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§ 1

Mass and Energy

INTRODUCTION

    "Mass disappears and energy appears" is found as an explanation of  E m c= ⋅ 2

in secondary schoolbooks. This is an incorrect statement. The released energy has

mass of itself, exactly the mass which seemingly disappeared. The formula E m c= ⋅ 2

has been explained wrongly up until now.

    In September 1905 the first publication on the relation between mass and energy

appeared in the form in which it has become generally known: . The authorE m c= ⋅ 2

was Einstein.
    Even before 1905 some scientists started to suspect that energy, at least in some of
its forms, should have mass. They calculated that the electrical field of a charged body
should have inertia and therefore mass. This implies a relationship between mass and
energy, because an electrical field is thought to be the residence of energy. These
calculations finally revealed some inconsistencies in the theory of electromagnetism
but did not lead to the correct relationship between mass and energy, although they
were not too far off the mark.
    At this time Lorentz too came to realize that energy possesses inertia. He had
concluded that in certain interactions between charged particles Newton's third law
could no longer be valid, unless mass is attributed to the electrical fields.
Einstein was the first to give the proper energy-mass relation. From a thought-
experiment, an object that emits two light waves of equal frequency and energy in two

opposite directions, he derived  .E m c= ⋅ 2

    Nowadays this formula has become one of the best known in physics and can be
found in every secondary schoolbook on physics.

    Yet  is incorrectly explained. One takes m to be the rest mass and oneE m c= ⋅ 2

subsequently arrives at confusing and inconsistent statements, which will give the

discerning user of  less rather than more insight into the processes inE m c= ⋅ 2

which this formula plays a role.
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    Actually the point is that one attributes to rest mass a leading role in these proces-
ses, whereas relativistic mass is seen as . . . . well, as what in fact? As a mathematical
trick perhaps. As an abstract notion, which at best aids the mathematics somewhat
without representing a physical reality. A striking example of this concept is to be
found in an article in Physics Today (The concept of mass, june 1989, page 31),
written by Lev Okun, head of the laboratory of elementary-particle theory at the
Institute of Theoretical and Experimental Physics, in Moscow, Russia. In this article

Okun states, the m in  represents the rest mass and certainly not theE m c= ⋅ 2

relativistic mass. This point of view is most unfortunate, to such a degree that I would
call it wrong. It is precisely the relativistic mass, which plays the leading role in

relativistic processes and which we have to substitute in .E m c= ⋅ 2

    An argument often heard in favour of the importance of rest mass is its invariance
when Lorentz transformations are applied. Opposed to this is the fact that the sum of
relativistic masses in a system is constant (relative to an inertial system) as long as no
work is done on the system by the outside world. It should be noted that in that case
the mass of the fields (we shall later see that fields possess mass also, namely their
energy divided by c2) should also be added to these relativistic masses. I will therefore
from now on define these fieldmasses as relativistic masses. Thus it can be stated: if
the total relativistic mass of a system is conserved, so is its total energy. This is again
a powerful argument in favour of the relativistic mass (and against Okun's statement).
    "Rest mass is important, when we want to ascertain the identity of an elementary
particle" is often heard as an argument. However, the relativistic mass at a given
speed can serve this purpose just as well. This amounts to the same thing as using rest
mass, because this is nothing other than the relativistic mass at speed zero.
    Restmass is a special case of relativistic mass and the latter is the only successor to
the classical mass, that is to say the mass which obeys Newton's three laws, and which
can be used as a measure of the quantity of matter and which is conserved for a closed
system.

The aim of the argument that now follows is to make plausible that:

1e statements as "mass can be converted into energy" are not true in their
generality.

2e in  the m represents relativistic mass and not the rest mass.E m c= ⋅ 2

3e the relativistic mass obeys Newton's three laws, so the Newtonian and relati-
vistic dynamics appear to be one and the same, as soon as we admit fields to
have relativistic mass too.

*
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§ 2

E = mc2

misleadingly explained
in secondary education

   From now on I will indicate rest mass by mrest and relativistic mass by mrel. Only in

the formula  for the time being no index has been given to m, because oneE m c= ⋅ 2

disagrees about which m we are dealing with here. The intention in this paper is,
amongst other things, to make clear that we are, in fact, dealing with mrel.

    A clear example of the misleading explanation of  which is given inE m c= ⋅ 2

Dutch secondary schoolbooks, goes as follows: '. . . when mass disappears energy
appears. If on the other hand energy disappears, mass is created.' Other books suggest
a similar thing, although mostly not so explicitly stated. The problem with this
statement is that the author nowhere says whether he means rest mass or relativistic
mass. But in both cases the statement is incorrect, at least in certain situations.

    For the following argument it is important to distinguish clearly between the
various kinds of mass known in the theory of relativity. Three kinds of mass are
defined:

Definition 1: Restmass of a body is the mass measured in an inertial system moving
along with the centre of mass of the system.

Definition 2: Invariant mass of a system is the mass of a system consisting of relative
to each other moving parts, measured in an inertial system moving along with the
centre of mass of the system.

Definition 3: Relativistic mass relative to an inertial system is restmass, or invariant

mass, times . Herein  stands for  ,    being the velocity ofγ M γ M 1 1 2 2/ /− v cM vM

the centre of mass with respect to that inertial system.



page 6 Mass and Energy, § 2, E = mc 2 misleadingly explained in secondary  education.

When measuring rest mass velocities should be used of magnitudes approaching zero
in order to avoid relativistic effects.

    In the case of a system of free particles which we can regard as point masses, we
can calculate the invariant mass of this system from the rest masses of the material
particles and the photons;

m m E c v ci i j i iinvar rest photon with= + = −−Σ Σ, ,. . , / / ( )γ γ2 2 21 1 1

in which vi and mrest, i are respectively the velocity and the rest mass of the i-st material
particle, and Ephoton, j the energy of the j-st photon, all measured with respect to the
centre of mass of the system.

    Definitions 1, 2 and 3 demand a definition of the position of the centre of mass. It
will be given here only for a system of free particles, which can be considered as point
masses:

    Definition 4:
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where   and  are the positions of the i-st material particle and the j-st photon
v
ri

v
rj

respectively.

   If on the system no forces from the outside world are exerted two conservation laws
are valid with respect to a arbitrary inertial system:
1e the invariant mass is conserved.
2e the velocity of the centre of mass does not change.
The last law can be deduced from the law of conservation of momentum.

    Definition 1 is familiar to everyone who knows something about the theory of
relativity. Normally the restmass (of a body considered as a point mass) is simply
measured by weighing. The relativistic mass of a body considered as a point mass, can
be defined by definition 3, that is to say as the restmass times . These definitionsγ
are in agreement with Mach’s definition of classical  mass. Mach defined classical
mass in the following way. The unknown mass and a known testmass, both at rest, are
placed side by side with a compressed spring of negligible mass between them (of
course, the spring can be replaced by any force interaction between the two masses,
for instance by the coulomb force). Forces from the outside world are absent. Now the
spring is released and both masses move away from each other in opposite directions.
After an arbitrary time has elapsed, their distances from their common point of
departure are measured simultaneously. When we define the ratio of their masses as
being equal to the ratio of their distances, the unknown mass is defined as well. This
procedure can be carried over literally to the theory of relativity in order to define the
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 rest mass of a point shaped body. A necessary extra precaution is to choose the force
of the interaction to be so small, that velocities stay in the non-relativistic region. For
the relativistic point mass, Machs definition can also be used. Now a grazing collision
between the unknown relativistic point mass (which is moving at full speed) and the
standard mass (which is at rest) must be arranged. Afterwards, the distances of the
masses from the carrier line of the initial velocity must be measured. In this case only
for the test mass care has to be taken, that it does not acquire a relativistic velocity.
For the rest, the procedure is the same as that described for the rest mass.

For the invariant mass and the relativistic mass in the case of a system of free
particles, Mach’s method can also be used by applying it to each particle individually
and then calculating the position of the centre of mass before and after all the
collisions with the formula of definition 4 (see page 6).

Of course in practice, Mach’s method is too difficult. However, it is important
to point out that the definitions of rest mass, invariant mass, relativistic point mass
and relativistic non-point mass are in agreement with Mach’s definition. In practice,
the restmass of a point shaped body is measured by weighing. The relativistic mass of
the same object at speed v is calculated by multiplying its restmass with . γ

The invariant mass of a system of free point masses can be found in practice by
weighing each point mass at rest and then calculating the invariant mass by formu-
la (1). The invariant mass of a coherent system such as a solid object or an ion still
having some electrons, can also be found by weighing it at rest (and this time there is
of course no need for formula (1)).

The essence of the invariant mass is reflected by definition 3. The relativistic
mass of the system when the centre of mass has velocity vM can be calculated by
imagining the whole of the invariant mass as being concentrated in the centre of mass.

So the relativistic mass is found by multiplying the invariant mass by . Theγ M

correctness of this statement can be proven for a system of free point masses out of
the linearity of the Lorentz transformation. Then, for the invariant mass of this
system, we find the expression on the right hand side of formula (1) on the previous
page. Formula (1) can also be used as a definition of invariant mass. Note that in
formula (1) the relativistic mass again plays an important role; we find the invariant
mass by adding the relativistic masses, as measured relative to the centre of mass of
the system. If photons are also involved, we have to add for each photon a term
Ephoton/c

2, or h.f/c2, with f measured relative to the centre of mass of the system.
Because of this I will in future call Efoton/c

2 the relativistic mass of the photon, so we
can say: "The invariant mass is the sum of the relativistic masses measured with
respect to the centre of mass."

Definition 4 and formula (1) together seem to give a circular definition; for the
position of the centre of mass you need the relativistic masses and for the relativistic
masses you need the velocity, that means the time derivative of the position, of the
centre of mass. However, the relativistic masses in definition 2 are measured relative
to the centre of mass, whereas the relativistic masses in definition 4 are measured
relative to an arbitrary inertial system. Therefore there is no question of a circular
definition.

Notice that relativistic mass in the definition of the relativistic centre of mass
plays exactly the same role as classical mass in the definition of the classical centre of
mass.
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    An important objection to definition 4 seems to be, that especially for photons, the
Heisenberg uncertainty relation is so important that positions of photons are far from
being defined exactly. To follow through this thought would lead to quantum mecha-
nics, to the Einstein Podolsky Rosen "paradox", to the theorem of Bell and to the
experiment of Aspect. This is not my intention. Suffice it to mention what Aspect has
demonstrated for a system of one atom and two photons. When detecting one of the
particles, so at the moment of collapse of its wavefunction, the wavefunctions of the
other particles collapse simultaneously (for all observers) in such a way that all
conservation laws remain valid. This means therefore, that experimental determination
of the centre of mass is meaningful, that is to say it is in agreement with the theory.

