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Abstract

Many programming languages provide means to split large pro-
grams into smaller modules. The module system of a language
specifies what constitutes a module and how modules interact.

This paper presents a formal specification of the module system for
the functional programming language Haskell. Although many as-
pects of Haskell have been subjected to formal analysis, the module
system has, to date, been described only informally as part of the
Haskell language report. As a result, some aspects of it are not well
understood or are under-specified; this causes difficulties in reason-
ing about Haskell programs, and leads to practical problems such as
inconsistencies between different implementations. One significant
aspect of our work is that the specification is written in Haskell,
which means that it can also be used as an executable test-bed, and
as a starting point for Haskell implementers.

Categories and Subject Descriptors

D.3.1 [Programming Languages]: Formal Definitions and The-
ory—semantics, Haskell; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features—Modules, packages, Recursion,
Haskell

General Terms

Documentation,Standardization,Languages

Keywords
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1 Introduction

Many programming languages claim some kind of module system
as part of their definition. In each case, the module system is in-
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tended to provide support for modular construction of software sys-
tems, but the precise interpretation of the term can vary quite sig-
nificantly from one language to the next. In some languages, the
module system provides a powerful mechanism for creating, using,
and reusing programming abstractions. Standard ML, for example,
has one of the most powerful module systems of this kind [9]. In
other languages, the main purpose of the module system is to sup-
port separate compilation, motivated by pragmatic issues that arise
during the development of large programs. In yet other languages,
the module system serves primarily as a mechanism for namespace
management, allowing programmers to control the visibility of de-
fined names, either to hide implementation-specific details or to ac-
cess parts of the program that would otherwise be out of scope. Of
course, this classification is somewhat subjective, often depending
on emphasis and the issues that are most directly targeted; some
programming language module systems make a good attempt to
serve several of these (or other) goals simultaneously.

The goal of this paper is to provide a formal description for the
module system of Haskell 98, which falls most directly into the
namespace management category that was described above. Al-
though many aspects of Haskell have been studied previously, we
are not aware of any other attempts to formalize its module system.
Moreover, as readers of the Haskell mailing list may confirm, the
module system is one of the least understood aspects of the lan-
guage, and one in which some of the greatest variations between
different implementations can be found.

In the spirit of the type system specification of Jones [5], this paper
is a typeset version of a literate Haskell script, which is an exe-
cutable specification of the module system. The number of lines of
code in the specification is about 200.

In writing the specification, we have focused more on clarity and
readability than efficiency. Nevertheless, the code presented in this
paper has been developed in the context of a full-scale front-end
for Haskell that works well in practice. For example, we have used
the front-end to parse and process the complete source for the Alfa
proof editor [?] (comprising on the order of 50,000 lines in 500
modules) in approximately 90 seconds (on a 1.9GHz Pentium 4).

1.1 Haskell Modules

A Haskell program is a collection of modules. A typical module
defines a number of entities (functions, data types, classes, etc.),
imports entities defined in other modules, and export some of the
locally available entities for use by other modules. Mutual depen-
dencies between modules are allowed.
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Environments

Within the context of a particular Haskell module—or, indeed, at
the prompt of an interpreter—there are top-level environments (also
known as symbol tables) that associate names with the entities to
which they refer. One of the main goals of this paper is to specify
and describe how these environments are constructed. Following
conventional wisdom, we might be tempted to use finite maps as
the representation for environments. For the semantics of Haskell,
however, finite relations are more appropriate because they allow
us to capture the possibility that a name has zero, one, or multiple
interpretations. More specifically, a name n with zero or multiple
interpretations causes an error only if it is actually used in the scope
of the environment. Of course, the type of error that is reported will
be different in each case: if there are no interpretations for the name,
then a reference to n indicates a reference to an unbound name; if
there are multiple interpretations, then it indicates an ambiguous
reference. In our specification we shall often refer to the relation
modeling the symbol table of a module as its in-scope relation.

By using relations, we could also give a semantics for the renaming
imports found in earlier versions of Haskell. Because we focus on
Haskell 98, we do not pursue this idea further here.

Interfaces

Another important aspect of a module is its interface. It defines a
set of names (with corresponding entities), which are made avail-
able for other modules to use. The main use of this feature is to
avoid cluttering other modules with spurious names. It also pro-
vides a simple abstraction mechanism: by controlling what names
are available to other modules, a programmer can enforce abstrac-
tions. Because the module interface is essentially a subset of the
symbol table of a module, we also model it as a relation. We often
refer to this relation as the export relation of the module.

1.2 Scope and contributions of this paper

The formal semantics given in this paper captures the semantics
of the Haskell 98 module system in the following sense: given a
collection of Haskell modules, the semantics

� computes the in-scope and export relations of each module.

� checks the correctness of all import and export specifications
in the modules.

By using the computed in-scope relations, one can determine for
each name that occurs in the body of a module which entities (zero,
one or more) it refers to. The local scoping rules within mod-
ule bodies are not part of the presented semantics, however, so it
does not tell you how to detect references to unbound or ambiguous
names occurring in module bodies. That check can be done one
module at a time, without further reference to the module system
semantics.

The specification can thus be seen as partitioning the semantics
of Haskell 98 programs into a module system specific part, and
a module system independent part. But apart from determining
what names are in scope, module boundaries affect the meaning
of Haskell programs in two other ways: the scope of a default dec-
laration is limited to the module it occurs in, and type ambigui-

ties caused by the monomorphism restriction1 are resolved locally
within each module.

The starting point for our work was the original Haskell 98 report
[10]. It has since, in part as a result of our work, been revised,
and the semantics presented in this paper is intended to be consis-
tent with the current version of section 5 of the report [2]. One
feature that is not yet covered by our semantics, is the visibility of
instances, as described in Section 5.4 of the report.

