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Abstract

Nested datatypes are a generalisation of the class of regular datatypes, which
includes familiar datatypes like trees and lists. They typically represent con-
straints on the values of regular datatypes and are therefore used to minimise
the scope for programmer error.

An operation is said to be generic if it is parameterised by a datatype. This
thesis explains how to define and reason with generic operations for nested
datatypes. The operations we choose to illustrate the method include the
zip and membership operations of Hoogendijk’s thesis. These operations are
thereby generalised from regular datatypes to nested datatypes.

We use fold operators to define and reason with these generic operations.
It is therefore sufficient for us to define these fold operators generically and
to express neatly generic theorems for these folds, such as universal prop-
erties and fusion laws. This we do for the three types of folds on nested
datatypes. We demonstrate the theorems by proving the fold-equality law,
which connects two varieties of fold representing two different modes of eval-
uation.

Much of our reasoning is with relations rather than functions so we have
to adapt our semantics for nested datatypes to incorporate the operators of
relational calculus. For this reason, we extend our fold operators and associ-
ated theorems to apply to relations.

Okasaki has argued informally that every nested datatype represents a con-
straint on some regular datatype. We prove this formally by defining an
injective embedding function for each nested datatype. Since this operation
connects programs that use nested datatypes with programs that use only
regular datatypes, we can use it to remove nested datatypes from programs.
There is some hope that we can also use it as a means of constructing pro-
grams for nested datatypes.
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Chapter 1

Introduction

Consider the following Haskell datatype Tree, whose instances are leaf-labelled
binary trees.

data Tree a = Tip a | Bin (Pair (Tree a))
type Pair a = (a, a)

We say that Tree is a regular datatype because the recursive use of Tree takes
the same parameters as the defining use. Almost all functional programming
is conducted exclusively with the class of regular datatypes, which includes
other kinds of trees, and lists as well. Nested datatypes are a generalisation of
regular datatypes where the above restriction on parameters is removed. For
example, the datatype Pow below is a nested datatype, though not a regular
datatype, because its recursive use has the parameter Pair a, whereas its
defining use has parameter a.

data Pow a = Zero a | Succ (Pow (Pair a))

Note that the only difference between Pow and Tree is in the position of
the type constructor Pair . An instance of Pow is either a single element or
a pair of elements or a pair of pairs of elements, and so on. If we ignore
the constructor functions then every instance of Pow matches an instance
of Tree, so Pow represents a subtype of Tree. The members of the subtype
are those instances of Tree that are complete, that is, perfectly balanced.
We shall call the members of the subtype power trees since the number of
leaves they contain is a power of two, though elsewhere [BGJ00] the term
power list is preferred as the tree structure is not there considered important.
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The datatype Pow comes in handy if we want to write a function that returns
a complete leaf-labelled tree [Hin00a]. Such a structure is often required by
paralell algorithms. Ross Paterson gives in [Pat01] an interesting variant: a
datatype of lists of depth-preserving functions on trees that are ascending
in depth. This is also useful for parallel algorithms. If we use Pow instead
of Tree, then we cannot by mistake write a correctly-typed function that
returns an unbalanced tree. In other words, we can use the Haskell type
checker to automatically check that our function has a certain property and
we do this by using a more informative datatype that conveys the extra in-
formation that the output must be perfectly balanced. Many more of these
more informative types, including other kinds of balanced tree and matrices,
can be phrased as nested datatypes.

In fact, we shall discover in Chapter 8 that every nested datatype repre-
sents a subtype of some regular datatype. The conclusion to draw from this
is that nested datatypes do not add to the expressivity of the Haskell lan-
guage. However, they are still useful because they act as “regular datatypes
plus constraints”. Nevertheless, Okasaki demonstrates with the example of
the trie data structure [Oka98b] that nested datatypes can be designed with-
out having to keep in mind a particular regular datatype.

Programming with nested datatypes is made much simpler by the use of
fold operators, an idea that originated with Bird’s theory of lists [Bir89]. A
great number of recursive functions are folds, that is, they fit a particular
pattern of recursion. We encapsulate this pattern in a fold operator that
returns a fold operation given certain ingredients that are supplied as pa-
rameters. The operator can be used to write fold operations without using
recursion explicitly. The Standard Prelude implements the fold operator for
built-in lists as the function foldr , illustrated by

foldr f e [1, 2, 3] = f 1 (f 2 (f 3 e))

Many folds are also maps so we define, as a special case of the fold operator,
a map operator to produce maps. The map operator for built-in lists is
implemented in the Standard Prelude as the function map, illustrated by

map f [1, 2, 3] = [f 1, f 2, f 3]

It is easy to extend the notion of folds to any regular datatype by observing

[1, 2, 3] = (:) 1 ((:) 2 ((:) 3 [ ])) = foldr (:) [ ] [1, 2, 3]

2



It is clear that foldr f e simply replaces the constructor functions (:) and [ ]
with the parameters f and e. In general, the fold operator for a datatype
uses its parameters to replace all occurrences of constructor functions in a
structure. We can write a fold operator for Pow that does exactly this but
we shall see in the next chapter that the type of such an operator must be
so restricted that it cannot be used for much. We call it a simple fold oper-
ator to distinguish it from the standard fold operators that are defined for
regular datatypes. In [BP99b], Bird and Paterson introduced a more useful
generalised fold operator and in [Hin99a], Hinze introduced an efficient fold
operator, which is yet more general and can be used to produce map opera-
tions.

Fold operators are invaluable for program calculation, the process of trans-
forming an obviously correct but inefficient specification into a less clear but
more efficient implementation. Two theorems for folds that aid this activity
are the map-fusion law and the fold-fusion law. The map-fusion law for lists
rewrites the expression foldr f e · map k as a single fold. The fold-fusion law
for lists rewrites the expression k · foldr f e as a single fold, but only if certain
conditions are met.

Malcolm showed [Mal89] that every regular datatype has both a fold-fusion
law and a map-fusion law associated with its standard fold. Bird and Pater-
son derived map-fusion and fold-fusion laws for their generalised fold operator
in [BP99b]. Their starting point was the so-called universal property of gen-
eralised folds, which both defines the generalised fold operator and asserts
that generalised folds are uniquely defined by this property.

Often program calculation starts from a non-deterministic specification so
we must reason with relations instead of functions. This means we have to
extend to nested datatypes the previous work of Oege de Moor [BdM97] and
Roland Backhouse [BJJM99] designed to enable reasoning with relations for
regular datatypes. Some thought is needed to confirm that fold operators
and map operators can be extended to relations.

The main purpose of this thesis is to define and prove properties of generic

operations. These are operations that are parameterised by a datatype. As a
first example, Hoogendijk [Hoo97] generalises the unzip function of Haskell to
a generic operation zip that takes as a parameter a pair of regular datatypes.

3



We extend this further to nested datatypes. We define zip using a generic
generalised fold operator and we prove that it obeys certain generic prop-
erties of zips by using generic versions of the universal property and fusion
laws for generalised folds.

In fact, zip is only defined for so-called linear datatypes. A datatype is linear

if the parameter to all recursive uses in its definition is not modified by the
datatype being defined. Although Pow is a linear datatype, the datatype of
bushes, for example, is not so we say that it is non-linear.

data Bush a = NilB | ConsB (a,Bush (Bush a))

Although Bird and Paterson define the universal property and fusion laws
for generalised folds on non-linear nested datatypes, we find that we must
rewrite them in a special way that facilitates generic reasoning.

Now we can list the major contributions of the thesis.

• we define a zip operation for each linear nested datatype and prove
that it has the properties expected of zips

• we explain how to reason generically with the universal property and
fusion laws of generalised folds

• we prove the fold-equality law for linear datatypes. This law connects
two sorts of folds — simple folds and efficient reductions — by giving
conditions when they are equal. The two folds represent two different
forms of evaluation.

• we define and verify a generic membership relation, thereby confirm-
ing that nested datatypes have membership, an essential property of
datatypes [HdM00]

• we confirm that our reasoning with nested datatypes can be performed
with relations instead of functions

• we define a function that embeds every nested datatype within a reg-
ular datatype, explain how to use it to remove nested datatypes from
programs, and give pairs of programs that are equivalent according to
the embedding

4



The layout of this thesis is as follows.

Chapter 2 gives a semantics for regular datatypes based on the notion of
standard folds. An important mathematical structure known as a category
is used to describe the semantics. Using categories allows us to reason gener-
ically. Type constructors are represented by functors, which are mappings
on categories. A similar semantics is given for nested datatypes. Since a
different category is needed for this, the associated folds are called simple
folds.

Chapter 3 explains that simple folds cannot be used to perform summa-
tion operations so it introduces generalised folds and gives their fusion laws.
These are generalised further to efficient folds, which include map operations.
The operators for both of these folds are defined by universal properties that,
in the interests of concise reasoning, have no case analysis. After deriving
the fold-equality law, we generalise the chapter to linear datatypes and prove
the universal properties of both types of fold operators.

Chapter 4 generalises Chapter 3 to non-linear datatypes, by expressing the
functor equations that define datatypes in a special form. Generic generalised
and efficient operators are given and a generic sum operation is also given in
order to demonstrate how the generic fold operators can be used to define
generic operations. To enable us to prove properties of these operations, we
derive convenient forms of the generic fold-fusion and map-fusion laws.

Chapter 5 explains the need to reason with relations and changes the cat-
egory to one that can be augmented with the operators of the relational
calculus. Then for many of the concepts explained in the last three chapters,
we introduce relational extensions including relational products, lax natural
transformations and relators. The fusion laws are restated with inequalities.

Chapter 6 defines a membership relation for each nested datatype and proves
that it satisfies the characterisation of membership. Hence nested relators
have membership; this is an important assurance that nested relators corre-
spond to datatypes. The proof of this is an application of the map-fusion
law of efficient folds.

Chapter 7 defines a zip operation for each linear nested datatype, thereby
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extending [Hoo97], and proves that the zip operations defined meet the re-
quirements of zips. The definition and proofs use generalised folds where
Hoogendijk [Hoo97] uses standard folds.

Chapter 8 motivates Chris Okasaki’s rules [Oka98a] for finding a regular
supertype for any nested datatype and defines an embedding function that
embeds the nested datatype in a regular datatype. This function describes a
simulation between programs that use nested datatypes and programs that
use regular datatypes. The chapter then gives rules for deriving either of
these from the other.

Chapter 9 discusses how effective our system is for generic reasoning and
what we have learned about the usefulness of the universal properties and
fusion laws of our fold operators, and gives a few other insights. It then
proposes future work.

Finally, let us conclude this introduction by focusing on two important areas
of background. Shortly we shall summarise the support that Haskell gives
for nested datatypes but first we shall try to get some idea of how expressive
nested datatypes are.

One simple way of designing nested datatypes is to construct an invariant for
its parameters to satisfy as the datatype recurses. For example, the parame-
ter of Pow always represents a perfectly balanced tree. Now we shall use an
invariant to construct Ross Paterson’s datatype of AVL trees [Pat98]. Sup-
pose that l represents an AVL tree of height k and h represents an AVL tree
of height k + 1. Then an AVL tree of height k + 2 is given by AVLNode a l h

where a is the type of the elements contained in both l and h, and AVLNode

is defined by

data AVLNode a l h = LeftLarger h a l

| EqualHeight h a h

| RightLarger l a h

So if k = 0 in the above, then AVL′ a l h gives every possible AVL tree, for
AVL′ defined by

data AVL′ a l h = AVLZero l

| AVLSucc (AVL′ a h (AVLNode a l h))

6



Observe that the third parameter represents a tree of height one greater
than the second both before and after recursion. This is our invariant. We
therefore make our type of AVL trees be AVL below, thereby ensuring that
k = 0 when AVL′ is first used.

type AVLa = AVL′ a () a

Our final example is Ross Paterson’s datatype of square matrices [Pat98], a
variant of which is given in [Oka99]. The datatype we develop is higher-order,
that is, it is parameterised by a type constructor. The invariant we shall now
use is that the type constructor parameter f is equal to Cons k Nil , for some
k , where Cons and Nil are defined by

data Nil a = Nil

data Cons f a = Cons a (f a)

Then f a is a list, with length k , of a’s and f (f a) is a list with length k of
lists of a’s, each of which have length k . This is the same as a k×k square
matrix of a’s. So if k = 0 then the datatype SM below generates every
possible square matrix.

data SM f a = ZeroSM (f (f a))
| SuccSM (SM (Cons f ) a)

Now we ensure that k = 0 by defining the type of square matrices to be

type Square a = SM Nil a

These two examples give us some idea of the constraints on regular datatypes
that nested datatypes can capture. For a start, the constraints are on shape
rather than value. We shall define shape formally in chapter 7 but for the
moment, an informal intuition suffices: the shape of a data structure is what
stays the same when its contents are changed.

We can represent each possible shape by a natural number because the es-
sential property of any shape is its size. Therefore, we can represent all the
possible shapes of a datatype by a bag of natural numbers. This is what
Hinze suggests we do in [Hin01]. For example, the datatype of lists can be
represented by a bag that contains each natural number exactly once because
the datatype has one shape for each possible length. There is a simple syn-
tactic translation from recursive bag equations to Haskell datatypes.
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Kevin and Roland Backhouse [BB00] suggest a different approach to that of
Hinze, whereby nested datatypes are written in Haskell instead of the inter-
mediate language of bag equations. However, the size numbers are made ex-
plicit again, by using type constructors to represent Church numerals. Each
new shape produced by the inductive case of the definition can be passed to
a Church-encoded predicate and either kept or discarded according to the
result of testing it with the predicate.

Since any computable predicate can be Church-encoded, it would seem pos-
sible to design a datatype of, for example, lists having prime number length.
Unfortunately, this important test case could not be realised because it re-
quired that type constructors be polymorphic in kind. Kinds [McC79] are a
type of types. The kind of a value records whether the value is a type or a
type constructor and if it is the latter, the kinds of each of its arguments.

These suggestions from Hinze and the Backhouses can be used to design
nested datatypes. Unfortunately, neither describe nested datatypes as con-
straints on regular datatypes as appears to be helpful. Borges’ suggestion
[Bor01] differs in both these respects. He shows how to define for each linear
nested datatype a predicate on the underlying regular datatype. This predi-
cate can be thought of as encapsulating the meaning of the nested datatype.

Using nested datatypes is one of many ways to make a type checker ver-
ify properties of our programs. Here we shall briefly review the alternatives
and their applications. One approach is that of refinement types described
in [FP91] for the language ML. Refinement types are subtypes of regular
datatypes and they form a lattice with intersection and union of types as
meet and join respectively. The type inference algorithm works by perform-
ing abstract interpretation on this lattice, which the programmer specifies
by describing how the constructor functions of the regular datatype map re-
finement types to refinement types. Examples in [FP91] and [Pie91] include
lambda-terms in head normal form, Church booleans and numbers (with as-
sociated arithmetic operations) and bit strings that have no leading zeros
(with addition defined).

There is more overlap in examples with dependent types. A function is
dependently-typed if its type depends on the value of one of its parameters.

8



Dependent ML (DML) [Xi98], implemented by Hongwei Xi, has a limited
facility for dependent types in that it uses particular constraint domains to
constrain type signatures. The examples given in [Xi98, XP99] of functions
with DML-checkable properties are quicksort, list concatenation and binary
search. The last of these also illustrates some extra advantages in automated
optimisation and dead code elimination.

Furthermore, Xi has implemented in DML [Xi99] Braun trees, random-access
lists, binomial heaps and red-black trees, all of which can also be captured
as nested datatypes [Oka98b]. He does this by taking a regular datatype,
using a natural number to index some of the possible shapes and then using
the numbers to impose certain constraints on the substructures at each node.

For example, we can define a type similar to that of power trees by con-
straining the type of leaf-labelled trees so that for every internal node the
two immediate subtrees have the same height.

datatype ′a pow with nat =
tip(0) | {n : nat} bin(n + 1) of ′a pow(n) ∗ ′a pow(n) ; ;

Now ′a pow(n) denotes the type of perfectly balanced leaf-labelled binary
trees whose elements have type ′a. The constructor function bin has type

′a pow(n) ∗ ′a pow(n) → pow(n + 1)

This means that bin takes a pair of perfectly balanced trees with equal height
and joins them to give a perfectly balanced tree with height one greater. This
is a very precise type. The nearest we can come to it in Haskell with nested
datatypes is the following:

bin :: (Pow a,Pow a) → Pow a

bin (Zero x ,Zero y) = Succ (Zero (x , y))
bin (Succ x , Succ y) = Succ (bin (x , y))

The type signature given to this version of bin is far less precise than that
of its counterpart in DML. Although the result is required to be perfectly
balanced, the input trees need not have the same height and the output need
not be higher by exactly one. This illustrates a weakness of nested datatypes:
when specifying the desired properties of a function, we can constrain the
result but we cannot state a relationship between the arguments and the
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result of a function. Consequently, bin in Haskell is partial so it will give
a run-time error if applied to the pair (Zero 1, Succ (Zero (2, 3)). In DML,
however, this error would be caught during compilation.

Even without the more accurate type signatures, DML still appears to be
superior because DML functions for power trees can easily be obtained from
functions for trees, simply by adding an appropriate type signature, whereas
for nested datatypes, the conversion is considerably more complicated. The
two bin functions illustrate this but to reinforce the point let us consider
another way of combining two perfectly balanced trees. The following DML
code zips a pair of trees of height n to give a tree of height n + 1.

fun ziptr (tip(x ), tip(y)) = bin(tip(x ), tip(y))
| ziptr (bin(x , x ′), bin(y , y ′)) = bin(ziptr (x , y), ziptr (x ′, y ′))

withtype{n : nat}〈n〉 ⇒ ′a pow(n) ∗ ′a pow(n) → ′a pow(n + 1)

This function is very much more difficult to write in Haskell. For a start, we
need map operator pow for the type of power trees; we shall explain how to
derive pow in Chapter 3.

pair :: (a → b) → Pair a → Pair b

pair f (x , y) = (f x , f y)

pow :: (a → b) → Pow a → Pow b

pow f (Zero a) = Zero (f a)
pow f (Succ x ) = Succ (pow (pair f ) x )

Now we can zip two power trees together with ziptr , defined below.

shuffle :: Pair (Pair a) → Pair (Pair a)
shuffle ((a, b), (c, d)) = ((a, c), (b, d))

zipow :: Pair (Pow a) → Pow (Pair a)
zipow (Zero a,Zero b) = Zero (a, b)
zipow (Succ x , Succ y) = Succ (pow shuffle (zipow (x , y)))

ziptr :: Pair (Pow a) → Pow a

ziptr = Succ · zipow

Before moving on, let us note some weaknesses of DML. Not all functions
have a principal type, that is, a unique most general type. Also, power trees
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in Haskell have far fewer constructors to pack and unpack, an important ef-
ficiency concern. Finally, it appears that there are some nested datatypes,
including all the non-linear datatypes, that cannot be expressed using DML.
There do not appear to be any advantages in combining DML and nested
datatypes in a new language.

A fuller implementation of dependent types is offered by Cayenne [Aug98]
but type checking is undecidable for general recursion, although checking will
still terminate for structured recursion. Finally, indexed types [Zen97] offer
similar possibilities to those of DML. Lists can be labelled with their lengths
and used to construct arrays that are labelled with their dimensions. Then
matrix multiplication, for example, can be given a type signature dictating
that two matrices can only be multiplied together when their dimensions fit.

Now we shall examine the support that Haskell gives for nested datatypes.
The following function, which computes the height of a power tree, will be
accepted by a Haskell compiler.

height :: Pow a → Int

height (Zero x ) = 0
height (Succ y) = 1 + height y

Unusually, the type signature is not optional. This is because the function
features polymorphic recursion, that is, it calls itself with a type different
from that at which it is defined. Clearly, any function defined by recursion
on a datatype that is not regular has this property. Polymorphic recursion
was forbidden by version 1.3 of Haskell but it is allowed by version 1.4. This
is because the two versions are based on two slightly different type systems:
Hindley-Milner [Mil78] and Mycroft-Milner [Myc84] respectively. The latter
has a more liberal fixpoint case that allows recursive calls, like the one fea-
tured above, that have a more specific type than the original call.

However, type inference is undecidable for Mycroft-Milner [Hen93] and that
is why the programmer must provide a type signature. (Note that type
signatures are also compulsory for DML but not for the implementation of
refinement types in ML mentioned earlier.) There is some discussion of the
importance of this undecidability result in [Hen93], where the author sug-
gests that, like the theoretical intractability of Hindley-Milner, it may not
show up in practice.
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Some higher-order functions, like fold operators for example, require rank
two type signatures [JL], which we shall introduce in the next chapter. This
syntax is a new feature of the Haskell standard that was originally introduced
for Hugs 1.3C by Mark Jones, who described the associated typing rules of
System F in [Jon97].

Since we define generic operations in this thesis, it would be useful to have
support for them in Haskell. In particular, programs that make extensive
use of libraries of generic operations will require less rewriting when the
datatypes are changed than programs that do not. Application areas where
this facility is useful include parsing, pretty printing and unification.

The language PolyP [JJ97] had a construct for defining generic operations
but its genericity was limited to first-order regular datatypes that have ex-
actly one parameter and no mutual recursion. Ralf Hinze’s solution [Hin00d]
to this problem was to use the kind of the datatype to index all the possible
types that the operation can have. He also reduced the number of cases
needed to specify a generic operation. These ideas have been implemented
as the language Generic Haskell [Jeu01].
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Chapter 2

Simple Folds

Let us motivate a calculus for calculating and reasoning about Haskell pro-
grams. First of all, how should we model types? Treating them as sets of
values is simple enough. Then the type Int , for example, would be mod-
elled by the set of integers. Haskell functions would then be modelled by
functions on sets. However, this view is too simplistic and naive because
functions can fail to terminate. Nevertheless, if we restrict our attention to
those Haskell functions that always terminate, then the naive view is of great
help in motivating the basics of our calculus.

2.1 A naive category for Haskell programs

We begin by noting three facts about Haskell.

• each function has both a source type and a target type, and

• any two functions can be composed, using an associative operator, pro-
vided the source of one matches the target of the other, and

• every type has defined on it an identity function, which leaves the input
unchanged and acts as a unit of composition.

These three facts echo the three axioms that define a category. Formally, a
category is a class of objects together with a class of arrows such that

• every arrow has both a source object and a target object; we write
f : X → Y to indicate that arrow f has source X and target Y , and
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• for every pair of arrows with matching source and target, f : Y → Z

and g : X → Y , the composition f · g : X → Z exists. We have

(f · g) · h = f · (g · h)

for any further arrow, h : W → X , and

• for each object X , there is an identity arrow idX : X → X . These
arrows satisfy for each f : Y → Z

f · idY = f = idZ · f

These axioms are so elementary that we shall use them frequently without
comment. Our plan, once more, is to represent types as sets and always-
terminating Haskell functions as total functions. The universe of all always-
terminating Haskell functions is then represented by a category Fun, which
has sets for objects and total functions for arrows. Functions are now de-
fined using composition rather than application. These two styles for defining
functions are respectively named point-free and pointwise. The advantage of
point-free proofs is that there is no case analysis on the inputs to functions.
Such proofs can therefore easily be made generic.

Again, we must emphasize just how naive is the way in which we model
the Haskell language. The category we should ideally use is CPO⊥, which
has pointed complete partial orders as objects and strict continuous functions
as arrows. There are two major ways in which our naivete can cause us prob-
lems. First of all, some Haskell functions are partial, but we shall introduce
in Chapter 5 a category Rel some arrows of which are partial functions. In
the meantime, we shall only derive Haskell programs that always terminate.
The other flaw is that we cannot deal with infinite data structures. For-
tunately, we have no need to consider algorithms that produce or consume
such structures in this thesis. Nevertheless, we shall explain when we come
to them, how the universal properties of coproducts and standard folds must
be modified if our choice of category were to change from Fun to CPO⊥.

Section 2.2 explains how in our naive view type constructors in Haskell cor-
respond to functions on sets. Sections 2.3, 2.4 and 2.5 apply this intuition to
non-recursive, regular and nested datatypes respectively. Standard folds and
simple folds arise from the semantics of regular and nested datatypes respec-
tively. Good introductions to the material in this chapter include [BJJM99]
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and [BdM97]. Neither of these cover Section 2.5, however, which is based on
[BM98] and [BP99b].

2.2 A naive model for type constructors

Let us examine a typical recursive datatype.

data List a = Nil |Cons (a, List a)

In words this declares that “a list is empty or an element and a list”. The
word or translates case selection. The word and translates tupling of types.

Now List is a type constructor, that is, a function from types to types.
So there must be a corresponding function List on sets defined as follows: if
A is a set then List A is the set of all the lists that can be formed from the
members of A. In order to define the set List A formally, we declare that
there is a bijection between it and some set formed from A and List A.

List A ≈ Base (A,List A)

Here, Base is a binary operator on sets that we shall construct in the next
section. This is an example of a fixpoint equation; we have T ≈ F T where
T = List A and F X = Base (A,X ). The symbol ≈ indicates an isomor-
phism between objects of a category: an isomorphism between objects A and
B of an arbitrary category is a pair of arrows f : A → B and g : B → A

such that f · g = idB and g · f = idA. If this condition holds then we say that
A and B are isomorphic. If the category is Fun then the isomorphisms are
bijections.

Any regular datatype T can be put in the same form as List by using a
different binary operator instead of Base. This abstraction will be useful
later, because it means that we can define operations on regular datatypes
in a generic fashion.

We shall overload the identifier List by making it also denote a map operator,
which takes functions to functions. In Haskell, the map operator corresponds
to the function map on built-in lists. Rewritten for our datatype List , that
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function is

list :: (a → b) → (List a → List b)
list f Nil = Nil

list f (Cons (a, x )) = Cons (f a, list f x )

(The syntax of Haskell forces us to write the map operator List with a small
‘l ’.) Now, List is what we call an endofunctor on Fun. An endofunctor

on a category C is a mapping F between the objects of C together with a
mapping also denoted F between the arrows of C such that if f : A → B

then

F f : F A → F B

It must also preserve identities and composition, that is,

F idA = idF A

F (f · g) = F f · F g

2.3 Non-recursive datatypes

Now we define the binary operator Base. By examining the Haskell definition
of List , we realise that Base corresponds to the following datatype:

data Base a b = Nil ( ) | Cons (a, b)

Here we have suggested that Nil , being a constant, can also be seen as a
nullary operator. That is why we have applied Nil to the type ( ). This type
has one value, also denoted ( ), and is represented in Fun by a one-element
set. Such sets are terminal objects of Fun as the following definition makes
clear. A terminal object is an object T with the property that for every
object A, there is exactly one arrow, denoted !A, from A to T . Any two
terminal objects are isomorphic. Therefore, we shall pick one, call it the

terminal object and denote it by 1. Here is Base as a binary operator on
sets.

Base (X ,Y ) = 1 + X × Y

The infix operators + and × are defined by

A + B = {inl a | a ∈ A} ∪ {inr b | b ∈ B}

A × B = {(a, b) | a ∈ A, b ∈ B}
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The total functions inl : A → A+B and inr : B → A+B tag the elements of
A and B , ensuring that for all x , inl x 6= inr x . Without the tagging, A + B

would be a union type [FP91]. Now we see that × is tupling and + represents
selection between cases. More abstractly, × is the product operator for the
category Fun and + is the coproduct operator. We shall now define these
constructions for an arbitrary category.

2.3.1 Products

The product of the objects A and B is an object A × B and two arrows,
outlA,B : A × B → A and outrA,B : A × B → B . For any further pair of
arrows f : C → A and g : C → B , there should be a unique third arrow
〈f , g〉 : C → A×B . This arrow is called the fork of f and g , and it is defined
as follows. For any h : C → A × B ,

h = 〈f , g〉 ≡ outlA,B · h = f and outrA,B · h = g

This definition is an example of a universal property : an arrow 〈f , g〉 is de-
fined by giving a property, the right-hand side of the equivalence, that only
it satisfies.

In Haskell, the product of two types a and b is the tuple (a, b) together
with the projection functions fst and snd , defined by fst (x , y) = x and
snd (x , y) = y . We implement the fork operator by

fork :: (c → a, c → b) → c → (a, b)
fork (f , g) x = (f x , g x )

The function fork (f , g) duplicates its input, applies f to one copy and g to
the other.

2.3.2 Bifunctors

We define × to be a binary operator on arrows too.

f × g = 〈f · outl , g · outr〉

The action of × on arrows is clearly like that of the fork except that it does
not duplicate the input. In Haskell, we define × as cross, below.

cross :: (a → c, b → d) → (a, b) → (c, d)
cross (f , g) (x , y) = (f x , g y)
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We can show that × preserves identities and composition. This makes it a
bifunctor. A bifunctor F on a category C is a binary operation on objects of
C together with a binary operation on arrows of C such that if f : X → X ′

and g : Y → Y ′ then

F (f , g) : F (X ,Y ) → F (X ′,Y ′)

It must also preserve identities and composition.

F (idX , idY ) = idF (X ,Y )

F (f , g) · F (h, j ) = F (f · h, g · j )

For any bifunctor F and object A, we can obtain an endofunctor FA,− by
fixing the first argument to be A and varying the second.

FA,− (B) = F (A,B)

FA,− (f ) = F (idA, f )

This construction is called left-sectioning . Similarly, for any object B , right-

sectioning F gives an endofunctor F−,B by fixing the second argument to be
B and varying the first. One important bifunctor is Outl , defined on objects
by Outl (A,B) = A and on arrows by Outl (f , g) = f . Similarly, we define
the bifunctor Outr by Outr (A,B) = B and Outr (f , g) = g .

2.3.3 Coproducts

The coproduct of objects A and B is an object A + B and two arrows,
inlA,B : A → A + B and inrA,B : B → A +B . A join operator must map any
pair of arrows f : A → C and g : B → C to a third arrow [f , g ] : A+B → C ,
defined by the universal property

h = [f , g ] ≡ h · inlA,B = f and h · inrA,B = g

(If the category used is CPO⊥ then the equation we gave for + on sets does
not define a true coproduct and to get its real universal property we must add
to the right-hand side, the condition that h be strict.) Below, the Haskell type
constructor Either corresponds to the operator + on objects of Fun, and the
constructor functions Left : Either a b → a and Right : Either a b → b

correspond to the arrows inlA,B and inrA,B of Fun.

data Either a b = Left a | Right b
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The join operator can now be defined in Haskell as follows.

join :: (a → c, b → c) → Either a b → c

join (f , g) (Left x ) = f x

join (f , g) (Right x ) = g x

The function join (f , g) replaces the constructor functions Left and Right

with the functions f and g . We extend + to a bifunctor with

f + g = [inl · f , inr · g ]

Clearly, the action of + on arrows is like that of the join operator except that
the constructor functions are put back after they are replaced with functions.
In Haskell, we define + as follows:

sum :: (a → c, b → d) → Either a b → Either c d

sum (f , g) (Left x ) = Left (f x )
sum (f , g) (Right x ) = Right (g x )

Two useful fusion laws for coproducts are

k · [f , g ] = [k · f , k · g ]

[f , g ] · (h + j ) = [f · h, g · j ]

Similar fusion laws exist for products but we shall not use them in this thesis.
However, in Chapter 5 we shall introduce the concept of a relational product
and give for it an absorption law, which is a type of fusion law.

2.3.4 Functors in general

Endofunctors and bifunctors are special cases of functors. A functor F maps
objects and arrows in a source category A to objects and arrows in a target
category B; we write this information as F : A → B. An endofunctor on C

has the type C → C. A bifunctor on C has the type C × C → C. Here,
C × C is the product category of C and C, defined below.

For any categories A and B, the product category of A and B exists and
is denoted A × B. Its objects are pairs (a, b) such that a is an object of A

and b is an object of B. Its arrows are pairs (f , g) such that f is an arrow of
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A and g is an arrow of B. The identity arrow is idA×B=(idA, idB) and the
composition of arrows is defined by

(f , g) · (h, k) = (f · h, g · k)

In general, a functor F from category A to category B is a mapping on
objects combined with a mapping on arrows such that

F f : F A → F B if f : A → B

F idA = idF A

F (f · g) = F f · F g

We shall call the action of F on arrows the map operator of F and the arrows
returned by F , map operations of F .

2.3.5 Natural transformations

The function duplic, below, takes a value and returns two copies of its input.

duplicA : A → A × A

duplicA = 〈idA, idA〉

Note that a different function duplicA is defined for each object A. Now,
duplic has an interesting property. If we apply a function to a value and
then make two copies of it using duplic, we get the same result as if we had
used duplic first and then applied the function to both copies. We have, for
all f : A → B ,

(f × f ) · duplicA = duplicB · f

In fact, duplic is an example of a natural transformation. For any functors
F and G , a natural transformation η from F to G is a mapping that takes
each object A to an arrow ηA : F A → G A, and that satisfies the following
naturality property: for all arrows f : A → B ,

G f · ηA = ηB · F f

We write η : F
.

→ G to indicate that η is a natural transformation from F

to G .

Let Id and Pair be defined on objects and arrows by Id X = X and Pair X =
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X × X . Then the type of duplic is Id
.

→ Pair . The identity arrows together
form a natural transformation of type Id

.
→ Id . Our last example uses

bifunctors. For all arrows f : A → A′ and g : B → B ′, we have

Outl (f , g) · outlA,B = outlA′
,B ′ · (f × g)

Therefore, outl is a natural transformation with type (×)
.

→ Outl . These
examples give us some idea what kind of functions are natural transforma-
tions. They can copy elements (like duplic), remove elements (like outl),
do both or even do neither (like id) but they cannot create new elements
or change elements. (In Chapter 7, we mention a theorem that makes this
intuition more precise by relating it to the notion of membership.) Fur-
thermore, their behaviour cannot depend on the values of elements so the
function min, which returns the minimum of a pair, is not a natural transfor-
mation because, defining the function neg by neg x = −x , we can construct
a counterexample.

