model. In our model, there are two join points, meaning
we have three separate linear pieces.

This model may now be generalized for estimation in a holdout sample to

∑
=

−+−+=
n

i
ii zLLzLLXwY

0
23221311)()(ββ

Since this model is linear in all parameters, standard regression programs may be used to
estimate the w and β parameters. The usual T and F statistics may be used to test hypotheses
of interest. For example,

0:0 =iH β
may be tested with a standard T statistic. If this hypothesis is rejected, the corresponding
contrast between two linear pieces is significantly different from zero, meaning that at least two
linear pieces are required to describe the statistical relationship. If accepted, the corresponding
contrast may be removed from the model, reducing the number of linear pieces by one. This
would lead to a simplified, pruned, tree.

Also, the hypothesis
0: 210 == ββH

may be tested using the usual conditional error sum of squares procedure (see Draper and
Smith(1991)). This uses an F statistic. If the hypothesis is accepted, one would conclude that
both contrasts can be removed from the model, meaning that a simple multiple regression (one
linear piece) is an adequate description of the data, as opposed to the piecewise linear nature of
an ALN.

Finally, the overall F statistic for the complete model may be used to test whether all
variable coefficients ,,(21 ββ and all iw) in the model are zero. If this hypothesis is accepted,

then the response variable Y is simply random variation; no linear or even piecewise linear
association exists between Y and the X variables.

Thus standard regression analyses may be performed on an ALN, trimming branches off
the decision tree and simplifying the model much like stepwise regression. ALN’s are the first
neural network model to permit such easy application of standard well-understood statistical
tools.

A Sample Application in Audit Risk Assessment

We have conducted a preliminary study of the usefulness of ALN’s in the detection of
fraudulent management behavior in audit situations. Details of this study are available on
request, and space limitations prevent a more complete discussion. Here, we only wish to
describe what variables we employed, what type of ALN seemed most appropriate, the ease or
lack of ease in developing the ALN, predictive accuracy results for classifying firms with known
classifications, and some software materials we have developed which may be of help to others
wishing to explore ALN’s in similar application areas.

Information was gathered on 21 variables for each of 204 firms. A listing of these
variables is given in Appendix C. There were an equal number of firms classified as Fraud or
Nonfraud based on available court and administrative records, and they were paired based on
industry codes. 150 paired firms were assigned to a training sample and the remaining 54 paired
firms were assigned to a validation or holdout sample.

11

We developed an Excel Visual Basic for Applications(VBA) macro to assist us in
rapidly examining all possible ALN structures containing four or fewer linear pieces. More
pieces would clearly lead to overfitting and poor generalization in our holdout sample since each
piece has 21 parameters (the weights on the 20 predictor variables plus a constant term) and these
parameters are being estimated with only 150 training cases. An ALN with four linear pieces
would be estimating 84 parameters. The VBA macro uses Atree 3.0, a commercial program
published by Dendronic Decisions, Ltd. for the estimation of ALN’s to efficiently explore all of
the possible tree structures. The macro permitted us to complete this exploration in a few hours,
a great saving of time over manual approaches.

Appendix D lists sources for software used in this study, some of which is available free
of charge. Appendix E lists abbreviated input and output files from this study so the reader can
appreciate the relative simplicity of tasks necessary in the study of ALN’s.

The VBA macro (1) requests input from the user as to what tree structure to try (e.g.
and(or(2),and(2))), (2) executes Atree3.0 on the training data, (3)creates a worksheet with
predicted scores for Fraud for both training and holdout samples, (4)optimizes a cutoff score for
the maximum number of correct classifications in the training sample, and then(5)applies this
cutoff score to the holdout sample. This procedure assures that the results in the holdout sample
are not biased in any way, since all optimization is restricted to the training sample.

We found that several ALN structures yielded nearly equivalent results in the training
sample, although the best one appeared to be an ALN structure of the form Or(Or(2),And(2)).
This yielded 132 of 150 (=88%) firms correctly classified in the training sample with an optimum
cutoff score of 0.507. Breaking this down, 67 of 75 (=89%) Fraud firms were correctly classified,
and 65 of 75 (=87%) NonFraud firms were correctly classified. Naturally, these levels of accuracy
are unreliable given that parameter values and the cutoff score are optimized precisely for that
sample. Results are in the table below.