    It is clear that definition 1 only for the theoretical case of a point mass does not
raise questions. In all other cases there is the problem that one never can say with
certainty that in each infinitely small scale there are no moving parts in a body.
Nevertheless one often speaks of "the rest mass of an atom", whereas in an atom the
electrons are certainly not at rest with respect to the nucleus. One should speak here of
the invariant mass of an atom. The atom is seen here as a point mass. In fact there is
nothing wrong with that, as long as it is justified by our measuring apparatus, as long
as an atom looks like a point to our measuring system. In that case rest mass and
invariant mass are the same. When a system is involved with dimensions significantly
greater than our measuring accuracy, there are two possibilities: first, the body has a
centre of mass with a fixed position with respect to fixed and recognizable points on
the body. Take for example a solid body (although a solid body also consists of parts
moving relative to each other, merely because of the thermal movement of the
molecules, talking of fixed points on the body nevertheless implies no contradiction,
because we then look at a much larger scale than the molecular one, so the thermal
movement averages zero. Besides, we assume that stresses in the body are not so great
that the body is noticeably deformed). In this case the centre of mass can be determi-
ned by calculation if the density function is known. The invariant mass can be
determined in the same way as the rest mass, the covered distance of the unknown
mass after the collision being that of its centre of mass.
    Secondly, the body is less coherent, the centre of mass having no fixed position
with respect to fixed, recognizable points of the body. For instance, a number of
nuclei flying away from each other after a nuclear reaction. Then the invariant mass
could be determined with the method given on page 7, line 9 to line 12, applied on all
point masses in the system. Again, in practice almost impossible to perform, but
theoretically not impossible.
    Compare a single point mass and a system-consisting-of-several-point-masses-
moving- relative-to-each-other, the separate point mass and the centre of mass of the
system being at rest. Suppose we take the single point mass as well as the centre of
mass of the system to obtain a velocity v. This velocity is obtained not by exerting a
force on them, but on us, the observers. After our relative acceleration has provided
the relative velocity v, the force is brought back to zero and we can consider ourselves

again as inertial observers. Then mrel of the point mass is a factor  times itsγ ( )v

rest mass, whereas  of the system, so the sum of the relativistic masses of itsΣ mrel

point masses, appears to be also a factor  times its invariant mass. Therefore it isγ
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 meaningful to call  the (total) relativistic mass of the system. So in imaginationΣ mrel

we can replace even such a system of point masses, no matter how big their relative
freedom of movement is, by one point mass as far as the relativistic mass increase is
concerned, provided we imagine this point mass to be localized in the centre of mass
and take as the total relativistic mass the sum of the relativistic masses of its point
masses. Suppose we accelerate the two systems and not ourselves. Are the dynamics

analogous in both cases,  is  valid for both single point mass and
v v
F m v ttotal d d= ⋅( ) /

the centre of mass of the system of point masses? In general the answer is no. See the
appendix I, page 53 to 63. The complex system will generally see its invariant mass
changed. However, if the complex system is a solid and the internal stresses are not to
great, I assume that the answer is yes. When an ionised atom or molecule is accelera-
ted, to all likelihood its centre of mass obeys this equation as long as no internal
degrees of freedom are excited.
    If we look at it this way the rest mass (of a point mass) is nothing else other than a
special case of the invariant mass and the relativistic mass of a point mass is nothing
else other than a special case of the relativistic mass of a system of parts moving
relative to each other.
    If we are only interested in the behaviour of the centres of masses and if the
internal energy of the body is not changed, not one single essential difference can be
pointed out between rest mass and invariant mass on the one hand, and the relativistic
mass of a point mass and relativistic mass of a composed system on the other hand.
    As far as the dynamics of centres of masses is concerned we can use "rest mass"
and "invariant mass" as synonyms.

    Let us now look at an atomic nucleus at rest, which is about to undergo fission. Let
us call the point where the nucleus sits P. Let us assume that it splits into two fission
products (lighter nuclei) and that no other particles such as photons are produced (the
fact that photons are produced, is not an essential objection to our reasoning: Taking
photons into account doesn't change our argument, it merely complicates it). For the
sake of simplicity, we shall assume that both fission products have the same mass.
After the fission, the fission products fly away at high speed in opposite directions:
both have kinetic energy.  Their masses can be measured after they have come to rest.
Now, the sum of their rest masses appears to be less than the rest mass of  the original
nucleus.  "The difference is converted into energy", students learn in secondary
school. I consider this a misleading statement. Look again at the situation immediately
after the fission, when the fission products are at full speed, so before they have been
slowed down (such as by collision with surrounding molecules).  The fission products
have kinetic energy.  According to the secondary school books, this energy would
have been created by the "disappearance" of mass suggesting that the fission products
together have less mass than the original nucleus.  This is indeed true if one looks at
the rest masses of the fission products separately, but is not the case if one considers
their relativistic masses. When the relativistic masses are added, one obtains the mass
of the original nucleus. This follows from the fact that the invariant mass does not
change, because no work is done on the system by the outside world. It can be seen in
a different way also, as the following example will illustrate.  In figure (a), see below,
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the original nucleus is denoted by A.  An additional particle (such as an atom),
remaining at rest and undergoing no changes is denoted by D.  For simplicity's sake, I
assume A and D to have equal rest masses.  Now consider figure (b), the situation
immediately after nucleus A has fissioned into the two fragments B and C.  By
symmetry, the center of mass of B and C taken  together has to remain at point P.
Because there is a mass associated with each center of mass point, we can ask here,
which mass?  It must be the mass of A.  This can be seen by considering in figure (a)
the center of mass of A and D.  This must lie at the geometrical centre between A and
D, since they have the same rest mass.  Now, if in figure (b), the (invariant) mass
associated with the centre of mass of B and C would differ from the mass of A, then
the centre of mass of B, C, and D would have moved from the midpoint between P
and D.  This cannot be the case, according to the principle we stated on page 6,
line 16 (statement 2e) and 15 from bottom, since no forces external

     fig. (a)      fig. (b)

the system of A, B, C, and D have been involved. Clearly, the mass associated with
the center of mass of B and C cannot be the sum of their rest masses: this is less than
the rest mass of A, because the difference is "converted" into the kinetic energies of B
and C.  If, on the other hand, we consider the relativistic masses of B and C, we see
that their sum is equal to the rest mass of A.  This has been verified both experimen-
tally and theoretically.  In simple terms, the mass associated with the kinetic energy
has to be taken into account. 

    We have just seen that rest mass is not an absolute notion.  The system of B, C, and
D has a centre of mass at rest, so it is meaningful to call this a system at rest. Yet, it is
the relativistic mass of the individual particles (of B, C and D), not their rest mass,
that we must add up to obtain the (rest) mass of the system.  The kinetic energy of the
motion of the individual particles relative to the centre of mass of the system contri-
butes to the systems rest mass. 

    Now consider the following excerpts from a course on the theory of relativity for
students of secondary school by a professor of physics at Leiden University (1993,
prof. Nienhuis):

. . . The enormous quantities of energy which can be released in
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nuclear reactions originate from a disappearance of a part of the mass.
Mass is converted into energy (ref. 9, page 52).

And:

In the old physics, conservation of mass was considered a fundamen-
tal property of matter. Whatever happened in collisions, during com-
bustion or explosions, the total mass could not change.  This expres-
sed the imperishableness of matter.  Matter could change in nature, it
could convert from solids into gases, and vice versa, but the amount
of matter, as expressed in the total mass, always remained the same.
This idea now has to be abandoned.  Matter can come into existence
and can perish. Not matter is conserved, but energy.  Therefore the
concept of energy acquires a more fundamental importance than that
of matter. 
Summary: Mass is energy in the rest frame.  Energy is conserved,
mass is not.  Mass can come into existence and can perish. 

At the bottom of the page in small letters:

Note: If desired, we can define the mass of an arbitrary physical
system as the energy divided by c².  If we do so, then the mass is, of
course, again a conserved quantity.  The consequences, however, are
far reaching.  Firstly, the mass of a particle is no longer independent
of its motion.  [. . .]  An object becomes heavier as it moves faster,
and the mass becomes arbitrarily large as the speed of light is appro-
ached.  Furthermore, we must attribute mass also to light, or to an
electrical or magnetic field, because they represent energy. 

    The first two quotations of Prof. Nienhuis apparently refer to the rest mass, but
which rest mass?  For we have just seen that rest mass is not an absolute notion.  If
reference is made to rest mass attributed to the centre of mass of a quantity of
radioactive gas under low pressure, which is completely isolated (both thermally and
otherwise) from the outside world, and which warms itself up by its own radioactivity,
then the statement that this heat energy originates "from a disappearance of a part of
the mass" is incorrect.  The (invariant) mass, which this generated heat possesses, is
equal to the decrease in the rest mass of the constituent atoms (I assume a monatomic
gas).  Because the heat together with its mass remains in the system and contributes in
this way to the rest mass of the system, the total rest mass does not change.
    A similar example can also be given for a solid body, although things then become
a bit more complicated; a piece of uranium warms itself up by its own radioactivity,
while it is in a container of thermally isolating material and while radiation particles
are prevented from escaping (by a thick layer of lead for instance).  In this case too
there is a decrease of rest mass if we compare the rest mass of the uraniumnucleus
with the sum of the rest masses of the nuclei of its fission products (the energies of
the electrons can be neglected). Now again there is a release of (internal) energy, but
this time that energy consists not only of kinetic, but also of potential energy, namely
that of the intermolecular forces.  Both kinds of energy contribute to the restmass of
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the piece of uranium-with-container.  The kinetic energy of each atom contributes

  to the restmass, in which v is the velocity of the atom with respectm vrest { ( ) }γ − 1
to the centre of mass.  The potential energy of each atom contributes Epot/c