(neg · min) (3, 4) 6= (min · (neg × neg)) (3, 4)

A natural transformation can also be subscripted by a functor. This sub-
scripting takes it to another natural transformation as follows:

η : F
.

→ G ⇒ ηH : F · H
.

→ G · H

Similarly, the map operation can be lifted to natural transformations.

η : F
.

→ G ⇒ H η : H · F
.

→ H · G

2.4 Regular datatypes

2.4.1 Semantics of regular datatypes

Recall that a parameterised regular datatype T can, by definition, be put
into the following canonical form.

T A ≈ B (A,T A)

We shall call B the base functor of T . Now, B is a bifunctor so it can be
left-sectioned.

T A ≈ BA (T A)
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This is an instance of the more general fixpoint equation T ≈ F T , where
T is an object and F is an endofunctor. We shall use initial algebras to
represent recursive datatypes such as T : an arrow α : F T → T is an initial

F-algebra if for each arrow f : F Y → Y , there is a unique arrow h : T → Y

such that

h · α = f · F h

Now we can appeal to an important result.

Lambek’s Lemma An arrow α : F T → T is an isomorphism if it is
an initial F -algebra.

Therefore, we can prove α is an isomorphism by showing it is an initial
algebra.

2.4.2 Standard folds on lists

If we instantiate T to List A and F to BaseA,− then Lambek’s lemma says
that there is a function foldlist that maps arrows of type (BaseA,−)Y → Y

to unique arrows of type List A → Y .

foldlist : (Base (A,Y ) → Y ) → (List A → Y )

foldlist f · α = f · Base (id , foldlist f )

These unique arrows are called standard folds and foldlist is called a stan-

dard fold operator. Because foldlist captures a common pattern of recursion,
there are many such standard folds in programs. One of them is sumlist , the
function that adds up a list of integers. Folds are important because if we
prove a theorem about foldlist then we also prove a fact about sumlist or
any other standard fold.

Now we shall explain how to turn the definition of foldlist above into a
Haskell program written in familiar pointwise style. We begin by writing
both f and α as joins.

f = [nil , cons] : 1 + A × Y → Y

α = [Nil ,Cons] : 1 + A × (List A) → List A
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Now the definition of foldlist is

foldlist f · [Nil ,Cons] = [nil , cons] · Base (id , foldlist f )

This equation can be split in two using first the fusion laws of coproducts,
to give an equality of joins, and then the universal property of coproduct.

foldlist [nil , cons] : List A → Y

(foldlist [nil , cons] · Nil) 1 = nil 1

(foldlist [nil , cons] · Cons) (a, x )
= cons · (id × foldlist [nil , cons]) (a, x )

Separating the join of nil and cons, writing nil without the 1 and using
pointwise notation gives the following Haskell code.

foldlist :: b → ((a, b) → b) → List a → b

foldlist nil cons Nil = nil

foldlist nil cons (Cons (a, x )) = cons (a, foldlist nil cons x )

Modulo notation and currying, this is exactly the same as the familiar func-
tion foldr .

2.4.3 Example: summing a list

Here is the standard fold that sums a list.

sumlist : List Int → Int

sumlist = foldlist [kzero, plus]

Here, kzero is defined by kzero x = 0 and plus is defined by plus (x , y) =
x + y . The join of kzero and plus has the type

1 + Int × Int → Int

and that is the type required for the argument to foldlist . In Haskell, we
write sumlist as follows:

sumlist :: List Int → Int

sumlist = foldlist 0 (uncurry (+))
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2.4.4 Example: mapping a list

We can also use foldlist to write the map operation for lists.

List k = foldlist (α · Base (k , id))

In Haskell, this is

maplist :: (a → b) → (List a → List b)

maplist f = foldlist [ ] (\(a, x ) → (f a, x ))

Here, “\y → z” is Haskell notation for the lambda-term λy .z .

2.4.5 Definition of regular functors

The class of regular endofunctors is the closure under taking least fixed points
of the class of polynomial endofunctors. To motivate a definition of the latter
class, consider the endofunctor BaseA, the least fixed point of which, List , is
regular.

BaseA X = 1 + A × X

We will now rewrite BaseA in point-free style. As we do this, we derive as
steps in our calculation, the definitions for the simple functors and operators
on functors that are needed to define the class of polynomial functors.

BaseA X

=
{

definition of BaseA

}

1 + (A × X )

=
{

K1 X = 1 ; KA X = A ; Id X = X
}

(K1 X ) + (KA X × Id X )

=
{

(F × G)X = F X × G X
}

(K1 X ) + ((KA × Id)X )

=
{

(F + G)X = F X + G X
}

(K1 + (KA × Id))X

So we conclude

BaseA = K1 + (KA × Id)
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The constant functor for A is denoted KA, and maps every object to A and
every arrow to idA. The identity functor is denoted Id , and maps every ob-
ject to itself and every arrow to itself. That takes care of the simple functors
from which Base is composed.

Now for the binary operators with which we can make functors from other
simpler functors. Composition of functors is defined on objects by (F ·G)A =
F (G A) and on arrows by (F ·G) f = F (G f ). Product and coproduct were
lifted to functors in the manipulation above. The following mappings for
objects were used:

(F + G)A = F A + G A

(F × G)A = F A × G A

The corresponding mappings for arrows are

(F + G) f = F f + G f

(F × G) f = F f × G f

An endofunctor is polynomial if it is constructed from the identity functor
and the constant functors using only the operations of coproduct, product
and composition, in increasing order of precedence. Once again, the class of
regular functors is the closure under taking least fixed points of the class of
polynomial functors.

Now we shall motivate a slightly different definition of the terms polyno-
mial and regular. The new style is closer to that needed later to define the
class of nested functors. We know how to write the left-sectioning of Base

pointwise. Now we shall write the bifunctor Base itself pointwise.

Base = KK1 + Outl × Outr

Here, KKA is the binary variant of KA that maps pairs of objects to A and
pairs of arrows to idA.

Since + is an infix bifunctor, we shall write all expressions F + G in the
form + · 〈F ,G〉 where

(H · 〈F ,G〉) X = H (F X ,G X )
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Note that F and G must have the same source categories and the same
target categories. Let Cn abbreviate C× . . .×C, where C appears n times.
(Clearly then, C1=C.) A polynomial n-ary functor on C is a functor of type
Cn → C for some base category C. It is constructed from the grammar

P ::= K n
A | Πn

i | + | × | P0 · 〈P1, . . . ,Pn〉

Here, n and i are natural numbers that need not be the arity of the functor.
The first case generalises K and KK .

Km
A (A1, . . . ,Am) = A

Km
A (f1, . . . , fm) = idA

The second case generalises Id and Outl and Outr to give a projection func-

tor , Πm
i .

Πm
i (A1, . . . ,Ai , . . . ,Am) = Ai

Πm
i (f1, . . . , fi , . . . , fm) = fi

Finally, the last case generalises composition to an n-ary functor F ,

(F · 〈G1, . . . ,Gn〉)X = F (G1 X , . . . ,Gn X )

This grammar is versatile enough to deal with datatypes that have several
parameters, as we shall verify in the next section, when we use a similar
grammar to define the class of nested functors.

2.4.6 Generic standard fold operator

Suppose that T A is a regular parameterised datatype and the least fixed
point of BA,−, for some bifunctor B . Suppose further that the initial algebra
of BA is α : B (A,T A) → T A. Then the standard fold operator for T is
given by foldBA,−

, which is defined by the universal property

foldBA,−
: (B (A,Y ) → Y ) → T A → Y

h = foldBA,−
f ≡ h · α = f · B (id , h)

If we work in the category CPO⊥ then we must add to the right-hand side
the extra condition that f and h should both be strict.

26



2.5 Nested datatypes

2.5.1 Semantics of nested datatypes

Our running example shall be the datatype of nests defined by

data Nest a = NilN |ConsN (a,Nest (Pair a))

A nest is a list of power trees where each successive power tree has height
one greater than its predecessor. It can be written in category notation as
follows, using the bifunctor Base that was used for lists.

Nest A ≈ Base (A,Nest (Pair A))

However, Lambek’s lemma only asserts isomorphisms of the form T ≈ F T .
Here, quite inconveniently, it is the functor Nest that appears on both sides,
not the object Nest A. Therefore, we need a notion of an isomorphism be-
tween functors, also denoted ≈ and defined later, so that we can define Nest

as a fixpoint instead. This is the approach is taken in [BM98] and [BP99b].
For an appropriate mapping NestF from endofunctors to endofunctors, we
have

Nest ≈ NestF Nest

Now we must find NestF . Putting the two isomorphisms together suggests

NestF Nest A = Base (A,Nest (Pair A))

Written point-free, this is

(NestF Nest)A = (Base · 〈Id ,Nest · Pair〉)A

Abstracting the above suggests

NestF X = Base · 〈Id ,X · Pair〉

2.5.2 The endofunctor category

To prove the isomorphism between functors, we show that it is an initial
algebra. The category in which it is an arrow is Nat (Fun). Here, Nat (C)
denotes the endofunctor category formed from C. The objects of this cat-
egory are endofunctors on C and the arrows are natural transformations be-
tween these endofunctors. The identity arrow for an object F is the natural
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transformation idF defined by (idF )A = idF A. The composition of two natu-
ral transformations α : G

.
→ H and β : F

.
→ G is α·β where (α·β)A = αA·βA.

Isomorphism between endofunctors on C is now simply given by the cat-
egorical notion of isomorphism between the objects of Nat (C). Endofunc-
tors on Nat (C) such as NestF are called higher-order functors, or hofunctors

for short.

Product and fork are defined in Nat (C) by lifting from C.

(F × G)X = (F X ) × (G X )

(outlF ,G)A = outlF A,G A

(outrF ,G)A = outrF A,G A

(〈η, θ〉)A = 〈ηA, θA〉

The action of product on arrows is defined by

(η × θ)A = ηA × θA

Coproduct and join are defined similarly.

2.5.3 Simple folds for nests

Lambek’s lemma informs us that α : NestF Nest
.

→ Nest is an isomorphism
as required if it is an initial algebra in Nat (Fun). We shall confirm that
α is an initial algebra but first let us look at what this means. A function
hfoldnest must map each arrow in Nat (Fun) with type NestF R

.
→ R to a

unique arrow of type Nest
.

→ R.

hfoldnest : (NestF R
.

→ R) → (Nest
.

→ R)

hfoldnest f · α = f · NestF (hfoldnest f )

We call this function the simple fold operator for nests. (The prefix ‘h’ is
there to remind us that the fold is constructed in a higher-order category.)
The type of the argument f can be written using pointwise notation as follows

fA : 1 + A × R (Pair A) → R A

Turning hfoldnest into Haskell is easy, given its similarity to foldlist . How-
ever, we need a special typing syntax for both the functor variable R and the
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universal quantifier, which has a local scope. These two features are allowed
in Haskell ’98 as part of what is known as a rank two type signature [JL]:

hfoldnest :: (forall b. r b) →
(forall b. (b, r (Pair b)) → r b) →
Nest a → r a

hfoldnest nil cons NilN = nil

hfoldnest nil cons (ConsN (a, x )) = cons (a, hfoldnest nil cons x )

The definition of hfoldnest contains polymorphic recursion, so we must at-
tach a type signature. As the arguments are natural transformations, being
arrows of Nat (Fun), the type signature must be rank two. Helpfully, we
can reach this conclusion without thinking categorically. Suppose a fold re-
places the constructors NilN and ConsN with themselves. Then the function
nil can be used with the type Nest a or Nest (Pair a) and so on, depending
on how deeply nested is the NilN to be replaced. Similarly, when hfoldnest

is used to flatten a nest, nil can be used with type [a] or [Pair a] and so
on. Giving nil the type forall b. r b, using both type constructors and local
universal quantifiers, covers all these possibilities.

It must be noted that the variables a and r in the type signature of hfoldnest

are also universally quantified. We shall in future make this explicit, for the
sake of clarity, by adding forall’s at the outermost with global scope; the
latest versions of Haskell allow us to do this.

hfoldnest :: forall a r .

(forall b. r b) →
(forall b. (b, r (Pair b)) → r b) →
Nest a → r a

hfoldnest nil cons NilN = nil

hfoldnest nil cons (ConsN (a, x )) = cons (a, hfoldnest nil cons x )

2.5.4 Blampied’s algebra family folds

Paul Blampied observed in his thesis [Bla00] that the only instances of the
polymorphic function nil that are actually needed by hfoldnest are those with
types belonging to the family r (Pair k a), for some a. This observation mo-
tivates his algebra family folds, which take as a parameter an infinite data
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structure, called an algebra family, containing every possible value for the
constructor functions. This structure, effectively an infinite list, is traversed
as the nest is traversed so that the correct version of nil and cons is used at
each stage.

The folds are constructed in a category whose objects are functions from I

to objects of Fun, or any other suitable category, and whose arrows are func-
tions from I to arrows of Fun. Here, I is an indexing set for all the possible re-
placements for each function. For nests, I is the set {Id ,Pair ,Pair ·Pair , . . .}.

We shall see later that the natural transformation arguments we give to nil

and cons have types too limited for certain operations such as summation.
This leads us to introduce more complicated generalised and efficient folds
in the next chapter. This trouble can be avoided if we stick with Blampied’s
folds but they have severe drawbacks. Although the definition of the fold
operator itself is simple, the algebra families themselves are difficult to con-
struct, and in the case of higher-order nested datatypes, Blampied hints that
rank three polymorphism is required.

Consequently, the fusion laws depend upon an infinite family of conditions.
Although it is often possible to prove that these conditions hold, as when
Blampied shows the map operators he defines for nested datatypes are func-
tors, such proofs require us to use extra information about the particular
algebra family in an ad hoc way. Blampied only shows how this can be done
for one example. Since fusion laws are absolutely integral to this thesis, we
shall stick with simple and generalised folds and use the fusion laws given by
Bird and Paterson in [BP99b].

2.5.5 Example: Flattening a nest

To flatten a data structure is to turn it into a list of its elements with the
same syntactic order. The function that flattens a nest can be written using
hfoldnest .

hflatnest :: Nest a → [a]

hflatnest = hfoldnest [ ] fcons

The empty nest NilN is replaced by the empty list. (We prefer the notation
of Haskell’s built-in lists to that of our own datatype List). The ConsN
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constructors are replaced by fcons where

fcons :: (b, [Pair b]) → [b]

fcons (b, ys) = b : flatlp ys

To flatten a list of pairs, we flatten every pair to give a list of two-element
lists, which we can then concatenate.

flatlp :: [Pair a] → [a]

flatlp = concat · map (\ (x , y) → [x , y ])

Here is a sample evaluation for hflatnest ; nests are written with a list-like
notation for conciseness.

hflatnest � 1, (2, 3), ((4, 5), (6, 7)) �

= 1 : flatlp ((2, 3) : flatlp (((4, 5), (6, 7)) : flatlp ��))

= 1 : flatlp ((2, 3) : flatlp (((4, 5), (6, 7)) : [ ]))

= 1 : flatlp ((2, 3) : flatlp [((4, 5), (6, 7))])

= 1 : flatlp [(2, 3), (4, 5), (6, 7)]

= [1, 2, 3, 4, 5, 6, 7]

The function hflatnest comes from [BM98]. Another way to flatten a nest
will be derived in Chapter 3.

2.5.6 Existence of initial algebras

Now we want to call upon some result that says that all polynomial ho-
functors in Nat (Fun) have initial algebras. Gibbons and Martin [MG01]
try to prove a sufficient condition: that all polynomial hofunctors are ω-
cocontinuous. (See [MG01] for the definition of the term ω-cocontinuous.)
They build on Blampied’s proof for the special case of linear datatypes
[Bla00]. Their proof is by structural induction but one of their inductive
cases only preserves ω-cocontinuity for hofunctors in the smaller category
Coc (Fun) contained within Nat (Fun). Here, Coc (C) is the category of
ω-cocontinuous endofunctors on C.

The proof in [MG01] is for any category Coc (C) where C is any ω-cocomplete
(defined in [MG01]) category that has products and coproducts for any pair
of objects and also an initial object. An initial object is an object that has
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exactly one arrow from it to every object. The category Fun has the empty
set as an initial object and it satisfies the other conditions so all polynomial
hofunctors in Coc (Fun) have initial algebras.

2.5.7 Definition of nested functors

A nested functor is the least fixed point of a polynomial hofunctor. An
example of a polynomial hofunctor is

NestF X = Base · 〈Id ,X · Pair〉

Base = KK1 + Outl × Outr

Pair = Id × Id

A hofunctor F is polynomial if its definition has the form F X = P where P

is a term of the following grammar

P ::= K n
A | Πn

i | + | × | P0 · 〈P1, . . . ,Pm〉 | X

Observe that we have simply augmented the previous grammar with the vari-
able X as a sixth case so that the parameter of the hofunctor can appear
on the right-hand side. However, since regular datatypes are defined as the
closure of polynomial functors under least fixed points, it follows that not
all regular functors are nested. Of course, because of the sixth case, some
nested functors are not regular and we call these properly nested functors.
Note that to define a generic operation for all nested datatypes, we must
supply separate polynomial cases and nested fixpoint cases.

Our definition of the class of nested functors is the same as in [BP99b].
However, Gibbons and Martin give a definition of the class of polynomial
hofunctors (from which nested functors are built) that looks quite different
from ours but which is effectively the same. An example will make clear both
the difference and the effective similarity. The polynomial hofunctor NestF

is defined by

NestF = KK1
+ KId × Id ?KPair

Here, + and × are the coproduct and product bifunctors lifted twice (to
functors and thence to hofunctors). Similarly, K and Id (at the top-level)
denote the constant functor and identity functor lifted twice to hofunctors.
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Finally, ? denotes the horizontal composition bifunctor lifted once to hofunc-
tors. The unlifted version is defined as follows. For endofunctors P and Q

we have,

P ?Q = P · Q

For natural transformations θ : P
.

→ R and ψ : Q
.

→ S , we have

θ ? ψ = θS · Pψ = Rψ · θQ

Now we demonstrate that the definition we just gave for NestF matches the
version we have been using in this chapter.

NestF X

= (KK1
+ KId × Id ?KPair)X

= KK1
X + KId X × (Id ?KPair)X

= K1 + Id × (Id X ) · (KPair X )

= K1 + Id × X · Pair

= Base · 〈Id ,X · Pair〉

Gibbons and Martin define the class of polynomial hofunctors as being con-
structed from the identity and constant hofunctors, composition, lifted hor-
izontal composition, and the twice-lifted product and coproduct bifunctors.
Any polynomial (according to our definition) hofunctor can be put in this
form so results about the existence of initial algebras in [MG01] and [BGM]
can be transported to this thesis. However, to convert between the two dif-
ferent forms, we must first rewrite the functor equations so as to eliminate
all uses of the fork operator at the top-level.

2.5.8 Simple folds on alternating lists

Now consider the datatype of alternating lists, which has more than one
parameter.

data AL a b = NilAL |ConsAL (a,AL b a)

We can write this in category notation as follows.

AL (A,B) ≈ 1 + A × AL (Swap (A,B))

The functor Swap is defined by Swap (A,B)=(B ,A). Note that AL is not an
endofunctor but a bifunctor. Therefore, we shall construct it as an object in
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the category of bifunctors on Fun. (In general, a category of n-ary functors
on Fun is needed for a datatype that has n parameters). We can start by
lifting the isomorphism between objects to an isomorphism between functors:

AL ≈ KK1 + Outl × AL · Swap

Now we rewrite AL as follows:

AL ≈ ALF AL

ALF X = KK1 + Outl × X · Swap

The parameter to the simple fold operator is a natural transformation f with
components fA,B of type

ALF R (A,B) → R (A,B)

According to the definition of ALF , this type is equal to

1 + A × R (B ,A) → R (A,B)

This information enables us to write the fold operator in Haskell.

hfoldal :: forall c d r .

(forall a b. r a b) →
(forall a b. (a, r b a) → r a b) →
ALc d → r c d

hfoldal nil cons NilAL = nil

hfoldal nil cons (ConsAL (a, x )) = cons (a, hfoldal nil cons x )

Before giving an example use of hfoldal , we shall first demonstrate that ALF

can be written using the grammar for polynomial hofunctors.

ALF X = BaseAL · 〈Id ,X · Swap〉

BaseAL = KK1 + Outl · Outl × Outr

Swap = 〈Outr ,Outl〉

To check that AL is the least fixed point of this hofunctor ALF , we apply it
to a pair of objects.

AL (A,B)

≈ ALF AL (A,B)
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= BaseAL · 〈Id ,AL · 〈Outr ,Outl〉〉 (A,B)

= BaseAL (Id (A,B),AL (〈Outr ,Outl〉 (A,B))

= BaseAL ((A,B),AL (B ,A))

= (KK1 + Outl · Outl × Outr) ((A,B),AL (B ,A))

= 1 + A × AL (B ,A)

2.5.9 Example: separating an alternating list

We can use a simple fold on lists to separate an alternating list into a pair
of lists having different types.

separate :: ALa b → ([a], [b])
separate = hfoldal ([ ], [ ]) (\(a, (x , y)) → (a : y , x ))

Unfortunately, as it stands, this program produces a type error. This is
because Haskell compilers and interpreters use first-order matching and uni-
fication when comparing type signatures. This means that functor variables
like r can only be bound to (possibly curried) named type constructors like
[−] and (−,−). So a functor variable can be bound to λx . [x ] or λx , y . (x , y),
for example, but not to λx , y . [(x , y)] as is required by the function separate.
A simple solution to this problem is to specialise hfoldal to make r be a
composition.

hfoldal ′ :: forall c d r s t .

(forall a b. r (s a) (t b)) →
(forall a b.(a, r (s b)(t a)) → r (s a)(t b)) →
ALc d → r (s c) (t d)

hfoldal ′ nil cons NilAL = nil

hfoldal ′ nil cons (ConsAL (a, x )) = cons (a, hfoldal ′ nil cons x )

Now we can separate an alternating list using the specialised version of
hfoldal .

separate ′ :: ALa b → ([a], [b])
separate ′ = hfoldal ′ ([ ], [ ]) (\(a, (x , y)) → (a : y , x ))

However, in the next chapter, we shall discover how to use hfoldal without
rewriting it.
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2.5.10 Generic simple fold operator

Suppose that α : F T
.

→ T is the initial algebra of a polynomial hofunctor
F with least fixed point T . Then the simple fold operator for T , denoted
hfoldF , is defined by the universal property

hfoldF : (F R
.

→ R) → T
.

→ R

h = hfoldF f ≡ h · α = f · F h

Strictly speaking, α should also be subscripted by F since it is dependent
on F but we shall omit the subscript when it is obvious from context. An
exception must be made to this rule, however, when the initial algebra is
subscripted with a second functor to give a new natural transformation. Then
we shall avoid ambiguity by including both subscripts. For example,

(αNestF )Pair : (NestF Nest) · Pair → Nest · Pair

For regular datatypes, the simple fold and standard fold operators have sim-
ilar definitions. Only the category used and consequent typing distinguishes
the two.

For the definition above to make sense, we must define the notion of equality
for natural transformations. Two natural transformations are equal exactly
when their components are equal.

η = θ ≡ ∀A : ηA = θA

Indeed all the equalities in our thesis shall be between natural transforma-
tions. Since operators like product are also defined by lifting, the equations
that follow are unchanged when both sides are applied to objects to give
arrows of Fun, and in fact they are best interpreted this way.

2.5.11 Simple folds for square matrices

We close this section by considering higher-order datatypes like that of square
matrices below. The way that Square gives exactly all the square matrices
was explained in Chapter 1.

type Square a = SM Nil a

data SM f a = ZeroSM (f (f a))
| SuccSM (SM (Cons f ) a)
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data Nil a = Nil

data Cons f a = Cons a (f a)

Since SM takes a type constructor as a parameter, it must correspond to a
hofunctor and be an object of Coc (Coc (Fun)). We want there to be an
endofunctor SMF on this category such that the arrow α : SMF SM → SM is
an initial algebra. According to [MG01], higher-order polynomial hofunctors
(like SMF ) do indeed have initial algebras. A simple fold operator for square
matrices immediately follows from the definition of initial algebras, and is
written in Haskell as follows.

hfoldsm :: forall g a.

(forall f b. f (f b) → y f b) →
(forall f b. y (Cons f ) b → y f b) →
SM g a → y g a

hfoldsm zero succ (Zero x ) = zero x

hfoldsm zero succ (Succ y) = succ (hfoldsm zero succ y)

If we want to use hfoldsm to flatten a square matrix, then y must ignore its
arguments, so we need y g a = [a]. However, the succ parameter would then
have the type of an identity function so we cannot use hfoldsm to flatten a
square matrix. Unfortunately, it is hard to think how y could be anything
other than a constant functor for any function we might want to write as
a simple fold and since the succ parameter must again have the type of an
identity function, it appears that hfoldsm has no applications.

Higher-order nested datatypes are also discussed in the conclusion of Blampied’s
thesis [Bla00]. Although the idea of algebra family folds can be extended to
higher-order nested datatypes, it appears that the algebra families themselves
will have rank three polymorphism, which is not a feature of the Haskell lan-
guage.
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Chapter 3

Other folds for linear datatypes

In this chapter, we shall explain why simple folds are not general enough
and motivate a generalised fold operator for nests. We shall also derive an
(even more general) efficient fold operator for nests. The two operators can
be generalised to all linear datatypes and for some of these, efficient folds
are more efficient than generalised folds. The next chapter generalises the
operators to non-linear datatypes and the chapter after that extends the op-
erators to relations. After that, we can apply our theory to some example
generic operations.

Recall that we used a standard fold to sum a list of integers:

sumlist : List Int → Int

sumlist = foldBaseInt
[kzero , plus]

Recall too that kzero is defined by kzero x = 0 and that plus is defined by
plus (x , y) = x + y . Unfortunately, we cannot use the simple fold operator
to sum a nest of integers because it has too specialised a type:

hfoldNestF : (Base · 〈Id ,R · Pair〉
.

→ R) → (Nest
.

→ R)
hfoldNestF f · α = f · Base (id , hfoldNestF f )

We could take R to be KInt , the constant functor that maps every type to
Int , but then fA would have the type Base (A, Int) → Int . Any function
of this type, when given a pair, must behave independently of the type of
the pair’s left component. So it cannot inspect both components of its input
and it cannot be equal to [kzero, plus]. We must therefore adapt hfoldNestF
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to give a more general operator gfoldNestF that returns generalised folds.

The structure of this chapter is as follows. Section 3.1 defines the gener-
alised fold operator for nests. Section 3.2 derives an efficient fold operator
for nests. Section 3.3 derives a fold-equality law that gives conditions when
a simple fold is equal to a special case of efficient folds known as an efficient
reduction. Although we can always use efficient folds in place of generalised
folds, we nevertheless spend a whole section on generalised folds because the
fusion laws for generalised folds are needed to prove the fusion laws for effi-
cient folds.

Section 3.4 generalises the previous three sections from nests to linear nested
datatypes and briefly discusses multi-parameter and higher-order datatypes.
For simplicity, we shall ignore such datatypes for the rest of the thesis. Sec-
tion 3.5 proves that generalised and efficient folds satisfy the universal prop-
erties given for them in Sections 3.1 and 3.2. Finally, Section 3.6 gives a
simple map-fusion law for efficient folds.

3.1 Generalised folds for nests

3.1.1 Generalised fold operator for nests

First, we shall replace Id in the type of hfoldNestF ’s parameter by a variable
M to give

Base · 〈M ,R · Pair〉
.

→ R

We can bind both M and R to KInt , to give the type Base (Int , Int) →
Int . So now we can supply [kzero, plus] as a parameter to the fold operator.
Because we have broadened the type of the input, we must also broaden the
type of the output.

gfoldNestF : (Base · 〈M ,R · Pair〉
.

→ R) → (Nest · M
.

→ R)

The equation for gfoldNestF cannot simply be a copy of the equation for
hfoldNestF because the two sides would then have different types:

gfoldNestF f · (αNestF )M : Base · 〈M ,Nest · Pair · M 〉
.

→ R

f · Base (id , gfoldNestF f ) : Base · 〈M ,Nest · M · Pair〉
.

→ R
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Therefore we must, before recursion, perform a map operation on nests with
a function g that should be supplied as an auxiliary parameter.

g : Pair · M
.

→ M · Pair

For concision, we shall write ([f | g ])NestF in place of gfoldNestF f g and ([f ])NestF

in place of hfoldNestF f .

([−|−])NestF : (Base · 〈M ,R · Pair〉
.

→ R) →

(Pair · M
.

→ M · Pair) →

(Nest · M
.

→ R)

h = ([f | g ])NestF ≡ h · (αNestF )M = f · Base (id , h · Nest g)

(In future, we shall omit the subscript M despite its important role in making
the typing clearer.) Note that generalised folds satisfy a universal property
just as simple folds do. A proof of this crucial fact was provided by Bird and
Paterson in [BP99b]; we shall sketch the proof at the end of this chapter.

We can recover the simple fold operator by taking M = Id and g = idPair ,
so the generalised fold operator is indeed a generalisation.

([f ])NestF : (NestF R
.

→ R) → (Nest
.

→ R)
([f ])NestF = ([f | id ])NestF

3.1.2 Generalised fold operators in Haskell

To implement this generalised fold operator in Haskell, we must first imple-
ment the map operator for nests. We cannot use a simple fold operator for
this because no simple fold can have the type Nest · Ka

.
→ Nest · Kb. Gen-

eralised folds are general enough but we do not yet have an operator with
which to produce them, so we must define the map operator nest by explicit
recursion:

pair :: (a → b) → Pair a → Pair b

pair f (x , y) = (f x , f y)

nest :: (a → b) → Nest a → Nest b

nest f NilN = NilN

nest f (ConsN (a, x )) = ConsN (f a, nest (pair f ) x )

40



The definition of nest follows from the naturality property of α, which says
that for all h : a → b we have

Nest h · (αNestF )a = (αNestF )b · Base (h, Nest (Pair h))

Now we can use nest to implement the generalised fold operator on nests:

gfoldnest :: forallm r b.

(forall a. r a) →
(forall a. (m a, r (Pair a)) → r a) →
(forall a.Pair (m a) → m (Pair a)) →
Nest (m b) → r b

gfoldnest nil cons bin NilN = nil
gfoldnest nil cons bin (ConsN (a, x ))

= cons (a, gfoldnest nil cons bin (nest bin x ))

Examining the Haskell code, we see that generalised folds replace construc-
tors with functions, just as simple folds do, but they also rearrange or simplify
what remains of the input before each recursive subcall. To define hfoldnest

using gfoldnest , we must match Nest (m b) with Nest b. Since higher-order
matching is needed to find the necessary binding of m = λx .x , we could
specialise the type signature of gfoldnest to a new function gfoldnest ′.

gfoldnest ′ :: forall b r .

(forall a. r a) →
(forall a. (a, r (Pair a)) → r a) →
(forall a.Pair a → Pair a) →
Nest b → r b

gfoldnest nil cons bin NilN = nil
gfoldnest nil cons bin (ConsN (a, x ))

= cons (a, gfoldnest nil cons bin (nest bin x ))

Now we can define hfoldnest by

hfoldnest nil cons = gfoldnest nil cons id

However, it is a lot of trouble to rewrite the type of a supposedly general
purpose function like gfoldnest every time we want to use it, so we shall
instead build a type constructor that mimics the functor Id .

newtype Id a = Id a
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The newtype declaration asserts that Id a is isomorphic to a. Now first-
order matching will bind m to Id in the program below.

hfoldnest :: forall b r .

(forall a. r a) →
(forall a. (a, r (Pair a)) → r a) →
Nest b → r b

hfoldnest nil cons = gfoldnest nil cons ′ bin · nest Id

where cons ′ (Id x , y) = cons (x , y)

It should be noted that the use of the Id constructor functions need not add
to the running time of hfoldnest because the compiler can easily remove all
occurrences of Id before executing the program.

3.1.3 Example: summing a nest

As promised at the start of this chapter, we can now use the generalised fold
operator to sum a nest of integers. Generalised folds have types of the form
T · M

.
→ R and by taking M = R = KInt , we get a type T Int → Int .

sumnest : Nest Int → Int

sumnest = ([kzero, plus | plus])NestF

The first argument is the join of two functions [kzero, plus] with the square
brackets left implicit for the sake of neatness. Below is a sample evaluation
of sumnest to show how generalised folds work.

sumnest � 1, (2, 3), ((4, 5), (6, 7)) �

= 1 + sumnest (nest plus � (2, 3), ((4, 5), (6, 7)) �)

= 1 + sumnest � 5, (9, 13) �

= 1 + (5 + sumnest (nest plus � (9, 13) �))

= 1 + (5 + sumnest � 22 �)

= 1 + (5 + (22 + sumnest (nest plus ��)))

= 1 + (5 + (22 + sumnest ��))

= 1 + (5 + (22 + 0))

= 28

Compare this with the standard fold that sums a list.
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sumlist [1, 5, 22]

= 1 + sumlist [5, 22]

= 1 + (5 + sumlist [22])

= 1 + (5 + (22 + sumlist [ ]))

= 1 + (5 + (22 + 0))

= 28

To write sumnest in Haskell using gfoldnest we need the three terms m a

and r (Pair a) and r a all to match Int . Once again, higher-order unification
would be needed to find the required bindings m = λx .Int and r = λx .Int , so
we make m and r match instead a type constructor KInt designed to mimic
the functor KInt .

newtype KInt a = KInt Int

To reinforce the difference between first-order and higher-order unification
observe that KInt a is isomorphic to Int , whereas KInt a is equal to Int . Now
we can at least construct a function sumnest ′ that has a type resembling that
of sumnest .

zero ′ : KInt a

zero ′ = KInt 0

plus ′ : (KInt a,KInt a) → KInt a

plus ′ (KInt x ,KInt y) = KInt (x + y)

sumnest ′ : Nest (KInt a) → KInt a

sumnest ′ = gfoldnest zero ′ plus ′ plus ′

To implement sumnest we wrap each integer in a KInt constructor, call
sumnest ′ and unwrap the result.

unKInt : KInt a → Int

unKInt (KInt x ) = x

sumnest : Nest Int → Int

sumnest = unKInt · sumnest ′ · nest KInt
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3.1.4 Reductions

Summation on nests has type Nest · KInt
.