ALN in Estimation Sample
Predicted

Actual Fraud NonFraud Total
Fraud 67 8 75
NonFraud 10 65 75
Total 77 73 150

When the indicated cutoff score and the estimated ALN are applied to the holdout
sample, we found 32 of 54 (=59%) firms correctly classified. This reduction in classification
accuracy is expected given the bias mentioned above. Breaking this down, 18 of 27 (=67%) of the
Fraud firms were correctly classified and 14 of 27 (=52%) of the NonFraud firms were correctly
classified. Results are tabled below.

ALN in Holdout Sample
Predicted

Actual Fraud NonFraud Total
Fraud 18 9 27
NonFraud 13 14 27
Total 31 23 54

These preliminary results are especially encouraging given our experience with this same
data set using traditional backpropagation networks, linear and quadratic discriminant analysis,
multiple regression, and other analytical tools; usually, these techniques have difficulty achieving
better than 50% total classification accuracy, which is no more than a random assignment would
achieve in our sample. Of special note is the fact that the ALN actually performed better on
Fraud firms than NonFraud firms in both training and holdout samples. Given the disparate
Type I and Type II classification error costs in an audit setting, this is especially encouraging.

12

We note also that all variables used in this study are externally available public
information. Information available to auditors in a real audit situation was not employed. If
such information were incorporated, we would fully expect much more accurate classification
rates for both fraud and nonfraud firms. We are also exploring the use of other discriminant
variables and expanding the firms to include more recently acquired data.

Appendices
A. ALN Tree Structures

Below are listed all unique ALN decision trees with four or fewer linear pieces. If anyone wishes
to extend this list to more pieces, the author would appreciate receiving a copy of the extended
list for posting on the web. The list below may be found at
stat1.cc.ukans.edu/~cogger/structures.pdf

Possible Tree Structures with up to Four Pieces
Tree Notation Pieces Atree 3.0 Description Equivalence

A A 1 Ltu -
B &(2A) 2 And(2) -
C V(2A) 2 Or(2) -
D &(3A) 3 And(3) -
E V(3A) 3 Or(3) -
F &(A+B) 3 And(Ltu,And(2)) D
G V(A+B) 3 Or(Ltu,And(2)) -
H &(A+C) 3 And(Ltu,Or(2)) -
I V(A+C) 3 Or(Ltu,Or(2)) E
J &(4A) 4 And(4) -
K V(4A) 4 Or(4) -
L &(2A+B) 4 And(Ltu,Ltu,And(2)) J
M V(2A+B) 4 Or(Ltu,Ltu,And(2)) -
N &(2A+C) 4 And(Ltu,Ltu,Or(2)) -
O V(2A+C) 4 Or(Ltu,Ltu,Or(2)) K
P &(A+D) 4 And(Ltu,And(3)) J
Q V(A+D) 4 Or(Ltu,And(3)) -
R &(A+E) 4 And(Ltu,Or(3)) -
S V(A+E) 4 Or(Ltu,Or(3)) K
T &(A+G) 4 And(Ltu,Or(Ltu,And(2))) -
U V(A+G) 4 Or(Ltu,Or(Ltu,And(2))) M
V &(A+H) 4 And(Ltu,And(Ltu,Or(2))) N
W V(A+H) 4 Or(Ltu,And(Ltu,Or(2))) -
X &(B+C) 4 And(And(2),Or(2)) N
Y V(B+C) 4 Or(And(2),Or(2)) M
Z &(2B) 4 And(And(2),And(2)) J
AA V(2B) 4 Or(And(2),And(2)) -
AB &(2C) 4 And(Or(2),Or(2)) -
AC V(2C) 4 Or(Or(2),Or(2)) K

There are 17 unique decision trees. Some duplicates are purposely listed (e.g. D and F) for
instruction. In the above table, once a particular tree has been found equivalent to another, that
tree is never again considered. For example, &(A+F) is not listed since it is equivalent to &(A+D).

13

The second column in the table introduces a notation which may be helpful in extending this
table to 5 or more pieces.

B. Traditional Backpropagation Neural Network

One common neural network is the feedforward neural network, in which the output of any
node in the network is passed in only one direction, namely, to the output node. Backpropagation
refers to the learning or estimation scheme the network employs to determine appropriate
weights or parameter values in the functions which are computed by each node of the network.
This estimation scheme uses iterative least squares, like an ALN, except that when calculating

4)()(
00

=−=
∂

−= tt YY
w
Y

YY
w
E

∂∂
∂

12)()(
11

=−=−= ttt XYY
w
Y

YY
w
E

∂
∂

∂
∂

the chain rule of calculus must be used to determine these derivatives for every parameter in the
network, since a typical feedforward network is fully connected; every node function is usually
responsible for the error E.