2 to the
restmass. When all these (relativistic) masses are added up, we find exactly the mass
which we see disappear when we look at those separate restmasses of uraniumnuclei
and fissionproducts. In fact we only thought to see restmass disappearing. It didn't
disappear in reality.  We moved in thought subsequenty along with every nucleus
apart, because we looked at its restmass and then added all those restmasses.  Then it
looked like mass having disappeared. Of course, we (Lorentz)transformed away the
kinetic energy of the thermal movement and therefore its mass also.  To make things
worse, we didn't take into account that potential energies also contribute to the
restmass. Checking a conservation law is like book-keeping while the foregoing is
like fraud.  If we wanted to do a thing like that in classical mechanics loud protests
would arise, as the following example clarifies: " In contrast to what has been said for
a long time, energy is not a conserved quantity. Launch a sled on an air-cushion track
with a spring.  There is no friction anywhere.  The potential energy of the spring has
disappeared completely and has not been converted into other forms of energy. This
becomes clear when we start moving along with the sled; this then has no kinetic
energy." The evident deceit of this reasoning is again in the use of a (galilean)
transformation.  We have transformed away the kinetic energy by starting to move
along as an observer. Nobody will take this reasoning seriously.  The reasoning just
mentioned, in which the same mistake is made, remarkably enough is never contradic-
ted.
We should be well aware of the fact that conservation laws of energy and impulse are
valid only as long as we do not step over to another inertial frame.  E = m.c2  is about
such a conservation law, and in fact tells us that the law of conservation of energy and
of mass are one and the same.  When working with this law we should not change the
inertial system.
    The example of the piece of uranium is so gratifying because it apparently involves
the quantity which we call restmass.  In fact I have been reproached several times for
confusing rest- and invariant mass. When dealing with the example of the radio-active
gas I was told: "But you are looking at the invariant mass, you wrongly call this the
restmass."  As remarked earlier, it is the other way round. Everybody calls the mass of
such a piece of uranium the restmass, while in fact we should call it the invariant
mass. One overlooks the thermal movement. As already said on page 8, directly under
the white line, in practice rest- and invariant mass are one and the same.

    Suppose the two quotations of prof. Nienhuis of page 10 and 11 refer to the
separate restmasses of the gas atoms in our example.  Then the above mentioned
mistake in book-keeping is made.  But apart from that the question arises, why the
restmass of a gas is seen as the sum of the restmasses of the atoms separately.  Why
not look inside the atom?  This holds the kinetic (and also the potential) energy of the
electrons, which are indeed not at rest with respect to the nucleus.  Looked at in this
way, we should take the restmass of the electrons, add it to the restmass of the nucleus
and consider the kinetic and potential energy of the electrons separately; those
energies do not contribute to the restmasses of the elementary particles.  But do
protons and neutrons in the nucleus not have kinetic and potential energy also?  The
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same can be said perhaps for neutrons and protons on their own.  There are
indications that quarks also have kinetic energy within the baryon. Those who argue
that it is logical to compare atoms (or atomic nuclei) before the reaction with atoms
(or atomic nuclei) after the reaction, that it is not obvious or even wrong to compare
atoms before the reaction with elementary particles after the reaction, forget that this
is always done at the fission of an uranium nucleus; one nucleus (that of uranium)
splits into two nuclei plus two or three neutrons.  The "mass converted into energy" is
calculated by comparing the restmasses of the fission product nuclei and the neutrons
(elementary particles) with the restmass of the uranium nucleus.  Whoever argues that
you have to see as one entity those particles which are bound to each other and have
to compare their restmasses with one another, is missing the point also; the whole
fission process could be happening in a container with thick lead walls, out of which
neither neutrons nor nuclei could escape.  In this way all particles are bound particles.
Do you have to see an alpha particle in the uranium nucleus as bound or not?  After
all it can escape.  The notion "bound" is too vague to justify statements such as "you
have to compare only nuclei with nuclei".  The notion of restmass therefore without
further specifications is not unambiguous either.  For it is impossible to state wether,
on an infinitely small scale, a body is not composed of parts moving relative to each
other. Therefore the view discussed above doesn't seem to me to be a fruitful one.  It
seems to me more justified to state that everything we called energy earlier appears to
have mass and contributes to the total mass of the system, in which that energy is
lodged, to the restmass (=invariant mass) if the centre of mass of the system is at rest,
to the relativistic mass if the centre of mass is in motion. Moreover, what is called
restmass here in fact is no restmass, but something what I call with a neologism the
restmass sum. Further on I will demonstrate, that the restmass sum is not a relativistic
invariant.

    The third part of the quotation leans towards our view, yet the author seems
unwilling to make the whole step.  He foresees far reaching consequences if mass is
attributed to light and electromagnetic fields.  From my point of view it is the other
way round: the consequences would be far reaching if we didn't do that.  If the gas
mentioned above starts glowing because of its radioactivity, light will be permanently
exchanged between its atoms.  The mass of this light must contribute to the rest mass
of the gas.  Must, because otherwise we could present the same argument about a
displacing centre of mass as in figures (a) and (b).

    Another example:  an atom initially at rest that emits a photon.  The atom
experiences a recoil.  The centre of mass of the atom and photon must remain
immobile.  If we 

fig. (c) fig. (d)



page 14 Mass and Energy, § 2, E = mc 2 misleadingly explained in secondary  education.

don’t attribute mass to the photon, the centre of mass would travel along with the
atom.  Because the system does not experience forces from the outside world, this is
impossible.  Thus, the photon must have mass, see figures (c) and (d).
    Mass also has to be attributed to a static electric field.  In this case we can safely
speak of rest mass, contrary to the case of separate photons.  To see this, let us replace
the gas by a charged capacitor.  An electrical field exists between the plates.  If we
discharge the capacitor through a long conducting wire (considered to form part of our
isolated system), heat is generated.  This thermal energy has mass which contributes
to the total rest mass of the system.  The rest mass has to remain the same, so an equal
amount  of  mass must have disappeared as appeared in the form of heat.  The
disappearance of mass can only be attributed to the disappearance of the electric field.
Thus, one can safely state that a static electric field has a rest mass. 

    Returning to the statement quoted in the first line of § 1, page 3, “Mass disappears
and energy appears”: if we assume that the relativistic mass is meant, then the
statement is incorrect in the example of  the splitting nucleus, since the total
relativistic masses of B and C are the same as that of A.  If rest mass is intended, then
the statement is wrong in the example using the capacitor (more correctly: here the
statement “Energy disappears and mass appears” is incorrect).
    Another quotation, from a Dutch Secondary school book, the book "Scoop", ref. 16
on page 52, states: "According to that law, mass is one of the forms in which energy
can exist."  This suggests the following:  energy can exist in many forms such as
kinetic energy (flying bullet), chemical energy (gunpowder), potential energy
(a stretched spring) and as mass.  It seems quite clear to me that rest mass is meant
here.  Then this quotation suggests, wrongly, that the first three forms of energy don't
represent mass.  Wrongly, because a compressed spring has more rest mass than the
same spring in a released state (after vibrations are damped out and internal friction
energy has escaped in the form of heat).  A quantity of gunpowder has a bigger rest
mass than its combustion products (after the energy of the explosion has been
dissipated).  Even modern measuring techniques cannot reveal this small mass
difference, but it does exist.  The difference in mass is the mass of the energy
contained in the stretched spring or the gunpowder.  When we shoot off a bullet with
the spring or the gunpowder, this energy, together with its mass, leaves the spring or
gunpowder and adds to the bullets’ relativistic mass (which before the shot is equal to
its restmass).  The bullet's mass is thereby increased to the relativistic mass
corresponding to the speed acquired by the bullet. 

    If we follow "Scoop", and consider the rest mass when the bullet is shot off by a
spring, we are saddled with an unattractive description:  the spring energy has mass.
As soon as it has passed over to the bullet it suddenly has no mass anymore. 

    The argument from "Scoop" can also be found in "Systematische Natuurkunde",
another Dutch Secondary schoolbook which states that E = mc2 should be replaced by

. It would be something like , or in other words, the∆ ∆E m c= − . 2 ∆ ∆E Ekin pot= −

increase in kinetic energy equals the decrease of potential energy and vice versa.  So,

 would mean: the decrease in mass equals the increase of other forms∆ ∆E m c= − . 2
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of energy and vice versa.  Probably Einstein would have written it this way if this was
in his mind. 

    To me it seems more likely that Einstein meant: energy and matter are identical, up
to now we have made an unjustifiable distinction between the two.  To make that
clear, it is not sufficient to know that all energy has mass.  This only means that
energy and matter have a property in common, namely they have mass.  We must also
show that all matter represents energy and vice versa.  I have introduced the term
matter here.  This is necessary, since pre-relativistic physics (prior to the first
publication of E = mc2 on 27 September, 1905) considered the terms matter and mass
as interchangeable.  We have just seen that energy has mass too, so the difference
between matter and energy temporarily requires redefinition.  Let us define matter as
everything made of atoms and their constituents (electrons, protons, and neutrons).
The definition of energy is: the ability to do work.  Now, electrons, protons and
neutrons all have their so called anti-particles.  If, for example, a proton collides with
an anti-proton, both particles are destroyed and photons are created.  Even in pre-
relativistic physics, it was already clear that photons (light) could be converted into all
the other forms of energy known to us, and vice versa.  Also, photons can be
converted to particle anti-particle pairs.  Indeed, matter and energy can be freely
converted from one to the other (provided we consider anti-matter to be included in
the definition of matter).  The definition of matter just given for the sake of argument
is too limited.  The only meaningful definition of matter is: everything that has mass.
But now it has become impossible to point out any essential difference between
matter and energy: they are identical.  Mass can be taken as a measure of both. 

    Why do practically all physicists mainly think in terms of rest mass? This is
probably because the importance of rest mass is emphasised so much by university
lecturers.  Some of them even suggest that relativistic mass is not a useful concept.
This emphasis comes mainly from the fact that the rest mass is invariant under
Lorentz transformations.  In other words: the rest mass plays an important and elegant
role in the mathematics of relativity theory.  But this role is in no way disturbed by
my view of relativistic mass. 

    My conclusion is as follows: it would be better to say that mass and energy are
identical, that E = mc² must be seen as an identity, not as a reaction equation.
Consequently, we can use the same unit for mass and energy.  By force of habit we
still express them using different units, namely kilograms for mass, and joules for
energy, but we must be able to convert these units into each other.  This can be done
with E = mc².  Compare this with the time calories were still in use.  It also came from
a time when a distinction was wrongly made between two forms of energy: heat
(measured in calories) and energy (measured in joules).  Until quite recently, the
formula 1 calorie = 4.18 joule was common in school physics books.  One could just
as well have written: E = 4.18(J/cal)*Q, with E for energy (in joules) and Q for heat
(in calories).  The 4.18 plays the same role as the c² in the formula E = mc². 