→ KInt . It is one of a class of
generalised folds known as reductions. A reduction is a generalised fold
with type T · Kb

.
→ Kc, for some b and c. (Meertens [Mee96] studies the

special case where T is regular and b = c and calls that a reduction.) We
generalise KInt , which mimics the constant functor KInt , to a curried binary
type constructor K that can be used to mimic any constant functor.

newtype K a x = K a

Now the partial application K a mimics the constant functor Ka .

The alternative to using the constructor K is to specialise the type signature
of gfoldnest to give a reduction operator rednest . The specialisation replaces
m a by b and r a and r (Pair a) by c.

rednest :: c → ((b, c) → c) → (Pair b → b) → Nest b → c

rednest nil cons bin NilN = nil

rednest nil cons bin (ConsN (a, x ))
= cons (a, rednest nil cons bin (nest bin x ))

Now sumnest can be defined using the reduction operator as follows.

sumnest :: Nest Int → Int

sumnest = rednest 0 (uncurry (+)) (uncurry (+))

We are interested in reductionsbecause the operator that produces them has
such a simple type signature they also have much simpler fold-fusion laws,
as we shall see.

3.1.5 Map-fusion laws

The map-fusion law for standard folds on lists is as follows:

foldlist f · List k = foldlist (f · Base (k , id))

The left-hand side applies k to each element of the list and then uses f to
replace each constructor function. The law asserts that these two operations
can always be interleaved in a more efficient single pass. The map-fusion law
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for generalised folds on nests [BP99b], however, has a condition.

Map-fusion law for nests Given the typings

f : Base · 〈M ,R · Pair〉
.

→ R

g : Pair · M
.

→ M · Pair

g ′ : Pair · M ′ .
→ M ′ · Pair

k : M ′ .
→ M

we have

([f | g ])NestF · Nest k = ([f · Base (k , id) | g ′])NestF ⇐ g · Pair k = kPair · g ′

Note that kPair has type M ′ · Pair
.

→ M · Pair because k has type M ′ .
→ M .

To explain why the condition is necessary, we shall give, for the special case
of nests, Bird and Paterson’s derivation of the generic map-fusion law. By
the universal property (and using the fact that Nest and Base are functors),
we need only find conditions for

([f | g ])NestF · Nest k · α = f · Base (k , ([f | g ])NestF · Nest (k · g ′))

We reason

([f | g ])NestF · Nest k · α

=
{

naturality of α
}

([f | g ])NestF · α · Base (k ,Nest (Pair k))

=
{

definition of generalised fold; Base and Nest are functors
}

f · Base (k , ([f | g ])NestF · Nest (g · Pair k))

The condition is now needed to complete the derivation.

3.1.6 Fold-fusion laws

The fold-fusion law for standard folds on lists is as follows:

k · foldlist f = foldlist f ′ ⇐ k · f = f · Base (id , k)

The condition says that a function k can be pushed through a function f ,
turning it into a function f ′. The law says that if the condition is satisfied
then the result of pushing k through the composition of f ’s produced by fold-
ing a list is a similar composition of f ′’s. The fold-fusion law for generalised
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folds on nests [BP99b] has a condition for the auxiliary parameter as well.

Fold-fusion law for nests Given the typings

f : Base · 〈M ,R · Pair〉
.

→ R

f ′ : Base · 〈M · M ′,R′ · Pair〉
.

→ R′

g : Pair · M
.

→ M · Pair

g ′ : Pair · M · M ′ .
→ M · M ′ · Pair

k : R · M ′ .
→ R′

we have

k · (([f | g ])NestF )M ′ = ([f ′ | g ′])NestF

⇐ ∃p : k · f = f ′ · Base (id , k · R p) and M p · g = g ′

The type required for p is Pair · M ′ .
→ M ′ · Pair . It is hard to satisfy these

conditions unless the terms M p and R p are eliminated by replacing them
with identity functions. One way to do this is to let M and R and R ′ be
constant functors.

Fold-fusion law for reductions on nests Given the typings

f : Base (b, c) → c

f ′ : Base ′ (b, c′) → c′

g : Pair b → b

k : c → c ′

we have

k · ([f | g ])NestF = ([f ′ | g ])NestF ⇐ k · f = f ′ · Base (id , k)

Another way is to chose p=idPair with M ′=Id .
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Specialised fold-fusion law for nests Given the typings

f : Base · 〈M ,R · Pair〉
.

→ R

f ′ : Base · 〈M ,R′ · Pair〉
.

→ R′

g : Pair · M
.

→ M · Pair

k : R · M
.

→ R′

we have

k · ([f | g ])NestF = ([f ′ | g ])NestF ⇐ k · f = f ′ · Base (id , k)

The law for reductions is a special case of this, as is the following law for
simple folds, obtained by taking M=Id and g=idPair .

k · ([f ])NestF = ([f ′])NestF ⇐ k · f = f ′ · Base (id , k)

It is unsurprising that this fold-fusion law resembles the fold-fusion law above
for foldlist , given that the two fold operators have similar universal proper-
ties. There is no such correspondence for map-fusion laws: map-fusing a
simple fold gives a generalised fold. This is also unsurprising, given that the
map operators for nests and lists are not similar.

The reader is bound to wonder if all these fold-fusion laws will actually be
used in this thesis. The first most general law will not be used; we quoted it
from [BP99b] just so that we could derive the laws that follow it as special
cases. The fourth law, which is for simple folds, will not be used as it was
supplied to illustrate the close link between simple folds and standard folds.

The law for reductions is used in [BP99b] to derive a reduction for summing a
nest given reductions for flattening a nest to a list and for summing a list. We
shall use it ourselves to derive a similar law for efficient reductions (defined
later) from which we prove the fold-equality law and the fold-equivalence
law. The specialised fold-fusion law will be used to show that zips have a
higher-order naturality property. The law for reductions cannot be used for
this because zips are not always reductions.

3.2 Efficient folds for nests

Generalised folds and naive list reversal have something important in com-
mon. Both can be made more efficient by first specifying a generalisation and
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then deriving a direct definition. The technique used is that of introducing
an accumulating parameter. We shall review the technique as applied to the
familiar problem of list reversal before applying it to generalised folds.

3.2.1 Improving on naive list reversal

Below is a naive program to reverse a list. It takes quadratic time in the
length of the list [Bir98], as opposed to the ideal linear time.

reverse :: [a] → [a]
reverse [ ] = [ ]
reverse (x : xs) = (reverse xs) ++ [x ]

The cause of the inefficiency is the (++) operation, which takes linear time
in the length of its left argument. We prefer to build up lists using the (:)
operation, which takes constant time. To achieve this, we specify a new
function revcat that takes an extra parameter.

revcat xs ys = reverse xs ++ ys

This function is clearly a generalisation because

reverse xs = revcat xs [ ]

Now we can derive a direct recursive linear-time definition of revcat .

revcat [ ] ys = ys

revcat (x : xs) ys = revcat xs (x : ys)

The parameter ys is called an accumulating parameter because it accumulates
information as the function revcat recurses.

3.2.2 Improving on generalised folds

A generalised fold is inefficient because it recurses only after mapping over
the remainder of the input structure. We shall remove this map to get a
new fold called an efficient fold. We specify the efficient fold operator by
introducing an accumulating parameter, h.

{[f | g | h]}NestF = ([f | g ])NestF · Nest h
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Now we derive a direct recursive definition, which will perform maps over
pairs instead of over nests.

{[f | g | h]}NestF · α

=
{

specification of efficient fold
}

([f | g ])NestF · Nest h · α

=
{

naturality of α
}

([f | g ])NestF · α · Base (h,Nest (Pair h))

=
{

definition of generalised fold
}

f · Base (id , ([f | g ])NestF · Nest g) · Base (h,Nest (Pair h))

=
{

Base and Nest are functors
}

f · Base (h, ([f | g ])NestF · Nest (g · Pair h))

=
{

specification of efficient fold
}

f · Base (h, {[f | g | g · Pair h]}NestF )

The definition that we have just derived for the efficient fold operator can be
strengthened to a universal property. We shall sketch the proof of this from
[BGM] at the end of this chapter.

{[−|−|−]}NestF : (Base · 〈M ,R · Pair〉
.

→ R) →

(Pair · M
.

→ M · Pair) →

(M ′ .
→ M ) →

(Nest · M ′ .
→ R)

χ h = {[f | g | h]}NestF ≡ χ h · α = f · Base (h, χ (g · Pair h))

3.2.3 Efficient summation on nests

We shall call the special case where M and M ′ and R in the universal property
are all constant functors, an efficient reduction. Remember how to sum a
nest with a reduction:

sumnest : Nest Int → Int

sumnest = ([kzero, plus | plus])NestF
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We can use an efficient reduction instead:

esumnest : Nest Int → Int

esumnest = {[kzero, plus | plus | id ]}NestF

In the sample evaluation below, let esumnest ′ be the partial application
{[kzero, plus | plus | − ]}NestF and let h be defined by h0 = id and hi+1 =
(+) · Pair hi .

esumnest � 1, (2, 3), ((4, 5), (6, 7)) �

= esumnest ′ h0 � 1, (2, 3), ((4, 5), (6, 7)) �

= h0 1 + esumnest ′ h1 � (2, 3), ((4, 5), (6, 7)) �

= 1 + (h1 (2, 3) + esumnest ′ h2 � ((4, 5), (6, 7)) �)

= 1 + (5 + (h2 ((4, 5), (6, 7)) + esumnest ′ h3 ��))

= 1 + (5 + (22 + 0))

= 28

Contrast this with how sumnest behaved on the same input.

sumnest � 1, (2, 3), ((4, 5), (6, 7)) �

= 1 + sumnest (nest plus � (2, 3), ((4, 5), (6, 7)) �)

= 1 + sumnest � 5, (9, 13) �

= 1 + (5 + sumnest (nest plus � (9, 13) �))

= 1 + (5 + sumnest � 22 �)

= 1 + (5 + (22 + sumnest (nest plus ��)))

= 1 + (5 + (22 + sumnest ��))

= 1 + (5 + (22 + 0))

= 28

Observe that esumnest takes just a single pass through the whole input.
The head of what remains of the input has type Pair k Int for some k and
it is reduced by hk to a single integer. In contrast, sumnest performs a
map every time a ConsN constructor is removed, so it is always applied
to nests that have a completely reduced head. As it happens, these two
evaluations are equally efficient and they were chosen for clarity. Two similar
evaluations that do motivate efficient folds are provided by Hinze [Hin99a]
for the different datatype of de Bruijn terms [BP99a]. We shall summarise
Hinze’s argument in Section 3.4 once we have generalised our fold operators
to linear datatypes.
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3.2.4 Efficient folds in Haskell

Now we write the efficient fold operator in Haskell. It turns out that we
can only implement the efficient fold operator for a special case where the
argument being mapped has the type M ′ ·Ka ′

.
→ M ·Ka rather than the more

general M ′ .
→ M . The problem, explained in [Hin99a], is that the operator is

defined using polymorphic recursion on the level of functors. We do not know
of any languages where this is allowed. By introducing a constant functor, we
shift the polymorphic recursion back to the level of types, because the type
of the fold returned by the operator must now be Nest · M ′ · Ka ′

.
→ R · Ka .

Since neither of these types are collections of arrows, we write them in Haskell
without type signatures.

efoldnest :: forall a m m ′ r .

(forall b. r b) →
(forall b. (m b, r (Pair b)) → r b) →
(forall b.Pair (m b) → m (Pair b)) →
(m ′ a ′ → m a) →
Nest (m ′ a ′) → r a

efoldnest nil cons bin tip NilN = nil

efoldnest nil cons bin tip (ConsN (a, x ))
= cons (tip a, efoldnest nil cons (bin · pair tip) bin x )

Now it is the type a that changes during recursion, rather than the type
constructor m ′. The function gfoldnest can be defined using efoldnest .

gfoldnest nil cons bin = efoldnest nil cons bin id

The type signature above can be made more general by replacing the type
m ′ a ′ with a type variable a ′′. However, we do not know of any extra appli-
cations for this more general operator.

3.3 Fold-equality law

3.3.1 Motivation for fold-equality law

Chapter 2 told us how to flatten a nest with a simple fold. The type of this
simple fold can be written as Nest · Ka

.
→ K[a]. It is unsurprising, therefore,
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that a nest can also be flattened using an efficient reduction. We would like
to deduce the parameters needed to do this from the parameter that is used
by the simple fold operator. This section derives a fold-equality law that will
enable us to do just that.

We cannot expect all simple folds to be efficient reductions. A counterexam-
ple is the identity function on nests. One of the parameters to the efficient
reduction operator has a type Pair b → b for some b, that requires the fold
to throw away information. Furthermore, not all efficient reductions are sim-
ple folds; consider esumnest . So the fold equality law must depend on a
condition, to be derived, that relates the parameters of the two folds.

3.3.2 Derivation of fold-equality law

We want to find conditions on f , g , h and f ′ such that

{[f | g | h]}NestF = ([f ′])NestF

This problem looks like a straightforward application of map-fusion for gen-
eralised folds. However, it is clear from the typing of the map-fusion law for
reductions that the result of map-fusing a reduction is always a reduction
and never a simple fold. Instead we must apply the universal property of
simple folds.

{[f | g | h]}NestF = ([f ′])NestF

≡
{

universal property of simple folds
}

{[f | g | h]}NestF · α = f ′ · Base (id , {[f | g | h]}NestF )

≡
{

definition of efficient folds
}

f · Base (h, {[f | g | g · Pair h]}NestF ) = f ′ · Base (id , {[f | g | h]}NestF )

This last equation is true if the following conditions hold:

f ′ = f · Base (h, k)

k · {[f | g | h]}NestF = {[f | g | g · Pair h]}NestF

The second of these conditions is an application of a fold-fusion law for
efficient reductions on nests, which we now derive.

k · {[f | g | h]}NestF

=
{

specification of efficient folds
}

k · ([f | g ])NestF · Nest h
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=
{

fold-fusion: assume k · f = f ′ · Base (k ′, k)
}

([f ′ · Base (k ′, id) | g ])NestF · Nest h

=
{

map-fusion: assume g ′ · Pair k ′ = k ′ · g
}

([f ′ | g ′])NestF · Nest k ′ · Nest h

=
{

specification of efficient folds;
Nest is a functor; assume k ′ · h = h ′

}

{[f ′ | g ′ | h ′]}NestF

This derivation is specialised to reductions so the fold-fusion law is used with
simple conditions. In summary, we have

Fold-fusion law for efficient reductions on nests

k · {[f | g | h]}NestF = {[f ′ | g ′ | h ′]}NestF

⇐ ∃k ′ : k · f = f ′ · Base (k ′, k) and

g ′ · Pair k ′ = k ′ · g and

h ′ = k ′ · h

We can now immediately finish our derivation of the fold-equality law.

Fold-equality law for nests

{[f | g | h]}NestF = ([f · Base (h, k)])NestF

⇐ ∃k ′ : k · f = f · Base (k ′, k) and

g · Pair k ′ = k ′ · g and

g · Pair h = k ′ · h

We shall soon use this law to rewrite a simple fold as an efficient reduction.
An example in Chapter 8 sees us doing the reverse, indicating that the pro-
grammer can choose between these two different types of folds according to
their pros and cons, as follows. Simple folds resemble familiar standard folds
in that the only parameters needed are the replacements for the constructors
NilN and ConsN . That is why we initially chose to flatten a nest with a sim-
ple fold. However, the novice programmer will find rank two type signatures
difficult to use, especially when constructor functions are needed to enforce
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bindings. Efficient reductions have simpler type signatures but as they do
more than just replace constructor functions, it can be sometimes difficult to
visualise their behaviour.

3.3.3 Application: Flattening on nests

Here, once again, is the simple fold that flattens a nest.

hflatnest :: Nest a → [a]

hflatnest = hfoldnest [ ] (λ(a, x ) → a : flatlp x )

flatlp :: [Pair a] → [a]

flatlp = concat · map (\(y , z ) → [y , z ])

In order to write hflatnest in the notation of category theory, let cons :
Id × List

.
→ List and cat : Pair · List

.
→ List denote the uncurried versions

of (:) and (++) respectively. Let knil : K1

.
→ List and wrap : Id

.
→ List be

defined by knil x = [ ] and wrap x = [x ]. Now we write

hflatnest : Nest
.

→ List

hflatnest = ([knil , cons · (id × flatlp)])NestF

Here, the function flatlp flattens a list of pairs to a list. Here are three point-
free properties of flatlp that are obviously correct when written pointwise.

flatlp · knil = knil

flatlp · wrap = cat · (wrap × wrap)

flatlp · cat = cat · (flatlp × flatlp)

Although these three properties form an inductive definition, as a list must
be an empty list, a singleton list or a concatenation of two lists, only the first
two are valid Haskell when written pointwise.

[knil , cons · (id × flatlp)]

=
{

x : xs = [x ] ++ xs
}

[knil , cat · (wrap × flatlp)]

=
{

fusion laws of coproduct
}

[knil , cat ] · (id1 + (wrap × flatlp))

54



=
{

definition of Base
}

[knil , cat ] · Base (wrap,flatlp)

According to the fold-equality law, the corresponding efficient fold is

eflatnest : Nest
.

→ List

eflatnest = {[knil , cat | g |wrap]}NestF

The function g is given by the conditions of the law. For some k ′, we have

flatlp · [knil , cat ] = [knil , cat ] · Base (k ′,flatlp)

g · Pair k ′ = k ′ · g

g · Pair wrap = k ′ · wrap

Once we separate out the coproduct and take g = cat and k ′ = flatlp, these
conditions are exactly the three properties we gave for flatlp. In conclusion,
the efficient fold that flattens a nest is

eflatnest : Nest
.

→ List

eflatnest = {[knil , cat | cat |wrap]}NestF

In Haskell, we write

eflatnest :: Nest a → [a]
eflatnest = erednest [ ] (uncurry (++)) (uncurry (++)) (: [ ])

Here, erednest is efoldnest with a specialised type signature.

erednest :: c → ((b, c) → c) → (a → b) → (Pair b → b) → Nest a → c

erednest nil cons bin tip NilN = nil

erednest nil cons bin tip (ConsN (a, x ))
= cons (tip a, erednest nil cons (bin · pair tip) bin x )

3.3.4 Comparisons of flattening functions

We now contrast eflatnest with hflatnest by applying them both to the same
input.

hflatnest � 1, (2, 3), ((4, 5), (6, 7)) �

= 1 : flatlp ((2, 3) : flatlp (((4, 5), (6, 7)) : flatlp ��))

= 1 : flatlp ((2, 3) : flatlp (((4, 5), (6, 7)) : [ ]))
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= 1 : flatlp ((2, 3) : flatlp [((4, 5), (6, 7))])

= 1 : flatlp [(2, 3), (4, 5), (6, 7)]

= [1, 2, 3, 4, 5, 6, 7]

As with the summation example, let eflatnest ′ be the partial application of
eflatnest and let h be defined by h0 = wrap and hi+1 = cat · Pair hi .

eflatnest � 1, (2, 3), ((4, 5), (6, 7)) �

= eflatnest ′ h0 � 1, (2, 3), ((4, 5), (6, 7)) �

= h0 1 ++ eflatnest ′ h1 � (2, 3), ((4, 5), (6, 7)) �

= [1] ++ (h1 (2, 3) ++ eflatnest ′ h2 � ((4, 5), (6, 7)) �)

= [1] ++ ([2, 3] ++ (h2 ((4, 5), (6, 7)) ++ eflatnest ′ h3 ��))

= [1] ++ ([2, 3] ++ ([4, 5, 6, 7] ++ [ ]))

= [1, 2, 3, 4, 5, 6, 7]

Observe that hflatnest turns lists of pairs of pairs into lists of pairs and then
into lists, whereas eflatnest turns integers or pairs of integers or even pairs
of pairs of integers straight into lists for concatenation.

3.4 Folds for linear datatypes

In Chapter 2, we wrote the simple fold operator for nests entirely in terms of
NestF and Nest . We could then generalise the simple fold operator to any
nested datatype, simply by abstracting over Nest and NestF . In contrast,
the generalised fold operator for nests is defined in terms of Base and Pair

and Nest so we can only generalise it to functors of the form

T ≈ F T

F X = B · 〈Id ,X · Q〉

This form is nevertheless general enough to include all regular datatypes. We
can use it to define folds for and reason about a wide variety of datatypes
without using case analysis. However, the form is not general enough to
include all linear datatypes as some datatypes can recurse in several differ-
ent ways. For example, the datatype below models the de Bruijn notation
for writing lambda terms without using variables. Each bound variable is
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represented by a term Var Succn Zero where n indicates the distance of the
binding lambda abstraction.

data Term a = Var a | App (Term a,Term a) | Lam (Term (Incr a))
data Incr a = Zero | Succ a

For example, the lambda term λxyz .xz is represented by

Lam (Lam (Lam (App (Var (Succ (Succ Zero)),Var Zero))))

Free variables can be represented by elements of the type a. To handle all
linear datatypes we need the hofunctor F to have the form

F X = B · 〈Id ,X · P1, . . . ,X · Pn〉

Here, B denotes a polynomial n-ary functor; if n = 0 then T is polynomial
but this case does not interest us. We shall see shortly that this form is
not canonical. We shall avoid ellipses when defining generic operations by
assuming that n = 1, because our reasoning can always be generalised to
larger n. In other words, we have traded rigour for generality.

We can generalise to linear datatypes the universal property of the gener-
alised fold operator.

h = ([f | g ])F ≡ h · α = f · B (id , h · T g)

In general, if B is an n-ary functor (for n ≥ 2) then the operator will take n

parameters. Now we can see that our form for hofunctors is not canonical.
The type of de Bruijn terms can be written in category notation as

DeB ≈ DeBF DeB

DeBF X = Id + X × X + X · Incr

Incr = K1 + Id

Now DeBF can be put in our special form for hofunctors in two different
ways, DeBF1 and DeBF2 below.

DeBF1 X = BaseDB1 · 〈Id ,X ,X · Incr〉

DeBF2 X = BaseDB2 · 〈Id ,X ,X ,X · Incr〉

The base functors are defined by

BaseDB1 (X ,Y ,Z ) = X + Y × Y + Z

BaseDB2 (X ,Y ,Y ′,Z ) = X + Y × Y ′ + Z
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The generalised fold operator for the type of de Bruijn terms can have either
three or four parameters. However, the sets of parameters have the same
types and once the base functors have been substituted for, the two opera-
tors are the same, except for one being an instance of the other.

Hinze [Hin99a] shows that generalised folds take quadratic time for the
datatype of de Bruijn terms. A map over the structure Lamn (Var (Succn a))
takes linear time and that is why a generalised fold over the structure, with
a map at each recursive step, will take quadratic time.

We generalise the universal property of the efficient fold operator to

χ h = {[f | g | h]}F ≡ χ h · α = f · B (h, χ (g · Q h))

The map-fusion law generalises to

([f | g ])F · T k = ([f · B (k , id) | g ′])F ⇐ g · Q k = kQ · g ′

The fold-fusion law generalises to

k · (([f | g ])F )M ′ = ([f ′ | g ′])F

⇐ ∃p : k · f = f ′ · B (id , k · R p) and M p · g = g ′

We can even generalise the fold-equality law.

{[f | g | h]}F = ([f · B (h, k)])F

⇐ ∃k ′ : k · f = f · B (k ′, k) and

g · Q k ′ = k ′ · g and

g · Q h = k ′ · h

The type of the efficient fold operator specialised to efficient reductions is as
follows:

{[−|−|−]}F : (B (b, c) → c) → (Q b → b) → (a → b) →

T a → c

When T is regular then Q = Id and we can use the generalised fold operator
to define the standard fold operator.

foldF : (B (b, c) → c) → T b → c

foldF f = ([f | idb])F
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3.4.1 Alternating lists

We shall only consider single-parameter first-order datatypes for the rest
of this thesis. However, to help the interested reader generalise the thesis
to multi-parameter datatypes, we shall give the generalised fold operator for
alternating lists. Recall the definition of alternating lists in category notation.

ALF X = BaseAL · 〈Id ,X · Swap〉

BaseAL = KK1 + Outl · Outl × Outr

Swap = 〈Outr ,Outl〉

The generalised fold operator is as follows.

([−|−])NestF : (BaseAL · 〈M ,R · Swap〉
.

→ R) →

(Swap · M
.

→ M · Swap) →

(AL · (M × N )
.

→ R)

([f | g ])ALF · α = f · BaseAL (id , ([f | g ])ALF · ALg)

In Haskell, this is

gfoldal :: forall c d r .

(forall a b. r a b) →
(forall a b. (m a, r b a) → r a b) →
(forall b.n b → m b) →
(forall a.m a → n a) →
AL (m c) (n d) → r c d

gfoldal nil cons nb ma NilAL = nil
gfoldal nil cons nb ma (ConsAL (a, x ))

= cons (a, gfoldal nil cons nb ma (al nb ma x ))

3.4.2 Square Matrices

Now let us consider higher-order datatypes. Generalised folds for square
matrices have the type

SM (m h) a → n h a

The generalised fold operator must therefore return a function of this type.
The map operator for SM must be supplied with a map for m h, for every

59



h. To ensure this we could give the type signature the following type class
context, but it is not legal Haskell:

forall h. Functor (m h)

We need some way of declaring m to be a higher-order functor that takes
functors to functors but it is not clear how to do this. Clare Martin has
shown that the desired type signature can be specialised to a reduction with
a legal class context by taking m and n to be constant hofunctors but the
resulting operator does not seem to be of any use. The same seems to be
true of the general case when m and n are not constant hofunctors for the
same reasons as before with the simple fold operator [Mar01].

3.5 Proofs of universal properties for folds

In [BP99b], Bird and Paterson prove the following theorem, two special cases
of which are the universal properties of generalised folds and efficient folds.

Theorem on the uniqueness of arrows

Suppose that F is an endofunctor on C with an initial algebra α : F T → T

and that Ψ is a natural transformation with typing

ΨA : (LA → B) → (L (F A) → B)

where L : C → D for some category D. Then there is a unique x : LT → B

such that

x · Lα = Ψ x

(Note that in the type of ΨA the inner and the outer arrows belong to different
categories.) We shall sketch Bird and Paterson’s proof of this theorem shortly
but first we shall demonstrate that the universal properties of this chapter
are both instances of the theorem. We consider only linear T so we define F

by

F X = B ′ · 〈Id ,X · Q〉

The extension to non-linear datatypes is trivial.
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3.5.1 Uniqueness of generalised folds

Suppose that C = D = Coc (Fun) and L is defined on functors by LF =
F · M and on natural transformations by L β = βM . If Ψ is defined by
Ψ h = f · B ′ (id , h · T g) for appropriate parameters f and g then according
to the theorem, there is a unique arrow ([f | g ])F : T · M

.
→ R such that

([f | g ])F · (αF )M = f · B ′ (id , ([f | g ])F · T g)

This confirms the right-to-left direction of the universal property; the left-
to-right direction follows immediately from the definition of ([f | g ])F .

3.5.2 Uniqueness of efficient folds

The instantiation for efficient folds is more complex, because a unique map-

ping on arrows is required, which must be a unique arrow in a higher or-
der category D, the details of which are yet to be determined. Let C =
Coc (Fun) as before. We want to show that there exists a unique arrow χ

in D that satisfies the definition of {[f | g | −]}. Its type should be

(M ′ .
→ M ) → (T · M ′ .

→ R)

Following the proof in [BGM], we shall broaden this type to

(W
.

→ M · X ) → (T · W
.

→ R · X )

In fact, χ must be a collection of such arrows indexed by functor pairs
(W ,X ).

χW ,X : (W
.

→ M · X ) → (T · W
.

→ R · X )

For χ to be unique by the theorem, it must be an arrow in D of type LT → B .
This information alone is enough to fix for us the objects and arrows of D.
An object U of D must map a pair of endofunctors (W ,X ) to a single
endofunctor U (W ,X ). An arrow ξ : U → V of D must map a pair of
endofunctors (W ,X ) to a total function of type

ξW ,X : (W
.

→ M · X ) → (U (W ,X )
.

→ V (W ,X ))

When U = LA and V = B we have,

ξW ,X : (W
.

→ M · X ) → (LA (W ,X )
.

→ B (W ,X ))
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Clearly, χ is an arrow of D because the types of ξW ,X and χW ,X match with
A = T and LA (W ,X ) = A · W and B (W ,X ) = R · X . Now χ is to be
the unique solution to

χ ◦ P α = Ψ χ

Here, ◦ denotes the composition of arrows of D. In fact, we really need

(χ ◦ P α)W ,X p = (Ψχ)W ,X p

To make this equality on arrows of D match the equality on arrows of
Coc (Fun) that defines {[f | g |−]}F we define ◦ as follows.

(ξ′ ◦ ξ′′) p = ξ′ p ◦ ξ′′ p

Now we choose

P η (W ,X ) p = ηW

Finally, for appropriate parameters f and g and h we define Ψ by

(Ψ ξ)W ,X h = f · B ′ (h, ξ (g · Q h))

These substitutions give us the required equation.

({[f | g | −]}F h) · (αF )W = f · B ′ (h, {[f | g | −]}F (g · Q h))

Since Ψ takes arrows

(W
.

→ M · X ) → (T · W
.

→ R · X )

to arrows

(W
.

→ M · X ) → (F T · W
.

→ R · X )

we see that it is a natural transformation of the right type.

ΨA : (P A → B) → (P (F A) → B)

This completes the proof of the universal property of efficient folds.
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3.5.3 Proof sketch for the theorem

Bird and Paterson give two proofs of their theorem. The first proof exploits
the details of how T is constructed as a least fixed point of F using colimits.
It assumes that F and L preserve colimits and that L preserves initiality.
Both these conditions are satisfied in our uses of the theorem. The proof es-
tablishes both the uniqueness and the existence of a solution to the equation.
It takes the form of an induction on the number used to index the arrows
used to construct the colimit.

The second proof defines an isomorphism between LA → B and A → R B

for some functor R and for all A and B . This isomorphism is said to be
an adjunction between L and R, and R is said to be a right adjoint of L.
Bird and Paterson prove that if L has a right adjoint then the equation has
a unique solution. Taking A=T and defining the hofunctor L by LX=X ·M
and L β=βM , they construct a right adjoint to L and thereby define an iso-
morphism between generalised folds and higher-order simple folds. The case
of efficient folds has not been studied, however so we must rely on the first
proof to prove their universal property.

3.6 Map-fusion law for efficient folds

Observe that since T is a functor we have

([f | g ])F · T h · T k = ([f | g ])F · T (h · k)

From the specification of efficient folds we can immediately conclude the
following simple map-fusion law.

{[f | g | h]}F · T k = {[f | g | h · k ]}F

This law has no conditions, unlike its counterpart for generalised folds, and in
this respect it resembles the map-fusion law for standard folds. However, as
generalised folds are efficient folds, we would expect the law for generalised
folds to be a special case of the law for efficient folds. Consequently, we
shall try to derive a more general law for efficient folds. For a start, by
rewriting efficient folds to generalised folds composed with maps, we can use
the map-fusion law for generalised folds to show

{[f | g | h]}NestF · Nest k = {[f · Base (h · k , id) | g ′ | id ]}NestF

⇐ g · Pair (h · k) = h · k · g ′
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Taking h=id recovers the law for generalised folds. Alternatively, we could
try writing the map as an efficient fold and using the fold-fusion law to derive
some conditions.

{[f | g | h]}NestF · {[α | id | k ]}NestF = {[f ′ | g ′ | h ′]}NestF

However, the fold-fusion law for efficient reductions cannot be used here be-
cause the map is not an efficient reduction. The derivation of the fold-fusion
law for efficient folds can be redone using more general fold-fusion laws for
generalised folds. However, apart from the special case where M ′ = Id ,
which requires g ′ = id , these laws all introduce conditions that are difficult
to satisfy.

Finally, we could try to derive a map-fusion law direct from the universal
property of efficient folds, but unfortunately, it is difficult to find values of
the mapping χ that give satisfiable conditions.

In conclusion, none of these three ideas produce an interesting generalisa-
tion of the map-fusion laws of generalised folds and efficient folds.
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Chapter 4

Other folds for non-linear

datatypes

In the previous chapter, we defined generalised and efficient fold operators for
linear nested datatypes. Now we shall extend these operators to non-linear
datatypes. More precisely, we defined the fold operators for a functor T of
the form below, where F1 had to be a constant hofunctor, that is, a hofunctor
that always returns the same functor.

T ≈ F T

F X = B · 〈Id ,X · F1 X 〉

Although this form gives only some linear datatypes, the definitions could
easily be generalised. In this chapter, we remove the restriction on F1. We
also give generic versions of the fold operators, which we can use later in this
thesis to define and reason about generic operations.

Our running example of a non-linear datatype will be the datatype of bushes
given by taking B = Base and F1 X = X .

