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ABSTRACT
FranTk is a new high level library for programming Graphical User
Interfaces (GUIs) in Haskell. It is based on Fran (Functional
Reactive Animation), and uses the notions of Behaviors and Events
to structure code. Behaviors are time-varying, reactive values. They
can be used to represent the state of an application. Events are
streams of values that occur at discrete points in time. They can be
used, for instance, to represent user input. FranTk allows user
interfaces to be structured in a more declarative manner than has
been possible with previous functional GUI libraries. We
demonstrate, through a series of examples, how this is achieved, and
why it is important. These examples are elements of a prototype, Air
Traffic Control simulator. FranTk uses a binding to the popular
Tcl/Tk toolkit to provide a powerful set of platform independent set
of widgets. It has been released as a Haskell library that runs under
Hugs and GHC.
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Graphical User Interfaces, Haskell, Functional Reactive
Programming.

1. INTRODUCTION
Over the last few years there has been a great deal of interest in
the development of functional GUI libraries. These have used a
number of different mechanisms to allow programmers to
structure their code. Some such as TkGofer [14] have used
traditional callback based approaches. These make it difficult to
structure complex interactive systems as the structure of the
application is turned inside out [2]. The application cannot call
the GUI library, instead the application must be called by the
library. A more popular solution has been the use of imperative
concurrency [4]. This style allows an application to be structured
as a number of threads that execute concurrently and consume
user input. However, these approaches require a programmer to
handle the intricacies of full concurrent programming, dealing
with mutual exclusion and race conditions between processes.

These approaches all force a programmer to use a very imperative
style of programming; an unfortunate requirement in a declarative
language.

In contrast, the User Interface Management Community has been
investigating the use of declarative, “constraint” based approaches
for programming interactive systems [5]. Here an application is
defined as having a behaviour, responding to user input and
updating its state. The appearance of the interface is defined as a
function of the application’s state. One of the most well-known of
these systems, Garnet [8], was implemented in Lisp. However, it
still relied on side-effects to implement changes in the interface.

This approach supports application/interface separation, where
one model of the application is maintained, allowing multiple
views of the same state to be easily defined. Support for
application/interface separation is provided by many modern
programming languages, such as Java, which embraces the
Model-View-Controller paradigm in its Swing toolkit (see Section
9). The need for this sort of support can be seen in many modern
systems, from alternative views of a set of files in a Microsoft
Windows folder, to text editors such as Emacs that allow the same
file to be edited by multiple windows. Use of a declarative style
greatly benefits application/interface separation. A programmer
can define a single function stating how the interface should
display the application state, rather than being forced to state how
it should be modified with every change to the application. A
declarative definition can therefore be more succinct and easier to
read, making it easier to ensure that the interface provides a
correct representation of the application.

The difference between those languages developed in the
functional community and the User Interface Management
Community has been described as being “Declarative in the Small
versus Declarative in The Large” [5]. The languages developed in
the functional programming community have been declarative in
the small, allowing individual aspects of a system to be written in
a purely functional style. However, they have been imperative in
the large, forcing programmers to structure their programs as a set
of imperative actions. In contrast, the user interface management
community has concentrated on providing systems that are
declarative in the large, allowing user interfaces to be structured
as a set of constraints or functions. However, being based largely
in imperative languages they have not provided the advantages of
higher order functions, and referential transparency when building
individual components.

There have been a few notable attempts to overcome these
difficulties and combine the advantages of both. These include
Fudgets[1], Clock [5] and Pidgets [12] (see Section 9). One other
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important language seems to lend itself to this style of
programming. Fran [3] (Functional Reactive Animation) is a
language developed for constructing interactive animations. It
uses a high-level modelling approach which allows programmers
to describe what an animation should look like, not how it should
be implemented. The key notions are the use of behaviors and
events. Behaviors are time-varying, reactive values, while events
are streams of values that occur over time.

This paper presents FranTk, an extension of Fran to take it from
graphics programming to the construction of complex user
interfaces. The major new contributions in FranTk are as follows:

� FranTk lifts Fran’s behaviors and events to widgets. This is
the key to the declarative style of programming. The appearance
of a widget can be defined for all time in terms of FranTk
combinators (Section 3). This declarative style is supported
when programming both static and dynamic interfaces (Section
7,8). The construction of systems with dynamically changing
number of components can be difficult in many GUI systems,
and frequently requires a very imperative and sometimes
cumbersome style of programming.

� FranTk extends Fran with support for hierarchical interactive
displays, allowing access to input from individual components
rather from one monolithic window. (Section 3)

� FranTk separates visual composition from semantic wiring.
(Section 3.3). These two concepts are fundamental to GUI
programming. The first involves geometric composition. For
instance, placing one widget above another. The second
involves connecting user input from a widget to the application
code. This separation is made possible by the introduction of
listeners, consumers that respond to user input (Section 4).
FranTk provides an algebra to compose these listeners in a
functional style (Section 5).

� FranTk provides a more efficient implementation of the core
Fran combinators. This implementation improves on Fran’s
data-driven model and use of weak references (Section 10).

2. FRAN – AN INTRODUCTION
Fran is a high level language for constructing reactive animations.

2.1 Fran benefits
There are five key aspects that makes it a good candidate for
forming the basis of a User Interface development language.

1. Behavioral Modelling.

Fran uses first-class behavior values to model changing values in
an animation. A behavior value is a value that changes over time.
It can be thought of as type Behavior a = Time -> a.

As an example we can make a circle that follows the wave path
shown in figure 1. Its position is a function of time; it moves
along the screen as time passes, and up and down as the sin of
time.

Figure 1 – A wave motion ball
 moveXY time (sin time) circle

 moveXY :: Behavior Double-> Behavior Double
        -> ImageB -> ImageB

 time :: Behavior Double

2. Event Modelling.

Events, like behaviors, are first-class values. An event is a stream
of values that occurs at discrete points in time. It can be thought
of as type Event a = [(Time,a)].