1.3 Outline of the paper

The rest of paper is organized as follows: Section 2 introduces re-
lations and operations on them; Section 3 gives definitions dealing
with names and entities; Section 4 presents an abstract syntax for
the module system; Section 5 describes the semantics of Haskell
modules, i.e., the meaning of import and export declarations; Sec-
tion 6 states criteria for the detection of invalid modules. Section 7
glues everything together and discusses some practical issues, such
as separate compilation. Related work is discussed briefly in Sec-
tion 8. Conclusions and further discussion appear in Section 9.

2 Relations

In this section, we present a number of operators for manipulating
relations. To represent relations we use the Set library provided
with the GHC and Hugs Haskell implementations. However, the
specification in this paper uses only the operators defined here, so
any other representation would do as well.

type Rel a b = Set (a;b)

Next we describe a number of simple operations on relations. Most
of them require the elements to be in the class Ord. This is due
to the implementation of the Set library. A different representation
may relax or strengthen these requirements.

The operations listToRel and relToList allow us to switch between
relations represented as sets, and relations represented as associa-
tion lists.

listToRel :: (Ord a;Ord b) ) [(a;b)] ! Rel a b
listToRel xs = mkSet xs

relToList :: Rel a b ! [(a;b)]
relToList r = setToList r

The empty relation is emptyRel. It does not relate any elements at
all.

emptyRel :: Rel a b
emptyRel = emptySet

The combinators restrictDom and restrictRng restrict the domain
and range, respectively, of a relation r, to the elements satisfying a
predicate p.

restrictDom :: (Ord a; Ord b) )
(a ! Bool) ! Rel a b ! Rel a b

restrictDom p r = listToRel [(x;y) j (x;y)  relToList r; p x]

1More correctly referred to as the annoying monomorphism re-
striction :-)

2



restrictRng :: (Ord a; Ord b) )
(b ! Bool) ! Rel a b ! Rel a b

restrictRng p r = listToRel [(x;y) j (x;y)  relToList r; p y]

To access the domain and range of a relation, we use the functions
dom and rng, respectively.

dom :: Ord a ) Rel a b ! Set a
dom r = mapSet fst r

rng :: Ord b ) Rel a b ! Set b
rng r = mapSet snd r

Sometimes it is useful to apply a function to all elements in the
domain or range of a relation. This is the task of mapDom and
mapRng, respectively.

mapDom :: (Ord b; Ord x) )
(a ! x) ! Rel a b ! Rel x b

mapDom f = mapSet (n(x;y) ! (f x; y))

mapRng :: (Ord a; Ord x) )
(b ! x) ! Rel a b ! Rel a x

mapRng f = mapSet (n(x;y) ! (x; f y))

We also need to be able to compute the intersection and union of
relations. Elements are related by the intersection of two relations,
if they are related by both relations. They are related by the union
of two relations, if they are related by either one of them.

intersectRel :: (Ord a; Ord b) )
Rel a b ! Rel a b ! Rel a b

r ‘intersectRel‘ s = r ‘intersect‘ s

unionRels :: (Ord a; Ord b) ) [Rel a b] ! Rel a b
unionRels rs = unionManySets rs

The function minusRel computes the complement of a relation with
respect to another relation. The new relation relates all those ele-
ments that are related by r, but not by s.

minusRel :: (Ord a; Ord b) )
Rel a b ! Rel a b ! Rel a b

r ‘minusRel‘ s = r ‘minusSet‘ s

Given a predicate p over the domain of a relation r, partitionDom
produces two new relations: the first one is the subset of r whose
first component satisfies p, and the second is the rest of r.

partitionDom :: (Ord a; Ord b) )
(a ! Bool) ! Rel a b ! (Rel a b; Rel a b)

partitionDom p r = (restrictDom p r; restrictDom (not . p) r)

So far we have been thinking of relations as sets of pairs. An alter-
native view is to think of them as functions, which given an element
of the domain, return all related elements in the range. The function
applyRel converts a relation to a function form.

applyRel :: (Ord a; Ord b) ) Rel a b ! a ! [b]
applyRel r a = setToList (rng (restrictDom (== a) r))

Finally we define the operation unionMapSet, which is the “bind”
operator of the set monad. It is not an operation on relations, but
rather on arbitrary sets. It is missing from the Set library, so we
define it here.

unionMapSet :: Ord b ) (a ! Set b) ! (Set a ! Set b)
unionMapSet f = unionManySets . map f . setToList

3 Names and Entities

Having described the Haskell module system as a mechanism for
name space management, it is natural for us to begin its specifica-
tion with a discussion about names and entities.

3.1 Entities

The basic idea is that names in a program refer to entities. Enti-
ties get introduced in a program by declarations. For example, a
declaration such as f x = x + 2 will introduce one entity: a func-
tion named f. For the purposes of this paper, we are only interested
in top level entities, as they are manipulated by the module sys-
tem. There are at least six varieties of entities in Haskell: functions,
type constructors, value constructors, field labels, classes, and class
methods. One could perhaps also consider class instances to be en-
tities as they are also introduced by declarations. We do not do that
here because, in Haskell 98, there is no way to refer to them by
name.

The module system specification is parametrized by the type of en-
tities, so we represent it using an abstract data type:

data Entity = ...
isCon :: Entity ! Bool
owns :: Entity ! Set Entity

instance Ord Entity where ...

The function isCon is intended to distinguish between value con-
structors and other entities, as they need to be handled differently
in “hiding” imports as opposed to normal imports and exports (see
Section 5).

The function owns defines the subordinate relation between enti-
ties. Type constructors “own” their value constructors and field la-
bels; classes “own” their methods.

The requirement that entities are in the Ord class is stronger than
strictly necessary. For the module system to work, we only need an
equality operation. The ordering is required by the implementation
of relations as sets (described in Section 2).