Bush ≈ BushF Bush

BushF X = Base · 〈Id ,X · BushF1 X 〉

BushF1 X = X

In Haskell, this is written as

data Bush a = NilB | ConsB (a,Bush (Bush a))
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Note that the recursive use of Bush is modified by Bush itself and this is
what makes Bush non-linear. A bush is thereby defined as a list consisting
of an element followed by a bush followed by a bush of bushes and so on.
The variant of Bush obtained by removing the NilB case is used in [Hin00b]
to implement trie-structures (basically efficient finite maps) that are indexed
by unlabelled binary trees. Another non-linear datatype, given in [BP99a],
improves on the datatype of de Bruijn terms presented in the previous chap-
ter by showing, for the sake of efficiency, the sharing of lambda-expressions
between lambda-terms.

Before continuing, we note that the generalised fold operator for bushes must
be different in form from the operator for nests. The reason for this is that
the map operator must be used with the type

BushF1 Bush · M
.

→ M · BushF1 R

because the map operator for nests is used with the type

NestF1 Nest · M
.

→ M · NestF1 R

and the first of these is not independent of Bush so it cannot be a parameter
to the generalised fold operator for bushes. Here, NestF1 is defined by writing
Nest in the form

Nest ≈ NestF Nest

NestF X = Base · 〈Id ,X · NestF1 X 〉

NestF1 X = Pair

The layout of this chapter is as follows. Section 4.1 defines a generalised
fold operator for bushes. Section 4.2 describes an alternative, though equally
expressive, grammar for polynomial hofunctors. Section 4.3 uses induction
on the structure of this grammar to define a generic generalised fold operator.
Section 4.4 explains how we can use this operator to define generic operations
and illustrates this by defining a generic sum operation. Sections 4.5 and
4.6 adapt Bird and Paterson’s generic map-fusion and fold-fusion laws to
make them more useful for calculation. Finally, Section 4.7 derives a generic
efficient fold operator.
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4.1 Generalised folds for bushes

Suppose we define the generalised fold operator for bushes along the same
lines as the corresponding operator for nests, below.

([f | g ])NestF · αNestF = f · Base (id , ([f | g ])NestF · Nest g)

As we have just explained, the map operator for bushes must be used with
some argument

rest1 : BushF1 Bush · M
.

→ M · BushF1 R

Although rest1 is dependent on Bush and cannot be a parameter to the fold
operator, we can construct it from a parameter rest2 that is not dependent
on Bush.

rest2 : BushF2 Bush · M
.

→ M · BushF2 R

Here BushF2 is defined by putting BushF1 into the form

BushF1 X = Outr · 〈Id ,X · BushF2 X 〉

BushF2 X = Id

Observe that the right-hand side of the definition of ([−|−])NestF above has
source type NestF Nest · M and is constructed from a parameter g of source
type NestF1 Nest · M and another parameter f . In the same way, we can
construct rest1 from rest2 and a new parameter g1. The generalised fold
operator for bushes that we end up with is

([−|−|−])BushF : (Base · 〈M ,R · Outr · 〈Id ,R〉〉
.

→ R) →

(Outr · 〈M ,R〉
.

→ M · Outr · 〈Id ,R〉) →

(Id · M
.

→ M · Id) →

Bush · M
.

→ R

([f | g1 | g2])Bush · α = f · Base (id , ([f | g1 | g2])Bush · Bush rest1)

rest1 : Outr · 〈M ,Bush · M 〉
.

→ M · Outr · 〈Id ,R〉
rest1 = g1 · Outr (id , ([f | g1 | g2])Bush · Bush rest2)

rest2 : Id · M
.

→ M · Id
rest2 = g2
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Note that this operator has three arguments (written between two vertical
bars) the first of which is the join of two functions. When we implement the
generalised fold operator in Haskell, we assume for the sake of brevity that
the third parameter, which has the type of an identity function, always is an
identity function and can therefore be omitted. In other words, we have that
([nil , cons |more | id ])BushF is implemented by gfoldbush nil cons more where
gfoldbush is defined by

gfoldbush :: forall a m r .

(forall a. r a) →

(forall a. (m a, r (r a)) → r a) →

(forall a. r a → m (r a)) →

Bush (m a) → r a

gfoldbush nil cons more NilB = nil

gfoldbush nil cons more (ConsB (a, x )) = cons (a,

gfoldbush nil cons more (bush (more · gfoldbush nil cons more) x ))

bush :: (a → b) → Bush a → Bush b

bush f NilB = NilB

bush f (ConsB (a, x )) = ConsB (f a, bush (bush f ) x )

Let gf abbreviate gfoldbush nil cons more. The type assertions below help us
to understand how gfoldbush works.

x : Bush (Bush (m a))

bush gf x : Bush (r a)

bush (more · gf ) x : Bush (m (r a))

gf (bush (more · gf ) x ) : r (r a)

The fold turns bushes (starting from the innermost in the subcall) into r ’s
but it can only be applied to bushes of m’s, so before replacing the outer
bush in the type of x , the fold applies the function more to introduce the
type constructor m.

Note, however, that the generalised fold for bushes given in [Hin99a] is very
different from ours. Although the folds are equally powerful, the parameters
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are different in type and number and they also have a different role. A more
detailed comparison is given at the end of [Hin99a] itself.

It is also interesting to compare the assertions above with the corresponding
assertions for gfoldnest .

x : Nest (Pair (m a))

nest bin x : Nest (m (Pair a))

gfoldnest nil cons bin (nest bin x ) : r (Pair a)

Here, the parameter bin does not reintroduce the functor m, but merely
commutes it so that the fold can be applied recursively.

4.2 Alternative grammar for polynomial ho-

functors

The generalised fold operators for nests and bushes are different in form and
in the number of parameters, so clearly both of these characteristics are de-
termined by the datatype. We shall therefore define the generic operator by
induction on the structure of polynomial hofunctors. The grammar we gave
in Chapter 2 for polynomial hofunctors has separate cases for constant func-
tors, identity functors, products, coproducts and composition. The gram-
mars given in [MG01] and [Hin99a] have a similar number of cases, though
they are not exactly the same, and the definitions there of generic operators
are given by case analysis. This means that any proofs that use the defini-
tions must also proceed by case analysis, which makes them longer and more
difficult to understand. Since we have a lot of proofs in this thesis, we shall
follow [BP99b] and define the generic generalised fold operator using a gram-
mar for polynomial hofunctors that has only one case. Every polynomial
hofunctor can and will be put into the form

F X = B · 〈Id ,X · F1 X , . . . ,X · Fn X 〉

The Fi are expressed in a similar form and B is an (n+1)-ary functor.

69



4.3 Generic generalised fold operator

Now we use this datatype to define the generic generalised fold operator. The
operator must return a fold of type T ·M

.
→ R when given a main parameter

f that contains replacements for the constructor functions.

f : B · 〈M ,R · F1 R〉
.

→ R

The operator for nests has one auxiliary parameter and the operator for
bushes has two auxiliary parameters. The generic operator therefore requires,
as an argument, an indexed collection of parameters γ. We associate with
each subsidiary hofunctor Fi , an auxiliary parameter

γi : Bi · 〈M ,R · Fj R〉
.

→ M · Fi R

If ([f ‖ γ])F is a reduction of type T b → c then f has type B (b, c) → c and
γi has type Bi (b, c) → b. Note that the generic operator is written with a
double bar instead of a single bar, which is used for specific datatypes.

The universal property for the generic generalised fold operator is as follows.

([f ‖ γ])F : T · M
.

→ R

h = ([f ‖ γ])F ≡ h · α = f · B (id , h · T (Φ1 (γ, h)))

Here we associate a term Φi (γ, h) with each i , generalising the functions
resti , which in the case of bushes are defined only for i ∈ {1, 2}.

Φi (γ, h) : Fi T · M
.

→ M · Fi R

Φi (γ, h) = γi · Bi (id , h · T (Φj (γ, h)))

Note that “with each i” above is shorthand for “for all i such that Fi is a
subsidiary hofunctor of F”. The generic simple fold operator can now be
expressed in terms of the generic generalised fold operator as follows.

([−])F : (F R
.

→ R) → (T
.

→ R)
([f ])F = ([f ‖ ident ])F

Here, ident is defined by identi = idFi R.
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4.4 Generic summation

The generic generalised fold operator enables us to write generic operations
on nested datatypes as generalised folds. To illustrate this, we shall now
define a generic summation operation sum such that sumT has type T Int →
Int and takes a T -structure of integers to the sum of its elements. Often we
shall generalise from regular functors but here we shall generalise from nests.
We know that sumNest=sumnest so

sumnest : Nest Int → Int

sumnest = ([kzero, plus | plus])NestF

The parameters to this fold have types Base (Int , Int) → Int and Pair Int →
Int , so we can rewrite sumnest as follows.

sumnest : Nest Int → Int

sumnest = ([sumBase | sumPair ])NestF

Now we generalise. Suppose we define gsum by gsumi = sumBi
, for all i .

Then we have

sumT : T Int → Int

sumT = ([sumB ‖ gsum])F

We call this a nested fixpoint case. It is defined in terms of polynomial cases
that we shall soon supply. These will be chosen from type considerations, ex-
amining unary and binary functors separately. Although we have motivated
the case for nests (and hence the nested fixpoint case) from type considera-
tions, we will often motivate it instead from a known regular fixpoint case.
Now for an example.

sumBush : Bush Int → Int

sumBush = ([sumBase | sumOutr | sumId ])BushF

Further polynomial cases are required to define sumBase and sumOutr and
sumId . We construct these polynomial cases by writing out their types point-
wise. We start with the unary functors.

sumKA
: a → Int

sumId : Int → Int

sumF+G : F Int + G Int → Int

sumF×G : F Int × G Int → Int

sumF · G : F (G Int) → Int
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Now we choose the values.

sumKA
= kzero

sumId = idInt

sumF+G = [sumF , sumG ]
sumF×G = plus · (sumF × sumG)
sumF · G = sumF · F sumG

Now we do the same for the binary functors.

sumKKA
: a → Int

sumOutl : Int → Int

sumOutr : Int → Int

sumF · 〈G,H 〉 : F (G Int ,H Int) → Int

The values are

sumKKA
= kzero

sumOutl = idInt

sumOutr = idInt

sumF · 〈G,H 〉 = sumF · F (sumG , sumH )

We can easily generalise these cases to n-ary functors, but we shall limit
ourselves to unary and binary functors in this thesis. Let us check the cases
above by evaluating sumBase

sumBase

= sumKK1+Outl×Outr

= [sumKK1
, plus · (sumOutl × sumOutr )]

= [kzero, plus · (idInt × idInt)]

= [kzero, plus]

We derive a case for sum+ from the case for sumF+G = sum+·〈F ,G〉.

sum+ · (sumF + sumG)

= sum+ · 〈F ,G〉

= sumF+G

= [sumF , sumG ]

= [id , id ] · (sumF + sumG)

So we conclude

sum+ = [id , id ]
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For products, a similar calculation gives

sum× = plus

We shall often need to derive cases for the bifunctors + and × in this way;
sometimes we derive the case for bifunctor composition at the same time.
Although we use type considerations to motivate the polynomial and fix-
point cases, the fold-equivalence law of Chapter 8 will allow us to deduce the
nested fixpoint case from the composition case and the regular fixpoint case
alone.

The generic definition of sum should be contrasted with the definition in
[Hin99b], where the fixpoint case is omitted but inferred automatically. Us-
ing our notation, Hinze would calculate sumNest as follows.

sumNest

= sumK1+Id×Nest ·Pair

= [sumK1
, plus · (sumId × sumNest · Nest sumPair)]

= [kzero, plus · (id × (sumNest · Nest plus))]

In [Hin00c], Hinze argues further that the composition case can also be omit-
ted and then inferred from the remaining cases when the generic operation
is specialised.

With the polynomial cases defined we can now implement sumBush in Haskell;
recall that gfoldbush nil cons more implements ([nil , cons |more | id ])BushF .

sumbush :: Bush Int → Int

sumbush = unKInt · gfoldbush zero ′ plus ′ id · bush KInt

zero ′ : KInt a

zero ′ = KInt 0

plus ′ : (KInt a,KInt a) → KInt a

plus ′ (KInt x ,KInt y) = KInt (x + y)

4.5 Generic map-fusion law for generalised

folds

In [BP99b], Bird and Paterson use the universal property of the generic gen-
eralised fold operator to derive a generic map-fusion law. We presented the
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derivation for the special case of nests, in the previous chapter.

Generic map-fusion law If we have

Φ1 (γ, ([f ‖ γ])F ) · F1 T k = kF1 R · Φ1 (γ′, ([f ‖ γ])F · T k)

then we can conclude

([f ‖ γ])F · T k = ([f · B (k , id) ‖ γ ′])F

Here, ([f ‖ γ])F has type T · M
.

→ R and k has type M ′ .
→ M . Here is the

law instantiated to bushes, after dropping the subscript on k for concision.

Map-fusion law for bushes Given the typings

f : Base · 〈M ,R · R〉
.

→ R

g1 : R
.

→ M · R

g2 : M
.

→ M

g ′
1 : R

.
→ M ′ · R

g ′
2 : M ′ .

→ M ′

k : M ′ .
→ M

we have

([f | g1 | g2])BushF · Bush k = ([f · Base (k , id) | g ′
1 | g ′

2])BushF

⇐ g1 · Outr (k , ([f ‖ γ])F · Bush (g2 · Id k))

= k · g ′
1 · Outr (id , ([f ‖ γ])F · Bush (k · g ′

2))

A necessary condition for this condition is the conjunction

g1 · Outr (k , id) = k · g ′
1 and g2 · Id k = k · g ′

2

Neither of these clauses have fold or map operations so they are easier to
verify. Because the functors Outr and Id have been made explicit, we can
spot patterns in common with the law for nests. Comparing these conditions
with the condition for nests, we can propose a generic map-fusion law with
conditions that are free of maps and folds.
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Improved generic map-fusion law If we have for all i ,

γi · Bi (k , id) = k F1 R · γ′
i

then we conclude

([f ‖ γ])F · T k = ([f · B (k , id) ‖ γ ′])F

Now we show that the collection of conditions above implies the single con-
dition of the generic law derived in [BP99b]. We reason by induction on the
structure of hofunctors. Suppose that Fi is defined by

Fi X = Bi · 〈Id ,X · Fj X 〉

Our induction hypothesis is

Φj (γ, ([f ‖ γ])F ) · Fj T k = k · Φj (γ′, ([f ‖ γ])F · T k)

Now we argue:

Φi (γ, ([f ‖ γ])F ) · Fi T k

=
{

definition of Φ and Fi

}

γi · Bi (id , ([f ‖ γ])F · T (Φj (γ, ([f ‖ γ])F ))) · Bi (k , T (Fj T k))

=
{

Bi and T are functors
}

γi · Bi (k , id) · Bi (id , ([f ‖ γ])F · T (Φj (γ, ([f ‖ γ])F ) · Fj T k))

=
{

assume γi · Bi (k , id) = k · γ ′
i

}

k · γ′
i · Bi (id , ([f ‖ γ])F · T (Φj (γ′, ([f ‖ γ])F ) · Fj T k))

=
{

induction hypothesis
}

k · γ′
i · Bi (id , ([f ‖ γ])F · T (k · Φj (γ′, ([f ‖ γ])F · T k)))

=
{

definition of Φ; T is a functor
}

k · Φi (γ′, ([f ‖ γ])F · T k)

4.6 Generic fold-fusion law for generalised folds

The generic fold-fusion law derived in [BP99b] is
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Generic fold-fusion law If there exists a function
p : F1 R · M ′ .

→ M ′ · F1 R′ such that

k · f = f ′ · B (id , k · R p)

and

M p · Φ1 (γ, ([f ‖ γ])F ) = Φ1 (γ′, k · ([f ‖ γ])F )

then we can conclude

k · (([f ‖ γ])F )M ′ = ([f ′ ‖ γ′])F

Here ([f ‖ γ])F has type T ·M
.

→ R and k has type R ·M ′ .
→ R′. Instantiated

to bushes the law is

Fold-fusion law for bushes Given the typings

f : Base · 〈M ,R · R〉
.

→ R

f ′ : Base · 〈M · M ′,R′ · R′〉
.

→ R′

g1 : R
.

→ M · R

g ′
1 : R′ .

→ M · M ′ · R′

g2 : M
.

→ M

g ′
2 : M · M ′ .

→ M · M ′

k : R · M ′ .
→ R′

if we have

k · f = f ′ · Base (id , k · R p)

and we also have

M p · g1 · Outr (id , ([f | g1 | g2])BushF · Bush g2)

= g ′
1 · Outr (id , k · ([f | g1 | g2])BushF · Bush g ′

2)

with p : R · M ′ .
→ M ′ · R′ then we have

k · ([f | g1 | g2])BushF = ([f ′ | g ′
1 | g ′

2])BushF

Now we wish to find as sufficient conditions some rewriting equations without
fold or map operations that together turn the left-hand side of the second
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condition above into the right-hand side. We guess by analogy with the law
for nests that one of the rewrites is, for some q : M ′ .

→ M ′,

M q · g2 = g ′
2

This can be preceeded by a rewrite that uses the naturality of generalised
folds to introduce the M q term. However, this rewrite does not need to be
a condition as it is an immediate consequence of the naturality of the fold.

R q · ([f | g1 | g2])BushF = ([f | g1 | g2])BushF · Bush (M q)

Finally, the term R q can be introduced by the rewrite

M p · g1 = g ′
1 · Outr (id , k · R q)

Comparing these equations with the second condition in the law for nests
suggests the following generic law, the conditions of which feature neither
folds nor maps and are therefore easy to verify for individual cases.

Improved generic fold-fusion law If we have an indexed collection of
functions p, such that for all i with Fi X = Bi · 〈Id ,X · Fj X 〉 the function
pi has type Fi R · M ′ .

→ M · Fi R
′

M pi · γi = γ′
i · Bi (id , k · R pj )

and

k · f = f ′ · B (id , k · R p1)

then we can conclude that

k · ([f ‖ γ])F = ([f ′ ‖ γ′])F

We use structural induction to show that the indexed collection of conditions
in the rule above implies the second condition of Bird and Paterson’s law.
Our induction hypothesis is

M pj · Φj (γ, ([f ‖ γ])F ) = Φj (γ′, k · ([f ‖ γ])F )

We reason as follows:

M pi · Φi (γ, ([f ‖ γ])F )

=
{

definition of Φ
}

M pi · γi · Bi (id , ([f ‖ γ])F · T (Φj (γ, ([f ‖ γ])F )))
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=
{

Bi is a functor; assume M pi · γi = γ′
i · Bi (id , k · R pj )

}

γ′
i · Bi (id , k · R pj · ([f ‖ γ])F · T (Φj (γ, ([f ‖ γ])F )))

=
{

naturality of ([f ‖ γ])F ; T is a functor
}

γ′
i · Bi (id , k · ([f ‖ γ])F · T (M pj · Φj (γ, ([f ‖ γ])F )))

=
{

induction hypothesis
}

γ′
i · Bi (id , k · ([f ‖ γ])F · T (Φj (γ′, k · ([f ‖ γ])F )))

=
{

definition of Φ
}

Φi (γ′, k · ([f ‖ γ])F )

This law has a simpler form for reductions.

Fold-fusion law for reductions If we have for all i ,

γi = γ′
i · Bi (id , k)

and in addition

k · f = f ′ · B (id , k)

then we can conclude

k · ([f ‖ γ])F = ([f ′ ‖ γ′])F

4.7 Efficient folds for non-linear datatypes

The generic efficient fold operator is specified by, for T with T ≈ F T ,

{[f ‖ γ ‖ h]}F = ([f ‖ γ])F · T h

Note that we use double vertical bars to separate arguments in the generic
version of the operator, just as we did with generalised folds. Now we derive
a direct definition of the operator, repeating the steps from the special case
of nests.

{[f ‖ γ ‖ h]}F · α

=
{

specification of efficient fold
}

([f ‖ γ])F · T h · α
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=
{

naturality of α
}

([f ‖ γ])F · α · B (h,T (F1 T h))

=
{

definition of generalised fold
}

f · B (id , ([f ‖ γ])F · T (Φ1 (γ, ([f ‖ γ])F ))) · B (h,T (F1 T h))

=
{

B and T are functors
}

f · B (h, ([f ‖ γ])F · T (Φ1 (γ, ([f ‖ γ])F ) · F1 T h))

=
{

specification of efficient fold
}

f · B (h, {[f ‖ γ ‖ Φ1 (γ, ([f ‖ γ])F ) · F1 T h]}
F
)

If T is non-linear then F1 T is not a constant functor and there are wasteful
maps inside both F1 T h and the term Φ1 (γ, ([f ‖ γ])F ). Once again, our solu-
tion is to specify a more general operator Φ′ by introducing an accumulating
parameter.

Φ′
i (γ, ([f ‖ γ])F , h) = Φi (γ, ([f ‖ γ])F ) · Fi T h

We have also generalised F1 to a hofunctor Fi , which we define for some Fj

and Bi by

Fi X = Bi · 〈Id ,X · Fj X 〉

Now we derive a direct recursive definition of Φ′.

Φ′
i (γ, ([f ‖ γ])F , h)

=
{

specification of Φ′
}

Φi (γ, ([f ‖ γ])F ) · Fi T h

=
{

definition of Φ and Fi

}

γi · Bi (id , ([f ‖ γ])F · T (Φj (γ, ([f ‖ γ])F ))) · Bi (h,T (Fj T h))

=
{

Bi and T are functors
}

γi · Bi (h, ([f ‖ γ])F · T (Φj (γ, ([f ‖ γ])F ) · Fj T h))

=
{

specification of efficient fold and Φ′
}

γi · Bi (h, {[f ‖ γ ‖ Φ′
j (γ, ([f ‖ γ])F , h)F ]})

The universal property of the efficient fold operator is therefore given by

{[f ‖ γ ‖ h]}F : T · M ′ · Ka ′

.
→ R · Ka

χ h = {[f ‖ γ ‖ h]}F ≡ χ h · α = f · B (h, χ (ξ1 h))
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ξi h : Fi T · M ′ · Ka ′

.
→ M · Fi R · Ka

ξi h = γi · Bi (h, χ (ξj h))

The definition of ξ is implicitly for all i , where i and j are related by Fi X

= Bi · 〈Id ,X · Fj X 〉. As an example, the efficient fold operator for bushes is
given by taking B = Base and F1 X = X . In Haskell it is written as follows.

efoldbush :: forall a a ′ m m ′ r .

(forall b. r b) →
(forall b. (m b, r (r b)) → r b) →
(forall b. r b → m (r b)) →
(m ′ a ′ → m a) →
Bush (m ′ a ′) → r a

efoldbush nil cons more one Nil = nil

efoldbush nil cons more one (Cons (a, x ))
= cons (one a, ef (more · ef one) x )

where ef = efoldbush nil cons more

We have omitted the parameter that has the type of an identity function,
just like we did when writing gfoldbush

4.8 Map-fusion law for efficient folds

Finally, the map-fusion law for efficient folds on linear datatypes generalises
to arbitrary datatypes.

{[f ‖ γ ‖ h]}F · T k = {[f ‖ γ ‖ h · k ]}F

We shall derive the corresponding fold-fusion law, and examine some of its
special cases, at the end of the next chapter.
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Chapter 5

Relators

In Chapter 2, we explained why we needed to work in a category Coc (C)
whose objects are ω-cocontinuous endofunctors on a simpler category C. The
purpose of this chapter is to explain what happens when we change our choice
of C from Fun, the category of sets and total functions, to Rel, the category
of sets and relations. Relations are useful in program calculation because the
specification of a program may be non-deterministic or partial even though
the implementation cannot be. However, the move to relations requires that
we rewrite most of the foundation material from the previous chapters, and
because of this, the next three chapters directly depend on this chapter.

Section 5.1 describes the category Rel and augments it with the operators of
the relational calculus, to form a special sort of category called an allegory.
Section 5.2 defines endorelators, which are endofunctors with a certain prop-
erty, and describes the category Cor (Rel) whose objects are ω-cocontinuous
endorelators on Rel. It is this category that we shall use for the rest of this
thesis. We choose it in preference to the category Coc (Rel), whose objects
are endofunctors that are not necessarily endorelators, because endorelators
are canonical extensions.

Section 5.3 writes maps as efficient folds and shows that nested functors
on Fun extend to nested relators on Rel, by showing that initial algebras in
Coc (Fun) are also initial algebras in Cor (Rel). This is the key result of
the chapter. Section 5.4 gives relational versions of the fusion laws for gen-
eralised folds. Section 5.5 describes the hylomorphism theorem for standard
folds and considers whether it can be extended to folds on nested datatypes.
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Finally, Sections 5.6 and 5.7 contain preliminary material for Chapter 8. Sec-
tion 5.6 shows that efficient fold operators take injective relations to injective
relations and Section 5.7 derives a fold-fusion law for efficient reductions.

5.1 The category of relations

The category Rel has sets as objects and relations as arrows. Relations shall
be represented as subsets of the cartesian product. For any two relations R

and S , we define the meet R ∩ S to be the intersection of the subsets of
the cartesian product that correspond to R and S . The inclusion ordering
on relations ⊆ is defined similarly. We shall write x R y as shorthand for
(x , y) ∈ R and interpret this to mean that an input y is mapped by a re-
lation R to an output x . The converse of a relation R is denoted R◦ and
defined by x R◦ y ≡ y R x .

The three operators ∩ , ⊆ and (−)◦ make Rel a special kind of category
known as an allegory. Formally, an allegory is a category with three extra
operators:

• a partial order ⊆ on arrows of the same type, and

• a binary meet operator ∩ that takes two arrows R and S of the same
type to a third arrow R ∩ S of that type, and

• a unary operator (−)◦ that takes an arrow R of type A → B to an
arrow R◦, called the converse of R, with type B → A.

These three operators must satisfy six axioms. The binary operator ∩ is
defined by the universal property

X ⊆ R ∩ S ≡ X ⊆ R and X ⊆ S

The partial order ⊆ is monotonic with respect to composition:

S1 ⊆ S2 and T1 ⊆ T2 ⇒ S1 · T1 ⊆ S2 · T2

The following three axioms state respectively that converse is order-preserving,
contravariant with composition and an involution.

R ⊆ S ⇒ R◦ ⊆ S ◦

(R · S )◦ = S ◦ · R◦

(R◦)◦ = R
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The antisymmetry of ⊆ can be used to strengthen the first axiom of converse
to

R = S ⇒ R◦ = S ◦

The fifth axiom can now be used to strengthen this further to

R = S ≡ R◦ = S ◦

Therefore we preserve the truth of any equality or inequality if we take the
converse of both sides. The three operators are connected by the following
modular law.

(R · S ) ∩ T ⊆ R · (S ∩ (R◦ · T ))

Although we shall not need to use this law, it must be included as a sixth
axiom of allegories as it cannot be proven from the first five. To illustrate
these axioms, we show that converse distributes over meet:

(R ∩ S )◦ = R◦ ∩ S ◦

The proof is as follows:

X ⊆ (R ∩ S )◦

≡
{

taking converse of both sides
}

X ◦ ⊆ R ∩ S

≡
{

universal property of meet
}

X ◦ ⊆ R and X ◦ ⊆ S

≡
{

taking converse of both sides
}

X ⊆ R◦ and X ⊆ S ◦

≡
{

universal property of meet
}

X ⊆ R◦ ∩ S ◦

A union operator ∪ can be defined on relations in a manner similar to the
meet operator. Its universal property is also similar:

R ∪ S ⊆ X ≡ R ⊆ X and S ⊆ X

Composition distributes over union.

(R1 ∪ R2) · S = (R1 · S ) ∪ (R2 · S )
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The allegory Rel is locally complete, which means that the n-ary generalisa-
tion of ∪ is defined for all sets of arrows of the same type.

A function f can be shunted from one side of an inequation to the other,
in accordance with the shunting rules below.

f · R ⊆ S ≡ R ⊆ f ◦ · S

R · f ◦ ⊆ S ≡ R ⊆ S · f

5.1.1 Relational product

The allegory Rel has a particular property that will cause some difficulties
for us: products in the allegory are isomorphic to coproducts and therefore
indistinguishable from them. This is because reversing every arrow in the
universal property of products gives the universal property of coproducts and
a reverse arrow exists for every arrow in Rel. Therefore we must define a
new relational product. Its fork operator must satisfy

(a, b) 〈R, S 〉 c ≡ a R c and b S c

When R is a function this operator behaves exactly like the fork operator of
Fun. The right-hand side is equivalent to

((a, b) outl◦ a and a R c) and ((a, b) outr ◦ b and b S c)

Therefore we define the relational fork operator by

〈R, S 〉 = (outl◦ · R) ∩ (outr◦ · S )

Since we shall not use categorical product again, no ambiguity is introduced
when we recycle its notation to denote relational product. Note however that
outl · 〈R, {}〉 6= R so relational product and categorical product are different.
Furthermore, relational product does not have a universal property. The
action of × on relations is given by

R × S = 〈R · outl , S · outr〉

It is shown in [BdM97] that × is a bifunctor. Finally, we note the following
absorption law.

(R × S ) · 〈X ,Y 〉 = 〈R · X , S · Y 〉
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5.2 A category of lax natural transformations

The category that we shall use for the rest of this thesis is Cor (Rel), the
category whose objects are ω-cocontinuous endorelators on Rel and whose
arrows are lax natural transformations. The term ω-cocontinuous is de-
fined in [MG01] but it is sufficient to note here that all nested functors
are ω-cocontinuous. We shall call Coc (Fun) the endofunctor category
and Cor (Rel) the endorelator category. We use Cor (Rel) instead of
Coc (Rel) because relators are canonical extensions of functors so Cor (Rel)
has sufficient objects, and also because we need to use properties of endorela-
tors in our proofs, so Coc (Rel) has too many objects. We shall now explain
exactly what are endorelators and lax natural transformations.

5.2.1 Relators

Recall the definition of the relational product bifunctor on arrows of Rel.

R × S = 〈R · outl , S · outr〉

This bifunctor coincides with the categorical product bifunctor on Fun when
R and S are total functions, simply because the corresponding fork opera-
tions for Fun and Rel also coincide for total functions. We say that the re-
lational product bifunctor is a relational extension of the categorical product
bifunctor. However, it is possible that other bifunctors are also relational ex-
tensions of the categorical product bifunctor. To make the relational product
bifunctor be a canonical extension, we require that it be a relator. A relator

is a functor F on relations that commutes with converse, that is,

F (R◦) = (F R)◦

It is shown in [BdM97] that relators preserve total functions (so they are
relational extensions) and that if two relators are relational extensions of the
same functor then they are equal (so they are canonical extensions). For
example, the relational product bifunctor is a relator because it commutes
with converse [BdM97], that is

R◦ × S ◦ = (R × S )◦

Intuitively this means that undoing R on the left component of a pair and
undoing S on the right undoes the effect of doing R on the left and doing S
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on the right. From this alone we can tell that the relational product bifunc-
tor is a canonical relational extension of the categorical product bifunctor.
Similarly, the categorical coproduct bifunctor in Fun extends to the cat-
egorical coproduct bifunctor in Rel. In fact, all polynomial functors extend
to relators. In the next section we shall show that nested functors extend to
relators, but first we shall introduce lax natural transformations.

5.2.2 Lax natural transformations

In Chapter 2, we discovered that hflatnest satisfies the following naturality
property, for all functions f : A → B ,

List f · hflatnestA = hflatnestB · Nest f

However, we now want Nest and List to be endorelators on Rel so a more
useful property would be that for all relations R : A → B , we have

List R · hflatnestA = hflatnestB · Nest R

This property says that mapping a relation over a nest before flattening it
has the same effect as flattening the nest first and then mapping the relation
over the list produced. It is tempting to think that we can always generalise
from a function f to any relation R the naturality condition of a natural
transformation φ. However, while the generalisation is correct for hflatnest

it turns out that we must impose severe restrictions on both φ and R to
maintain equality in general.

First, if φ copies elements then R must be deterministic for the equality
to hold. Suppose that φ = duplic, where duplic was defined in Chapter 2,
and that R is the relation that non-deterministically adds one or subtracts
one from an integer. Then the relation Pair R · duplicInt maps each input to
twice as many outputs as the relation duplicInt · R, so instead of equality we
have (using ⊇ to denote the reverse of ⊆)

Pair R · duplicInt ⊇ duplicInt · R

Secondly, if φ removes elements then R must not be partial. Suppose that
φ = outl and R = {(0, 0)}, that is, the identity function restricted to the
value 0. Then the relation R · outlInt ,Int is defined on the input pair (0, 1)
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but the relation outlInt ,Int · (R × R) is not, and as before we must write an
inequality.

R · outlInt ,Int ⊇ outlInt ,Int · (R × R)

However, if φ neither copies nor removes elements then the equality holds for
all relations R. This case, illustrated by hfoldnest , is described as a proper
natural transformation. More often, there is an inequality for all relations R

and this more general case is described as a lax natural transformation.

A lax natural transformation φ from F to G , denoted by φ : F
.
↪→ G , is

a collection of arrows φA : F A → G A such that for all R : A → B ,

G R · φA ⊇ φB · F R

A proper natural transformation φ from F to G , denoted by φ : F
.

→ G ,
is defined similarly but with an equality in place of the inequality in the
naturality condition. It is shown in [BdM97] that when F and G are relators,
the naturality condition of lax natural transformations is equivalent to the
condition that for functions f : A → B ,

G f · φA = φB · F f

5.2.3 Further structure of the endorelator category

The operators (−)◦
, ∪ , ∩ and ⊆ on arrows of Rel all lift to arrows of

Coc (Rel) and hence Cor (Rel) in the obvious way. We know that cat-
egorical product in Fun extends to relational product in Rel and that cat-
egorical coproduct in Fun extends to categorical coproduct in Rel. These
two statements remain true after lifting to the categories Nat (Fun) and
Nat (Rel) [MG01], and even after restricting attention to the smaller cat-
egories Coc (Fun) and Cor (Rel). The fusion laws of coproduct and the
absorption law both lift to lax natural transformations.