We can use events to model happening in the real world, such as
button presses, and predicates based on behavior values, such as
collisions between objects. For instance, a left button press is
simply lbp u, where u is a User argument. An event that occurs
once, when the time is greater than 5, is onceE (predicate
(time > 5)). They can be combined as lbp u .|.
onceE (predicate (time > 5)).  The type signatures
for the functions we have used are shown below.

 lbp ::User -> Event ()
 predicate :: Behavior Bool -> Event ()
 onceE :: Event a -> Event a
 (.!.) :: Event a -> Event a -> Event a

3. Declarative Reactivity.

Much of the power of Fran comes from the interaction of
behaviors and events. We can define “reactive behaviors”, that
change as events occur. We can therefore give a declarative rather
than an imperative semantics to state changes [3]. For instance,
we can describe a color-valued behavior that starts out blue, and
then changes to red when the left button is pressed, and changes
to green when the right button is pressed.

 blue ‘stepper‘ lbp u -=> red
                .|. rbp u -=> green

 stepper :: a -> Event a -> Behavior a

4. Declarative Composition.

Animations can be constructed compositionally. We can create
two balls following wave motions, one that moves as the sin and
one as the cos of time. Note that these two animations evolve
concurrently, and yet are described in a simple, deterministic
manner.

 moveXY time (sin time) circle
  ‘over‘ moveXY time (cos time) circle

5. Models and Views.

We can define a behavior to represent the state of an animation
and then define a function that transforms this state into an image.
For instance, we can describe a moving object abstractly in terms
of a data type with behaviors. It has a colour and a location.

 data Obj = Obj (Behavior Color)
                (Behavior Point2)

We can then define a function that turns this colour and location
into an image.

 view (Obj pos col) =
  move pos (withColor col circle)

 move :: Behavior Point2 -> ImageB -> ImageB
 withColor :: Behavior Color->ImageB->ImageB

The features discussed above provide a powerful approach to
building interactive systems. We could describe the state of an
interactive system as a behavior, reacting to user input events.
These components could be easily composed in a declarative
manner. We could also support a Model-View style of
programming where the state of the application is described
abstractly and the appearance described as a function of that state.



3

2.2 Fran problems
Fran as it exists in its basic form has two serious conceptual
restrictions that must be overcome to extend it to interactive
systems design.

1. Hierarchical input. The most significant problem with Fran
is that it does not provide any support for constructing
hierarchical interactive displays. All user input is accessed
through the User argument passed to the animation. This
represents input at the level of the entire graphics window.
There is no way to access interaction from only a single
component, such as an individual button on the screen. The
only conceivable mechanism would be to use global mouse
coordinates and calculate whether they were within the
bounding box of a given object. This approach does not lend
itself at all to building hierarchical collections of
components, each with their own coordinate systems.  This is
not usually a major problem in animations; however, the
notion of individual interaction objects is critical to the
development of standard user interfaces.

2. Dynamic collections. Fran provides behavioral values. These
could be used to represent behavior collections of objects.
For instance, we could display a dynamic list of objects.
However if we were to render such a behavior collection,
each time an element were to be added the entire collection
would have to be redrawn. This would be prohibitively
expensive if we needed to continually recreate complex
compound collections. Fran requires some notion of a
incremental behavioral collection that could be both viewed
as a behavior and efficiently and incrementally rendered.

In developing FranTk we have overcome both these problems. We
demonstrate through a series of examples how this was done.
These examples are elements of a prototype Air Traffic Control
(ATC) simulator. After presenting the individual elements, we
will discuss (in Section 9), how well FranTk scaled to handling
the complete application.

3. A SIMPLE TIMER
We begin with a simple example to introduce some basic
concepts. The ATC system contains a timer showing the time, in
seconds, that have elapsed since the start of the simulation (see
Figure 2). The concepts necessary to produce this interface will be
presented in this section.

Figure 2 – A simple example

3.1 Introducing Components
The basic conceptual notion in FranTk for handling interaction
objects is the Component. For instance, in our example we have
two label components displayed one beside the other. They appear
in a window component.

A Component is an action that produces a WidgetB. The
action will be performed once, when the widget is to be displayed.

type Component = GUI WidgetB

This definition uses the GUI monad, which is an extension of the
standard IO monad. Values of type GUI a represent actions that
may have some side effect on the user interface, such as creating a
label, and return a value of type a.

A WidgetB is an abstract data type representing a Widget
Behavior. It is similar to Fran’s ImageB type representing Image
Behaviors. An Image Behavior models both geometric
composition of different images and temporal compositions, as
the image changes over time. In the same way a Widget Behavior
represents both geometric compositions of different widgets and
temporal compositions, as the appearance may also be dynamic.
As with Fran’s ImageB, defining WidgetB as an abstract data
type allows for an efficient implementation.

These basic components can be composed geometrically using
simple, functional combinators. For instance, our example is made
of two labels, the title label and the timevalue label. We
can place them using beside.

timer :: Component
timer = title ‘beside‘ timevalue

above :: Component -> Component-> Component

Though components represent imperative actions that will each
produce a widget, we can treat them as an abstract value and so
compose them declaratively. This satisfies our aim of supporting a
compositional style of programming in FranTk.

FranTk distinguishes between three different types of user
interface component, based on how they can be displayed. We
have basic components (Component), such as labels and
buttons, which can be composed using combinators such as
beside. Secondly, we have graphical components
(CComponent), such as lines and circles, which can be placed in
canvases, and manipulated using animation combinators, based on
those provided in Fran. Finally, we have toplevel window
components (WComponent), which will contain basic
components. These can be composed by piling them into groups
and can be placed at different locations on the screen.

For the purposes of graphical and temporal composition, there is
no difference between a button and a label. They can both be
placed in the same way, and so need only be represented by a
single component type. Many previous systems have used
different types to distinguish between them. This typing was
required to allow access to user input from the component, and to
apply changes to the component, such as resetting the label, later
on. This approach makes it more difficult to geometrically
compose a list of widgets as they must be transformed to an
untyped display object first. As we will see in the next section, in
FranTk all the information necessary to define a component is
passed in as a set of parameters so this sort of extra transformation
can be avoided. This approach is very significant and is discussed
further in Section 4.3.