    The law of conservation of mass, whose validity is no longer recognised in the
course on relativity theory by prof. Nienhuis (page 10 and 11), can now be restored.
We can say: The law of conservation of mass, as formulated amongst others by
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Lavoisier, implied that when matter is locked in a vessel and none of it can escape,
then its total mass will remain the same, irrespective of its physical (for instance
melting or evaporating) and/or chemical (for instance burning) changes. Lavoisier did
not think it necessary to prevent energy from passing through the walls of the vessel
as well.  He did not know energy possesses mass too.  Now we know this, the old law
of conservation of mass can retain its validity, provided the container is closed to
flows of mass in all its forms (including the ones we were used to call energy until
recently). 

*
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§ 3

E = mc2

and Poyntings theorem

   Poyntings theorem assigns the EM-field as the resort of the EM-energy, expresses
the energy density in the electrical fieldstrength E and the magnetic induction B and
gives an equation of continuity, that is to say it suggests that the decrease per second
of the EM-energy in a certain volume is equal to the energy flux that passes the
boundary of that volume in an outward direction plus the EM-energy that, through the
work done by the Lorentz forces, is converted into other forms of energy:

     Poyntings theorem   (2)( ) ( )v v v v
f v V

U
t

V S A
V AV

⋅ = − − ⋅∫∫∫ ∫∫∫∫∫d d d
∂
∂
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    Where is the Lorentz force density on an infinitesimal part of an electrically
v
f

charged system,  is the velocity of that part, U is the energy density of the EM-field
v
v

and  is the so called Poynting vector.  This vector is the energy stream density of
v
S

the EM-field.  So the theorem states, work done by the EM-field on a charge in a
certain volume V (left hand side of (2)) equals the decrease of EM-energy that is
located in the volume plus the EM-energy possibly entering the volume by its
boundary. This equation is a relativistic covariant, so we can take it over unmodified
in the theory of relativity.  Its left hand side is the work done on an electrically
charged system;  note that in the theory of relativity too work is equal to force
integrated to displacement.  Work equals the energy supplied to a system, so work
divided by c2 is the mass supplied to a system.  Which mass?  Evidently the relativis-
tic mass, as will become clear in the following.  Only if we take for m and E from
E = mc2 the relativistic mass respectively the total energy, everything matches.  If we
divide equation (2) by c2 we get the statement:  the relativistic mass increase of a
charged system being accelerated by an EM-field is equal to the mass decrease of the
EM-field in its immediate vicinity plus the mass of the EM-field that possibly streams
from elsewhere towards that vicinity.  This because if U is the EM-energy density,

then U/c2 is the EM-mass density.  If  is the EM-energy stream density, then /c2
v
S

v
S

is the mass stream density. So:
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   That the left hand side of (3) is indeed equal to the relativistic mass increase, can be
proved for the case of a pointcharge as follows:  first state the left hand side is equal
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     1 Equation (3) is also useful in another case.  The B-field of, for instance, an electromagnet at rest and the E-field
of an electrical charge at rest in the vicinity give a poynting vector field, which indicates that energy is circulating in
closed orbits in this field.  Now in such an EM-field an amount of angular momentum appears to be present (see
Feynmans paradox on this, Feynmans Lectures on physics, part II, 17-4 ).  This becomes clear when we switch off
the current through the electromagnet.  Then the charge will be brought into motion as a result of the electromagnetic
induction and will acquire a certain amount of angular momentum with respect to the electromagnet.  This angular
momentum appears at first sight to come out of nothing.  Looked at it this way we have a paradox.  However, as is
clear from equation (3), such an EM-field has an angular momentum, because it tells us that a quantity of mass is
rotating in closed orbits.  Now the paradox is solved, because it is evident that the angular momentum obtained by the
system was stored in the EM-field before.

to the increase of mrel.  Then this increase can be proven to be equal to
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integrating from a moment at which  v = 0  (and therefore mrel = mrest)  till a moment at
which v = vend (and so  mrel = mrel(vend) ) gives:
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so   m mrel rest= .γ

    We obtain the correct formula for relativistic mass (so also the correct one for
relativistic mass increase) of a point mass without internal degrees of freedom,
therefore in this case the left hand side is indeed equal to the mass increase.  It is
reasonable to suppose that this is also true for more complex systems, such as systems
with internal degrees of freedom.  These can enlarge not only their relativistic, but
also their invariant mass, for example by absorption of EM-radiation (their mass
increase is no longer, as for point masses, a function of their velocity alone).
    As Formula (3) makes completely clear, the relativistic mass increase (for point
masses as well as for invariant masses) caused by EM-forces is not merely an
abstract mathematical description, it is caused by an incoming flow of mass stored in
the EM-field.  From formula (3) we can see that it follows the law of conservation of
mass (relativistic mass) for electrodynamics if we integrate it over time and choose
surface A in such a way, that the circuital integral over it is zero, that is to say if we
take a closed system 1.

    Let us assume that for each type of force (so not only for the electromagnetic force)
an equation like (3) can be written, then it can be said that for any system, each
relativistic and/or invariant and/or field mass increase always goes hand in hand with
an equal decrease of relativistic and/or invariant and/or field mass in the outside
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world.  This supposition, namely that something like (3) is true for all types of forces
is completely justified because it is nothing other than the relativistic principle.  This
states not only that electrodynamic forces, but also all other types of forces, can be
brought into relativistic covariant form, an indispensable postulate in the theory of
relativity.

    It now becomes clear that statements like 'ascribing relativistic mass to a body
gives a false picture' and 'rest mass is the only mass you must work with, this we have
to call the mass' are completely wrong.  The only disadvantage of speaking of the
relativistic mass of a body is that you have to say at the same time in which inertial
system the mass is measured.  On the other hand we have a big advantage here; as
long as we don't switch to another inertial frame and no work is done on the system by
forces from the outside world, the total relativistic mass does not change (the mass of
the fields I also call relativistic mass, see page 7, line 13 from bottom and page 13,
text between the two blank lines).  Thinking in rest masses, we get on the contrary a
confusing image of rest masses being converted into kinetic energy and vice versa,
rest masses being "converted" into potential energies or vice versa (in which case one
mostly forgets potential energy has rest mass too, think of the example with the
capacitor), of a total rest mass that is different each time someone decides to split up
the system in a different way in supposed "pointmasses" (billiardballs as point masses,
or molecules, or elementary particles, or fundamental particles).  A much more logical
approach is to call the relativistic mass of a system the mass and to see rest mass as a
special case of the mass, namely the mass at vM = 0, with m as centre of mass of the
system.  Note how much clearer the first phrase of the previous paragraph then
becomes: . . . . then it can be said that for any system, each mass increase always goes
hand in hand with an equal decrease of mass in the outside world.

*
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§ 4

Gravitational mass

    Another argument in favour of the relativistic mass is, that in one and the same
inertial frame the sum of the relativistic masses of a system is equal to its gravitatio-
nal mass.  He who adds up the rest masses of, for example, the separate atoms of the
system, definitely doesn't find the gravitational mass.
    This can be shown as follows. We place a miniature nuclear reactor on one of the
scales of a balance and bring it in equilibrium.  'The reactor is capable of converting
rest mass into thermal energy.  So rest mass disappears, a part of the rest mass of, for
example, uranium nuclei.'  The reactor has walls impermeable to everything, including
heat, so all energy and matter stay inside the reactor.  Now if gravitational mass
should disappear, the balance would dip.  There is no law of nature forbidding the
'conversion of this thermal energy via a fusion reaction back again into a rest mass
increase (of atomic nuclei).'  Suppose the reactor does so.  Then the balance would
regain its equilibrium. From this movement, energy could be extracted, whereas in the
reactor no net change of rest mass has taken place.  This is in contradiction of energy-
mass conservation.  The gravitational mass therefore is not equal to the sum of the
rest masses of the nuclei, but is equal to the sum of the relativistic masses.  For only
then does the paradox disappear, because the thermal energy has exactly the mass
(relativistic mass), which the nuclei have lost in their fission, so the balance maintains
its equilibrium.
    An obvious criticism of this reasoning is that the second law of thermodynamics
blocks the depicted process. However, the second law forbids nothing.  At most it
states that such a cyclic process is highly unlikely.

*
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§ 5

Rest mass

    Rest mass (or invariant mass, I will use them as synonyms) is usually seen as the
most meaningful notion of mass, the relativistic mass is usually seen as of minor
importance.  To account for this, it is pointed out that c times the rest mass is equal to
the length of a four-vector, namely the energy-impulse vector. The energy-impulse

vector is .  The length of this four-vector is, by definition,  (E2/c2 - p2)1/2.( , )E c p
r

This is another way of saying that rest mass is invariant for Lorentz transformations,
because if we switch to an inertial system with a different velocity the length of a
four-vector remains unaltered.  I don't think this makes rest mass into something more
than the relativistic mass at speed zero.  Whoever says: "The rest mass is invariant"
thinks thereafter "And relativistic mass is not so".  But in this way one compares mass
at a given speed (namely zero) to a mass at variable speed and therefore one compares
incompatible objects.  To me "rest mass is invariant for Lorentz transformations"
would only become something special, if relativistic mass at a given speed would not
be so, if the relativistic mass at a speed of, for example, four fifths of c would not be
relativistically invariant.  But of course it is, because  then is five thirds, so mrel isγ
then always five thirds of the rest mass.  So mrel(v=0,8c) is also a Lorentz invariant.
The same can be said for each speed between zero and c.
    The obvious thing to say would then be: "The length of the energy-impulse vector
is mrestc" and not: ". . . . is mrel(0,8c)c3/5", but that is merely a choice for simplicity,
not a real distinction.

    I think the most important role of the rest mass lies in something different; if the
rest mass of a body changes, then its internal energy changes.  If a body has no
internal degrees of freedom, its rest mass will always be the same.  A free electron
cannot absorb a photon.  If on paper we let an electron absorb a photon and calculate
its final velocity out of energy conservation (=relativistic mass conservation), impulse
is  not  conserved.   So in  this  example we calculate  v  f rom

.  Notice we ourselves put in the rest mass of them m E crest rest photon. .γ = + −2

electron as unaltered.  This becomes clear by the notation, we give rest mass in both
sides the same symbol.
    If the rest mass of an electron could increase, absorbtion would be possible.  This
can easily be calculated, but can be seen without calculation also.  Transform to the
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centre of mass system of photon + electron.  In this the electron is at rest after the
absorbtion, so the photon energy must have been "converted" to an increase of rest
mass of the electron.  So far this process has never been observed and therefore we
suppose for the time being that the electron has no internal degrees of freedom.
    An atom can absorb a photon.  It does have internal degrees of freedom, so it can
increase its internal energy and therefore its rest mass.
    Rest mass plays an important role in defining kinetic energy, amongst other things,
as we know it in collisions.  To illustrate this we first look at the classical, so the non
relativistic, kinetic energy.