5.3 Nested functors extend to relators

We now plan to represent type constructors using relators on Rel instead of
functors on Fun. This change is necessary because our map operators must
be defined on relations rather than on total functions alone. We shall use
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the same identifier for both the original functor and the relator that replaces
it. We can do this without fear of ambiguity because there is at most one
relator extending each functor [BdM97]. However, first we must prove that
there is at least one nested relator extending each nested functor.

First we show that initial algebras in the endofunctor category are also ini-
tial in the endorelator category. From this, we can prove that efficient fold
operators constructed in Coc (Fun) extend to efficient fold operators con-
structed in Cor (Rel) that preserve total functions. By writing maps as
efficient folds, we immediately conclude that nested functors on Fun extend
to nested functors on Rel.

However, for all this to work, we must show that map operations for nested
endofunctors constructed in Coc (Fun) and Coc (Rel) are endorelators so
that they can also be constructed in Cor (Rel). We need to check that
Coc (Rel) has initial algebras because we use efficient folds in our proof.
Fortunately, it does because Rel has empty sets as initial objects, all finite
coproducts and it is also ω-cocontinuous, as shown in [MG01]. It is clear that
Rel has all relational products because they are defined by a simple equa-
tion rather than a universal property. Note however that relational product
is defined in terms of categorical product so it is important that the latter
exists for Rel.

5.3.1 Power allegories

In order to prove that initial algebras in the endofunctor category are also
initial algebras in the endorelator category, we need to use the property of
Rel of it being a power allegory. Informally, this means that there is an
isomorphism between relations and set-valued total functions.

More formally, we have

• for each object A, an object PA, and

• for each arrow R : A → B , a function ΛR : A → PB , and

• an arrow ∈ : PA → A, and
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• for all R : A → B and f : A → PB , the universal property

f = ΛR ≡ ∈ ·f = R

Here P is the power set endorelator on Rel defined pointwise on sets by

PA = {x | x ⊆ A}

and on relations by

x (P R) y ≡ (∀a ∈ x : ∃b ∈ y : a R b) and (∀b ∈ y : ∃a ∈ x : a R b)

The right-hand side says that every element in x is related to some element in
y and vice versa. It follows from the categorical definition of P (see [BdM97])
that ∈ is a lax natural transformation of type P

.
↪→ Id .

Taking f = ΛR in the universal property gives a cancellation law .

∈ · ΛR = R

Taking f = Λ S gives ∈ ·ΛS = R and then S = R by the cancellation law so
Λ is the isomorphism between relations and set-valued functions.

R = S ≡ ΛR = ΛS

Using the cancellation law and the universal property together gives a fusion

law . For a function f , we have

Λ(R · f ) = ΛR · f

5.3.2 Endofunctor categories based on power allegories

In fact, we wish to use Λ and ∈ lifted to lax natural transformations. Whilst
it is not obvious that we can do this, we can certainly lift the laws above to
collections of arrows in Rel.

θ = Λη ≡ ∈ · θ = η

∈ · Λη = η

η = η′ ≡ Λη = Λη′

Λ(η · θ) = Λη · θ

89



Here, θ denotes a collection of functions and both η and η′ denote collections
of relations. We already know that ∈ is a lax natural transformation so we
only need to show that Λ takes lax natural transformations to lax natural
transformations. Suppose η is a lax natural transformation of type F

.
↪→ G ,

where F and G are relators. Then we must show for all functions f that

P (G f ) · (Λ η)A = (Λ η)B · F f

We reason

P (G f ) · (Λη)A

=
{

see below
}

Λ(ηB · F f )

=
{

fusion law of Λ; relators preserve functions
}

Λ(ηB ) · F f

=
{

definition of lifted Λ
}

(Λ η)B · F f

By the universal property of Λ, the first step is equivalent to

∈ · P (G f ) · (Λ η)A = ηB · F f

We prove this as follows.

ηB · F f

=
{

naturality of η
}

G f · ηA

=
{

cancellation law of Λ
}

G f · ∈ ·Λ(ηA)

=
{

naturality of ∈
}

∈ · P (G f ) · Λ(ηA)

=
{

definition of lifted Λ
}

∈ · P (G f ) · (Λη)A
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5.3.3 Initial algebras extend to endorelator category

Now we finally prove that initial algebras in the endofunctor category are
also initial algebras in the endorelator category. Let F be a polynomial
hofunctor. Then F is also an endofunctor on the endorelator category so
it preserves lax natural transformations. Polynomial functors extend to re-
lators. Higher-order polynomial functors extend to higher-order polynomial
relators, or horelators, which preserve functional lax natural transformations.
An example will help us convince ourselves of this. If we apply the hofunctor
NestF to lax natural transformations, we get (using the notation introduced
in Section 2.5.7)

NestF η = KK1
η + KId η × (Id ?KPair)η

Simplifying this a little gives

NestF η = idK1
+ id × ηPair

We know that NestF preserves lax natural transformations but we can also
see now that it must preserve functional lax natural transformations. The
binary relators + and × preserve functions so when they are lifted to col-
lections of arrows they preserve functional collections of arrows. Finally, by
examining the definitions of composition and horizontal composition, we can
satisfy ourselves that all polynomial hofunctors extend to horelators.

Now for the proof.

X · α = η · F X

≡
{

Λ is an isomorphism
}

Λ(X · α) = Λ(η · F X )

≡
{

cancellation law of Λ
}

Λ(X · α) = Λ(η · F (∈ ·ΛX ))

≡
{

F is a horelator; fusion law of Λ on both sides
}

ΛX · α = Λ(η · F ∈) · F (ΛX )

≡
{

universal property of simple folds
}

ΛX = ([Λ(η · F ∈)])F

≡
{

cancellation law of Λ
}

X = ∈ ·([Λ(η · F ∈)])F
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5.3.4 Efficient fold operators preserve total functions

Since initial algebras in the endofunctor category are also initial algebras
in the endorelator category, an efficient fold constructed in the endofunctor
category is defined by the same equation as an efficient fold constructed in
the endorelator category from the same functional arguments. However, this
equation is a universal property with a unique solution, so the two efficient
folds are equal and the efficient fold operator of Cor (Rel) extends the effi-
cient fold operator of Coc (Fun). In other words, the efficient fold operator
of Cor (Rel) preserves deterministic total lax natural transformations, and
polymorphic total functions in particular.

5.3.5 Map operations are efficient folds

In Chapter 2, we discovered that map operations are not simple folds be-
cause they have the wrong type. In Chapter 3, we discovered that they
cannot be expressed as generalised folds either, because generalised folds are
themselves defined in terms of map operations. However, an efficient fold is
equal to a generalised fold after a map operation and the identity function
is a generalised fold so we have

T : (a → b) → (T a → T b)

T R = {[α ‖ ident ‖R]}F

Recall that identi = idFi T . For regular relators, we would write the map
operation as a standard fold in the same way as we did with lists in Chapter
2. However, this equation would be a definition of the map operation rather
than a property it satisfies as we have here and it would then be necessary to
prove that the map operation preserves identities and composition. We do
not need to do this because the objects of the endofunctor and endorelator
categories are functors by definition.

5.3.6 The functor Nest commutes with converse

Our final task is to show for all nested T that

T (R◦) = (T R)◦

We need to do this so that we can be sure that map operations constructed
in Coc (Fun) and Coc (Rel) can also be constructed in Cor (Rel). Note
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that the converse of lax natural transformations is defined by lifting so this
equation extends at once to lax natural transformations. For regular T , we
prove the equation by writing the map operation as a standard fold and then
applying the universal property of standard folds [BdM97]. To mimic this
approach, we shall write the map operation as an efficient fold and apply the
universal property of efficient folds. We start by rehearsing our proof for the
case of T = Nest .

(Nest R)◦ = Nest(R◦)

≡
{

maps are efficient folds; let χ (R◦) = (Nest R)◦
}

χ (R◦) = {[α | id |R◦]}F

≡
{

universal property of efficient folds
}

χ (R◦) · α = α · Base (R◦, χ (id · Pair (R◦)))

≡
{

Pair is a relator
}

χ (R◦) · α = α · Base (R◦, χ ((Pair R)◦))

≡
{

definition of χ
}

(Nest R)◦ · α = α · Base (R◦, (Nest (Pair R))◦)

≡
{

converse is order-preserving and contravariant
}

α◦ · Nest R = (Base (R◦, (Nest (Pair R))◦))
◦
· α◦

≡
{

shunting α; Base is a relator
}

Nest R · α = α · Base (R, Nest (Pair R))

≡
{

naturality of α
}

true

5.3.7 All nested functors commute with converse

Now we generalise the proof above to arbitrary nested T .

T ≈ F T

F X = B · 〈Id ,X · F1 X 〉

As usual, there is an unspecified number of subsidiary hofunctors Fi each of
the form, for some polynomial bifunctor B and hofunctor Fj ,

Fi X = Bi · 〈Id ,X · Fj X 〉
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As before with nests, we shall define the mapping on relations χ by χ (R◦) =
(T R)◦. When we apply the universal property this time, we get the following
two proof obligations.

χ (R◦) = {[α ‖ ident ‖R◦]}F

ξi (R◦) = Bi (R◦, χ (ξj (R◦)))

We derive a definition of ξ as a missing step when proving the first of these.

χ (R◦) = {[α ‖ ident ‖R◦]}F

≡
{

universal property of efficient folds
}

χ (R◦) · α = α · B (R◦, χ (ξ1 (R◦)))

≡
{

deriving ξ (see below)
}

χ (R◦) · α = α · B (R◦, χ ((F1 T R)◦))

≡
{

definition of χ
}

(T R)◦ · α = α · B (R◦, (T (F1 T R))◦)

≡
{

applying converse to both sides
}

α◦ · T R = (B (R◦, (T (F1 T R))◦)
◦
) · α◦

≡
{

shunting α◦ twice; B is a relator
}

T R · α = α · B (R, T (F1 T R))

≡
{

naturality of α
}

true

The definition of ξ derived above is, for all i

ξi (R◦) = (Fi T R)◦

Now we use this to check the second condition; let Fi be defined as above.

ξi (R◦)

=
{

definition ξ
}

(Fi T R)◦

=
{

definition of Fi

}

(Bi (R,T (Fj T R)))◦

=
{

relator Bi

}

Bi (R◦, (T (Fj T R))◦)
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=
{

definition of χ
}

Bi (R◦, χ ((Fj T R)◦))

5.3.8 Nested relators are monotonic

The allegory Rel has the special property that all functors on it that commute
with converse are also monotonic (to be defined) so all nested functors are
monotonic. This property follows from Rel being tabular, which shall be
defined in the next section. A functor F is monotonic if

R ⊆ S ⇒ F R ⊆ F S

Suppose we say that a relation is better than another relation if it is defined
on at least the same inputs with at least the same outputs for each input.
Then the monotonicity condition says that if doing S is better than doing
R, then doing S on each element in an structure is better than doing R on
each element.

5.3.9 Generalising to other allegories

We have implicitly used two properties of Rel while reasoning in this section:
the property that Rel is a power allegory and the property that Rel is a
tabular allegory. The first of these has already been defined. The tabularity
property is that for every R : A → B there is a set C and two functions
f : C → A and g : C → B such that

R = g · f ◦ and (f ◦ · f ) ∩ (g◦ · g) = idC

In fact, C is a subset of A × B and f and g are the projections outlA,B and
outrA,B .

However, there is a case for using as few properties of Rel as possible so
that we can generalise this section to as many endofunctor categories as pos-
sible. It should be pointed out however that this is primarily an aesthetic
consideration as we are not interested in any other endofunctor categories.
For example, Hoogendijk uses neither property to reason with standard folds
and regular datatypes so his results, analogous to ours, extend to any alle-
gory [Hoo97].
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It is the tabularity assumption that allows us to conclude that nested func-
tors are monotonic from the fact that they commute with converse. We have
to prove this directly if we drop the assumption. Adapting the proof for
regular datatypes in [Hoo97], we could try using the forthcoming fold-fusion
law for efficient folds to show given R ⊆ S that

id · {[α ‖ ident ‖R]}F ⊆ {[α ‖ ident ‖ S ]}F

However, this fold-fusion law is proved later using monotonicity so we cannot
use it to prove monotonicity itself.

If we drop the assumption that Rel is a power allegory then we must find
another way to show that efficient fold operators constructed in Cor (Rel)
preserve total functions. Now, a relation is a total function if and only if it
is both simple and total. A relation R is simple if R · R◦ ⊆ id and total

if id ⊆ R◦ · R. To prove that the efficient fold operator preserves simple
relations, we just substitute R◦ for R in the forthcoming injectivity proof.
That this is sufficient will be clear when we define injectivity.

To prove that the operator preserves functions, it remains to show that it
preserves total relations. Hoogendijk [Hoo97] shows this using fold-fusion for
standard folds but when we try to repeat his proof for generalised folds, we
get (for nests)

([α | id ])NestF ⊆ ([f | g ])NestF

◦ · ([f | g ])NestF

The typing rules of the fold-fusion law make it clear that the fold-fusion law
yields a simple fold only if it is given a simple fold so our proof would be
limited to simple folds. The case of efficient folds is similar.

In conclusion, we only know how to extend the material in this section to
Cor (C) where C is a tabular power allegory, whereas analogous results
extend to any allegory C.

5.4 Relational fusion laws

5.4.1 Knaster-Tarski theorem

The initial algebra of a hofunctor F is an isomorphism, by Lambek’s theorem,
and therefore a function so we can shunt it to rearrange the universal property
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of the generic generalised fold operator. For some Ψ we get

h = ([f ‖ γ])F ≡ h = Ψ (f , γ, h) · α◦

Now ([f ‖ γ])F is the unique solution for, and therefore both the least and
greatest solution for, the equation on the right, which has the form X = θX

where

θX = Ψ (f , γ,X ) · α◦

It is easy to verify that θ is a monotonic mapping because polynomial and
nested relators are monotonic and composition is monotonic. The Knaster-
Tarski theorem [BdM97] makes two claims. The first claim is that the great-
est solution of X = θX exists, for monotonic θ, and is also the greatest
solution of X ⊆ θX . The second claim is that the least solution of θX = X

exists, for monotonic θ, and is also the least solution of θX ⊆ X . The theo-
rem is restricted to complete lattices, but the endorelator category clearly is
a complete lattice with ⊆ as the ordering, ∩ as the meet operator and ∪
as the join operator.

Now we can rephrase the first claim of Knaster-Tarski to say that the unique
solution of X = θX , which is ([f ‖ γ])F , includes any solution of X ⊆ θX :

h ⊆ ([f ‖ γ])F ⇐ h ⊆ Ψ (f , γ, h) · α◦

We can also rephrase the second claim to say that the unique solution of
X = θX is included in any solution of θX ⊆ X .

([f ‖ γ])F ⊆ h ⇐ Ψ (f , γ, h) · α◦ ⊆ h

5.4.2 Relational fold-fusion law

The generic fold-fusion law of Chapter 4 also holds in the endorelator cat-
egory but it is more useful when stated using the operator ⊆. To prove this
alternative form, we must retrace the original derivation by Bird and Pater-
son [BP99b] and then retrace our own derivation from Chapter 4, replacing
equations with inequations in both.

Here is one half of the universal property of generalised folds.

h = ([f ‖ γ])F ⇐ h · α = Ψ (f , γ, h)
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Recall that Bird and Paterson instantiate this to

k · ([f ‖ γ])F = ([f ′ ‖ γ′])F ⇐ k · ([f ‖ γ])F · α = Ψ (f ′, γ′, k · ([f ‖ γ])F )

Then they prove the right-hand equation, deriving the following two condi-
tions as steps:

k · f = f ′ · B (id , k · R p)

M p · Φ1 (γ, ([f ‖ γ])F ) = Φ1 (γ′, k · ([f ‖ γ])F )

Instead, we can shunt α◦ in the first claim of Knaster-Tarski and instantiate
it to

k · ([f ‖ γ])F ⊆ ([f ′ ‖ γ′])F ⇐ k · ([f ‖ γ])F · α ⊆ Ψ (f ′, γ′, k · ([f ‖ γ])F )

Then we prove the right-hand inequation, deriving the following two condi-
tions:

k · f ⊆ f ′ · B (id , k · R p)

M p · Φ1 (γ, ([f ‖ γ])F ) ⊆ Φ1 (γ′, k · ([f ‖ γ])F )

Now we can repeat our derivation of the improved fold-fusion law with no
fold or map operations in its conditions. The second condition above follows
from the collection of conditions (for all i and appropriate j )

M pi · γi ⊆ γ′
i · Bi (id , k · R pj )

The law we have derived is as follows

Relational generic fold-fusion law If we have an indexed collection of
functions p such that for all i with Fi X = Bi · 〈Id ,X · Fj X 〉,

M pi · γi ⊆ γ′
i · Bi (id , k · R pj )

and

k · f ⊆ f ′ · B (id , k · R p1)

then we can conclude that

k · ([f ‖ γ])F ⊆ ([f ′ ‖ γ′])F
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5.4.3 Relational map-fusion law

To derive the map-fusion law, Bird and Paterson instantiate one half of the
universal property to

([f ‖ γ])F · T k = ([f ′ ‖ γ′])F
⇐ ([f ‖ γ])F · T k · α = Ψ (f ′, γ′, ([f ‖ γ])F · T k)

They derive the following conditions when proving the right-hand equality.

f ′ = f · B (k , id)

Φ1 (γ, ([f ‖ γ])F ) · F1 T k = kF1 R · Φ1 (γ′, ([f ‖ γ])F · T k)

To derive a relational version of the map-fusion law, we shunt α◦ in the
second claim and instantiate it to

([f ′ ‖ γ′])F ⊆ ([f ‖ γ])F · T k

⇐ Ψ (f ′, γ′, ([f ‖ γ])F · T k) ⊆ ([f ‖ γ])F · T k · α

Then we redo Bird and Paterson’s derivation to get the two conditions above
stated as inequalities and redo our derivation with the second condition to
give the following law.

Relational generic map-fusion law If we have

k · γ′
i ⊆ γi · Bi (k , id)

and

f · B (k , id) ⊆ f ′

then we can conclude

([f · B (k , id) ‖ γ ′])F ⊆ ([f ‖ γ])F · T k

Both this law and the fold-fusion law have variants where the ⊆’s are replaced
by ⊇’s. However, we shall not need either variant.
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5.5 Hylomorphism theorem

An unfold is the converse of a fold and it is typically used for building a data
structure, whereas a fold typically consumes a data structure. A hylomor-

phism is a fold preceded by an unfold. A hylomorphism theorem writes a
hylomorphism as a least fixed point. Such a theorem can be used to elimi-
nate intermediate data structures in programs. A hylomorphism theorem for
standard folds is proved in [BdM97]. By lifting the proof to an endofunctor
category we can show that there is a hylomorphism theorem for simple folds
too. Using µ to denote the least fixed point operator, the theorem is

([R]) · ([S ])◦ = µX : R · F X · S ◦

Unfortunately, hylomorphisms formed from generalised folds cannot be writ-
ten as fixpoints, because the recursion is with a fold preceded by a map
preceeded by an unfold, so there is no hylomorphism theorem for generalised
folds. On the other hand, hylomorphisms that are formed from efficient folds
are in a sense higher-order fixpoints, because the related operator χF is a
fixpoint.

χF (R′′, S ′′) = {[R |R′ |R′′]}F · {[S | S ′ | S ′′]}F

◦

Unfortunately, to show that it is a least fixed point using the approach of
[BdM97], we must not only adapt Knaster-Tarski to a lattice of operators
like χ but also somehow lift left-division to the operators.

5.6 Fold operators preserve injectivity

We that know the efficient fold operator constructed in the endorelator cat-
egory takes functions to functions. Now we shall show that it takes injective
functions to injective functions, a result that will be needed in Chapter 8.
First, however, we shall introduce the left-division operator, which we shall
need in our proof.

5.6.1 Left-division

A pre-specification of R in S is an arrow X such that R ·X ⊆ S . The weakest

pre-specification of R in S is the largest such X , and we shall write it as
R\S . In Rel we can read ⊆ as refinement so R\S is an operation that when
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performed before R establishes specification S . In particular, R\S denotes
the largest such operation, that is, the one defined on the most inputs that
has the most outputs for each input. We shall call the binary operator \,
left-division. (There is also a right-division operator but we will not need it.)
The universal property for left-division is:

R · X ⊆ S ≡ X ⊆ R\S

The types are as follows. If S : C → B and R : A → B then R\S : C → A.
If R\S is substituted for X then the right-to-left implication says that R\S
is a pre-specification. The left-to-right implication says that R\S is the
weakest (that is, the largest) pre-specification. Statements involving left-
division often make more sense when turned into predicate logic, using

a (R\S ) c ≡ ∀b : b R a ⇒ b S c

We shall need to use a cancellation law in the proof:

R · (R\T ) ⊆ T

We have defined left-division on relations, arrows of Rel, but we shall use
it lifted to lax natural transformations, arrows of Cor (Rel). It is unclear
whether left-division preserves lax natural transformations but our proofs
will not require this property to hold.

5.6.2 Proof that fold operators preserve injectivity

A relation R is injective if R◦ · R ⊆ id . We shall show that ([f | g ])NestF is
injective if f and g are injective, that is, the generalised fold operator for
nests preserves injectivity. Then we shall generalise the proof to all nested
datatypes.

([f | g ])NestF

◦ · ([f | g ])NestF ⊆ id

≡
{

definition of left-division
}

([f | g ])NestF ⊆ ([f | g ])NestF

◦\id

⇐
{

Knaster-Tarski
}

f · Base (id , (([f | g ])NestF

◦\id) · Nest g) · α◦ ⊆ ([f | g ])NestF

◦\id

≡
{

definition of left-division
}

([f | g ])NestF

◦ · f · Base (id , (([f | g ])NestF

◦\id) · Nest g) · α◦ ⊆ id
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≡
{

definition of generalised fold;
axioms of converse; f is injective

}

α◦ · Base (id ,Nest g◦ · ([f | g ])NestF

◦ · (([f | g ])NestF

◦\id)·

Nest g) · α◦ ⊆ id

≡
{

cancellation law; Nest is a functor
}

α◦ · Base (id ,Nest (g◦ · g)) · α◦ ⊆ id

≡
{

g is injective; monotonicity of relators
}

α · α◦ ⊆ id

≡
{

α is an isomorphism
}

true

The step that we need to generalise is the use of g◦ · g ⊆ id . For a hofunctor
Fi with Fi X = Bi · 〈Id ,X · Fj X 〉

(Φi (γ, ([f ‖ γ])F ))◦ · Φi (γ, ([f ‖ γ])F
◦\id)

⊆
{

definition of Φ
}

(γi · Bi (id , ([f ‖ γ])F · T (Φj (γ, ([f ‖ γ])F ))))◦·

γi · Bi (id , (([f ‖ γ])F
◦\id) · T (Φj (γ, ([f ‖ γ])F

◦\id)))

⊆
{

axioms of converse; γi is injective;
Bi is a functor and relator

}

Bi (id ,T ((Φj (γ, ([f ‖ γ])F ))◦) · ([f ‖ γ])F
(([f ‖ γ])F\id) · T (Φj (γ, ([f ‖ γ])F

◦\id)))

⊆
{

cancellation law; monotonicity of relators
}

Bi (id ,T ((Φj (γ, ([f ‖ γ])F ))◦) · T (Φj (γ, ([f ‖ γ])F
◦\id)))

⊆
{

induction hypothesis; monotonicity of relators
}

id

It follows that the efficient fold operator also preserves injectivity.

{[f ‖ γ ‖ h]}◦ · {[f ‖ γ ‖ h]}

=
{

specification of efficient folds
}

(([f ‖ γ])F · T h)◦ · ([f ‖ γ])F · T h

⊆
{

axioms of converse; T is a relator
}

T h◦ · ([f ‖ γ])F
◦ · ([f ‖ γ])F · T h
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⊆
{

generalised fold operator preserves injectivity
}

T h◦ · T h

⊆
{

h is injective; T is a relator
}

id

5.7 Fold-fusion law for efficient folds

We have already derived a fold-fusion law for efficient reductions on nests.
Now we shall generalise the law to efficient folds on arbitrary datatypes.

k · {[f ‖ γ ‖ h]}F

=
{

specification of efficient fold
}

k · ([f ‖ γ])F · T h

⊆










fold-fusion:
assume k · f ⊆ f ′′ · B (id , k · R p1)
assume M pi · γi ⊆ γ′′

i · Bi (id , k · R pj )











([f ′′ ‖ γ′′])F · T h

⊆










map-fusion:
assume f ′ · B (k ′, id) ⊆ f ′′

assume k ′ · γ′′
i ⊆ γ′

i · Bi (k ′, id)











([f ′ ‖ γ′])F · T k ′ · T h

⊆
{

monotonicity of T ; assume k ′ · h ⊆ h ′
}

([f ′ ‖ γ′])F · T h ′

=
{

specification of efficient fold
}

{[f ′ ‖ γ′ ‖ h ′]}F

Both conditions involving i are implicitly for all i . Also, i and j are related
by Fi X = Bi · 〈Id ,X · Fj X 〉. The law that we have just derived, written
below, will be specialised for efficient reductions and greatly simplified.
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Fold-fusion law for efficient folds If we have

k · f ⊆ f ′′ · B (id , k · R p1) and

f ′ · B (k ′, id) ⊆ f ′′ and

k ′ · h ⊆ h ′

and for all i with Fi X = Bi · 〈Id ,X · Fj X 〉, we also have

M pi · γi ⊆ γ′′
i · Bi (id , k · R pj ) and

k ′ · γ′′
i ⊆ γ′

i · Bi (k ′, id)

then we conclude that

k · {[f ‖ γ ‖ h]}F ⊆ {[f ′ ‖ γ′ ‖ h ′]}F

If M and R are constant functors then we can remove the pi terms. We can
in any case replace the inequalities by equalities. If we make both of these
changes then we can remove f ′′ and γ′′ to link f , f ′, γ and γ ′ directly. The
first and second conditions follow from the single condition

k · f = f ′ · B (k ′, k)

If k is a function, then can derive a single condition that implies the third
and fourth conditions.

k ′ · γ′′
i = γ′

i · Bi (k ′, id) and γi = γ′′
i · Bi (id , k)

≡
{

shunting function k ; Bi is a relator
}

k ′ · γ′′
i = γ′

i · Bi (k ′, id) and γ ′′
i = γi · Bi (id , k ◦)

⇐
{

introducing γ ′′
i

}

k ′ · γi · Bi (id , k ◦) = γ ′
i · Bi (k ′, id)

≡
{

shunting function k ; Bi is a relator and a functor
}

k ′ · γi = γ′
i · Bi (k ′, k)

Now we have a much simpler fold-fusion law.
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Generic fold-fusion law for efficient reductions If we have

k · f = f ′ · B (k ′, k)

k ′ · h = h ′

for total function k and for all i we also have

k ′ · γi = γ′
i · Bi (k ′, k)

then we conclude

k · {[f ‖ γ ‖ h]}F = {[f ′ ‖ γ′ ‖ h ′]}F

Finally, as an aside, note that when h = id , we have a conclusion that
connects map-fusion and fold-fusion on generalised folds.

k · ([f ‖ γ])F = ([f ′ ‖ γ′])F · T k ′
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Chapter 6

Membership

Now we shall start using the fold operators described in Chapter 3 and Chap-
ter 4 and the relational framework described in Chapter 5 to define generic
operations. The word generic is given an alternative very exclusive meaning
in [Hoo97], on which much of this chapter and the next chapter is based, so
when we wish to describe an operation as being parameterised by a functor,
we shall use the different term, polyfunctorial . This chapter and the two
that follow it will each define a polyfunctorial relation and show that it sat-
isfies certain properties that constitute a specification. Although the three
chapters refer to one another, they can be read separately in any order.

6.1 Introduction

Although we use relators to represent datatypes, not all relators correspond
to datatypes. The only relators that do are those with membership [HdM00],
that is, those having a membership relation with which stored values can be
retrieved. (In [HdM00], the term container type is used to describe relators
that have membership.) Hoogendijk showed in [Hoo97] that all regular rela-
tors have membership. In this chapter, we show that all nested relators have
membership. To do this, we shall define a candidate membership relation for
each nested relator and prove that it satisfies the characterisation of mem-
bership.

Formally, a membership relation for a relator F is a lax natural transfor-
mation η : F

.
↪→ Id with the interpretation that a ηA x if and only if a : A
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is an element of x : F A. In [Hoo97], Hoogendijk motivates a point-free
property of membership relations and proves that it is a characterisation
of membership. Consequently, every relator with membership has a unique
membership relation and we will define in the next section, a polyfunctorial
relation ∈ that maps each nested relator T to its unique membership rela-
tion ∈T . This is only a candidate membership relation as we must check that
∈T satisfies the characterisation of the membership relation for T . We can
immediately guess what the membership relation for lists should be and we
can write it pointwise with ellipses as follows.

a ∈List [a0, . . . , an−1] ≡ ∃i < n : ai = a

We shall encounter, in the next section, a relator that does not have member-
ship. If a relator F does have membership then it has a unique fan, denoted
fanF . The fan for a relator F is a lax natural transformation η : Id

.
↪→ F

with the interpretation that x ηA a if and only if every element in x is equal
to a. So the fan for lists non-deterministically maps a given seed a to a list
of any length (including zero), all of whose elements are copies of a:

[a0, . . . , an−1] fanList a ≡ ∀i < n : ai = a

In fact we can define the fan of a relator F in terms of its membership relation
as follows.

fanF = ∈F \id

It is clear from the definition of left-division that x (∈F \id) a if x is an F -
structure every member of which is equal to a.

Before continuing, we should note that other notions of datatypes in pro-
gramming have been suggested, one of which is Jay’s notion of shapely func-
tors [Jay95]. It is shown in [HdM00] that being shapely is a sufficient condi-
tion for a functor both to be a relator and have membership.

Now we explain what is in the rest of this chapter. Section 6.2 gives the
characterisation of membership. Section 6.3 defines a candidate membership
relation for each nested relator. Section 6.4 shows that our candidates satisfy
the characterisation by reducing the problem to that of showing that gener-
alised unfans are efficient folds. This is proved by Section 6.6. To help with
this, section 6.5 defines a polyfunctorial relation fan as the converse of an
efficient fold.
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6.2 Characterisation

Here is Oege de Moor’s [HdM00] characterisation of membership:

Characterisation of membership A lax natural transformation η is a
membership relation for an endorelator F , if for each R : A → B we have

F R · (ηA\idA) = ηB\R

To illustrate this characterisation, we confirm that the definition of ∈List

given in the introduction satisfies the equation above and is therefore the
unique membership relation for lists. In other words, we demonstrate that

List R · ((∈List)A\id) = (∈List)B\R

(In future, we shall drop such labelling of components of natural transforma-
tions.) The fan operation ∈List \id maps a value a to a list [a0, . . . , an−1], for
some n ≥ 0, such that every ai is equal to a. The map operation List R then
takes this list to the list [b0, . . . , bn−1] that satisfies bi R a. By the definition
of left-division, this left-hand side, which takes a to [b0, . . . , bn−1] is meant to
be the largest relation such that b ∈ bi implies b R a. It clearly is the largest
relation since there is no restriction on the length n of the list.

Hoogendijk motivates the characterisation from first principles without con-
sidering any particular datatype. That is why we shall regard it as a specifi-
cation of membership and why we must prove that our candidate membership
is correct with respect to it. The characterisation is easy to use in proofs,
because it is non-inductive. For example, Hoogendijk and de Moor use it to
show in [HdM00] that membership and fans are the largest lax natural trans-
formations of their respective types. That is enough to define them uniquely.
They also show that ∈F \ ∈G is the largest natural transformation of type
G

.
↪→ F . This result gives us an intuition for the expressivity of lax natural

transformations: any element in the output structure must also have been in
the input structure.

Finally, Freyd has located a relator that does not have membership. This
is an important result because the notion of membership is far more useful
if it actually excludes some relators. Consider the relator Swap with type
Rel × Rel → Rel × Rel defined by Swap (X ,Y ) = (Y ,X ). If Swap is
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constructed starting with Rel as a base category then it does have mem-
bership but if it is constructed starting with Rel × Rel as a base category,
so that Swap is in fact an endorelator on Rel × Rel, then it does not have
membership. This fact is proven in [Hoo97].

6.3 Candidate membership

The candidate membership ∈ is defined by induction on the structure of
nested relators. Hoogendijk constructs a regular fixpoint case from poly-
nomial cases. We replace it with a more general nested fixpoint case con-
structed from the same polynomial cases. Then we confirm that the nested
fixpoint case is a membership relation by adapting the corresponding proof
that Hoogendijk gave for his regular fixpoint case.