3.2 Configuring Components
In our example we have two labels with different appearances.
One has a static appearance; one a dynamic appearance. We create
a label using the mkLabel function and configure it using the
text and textB functions.

mkLabel :: [Conf Label] -> Component
text :: Has_text w => String -> Conf w

We use mkLabel to make a label. It takes a list of configuration
information, in this case, some text to display. As with TkGofer
[14] we use type classes to guarantee that only the correct
configuration information can be applied to any widget.  The
text function takes a String and returns a configuration option
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that can be applied to any object that is a member of the
Has_text class. This class includes labels, as they are capable
of displaying text.

We therefore define the static title label as follows.

title :: Component
title = mkLabel [text “Time Elapsed:”]

In FranTk, we extend basic configuration with dynamic
configuration options. Instead of taking a static value a widget can
be given a dynamic behavior value. This approach is the key to
the declarative nature of FranTk. Rather than having to carry out
imperative updates to change a component’s appearance, we can
define, using a behavior, what it will look like for all time. Given
a behavioral model of an application, we can therefore define the
appearance of the interface simply as a function of the
application's state.

We can define the timer label as follows.

timevalue :: Component
timevalue = do
 time <- timeTick 1
 mkLabel [textB (lift1 show time)]

textB ::Has_text w=>Behavior String->Conf w
timeTick :: Time -> GUI (Behavior Time)
lift1 :: (a -> b) ->Behavior a->Behavior b

The function timeTick creates a behavior that represents the
time, and changes at a given frequency. In our example, the time
value changes every second. The function lift1 maps a function
over a behavior, to yield a new behavior. This shows the benefit
of the GUI representation of a Component. We can create some
local state for a component while still thinking of it as a value.

3.3 Rendering Components
When we have defined an interface in terms of a Window
Component, to render it onto the screen we use render. This
will perform the action necessary to produce the window widget
behavior, and then display it.

render :: WComponent -> GUI ()

Finally, to run the GUI actions that we have produced we use
start. This runs the action and then starts up the tcl-tk event loop.
This event loop will run until the graphical user interface quits, at
which point it will return.

start :: GUI () -> IO ()

As start and render are often used together there is a
composite function display.

display :: WComponent -> IO ()
display = start . render

To test the timer component on its own, we would place it in a
window, and so define main as follows.

main :: IO ()
main = display (mkWindow [] timer)

mkWindow :: [Conf Window] -> Component
-> WComponent

4. AN INTERACTIVE EXAMPLE
So far we’ve dealt with an interface with a dynamic appearance
but with no interaction. This section demonstrates how interaction
is handled in FranTk.

Figure 3 – An interactive example

Consider the interface shown in Figure 3. It shows a simplified
version of the tactical data entry widget from the ATC system,
which allows the controller to tell the aircraft to change flight
level. The proposed level can each be altered, by either typing a
value or using the slider. If an invalid value is typed into the text
field, it will have no effect. Once the level has been set the
controller presses send to fire off the message. The entry and scale
widgets must maintain a consistent view of one underlying value.
The send button will have to sample it to generate a value. We
therefore have multiple views of some data.

4.1 Representing State in FranTk
To represent the state in the example we use a BVar. A value of
type BVar a represents some abstract mutable state of type a.

data BVar a

We can create a new BVar within the GUI or the IO monad.
Most commonly we use them within the GUI monad.

newBVar :: a -> IO (BVar a)

mkBVar :: a -> GUI (BVar a)

It is possible to get a behavior from a BVar.

bvarBehavior :: BVar a -> Behavior a

The behavior therefore represents the flight level value at any give
point in time.

It is possible to get an event from a BVar

bvarEvent :: BVar a -> Event a

The event from a BVar generates an occurrence every time the
value of the BVar is updated.

In our example we would therefore represent the state of the flight
level editor as a value of type BVar Int.

The use of BVars is therefore a fundamental and important feature
of FranTk. They provide us with a mechanism to represent state,
but to use it in a functional style.

4.2 Using State in FranTk
What can we do with a behavior? We can tell the slider and edit
widget to display the behavior values that we get from the BVar.

We can tell the slider to use the value of the BVar with
scaleValB. This sets the value of the slider to that of an integer
behavior. (We will fill in the rest of the definition later.)

scale :: BVar Int -> Component

scale bv =
 mkHScale
  [scaleValB (bvarBehavior bv)] (...)

scaleValB :: Behavior Int -> Conf w
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As shown in section 3.2 we can tell a widget to show a string
behavior using textB, and we transform the integer behavior into a
string behavior using lift1. (We will fill in the rest of the
definition later.)

entry :: BVar Int -> ... -> Component
entry bv =
 mkEntryRtrn
  [textB (lift1 show (bvarBehavior bv))]
  (...)

We can therefore easily provide multiple views of the state of an
application.

4.3 Listeners - Updating State in FranTk
We can set the value of a BVar using its Listener.

bvarInput :: BVar a -> Listener a
bvarUpdInput :: BVar a -> Listener (a -> a)

A listener is an abstract type, but it can be thought of as
Listener a = a -> IO (). A value of type Listener
a, is a function, that given a value of type a, performs a side-
effecting IO action with it. Listeners are therefore consumers of
values.

The listener accessed by bvarInput updates the BVar with its
given value. This will alter the value of the BVar’s  behavior and
generate an event occurrence. The listener accessed by
bvarUpdInput  updates the BVar  by applying the given
function to its current value.

We can therefore complete the definition of the slider as follows.

scale bv = mkHScale [..] (bvarInput m)
mkHScale :: [Conf Scale] -> Listener Int
         -> Component

The function mkHScale takes a listener argument, which is
passed the current value every time the slider updates the BVar
with its changed value. The slider simply updates the value of the
BVar with its changed value.