Entities will be written in a different font, and annotated with the
module where they were originally defined. For example fM refers
to the entity f originally defined in module M.

3.2 Names

Our specification is also parameterized by the types used to model
names. We distinguish between three different kinds of names:

� simple names (of type Name) are used in declarations, and to
name entities exported by a module.

� program identifiers (whose type is QName) are used in the
main text of the program and refer to entities. They may be
either qualified or unqualified.

� module names and name qualifiers (with type ModName) are
used to name modules, in import declarations, in export lists,
and in qualified names.
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We use the type Name whenever we want to indicate that only sim-
ple (i.e. not qualified) names are allowed, and QName when both
simple and qualified names may be used. As for entities, the mod-
ule system only needs equality operations on names, but to use the
Set data structure we require the Ord instance.

data Name = ...
data ModName = ...
data QName = ...

getQualifier :: QName ! Maybe ModName
getQualified :: QName ! Name
mkUnqual :: Name ! QName
mkQual :: ModName ! Name ! QName

instance Ord Name where ...
instance Ord ModName where ...
instance Ord QName where ...

We define a couple of useful functions to manipulate (possibly qual-
ified) names. We note that if qual is applied to an already qualified
name, it will replace the old qualifier (however in this specification
we always apply it to unqualified names).

isQual :: QName ! Bool
isQual = isJust . getQualifier

qual :: ModName ! QName ! QName
qual m = mkQual m . getQualified

It is also convenient to define an overloaded function toSimple,
which produces the unqualified part of a name. It does nothing
on values of type Name as they cannot be qualified. For values of
type QName it strips the qualifiers.

class ToSimple t where
toSimple :: t ! Name

instance ToSimple Name where
toSimple = id

instance ToSimple QName where
toSimple = getQualified

In examples throughout the paper we shall use String for Name,
ModName, and QName. This is not the case in our prototype imple-
mentation, as it defeats the purpose of having three different types
in the first place. We made this choice to keep the examples read-
able.

4 Abstract Syntax

As described in the Haskell 98 report [2, Section 5.1], a Haskell
module consists of a name, an export specification, a number of
import declarations and a number of local definitions. We use the
following data structure to represent modules:

data Module = Module f
modName :: ModName;

modExpList :: Maybe [ExpListEntry];
modImports :: [Import];
modDefines :: Rel Name Entity g

The concrete syntax of Haskell allows an abbreviated form, where
the module name and the export specification are omitted. This

is an abbreviation for a module with name “Main” and an export
specification exporting a single entity named “main” [2, Section
5.1] and will in our abstract syntax be represented in its expanded
form.

An element of the export specification is either an entity name or a
module name as described by the data structure ExpListEntry. For
entities with subordinate names, a programmer may also provide a
subordinate export list. This list is modeled by the data structure
SubSpec. It specifies which of the subordinate entities currently in
scope are to be exported.

data ExpListEntry = EntExp (EntSpec QName)
j ModuleExp ModName

data EntSpec j = Ent j (Maybe SubSpec)
data SubSpec = AllSubs j Subs [Name]

Example: For the Haskell module:

module A (f ;C(..);module M) where ...

the field modExpList would be:

Just [EntExp (Ent “f” Nothing);
EntExp (Ent “C” (Just AllSubs));
ModuleExp “M”]

2

The structure EntSpec is used in both import and export lists. Be-
cause qualified names are allowed in export lists, but not in im-
port lists, we use the parameter j to capture the different types of
EntSpec.

At first it may seem that we may eliminate AllSubs by thinking of
it as just an abbreviation for all the methods/value constructors of
its owner. This however is not the case, as its meaning depends on
what entities are currently in scope, and this is one of the things the
module system computes.

The lack of an export list is a special form of export specification:
one saying that only—and all—locally defined entities are to be
exported [2, Section 5.2]. It is not an abbreviation for the empty
export list, or the export list containing only module M (where M
is the current module). We represent this explicitly by using the
Maybe type constructor in the modExpList field.

To make use of entities defined in other modules, programmers have
to supply import declarations. Their purpose it to specify what enti-
ties are to be imported, which module provides the required entities,
and valid ways to refer to the imported entities.

data Import = Import f
impQualified :: Bool;
impSource :: ModName;

impAs :: ModName;

impHiding :: Bool;
impList :: [EntSpec Name] g

The impSource field is the only field that must be specified explic-
itly in an import specification. It specifies the name of the module
from which entities will be imported. All remaining fields take on
a default value, if not specified explicitly.
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There are two flavors of import declarations: the ones specifying
what names are to be imported, and the ones specifying what names
are not to be imported (sometimes called “hiding” imports). The
boolean field impHiding distinguishes between those two.

The field impList contains the actual specification, which has struc-
ture similar to the export list of a module. There are two differences:
there are no “module” imports, and all names in the list must be
simple. To capture this similarity we reuse the EntSpec data type.
If this field is omitted the specification is assumed to be [], and the
impHiding field is set to True. This has the effect of importing all
exported entities of the source module.

Sometimes it is more convenient to qualify names imported from
a module not using the module name, but some other alias instead.
This is particularly useful if the name of the source module is quite
long and a programmer needs to refer often to imported entities
by their qualified names. The field impAs stores this alias. If the
alias is omitted, this field is assumed to have the same value as the
impFrom fields (i.e. we use the module name in qualified names).

Finally in some situations it might be preferable to only import enti-
ties with their qualified names. This can be done with the so called
qualified imports. The field impQualified distinguishes qualified
from normal imports.