    In classical mechanics the definition in formula form of the classical kinetic energy
for a point mass is:  Ekin = 0,5mv2.  If we look at a system composed of several point
masses, things get more complicated.  What do we mean by the kinetic energy?  What
do we mean with: "An inelastic collision is a collision by which the total kinetic
energy diminishes"?  We mean that the macroscopic kinetic energy diminishes, so the
kinetic energy of the centres of masses, not the macroscopic plus the thermal kinetic
energy (we could arrange a collision during which a chemical reaction in the bodies
causes a temperature rise, but we would never add here the involved thermal kinetic
energy to the total kinetic energy of the colliding bodies).  If we speak without further
specification of the kinetic energy of a body, we practically always mean  0,5mMvM

2, in
which mM is the mass of the body and vM is the velocity of the centre of mass.
A careful definition of the (centre of mass-) kinetic energy of a body composed of
point masses is:  It is that part of the kinetic energy of the point masses, that can be
transformed away by stepping over to the centre of mass reference frame.  The
transformation being of course Galilean, we are still dealing here with non relativistic
mechanics.  In this way it can be proven that the maximum part of the kinetic energy
(kinetic energy as the sum of the kinetic energies of the separate atoms) is transfor-
med away. With all other transformations a smaller part of the kinetic energy disappe-
ars.
    Note that the kinetic energy of a point mass can be defined in a similar way as
above:  It is the form of energy that becomes zero, if we step over to the CMS of the
point mass.

    The relativistic kinetic energy of a point mass can be defined in exactly the same
way as the classical kinetic energy. So for the relativistic kinetic energy we have:

.  This formula follows from the verbal definition, fromE m ckin rest= −( )γ 1 2

E = mc2  (provided we read for m the relativistic mass) and from the fact that a
Lorentz transformation leaves the rest mass unaltered.
    The relativistic kinetic energy (of the centre of mass) of a system of point masses
can again be defined in exactly the same way as in the preceding paragraph for the

classical kinetic energy:  .  For the v in  we must fill in theE m ckin rest= −( )γ 1 2 γ
velocity of the centre of mass.  I use mrest to mean invariant mass.  As already
mentioned on page 9, last phrase before the blank line, these two masses are the same
in practice.
    Now again the total kinetic energy is minimal in the centre of mass system.  So you
can say that rest mass (=invariant mass) is the minimum value of the relativistic mass,
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     2 Subtracting a part of the energy of a photon can be achieved by letting it fall onto a receding mirror.  Reflection
causes the photon to experience a Doppler shift in its frequency, resulting in a decrease in energy.

you can give a system by performing a Lorentz transformation on it.
    A Lorentz transformation cannot be the cause of a rest mass change. This is
because a Lorentz transformation leaves the system unaffected, it changes only the
state of motion of the observer.  A calculation of the rest mass from the relativistic
mass is therefore none other than the observer mentally switching to the center-of-
mass-inertial-frame of the system.  This mental act can of course never be the cause of
input or output of energy to or from the system in the rest frame (and so cannot be so
in any other inertial frame, as long as you do stay in that frame).  If in the CMS no
energy is supplied to or withdrawn from the system, this cannot change its rest mass.
Rest mass changes if, and only if, the total energy of the internal degrees of freedom
of the system changes.
    An atom absorbing a photon changes its rest mass.  A free electron in rest hit by a
photon doesn't change its rest mass.  The relativistic mass however, does increase.
The photon’s relativistic mass decreases via the mechanism of the Dopplereffect.
    Notice, if energy is supplied to or withdrawn in the CMS, two possibilities arise:
rest mass changes (and relativistic mass can change, but can remain the same as well),
or rest mass doesn't change.  But then the relativistic mass has to change, and then in

accordance with = constant, in which  constant = mrest. When  v = c  in factmrel / γ

something similar is valid for photons, then  ; in other words, when wemrel / γ = 0
supply or withdraw energy to or from a photon, it changes its relativistic mass
(without changing its speed).
The quotient of mrel and  is again a constant, namely zero. 2γ
    To understand better why there are two possibilities, we can look at collisions.
These can be divided into completely elastic and not completely elastic collisions.
These classes of collisions can be defined in almost the same manner as in classical
mechanics:
Definition (5):  a completely elastic collision is a collision between a number of
bodies, in which the sum of the kinetic energies of their centres of mass is conserved
and in which their rest masses remain unaltered.

And non completely elastic collisions are collisions which don't obey definition (5).
    A collision between a photon and a free electron is, by definition, a completely
elastic collision, for the rest mass of the photon is and remains zero and the rest mass
of the electron does not change either.  In such a collision for all the bodies involved,

 is equal to a constant.mrel / γ
    A collision between a photon and an absorbing atom is by definition a non
completely elastic collision, for the internal energy of the atom increases.  This means
a decrease of the kinetic energies of the centres of mass.

    If a system absorbs energy and increases its rest mass, then there is a degradation of
energy, that is to say the total entropy increases.  If the rest mass remains the same the
process is isentropic.
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    When photons are absorbed by a system, there is an increase in entropy.  When
photons are reflected by a system, the energy transfer is isentropic.
    A remarkable phenomenon in relation to this is betatron radiation.  Here (almost)
free electrons emit photons, whereas the reverse, i.e. absorbtion of photons by free
electrons is impossible.  One could ask why.  The answer lies in 'almost'.  The
electrons in a betatron are not completely free.  They are surrounded by an EM-field,
that can exchange energy and impulse with the outside world.  In such a case it is
possible photons are being emitted and at the same time energy- and impulse-
conservation remain valid.

    Of course it is useful to know the rest mass and to use it as a means of
identification of particles which, in our present state of knowledge, have no interior
degrees of freedom or are mostly in their ground state, such as atomic nuclei.

    The aim of this paragraph is to make clear that rest mass remains a useful thing to
look into.  It has not become a superfluous notion.

*
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§ 6

Within the same inertial system
Newtonian and relativistic dynamics

are identical

    An electrically charged point mass with a non-timedependent rest mass and moving
under the influence of the Lorentz force alone obeys the relativistic equation of
motion:

       (4)
r v

F
m v

t
=

d

d
rel

    on closer examination, the relativistic equation of motion (4) appears to be in
concordance with classical dynamics, provided we keep in mind that each form of
energy has mass and as long as we stay in the same inertial frame. With an example I
will try to make this plausible.

    We envisage an alpha particle, moving straight towards an atomic nucleus N at rest.
On neither particle is a force acting from the outside world.  As the alpha particle
approaches the nucleus, it is more and more decelerated by the repulsive electrical
force.  At a certain moment the alpha particle is stopped by the nucleus and subse-
quently accelerates in the opposite direction.  Take t = 0 at the moment of zero
velocity. So from t = 0 on, the alpha particle is accelerated by the electrical field of N.
We take N to be so heavy, that its acceleration can be neglected.  Now we are going to
follow the events, starting from t = 0, in more detail;  at t = 0 the electrical fields of N
and the alpha particle overlap each other. Next we invoke the theorem of Poynting,
see § 3, page 17 as far as 19. This states amongst other things, that electrical
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     3 That the formula    at  t = 0 represents the electrical energy density of nucleus and alpha( )ε α0
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particle with respect to each other, can indeed be deduced from the expression for the total energy density of the field
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v v v
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and last term represent the energy densities of the nucleus and alpha particle respectively, for the case in which they
are not in each other's neighborhood.  So they represent the self energy of the fields.  The middlemost term is the
energy density caused by the overlap of the two fields and represents the (electrical) potential energy that the two
particles have with respect to each other.  This term divided by c2 gives the mass density of the potential energy of
the system.  In this further paper I will demonstrate that it is this mass which the alpha particle absorbs during its
acceleration.

energy is stored the field of such a system and that we can calculate the energy density
in every point of the field.  The energy density Upot from our example is given by:

         (5)( )U E Epot 0 N= ε α

v
o

v

    In this  and  are the electrical fields of N and , is their inner product and
v
EN

v
Eα α

Upot is the energy density resulting from the overlap of the fields of N and , seeα
figure (e) on this page. 3  This energy density signifies, according to E = mc2, also a
mass density :ρ

       (6)( )ρ
ε

α= 0
2c

E E
v

o
v

N

    When we integrate  over space we find the total mass of the potential energy atρ
t = 0.  This I will call mrel, pot.

fig. (e)

In each point of space around N and the alpha particle there is a mass density
present as a consequence of the overlap of the fields of N and the alpha

particle (notice, inside the dotted sphere  is negative and outside positive).ρ
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     4 At this point I often got criticised, 'because one cannot say of the energy of an EM-field' (more exactly of an
EM-source field, because in relation to radiation fields I never got this criticism) 'whether it is in motion or not.'  I am
convinced it can be said.  The Poynting vector serves as the criterion.  When this is zero, the velocity of the field
energy is zero.  When the velocity is not zero, it can be found by dividing the Poynting vector by the energy density.
Namely, the Poynting vector is equal to the energy stream density and so is equal to energy density times velocity.  If
we divide it by energy density, we get the velocity of the energy.  In the preceding phrase we can replace energy
everywhere by mass (relativistic mass), because they are equal, except for the scale factor c2.  Now it is completely
clear that we can attribute a velocity to an amount of EM-energy;  for we could attribute velocity to mass all the time.
Moreover, only in this way is the solution to Feynmans paradox in footnote 1 on page 18 completely clear. 

We must consider this mass as being at rest at t =0. 4  The relativistic mass of the
alpha particle will increase during its acceleration.No forces from the outside world
are exerted on the system of the masses of N, the alpha particle and mrel, pot, so its total
energy is conserved. But then the sum of the relativistic masses,

, is conserved too.  And because N does not accelerate, them m mrel rel N rel pot, , ,α + +
increase of the relativistic mass of the alpha particle must be equal to the decrease of
mrel, pot.  In formula:

− =d drel pot relm m, , α

    Inevitably -dmrel, pot traverses the space from its original position to the alfa particle.