The introduction of listeners is a very important design choice.
Initially this choice may seem strange. The use of behaviors and
events encourages a more functional style of programming.
However, the use of listeners introduces an imperative concept
into this functional approach.

The introduction of listeners brings an important benefit. We give
component-making functions a consumer (listener) argument
which allows them just to yield their visual aspect in the form of a
Component. This approach makes geometric composition simple.
The alternative would be to return a pair of visual and semantic
handles, in the form of a Widget and an Event providing access to
all user input on that widget. This alternative makes component
composition more complex. To compose two components we
would now require to compose their Widget and Event parts. This
style can become tiresome when composing complex collections
of components, as programmers are forced to continually compose
and break down compound events.

4.4 Composing Complex Listeners
FranTk introduces combinators that allow listeners to be
composed in a functional style. As an example, consider the
definition of the text entry widget in our example.

entry :: BVar Int -> (String -> Maybe Int)
      -> Component

entry bv parse =
 mkEntry [...]
         (comapMaybeL parse (bvarInput bv))

mkEntryRtrn :: [Conf Entry]
-> Listener String -> Component

The function mkEntryRtrn takes a listener argument, which is
passed a String representing the state of the entry widget, every
time the return key is pressed.

We therefore need to make the entry talk to the listener provided
by the BVar . We do this using comapMaybeL.

comapMaybeL :: (b -> Maybe a)
-> Listener a -> Listener b

Figure 4 shows how comapMaybeL works. It is a version of the
standard mapMaybe function; however, it applies what appears
to be an inverse function to a listener. This is because listeners are
consumers, not producers, of values. It creates a new listener that
consumes values of type b. When it hears a value, it applies the
mapping function, and if this returns a value of type Just a, it
passes it to its argument listener.

Figure 4 – The tellL listener

In the definition of entry we therefore produce a listener that
parses the entry String, and only updates the application’s state, if
it is valid.

4.5 Sampling the State
When the "send" button is pressed, we must sample the state of
the BVar and generate a message.

sendB :: BVar Int->Listener Int-> Component
sendB bv send =
 mkButton [text "send"]
          (snapshotL_ bv send)

We can make a listener snapshot a behavior and consume its
current value using snapshotL_.

snapshotL_ :: BVar a -> Listener a
           -> Listener b

As shown in Figure 6, every time the new listener is fired it
samples the behavior and passes its current value to its argument
listener.

Figure 5 – The snapshot listener

This is therefore a very useful combinator, as it is often necessary
to sample the state of the application when some user input
occurs.

Listener expects
values of type a

apply f
comapMaybeL
Listener

Value of type
b

Listener 1

   bsnapshotL_

   behavior b
 a
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We can now complete the definition of the tactical data entry
widget. It takes as parameters a callsign to display as the title of a
window, an initial value to use for the level, and a listener to pass
the generated message to. It creates a BVar to model the state of
the proposed level, and then creates a window containing the
given components.

levEditor :: String -> Int -> Listener Int
          -> WComponent
levEditor callsign init send = do
 bv <- mkBVar init
 mkWindow [title callsign]
   (nabove [beside (mkLabel [text "Lev"])
                   (entry bv parse),
            scale bv,
            sendB bv send])

title :: String -> Conf Window
nabove :: [Component] -> Component

5. THE LISTENER ALGEBRA
FranTk provides an algebra of listener combinators. Though a
listener is essentially an imperative callback, this algebra allows
us to treat and compose them in a functional manner. This algebra
is dual to the event algebra provided in Fran. Each operation in
the event algebra has a corresponding operation in the listener
algebra. We will first present the most significant operations in
the listener algebra, and then define formally how these relate to
the event algebra.

5.1 The Listener Combinators
The null listener is neverL, which does nothing with any value it
receives.

neverL :: Listener a

To merge two listeners we use mergeL, which that takes two
listeners and produces a new listener that consumes values and
passes them to both its argument listeners.

mergeL :: Listener a -> Listener a
  -> Listener a

Figure 6  - The merge listener

We can therefore define, allL, a combinator that merges a list of
listeners.

allL :: [Listener a] -> Listener a
allL xs = foldr mergeL neverL xs

There is a comap function on listeners. In contrast to the standard
map function, this applies what appears to be an inverse function
to a listener. It produces a listener that consumes values, and
applies the given function to these values before passing them on
to the given listener.

comapL :: (b -> a) -> Listener a
       -> Listener b

A commonly used variant of comapL is tellL, which simply
overrides the value a listener is passed.

tellL :: Listener a -> a -> Listener b
tellL l a = comapL (const a) l

There is a filter function on listeners. This consumes values and
passes them on to the given listener, if they satisfy the given
predicate.

filterL :: (a -> Bool) -> Listener a
        -> Listener a

We can create a one shot listener that consumes one value and
then behaves as neverL using onceL.

onceL :: Listener a -> Listener a

For instance, we might require a button that could only ever be
pressed once. We could define this using onceL.

mkOnceButton :: [ConfB Button]

             -> Listener a -> Component

mkOnceButton cs l = mkButton cs (onceL l)

As seen in Section 4.5, we can make a listener snapshot a
behavior and consume its current value. The more general version
of the snapshot function is snapshotL. Every time the new
listener consumes a value it samples the behavior and passes the
pair of values to its argument listener.

snapshotL :: Behavior b -> Listener (a,b)
          -> Listener a

There is a listener equivalent of the scanl function.

scanlL :: (a –> b -> a) -> a
       -> Listener a
       -> Listener b

This works as shown in Figure 7. The listener’s current value
starts with the initial value provided. Every time the listener
consumes a value b, it applies its update function  f to its current
value a and the new value, b. It passes (f a b) to the argument
listener, and updates its current value as well.