Example: The import:

import Prelude as P hiding (and;Bool(True))

is represented by the data structure:

Import fimpQualified = False;

impSource = “Prelude”;

impAs = “P”;

impHiding = True;

impList = [Ent “and” Nothing;

Ent “Bool” (Just (Subs [“True”]))]
g

2

5 The semantics of imports and exports

Now we are ready to present a method for computing the in-scope
and export relations of the modules in a program. The process pro-
ceeds in two stages. In this section we compute the relations, ig-
noring any errors that might occur (e.g. ambiguous or undefined
exports). In Section 6, we check that each computed relation sat-
isfies a number of additional requirements and produce appropriate
error messages if any problems are detected. This approach sim-
plifies the specification as we can concentrate on a single issue at a
time. It also results in better error messages being reported to the
users of our prototype system, because the module system analysis
can continue, even in the presence of ambiguities. In Section 7 we
glue everything together.

The computation phase, described in the remainder of this section,
is itself split in three parts: first we describe how to export/import
a single entity, next we present how to combine the meaning of
entity specifications to obtain the meaning of complete import and
export specifications. Finally, we describe how to handle mutually
recursive modules.

5.1 Importing or exporting an entity

We already noted the similarity in the abstract syntax for export-
ing and importing an entity—they both made use of the EntSpec
data structure. It is therefore not surprising that those two cases are
handled in essentially the same manner. Our goal is to determine
which name-entity pairs in an in-scope or export relation satisfy a
certain EntSpec specification. The function mEntSpec formalizes
this process.

mEntSpec :: (Ord j;ToSimple j) )
Bool ! -- is it a hiding import?
Rel j Entity ! -- the original relation
EntSpec j -- the specification
! Rel j Entity -- the subset satisfying the specification

mEntSpec isHiding rel (Ent x subspec) =
unionRels [mSpec; mSub]
where
mSpec = restrictRng consider (restrictDom (== x) rel)
allSubs = owns ‘unionMapSet‘ rng mSpec
subs = restrictRng (‘elementOf ‘ allSubs) rel
mSub =

case subspec of
Nothing ! emptyRel
Just AllSubs ! subs
Just (Subs xs) !

restrictDom ((‘elem‘ xs) . toSimple) subs

consider
j isHiding && isNothing subspec = const True
j otherwise = not . isCon

Example: Before we describe mEntSpec in detail, we present an
example of how it is going to be used. Consider the module:

module M (f ; M.List(..); Show(showList)) where
import A(g)
...

The function mEntSpec is applied to each of the three entries in the
export list, to determine the subset of the in-scope relation each of
them matches. Similarly, it is applied to the entry g of the import
list, to determine which of A’s exports come in scope. 2

The EntSpec structure consists of two components: the “main”
specification, and possibly a subordinate specification. The mean-
ing of the entire specification is the union of its components. The
subset of rel which matches the “main” specification is mSpec. It is
computed by restricting the domain of the relation to contain only
names matching the specification. It turns out we might need to
restrict the range of the relation as well, the reasons for this are dis-
cussed shortly. Typically (but not always!) mSpec will be a relation
only relating a single name to an entity, representing the fact that
the specification is unambiguous.

Continuing with the example above, Show is the “main” specifica-
tion, and mSpec would be:

Show 7! ShowPrelude

The meaning of the subordinate specification depends on the mean-
ing of the “main” specification. The set allSubs contains all subor-
dinate entities of all possible interpretations in mSpec. To compute
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the subordinates that are in-scope/exported, we restrict rel so that
names may only refer to entities in allSubs — the result is subs. In
our example allSubs would contain the entities of the methods in
the Show class:

fshowPrelude;showsPrecPrelude;showListPreludeg

Now suppose that showsPrecPrelude is not in scope, perhaps be-
cause the programmer explicitly hid it, when importing the Prelude.
Then subs would be:

show 7! showPrelude

Prelude:show 7! showPrelude

showList 7! showListPrelude

Prelude:showList 7! showListPrelude

Finally, we need to compute what part of subs matches the subor-
dinate specification. If there was no specification, the result is the
empty relation, if the specification was of the form AllSubs we re-
turn subs, as by construction it contains all subordinates which are
in-scope or exported. Finally, if a programmer specified an explicit
list of subordinates, we need to restrict subs so that it only contains
names in the explicitly provided list. Since subordinate specifica-
tions contain only simple names (i.e. of type Name), and in-scope
relations contain possibly qualified names (i.e. of type QName) we
first strip any qualifiers using the method toSimple. This has the
effect that a subordinate will be exported if it is available in scope
with either qualified or unqualified name [2, Section 5.2]. In the
ongoing example, we had a subordinate name list, containing one
name: “showList”. So the restricted subs relation will be:

showList 7! showListPrelude

Prelude:showList 7! showListPrelude

Next we describe a quirk in the Haskell module system, which gives
rise to the isHiding parameter and the auxiliary predicate consider.
The entities in Haskell may be grouped in two non-interchangeable
groups: classes and type constructors on the one side, all other en-
tities on the other. In the body of a module, it is always possible to
determine which type of entity a name refers to. A name may refer
to two different entities without the risk of an ambiguity. A problem
occurs with import and export lists, as they may not provide enough
context.

Example: It is quite common to use the same name for both a type
and a value constructor, as types and values do not mix:

module A (Env) where
newtype Env a = Env [(String;a)]

There is no context in the export list to indicate if the programmer
intended to export the type constructor Env, the value constructor
Env, or perhaps both. 2

To avoid the potential ambiguity illustrated in the example, Haskell
98 uses the following strategy to decide what is to be im-
ported/exported.

Because only classes and type constructors may “own” other enti-
ties, the presence of a subordinate name list indicates that the pro-
grammer is referring to the type or class in scope. The situation is
more complicated if the name does not have a subordinate list, as
then there are two different policies, depending on where the name
occurs.

The first policy is that names starting with a capital letter always
refer to types or classes. It is used for names occurring in the export
list of a module, and in non-hiding imports. So in particular, in the
above example, only the type constructor Env will be exported, and
not the value constructor. This means that in order to export/import
a value constructor, a programmer has to include it in the subordi-
nate list of the relevant type constructor. A consequence of this is
that it is not possible to export just a value constructor without its
type. In practice this is not a very big problem.