It cannot be, that mrel, pot decreases "on the spot" and  increases "on the spot",mrel , α

without dmrel, pot travelling through the intermediate space; then there would be a non-
local conservation law. Such a law would only be valid in one class of inertial
systems. As soon as one switches to an inertial system of different velocity the
Lorentz transformation shows that the moments of appearing and disappearing of the
masses in question no longer coincide. A non-local conservation law is not Lorentz
transformation-proof, so relativistic conservation laws have to be local. This means an
equation of continuity has to be valid for mrel, pot. As I showed in § 3, this equation is
obtained by dividing the Poynting theorem by c2. In this way it can be said, that

 and  represent one and the same mass. From now on I will calld relm , α − d rel potm ,

this mass  dmrel. This mass should be accelerated from rest to , the velocity of the
v
v

alfa particle. For this a certain force is needed, in addition to the force which causes
the acceleration of the alpha particle. So during the acceleration two forces are acting:
one to accelerate the alpha particle and one to accelerate dmrel. Equation (4) can be
written as:

        (7)
r r

r
F m

v
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v
m

tlor rel
reld

d

d

d
= +

    From now on I will call the first term on the right hand side of (7) , the
v
Fpoint mass

second term . I see  as the force accelerating the alpha particle and 
v
Fpot

v
Fpoint mass

v
Fpot

as the force accelerating dmrel. One sees immediately that  obeys Newton's
v
Fpoint mass
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     5 A good classical analogy of such an accelerating particle is a certain type of fire-fighting aircraft, which takes
up water by opening flaps under the fuselage and by skimming over a lake.  Consider the situation in which the plane
accelerates while also scooping water.  The thrust force of the propellers can be compared to Flor (we could just as
well say Ftot) on the alpha particle.  This thrust force has to increase the speed of the plane and accelerate the scooped
water from zero velocity to the velocity of the plane. So the thrust force is equal to m*a plus v*dm/dt, with m as the
instantaneous mass of the plane and dm as the mass of the scooped water.

second law. However, this is true for  also, because:
v
Fpot

v v v v r
S p F t m v m= ⇒ < > ⋅ = ⋅ − ⋅ ⇒∆ ∆ ∆ ∆ 0

< > = ⋅
r v
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m
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v
∆
∆

In the limit for   and applied to our case we get:∆ t → 0

< > =
v v
F v

m

tpot
reld

d

    So equation (7) represents a case that can be described with Newton's second law,
because the relation between impulse and quantity of movement can be deduced from
the second law. 5

    I suppose in more general cases also (for example initial velocity unequal to zero,
nuclear forces instead of EM-force) this explanation for equation (4) can be given.  
So equation (4) is deducible from Newtons second law.
    Because Newton's first law is nothing other than a special case of Newton's second
law, we can state that relativistic dynamics obey Newton's first and second law.
    Now the question arises, if Newton's third law is valid in relativistic dynamics as
well. The answer is yes. This can be understood by looking at the so called
Maxwellian stress theorem.  It states:

        (8)( )( )vv vv
o

v v
v

T U A F c
S
t

V
VA

− = + −∫∫∫∫∫ 1 2d d
∂
∂

With    as the 3×3 matrix of unity.
vv
1

    It states that the EM-force can be seen as an elastic stress in a solid.  Just as from
the stresses in a propeller shaft of a ship the amount of force transferred per squared
centimetre from motor to propeller can be calculated, the same can be done for the
EM-force;  the left hand side of (8) is the total EM-force on volume V and is

transmitted by the surface A of V to V's content.   is the force on a possible
v
F

electrical charge in V.  In the case of the ship's shaft, while accelerating its rotation, a
part of the stresses are necessary to accelerate the shaft itself.  In the same manner in
equation (8) 

,  together with some other terms, which can be split off from the leftc
S
t

V
V

−∫∫∫ 2 ∂
∂

v

d

hand side of (8), represent the force necessary to accelerate the mass of the EM-field
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inside V.  We can apply this to the example of nucleus and alpha particle.  Consider

the nucleus surrounded by a volume VN and the alpha particle by a volume ,Vα

bordering on each other with a plane lying between N and  and extending toα
infinity.  The other boundary planes are chosen entirely at infinity.  It can be proven

that at infinity the integral  is zero.( )( )vv vv
o

v
T A

A

−∫∫ 1 d

This integral is only significant over the common boundary plane.  Each infinitesimal

part of the surface dA has a normal vector , which points to the outside of thed
v
A

corresponding volume and is equal in magnitude with dA.  So , thesed dN

v v
A A= − α

vectors are each other's opposite.  Now if we calculate , the x-component of thedFx , α

force on , that is the inner product of  and the first row of , then wedAα d
v
Aα

vv vv
T U− 1

find the opposite number of what we would have found, if we had performed the same
calculation with d Fx, N.  Because this is so for each arbitrary dA of the common
boundary plane, this will be valid also for both integrals over the plane.  Both integrals

over the surfaces at infinity are zero, so both integrals over AN and  are each other'sAα

opposite.  In other words, the total Fx, N is the opposite of the total .  Because theFx , α

same reasoning can be applied to the two other components of the forces, we can say
action is minus reaction. Now we can conclude that  all three laws of Newton are valid
in relativistic dynamics as well.  All this is true provided the observer doesn't step
over to another inertial frame.

    I think several aspects of the relativistic mechanics for a system consisting of point
masses become clearer by taking my point of view:

1st by giving the principal role in the dynamics to mrel, the relativistic mass of the
system as a whole and not to mrest of the separate point masses of the system,
the total mass (relativistic mass) of the system remains constant as long as no
work is done on it by the outside world. The predominant habit of giving the

principal role to the sum of the rest masses, , of the separate pointΣ m irest ,

masses of the system has as a consequence that this sum is continuously

changing, dependent on the fact whether (a part of)  is "converted intoΣ m irest ,

energy" or vice versa. Worse, as said before, this sum is dependent on the way
one decides to divide the system into what one considers as point masses. For
example: does one call the energy of an electrostatic field divided by c2 rest
mass or not?  Or: speaking of "the rest mass" of gas in a container, does one
mean the sum of the separate rest masses of its molecules, or does one mean its
invariant mass, thus the sum of the relativistic masses of its molecules with
respect to its centre of mass?  Often one talks about the "rest mass" of a system
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without stating in what way one has subdivided the system into "point masses".
But without this information "the rest mass" is not uniquely defined (we will
see in the next paragraph that the rest mass sum is not a real rest mass). All
these difficulties disappear as soon as one looks at the relativistic mass and one
considers the rest mass as a special case of the relativistic mass: the rest mass
of a point mass is its relativistic mass at zero velocity. The analogon of rest
mass for a non-point mass, the invariant mass, is defined in the same way, with
the understanding that "velocity" here means the velocity of the centre of mass.

As the relativistic mass of a point mass of the system increases as a
result of the Lorentz force, we no longer have to see this as an abstract
mathematical description. The increase is caused by a flow of fieldmass
towards the point mass, a clearer point of view than the usual one.
It is only a small step to suppose that this is true for all kinds of forces.

2nd Equation (7), page 29, becomes easier to understand. For instance, quite often
people stress with some amazement a consequence of equation (4), page 27,
namely that the total force on a body and the acceleration of that body do not

fig. (f)

nessesarily have the same direction. In my view this is not so amazing.  can
v
Fpot

very well have a different direction than .   has the direction of
v
Fpoint mass

v
Fpot

the velocity of the point mass,  has the direction of the acceleration.
v
Fpoint mass

When acceleration and velocity have different directions, which is quite

possible in Newtonian dynamics, so do both forces.  Then , the vector
v
Ftotal

sum of both forces also has a direction different from that of the acceleration.
See figure (f).

3rd Problems from the RT can become clearer from my point of view. As an
example I give a variant on a thought experiment from Einsteins first
publication on E = m*c2. A point mass at rest emits simulteaneously in opposite
directions two identical photons with frequencies f. The point mass will remain
at rest, will undergo no acceleration. Next we step over to an inertialsystem in
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which the point mass has velocity v. This velocity has the same direction as one
of the photons and as the x-axis of the new coordinate system. As a
consequence of the Doppler shift the photons get the frequencies:

      fforward = (1 + v/c)/(1 - v2/c2 )1/2   en    fbackward = (1 - v/c)/(1 - v2/c2 )1/2 

The problem here is to prove, that in this inertial frame the body does not
change its velocity either. He who imagines that before the emission of the
photons none of their properties existed, unnecessarily complicates matters for
himself. Because, as a result of the differences in frequencies the impulses of
the photons are different as well, and one could start thinking that the absolute
value of the impulse experienced by the point mass in the forward direction is
smaller than that in backward direction. Then the point mass would change its
velocity, which is in contradiction with the state of affairs in the rest frame.
If, however, we look at the relativistic mass (so not at the rest mass),
everything becomes simple. We find the relativistic mass of the photon by
dividing its total energy by c2. So we find hf/c2. Before the creation of such a
photon its energy, so its relativistic mass as well, was already located in the
point mass. This mass therefore had the same velocity as the point mass (which
is at least reasonable to suppose). For the forward photon there is no question
of a momentum hfforward/c appearing out of nothing, but there is a change in
momentum:

∆ p h f c h f v cforward forward forward= −. / . . / 2

Equally: 
 

∆ p h f c h f v cbackward backward backward= − −. / . . / 2

Thus it can easily be shown that:

∆ ∆p pforward backward= −

So the total impulse on the point mass is zero and so is the change in velocity.

4th The mass defect originating when an atomic nucleus is formed out of unbound
nucleons can now be explained more clearly.  The fields of the nucleons (their
EM-fields and their nuclear force fields) are going to overlap each other more
and more.  The energy of the EM-fields, and thus their mass, increases, while
the energy (mass) of their nuclear force fields decreases (because here we have
attractive forces).  Finally the decrease overrules the increase, so there is a net
mass decrease, a mass defect.  Of course no mass (relativistic mass) has
disappeared. It has been radiated away in the form of photons, which are always
released in an exothermic fusion reaction.  So during the creation of the nucleus
the fields have radiated away a part of their (relativistic) mass.
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5th The idea expressed by Professor Nienhuis (line 10 to 15 of page 11) and living
at the back of the minds of many others, that 'the notion of energy has a more
fundamental character than the notion of matter', because mass can be seen as a
form of energy, but energy cannot be seen as a form of mass (this clearly is the
underlying way of thinking in his argument, if we ignore his reluctant
footnote), appears to be totally wrong.  My view stresses that each form of
energy has mass.  If we go along with Prof. Nienhuis and we refuse to ascribe
mass to electrical energy, we would be just as little entitled to appoint mass to
the electrical field of an electron.  But an electron's rest mass consists not only
of the rest mass of its "hard kernel", but also of the mass of its electrical field
in the rest frame.  These masses are still not separately known.  So indirectly
Prof. Nienhuis asks us to consider the electron's rest mass as an unknown.  This
apparently is an unfruitful way of thinking.
Mass and energy are identical.