Figure 7 - scanlL

This combinator can be very useful when we require to
accumulate a value every time a listener is fired. For instance, we
could make a listener count up, and pass on, the number of times
it had been fired using this function.

  countL :: Listener Int -> Listener a
  countL l = scanL inc 0 l
    where inc :: Int -> a -> Int
          inc n _ = n + 1

Previous functional toolkits would require a programmer to write
this sort of code in terms of an IO action that sampled a mutable
variable. In conclusion, while programmers must still use
imperative callbacks in FranTk, they can manipulate them
succinctly with a set of functional combinators, instead of being
forced to write longer and more cumbersome imperative code.

5.2 Event-Listener Duality
The event and listener algebras in Fran are duals of each other.
We can therefore formally define a set of relationships between

Listener 1

Listener 2 b

 f a b
Listener expects
values of type a

Current
value (a)

scanL
Listener
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them. The primitive combination operation for events and
listeners is addListener. This adds a listener to an event such
that the listener is fired every time there is an event occurrence.
This function returns a remove action that can be called to
unregister the listener’s interest.

addListener :: Event a -> Listener a
            -> IO (IO ())

The relationship between events and listeners can be defined in
terms of the addListener function.

For any e :: Event a, l :: Listener a,
l1 :: Listener b, f ::a -> b,p :: a -> Bool,
b :: Behavior b, l2 :: Listener (a,b),
e1 :: Event b, n :: a, op :: a -> b -> a

addListener neverE l <==>
addListener e neverL

neverE :: Event a

addListener (mapE f e) l1 <==>
addListener e (comapL f l1)

mapE :: (a -> b) -> Event a -> Event b

addListener (filterE p e) l <==>
addListener e (filterL p l)

filterE :: (a -> Bool)
        -> Event a -> Event a

addListener (onceE e) l <==>
addListener e (onceL l)

onceE :: Event a -> Event a

addListener (snapshotE b e) l2 <==>
addListener e (snapshotL b l2)

snapshotE :: Behavior a
          -> Event a -> Event (a,b)

addListener (scanlE op n e1) l <==>
addListener el (scanlL op n l)

scanlE :: (a -> b -> a) -> a -> Event b
       -> Event a

If we imagine a wire1 connecting a listener to an event, the event
and listener combinators can be interpreted as mechanisms to
transform user input code at either end of the wire (Figure 8).

Figure 8 – A Wire

6. INTRODUCING WIRES
Sometimes we need to connect output from one component into
another component. For instance, consider a button and entry
                                                                
1 Fran introduced the notions of listeners, events and wires in

version 2. However, it did not provide any of the listener
combinators discussed in this paper.

widget. When enter is pressed the current text is sampled and
passed to a listener.

Figure 9 – Entry and Button

We can define this as follows.

mkEntryWithButton :: String
                  -> Listener String
                  -> Component
mkEntryWithButton bname inputL = do
 wire <- mkWire
 let button =
       mkButton [text bname]
                (tellL (input wire) ())
     entry = mkEntry [] (event wire)
                     inputL
 beside entry button

This uses a new concept called a Wire. A Wire is a limited
version of a BVar. In particular, it is stateless and has no
behavior. It has only an input listener and an event.

mkWire :: GUI (Wire a)
newWire :: IO (Wire a)
wireInput :: Wire a -> Listener a
wireEvent :: Wire a -> Event a

Figure 10 – Using Wires

We therefore have the following structure in our example (see
Figure 10) –

• The button talks to the wire when it is clicked

• When the entry hears something on the wire it sends its
current value to the BVar.

Wires and the mkWire functions are primitive in FranTk. We
can define a BVar in terms of a wire.

data BVar a = BVar {
bvarUpdInput :: Listener (a -> a),
bvarEvent :: Event a,
bvarBehavior :: Behavior a
}

newBVar :: a -> IO (BVar a)
newBVar a = do
 (l,e) <-  newWire
 let e’ = a ‘accumE‘ e
 let b = a ‘stepper‘ e’
 return (BVar l e’ b)

The definition of a BVar relies on two Fran combinators. The
BVar hears update function values on the wire. These updates will
modify its state.

It accumulates an event based value using accumE. This will
therefore form an event that produces an occurrence on every
update, by applying the update function to the current BVar value.

button entry BVar
Listener Event

Wire

Listener Event

WireApply
listener

combinators

Apply event
combinators
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accumE :: a -> Event (a -> a) -> Event a

The function accumE is defined in terms of scanlE.

accumE x0 change =
  scanlE (flip ($)) x0 change

The BVar’s  behavior is formed by stepping through, changing on
every event occurrence.

stepper :: a -> Event a -> Behavior a

We can use this approach to define other types of BVar, such as
BVar collections discussed in Section 8.

7. DYNAMIC EXAMPLES – PART I
The previous examples have shown how to implement simple
interfaces in FranTk. However, they have involved only a static
set of widgets on screen. That is, though the appearance of
individual labels has changed, the number of labels has not. The
ability to handle dynamically changing collections of components
in FranTk is one of its major benefits.

There are two sorts of dynamic display we could have. The first is
a simple conditional display. Here we can display one of two
components depending on some state. The second sort of
dynamism is the introduction of new components on to a screen.
We will introduce a conditional display in this section, and then a
full dynamic display in Section 8.

7.1 Conditional Displays
As an example consider the tactical data entry widget from Figure
3. It will only be displayed some of the time. It will be popped up
when requested. (There are a number of different aircraft views,
each which can raise the data entry window). When the "send"
button is pressed it will disappear.

To handle this we provide a BVar to model the state of the
window. When the "send" button is pressed the window should
close, so we merge the send listener with the BVar’s listener.

levWindow :: BVar Bool -> String -> Int
          -> Listener Int
          -> WComponent
levWindow bv callsign init send =
  let sendAndOpen =
       mergeL send
             (tellL (bvarUpdInput a) False)
  in
  ifB (bvarBehavior bv)
      (levEditor callsign init sendAndOpen)
      emptyComponent

We conditionally display a component using ifB.

class GBehavior w where
  ifB :: GBehavior w => Behavior Bool
      -> w -> w -> w
instance GBehavior Component

When applied to components ifB b w1 w2 produces a
component which behaves as w1 when b is True and w2
otherwise. (Other members of the GBehavior class include
Behaviors and Events.) In this example we display the
levWindow when the BVar has the value True and an empty
component otherwise.

emptyComponent :: Component

This provides us with our first mechanism for dynamically
altering the number of widgets on screen at any given time.