The node functions for a backpropagation network must be continuously differentiable.
Common choices for the input and output functions of a node are

∑=
i

ii XwInput

[] 1)exp(1 −−+= InputOutput

Which is a sigmoid function with an S-shaped curve. This function is convenient for the
calculation of derivatives because

[]OutputOutput
dInput

dOutput
−⋅= 1

and this expression uses values which have been previously computed.
Figure 4 portrays a fully connected four-layer neural network. Here, each node is fully

connected to all nodes in the subsequent layer. In addition to the input and output layers, there
are two intermediate, or hidden, layers. As can be imagined, if each node is of the sigmoidal type
described, the output of such a network is a highly nonlinear function of the inputs and is often
difficult to interpret.

14

One practical difficulty with such a network architecture is that there are 38 parameter
values to be estimated. For each training case, the error derivative must be computed for each
parameter and changes must be made in each parameter value. By contrast, only a single linear
piece in an ALN would be modified at each stage, meaning that an ALN comparable to Figure 4
would require changes in only 5 parameters at each stage. Instead of many derivatives being
calculated and backpropagated, only the responsible piece need be determined, and this is easily
accomplished by a simple algorithm.

C. Variables in Audit Risk Study of ALN’s

Variable Definition
1 Fraud?(0-1)
2 Size of Board of Directors
3 % Outside Directors
4 CEO=Chair?(0-1)
5 Audit Committee?(0-1)
6 Compensation Committee?(0-1)
7 Non-Big6 Audit Firm?(0-1)
8 Profit Sharing Plan?(0-1)
9 Altman’s Z-Score
10 3-year Annualized Sales Growth Rate
11 Change in CEO Last 3 Years?(0-1)
12 CEO=CFO?(0-1)
13 Litigation in Last 3 Years?(0-1)
14 LIFO Inventory Valuation?(0-1)
15 Accounts Receivable/Sales
16 Inventory/Sales
17 Net Plant,Property,Equipment/Total Assets
18 Debt/Equity
19 Sales/Total Assets
20 Accounts Receivable Growth > 10% in Last Year?(0-1)
21 Gross Margin Growth > 10% in Last Year?(0-1)

15

D. Software for Estimation of ALN’s

The only available commercial software to implement Adaptive Logic Networks is Atree 3.0,
published by
 Dendronic Decisions, Ltd.

800 Tower One, Scotia Place
10060 Jasper Ave.
Edmonton, AB T5J 3R8
CANADA
(403) 421-0800
(403) 421-0850 (Fax)

An educational version of Atree3.0, as well as other information about ALN’s, may be
downloaded from
www.cs.ualberta.ca/~arms

The VBA macro for Excel97, which automates many of the tasks associated with using
Atree3.0 in a discriminant analysis setting, is available at no charge from one of the authors.
Those familiar with VBA can easily modify this macro for more general applications
involving Atree 3.0. Please address requests to cogger@compuserve.com.

E. Representative Atree 3.0 Files

Atree 3.0 allows many analyses to be performed on Adaptive Logic Networks. For example,
an estimated ALN may be applied to different data sets than the estimation sample, two and
three-dimensional plots may be produced, etc.. Below are partial listings of the input files
required by Atree 3.0 in our fraud risk study, as well as one output file. All are standard text
files.

Fraud.adl

ALN aFraud(21, 1) //Defines number of variables; variable 1 is the output or dependent variable
{
var 1 // Indicator variable for fraud(1) vs nonfraud(0)
 {epsilon = 0.25;} //prevents overfitting with linear pieces that are unnecessary
var 2 // Size of board of directors
 {wmax = 0;} //apriori restriction on this variables coefficient
var 3 //Percentage outside directors
 {wmax = 0;}
 var 4 //1 if CEO is also board chair
 {wmin = 0;}

…..(other variables deleted to abbreviate listing)……

var 21 //1 if gross margin growth > 1.10 past growth
 {wmin = 0;}

tree=and(ltu,or(2)); //Tree to be estimated.
};

16

Fraud.shl

LoadADL "c:\atree30\samples\fraud\fraud.adl"

// Train twice, beginning at course (0.5) learning rate, then finetune (0.1)
// Stop after 500 cycles through the estimation set or when RMSE<0.4 (0.3)
// Fraud estimation data is in fraudest.dat
aFraud.Train(500, 0.4, 0.5, "c:\atree30\samples\fraud\fraudest.dat")
aFraud.Train(500, 0.3, 0.1, "c:\atree30\samples\fraud\fraudest.dat")