    Of course relativistic dynamics are no longer the same as the Newtonian when we
step over to another inertial frame which is in motion with respect to us.  Then time
dilatation, Lorentz contraction and a changed synchronisation of clocks give effects
which are no longer Newtonian (or rather Galilean).  In addition, all relativistic masses
and relativistic mass densities change, because the system  obtains a different kinetic
energy.  However, in this new inertial frame that which has just been said, holds again:
all energy has relativistic mass and this mass acts in accordance with Newtonian
dynamics.

*
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§ 7

Conservation, Invariance
en Additivity

    In this paragraph again invariant mass will be called rest mass.

    Invariance and conservation are two different things, which must be distinguished
carefully.
    A physical quantity of a system is invariant when it has the same value for obser-
vers with different (constant) velocities.
    A physical quantity of a system is conserved when before, during and after physical
changes in the system (which always imply the system or parts of it undergo accelera-
tions) it has the same value for an observer who doesn't change his own velocity.

    When a quantity is conserved, this is expressed in a conservation law.  Classical
dynamics distinguishes four conservation laws, i.e. of energy, of momentum, of
angular momentum and of mass.  All four are valid, if and only if, the system is
isolated from the outside world in respect to the conserved quantity.  Take as an
example the conservation of energy.  It is valid if and only if the work done by the
outside world on the system is zero.  All these four conservation laws have as a
property, that if we drop the condition of isolation then, even though the quantity may
no longer be conserved in the system, it is conserved together in the original system
and the outside world as a second system.  Take again, for instance, the energy;  each
joule the system looses is gained by the outside world.
    Differently stated, if we define several systems, that are in contact with each other
but with nothing else, the four classical conservation laws are still valid.  This means
that such a conserved quantity is indestructible and uncreatable (this neologism will
appear useful shortly).  When, for example, the quantity diminishes in the system, it
increases in an equal amount outside the system.
    Another example is found in thermodynamics: the quantity entropy in a reversible
process. In adiabatic reversible processes, the entropy of the system is conserved. In
diabatic reversible processes, the entropy acts as an indestructible and uncreatable
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     6 Angular momentum is only indestructible if, for the system and the outside world, the same point of rotation
(the point in reference to which the angular momenta are calculated) is taken or if the centres of masses of the system
and the outside world are at rest relative to each other.

quantity. Take, for instance, a system performing a Carnot cycle. During this process
the entropy of the system alternately increases and decreases, but at the same time
there is an equal respective decrease and increase of the entropy in the outside world.
Each joule per kelvin that leaves the system enters the outside world and vice versa.
This seems to be self-evident, but in fact is not. 6   An example of another course of
events is an irreversible process in thermodynamics.  Now the total entropy increases.
Though entropy can very well decrease for some time in the system, there will at the
same time be a bigger increase in the outside world.  A process in which the total
entropy decreases is never found, at least not for processes with large numbers of
particles involved.  So entropy is conserved in a system that goes through an adiabatic
reversible process, it is indestructible, however it is in general not uncreatable.
    Now can we conceive of a quantity that is conserved when the system is isolated,
that is destructible and creatable?
The answer is yes.  It is rest mass.  The rest mass of a system of point masses (so the
invariant mass) is a conserved quantity in the RT, provided no work is done by the
outside world on the system.  If we drop this condition, then rest mass, for example,
can disappear from the system without submerging in the same rate in the outside
world. This becomes clear when we consider the following example.  Consider a
system of two protons which move in opposite directions at equal speeds with respect
to an inertial observer, see fig. (g).  The right-hand proton collides completely 

fig. (g)

elastically and centrally with a helium nucleus initially at rest with respect to the
observer.  We see the helium nucleus as part of the outside world.  The relativistic
mass of the helium nucleus increases, so that of the proton decreases.  The centre of
mass of the system (the system is the proton pair) is going to move to the left (this
follows from momentum conservation).  It can be calculated that the speeds of both
protons relative to the system's centre of mass have diminished.  So the rest mass
(=invariant mass) of the system has decreased.  The rest mass of the outside world
however remains the same.  So we see, that although for one single system rest mass
can be conserved, rest mass is not indestructible.  
This is equivalent to non-additivity of rest mass; the total rest mass of a system is in
general not equal to the sum of the rest masses of its parts.
    Rest masses of systems are additive only, if their centres of masses are at rest
relative to each other.
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     7 By definition  I assign no internal degrees of freedom to a pointmass.

    The following two schemes give a survey of classical as well as relativistic
dynamics as far as conservation and invariance is concerned.

In classical dynamics . . . 

1c the total energy of a system on which no work is done by the outside world, is
conserved.

2c the total energy of a system is not Galilei invariant.
3c the total mass of a system, which doesn't exchange mass with the outside

world, is conserved.
4c the total mass of a system, which doesn't exchange mass with the outside

world, is Galilei invariant.

In relativistic dynamics . . . 

1r the total energy of a system on which no work is done by the outside world, is
conserved.

2r the total energy of a system is not Lorentz invariant.
3r the total relativistic mass of a system, on which no work is done by the outside

world, is conserved.
4r the total relativistic mass of a system is not Lorentz invariant.
5r the rest mass of a point mass is conserved. 7

6r the rest mass of a point mass is Lorentz invariant.
7r the rest mass of a system on which no work is done by the outside world, is

conserved.
8r the rest mass of a system on which no work is done by the outside world, is

Lorentz invariant.

    Point 2c is evident. An observer who changes his velocity, will see the system
getting a different energy.
The explanation of 2r is similar, albeit more difficult to comprehend because of the
potential energies in the system.
    Statement 3r is in fact the same as 1r, because of the equivalence of mass and
energy (relativistic mass and total energy, different from Okuns view); if we change
the kinetic energy by a Lorentz transformation, we also change the relativistic mass.
4r and 2r are also the same.

    Why do physicists, anyway Okun (in his article, see ref. 10 of the list of literature
on page 52 of this article), Taylor and Wheeler (in Spacetime Physics, see ref. 15,
page 52), and in fact Einstein too (in a letter to Lincoln Barnett, 19 june 1948, see the
article of Okun) choose rest mass as the mass?
    I think they believe mass has to be both conserved and invariant, as indeed rest
mass is.  In my opinion they have this idea, because they stick too much to the
prerelativistic dynamics, in which these properties with respect to mass go hand in
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hand.  In my opinion they are not, or at least not enough, aware of that important
difference between the conservation law for rest mass and the four classical conserva-
tion laws; rest mass, in contrast to classical mass, classical energy, classical momen-
tum and classical angular momentum, is not additive.
    If we start calling rest mass the mass all these confusions and mistakes arise,
precisely because of the non additivity.
    If on the other hand we start seeing relativistic mass as the mass, we have a
quantity that is conserved, that is additive and in which the rest mass is already
included; the rest mass of a system is simply the relativistic mass at zero speed of the
centre of mass (or if one wishes, the length of the energy-momentum vector divided
by c2).
    Up until now I haven't seen a single valid argument as to why one should not see
relativistic mass instead of rest mass as the mass.  In Spacetime Physics Wheeler and
Taylor name two arguments to call rest mass the mass:  "The concept of "relativistic
mass" is subject to misunderstanding.  That's why we don't use it.  First, it applies the
name mass - belonging to the magnitude of a 4-vector - to a very different concept,
the time component of a 4-vector.  Secondly, it makes increase of energy of an object
with velocity or momentum appear to be connected with some change in internal
structure of the object.  In reality, the increase of energy with velocity originates not
in the object but in the geometric properties of space-time itself."
    In the first argument Wheeler and Taylor make an apparent error of thought; they
want to decide which mass, rest or relativistic, deserves most to be called Mass.  Then
they suggest: It is the mass belonging to the length of the 4-vector (this is the rest
mass), because it had this name already.  This is no argument, it was indeed the first
to be called thus, but that was not the question.  The question was, whether it deser-
ved that name. Here I think a certain mystification plays a role.  It is not for nothing
that Taylor and Wheeler speak of "the mass, belonging to the length of a 4-vector"
instead of simply "the rest mass".  One sees the four-space like something "really
existing" (what does that mean, really existing?).  Anyway, many people see the
4-space as something without which "the picture of the theory of relativity is not
complete" (professor Berends, Rijksuniversiteit Leiden, in a letter to a scientific
journalist of the NRC Handelsblad, a Dutch newspaper). One is then rather tempted to
see the length of such a 4-vector as something more important than a notion derived
from the "ordinary" threedimensional space. Therefore one sees rest mass not simply
as the relativistic mass at speed zero, but as something that is derived from a more
fundamental concept.  This idea is definitely wrong, the SRT can fully be described
and understood without the formalism of the 4-space, beautiful as it may be.  We can
conceive the 4-space as merely a mathematical aid.  And rest mass we can see as
nothing more than the relativistic mass at speed zero.
    As far as the second argument is concerned, Wheeler and Taylor have something in
mind which I cannot follow.  Why should I have to think that relativistic mass
increase would mean a change of the internal structure of a body?  With an internal
change in structure of an object I imagine a change in the arrangement of the atoms
and/or the elementary particles of that object.  With that mass increase I, on the other
hand, imagine that each infinitesimal part of the object undergoes a similar mass
increase and for that I need not presume that that arrangement changes.  The structure
changes in so far, that Lorentz contraction takes place.  But if that were not admitted,
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we would have to abandon the RT.
    This second argument cannot be correct for two other reasons also.  First: applied
to the proper time versus an observer time it would mean that only the proper time
deserves the name Time.  "If travelling by rocket we pass an observer, who determines
our speed with his clocks, we would not be allowed to see his clocked times as values
of the time;" (so far nothing really incorrect has been said) "for they are read from
clocks which have a slowed down pace for us and then it seems as if those clocks
have had a change in their internal structure."  And: "In reality the slowed down pace
originates not in the clock but in the geometric properties of timespace itself".  The
conclusion should then be that we only have the right to call proper time the time and
a time of an inertial observer moving in respect to the body in question would be
subject to misunderstanding, therefore should rather be avoided. This conclusion is
obviously false, so Wheeler's and Taylor's reasoning is false as well.
    Secondly: remarkable is their view of that relativistic mass increase.  This would
"originate from the geometric properties of spacetime itself".  Evidently they think of
an object which obtains a bigger relativistic mass for us as observers because we step
over to an inertial frame with another velocity.  They completely ignore the possibility
that an object increases in relativistic mass with respect to us because it undergoes an
acceleration itself, while we as observers remain in the same inertial system.  In this
last case it is practical/customary to regard the relativistic mass increase as a conse-
quence of the supply of energy.  It can on no account be seen as "originating in the
properties of spacetime itself".  So Wheelers and Taylors second argument moreover
has no general validity.