8. DYNAMIC EXAMPLES - PART II
We will now consider a dynamic example with a variable number
of components on screen at any given time. The ATC system must
model the state of all the aircraft in a given airspace sector. This
set of aircraft will clearly change over time. We therefore need to
maintain some model of a dynamic collection of aircraft. The
ATC simulator uses three different views of the set of aircraft (see
Figure 11). It displays a radar view with a dot and some flight data
for each aircraft. It displays an electronic strip for each aircraft in
the Aircraft Display Window. Finally, it displays details of the
selected aircraft in the Flight Data Plan window. It is therefore
very important that we have one abstract model of the data that
can be viewed in several ways.

8.1 Introducing Behavioral Collections
We need to define the collection of objects that are displayed on
the screen. In most previous GUI systems, we would do this by
performing update actions that add and delete widgets from the
screen. In FranTk, we define the appearance of an interface based
on some state for all time. We therefore need to be able to define
the display as a function of some abstract collection type. We do
this using a behavioral collection, in this case a list.

For instance, the radar view consists of canvas components, with
one aircraftView for each aircraft. Similarly, we have one
strip in the aircraft display window for each aircraft.

aircrafts :: ListB Aircraft -> CComponent
aircrafts ls = pile (fmap aircraftView ls)

aircraftView :: Aircraft -> Ccomponent

aircraftDisplay :: ListB Aircraft
                -> Component
aircraftDisplay ls = nabove (fmap strip ls)

strip :: Aircraft -> Component

type ListB a
fmap :: (a -> b) -> ListB a -> ListB
pile :: ListB CComponent -> CComponent
nabove :: ListB Component -> Component

In FranTk we represent a dynamic list of objects as a ListB. We
can map functions across this list. For instance, we map the
strip function over the list to generate a strip for each aircraft.
We use nabove to compose a dynamic collection of components
above each other. We use pile to compose a dynamic collection
of canvas components into a complex view.

In both cases, when rendered the ListB will incrementally
update the screen only making necessary changes, rather than
redisplaying everything.

8.2 Making list collections
To make a list collection we use a special type of BVar, a
ListBVar. We can create a ListB from an initial list and an
update event. It begins by behaving as the initial list, and then on
every event occurrence, changes by applying the update function
from the occurrence.

mkListB :: IList a
        -> Event (IList a -> IList a)
        -> ListB a
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data IList a

This is therefore similar to the Fran behavior combinator,
stepAccum, which creates a piecewise constant behavior that is
updated by event occurrences.

stepAccum :: a ->Event (a -> a)->Behavior a
stepAccum a e = stepper a (accumE a e)

The IList type is a special incremental list type that maintains
incremental updates. The Haskell Edison library [8], defines a
general interface for dealing with functional data structures such
as Sequences and Sets. The IList type implements the
Sequence interface, allowing us to treat them in the same way
as standard lists. This therefore provides a powerful, and familiar
set of operators for constructing dynamic lists. We can therefore
generate values of type IList using Sequence functions such as
empty, single, cons and append.

FranTk also supports the notion of a list behavior variable, or
ListBVar.

type ListBVar a
mkListBVar :: [a] -> GUI (ListBVar a)
newListBVar :: [a] -> IO (ListVar a)

When creating a ListBVar we give it an initial list of values.
We have standard functions to extract the value, input listener,
and update-input listener from a ListBVar. Here updates are
also defined using the IList type.

collection :: ListBVar a -> ListB a
bvUpdInput :: ListBVar a
           -> Listener (IList a -> IList a)
bvInput :: ListBVar a -> Listener (IList a)

These behavioral collections are powerful. They allow us to
declaratively handle dynamic collections of data. In the next
section we demonstrate how to filter a dynamic collection.

8.3 Sorting list collections
It is often necessary to apply functions such as sort and filter
across lists. FranTk provides the ability to sort a dynamic list
based on some dynamic predicate. For instance, in our example

the strips in the Aircraft Display window can be sorted in a range
of ways, such as by flight level. We can do this using sortByB.

sortByB :: (a -> Behavior b)
        -> Behavior (b -> b -> Ordering)
        -> ListB a -> ListB a

This takes a function to extract a behavior from a list element, and
a predicate valued behavior and applies these to filter the list. In
our example, the predicate would be set by the "Sort by" menu.
The extraction function is needed because the elements of a
dynamic list may themselves be dynamic. The Aircraft type
consists of a set of individual behaviors representing the
parameters of the plane.

data Aircraft = Aircraft {
flightLevB :: Behavior Int, ... }

From these we need to extract a single behavior representing the
relevant parameters needed for sorting.

extract :: Aircraft -> Behavior Extract

data Extract = Extract {
    flightLev :: Int, ...}

This style is very important and represents a common pattern for
many FranTk programs.

8.4 Summary
In FranTk we can therefore treat dynamic collections in a similar
manner to static collections, modeling them as values. This allows
us to easily manipulate them, and create multiple views of the
same collection. For instance, in our current example we have one
sorted view of the dynamic list. In FranTk, we can easily construct
dynamic interfaces in a declarative programming style. This
makes it particularly easy to implement multi-user interfaces;
however, it is important in many other styles of application.

9. LARGE EXAMPLES
FranTk has been applied to a range of examples including the
prototype Air Traffic Control simulator discussed in this paper
(and shown in Figure 11), and a structured program editor.

Figure 11 - The Prototype Air Traffic Control Simulator
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9.1 The ATC System
In general, the development of a large, complex case study was
relatively easy in FranTk. We were able to construct the system
using a consistent programming approach. The system was
designed in terms of a set of components, which were integrated
in a compositional manner.