The second policy is used for “hiding” imports, and it says that cap-
ital names may refer to both types/classes and value constructors.
One reason for this difference is that it is sometimes useful to hide
just a value constructor without hiding its type. If the first policy
was used for hiding imports this would not be possible. We note
that if a name refers to both a type and a value constructor, both of
them are hidden.

A (non Haskell 98) alternative to having two separate policies is to
have a single more flexible policy that applies in both cases. Later
in the paper (Section 9) we will describe a simple modification to
the first policy to achieve this.

Here is an example illustrating what the policies do.

Example:

import A (Env) -- import only the type
import A hiding (Env) -- hide the type and the value
import A hiding (Env()) -- hide only the type

2

To implement this rule we defined the auxiliary predicate consider.
The parameter isHiding tells us if we are in a hiding import (the
special case). If we are, then we consider all entities as valid inter-
pretations for the name in the “main” specification. However if we
are using mEntSpec in an export list or a normal import, then we do
not consider value constructors.

5.2 Export relations

Now that we know how to handle a single entry in the export list,
we are ready to compute the export relation of a module. This is the
task of the function exports.

exports :: Module ! Rel QName Entity ! Rel Name Entity
exports mod inscp =

case modExpList mod of
Nothing ! modDefines mod
Just es ! getQualified ‘mapDom‘ unionRels exps

where
exps = mExpListEntry inscp ‘map‘ es

The parameter inscp models the in-scope relation of the module. It
is necessary, as the interface of a module is essentially a subset of
inscp. If the programmer omitted the export specification of a mod-
ule, we just export the locally defined entities by using the modDe-
fines field of the module under consideration. Alternatively if an
explicit export list was present, we take the union of the meanings
of all listed entries. To obtain a proper export relation we remove
all qualifiers. Note that after removing the qualifiers (or even be-
fore that) we might end up with a relation containing ambiguous
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names. This is not valid in Haskell, but we will delay detection of
such invalid solutions until a later pass.

We have already seen that there are two forms of specification that
may appear in an export list. If we see an entity specification, we
just use mEntSpec to determine the subset of inscp which matches
it. The other possibility is that we see an export of the form module
M. In this case, the Haskell 98 report [2, Section 5.2, item 5] states
that the result is the subset of inscp containing precisely those en-
tities, which may be named with both some simple name x and a
qualified name M.x

mExpListEntry ::
Rel QName Entity ! ExpListEntry ! Rel QName Entity

mExpListEntry inscp (EntExp it) = mEntSpec False inscp it
mExpListEntry inscp (ModuleExp m) =

(qual m ‘mapDom‘ unqs) ‘intersectRel‘ qs
where
(qs;unqs) = partitionDom isQual inscp

5.3 In-scope relations

In this section we specify how to compute the in-scope relation of
a module. This is done by the function inscope:

inscope :: Module ! (ModName ! Rel Name Entity)
! Rel QName Entity

inscope m expsOf = unionRels [imports; locals]
where
defEnts = modDefines m
locals = unionRels

[mkUnqual ‘mapDom‘ defEnts;
mkQual (modName m) ‘mapDom‘ defEnts]

imports =
unionRels $ map (mImp expsOf ) (modImports m)

An entity is in scope if it is either locally defined, or if it is imported
from another module. It is therefore necessary to know what the
exports of other modules are. The parameter expsOf is a function
mapping module names to their exports.

Every locally defined entity may be referred to with at least two
names: the simple name used in its definition, and a qualified name,
obtained by prefixing with the name of the module. For example if
a module A defines an entity with simple name f, a programmer
may refer to it as either f or A.f [2, Section 5.5.1]. The part of the
in-scope relation containing local definitions is locals.

Import declarations are cumulative [2, Section 5.3] and so the im-
ported entities (imports) are the union of the entities imported by
each declaration.

Example: The declarations:

import A hiding (f )
import A (f )

import everything from module A, as the first one imports every-
thing but f, while the second one imports just f. 2

The function mImp is used to compute what entities come in scope
through a single import declaration.

mImp :: (ModName ! Rel Name Entity) ! Import !
Rel QName Entity

mImp expsOf imp
j impQualified imp = qs
j otherwise = unionRels [unqs; qs]
where
qs = mkQual (impAs imp) ‘mapDom‘ incoming
unqs = mkUnqual ‘mapDom‘ incoming

listed = unionRels $
map (mEntSpec isHiding exps)

(impList imp)
incoming
j isHiding = exps ‘minusRel‘ listed
j otherwise = listed

isHiding = impHiding imp
exps = expsOf (impSource imp)

First we define the relation listed, which contains exported entities
matching any of the entity specifications in the list of the import
declaration. Next, we compute the subset of the export relation of
the source module, which matches the specification (incoming). If
we have a normal import, incoming is exactly listed. If however we
are dealing with a “hiding” import, we need to take all those entities
which are exported, but are not in listed.

Having computed incoming, we now need to convert it to an in-
scope relation. To do that, we adjust the names of the entities ac-
cording to the import declaration. If we have a “qualified” import,
we introduce only qualified names for the imported entities (qs),
otherwise we also add the unqualified names. The qualified names
are computed by simply qualifying all names in incoming with the
impAs specification of the declaration.

5.4 Recursive modules

The reader might have noticed that to compute the exports of a mod-
ule we need to know what is in scope, and to compute what is in
scope we need to know certain exports. If we allow for mutually
recursive modules, then our equations become mutually recursive.
In this section, we show how they are solved.