6.3.1 Candidate membership: polynomial cases

As usual, we can easily guess the cases for polynomial endorelators from their
types, which are

(∈Id)A : A → A

(∈KB
)A : B → A

(∈F×G)A : F A + G A → A

(∈F+G)A : F A × G A → A

(∈F ·G)A : F (G A) → A

The definitions, all of which Hoogendijk has confirmed, are

∈Id = id

∈KB
= ∅−,B

∈F×G = ∈F · outlF ,G ∪ ∈G · outrF ,G

∈F+G = ∈F · inlF ,G
◦ ∪ ∈G · inrF ,G

◦

∈F ·G = ∈G · (∈F )G

Here, ∅−,B is defined by (∅−,B)A = ∅A,B , where ∅A,B : A → B denotes the
empty relation from A to B .
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In the product and coproduct cases, ∈F×G is short for ∈×·〈F ,G〉 and ∈F+G is
short for ∈+·〈F ,G〉. In general for an arbitrary binary relator H ,

∈H ·〈F ,G〉 = ∈F ·(leftH )〈F ,G〉 ∪ ∈G ·(rightH )〈F ,G〉

The functions leftH : H (X ,Y ) → X and rightH : H (X ,Y ) → Y will be
defined shortly. For the product and coproduct cases, we have

〈left×, right×〉 = 〈outl , outr〉

〈left+, right+〉 = 〈inl◦, inr◦〉

In general, the membership of a binary relator is a fork 〈leftH , rightH 〉. Now,
(leftH )−,Y is the membership relation of the endorelator H (−,Y ) obtained
by right-sectioning H . Similarly, (rightH )X ,− is the membership relation of
the endorelator H (X ,−) obtained by left-sectioning H . So now we have

∈× = 〈outl , outr〉

∈+ = 〈inl◦, inr ◦〉

For any R : A → B and S : B → C , using the characterisation of member-
ship, we have

H (R, idY ) · ((leftH )A,Y \idA) = (leftH )C ,Y \R

H (idX , S ) · ((rightH )X ,B\idB) = (rightH )X ,C\S

The characterisation of membership for a binary relator H is, for R : C → A

and S : C → B

H (R, S ) · ((leftH )C ,C\idC ∩ (rightH )C ,C\idC )

= ((leftH )A,B\R) ∩ ((rightH )A,B\S )

For example, for F=× this instantiates to

(R × S ) · (outlC ,C\id ∩ outrC ,C\id) = (outrA,B\R ∩ outrA,B\S )

This is simply the absorption law of relational fork.

(R × S ) · 〈id , id〉 = 〈R, S 〉

Finally, the candidate memberships for projections are as follows:

∈Outl = 〈id , {}〉

∈Outr = 〈{}, id〉
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6.3.2 Candidate membership: fixpoint case

We shall consider in this chapter an arbitrary nested relator T defined by

T ≈ F T

F X = B · 〈Id ,X · F1 X 〉

There are an unspecified number of subsidiary hofunctors each of the form

Fi X = Bi · 〈Id ,X · Fj X 〉

It follows from the fact that α is a natural isomorphism that ∈F T ·α◦ is a
membership of ∈T : we argue

(∈F T ·α◦)\R

=
{

first law of division below
}

α\(∈F T \R)

=
{

second law of division below
}

α · (∈F T \R)

=
{

∈F T is a membership
}

α · F T R · (∈F T \id)

=
{

α is a proper natural transformation
}

T R · α · (∈F T \id)

=
{

second law of division below
}

T R · α◦\(∈F T \id)

=
{

first law of division below
}

T R · ((∈F T ·α◦)\id)

From this we conclude

∈F T = ∈T ·α

The laws of division that we used are respectively

R\ (S\T ) = (S · R)\T

f ◦ · X = f \X

The second law is restricted to functions f . We know that α◦ is a function
because it is a natural isomorphism. We also know that α is a proper natural
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transformation, a fact used elsewhere in the proof, for the same reason. If
we substitute for F and use the polynomial cases of ∈, we get the following

∈F T : F T
.
↪→ Id

∈F T = (leftB)〈Id ,T ·F1 T 〉 ∪ ∈F1 T · ∈T · (rightB)〈Id ,T ·F1 T 〉

The subscripts comes from the composition case. To help clarify the typing,
observe

(rightB)X ,Y : B (X ,Y ) → Y

≡ rightB : B
.
↪→ Outr

⇒ (rightB)〈Id ,T ·F1 T 〉 : B · 〈Id ,T · F1 T 〉
.
↪→ Outr · 〈Id ,T · F1 T 〉

≡ (rightB)〈Id ,T ·F1 T 〉 : B · 〈Id ,T · F1 T 〉
.
↪→ T · F1 T

Of course, leftB is similar. Now we can equate the right-hand sides of the
two equations for ∈F T and shunt the function α to get

∈T = ((leftB)〈Id ,T ·F1 T 〉 ∪ ∈F1 T · ∈T · (rightB)〈Id ,T ·F1 T 〉) · α◦

This equation has the form X = φX where φ is a monotonic mapping, be-
cause composition and union are both monotonic in both arguments. By the
Knaster-Tarski theorem, the equation has a solution. We shall show that
any solution to this equation satisfies the characterisation of membership,
but only one natural transformation can satisfy the characterisation of mem-
bership so the equation has exactly one solution.

Now we illustrate the definition of the candidate membership. Since compo-
sition distributes over union, ∈List is given by

((leftBase)〈Id ,List〉 · α◦) ∪ (∈List · (rightBase)〈Id ,List〉 · α◦)

Similarly, ∈Nest is given by

((leftBase)〈Id ,Nest ·Pair〉 · α◦) ∪ (∈Pair · ∈Nest · (rightBase)〈Id ,Nest ·Pair〉 · α◦)

Finally, ∈Bush is given by

((leftBase)〈Id ,Bush·Bush〉 · α◦) ∪ (∈Bush · ∈Bush · (rightBase)〈Id ,Bush·Bush〉 · α◦)

For regular relators, the candidate membership can be expressed more simply
and with more insight. The head and the tail of a list are defined by

head : List
.
↪→ Id

head = (leftBase)〈Id ,List〉

112



tail : List
.
↪→ List

tail = (rightBase)〈Id ,List〉

So ∈List can be rewritten as

∈List = head ∪ ∈List ·tail

Or using Kleene closure, we can even write

∈List = head · tail ∗

This result states that we can get to any element of a list by repeatedly
removing the first element any number of times (including zero) and taking
the first element of whatever is left. We can write the membership of any
other regular relator in a similar fashion.

6.4 Candidate membership is membership

We shall prove that for any nested relator G , our candidate membership for
G satisfies the characterisation of membership, that is

G R · (∈G \id) = ∈G \R

Hoogendijk has already shown this for polynomial G so we only need to
replace the regular fixpoint case of his proof with a nested fixpoint case. For
arbitrary nested fixpoint T , we shall prove that

T R · (∈T \id) = ∈T \R

By applying converse to both sides, we see that this is equivalent to

(∈T \id)◦ · T (R◦) = (∈T \R)◦

We shall use the map-fusion law of efficient folds to prove this, after we have
first written the expressions (∈T \id)◦ and (∈T \R)◦ as efficient folds. We
choose efficient folds because simple folds have the wrong type and because it
turns out that a proof with generalised folds gets stuck — we explain exactly
how in Section 6.6. We plan to use a special case of the map-fusion law.

{[f ‖ γ ‖ id ]}F · T (R◦) = {[f ‖ γ ‖R◦]}F
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By comparing this with our requirement, we discover that we simply need to
show, for some f and γ, that

(∈T \R)◦ = {[f ‖ γ ‖R◦]}F

We do this in Section 6.6 by using the universal property of efficient folds.
To help us motivate our choice of f and γ, we now introduce the concept of
unfans. The unfan for a relator G , denoted unfanG , is the converse of the
fan for G , that is

unfanG = fanG
◦

Clearly, the unfan for G is the special case of (∈G \R)◦ with R = id , so we
call (∈G \R)◦ a generalised unfan for G . To find out what f and γ might be,
we just need to write unfanT as a reduction since

([f ‖ γ])F = {[f ‖ γ ‖ id ]}F = (∈T \id)◦ = unfanT

This is what we shall do in the next section, where we shall also study
fans at the same time. The approach we have just chosen differs from that of
Hoogendijk [Hoo97] in two minor respects. First, instead of writing (∈T \R)◦

as a fold, he writes ∈T \R as an unfold. There does exist an efficient unfold
operator, with its own universal property and fusion laws, but there seems
little point in deriving them both just for this one proof. Secondly, we could
try to derive f and γ in our proof like Hoogendijk does but we decide not to
do this because the universal property of efficient folds is far more complex
than that of standard unfolds.

6.5 Fans

6.5.1 Fans for polynomial cases

Hoogendijk defines [Hoo97] the following polynomial cases for the polyfunc-
torial relation fan and then verifies them by confirming for each polynomial
relator F that fanF equals ∈F \id .

fanId = id

fanOutl = id

fanOutr = id
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fanKA
= ΠA,−

fan+ = [id , id ]◦

fan× = 〈id , id〉

fanF ·G = F (fanG) · fanF

Here, ΠA,− is defined by (ΠA,−)B = ΠA,B , where ΠA,B is the largest arrow
of type A → B if it exists. For Rel and hence the endorelator category
Cor (Rel), ΠA,B is the product A × B , which does exist for every A and
B . As with the candidate membership, the unary cases can be guessed from
their types, but the binary cases need further explanation. The fan for a
binary relator B with membership 〈leftB , rightB〉 is given by

fanB = (leftB\id) ∩ (rightB\id)

We can calculate fan× as follows.

(left×\id) ∩ (right×\id)

=
{

definition of left and right and candidate membership
}

(outl\id) ∩ (outr\id)

=
{

law of left-division
}

(outl◦ · id) ∩ (outr ◦ · id)

=
{

definition of relational fork
}

〈id , id〉

6.5.2 Unfans for nests

It is clear what an unfan should do. In pointwise form, a unfanF x is true
exactly when every element in x is equal to a. In words, an unfan maps
empty structures to every possible element and non-empty structures to a
common element but the latter case is only defined when every element is
the same. Suppose we write the unfan operation for nests as a reduction.
Then the parameters have the types Base (a, a) → a and Pair a → a, so we
shall take them to be unfans also.

unfanNest = Nest a → a

unfanNest = ([unfanBase | unfanPair ])NestF
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This reduction replaces all pairs (x , x ) with x . If it encounters a pair of
different elements then the result of the whole reduction is undefined. Also
Base-structures are treated in the same way so unfanNest behaves as we wish
it to.

6.5.3 Fans for fixpoint case

More generally, we have

fanT = (([fanB
◦ ‖ unfang ])F )◦

Here, unfangi = fanBi

◦. If we wish, we can show that this candidate fan is
equal to ∈T \id by proving that

(∈T \id)◦ = {[fanB
◦ | unfang | id ]}F

The next section proves the generalisation of this where id is replaced by a
relation R.

6.6 Generalised unfans are efficient folds

We begin by rehearsing our proof with the particular datatype of nests.
This approach helped us when we showed that nested relators commute with
converse, and that particular proof was also an application of the universal
property of efficient folds. We shall need one more law of left-division, in
addition to the two mentioned earlier in this chapter.

(R ∪ S )\T = (R\T ) ∩ (S\T )

We want to show that

(∈Nest \R)◦ = {[fanBase
◦ | fanPair

◦ |R◦]}NestF

If we let χ (R◦) denote (∈Nest \R)◦ for all R, then this is

χ (R◦) = {[fanBase
◦ | fanPair

◦ |R◦]}NestF

Now the universal property gives us the following equivalent requirement:

χ (R◦) · α = fanBase
◦ · Base (R◦, χ (fanPair

◦ · Pair R◦))
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We break up the proof of this by proposing in our hints, two generic lemmas
that will be proven later and reused. They fill in the gap created by working
up from the bottom and down from the top.

χ (R◦) · α

=
{

definition of χ
}

(∈Nest \R)◦ · α

=
{

see first lemma below
}

(∈NestF Nest \R)◦

=
{

see second lemma below
}

fanBase
◦ · Base (R◦, (∈Nest \(∈Pair \R))◦)

=
{

definition of χ
}

fanBase
◦ · Base (R◦, χ ((∈Pair \R)◦))

=
{

∈Pair is a membership
}

fanBase
◦ · Base (R◦, χ ((Pair R · (∈Pair \id))◦))

=
{

axioms of allegories; definition of fan; Pair is a relator
}

fanBase
◦ · Base (R◦, χ (fanPair

◦ · Pair (R◦)))

Observe that if we had tried to use generalised folds instead, we would get
stuck in need of some way of introducing the functor Nest . Now we derive
the two generic lemmas. The first is

(∈T \R)◦ · α = (∈F T \R)◦

Its proof is

(∈T \R)◦ · α

=
{

axioms of allegories
}

(α◦ · (∈T \R))◦

=
{

laws of division — α is a function
}

(α\(∈T \R))◦

=
{

laws of division
}

((∈T ·α)\R)◦

=
{

definition of candidate membership
}

(∈F T \R)◦
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To state the second generic lemma, let us generalise NestF to the hofunctor
Fi defined by

Fi X = Bi · 〈Id ,X · Fj X 〉

Then we have

(∈Fi X \R)◦ = fanBi

◦ · Bi (R◦, (∈X \(∈Fj X \R))◦)

Our proof of this is

(∈Fi X \R)◦

=
{

definition of ∈
}

((leftBi
∪ ∈Fj X · ∈X · rightBi

)\R)◦

=
{

laws of division; converse respects meet
}

(leftBi
\R)◦ ∩ (((∈Fj X · ∈X ) · rightBi

)\R)◦

=
{

laws of division
}

(leftBi
\R)◦ ∩ (rightBi

\((∈Fj X · ∈X )\R))◦

=
{

membership of binary relators; laws of division and converse
}

((leftBi
\id)◦ ∩ (rightBi

\id)◦) · Bi (R◦, (∈X \(∈Fj X \R))◦)

=
{

fan of binary relators
}

fanBi

◦ · Bi (R◦, (∈X \(∈Fj X \R))◦)

Similarly, we also have

(∈F X \R)◦ = fanB
◦ · B (R◦, (∈X \(∈F1 X \R))◦)

Now we can show the following in a generic fashion:

(∈T \R)◦ = {[fanB
◦ ‖ unfang ‖R◦]}F

We let χ (R◦) be (∈T \R)◦ instead of (∈Nest \R)◦.

χ (R◦) = {[fanB
◦ ‖ unfang ‖R◦]}F

The universal property says that this is equivalent to, for some ξ,

χ (R◦) · α = fanB
◦ · B (R◦, χ (ξ1 (R◦)))

ξi (R◦) = fanB i

◦ · Bi (R◦, χ (ξj (R◦)))
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The second condition is for any hofunctor Fi defined as above. Now we have
to think of a definition for ξ that will make both of these lines true. By
analogy with our choice for χ, we try

ξi (R◦) = (∈Fi T \R)◦

We can immediately prove both conditions by using the two generic lemmas
above.

ξi R
◦

=
{

definition of ξ
}

(∈Fi T \R)◦

=
{

second lemma above
}

fanBi

◦ · Bi (R◦, (∈T \(∈Fj T \R))◦)

=
{

definition of χ and ξ
}

fanBi

◦ · Bi (R◦, χ (ξj (R◦)))

χ (R◦) · α

=
{

definition of χ
}

(∈T \R)◦ · α

=
{

first lemma above
}

(∈F T \R)◦

=
{

second lemma above
}

fanB
◦ · B (R◦, (∈T \(∈F1 T \R))◦)

=
{

definition of χ and ξ
}

fanB
◦ · B (R◦, χ (ξ1 (R◦)))
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Chapter 7

Zips

7.1 Introduction

In this chapter, as in the previous chapter, we use the foundation material
of Chapters 3 and 5 to define a polyfunctorial operation and prove that it
satisfies certain properties. More precisely, we shall define a candidate zip
operation for pairs of linear nested relators by structural induction on the
first argument, and then we shall show that the zip operation satisfies the
properties expected of zips.

7.1.1 An example of a zip

The purpose of this chapter is to generalise the function unzip, below

unzip :: [(a, b)] → ([a], [b])

unzip = fork (map fst ,map snd)

We can see that unzip takes a list of tuples to a tuple of lists. More abstractly,
using the term F -structure to describe a value of type x : F A for some A,
we have that unzip takes a List-structure of ×-structures to a ×-structure of
List-structures. The generalisation of unzip is a polyfunctorial relation zip

that given two relators, F and G , turns an F -structure of G-structures into
a G-structure of F -structures. If such a function exists, we say that F and
G commute. When F and G are endorelators, the typing is

zipF ,G : F · G
.

→ G · F
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Recall that proper natural transformations like zipF ,G can only shuffle ele-
ments around; they cannot duplicate or lose them. Now we can write unzip

as an instance of zip but because × is a bifunctor, the type signature has a
slightly different form.

unzip : List · ×
.

→ × · (List × List)

unzip = zipList ,×

To see that this type is correct, observe that

(List · ×) (A,B)
.

→ (× · (List × List)) (A,B)

= List (A × B)
.

→ (List A) × (List B)

Note that the special case of unzip where the type variables are the same is
zipList ,Pair .

7.1.2 Another example of a zip

The converse of unzip is ununzip, which has type ×· (List ×List)
.

→ List ·×.
It is written in Haskell as

ununzip :: ([a], [b]) → [(a, b)]
ununzip ([ ], [ ]) = [ ]
ununzip (x : xs, y : ys) = (x , y) : ununzip (xs, ys)

This is not the same as the function zip familiar to functional programmers
because zip returns the empty list when one of its parameters has been used
up. In contrast, ununzip is undefined in this situation, because it can only
take pairs of equal length as unzip can only return pairs of equal length.
Given the types of zip and ununzip, both of these functions are candidates
for zip×,List . However, the specification of ununzip is easier to generalise to
other datatypes than that of zip because it does not contain extra detail on
how to handle pairs of lists of unequal length. Therefore, we decide

zip×,List = ununzip

Since we have argued that zipList ,× and zip×,List should be mutual converses,
we shall decide for any relators F and G , that zipF ,G is the converse of zipG,F .
If this were not true, then polyfunctorial zip would superfluously define two
different ways of turning (F · G)-structures into (G · F )-structures.
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7.1.3 Informal specification

In order to specify zip fully, we must say when it is undefined. Therefore, we
must generalise the notion of equal length of lists to datatypes other than
lists. What notion should we use for trees? Equal depth, perhaps? Equal size
would at least be applicable to lists as well, but we shall actually use a special
case of equal size, namely equal shape. The shape of an F -structure x : F A

is given by F !A x . This term is simply x with every element replaced by the
unique value of the terminal object. Therefore, all pairs have equal shape
and so do all lists of equal length. We call a value of type F 1, an F -shape. So
an informal specification of zip is that zipF ,G takes an F -structure of equally-
shaped G-structures to a G-structure of equally shaped F -structures.

7.1.4 Applications

If matrices are represented by lists of lists then the transpose operation is
zipList ,List . For example,

(zipList ,List)Int ( [ [1, 2, 3], [4, 5, 6] ] ) = ( [ [1, 4], [2, 5], [3, 6] ] )

We can also use zip to write a function of type (A, [B ]) → [(A,B)], for any
A and B , that broadcasts a value to each element of a list. An instance of
zip having suitable type would be

(zipKA×Id ,List)B : ((KA × Id) · List)B
.

→ (List · (KA × Id))B

Then an example would be

(zipKChar×Id ,List)Int (′a ′, [1, 2, 3]) = [(′a ′, 1), (′a ′, 2), (′a ′, 3)]

This operation can, of course, be extended to datatypes other than lists,
yielding a whole class of possible applications. Another application, that of
structure multiplication, is explained in [HB97].

We finish with two uses that have been directly inspired by investigations
into the area of nested datatypes. First, zips are used in one possible exten-
sion to nested datatypes of the substructures operation, a special case of the
scan operation [BdMH96, BGB]. Secondly, Borges [Bor01] uses zips to write
embedding functions for nested datatypes.
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7.1.5 Multirelators

Hoogendijk defines zips for all regular relators and we shall generalise his
work to linear nested relators. However, he extends the definition of regu-
lar relators to what he calls multirelators. These are relators whose source
and target allegories both come from the closure of some base allegory C,
which for us is Rel, under the construction of n-ary product allegories. The
question then arises of how we can state and prove theorems about zips for
every multirelator all at once. In particular, how can we compose arbitrary
multirelators when writing the type of the zip ?

Hoogendijk’s solution to this problem is to introduce the τ -∆ calculus. Un-
fortunately, this clutters his proofs to the point where they become difficult
to read. Therefore, we shall mostly limit ourselves to endorelators in our
proofs. However, we shall close the chapter by explaining how to adapt the
proof requirements to arbitrary multirelators by introducing the τ -∆ calcu-
lus. No significant change in the proofs themselves are expected.

The definition of the candidate zip will be by induction (in the first ar-
gument) on the structure of nested relators. The grammars for polynomial
hofunctors and our definition of nested functors are defined only for n-ary
functors of the type Cn → C. Consequently, we do not define a zip for
Swap=〈Outr ,Outl〉 of type Rel2 → Rel2. Hoogendijk, in contrast, does de-
fine zip for Swap because his class of regular relators is closed under the fork
operation.

In our proofs, the only nested fixpoints we consider are endorelators. How-
ever, the polynomial relators from which they are built can be either unary
or binary so we shall define zips for both of these cases. Finally, we shall
assume that the second argument of the candidate zip is also an endorelator.

7.1.6 Chapter overview

Section 7.2 defines a candidate zip for every linear nested relator. Section
7.3 proposes some properties of zips and Section 7.4 proves that the candi-
date zip satisfies them. Section 7.5 explains how to adapt the proofs in the
chapter to multirelators.
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In order to make this thesis self-contained, we summarise much of Hoogendijk’s
work. It is hoped that this chapter will also act as an accessible introduction
to zips. The paper [HB97] also serves this purpose but it has different em-
phasis. In particular, it highlights the connection between zips and strengths.
Also, it clarifies the most challenging aspect of the thesis, the τ −∆ calculus,
whereas we have decided to try and do without it until the final section.

7.2 Inductive definition of candidate zip

We define zip by induction (in its first argument) on the structure of nested
relators. First we give Hoogendijk’s polynomial cases and then we give a
nested fixpoint case, which is our replacement for his regular fixpoint case.

7.2.1 Candidate zips for polynomial endorelators

Recall that for any relators F and G , the type of zipF ,G is F · G
.

→ G · F .
However, we shall write zips as lax natural transformations, since we know
they are arrows of the endorelator category, but we have not yet confirmed
that they are also proper natural transformations.

zipKA,H : A → H A

zipId ,H : H
.
↪→ H

zipF ·G,H : F · G · H
.
↪→ H · F · G

zipG1+G2,H : (G1 · H ) + (G2 · H )
.
↪→ H · (G1 + G2)

zipG1×G2,H : (G1 · H ) × (G2 · H )
.
↪→ H · (G1 × G2)

The last two cases are obtained by using the definitions of product and
coproduct lifted to functors. Now we can easily suggest a definition for each
of these cases based on their types. This motivation may seem a little long-
winded (when we could have just copied the cases from Hoogendijk’s thesis)
but the manipulation we perform will make us familiar with those typing
laws that must be understood if we are actually to use the candidate zip and
understand its definition.

zipKA,H = (fanH )KA

The identity case has the type of an identity natural transformation.

zipId ,H = idH
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Since the definition of zip that we are headed for is inductive, we expect the
composition case to be defined in terms of zipF ,H and zipG,H . Given that,
the obvious way to construct a function of the required type is

zipF ·G,H = (zipF ,H )G · F zipG,H

Recall that (zipF ,H )G has the type F · H · G
.
↪→ H · F · G .

The coproduct case has the type of a join of two natural transformations
of types

G1 · H
.
↪→ H · (G1 + G2) and G2 · H

.
↪→ H · (G1 + G2)

Since these must use zipG1,H and zipG2,H in their definitions, we conclude

zipG1+G2,H = [H inlG1,G2
· zipG1,H ,H inrG1,G2

· zipG2,H ]

The product case has the type of the converse of a fork of two natural trans-
formations of types

H · (G1 × G2)
.
↪→ G1 · H and H · (G1 × G2)

.
↪→ G2 · H

These must also use zipG1,H and zipG2,H respectively in their definitions so
we conclude

zipG1×G2,H = 〈zipG1,H
◦ · H outlG1,G2

, zipG2,H
◦ · H outrG1,G2

〉◦

7.2.2 Candidate zips for polynomial binary relators

We must also consider cases where the first argument is a binary relator,
since bifunctors appear in the grammar of nested endofunctors. However, we
shall continue to assume that the second argument is an endorelator. We
start with the projection relator Outl and work out the type of its zip as
follows:

zipOutl ,H : Outl · (H × H )
.
↪→ H · Outl

⇒ (zipOutl ,H )(A,B) : (Outl · (H × H )) (A,B) → (H · Outl) (A,B)

≡ (zipOutl ,H )(A,B) : Outl (H A,H B) → H (Outl (A,B))

≡ (zipOutl ,H )(A,B) : H A → H A
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So this case is a natural transformation η such that η(A,B) : H A → H A and
we choose the two projection cases to be

zipOutl ,H = idH ·Outl

zipOutr ,H = idH ·Outr

The constant bifunctor case zipKKA,H and the constant endofunctor case
zipKA,H have the same type so

zipKKA,H = (fanH )KA

The composition case extends in the obvious way to

zipF ·〈G1,G2〉,H = (zipF ,H )〈G1,G2〉 · F (zipG1,H , zipG2,H )

Hoogendijk has a composition case only for zipF ·G,H but he can take G to be
〈G1,G2〉, giving the equivalent definition

zipF ·〈G1,G2〉,H = (zipF ,H )〈G1,G2〉 · F zip〈G1,G2〉,H

Now we motivate a case for zip×,H .

(zip×,H )〈G1,G2〉 · (zipG1,H × zipG2,H )

=
{

definition of zip
}

zip×·〈G1,G2〉,H

=
{

notation
}

zipG1×G2,H

=
{

definition of zip
}

〈zipG1,H
◦ · H outlG1,G2

, zipG2,H
◦ · H outrG1,G2

〉◦

=
{

absorption law
}

((zipG1,H
◦ × zipG2,H

◦) · 〈H outlG1,G2
,H outrG1,G2

〉)◦

=
{

axioms of converse
}

〈H outlG1,G2
,H outrG1,G2

〉◦ · (zipG1,H
◦ × zipG2,H

◦)◦

=
{

definition of lifted fork; × is a relator
}

(〈H outl ,H outr〉◦)〈G1,G2〉 · (zipG1,H × zipG2,H )

Hence, and after a similar argument for +, we conclude

zip×,H = 〈H outl ,H outr〉◦

zip+,H = [H inl ,H inr ]
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7.2.3 Candidate zips for nested fixpoints

Consider an arbitrary nested functor T .

T ≈ F T

F X = B · 〈Id ,X · F1 X 〉

Hoogendijk’s candidate zip is restricted to the case where F1 X = Id so that
T is regular. Rewriting his standard fold as a generalised fold gives us for
regular T ,

zipT ,H : T · H
.
↪→ H · T

zipT ,H = ([H α · (zipB ,H )〈Id ,T 〉 | idH ])
F

Note that the type of zipT ,H is not of the form T
.
↪→ R so zipT ,H cannot be a

simple fold. Now we consider linear nested functors so let F1 X=Q for some
functor Q . Then the auxiliary parameter of the generalised fold must have
the type Q · H

.
↪→ H · Q , which is the type of a zip and we conclude

zipT ,H = ([H α · (zipB ,H )〈Id ,T ·Q〉 | zipQ ,H ])
F

We now show that the main parameter has the type expected. The second
step is the absorption property of fork lifted to functors.

zipB ,H : B · (H × H )
.
↪→ H · B

⇒
{

typing rule of natural transformations
}

(zipB ,H )〈Id ,T ·Q〉 : B · (H × H ) · 〈Id ,T · Q〉
.
↪→ H · B · 〈Id ,T · Q〉

≡
{

absorption property of fork lifted to functors
}

(zipB ,H )〈Id ,T ·Q〉 : B · 〈H ,H · T · Q〉
.
↪→ H · B · 〈Id ,T · Q〉

⇒
{

definition of T
}

H α · (zipB ,H )〈Id ,T ·Q〉 : B · 〈H ,H · T · Q〉
.
↪→ H · T

Unfortunately, we do not know how to generalise zip further to non-linear
datatypes. Define some hofunctor Fi used in the construction of F by, for
some Fj

Fi X = Bi · 〈Id ,X · Fj X 〉

A generalised fold operator for T returns a result of type T · H
.
↪→ H · T if

it is given a parameter of type

Bi · 〈H ,H · T · Fj (H · T )〉
.
↪→ H · Fi (H · T )
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Applying the absorption law and substituting for Fi gives

Bi · (H × H ) · 〈Id ,T · Fj (H · T )〉
.
↪→ H · Bi · 〈Id ,H · T · Fj (H · T )〉

This does not have the type of zipBi ,H , or even that of (zipBi ,H )G for some
functor G , because an extra occurrence of H makes the two forks unequal. In
fact, there probably is a natural transformation T ·H

.
↪→ H ·T for non-linear

T that satisfies the properties of zips, but we do not know how to express it
as a generalised fold so we cannot use the associated universal property and
fusion laws to prove these properties.

7.2.4 Illustration of candidate zip

As an example, we shall implement zipNest ,Tri , where Tri is some ternary
relator, as a generalised fold on nests. By choosing Tri to be a ternary
relator, we also demonstrate how easy it is to generalise the candidate zip
beyond endorelators. We define Pair and Tri and Base in Haskell with

type Pair a = (a, a)
data Tri a b c = Tri a b c

data Base a b = Nil |Cons (a, b)

First we implement zipPair ,Tri and zipBase,Tri .

zipPT :: Pair (Tri a b c) → Tri (Pair a) (Pair b) (Pair c)
zipPT (Tri a b c,Tri d e f ) = Tri (a, d) (b, e) (c, f )

zipBT :: B (Tri a b c) (Tri x y z ) → Tri (B a x ) (B b y) (B c z )
zipBT Nil = Tri Nil Nil Nil

zipBT (Cons (Tri a b c,Tri x y z )) =
Tri (Cons (a, x )) (Cons (b, y)) (Cons (c, z ))

We shall also need the map operations for the functors Pair , Base and Tri .

pair :: (a → b) → Pair a → Pair b

pair f (x , y) = (f x , f y)

tri :: (a → d) → (b → e) → (c → f ) → Tri a b c → Tri d e f

tri f g h (Tri a b c) = Tri (f a) (g b) (h c)
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base :: (a → c) → (b → d) → Base a b → Base c d

base f g Nil = Nil

base f g (Cons (x , y)) = Cons (f x , g y)

Now we define Nest as follows.

type NestF x a = Base a (x (Pair a))
newtype Nest a = In (NestF Nest a)

Following [BP99b], we define the generalised fold operator in a point-free
style to make the link between the Haskell and the categorical definitions of
zipNest ,Tri as clear as possible.

out :: Nest a → NestF Nest a

out (In x ) = x

nest :: (a → b) → Nest a → Nest b

nest f = In · base f (nest (pair f )) · out

The type signature of gfoldnest will now be specialised to facilitate Haskell’s
first-order matching.

gfn :: forallm n r x y z .

(forall a b c.Base (m a b c) (n (r (Pair a)) (r (Pair b))
(r (Pair c))) → n (r a) (r b) (r c)) →

(forall a b c.Pair (m a b c) → m (Pair a) (Pair b)
(Pair c)) →

Nest (m x y z ) → n (r x ) (r y) (r z )
gfn f g = f · base id (gfn f g · nest g) · out

Now we define the candidate zip as follows.

zipNT :: Nest (Tri a b c) → Tri (Nest a) (Nest b) (Nest c)
zipNT = gfn ((tri In In In) · zipBT ) zipPT

An example use is

zipNT (In (Cons (Tri 1 2 3, In(Cons((Tri 4 5 6,Tri 7 8 9), In Nil)))))

= Tri (In (Cons (1, In (Cons ((4, 7), In Nil)))))

(In (Cons (2, In (Cons ((5, 8), In Nil)))))

(In (Cons (3, In (Cons ((6, 9), In Nil)))))

Note that zipNT unzips a nest. Its converse zips nests together, but it is
unclear what the use of such a function would be: it is partial so it is not
always guaranteed to return a perfectly balanced tree. A similar function is
given in Chapter 1.
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7.3 Generic properties of zips

7.3.1 Formalising shape behaviour

To proof that (zipF ,G)A has the desired shape behaviour for all A, we only
need to check that it does for A = 1; as zipF ,G is a natural transformation,
we have

G (F !A) · (zipF ,G)A = (zipF ,G)1 · F (G !A)

An F -shape is an F -structure of 1’s. The operation (zipF ,G)1 should take
an F -structure of equal G-shapes to a G-structure of equal F -shapes. Since
zipF ,G and zipG,F are to be converses of each another, all we need is for the
F -shapes in the target to be equal to the F -shape in the source. If x is an
F -structure then F (fanG)1 x is an F -structure with the same shape as x but
containing G-shapes instead. Furthermore, the result of applying (zipF ,G)1

to this is a G-structure of elements that all have the same shape as x and it
is equal to (fanG)F 1 x . We therefore require

(fanG)F 1 = (zipF ,G)1 · F (fanG)1

7.3.2 Alternative requirements

We have stated precisely as a point-free equation, the shape requirement
we introduced at the start. However, Hoogendijk found this operational
requirement hard to prove directly so he proved that it followed from five
less obvious requirements and then proved those instead. We have already
explained two of these alternative requirements: that zipF ,G should be a
proper natural transformation and that it also be equal to the converse of
zipG,F . To explain the other requirements, let zipF ,− be defined by (zipF ,−)G
= zipF ,G . Hoogendijk requires that zipF ,− be a homomorphism on the monoid
of relators formed by the identity relator and the composition of relators.

(zipF ,−)G·H = (G (zipF ,−)H ) · (zipF ,−)G

(zipF ,−)Id = idF

The final property, that zips be higher-order natural, requires rather more
explanation.