The simulation is described as a collection of behaviours
(representing aircraft and sectors) that communicate via events.
Each adjacent sector and aircraft is modelled as a function which
accepts messages via an event stream, and produces an event
stream generating a set of response messages. Each aircraft
maintains an abstract trajectory model. The use of Fran behaviors
proved very useful when developing the ATC system. Using
behaviours, we were able to provide a simple, elegant model of an
aircraft’s trajectory. The aircraft model then simply snapshots the
appropriate flight parameters when it needs to generate a flight-
parameter downlink message (which tells the controller where the
aircraft is). The active aircraft are then modelled as a dynamic set.
New aircraft are created on the basis of an alarm event, which
goes off according to a plan (read in from an input file). Aircraft
are deleted according to a predicate, which specifies when the
aircraft leaves the user's screen, and therefore ceases to be useful.
FranTk’s support for real-time predicates therefore proved
particularly useful when developing the prototype. Predicates are
also used, for instance, to define time outs on messages.

The use of dynamic collections to model the collection of aircraft,
and datalink messages was again important. (A Datalink message
is an electronic messages sent from a controller to an aircraft to
inform it to change trajectory). The system provides a number of
different views of an aircraft’s data and of the datalink message
collection. For instance, the "Message In", "Message Out" and
"Datalink Msgs" windows each show a separate filtered view of
the sector's datalink message set. The ability to provide multiple
views of a dynamic collection was therefore very important.

The ATC system was a large case study consisting of several
thousand lines of code. It runs at a usable speed, simulating
several aircraft, when compiled under GHC. It was developed as a
prototyping exercise in co-operation with a "human factors"
specialist at the UK's National Air Traffic service. The resulting
interface proved useful for him, and he requested a copy of the
final system.

9.2 A Structured Editor
FranTk has been used to develop a simple declarative
implementation of a structure editor for a small imperative
language2. Bernard Sufrin and Oege De Moor have developed a
simple, purely functional, model of a structured editor. This
model was developed as an executable formal specification. They
model the editor as a Tree, which accepts update operations.

The FranTk implementation maintains their simple, declarative
model of the editor. It models the state of the editor using two
parts, a Behavior Tree, modelling the current state, and a wire,
upon which the Behavior is based. The wire hears about tree
updates. This is therefore a special form of BVar used to represent
the tree status. The status of a text editor is itself represented by a

                                                                
2 This was joint work with Oege De Moor from Oxford

University.

document behavior. We therefore provided a simple mapping
between the Tree updates, and declarative structured document
updates. We were therefore able to develop a relatively simple,
very high level implementation of a structured editor. Though
high level, the implementation is still efficient. It runs at a usable
speed, even when only run with Hugs, the Haskell interpreter.

10. IMPLEMENTATION DETAILS
The efficient implementation of FranTk relies on three key
features. It uses a data driven programming model. It uses weak
references to limit the amount of work needing done. It uses an
incremental implementation for behavioral collections. In this
section we will briefly summarize these key features.

10.1 Data driven implementation
A simple implementation of events and behaviors requires that
behaviors and events are sampled every time interval. This would
be prohibitively expensive in a large user interface, as every
aspect of the interface would need to be redisplayed every time
any input was received. Instead FranTk, uses a data driven model.
Events and behaviors have invalidation actions associated with
them. When the listener talking to the event or behavior is fired
the invalidation action is performed. After any user input only
those components that rely on behaviors or events that have been
invalidated need to be redrawn.

10.2 Finalisers & Weak References
Once a BVar has been created, the listener will begin talking to
the BVar, passing on every value it hears. This is useful only so
long as the event or behavior from the BVar is in use. However,
often these will only be used for a fraction of the lifetime of a
program. For instance, if a component were later removed from
the screen and the behavior it relied upon was no longer used it
would be useful to remove the listener as well, to prevent
unnecessary work. For this purpose, we use weak references and
finalisers [11]. Weak references enable listeners to talk to events
without keeping them alive in the heap. Finalisers are actions
which can be added to an object, and which will run when the
object is garbage collected. This mechanism is used to delete
listeners. When the clients (the events and behaviors) that a
listener can talk to are all garbage collected, a finaliser will be run
to delete the listener.

10.3 Incremental behavior collections
The implementation of efficient dynamic collections requires
some extra work. A collection behavior is considered to consist of
two parts, a simple behavior representing its value at any given
time, and an event generating individual incremental changes.

For instance, a ListB consists of the following parts.

data ListB a = ListB (Behavior [Entry a])
                    (Event (ListUpdates a))

data ListUpdates a =
 LUpds [ListUpdate] | ResetL [Entry a]

data ListUpdate a = InsertL [Entry a] Pos
                  | DeleteL Ident
                  | MoveL Ident Pos

data Entry = Entry Ident a
data Ident

The Ident data type represents unique values. Each element in
the list has a unique value associated with it. Incremental changes
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involve inserting an element at a given point in a list, moving an
element to another position in the list, deleting an element or
resetting the list. Recall that updates to a List behavior are made
using functions of type IList a -> IList a. These updates
can clearly be based on far more sophisticated notions that simple
equality. The notion of unique identity is therefore very important.

 The IList type deals with generating unique names for entries,
and for generating these updates. An IList consists of a list of
tagged entries, a name generator to make new named entries and a
set of current updates. Combinators such as cons require to
generate a name for their new element, add the new element to the
list, and generate an appropriate update.

data IList a =
 IList [Entry a] NameGenerator
       (ListUpdates a)
type NameGenerator =
 a -> (Entry a,NameGenerator)

To render the list on to an interface we therefore make changes
corresponding to each incremental update.

11. RELATED WORK
There have been a number of previous approaches to functional
GUI toolkits.

The TkGofer [14] toolkit is also built on top of Tcl-Tk. As with
FranTk, components are given lists of configuration information,
and type classes are use to restrict which configuration options
can be given to which components. We have extended this
approach with dynamic configuration options. TkGofer provides a
much lower level interface to GUI programming, relying on
callbacks. This results in a more imperative style of programming
with all state being stored in mutable variables.