The idea is that the export and in-scope relations for a group of mu-
tually recursive modules are computed at the same time (as they all
depend on each other). This means that the compilation unit of a
compiler is not a single module, but a strongly connected compo-
nent of mutually recursive modules. In fact, one could process all
modules at once and still get the same result, but this will not be
very practical for large systems. For this reason, we will work with
strongly connected components of modules, and assume that they
are processed in dependency order.

The function computeInsOuts computes the in-scope and export re-
lations of the modules in a strongly connected component. The
argument otherExps is a function mapping module names to ex-
port relations. It needs to be defined only for modules in earlier
(dependency-wise) strongly connected components.
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computeInsOuts ::
(ModName ! Rel Name Entity) ! [Module] !
[(Rel QName Entity; Rel Name Entity)]

computeInsOuts otherExps mods = inscps ‘zip‘ exps
where
inscps = computeIs exps
exps = lfpAfter nextExps $

replicate (length mods) emptyRel

nextExps = computeEs . computeIs

computeEs is = zipWith exports mods is
computeIs es = map (‘inscope‘ toFun es) mods

toFun es m = maybe (otherExps m) (es !!)
(lookup m mod ixs)

mod ixs = map modName mods ‘zip‘ [0..]

lfpAfter f x = if fx == x then fx else lfpAfter f fx
where
fx = f x

The function computeInsOuts starts by assuming that the modules
in the strongly connected component do not export anything. It then
keeps applying the function nextExps to obtain successive approx-
imations to the exports of each of the modules until a fixed point
is reached. Thus, the export-relations in a strongly connected com-
ponent are the least fixed point of the function nextExps. Similarly,
the in-scope relations are the least fixed point of computeIs . com-
puteEs, but using the well known fact that f ix( f :g) = f ( f ix(g: f )),
we obtain the definition of inscps used above.

The function nextExps computes the next approximation to the ex-
ports of each module. Given the current exports of each module,
it first determines what are the corresponding new in-scope rela-
tions, and based on that computes the new exports. It makes use of
the helper functions computeEs and computeIs, which are general-
izations of exports and inscope respectively, to work with strongly
connected components rather than just single modules.

The functions computeEs and computeIs work in a similar way:
they apply exports (or inscope respectively) to all modules in the
strongly connected component. The main difference between the
two is that the export relation of a module depends only on the
in-scope relation of the same module, while the in-scope relation
depends on the export relations of many modules. As a result, be-
fore mapping inscope over the strongly connected component, we
need to compute a function that maps module names to their re-
spective export relations. This is done by toFun. If the module is in
the current strongly connected component, the result of toFun just
projects the appropriate export relation. Otherwise, we use the pa-
rameter otherExps to lookup the exports of a previously processed
module.

Example: In this example we consider a module that imports itself,
and use the algorithm above to compute its in-scope and export
relations:

module A (B.f ) where
import A as B
f = ...

We start with an empty export relation, and then compute the in-
scope relation:

f 7! fA;A: f 7! fA

Note that this contains only the locally defined names, because A
imports only from itself, and we have assumed it does not export
anything. Because the in-scope relation does not relate B.f to any-
thing, nothing is exported again, and so we reach a fixed point. Thus
module A does not export anything, and it has one entity in-scope:
fA. This entity may be referred to by either A.f, or just f. 2

Example: This example is a slight variation on the previous one,
two modules are involved: A and B:

module A (B.f ) where
import A as B
import qualified B
f = ...

module B where
f = ...

The dependencies between those two are: A depends on A and B,
and B does not depend on anything, so we first analyze B. Since
it has no export specification, it exports all locally defined names
and nothing else, so we have the following in-scope and export re-
lations:

in-scope exports
f 7! fB;B: f 7! fB f 7! fB

Next we analyze module A. The steps in the fixed point calculation
are:

in-scope exports
1. /0
2. f 7! fA;A: f 7! fA;B: f 7! fB f 7! fB
3. f 7! ffA; fBg;A: f 7! fA; B: f 7! fB f 7! fB

We start with the empty export relation. The in-scope relation we
compute contains the locally defined names and also the imports.
In this case the imports are just B: f 7! fB. On the next iteration,
f 7! fB gets exported. So the next in-scope relation contains more
imports: f 7! fB, and B: f 7! fB, which came in through the import
A declaration. These do not add anything new to the exports of the
module, so we have reached a fixed point. 2

We defined the import and export relations of modules in terms
of the least fixed point of a certain function. To ensure that the
algorithm above terminates, we need to ensure that this least fixed
point exists. Now we examine this issue in more detail.

We used lists to represent the in-scope and export relations of a
group of modules. Since relations may be ordered by inclusion,
we may also order lists (of equal length) of relations by a point-
wise ordering. In a similar fashion we obtain a lattice structure on
the lists of relations by using the lattice structure of relations point-
wise. The lattice obtained in this way is finite, as each module
may only define finitely many entities and each entity may only
have finitely many names. Names get associated with entities in
two ways: by local declaration, in which case an entity receives
two names (qualified and unqualified); and by import declaration,
in which case an entity receives either one or two names. Since
there are only finitely many local and import declarations, an entity
may only have finitely many names.
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It then follows from the Knaster-Tarski theorem [1], that nextExps
has a least fixed point if it is monotonic with respect to the above
ordering. The inscope and exports functions are monotonic with
respect to the relation ordering, as they are essentially filters that
produce larger outputs when given larger inputs. The same holds
for computeEs, computeIs, and their composition nextExps.

6 Error Detection

In the previous section we described how to compute the in-scope
and export relations of mutually recursive modules. The algorithm
produces a result even for modules containing errors. We now ex-
amine what properties need to be satisfied by correct solutions, and
how we can detect “bad” solutions.