130



7.3.3 Higher-order naturality

Reynolds [Rey83] proved an abstraction theorem for the polymorphic lambda
calculus. It can be seen as a healthiness condition for any language like
Haskell in which one can define polymorphic functions. Wadler popularised
the theorem in [Wad89] as “Theorems for Free”. He explained that every
polymorphic function has a parametricity result that can be deduced from
its type alone. A polymorphic function maps sets (or types) to functions.
Interpreted in the category Fun, it maps an object A to an arrow of type
F A → G A for functors F and G . Here F and G are functors. Wadler’s
claim is that all polymorphic functions are natural transformations of type
F

.
↪→ G .

This claim does not hold for such object to arrow mappings in the endore-
lator category Cor (Rel). However, we motivate the final property of zips
by finding what the naturality property would be if the claim held for one
particular mapping: the polyfunctorial relation zipF ,−. Interpreted in the
category Cor (Rel), a polyfunctorial relation maps an object H (a functor)
to an arrow of type F H → G H (a lax natural transformation), where F and
G are hofunctors, that is, endofunctors on Cor (Rel). In the case of zipF ,−,
we have F=(F ·) and G=(·F ) and we shall demand that zipF ,− is a natural
transformation from F to G.

(F ·)G = F · G (·F )G = G · F

(F ·) α = F α (·F ) α = αF

To confirm the typing, observe that zipF ,G can be written as a component of
the natural transformation zipF ,−.

(zipF ,−)G : (F ·)G
.
↪→ (·F )G

The naturality condition is said to be higher-order because it connects higher-
order functors. For all β : H

.
↪→ G , we have that

(·F ) β · (zipF ,−)H = (zipF ,−)G · (F ·) β

Applying the definitions of (F ·) and (·F ), we get:

βF · zipF ,H = zipF ,G · F β

A simple counterexample reveals why this equality must be weakened to an
inequality. Suppose that G=H=Pair , with F=List , and β = idPair ∪ swap
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where swap (x , y) = (y , x ), so that β is the natural transformation that
non-deterministically either swaps a pair or leaves it alone. First observe
that swapping either all or none of the pairs in a list of pairs and then
unzipping is the same as unzipping a list of pairs and non-deterministically
either swapping the result or leaving it alone.

zipList ,Pair ∪ (zipList ,Pair · List swap) = (id ∪ swap) · zipList ,Pair

However, these relations are both more determined than the relation that
swaps or leaves alone each of the pairs separately before unzipping.

(id ∪ swap) · zipList ,Pair ⊆ zipList ,Pair · List (id ∪ swap)

Putting these last two statements together and abstracting gives the higher-

order naturality property of zip, which is that for all natural transformations
β : H

.
↪→ G ,

βF · zipF ,H ⊆ zipF ,G · F β

A second reason for weakening the equality to an inequality is also given in
Hoogendijk’s thesis.

7.3.4 Hoogendijk’s theorem of zips

Hoogendijk combines these requirements into a single theorem about the
existence of zips. He proves the theorem by defining a candidate zip and
showing that it has the required properties. We have just done the first of
these so now we shall do the second. Since zip is defined by case analysis on
the first argument, the properties in fact relate to the partial application of
zip, that is zipF ,− for some F .

Theorem of zips For all regular relators F , there is a polyfunctorial re-
lation zipF ,− that maps relators G that have membership to a collection of
relations zipF ,G indexed by objects and defined such that (zipF ,G)A has type
F (G A) → G (F A). In addition, zipF ,− has four properties:

• zipF ,G : F · G
.

→ G · F

• βF · zipF ,H ⊆ zipF ,G · F β for all β : H
.
↪→ G

• zipF ,G·H = G zipF ,H · zipF ,G
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• zipF ,Id = idF

Finally, if G is also regular then zipG,F = zipF ,G
◦.

The left-hand sides of the third and fourth equations are both defined be-
cause the identity relator has membership and the composition of any two
relators with membership also has membership. It is shown in [HB97] that
zips are uniquely defined by these properties. The proof uses the universal
property of fold operators.

7.4 Proofs of properties

Hoogendijk defines his candidate zip by structural induction in the first ar-
gument. In particular, he uses polynomial cases to define his regular fixpoint
case. Unsurprisingly, his proof of the theorem is also by structural induction
with a regular fixpoint case that assumes polynomial cases. We have replaced
the regular fixpoint case of his definition with a nested fixpoint case of our
own. Now the plan is to do the same in his proof.

He proves the first four properties separately and then uses them to prove
the fifth. We would like to do exactly the same but there is a catch. In order
to prove that zips are natural transformations we need the fifth property so
we must prove that first. The other three properties are needed to do this so
we will prove them even sooner. Crucially, the property that zips are natural
transformations is not needed to prove the fifth property.

7.4.1 Zips are higher-order natural

We shall show that the higher-order naturality property of zipT ,H , for any
H , follows from the higher-order naturality property of zipB ,H and zipQ ,H .
Hoogendijk has proven both of these properties since B and Q are polyno-
mial, a fact we indicate with the hint “polynomial cases”.

The fusion laws we shall use are the relational fusion laws specialised to
linear nested datatypes.

([f | g ])F · T k ⊇ ([f · B (k , id) | g ′])F ⇐ g · Q k ⊇ k · g ′
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k · ([f | g ])F ⊆ ([f ′ | g ])F ⇐ k · f ⊆ f ′ · B (id , k)

Now here is our proof.

βT · zipT ,H ⊆ zipT ,J · T β

≡
{

definition of zip
}

βT · ([H α · (zipB ,H )〈Id ,T ·Q〉 | zipQ ,H ])
F

⊆ ([J α · (zipB ,J )〈Id ,T ·Q〉 | zipQ ,J ])
F

· T β

⇐
{

map-fusion: assuming βQ · zipQ ,H ⊆ zipQ ,J · Q β

this is true by polynomial cases

}

βT · ([H α · (zipB ,H )〈Id ,T ·Q〉 | zipQ ,H ])
F

⊆ ([J α · (zipB ,J )〈Id ,T ·Q〉 · B (β, id) | zipQ ,H ])
F

⇐
{

fold-fusion
}

βT · H α · (zipB ,H )〈Id ,T ·Q〉

⊆ J α · (zipB ,J )〈Id ,T ·Q〉 · B (β, id) · B(id , βT )

⇐
{

naturality of β : H
.
↪→ J ; B is a functor

}

J α · βT · (zipB ,H )〈Id ,T ·Q〉 ⊆ J α · (zipB ,J )〈Id ,T ·Q〉 · B (β, βT )

⇐
{

monotonicity of composition
}

βT · (zipB ,H )〈Id ,T ·Q〉 ⊆ (zipB ,J )〈Id ,T ·Q〉 · B (β, βT )

⇐
{

polynomial cases
}

true

7.4.2 Zips are compositional

We wish to prove that

H zipT ,I · (zipT ,H )I = zipT ,H ·I

To simplify the left-hand side and the proof itself, we introduce the abbrevi-
ation.

ηX = H zipX ,I · (zipX ,H )I

Now we rewrite the right-hand side of our goal using the definition of zip.

ηT = ([H (I α) · (zipB ,H ·I )〈Id ,T ·Q〉 | zipQ ,H ·I ])F
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By the universal property of generalised folds,

ηT · α = H (I α) · (zipB ,H ·I )〈Id ,T ·Q〉 · B (id , ηT · T zipQ ,H ·I )

This is our new goal but first we prove a lemma. For any functor H ,

zipT ,H · (αF )H = H αF · zipB ·〈Id ,T ·Q〉,H

To prove this we start with the definition of zip.

zipT ,H = ([H αF · (zipB ,H )〈Id ,T ·Q〉 | zipQ ,H ])
F

≡
{

universal property
}

zipT ,H · (αF )H = H αF · (zipB ,H )〈Id ,T ·Q〉 · B (id , zipT ·H · T zipQ ,H )

≡
{

definition of zip
}

zipT ,H · (αF )H = H αF · zipB ·〈Id ,T ·Q〉,H

Now we use the lemma to prove the goal.

ηT · αF

=
{

definition of η
}

H zipT ,I · (zipT ,H )I · (αF )H ·I

=
{

lemma lifted with I
}

H zipT ,I · H (αF )I · (zipB ·〈Id ,T ·Q〉,H )I

=
{

lemma ; functor H
}

H (I αF ) · H zipB ·〈Id ,T ·Q〉,I · (zipB ·〈Id ,T ·Q〉,H )I

=
{

definition of η
}

H (I αF ) · ηB ·〈Id ,T ·Q〉

=
{

claim: ηF ·G = ηF · F ηG

}

H (I αF ) · (ηB)〈Id ,T ·Q〉 · (B)(η〈Id ,T ·Q〉)

=
{

claim: η〈F ,G〉 = 〈ηF , ηG〉
}

H (I αF ) · (ηB)〈Id ,T ·Q〉 · (B)(〈ηId , ηT ·Q〉)

=
{

definition of fork; first claim
}

H (I αF ) · (ηB)〈Id ,T ·Q〉 · B (ηId , ηT · T ηQ)

=
{

definition of η; polynomial cases
}

H (I αF ) · (zipB ,H ·I )〈Id ,T ·Q〉 · B (id , ηT · T zipQ ,H ·I )

Both claims are proven in Hoogendijk’s thesis [Hoo97].
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7.4.3 Zips respect identities

This property is the simplest of all to prove

zipT ,Id

=
{

definition of zip
}

([Id α · (zipB ,Id)〈Id ,T ·Q〉 | zipQ ,Id ])

=
{

polynomial cases
}

([α | id ])F

=
{

idT · α = α · B (idId , idT · T idQ); universal property
}

idT

7.4.4 Linear nested relators are almost commuting

We need to show that for linear nested relators T and U ,

zipT ,U = zipU ,T
◦

By the definition of zip and the universal property of generalised folds, this
is equivalent to

zipU ,T
◦ · αF = (U αF · (zipB ,U )〈Id ,T ·Q〉) · B (id , zipU ,T

◦ · T zipQ ,U )

Before proving this, we show that we can rewrite the left-hand side.

zipU ,T
◦ · (αF )U = U αF · zipU ,F T

◦

≡
{

converse contravariant and order-preserving; U relator
}

((αF )U )◦ · zipU ,T = zipU ,F T · U αF
◦

⇐
{

antisymmetry of ⊆
}

((αF )U )◦ · zipU ,T ⊆ zipU ,F T · U αF
◦

((αF )U )◦ · zipU ,T ⊇ zipU ,F T · U αF
◦

≡
{

α is a function and therefore can be shunted
}

((αF )U )◦ · zipU ,T ⊆ zipU ,F T · U αF
◦

((αF )U ) · zipU ,T ⊆ zipU ,F T · UαF

≡
{

zips are higher-order natural
naturality of αF : F T

.
↪→ T and αF

◦ : T
.
↪→ F T

}

true
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Now we reason

U αF · zipU ,F T
◦

=
{

definition of hofunctor F
}

U αF · zipU ,B ·〈Id ,T ·Q〉
◦

=
{

claim: zipU ,F ·G
◦ = (zipU ,F

◦)G · F zipU ,G
◦

}

U αF · (zipU ,B
◦)〈Id ,T ·Q〉 · (B)(zip〈Id ,T ·Q〉

◦)

=
{

claim: zipU ,〈F ,G〉
◦ = 〈zipU ,F

◦, zipU ,G
◦〉

}

U αF · (zipU ,B
◦)〈Id ,T ·Q〉 · B (zipU ,Id

◦, (zipU ,T ·Q
◦)Q)

=
{

first claim; zips respect identities
}

U αF · (zipU ,B
◦)〈Id ,T ·Q〉 · B (id , (zipU ,T

◦)Q · T zipU ,Q
◦)

=
{

polynomial cases
}

(U αF · (zipB ,U )〈Id ,T ·Q〉) · B (id , (zipU ,T
◦)Q · T zipQ ,U )

Applying converse to both sides of our two claims leaves

zipU ,F ·G = F zipU ,G · (zipU ,F )G

zipU ,〈F ,G〉 = 〈zipU ,F , zipU ,G〉

The first of these asserts that zips are compositional, something we have just
proved. The second is proved by Hoogendijk in his thesis.

7.4.5 Zips are natural transformations

We did not use in the previous proof the fact that zips are natural transfor-
mation so we can now show this using the result shown by the previous proof.

We show, for all R : A → B , that

G (T R) · (zipT ,G)A = (zipT ,G)B · T (G R)

This time, we cannot adapt the proof given by Hoogendijk for regular rela-
tors. For regular T , he uses the map-fusion law to rewrite the right-hand side
to a fold. Then he applies the fold-fusion law and gets conditions that follow
from the naturality of zipB ,G . Unlike its counterpart for standard folds, the
map-fusion law for generalised folds has a condition: we must solve for g in

zipQ ,G · Q (G R) = (G R)Q · g
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The type of g is Q · G · KA
.

→ G · KB · Q . Suppose that Q = Pair , that
G = Id and that A = B . Then g has the type Pair A → A. However, if
g is outlA,A or outrA,A then the equation cannot hold, since one side would
remove elements while the other would not. The fold-fusion law of efficient
folds is not of any use either for the same reason.

So we must take a different approach. Instead of using the definition of
zipT ,G directly, we shall use merely the fact that zipT ,G is a generalised fold
and hence a lax natural transformation. To strengthen this to a proper nat-
ural transformation, we must show that

G (T R) · (zipT ,G)A ⊆ (zipT ,G)B · T (G R)

Axioms of converse and the fact that G and T are relators make this equiv-
alent to

(zipT ,G)A
◦ · G (T (R◦)) ⊆ T (G (R◦)) · (zipT ,G)B

◦

Since linear nested relators commute, this is equivalent to

T (G (R◦)) · (zipG,T )B ⊇ (zipG,T )A · G (T (R◦))

If G is polynomial then Hoogendijk has shown that zipG,T is a proper natu-
ral transformation and is therefore lax too. On the other hand, if G is the
fixpoint case then zipG,T is still a lax natural transformation because it is a
generalised fold.

This completes the extension of Hoogendijk’s theorem to linear nested re-
lators.

7.5 From endorelators to multirelators

We conclude this chapter by showing how to adapt the properties of zips
(and hence their proofs) to multirelators. In general, for any category C if
relator F has type Ck → Cm and relator G has type Cl → Cn , then the
type of zipF ,G is written in the notation of the τ -∆ calculus as

zipF ,G : (nF ) (Gk)
.

→ (Gm)(lF )
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These subscripts are explained by the following rules.

F : Cm → Cn ⇒ F k : (Cm)k → (Cn)k

F : Cm → Cn ⇒ kF : (Ck)m → (Ck)n

So we have, for example,

(nF ) (Gk) : (Cl)k → (Cn)m

(Gm) (lF ) : (Cl)k → (Cn)m

Indeed the subscripts can be lifted to natural transformations with the rules.

α : F
.
↪→ G ⇒ αk : F k .

↪→ Gk

α : F
.
↪→ G ⇒ kα : kF

.
↪→ kG

We have already stated that zipF ,G must be a proper natural transformation.
The higher-order naturality property is that for any G ,H : Cl → Cn and
α : G

.
↪→ H ,

(αm)( lF ) · zipF ,G ⊆ zipF ,H · ( nF ) (αk )

The property that zips respect compositions is for G : Cl → Cn and
H : Co → Cl ,

zipF ,G·H = (Gm) (zipF ,H ) · (zipF ,G)H k

Instead of requiring that zip respects identities, we require that they respect
projections.

zipF ,Πl
i

= idF Proj k

The new candidate zip is

zipT ,G = ([G lα · (zipB ,G)l 〈Id ,T 〉])F

Here, the functor G has type Cl → C. A theorem proved in [Hoo97] ex-
tends the candidate zip to more general G . An instance of the theorem that
illustrates the idea is

zipF ,〈G1,G2〉 = τ 〈zipF ,G1
, zipF ,G2

〉

Here, τ is a transposition functor of type (Ck ′

)l
′

→ (Cl ′)k
′

defined for any k ′

and l ′. We also use τ to generalise the statement that zips are commuting.
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Chapter 8

Embedding Functions

8.1 Introduction

As we explained in Chapter 1, nested datatypes do not enhance the expres-
sivity of Haskell. When a nested datatype is used in a program, it can always
be replaced by the composition of two regular datatypes. We call this sub-
stitute an embedding target . Echoing the slogan of Chapter 1, we can say
that the embedding target is a “nested datatype minus constraints”.

In this chapter, we shall define for every nested datatype a regular embed-
ding target and an associated embedding function that maps values of the
nested datatype to values of the embedding target. We can use the em-
bedding function to define an equivalence between programs with properly
nested datatypes and programs without, and to deduce one from the other.
We shall also define for one particular datatype an embedding predicate that
tests whether a value of the embedding target is in the range of the embed-
ding function.

As an example, let us find an embedding target for the functor Nest . First,
let the term k -fold pair of a’s describe a value of type Pair k a. Then a nest
is a 0-fold pair followed by a 1-fold pair followed by a 2-fold pair and so
on. Each k -fold pair is a perfect leaf-labelled tree of height k written with no
constructors. A nest can consequently be represented by a list of leaf-labelled
trees so an embedding target for Nest is NestR, defined by

NestR = List · Tree
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List A ≈ 1 + A × List A

Tree A ≈ A + Pair (Tree A)

More formally, there is a functor NestR′ such that for any set A, NestR′ A is
both isomorphic to Nest A and a subset of NestR A using the naive notion of
“types as sets”. To demonstrate this, we define an injective function, called
an embedding function, from Nest to NestR.

embednest : Nest
.

→ NestR

Section 8.2 discusses further the choice of NestR as embedding target and
Section 8.3 defines and verifies embednest .

Now embednest can be generalised to a polyfunctorial relation embed such
that embedT has the type T

.
→ T . Here, T denotes the embedding target of

T , so Nest=NestR, for example. Section 8.4 defines T and embedT for the
case where T = Bush. Section 8.5 defines T and embedT for the case where
T is any properly nested relator.

More abstractly, embed connects the class of nested relators with the class of
regular relators, enabling us to write equations that connect programs that
use nested datatypes with programs that use only regular datatypes. Let f

have type X
.

→ Y , where X and Y are nested relators. Then there is a
corresponding function between regular relators f ′ : X ′ .

→ Y ′, given by

embedY · f = f ′ · embedX

Naturally, for regular relators the embedding function is the identity. Section
8.7 proves a theorem, known as the fold-equivalence law, that gives f ′ in the
case where f is an efficient reduction and Y is regular. In order to state and
prove this theorem, Section 8.6 gives a fold-fusion law for a variant of the
efficient reduction operator. Section 8.8 considers arbitrary recursion and
Section 8.9 proves a variant of the fold-equivalence law where Y need not
be regular but it applies only to so-called tail-recursive datatypes. Finally,
Section 8.10 uses the existence of embedding functions to give an alternative
proof that nested relators have membership and Section 8.11 derives an em-
bedding predicate for the type of non-empty nests.

Although this chapter has nothing to say about the relative efficiencies of
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f and f ′, Okasaki’s thesis [Oka98b] has a comparison for basic operations on
the datatype of random-access lists. In general, nested datatypes are some-
times slightly more efficient because there are fewer constructor functions to
unpack. However, there are other reasons for wanting to calculate f from
f ′ or vice versa. Haskell functions for properly nested datatypes will feature
polymorphic recursion in general, which is banned by some languages, and
their folds are less well understood than standard folds. Therefore, we may
want to remove nested datatypes from our programs. On the other hand, our
laws can be used instead to construct programs for nested datatypes from
simpler programs for regular datatypes.

8.2 Embedding target for nests

Here is another way of motivating NestR, one that can easily be adapted to
other linear nested datatypes. Let X <∼ Y mean that X is isomorphic to a
subset of Y . We simply expand the definition of Nest a few times and look
for patterns, guided by an assumption that we are heading for a composition
of datatypes.

Nest A

≈
{

definition of Nest (three times)
}

Base (A,Base (Pair A,Base (Pair 2 A,Nest (Pair 3 A))))

<∼

{

assumption
}

Base (A,Base (Pair A,Base (Pair 2 A,U (V (Pair 3 A)))))

<∼

{

let V A ≈ A + Pair (V A)
}

Base (V A,Base (V A,Base (V A,U (V A))))

≈
{

let U A ≈ Base (A,U A)
}

U (V A)

So Nest does indeed have List · Tree as one of its embedding targets. Here,
List and Tree are defined in the notation of category theory by

List ≈ ListF List

ListF X = Base · 〈Id ,X 〉

Tree ≈ TreeF Tree
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TreeF X = Base ′ · 〈Id ,X 〉

Base ′ (X ,Y ) = X + Pair Y

However, we noted in Chapter 1 that each nest corresponds to the levels of
a complete internally-labelled binary tree.

ITree A ≈ 1 + A × Pair (ITree A)

Borges [Bor01] uses this simpler datatype as the embedding target for Nest .
The embedding function is easy to write if zipITree,Pair is supplied and the
existence of this zip both motivates the embedding target and justifies the
embedding function.

zembednest : Nest
.

→ ITree

zembednest = ([α · (id + id × zipITree,Pair)])NestF

However, there are many drawbacks to using ITree:

• the embedding function is inefficient because it repeatedly unzips its
input.

• the unzipping also changes the syntactic order of the elements

• the approach does not extend to non-linear datatypes

• in any case, initial algebras are more fundamental than zips

• ITree is less closely linked to Nest . ITree is better suited to depth-first
traversals, whereas Nest and NestR are better suited to breadth-first
traversals as they both reveal their nodes one level at a time.

There is, in fact, another nested datatype for internally-labelled binary trees
that like Nest is more suited to depth-first traversals. It is a slimmed down
version of the datatype for Braun trees and is used in [BGB] to implement
pattern-matching for perfect trees.

data NestIter a b = Zero b | Succ (NestIter a (b, a, b))

Finally, we should note that flattening a nest is injective so we could use
eflatnest as an embedding function for nests. However, flattening is not
injective for all nested datatypes so we cannot use it as an embedding function
in general.
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8.3 Embedding function for nests

In Chapter 3, we used an efficient reduction to flatten a nest to a list so we
shall try to use an efficient reduction {[e, f | g | h]} to embed a nest as a list of
trees. The necessary types for the parameters are, for some b.

[e, f ] : Base (b,List (Tree a)) → List (Tree a)

g : Pair b → b

h : a → b

If these parameters are injective functions, then this efficient reduction is also
an injective function, as an embedding function should be. As constructor
functions are injective, we choose b = Tree a and embed a nest with

embednest : Nest
.

→ List · Tree

embednest = {[NilTree ,ConsTree |Bin |Tip]}NestF

In Haskell, we write (using built-in lists for convenience)

embednest :: Nest a → [Tree a]
embednest = efoldnest [ ] (uncurry (:))Tip Bin

8.4 Embedding bushes

Similarly, the embedding function for bushes is given by

embedbush : Bush
.

→ U · V

embedbush = {[e, f | g1 | g2 | h]}BushF

The embedding target U · V is yet to be determined. So too are the param-
eters, which are injective functions with types

[e, f ] : Base (V a,U (V a)) → U (V a)

g1 : Outr (V a,U (V a)) → V a

g2 : V a → V a

h : a → V a

We can now choose U and V to have constructor functions that can be
parameters of the efficient reduction. As before [e, f ] can be [NilV ,ConsV ]
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so U = List . Now V can be chosen so that its constructor functions are
g1 and g2 and h. Then the embedding target of Bush is List · Thing where
Thing is defined by

Thing A ≈ A + List (Thing A) + Thing A

Note that the recursion in the definition of Bush is such that we could not
have used the technique demonstrated in the last section to derive the em-
bedding target. In Haskell, showing the constructor functions, we write

type BushR a = [Thing a]
data Thing a = One a | More [Thing a] | Extra (Thing a)

The embedding function is therefore

embedbush : Bush
.

→ List · Thing

embedbush = {[NilThing ,ConsThing |More |Extra |One]}
BushF

The constructor function Extra is redundant, however, as idThing is an in-
jective function of the same type, so if we replaced Extra with idThing then
embedbush would still be an injective function. In Haskell, we can therefore
write

data Thingless a = One a | More [Thingless a]

embedbush :: Bush a → [Thingless a]
embedbush = eredbush [ ] (uncurry (:))One More

Here, eredbush is efoldbush specialised to constant functors. For example, we
have

embedbush (ConsB (1,ConsB (ConsB (2,NilB),NilB)))

= [One 1,More (One 2)]

8.5 Embedding arbitrary datatypes

The generalisation of embednest and embedbush to an arbitrary datatype T

is easy to guess but difficult to write concisely.

embedT : T
.

→ U · V

embedT = {[(αUF )V ‖ γ ‖ h]}F
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Here, h and the γi give the constructors of V , so V is defined according to the
types of these parameters. The functors T and U are the least fixed points of
hofunctors F and UF respectively, where F X = B ·〈Id ,X ·F1 X 〉. Naturally,
this definition of embedT is too informal to be used in generic proofs. We
would like to define a generic operator, to be called the embedding operator ,
that takes the initial algebras of U and V and returns the correct efficient
reduction for embedT . For nests, we would have

{[f | h, g ]}NestF = {[f | g | h]}NestF

Here the notation “h, g” is shorthand for the join [h, g ], which is αTreeF if
h = Tip and g = Bin. For bushes we have

{[f | h, [g1, g2]]}BushF = {[f | g1 | g2 | h]}BushF

In general we have

{[f ‖ h, θ1 γ]}F = {[f ‖ γ ‖ h]}F

Suppose Fi is defined by

Fi X = Bi · 〈Id ,X · Fj X 〉

Then θ is defined by structural induction as follows.

θi γ = [γi , θj γ]

The typings are, for some a,

γi : Bi (V a,U (V a)) → V a

θi γ : δi (V a, U (V a)) → V a

Here δ is also defined by structural induction.

δi (Y ,Z ) = Bi (Y ,Z ) + δj (Y ,Z )

If Bi is unary, then δi Y = Bi Y and θi γ = γi . With a type signature, the
generic operator we have just defined is

{[−‖−]}F : (B (b, c) → c) → (CF (a, b, c) → b) → T a → c

{[f ‖ h, θ1 γ]}F = ([f ‖ γ])F · T h
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Here, the relator CF is defined by CF (X ,Y ,Z ) = X + δ1 (Y ,Z ). Now the
embedding function is given simply by

embedT : T
.

→ U · V

embedT = {[(αUF )V |αVF ]}F

Note that the parameters to the embedding operator need not be initial
algebras; the embedding function is a special case where b = V a. The
embedding target of T is U · V where U and V are least fixed points of UF

and VF defined by

UF X = B · 〈Id ,X 〉

VF X = B ′ · 〈Id ,X 〉

B ′ (X ,Y ) = CF (X ,Y ,U Y )

Chris Okasaki also proposed similar laws for calculating the embedding target
of a nested datatype, but they were neither motivated nor verified [Oka98a].

8.6 Fold-fusion law for embedding operator

In the next section, we shall require a fold-fusion law for the embedding
operator we have just derived. Let R (i) abbreviate

k ′ · γi = γ′
i · Bi (k ′, k)

We start from the fold-fusion law for efficient reductions that we derived at
the end of Chapter 5.

Recall that if we have

k · f = f ′ · B (k ′, k) and k ′ · h = h ′

and for all i we have R (i) then we conclude

k · {[f ‖ γ ‖ h]}F = {[f ′ ‖ γ′ ‖ h ′]}F

For NestF , the final conjunct is simply

k ′ · γ1 = γ′
1 · Pair k ′
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For BushF , the final conjunct is a pair of conditions that can be written as
one.

k ′ · [γ1, γ2] = [γ′
1, γ

′
2] · (Outr (k ′, k) + Id k ′)

In general, we have P (1) where P (i) abbreviates

k ′ · θi γ = θi γ
′ · δi (k ′, k)

We can replace the clause R (i) for all i in the fusion law above with the
simpler P (1) if we can show it be a sufficient condition. This will give us a
very simple fold-fusion law for the embedding operator. The proof is a te-
dious exercise in structural induction and can safely be skipped by the reader.

Let Q (i) mean that R (i) holds and R (i ′) holds for all hofunctors Fi ′ that
depend on Fi , directly or indirectly. All we need to show is that P(i) im-
plies Q(i) for all i . Suppose that P (i) holds and that Fi is defined by
Fi X = Bi · 〈Id ,X · Fj X 〉. Suppose, for an induction hypothesis, that P(j )
implies Q(j ). If P(i) holds then from the definitions of θ and δ we have

k ′ · [γi , θj γ] = [γ ′
i , θj γ

′] · (Bi (k ′, k) + δj (k ′, k))

The laws of coproducts give us R(i) and P(j ), from which we get Q(j ) by
the induction hypothesis. Then R(i) and Q(j ) together give Q(i).

Finally, to neaten the law, we combine P(1) with k ′ · h = h ′ to give

k ′ · [h, θ1 γ] = [h ′, θ1 γ
′] · (id + δ1 (k ′, k))

Now we have proved the following law.

Simplified generic fold-fusion law for embedding operator

k · {[f ‖ g ]}F = {[f ′ ‖ g ′]}F

⇐ ∃k ′ : k · f = f ′ · B (k ′, k) and k ′ · g = g ′ · CF (id , k ′, k)

8.7 Fold-equivalence law

Let ef abbreviate the function efoldnest nil cons tip bin. Consider the action
of ef on nests. It replaces the constructor function NilN with nil . However,
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this has the same effect as replacing NilN with the empty list [ ] and then
replacing that with nil . Applying this idea to the other three constructor
functions as well suggests

ef = foldr cons nil · map (foldtree tip fork) · embednest

Here, foldtree is the standard fold for the datatype Tree. If T and U and
V are defined as above then we can now suggest the following generic law,
which we shall call the fold-equivalence law .

([f | id ])UF · U ([g ′ | id ])VF · embedT = {[f | g ]}F

The special case of nests above suggests that g = g ′ but in fact, g ′ is a
function of g to be derived with the conditions. First we introduce some
abbreviations

k ′ = ([g ′ | id ])VF

k = ([f ])UF · U k ′ = ([f · B (k ′, id) | id ])UF

Now we prove the law.

k · {[αU |αV ]}F = {[f | g ]}F

⇐
{

fold-fusion law for the embedding operator; B is a functor
}

k · αU = f · B (k ′, id) · B (id , k)

k ′ · αV = g · C (id , k ′, k)

≡
{

definition of k ; universal property of standard folds
}

k ′ · αV = g · C (id , k ′, ([f · B (k ′, id) | id ])UF )

≡
{

C is a functor; map-fusion law of standard folds
}

k ′ · αV = (g · C (id , id , ([f | id ])UF )) · C (id , k ′,U k ′)

≡
{

definition of C
}

k ′ · αV = (g · C (id , id , ([f | id ])UF )) · B ′ (id , k ′)

≡
{

universal property of standard folds
}

k ′ = ([g · C (id , id , ([f | id ])UF ) | id ])
VF

So for the function k ′ we have just derived, we have

([f ])UF · U k ′ · {[αU |αV ]}F = {[f | g ]}F
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This proof suggests the following intuition for the fold-fusion law of the em-
bedding operator. To push a function k through an efficient fold on T , we
need conditions for pushing k through a standard fold on U -structures of
V -structures. This involves pushing some other function k ′ down a standard
fold on a V -structure. When T is non-linear, this itself involves pushing k

through a further standard fold on U -structures.

8.7.1 Embedding functions preserve flattening

Now we shall illustrate the fold-equivalence law for the datatype of nests. In
Chapter 3, we discovered how to flatten a nest with an efficient reduction.

eflatnest = {[knil , (:) |wrap, (++)]}NestF

The fold-equivalence law gives

(([knil , (:) | id ])ListF · List ([wrap, (++) | id ])TreeF ) · embednest = eflatnest

Each of the folds on trees flattens a tree to a list. The fold on lists flat-
tens the resulting list of lists to a list. The term in brackets consequently
flattens a list of trees, so the whole equation asserts that embednest pre-
serves flattening. We know that any injective function can be an embedding
for nests, but here we have a property that is satisfied by embednest but
not by zembednest . However, the property of preserving flattening is not
strong enough to characterise the embedding function. The extra property
of embednest that we cannot formalise is the way it preserves how exactly
the elements are grouped.

8.7.2 Example: summation

Chapter 4 defines the generic summation operator, sum but it is motivated
by type considerations. This approach is particularly unsatisfactory for non-
linear datatypes T because it is difficult to visualise a typical evaluation.
A better idea would be to write sumT and then use our new law to derive
sumT . For the example of nests,

sumNestR · embedNest = sumNest

Recall how sum is defined on compositions:

sumF ·G = sumF · F sumG
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Given this and the fold-equivalence law, we suggest

sumNest = {[sumBase | sumBase′ ]}NestF

However, sumBase′ = [id , sumPair ] so we conclude as before,

sumNest = ([sumBase | sumPair ])NestF

8.7.3 Example: unfanning

Chapter 6 defines the polyfunctorial unfanning operation unfan. Its compo-
sition case is the same as that of sum.

unfanF ·G = unfanF · F unfanG

Once again we motivated the nested fixpoint case of this operation by type
considerations, but we could have derived it instead. For nests, we would
have

unfanNest = {[unfanBase | unfanBase′]}NestF

To write the second parameter as a join, we first work out fanBase′ .

fanOutl+Pair ·Outr = (fanOutl + Pair fanOutr · fanPair) · [id , id ]◦

Taking the converse of both sides,

fanOutl+Pair ·Outr
◦ = [id , id ] · (fanOutl

◦ + fanPair
◦ · Pair fanOutr

◦)

Clearly now, unfanBase′ is the join [id , unfanPair ] so unfanNest is a reduction.

unfanNest = ([unfanBase | unfanPair ])NestF

Both unfanNest and sumNest are Meertens reductions [Mee96], that is, reduc-
tions of T a → a, though he considers only regular T . Now we consider
another Meertens reduction for the different datatype of power trees.