Toolkits based around concurrency, such as Haggis [4], have been
developed that avoid the need for callbacks. Haggis provided a
structured declarative approach to specifying pictures. However,
this only worked for static images. Haggis treated dynamic
widgets separately in a more imperative manner. Haggis separated
a widget into a typed value that could be used to update it, and an
untyped handle that could be used to display it. In contrast, we
have one representation of a widget, the Component and pass all
configuration information as parameters when creating the
component. By passing in a listener as a parameter to the
component, we avoid the need for a handle to access user input.

The Fudgets toolkit [1] attempted to support a more declarative
approach to building user interfaces. A Fudget is a value of type F
a b that receives messages of type a and sends messages of type b.
Fudgets can be composed to make more complex fudgets in a
functional style. However, there is only limited support for
creating interfaces with a dynamic number of components on
screen. Fudgets also makes it difficult to support application and
interface separation, making it difficult to have multiple views of
the same data [5].

The Clock [5] and Pidgets [12] toolkits are the most similar to our
own. Clock is based on the well-known MVC [7] architecture.
Clock programs are structured as a tree of components. Each
component has a model which represents its state, and which can
accept updates (similar to our listeners), and requests (similar to
our behaviors). The component has a view function which
describes its appearance. This is defined as a function of the state
(using requests). A component can take updates which represent

user input. The tree structure represents the hierarchical
decomposition of the interface. Components may have sub-
components which they use when defining their view. The state in
the model is visible to its component and all its children. Clock
therefore allows dynamic views to be defined in terms of dynamic
collections. However, the Clock architecture is overly restrictive
making it difficult to construct interfaces with complex
application behavior. The structure also makes it very difficult to
define parameterised components with local state.

Pidgets is a toolkit based around a “monad of imperative
streams”. An imperative streams program is represented as a term
of type St a. When run this will produce a value of type a at
repeated points during its execution. A stream produces values.
However, it also has a current value, which is the last value it
produced. A stream may also perform IO actions while producing
its value. An imperative stream therefore unifies our separate
concepts of Behaviors, Listeners and Events. This conceptual
combination can make Pidgets difficult to deal with. For instance,
it requires two new operators start and next to be introduced into
the language.

start :: St a -> St (St a)
next :: St a -> St a

The next operator takes a stream and returns one that ignores any
values before the next time step. Starting a stream conceptually
starts it off as concurrent process. The start function returns a new
stream which outputs a value every time the concurrent stream
produces one. This concept is important when IO actions are
concerned as these will be performed by the concurrent process
and not by the returned stream. These two new operators can
rapidly become difficult to handle.

To give an impression of how FranTk compares to Object
Oriented approaches we will compare it to Java's Swing [6]. To
provide support for application/interface separation, Swing has
embraced the Model-View-Controller paradigm. User Interface
components can be associated with abstract models. For instance,
there is a ListModel which defines the methods which
components such as Swing listboxes use to access lists. These
models support the concept of Listeners. Java's Listeners, in fact,
inspired the notion of listener in Fran/FranTk. For instance, we
can add a ListDataListener to a ListModel to find out
about any changes to its state. This is therefore similar to use of
the primitive addListener function in FranTk.

However, the notion of listener in FranTk is more general and
more powerful. Java distinguishes listeners based on what they
can be added to. This means that it is sometimes difficult to add a
listener in two places. For instance, Java distinguishes between
MouseListener’s which hear mouse clicks and
ActionListener’s which hear action events. FranTk,
however, would consider both to be of type Listener (). We
would therefore need to duplicate code in Java. In addition, in
Java, to consume values of new types we must define new
Listener classes. In contrast, FranTk listeners can be
parameterised over any type.

Conversion between listeners is also more cumbersome in Java.
For instance, if we had an item listener (which hears about
selected objects), and wanted it to be fired every time a button
was pressed, we would require to write the following code. It
creates a new Action listener, which fires the item change listener.
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ActionListener l = new ActionListener () {
 public void actionPerformed(ActionEvent e)
 {i.itemStateChanged (new ItemEvent
             (e.getSource(),
              ItemEvent.ITEM_STATE_CHANGED,
              obj, ItemEvent.SELECTED))}};

In contrast, in FranTk we would simply use tellL to convert the
listener: tellL itemListener obj.

Java’s models suffer from a similar restriction. Again they are less
generic than BVars, which can be used to hold values of any type.
Java’s ListModels are also less powerful than FranTk’s. To
write the equivalent of FranTk’s dynamic sorting function would
take significantly more code.

In conclusion, Java’s Swing does provide more capabilities than
FranTk. It also, like all imperative approaches, provides more
low-level control. This makes it easier to ensure efficiency.
However, for many applications FranTk’s combinators make it
more succinct.

12. CONCLUSIONS
We have presented FranTk, a toolkit for developing graphical user
interfaces in Haskell. It concentrates on providing a programming
model that is both “declarative in the large and in the small”.

The state of an application can be defined as a behavior value.
These values can be easily composed. Unusually this extends to
the ability to handle dynamic collections of objects as values,
treating them in a functional manner.

FranTk introduces the concept of a listener as an abstract value.
Listeners allow imperative actions to be handled, but composed in
terms of a functional algebra.

FranTk defines an interface in terms of components. These are
constructed by passing in configuration options, including
dynamic options. This allows us to define a component’s
appearance for all time. A Listener argument is also passed in
when creating a component, thereby separating the semantic
wiring from the visual Component. These components can
therefore be geometrically composed using simple, pure functions.
However, a Component represents an action that produces a
widget. This allows it to have its own internal state.

FranTk therefore allows a compositional, declarative style of
programming with both static and dynamic user interfaces. It has
been developed on top of Tcl/Tk providing a set of platform
independent, powerful widgets. However, it has been
implemented in a very toolkit independent manner, making it
easier to port to other GUI toolkits. It has been released as a
publicly available toolkit (http://www.haskell.org/FranTk).
Finally, it has been applied to a range of large examples, including
a structured text editor, and an air-traffic control simulator.
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