Even though this specification aims for clarity rather than efficiency
or usability, we believe that it is important not only to detect in-
valid solutions, but also to say why they are invalid. The data type
ModSysErr classifies the different kinds of problems which might
occur.

data ModSysErr
= UndefinedModuleAlias ModName
j UndefinedExport QName
j UndefinedSubExport QName Name
j AmbiguousExport Name [Entity]
j MissingModule ModName
j UndefinedImport ModName Name
j UndefinedSubImport ModName Name Name
deriving Show

The meanings of the individual errors are as follows:

� UndefinedModuleAlias means that an export list contained an
entry of the form module M, where M is not a valid alias.

� UndefinedExport refers to an entry in an export list, for which
there is no corresponding entry in the symbol table.

� UndefinedSubExport is similar to UndefinedExport, except
that it also reports the owner of the subordinate name.

� AmbiguousExport reports an exported name, together with all
the possible entities that it might refer to.

� MissingModule is reported when an import declaration refers
to a module that is missing.

� UndefinedImport is reported when an import declaration at-
tempts to import (or hide) an entity that was not exported by
the source module. The name of the source module is part of
the error.

� UndefinedSubImport is similar to UndefinedImport, except
that it also reports the owner of the undefined subordinate en-
tity. We report the owner specified by the programmer in the
import list.

In this section we preset functions to validate the import and export
specifications of a module. The task of the function chkModule
is to ensure that a module is valid from the point of view of the
module system. To achieve this we need to check: (1) that the
module interface is unambiguous; (2) that all referenced modules
are present, and if so, (a) that each import declaration is valid; (b)
that the export specification is valid. If some referenced modules
are missing, we report that, but skip the remaining checks, since
they might produce bogus error messages.

chkModule ::
(ModName ! Maybe (Rel Name Entity)) !
Rel QName Entity !
Module !

[ModSysErr]

chkModule expsOf inscp mod
= chkAmbigExps mod exports

++ if null missingModules
then chkExpSpec inscp mod

++ [err j (imp;Just exps)  impSources;
err  chkImport exps imp]

else map MissingModule missingModules
where
Just mod exports = expsOf (modName mod)

missingModules =
nub [impSource impj(imp;Nothing) impSources]

impSources =
[(imp;expsOf (impSource imp))jimp modImports mod]

The parameter expsOf is a function, which maps module names to
their export relations. The parameter inscp is the in-scope relation
of the module we are checking. The result of chkModule is a list of
errors detected in the module.

The export specification and the import declarations are checked by
separate functions. chkModule provides the necessary information
to each function, and collects their results in a single list of errors.

A module should not contain ambiguities in its interface. It is how-
ever possible—in fact quite common—to have the same name refer
to a type constructor and a value constructor. As we previously
discussed, this is not considered to be an ambiguity as we may de-
termine from the context which one is meant.

chkAmbigExps :: Rel Name Entity ! [ModSysErr]
chkAmbigExps exps = concatMap isAmbig

(setToList (dom exps))
where
isAmbig n =

let (cons;other) = partition isCon (applyRel exps n)
in ambig n cons ++ ambig n other

ambig n ents@( : : ) = [AmbiguousExport n ents]
ambig n = []

The function chkAmbigExps detects ambiguities in the export re-
lation of a module (exps). For each name in the domain of exps,
we use applyRel to compute the list of entities it may refer to. The
function isAmbig detects any ambiguities in this list, considering
value constructors and other entities separately.

We have already encountered some similarity between import dec-
laration and export specifications. We exploit this again, by using
the same function chkEntSpec to ensure that entries in export and
import lists are defined. The parameters are essentially the same
as in the mEntSpec function of the previous section, but we shall
briefly describe them again. The boolean isHiding tells us if we
are in the special case of hiding imports. The two functions errUn-
def and errUndefSub are new, and are needed so that we can report
different errors for the import and export cases. Finally, we have
the specification we are checking, and the relation modeling either
the exports of the source module, or the symbol table of the current
module.
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chkEntSpec :: (Ord j; ToSimple j) )
Bool ! -- is it a hiding import?
(j ! ModSysErr) ! -- report error
(j ! Name ! ModSysErr) ! -- report error
EntSpec j ! -- the specification
Rel j Entity ! -- the relation to check

[ModSysErr] -- detected errors

chkEntSpec isHiding errUndef errUndefSub
(Ent x subspec) rel =

case xents of
[ ] ! [errUndef x]
ents ! concatMap chk ents

where
xents = filter consider (applyRel rel x)

chk ent =
case subspec of

Just (Subs subs) !
map (errUndefSub x)

(filter (not . (‘elementOf ‘ subsInScope)) subs)
where
subsInScope =

mapSet toSimple
$ dom
$ restrictRng (‘elementOf ‘ owns ent) rel

! [ ]

consider
j isHiding && isNothing subspec = const True
j otherwise = not . isCon

Despite the large number of arguments, the function is quite simple.
We lookup what the name in the specification (x) may refer to, and
if nothing was found we report an error. In case it was defined we
check the subordinate list in two steps. First we compute the names
of subordinate entities of ent which are also in rel (subsInScope).
Then we make sure that all listed subordinates are in subsInScope.
We do not consider ambiguities in chkEntSpec, as this is the task of
the function chkAmbigExps. The predicate consider has the same
role as in mEntSpec.