// create a decision tree on var 1, and save the tree and all parameters
// maximum layers for the DTREE is 3

DTREE dFraud(aFraud, 1, 3)
dFraud.Write("c:\atree30\samples\fraud\fraud.dtr")
//Calculate aln output for all cases in holdout sample
dFraud.Eval("c:\atree30\samples\fraud\fraudhld.dat","c:\atree30\samples\fraud\fraudhld.out")
//Calculate aln output for all cases in estimation sample
dFraud.Eval("c:\atree30\samples\fraud\fraudest.dat","c:\atree30\samples\fraud\fraudest.out")

fraudest.dat (abbreviated listing)

1 14 64 1 ……
0 12 75 0 ……
1 6 50 1 ……
0 7 71 1 ……
.
.

fraudhld.dat (abbreviated listing)

1 7 29 1 ……
0 9 33 1 ……
1 4 0 0 ……
0 5 40 1 ……
.
.

17

fraud.dtr (abbreviated Atree 3.0 output file describing the estimated aln)

// c:\atree30\samples\fraud\fraud.dtr exported on Tue Jun 24 15:26:27 1997
// ALN Decision Tree file format v1.0 (C)1994 Dendronic Decisions Limited
VERSION = 1.0;
VARIABLES = 21;
……(summary statistics on all 21 variables in study)……
OUTPUT = x0;
LINEARFORMS = 3;
…..(description of estimated coefficients for each linear piece)…..
BLOCKS = 1;
0 : MIN(0, MAX(1, 2)); (compare to the tree= definition in fraud.adl)
DTREE = 1;
0 : block 0;

References

Armstrong, W.W., and Thomas, M.M. (1996), “Adaptive Logic Networks,” Section C1.8, The
Handbookof Neural Computation, Fieseler, E., and Beale, R., eds., Institute of Physics
Publishing and Oxford University Press USA.

Armstrong, W.W., Chungying Chu, and Thomas, M.M. (1996), “Feasibility of Using Adaptive
LogicNetworks to Predict Compressor Unit Failure,” Chapter 12, Applications of Neural
Networks in Environment, Energy, and Health,Keller, P.E., Hashem, S., Kangas, L.J., and
Kouzes, R.T., eds.,World Scientific Publishing Company Ltd., London.

Cogger, K.O., and Armstrong, W.W. (1997), “Identification, Estimation, and Testing of Piecewise
Linear Multiple Regression Models Using Adaptive Logic Networks,” Working Paper.

Cogger, K.O.,Koch, P.D., and Lander, D.M. (1997), “Adaptive Logic Network, ARIMA, and
Regression Forecasts of International Equity Markets During Volatile Conditions,”
Advances in Financial Economics, vol. 3, JAI Press, 117-157.

Draper, N.R., and Smith, H. (1981), Applied Regression Analysis, New York: John Wiley.

Fanning, K., and Cogger, K.O. (1994),“A Comparative Analysis of Artificial Neural Networks
Using Financial Distress Prediction,” International Journal of Intelligent Systems in
Accounting, Finance, and Management, vol. 3, 241-252.

Fanning, K., Cogger, K.O., and Srivastava, R. (1995), “Detection of Management Fraud: A Neural
Network Approach,” International Journal of Intelligent Systems in Accounting, Finance,
and Management, vol. 4, 113-126.

Fanning, K., and Cogger, K.O. (1997), “Neural Network Detection of Management Fraud Using
Published Financial Data,” International Journal of Intelligent Systems in Accounting,
Finance, and Management, vol. 6.

Kostov, A., Andrews, B.J., Popovic, D.B., Stein, R.B., and Armstrong, W.W. (1995), “Machine Learning
in Control of Functional Electrical Stimulation Systems for Locomotion,” IEEE Trans. Biomed.
Eng.,vol. 42, no. 6, 541-551.

Kremer, S.C., and Melax, S.(1994), “Using Adaptive Logic Networks for Quick Recognition of

18

Particles,” IEEE International Conference on Neural Networks, Orlando, Florida, vol. 5, 3015-
3019.

Polak, M.J., Zhou, S.H., Rautaharju, P.M., Armstrong, W.W., and Chaitman, B.R. (1995),
“Adaptive Logic Network Compared with Backpropagation Network in Automated
Detection of Ischemia from Resting ECG,” Proceedings, Computers in Cardiology Conference,
Vienna, Austria, 217-220.