8.7.4 Example: last

Our final illustration of the fold-equivalence law uses the function lastpow ,
which takes a power tree and returns its rightmost element. There is no
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equivalent function for nests because some nests are empty. Recall that the
type of power trees was defined in Chapter 1 by

data Pow a = Zero a | Succ (Pow (Pair a))

Now, Pow is what we call a tail-recursive datatype, which means that the
recursive uses are wrapped by unary constructors. In the notation of category
theory,

Pow ≈ PowF Pow

PowF X = + · 〈Id ,X · Pair〉

The embedding target of Pow is Wrap · Tree where

Wrap ≈ WrapF Wrap

WrapF X = + · 〈Id ,X 〉

The embedding function embedpow exchanges the constructors of Pow that
encode the height of the power tree for constructors of Wrap that serve the
same purpose. However, the latter constructors are redundant because the
tree they wrap has the same type whatever its height.

According to the fold-equivalence law, the last element of a power tree is
given by

lastpow = {[lastWrap | lastTree ]}PowF

Filling in the regular cases is easy.

lastpow = {[id , id | id , outr ]}PowF

The fold-equality law allows us to rewrite lastpow as a simple fold.

lastpow = ([[id , id ] · (id + k)])PowF

We require that for some k ′

k · [id , id ] = [id , id ] · (k ′ + k)

k ′ · outr = outr · Pair k ′

k ′ · id = outr · Pair id
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These conditions are solved by k = k ′ = outr so we have

lastpow = ([id , outr ])PowF

However, as the Wrap datatype is redundant, a more sensible embedding
target for Pow might be Tree. The embedding function would then be

embedpow ′ = {[id , id |α]}PowF

Since [id , id ] is an injective function, embedpow ′ is also an injective function.
The required variant of the fold-equivalence law is therefore

([g | id ])TreeF · embedpow ′ = {[id , id | g ]}PowF

To prove this we apply the fold-fusion law and get two conditions that are
true if k ′=([g | id ])TreeF :

([g | id ])TreeF · [id , id ] = [id , id ] · (k ′ + ([g | id ])TreeF )

k ′ · α = g · (id + Pair k ′)

Any tail-recursive datatype can be transformed, using an accumulating pa-
rameter if necessary, so as to make the constructor functions unary for its
base cases.

8.8 Another law for efficient reductions

Unfortunately, the fold-equivalence law and the variant we derived for power
trees and other tail-recursive datatypes can only be used with efficient re-
ductions that return regular datatypes. To prove another variant that does
not have this restriction, we shall derive a condition connecting g and g ′ in
the following:

embedpow ′ · {[id , id | g ]}PowF = ([g ′ | id ])TreeF · embedpow ′

We argue as follows:

embedpow ′ · {[id , id | g ]}PowF = ([g ′ | id ])TreeF · embedpow ′

≡
{

first variant of fold-equivalence law
}

embedpow ′ · {[id , id | g ]}PowF = {[id , id | g ′]}PowF

≡
{

fold-fusion
}

embedpow ′ · [id , id ] = [id , id ] · (k ′ + {[id , id |α]}PowF )
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k ′ · g = g ′ · Base ′ (id , k ′)

≡
{

universal property of coproducts
}

embedpow ′ · g = g ′ · Base ′ (id , embedpow ′)

The law we have just derived is

embedpow ′ · {[id , id | g ]}PowF = ([g ′ | id ])TreeF · embedpow ′

⇐ embedpow ′ · g = g ′ · Base ′ (id , embedpow ′)

If we write g and g ′ as the joins [tip, bin] and [tip ′, bin ′] then

embedpow ′ · tip = tip ′

embedpow ′ · bin = bin ′ · Pair embedpow ′

If we let [tip ′, bin ′] be [Tip,Bin] then [tip, bin] are functions on power trees
that correspond to functions [Tip,Bin] on trees; the function bin was given
in Chapter 1 but we shall now derive it after noting that tip = Zero. The
base case is easy.

bin (Zero x ,Zero y) = Succ (Zero (x , y))

To derive the inductive case, we use the following laws, which are obtained
by using the fold-equality law to rewrite embedpow ′ as a simple fold; we show
how to do this in the next section.

e · Succ = Tree h · e

Succ · e◦ = e◦ · Tree h

Here, e abbreviates embedpow ′ and h abbreviates [Bin · Pair Tip,Bin]. The
derivation of the inductive case of bin is as follows:

bin · Pair Succ

= e◦ · Bin · Pair (e · Succ)

= e◦ · Bin · Pair (Tree h · e)

= e◦ · Tree h · Bin · Pair e

= Succ · e◦ · Bin · Pair e

= Succ · bin

In pointwise form we write

bin (Succ x , Succ y) = Succ (bin (x , y))
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This definition of bin appears in [BGJ00] but it is not derived there. However,
many functions can be built from bin so it is useful to have derived it formally.
For example, if swap is the natural transformation that swaps a pair, then
the function that reverses a tree is

revtree : Tree
.

→ Tree

revtree = ([id ,Bin · swapTree | id ])TreeF

According to our new variant of the fold-equivalence law, the function that
reverses a power tree is

revpow : Pow
.

→ Pow

revpow = {[id , id | id , bin · swapPow ]}PowF

Unfortunately, bin is partial so rev can be partial too. It is not the case that
we can write a fold on trees that leaves the output unbalanced and then be
alerted to this error when we rewrite the fold for power trees using the law.
Although bin seems useful for writing programs, none of the programs thus
constructed are useful because they are all partial.

8.9 Laws for arbitrary combinators

Recall that we want to work out f from f ′ or f ′ from f in the equation below.

embedY · f = f ′ · embedX

We have already handled the case where f is an efficient reduction. Now we
consider other possibilities for f . If f is an identity function then so is f ′. If f

is a composition g ·h then we need a condition pushing embedY through g and
a similar condition for h. If f is a map operation then so is f ′ because em-
bedding functions are proper natural transformations. Embedding functions
can be shunted, so we have the following law for dealing with converses.

embedX · f ◦ = f ′◦ · embedY ⇐ embedY · f = f ′ · embedX

Pushing embed through zips is an application of the higher-order naturality
property of zips. For linear T and functional zips we have

(embedT )G · zipG,T = zipG,T · G embedT
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Suppose we extend the notion of embedding targets with T · G = T · G and
G · T = G · T , for polynomial or regular G . If we also extend the embed-
ding function accordingly then a law for pushing zips through embedding
functions.

embedNest ·G · zipG,Nest = zipG,NestR · embedG·Nest

This property also holds for bushes and we can use it to derive a zip for
bushes, but unfortunately such a zip must have a Bush-structure as an in-
termediate.

Finally, and most importantly, a law for pushing embedding functions through
initial algebras will enable us to deal with constructors in programs. We shall
use the fold-equality law to rewrite embednest as a simple fold ([h])NestF where

h = ([αList · Base (Tip,List ([Bin · Pair Tip,Bin | id ])TreeF ])
NestF

For some k , we have

embednest ′ : Nest
.

→ List · Tree

embednest ′ = ([ [Nil ,Cons] · Base (Tip, k)])NestF

The conditions on k are that, for some k ′,

k · [Nil ,Cons] = [Nil ,Cons] · Base (k ′, k)

k ′ · Bin = Bin · Pair k ′

k ′ · Tip = Bin · Pair Tip

If we combine the last two equations then the universal property of standard
folds gives us

k ′ = ([Bin · Pair Tip,Bin | id ])TreeF

Using the universal property again we get

k = ([ [Nil ,Cons] · Base (k ′, id) | id ])ListF

However, this is equal to List k ′ so we get the following expression for embednest ′.

embednest ′ : Nest
.

→ List · Tree

embednest ′ = ([h])NestF

h = [Nil ,Cons] · Base (Tip,List ([Bin · Pair Tip,Bin | id ])TreeF )
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Then a law for initial algebras is given by the definition of simple folds.

([h])NestF · αNestF = h · Base (id , (([h])NestF )Pair)

We can generalise this law to linear datatypes but not to non-linear datatypes
because we need to use the fold-equality law to derive it. Now we have the
ability to remove nests from programs. However, this power is not as useful as
we might imagine because we cannot always remove polymorphic recursion.
We shall demonstrate this by deriving the function hfoldnestr on lists of trees
that corresponds to hfoldnest on nests. We start by deriving two conditions
that are equivalent to and that can be used instead of the following:

embedY · f = f ′ · embedX

Since the embedding function is injective and not surjective, we have

embedT
◦ · embedT = idT

embedT · embedT
◦ ⊆ idT

Now we can apply embedY
◦ to both sides and get

f = embedY
◦ · f ′ · embedX

Alternatively, we can apply embedX
◦ to both sides and get

embedY · f · embedX
◦ ⊆ f ′

This can be strengthened to an equality if we are prepared to restrict the
domain of hfoldnestr to lists of trees that obey the constraint of being “nest-
like”.

hfoldnestr f ′

=
{

fact about embedding functions;
link between f and f ′ derived later

}

embedY · ([f ])NestF · embedNest
◦

=
{

definition of simple fold operator with αNestF shunted
}

embedY · f · Base (id , (([f ])NestF )Pair) · α◦ · embedNest
◦

=










see above; axioms of converse;
Base is a functor; definition of simple fold operator
assume: embedY · f = f ′ · Base (id , embedY ·Pair)











f ′ · Base (id , (embedY )Pair · (([f ])NestF )Pair) · ((embedNest)Pair)
◦) · h◦

157



=
{

same fact about embedding functions; definition of h

let thing = ([Bin · Pair Tip,Bin | id ])TreeF

◦

}

f ′ · Base (Tip◦, (hfoldnestr f ′)Pair · List thing) · αListF
◦

In summary, we have

hfoldnestr ′ : (NestF R
.

→ R) → (NestR
.

→ R)

hfoldnestr f ′ · αListF = f ′ · Base (Tip◦, (hfoldnestr f ′)Pair · List thing)

thing = ([Bin · Pair Tip,Bin | id ])TreeF

◦

8.10 Nested relators have membership

Oege de Moor has pointed out to the author that the existence of an em-
bedding function for a nested functor is all that is needed to show that the
functor has membership. We define the candidate membership as

∈T = ∈T ·embedT

If this really is a membership then it must be equal to the membership of
Chapter 6 because memberships are unique but it is difficult to show this in
any other way because the membership of Chapter 6 is not expressed as a
fold. To show that ∈T satisfies the characterisation of membership we begin
by stating that ∈T does.

T R · (∈T \id) = (∈T )\R

≡
{

embedT
◦ is a partial function

}

embedT
◦ · T R · (∈T \id) = embedT

◦ · (∈T \R)

≡
{

embedT
◦ is a proper natural transformation

}

T R · embedT
◦ · (∈T \id) = embedT

◦ · (∈T \R)

≡
{

law of division on both sides; embedT is a function
}

T R · ((∈T ·embedT )\id) = ((∈T ·embedT )\R)

≡
{

definition of ∈T

}

T R · (∈T \id) =∈T \R
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8.11 Embedding predicates

An embedding predicate takes a member of the embedding target and tests
whether it is a member of the target of the embedding function. Embedding
predicates are extensively studied in Borges’ thesis [Bor01]. We will derive the
embedding predicate for the datatype of non-empty nests defined below. It
may be possible, by finding out what properties of Base+ are actually used, to
generalise the derivation below to other linear datatypes, but unfortunately
it does not appear that our favourite datatype of nests is one of them.

Nest+ ≈ NestF+ Nest+

NestF+ X = Base+ · 〈Id ,X · Pair〉

Base+ (X ,Y ) = X + X × Y

The embedding target of Nest+ is NestR+ = List+·Tree where Tree is defined
as before and List+ is defined by

List+ ≈ ListF+ List+

ListF+ X = Base+ · 〈Id ,X 〉

Formally, we shall derive a function perfect that satisfies the equation.

perfect · embedNest+ = ktrue

Here, ktrue is the constant function that always returns the boolean value
true. We expect that the function perfect will traverse a list of trees, com-
paring heights of adjacent trees, so we shall refine it as follows.

perfect = iszero · ok

The function ok : NestR+ .
→ KInt returns the integer 0 when it is given a

non-empty list of trees that corresponds to a non-empty nest. The function
iszero : KInt

.
→ KBool returns the integer 0 when given the boolean value

true and is undefined otherwise. We state the equation below because the
left-hand side is equal to ([ktrue, outr ])NestF (by the universal property) and
the right-hand side is also equal to ([ktrue, outr ])NestF (by the fold-fusion law).

ktrue = iszero · ([kzero, outr ])NestF

Using our equations for perfect and ktrue, we rewrite our requirement to

ok · embedNest+ = ([kzero, outr ])NestF
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By the fold-equivalence law, ok is given by

ok = ([e, f | id ])ListF+ · List+ ([h, g | id ])TreeF

Here, we have assumed that the simple fold ([kzero, outr ])NestF can be rewrit-
ten using the fold-equality law to the efficient reduction {[e, f | g | h]}NestF . To
apply the fold-equality law, we first rewrite the argument of the simple fold.
For some k , we have

[kzero, outr ] = [e, f ] · (h + h × k)

Now the conditions of the fold-equality law are that, for some k ′,

k · [e, f ] = [e, f ] · (k ′ + k ′ × k)

g · (k ′ × k ′) = k ′ · g

g · (h × h) = k ′ · h

Using the coproduct fusion laws we conclude that e = id and h = kzero and
k ′ = k . Now we only have to solve the following conditions

outr = f · (kzero × k)

k · f = f · (k × k)

g · (k × k) = k · g

g · (kzero × kzero) = k · kzero

Expressed pointwise these conditions are

f (0, k y) = y

f (k x , k y) = k (f (x , y))

g (k x , k y) = k (g (x , y))

g (0, 0) = k 0

Choosing k x = x + 1 gives the following definition for perfect .

perfect = iszero · ([id , asc | id ])ListF+ · List+ ([kzero, bal | id ])TreeF

Here, asc and bal are undefined except in the cases

asc (x , x + 1) = x

bal (x , x ) = x + 1

Clearly, the fold on trees replaces every perfect tree with its height; it is
undefined on imperfect trees. The fold on lists test whether the result of
doing this on every tree in the list is [0, 1, 2, . . .]. The function perfect returns
the boolean value true when given a list of perfect trees with heights starting
at 0 and increasing by 1 each time. It is undefined when given anything else.
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Chapter 9

Conclusion

In this thesis, we defined some important generic operations on nested data-
types and then proved, using the universal properties and fusion laws of folds,
that these operations satisfy certain properties. For example we proved:

• the fold-equality law, which says when a simple fold and an efficient
reduction are equal;

• that the zip operation for linear nested datatypes satisfies Hoogendijk’s
requirements for zips;

• that nested relators have membership, so nested datatypes are con-
tainer types;

• the fold-equivalence law, which uses the embedding function to relate
folds on nested datatypes with folds on their embedding targets;

• nested functors on Fun extend to nested relators on Rel. This result
is crucial because it enables us to reason in an endorelator category
augmented by the operators of the relational calculus, which are lifted
from the allegory Rel.

Indeed, the whole thesis can be seen as an investigation of the universal prop-
erties and fusion laws of generalised folds and efficient folds, since everything
proved in the thesis follows from these theorems. Our first task in this con-
clusion will be to review the thesis from that perspective. In particular, it is
interesting to see how useful these laws are compared with their counterparts
for standard folds. That is why we set ourselves goals, like showing nested
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relators have membership, that we know are achievable for standard folds.

We shall then recall our framework for generic reasoning with fold opera-
tors and explain why it was not unduly complex. After that we shall propose
future work, treating Chapter 8 separately with a detailed discussion that
also summarises the chapter and its conclusions.

The universal property of simple folds has exactly the same form as the
universal property of standard folds; only the category is different. It follows
that many theorems proved for standard folds also hold for simple folds. For
example, it was trivial to prove a hylomorphism theorem for simple folds
and to prove that initial algebras in Coc (Fun) are also initial algebras in
Cor (Rel), once we had lifted the laws of power allegories. We also used
the universal property of simple folds to prove both the fold-equality law and
a law connecting initial algebras of nested datatypes with their embedding
functions. These applications are arguably more interesting because they are
not simply extensions of theorems for standard folds.

The universal property of generalised folds was used to prove two properties
of zips and to show, using the Knaster-Tarski theorem, that the generalised
fold operator preserves injectivity of relations. Unfortunately, generalised
folds do not have a hylomorphism theorem and they cannot be used zip
bushes. We derived a definition of the efficient fold operator from the defi-
nition of the generalised fold operator, but we were not able to prove that
the former had a universal property merely from the fact that the latter did.
Instead we had to show this directly.

The universal property of efficient folds defines a unique mapping on arrows
rather than a unique arrow, as is the case with other folds. This mapping
itself depends on an existentially quantified collection of mappings on arrows.
It is not surprising then that the universal property is difficult to grasp; it
is also a source of some disappointment for us as we could not apply the
Knaster-Tarski theorem to it in order to prove a hylomorphism theorem.
Also we could not derive fusion laws from the universal property directly,
nor could we use it to prove the fold-equality law.

However, we were able to prove both that nested functors in Coc (Rel)
commute with converse (making them objects of the endorelator category)
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and that generalised unfans are efficient folds. We noted that it was a good
idea to rehearse the proofs with nests first since some complex pattern match-
ing was required in the general case.

The operators for efficient folds and generalised folds can each be imple-
mented in terms of the other. Given what we have seen in this thesis, which
operator should be regarded as the more fundamental? Choosing the efficient
fold operator seems best because then we can implement the map operator
without using explicit recursion. The fact that efficient folds are sometimes
more efficient is not important when making this decision because this ad-
vantage only applies to a few datatypes.

It was Hinze [Hin99a] who discovered that a power tree can be flattened
either with a simple fold or with an efficient reduction. The fold-equality law
is a significant result because it allows us to convert from one type of fold to
the other according to our preferences: simple folds are easier to understand
operationally but efficient reductions have simpler type signatures.

The map-fusion law for generalised folds is used in three places: once to
prove that zips are higher-order natural, once to prove a fold-fusion law for
efficient folds, and once to prove an (uninteresting) map-fusion law for ef-
ficient folds. Reductions are closed under map-fusion and that is why the
fold-equality law, which looks at first sight to be an application of map-fusion,
cannot be proven that way. This illustrates how much harder it is to keep
track of typings for such laws when working in a category whose arrows are
natural transformations.

The map-fusion law for generalised folds has conditions, unlike its coun-
terpart for standard folds. These conditions could not be met for a certain
use of map-fusion that we encountered while retracing Hoogendijk’s proof
that zips are proper natural transformations; recall that Hoogendijk writes
zips as standard folds whereas we write zips as generalised folds. We had to
exploit the fact that zips are arrows in the endorelator category. In general,
we cannot always hope to find such convenient extra properties with which to
salvage proofs and the map-fusion law for generalised folds is, in conclusion,
disappointingly limited.

The map-fusion law for efficient folds has no conditions. We used it to prove
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that our candidate membership for nested relators satisfies the characterisa-
tion of membership. The proof closely mimics the already existing proof for
standard folds. The map-fusion law appears therefore to be a major selling
point of efficient folds over generalised folds. Indeed it is but the reader can
easily be misled about its power. It is not the case that one can perform
map-fusion on any generalised fold simply by writing it as an efficient fold.
The law for generalised folds ought to be (and yet is not) a special case of
the law for efficient folds so the latter is evidently not as general as it could be.

We therefore attempted to derive in three different ways a suitable gener-
alisation of the law for generalised folds. Our three approaches were based
on, respectively, the corresponding law for generalised folds, the universal
property of efficient folds and the fold-fusion law of efficient folds (where the
efficient fold to be fused is the map operation). However, no applications
have yet been found for any of the resulting laws.

The restricted nature of these fold-fusion laws has a big impact on our proofs
that nested functors in Coc (Fun) extend to nested relators in Cor (Rel)
and that efficient fold operators in Coc (Fun) extend to efficient fold op-
erators in Cor (Rel). We would like to use as few properties of Rel as
possible. That way the proof will extend to as many allegories as possible.
As it happens, we do not know any interesting allegories other than Rel, for
the purposes of program calculation, but we would still prefer for aesthetic
reasons to use only the axioms of categories and allegories. Unfortunately,
it appears that we must use both the fact that Rel is tabular and the fact
that Rel is a power allegory.

As we have already explained, the fold-fusion law for simple folds has the
same form as the fold-fusion law for standard folds. This is a useful fact
to bear in mind when attempting proofs. For example, Hoogendijk used
fold-fusion to show that the standard fold operator preserves total relations.
This suggests (correctly) we can prove in the same way that the simple fold
operator preserves total relations as well.

However, we cannot prove that the output of a generalised fold is always
total whenever the main parameter is, because the identity function is a sim-
ple fold and the type of the fold-fusion law dictates that only simple folds
yield a simple fold when fold-fusion law is applied. This is the opposite of
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what might be expected: surely a generalised fold, being more general than
a simple fold, is more likely to be the result of fold-fusion, not less? Our
experience in this thesis is that fold-fusion laws for generalised folds are less
useful than their counterparts for standard folds, just as was the case with
map-fusion laws, as we shall now explain.

For a fold of type T ·M
.

→ R and non-linear T , the condition for fold-fusion
contains collections of terms M pi and R pi . We cannot think of values for
the pi so we let M and R be constant functors and arrive at a concise law
for reductions. From this follows an even more concise law for efficient re-
ductions, which is used in Chapter 8. For linear datatypes, we can also get
a more concise law by setting the only pi to be the identity.

Perhaps the most difficult part of the thesis for the reader to grasp is the
framework we introduce in Chapter 3 for generic proofs involving generalised
folds and efficient folds. Although we motivated each aspect as it was intro-
duced, the use of hindsight gleaned from examples is a better way to satisfy
ourselves that our framework was no more complicated than necessary and
that it is indeed an important original contribution. This is what we shall
do now, covering linear datatypes and non-linear datatypes separately.

When proving properties of zips, Hoogendijk avoids case analysis by writing
each regular functor T in the form T A ≈ B (A,T A) for some bifunctor B .
Similarly, we avoid case analysis when adapting his proofs by writing each
linear T in the form T ≈ B · 〈Id ,T ·Q〉, for some bifunctor B and endofunc-
tor Q . The uses of the universal property of generalised folds are then similar
to, and only slightly more complex than, the uses of the universal property
of standard folds. To be sure, the form excludes datatypes, such as de Bruijn
terms, that can recurse in two different ways but it is easy to adapt proofs
to incorporate them: we simply need to replace the binary functor B with a
ternary functor. Indeed we can adapt our working to n-ary functors for any
n. We mentioned in Chapter 3 that there was a tradeoff between generality
and readability but no new insights on this issue arose during the course of
the thesis.

The functor Bush is defined to be isomorphic to a functor expression con-
structed from the composition Bush ·Bush. Its generalised fold operator must
fold each occurrence of Bush separately so it has a different form from the
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generalised fold operator for Nest . Therefore, we shall also write the fixed
point isomorphism in a form different from that of Nest and other linear
functors.

We introduced a single-case grammar following [BP99b], to describe all the
possible forms. We use this grammar to define operations by induction on
the structure of polynomial hofunctors without using case analysis. The ad-
vantage of this is seen in [BP99b] itself when the fusion laws are derived, and
the proofs in this thesis reinforce the point.

The number of parameters to the generalised fold operator varies with the
datatype. Both [BP99b] and [BGM] need to use ellipses when writing the
auxiliary parameters of a generalised fold for an arbitrary nested functor.
This notation is unsightly but that would be forgivable if it were not for the
greater problem that we cannot dictate the values for each auxiliary param-
eter when we specify generic operations as generalised folds. Our solution is
to index by the same set both the auxiliary parameters and the subsidiary
hofunctors. If we do this we can then we can describe succinctly how exactly
the value of each parameter depends on its type and hence on which param-
eter it is. The benefit of this indexing was demonstrated when we proved
that generalised unfans are efficient folds.

The generic operation is defined by induction so we use induction to rea-
son about it. That such proofs are easy to write was demonstrated when we
derived both the improved fusion laws and the efficient fold operator. It is
easy to adapt these proofs for hofunctors that are constructed from n-ary,
rather than binary, polynomial functors. It is important to note that these
proofs have no case analysis, whereas Hinze’s derivation of the efficient fold
operator has a five-way case analysis.

A criticism can be made, however, that the motivation of the generalised fold
operator is unconvincing and unduly complex. In particular, Hinze [Hin99a]
motivates his first generalised fold operator (for power trees) not by type
considerations but by explaining its purpose: the extra parameter is a re-
placement for the constructor that turns types into pairs. Consequently, his
transition from linear to non-linear datatypes is silent, whereas ours takes
some explanation. Nevertheless, the generalised folds we use are different
from those of Hinze and it is unclear whether Hinze’s motivation can be ap-
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plied to our generalised folds. Also, it may not be possible to define generic
operations such as membership and embedding functions in terms of Hinze’s
folds.

Finally, we separated out the conditions of the generic fusion laws in [BP99b]
into separate conjuncts that make no mention of either folds or maps on the
datatype. The benefits of this simplification are clear in the generic laws that
follow from the new fusion laws. They culminate in the fold-equivalence law
of Chapter 7.

Now we point out the shortcomings of this thesis and suggest possible future
work.

• We have mentioned higher-order nested datatypes only briefly in this
thesis, and that was when we wrote in Haskell a simple fold operator
for square matrices. However, we could not supply to the operator,
parameters for flattening a square matrix, nor for any other interesting
operations. Furthermore, it appears that the Haskell type class system
does not permit us to define a generalised fold operator. However, we
can at least try reasoning about folds on square matrices categorically
and then implementing them by explicit recursion.

It should be noted that the style of proofs favoured by Hinze in [Hin00d]
can be used to show theorems for arbitrary kinds. For example, Hinze
defines a generic map operator for arbitrary kinds and proves that it
preserves identities and composition. However, Hinze’s proofs are based
on logical relations and they assume a domain-theoretic structure on
which to conduct fixed point induction, whereas we do not, and our
proofs are simpler as a result.

We have managed to prove everything we wished to, and it is hard
to see how we could have done this without the use of category theory,
because many of our proofs are based on the universal properties of
folds. We also found that the fold operators were of great help because
of the structured recursion they offered.

• Recapping what we learned in Chapter 5, a hylomorphism is a fold af-
ter an unfold. A hylomorphism theorem says that a hylomorphism can
be written as a least fixed point. We concluded that a hylomorphism
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theorem for simple folds has to exist simply because a hylomorphism
theorem exists for standard folds.

However, generalised hylomorphisms are not fixpoints and efficient hy-
lomorphisms are, in a sense, higher-order fixpoints but we do not know
how to show that they are least fixed points. Therefore we can con-
jecture a hylomorphism theorem for efficient folds but we know there
cannot be a hylomorphism theorem for generalised folds. It may be
possible to prove the former by extending the Knaster-Tarski theorem
to efficient folds, if this even is possible.

Applications of hylomorphism theorems include algorithms that build
up and then consume some intermediate data structure written as a
nested datatype. It is hard to come up with concrete examples of such
hylomorphisms though due to our inexperience with unfolds on nested
datatypes. The paper [GJ98], though written for regular datatypes,
might help us.

Connected with this is the notion of coinductive datatypes. These
are used to represent infinite data structures such as infinite lists or, to
pick a more relevant example, the infinite trie structures of [Hin00b].
Whereas the inductive nested datatypes in this thesis have a simple
fold operator defined as part of their semantics, a coinductive nested
datatype has a simple unfold operator that follows immediately from its
definition. This operator can perhaps be used to build a trie structure,
from a list of the elements it must contain.

• We sketched how the τ -∆ calculus can be used to redo for multirelators
the proofs in the chapters on zips and membership. Perhaps we can
find a more readable notation than the τ -∆ calculus to use in its place.

• Wadler explains in [Wad89] how to construct free theorems for any
polymorphic function. Two special cases of the free theorem for foldr

are the fold-fusion and map-fusion laws for lists. It would be interesting
to see whether fusion laws can be obtained in the same way from the
generalised fold or efficient fold operators. They may be simpler than
the laws in [BP99b] or if they are identical then at least they would
then be motivated more clearly than at present.
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It does appear possible to derive a free theorem for reductions but not
for the more general case of generalised fold operations, which have
rank two type signatures. The reason why this causes a problem can
be understood if we look at the rules in [Wad89]. A new variable is in-
troduced in the fusion conditions for each universal quantifier, so there
are too many variables for us to be able to solve the conditions.

• We were not able to implement fans because they are non-deterministic.
However, we can simulate non-determinism in a functional language
by using a random number generator. We would particularly like to
implement fans for non-linear datatypes such as Bush because it is takes
some thought to generate non-trivial examples of bushes by hand as the
recursion involved is so bewildering. This would make it easier to test
programs that consume bushes. The fan operation can then be given
to the utility Quick Check [CH00], which uses such input randomisers
to test programs automatically.

• Now that we have considered the fusion laws of [BP99b] in depth, we
can examine the fusion laws for Blampied’s folds [Bla00]. Blampied dis-
cusses fusion laws in the conclusion of his thesis, where he suggests that
the laws must be phrased in terms of the way in which argument fami-
lies are constructed. As we explain in Chapter 2, Blampied constructs
fusion laws in an ad hoc way. However, he suggests in his conclusion
that the use of combinators for constructing algebra families may give
more general fusion laws.

• The scan operation [BdMH96] on trees labels each node with the result
of folding the subtree rooted at that node. It can be generalised to any
regular datatype by generalising subtrees to substructures. However, it
is difficult to generalise the notion of substructures to nested datatypes.
Each of the imperfect possibilities gives a different scan operation.

• We should find out whether our embedding predicate can be generalised
beyond non-empty nests.

We close the chapter with some ideas for future work that arise from the
previous chapter on embedding, but let us summarise that chapter first. Our
starting point was the embedding target given for nests given in [Oka98b].
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We defined an embedding function for nests, generalised it to an efficient
fold that took for its parameters the constructors of the embedding target,
and deduced an embedding target for each nested datatype. In doing so we
motivated Okasaki’s rules [Oka98a] for constructing embedding targets.

Borges suggests in [Bor01] a different embedding target and embedding func-
tion. We gave many reasons for preferring our own but a final reason comes
from hindsight: the many useful laws that could be proven with our version.
We also proved that our embedding function preserves flattened structure.
We noted that the output of embedding is not only isomorphic, but has a
structure that would match exactly the input if the constructor functions
were removed. This may be enough to characterise the embedding but un-
fortunately, we do not know how to formalise it.

The embedding function is a simulation relation between programs con-
structed using nested datatypes and programs constructed using regular
datatypes. We can use it to calculate for each program, a program free
of nested datatypes that simulates it. Our most general result for this is a
function that simulates constructor functions. It allows us to remove nested
datatypes from programs. Unfortunately, we cannot always remove polymor-
phic recursion at the same time. This was illustrated when we rewrote for
lists of trees the simple fold operator for nests.

The fold-equivalence law states that an efficient reduction on nests is simu-
lated by a fold on lists after a map with a fold on trees, an operation that
does not feature polymorphic recursion. This result would be a little more
pleasing, however, if the efficient reduction operator we constructed were not
quite so contrived.

More interesting results were obtained by concentrating on the special case
of tail-recursive datatypes. Our running example was the datatype Pow of
power trees. It illustrates what is so special about tail-recursive datatypes:
the embedding target identified by Okasaki’s rules is a composition of two
datatypes that is also isomorphic to the single datatype Tree of leaf-labelled
trees.

We therefore decided to make the embedding target of Pow be Tree in-
stead and changed the embedding function accordingly. Once we did this,
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we could derive a law asserting that efficient reductions on Pow are simulated
by standard folds on Tree. This law is simpler than the fold-equivalence law
but it is restricted to functions that have inputs and outputs of equal type.
With this law we derived the partial functions bin and tip that are simulated
by the constructors of Tree. It may be possible to do this for other datatypes
like that of AVL Trees.

Given these partial functions, we can construct an efficient reduction to re-
verse a power tree from the standard fold that reverses a tree. In other words,
we can write a program for a nested datatype by exploiting our greater famil-
iarity with regular datatypes. This could have been the basis of a very useful
programming method. Unfortunately, the programs we get are not guaran-
teed to terminate as they are constructed from partial functions. Worse still,
the partial functions are written using explicit recursion rather than fold or
map operators so we do not know of any rules for eliminating them.

In Chapter 1, we explained how to define power trees in Dependent ML
by constraining the datatype of leaf-labelled trees such that for each node,
both immediate subtrees have the same height. It is arguably easier to spec-
ify power trees as constraints in Dependent ML than as nested datatypes —
the difference is striking for more complicated datatypes [Xi99]. If we could
automatically convert from one to the other, then designing nested datatypes
would become much easier than it is now.

One approach might be to link Dependent ML refinements to Hinze’s re-
cursive bag equations [Hin01] since Hinze has already connected the latter
to nested datatypes. Xi has shown how to write other nested datatypes like
Braun trees, which have size constraints instead of height constraints, in De-
pendent ML as well [Xi99]. It seems possible to capture all tail-recursive
datatypes but not any other datatypes. For example, it does not seem possi-
ble to specify as a refinement of lists of trees, the constraint of being nest-like.

However, we can ask ourselves how much of a restriction this really is. Nests
have a tail-recursive variant, given by the type NestIter in Chapter 7, so
nests can be designed using the process we have mentioned. Hinze shows in
[Hin01] that every regular datatype can be written in a tail-recursive form
but this may not be true of nested datatypes: the datatype of de Bruijn
terms appears to be a counterexample.
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