We now describe how to check an export specification. It may be
either implicit or explicit. Implicit specifications are always cor-
rect. For an explicit specification we need to check all entries in the
exports list. For entries of the form module M we need to ensure
that M is a valid alias in this module. An alias is valid, if it is either
introduced by an import declaration, or is the name of the current
module. For other entries we need to check that the entities they
refer to are defined by using the generic chkEntSpec.

chkExpSpec :: Rel QName Entity ! Module ! [ModSysErr]
chkExpSpec inscp mod =

case modExpList mod of
Nothing ! [ ]
Just exps ! concatMap chk exps

where
aliases = modName mod : impAs ‘map‘ modImports mod

chk (ModuleExp x)
j x ‘elem‘ aliases = []
j otherwise = [UndefinedModuleAlias x]

chk (EntExp spec) = chkEntSpec False
UndefinedExport UndefinedSubExport
spec inscp

The remaining check we have is the validity of import declarations.
The process is quite similar to the checks of the export specification
and we have already done all the hard work in chkEntSpec. The
function chkImport just uses chkEntSpec to ensure the correctness
of the entries in the specification list of the import.

chkImport :: Rel Name Entity ! Import ! [ModSysErr]
chkImport exps imp = concatMap chk (impList imp)

where
src = impSource imp
chk spec =

chkEntSpec (impHiding imp)
(UndefinedImport src) (UndefinedSubImport src)
spec exps

7 The semantics of a Haskell program

Having defined the meaning of imports and exports, and how to
detect errors, we can now glue everything together and define the
meaning of a Haskell program.

The semantics of a Haskell program (with respect to the module
system) is a mapping from a collection of modules to their corre-
sponding in-scope and export relations. It can be given by a func-
tion of type:

mProgram ::
[Module] ! Either [[ModSysErr]]

[(Rel QName Entity;Rel Name Entity)]

Given a list of modules, the function either reports a list of errors
found in each module, or returns the in-scope and export relations
of the modules. There is a one-to-one correspondence between po-
sitions in the module list and positions in the resulting lists.

Using the functions defined Sections 5 and 6, we define the function
mProgram as follows:

mProgram modules
j not (null errs) = Left errs
j otherwise = Right rels
where
rels = computeInsOuts (const emptyRel) modules
errs = zipWith (chkModule expsOf ) inscps modules

(inscps;exps) = unzip rels
expsOf m = lookup m mod exps
mod exps = map modName modules ‘zip‘ exps

It is assumed that implicit imports of the Prelude [2, Section 5.6.1]
have been made explicit before mProgram is called. It is also as-
sumed that all modules in the argument list have unique names.

While the function mProgram is sufficient to explain the meaning
of a Haskell program, it would probably not be very practical in a
Haskell implementation, since it does not support separate compi-
lation. Instead of mProgram, we have implemented a more sophis-
ticated function based on the same key ingredients: the functions
computeInsOuts (which supports separate compilation) and chk-
Module, described in sections 5.4 and 6 respectively. Our Haskell
front-end processes modules one strongly connected component at
a time, caches module interfaces between runs, and has better er-
ror handling. We omit the implementation of these practical details
from this presentation.
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8 Related work

We are aware of at least two attempts to formalize the static se-
mantics of Haskell, but neither of them fully specifies the module
system. In the static semantics by Peyton Jones and Wadler [6], the
specification of imports was left as future work. The authors rated
it as one of the highest-priority items on their todo list. More re-
cently, Faxén also worked on the static semantics of Haskell [3]. In
this work, he gave semantics to some parts of the module system,
but also deviated from the report, opting for what he considered
to be a simpler (although non Haskell 98 compatible) specification
(Section 4.2, [3]). Faxén’s work is consistent with the report in that
it does not specify how to treat mutually recursive modules.

Our specification of the Haskell module system is relatively inde-
pendent of Haskell itself. In this respect it is similar to Leroy’s work
on ML’s module system [7]. There have been numerous studies on
advanced module systems, and the use of type theory to formalize
them [4, 8]. In the same spirit, there has recently been a proposal for
a replacement of the Haskell module system by Shields and Peyton
Jones [11].

9 Conclusions and discussion

We have provided a formal specification of the Haskell 98 module
system, based on the Haskell 98 language report. The process of
writing the specification was valuable as we identified a number of
areas of the report, which were unclear, or underspecified, and as
a result the report has been improved. In particular, while the re-
port mentions that mutually recursive modules are allowed, there is
no mention of how they should work. Our specification provides
a clear semantics for mutually recursive modules, and as far as we
are aware, is the only implementation of the Haskell module system
that supports this feature. It is possible to compile programs with
mutually recursive modules using GHC [12, Section 4.9.7], but the
programmer has to provide a special interface file, essentially im-
plementing this aspect of the module system manually.

The Haskell module system aims at simplicity and has a clear
goal—to manage name uses in a program. Its design has largely
been driven by practical concerns, which has both positive and neg-
ative consequences. It works in practice and most of the time it
does not place large cognitive overhead on the programmer. Our
specification is not too complicated, and the few thorny parts of it
point to possibilities for improvements in the design of the module
system.

One of the complications is caused by the special rules used to dis-
tinguish between type and value constructors in import/export lists.
These seem somewhat ad-hoc and are a source of unnecessary com-
plexity. Many of the difficulties arise from the choice of meaning
for capitalized names in import/export lists:

� in export lists and “normal” imports they refer to types or
classes

� in “hiding” imports they refer to types, classes, or value-
constructors

An alternative choice is to make them always refer to value-
constructors. The presence or absence of a subordinate list may
be used to distinguish types and classes, from value-constructors.
Here is a table summarizing the difference between the current and
the alternative interpretation:

what to name: current alternative
just type or class: T or T() T()
just constructor: - T

As we see, currently there are two different ways to name just a type
or a class, and no way at all to just name a value-constructor. With
our alternative interpretation, the meaning of an entry does not vary
depending on the context (i.e., no need for special cases for “hiding”
imports). This seems like an attractive idea, but unfortunately it
changes the meaning of many Haskell programs. As such it is not
feasible to introduce in Haskell 98, but perhaps it can be considered
in future revisions of the language.

Haskell turned out to be a very suitable language for writing exe-
cutable specifications. We found its clear syntax to be particularly
valuable, providing a high-level of abstraction. The ability to type-
check and execute the specification not only improved our confi-
dence in its correctness, but also enabled us to compare it against
the behaviors of a number of implementations such as Hugs and
GHC.
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