    In the following passage mistakes, which are made in relation to rest mass and
which arise from overlooking the non-additivity of rest mass are discussed.  Because
there is a great deal of confusion on the notion of rest mass, good definitions should,
first of all, be given for some notions concerning rest mass;

1 We have the theoretical case of rest mass of a point mass.

2 We have the rest mass of a system of parts moving relative to each other,
defined by equation (1) on page 6, which one has redundantly named "invariant
mass".  This I call the rest mass of a system (in contrast to the rest mass of a
point mass).

3 We have something which is carelessly called "rest mass", namely the sum of a
number of rest masses of a number of bodies, which can be seen as point
masses and which are in motion relative to each other.  For example, the sum
of rest masses of the fission products flying away from each other after a
nuclear reaction.  This "rest mass" I will name "rest mass sum".

    Moreover it is important to note that the sum of rest masses (for a number of
systems interacting with each other but not with the outside world) is not conserved.
Is the rest mass sum Lorentz invariant? No, it isn't either. This is clarified by the
following (in which A and B are two  inertial observers in motion with respect to each
other): A looks at the fission products of a uranium nucleus flying apart. He starts
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looking after the moment of fission.  He therefore sees no change in the rest mass sum
(I mean the sum of the separate rest masses of the fission products). Now we trans-
form to B. We have chosen B's velocity and position with respect to A in such a way
that, in B's local time, the fission has not yet taken place.  Then B finds another rest
mass "sum" (a bigger one, namely the rest mass of the uranium nucleus. So a "sum" of
one term).  Looked at it this way, the rest mass sum is not invariant under Lorentz
transformations.  Of course this is caused by the non-conservation of the rest mass
sum and the shift in time in a Lorentz transformation.  So we see here that invariance
and conservation are interconnected as in a Gordian knot, and are in fact inseparable.
Because a number of readers of my article found the above argument unclear, I added
appendix III, page 69.
    An example of an obvious mistake: consider an isolated system of a uranium
nucleus on the verge of fission.  Even after the fission, the system has no interaction
with the outside world, so the fission products are not slowed down, but remain at full
speed. It is often said that rest mass disappears in the fission, which is incorrect.  This
way one compares the rest mass of the uranium nucleus with the sum of the rest
masses of the fission products, not with the rest mass of (the system of) the fission
products. The rest mass of (the system of) the fission products, that is to say the sum
of their relativistic masses with respect to their joint centre of mass, is exactly the
same as the rest mass of the uranium nucleus.  Calling the rest mass sum of the fission
products "rest mass" is suggesting that rest mass is an additive quantity. That this is
often not only a matter of sloppy language becomes clear when one adds: "Rest mass
is Lorentz invariant".  The rest mass sum is certainly not Lorentz invariant.

    Another mistake: to speak of the rest mass sum of a system without adding in what
way one divides the system in objects of known rest masses.  The rest mass of a
hydrogen atom is not the same as the sum of the rest masses of an electron and a
proton.  The rest mass of the fission products in the example above is equal to the rest
mass of the uranium atom.  The rest mass sum of the fission products is less than the
rest mass of the uranium atom. This mistake makes the quantity of "mass converted to
energy" appear to be dependent on this partition. But this partition is arbitrary, so the
quantity of mass "converted to energy" would be arbitrary too, which is absurd.

    People who consider rest mass as the only true mass can never say that the mass
and energy of a system are really equivalent, because the rest mass is a Lorentz
invariant, while total energy is not.  Then they don't belong together in  E = mc2,  for
in such a relativistic equation the left and right hand side should transform in the same
manner.  These people have to construct an elaborate scheme describing which kinds
of energy do and which don't have mass; for example, the kinetic energy of a system
"doesn't have mass", because it is proportional to the difference of relativistic mass
(not invariant) and rest mass (invariant).  From the linearity of the lorentz transforma-
tion it follows then that the difference of the two is not invariant either.
Another example; a B-field of itself has no mass, because "you cannot state as a
matter of fact whether such a field is at rest or not, so you cannot determine its rest
mass", but nevertheless it contributes to the rest mass when it is part of a bigger
system.
These people are also inclined to make the following mistake: they deny the fact that
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photons (for they exist merely out of kinetic energy), and consequently other types of
EM-field in the system, contribute to the rest mass (=invariant mass) of the system.
But then things definitely go wrong.  Consider a system of two atoms exchanging a
photon.  One atom emits the photon, the other one absorbs it.  Before and after the
exchange, the rest mass of the system is the same to an inertial observer A.  Now
transform to an inertial observer B, for whom the photon is just passing over from
atom to atom.  Then the rest mass for B would be all of a sudden smaller than that
for A.  From this point of view rest mass would, besides being non-conserved, also be
non-Lorentz invariant. Once again, professor Nienhuis makes this mistake (page 11 of
this paper).  At the same time he suspects it is wrong, which is apparent from the
footnote.
    Note that Okun says explicitly that mass has to be invariant, page 31 of Okun's
article, from the 8-th to the 4-th line from the bottom. He nowhere says that mass has
to be conserved.  He apparently sees invariant mass as the only mass.

    Another mistake made just as often is the supposition that there is no measure (in
relativistic dynamics) for the amount of matter.  In classisal dynamics it was mass, in
relativistic dynamics nothing would have taken over its role.  In Spacetime Physics
Wheeler and Taylor literally say: 'Nature does not offer us any such concept as
"amount of matter."  History has struck down every proposal to define such a term.
Even if we could count number of atoms or by any other counting method try to
evaluate amount of matter, that number would not equal mass.  First, mass of the
specimen changes with its temperature.  Second, atoms tightly bonded in a solid
weigh less - are less massive - than the same atoms free.  Third, many of nature's
atoms undergo radioactive decay, with still greater changes of mass.  Moreover,
around us occasionally, and continually in stars, the number of atoms and number of
particles themselves undergo change.  How then speak honestly?  Mass, yes; "amount
of matter," no.'
    This supposition is really wrong.  We must look at the relativistic mass, that is the
one which is conserved and additive.  It is indeed not invariant, but that's no major
objection.  We can say therefore, in a given inertial frame that relativistic mass is the
measure of total amount of matter (in a system, in the universe).  We simply have to
abandon the idea that the total amount of matter has to be an invariant for some
reason.  It is conserved, not invariant.  The non-invariance is only a small price to pay
for the preservation of a criterion of the amount of matter.  Completely to drop such a
criterion is certainly a much higher price.

    I propose to name relativistic mass the mass and the related conservation law the
law of conservation of mass.  Do we have to add to this law: . . . "for an observer who
doesn't change his velocity"?  Yes and no.  No, because it goes without saying more
or less.  To the classical law of conservation of energy we don't add it either, although
it is a necessary condition.  Yes, because nothing appears to be so confusing as
notions in the theory of relativity.  For all clarity it is advisable, at least for the time
being, to add it.

    It takes a while to get used to the idea that the total mass in the universe is not an
invariant, but depends on the state of motion of the observer. On the other hand this
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step is not such a big one.  The total energy in the universe also depends on the state
of motion of the observer.  This is not only so in the theory of relativity, this was
already so in classical mechanics.

*
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§ 8

Problems I have been unable to solve

    The notion that an electrical field has mass is not new.  At the second last turn of
the century the idea even came up that the whole mass of the electron could be
electrical field mass.  This idea was worked on by, amongst others Lorentz, Abraham,
Pauli and von Laue.  One started representing the electron as a small, electrically
charged, hard kernel with its charge homogenically divided over its surface (or
sometimes otherwise).  If the radius of the electron is made small enough, the field
near the surface gets so strong that the entire electron mass is finally located in the
field. One calculated that radius, which is now known as the classical radius of the
electron.  For a short period it seemed as if the phenomenon of mass and its behaviour
could be deduced from electrodynamics.  Newton's laws would then loose their status
as first principles.
    This soon appeared to be impossible.  When we try to deduce from the EM-field

the momentum of an electron with the classical radius and velocity , things go
v
v

wrong.  Instead of  we find . To my knowledge this problem hasm vrestγ .
v 4

3 m vrestγ .
v

never been solved satisfactorily.  Poincaré pointed out in one of his publications (Circ.
Mat. Palermo 21, 129 of 1906) that there has to be another force-field holding the
electron together, preventing it from being torn apart by the repellant electrical forces.
If these new forces are taken into consideration, the right momentum would be
obtained according to Poincaré.  I haven't read this publication, but apparently it has
not convinced everybody, for there have been later publications of others with
different explanations.  One of them is by Rohrlich (Self-energy and Stability of the
Classisal Electron, F. Rohrlich, Department of Physics and Astronomy, State Univer-
sity of Iowa, Iowa City Iowa, 12 feb. 1960). Unfortunately I only possess a photocopy
of it and therefore don't know the name of the scientific periodical from which it
comes.  Rohrlich claims that in calculating the momentum the integration is wrongly
performed.  According to me his claim boils down to having to integrate in three
dimensional space over the fields not at the same but at different times for the
different volume elements.  I cannot think of one reason why this should be done thus.
I therefore don't think this is a real solution. I think here the opinion plays a role, that
the special theory of relativity can only be understood completely in four dimensional
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spacetime.  This is not so.  Spacetime is, in contradiction to relativistic mass, only a
mathematical construct (I refer to the special theory of relativity, whereas of the
general theory of relativity I have little or no knowledge).  As a matter of fact it is
possible in the STR to imagine that the aether does exist and that Lorentz contraction
and time dilatation (=slowed down pace of all time processes) are physical effects of
the aether wind.  It is just not possible to say in respect to which observer the aether is
at rest.  In fact, each observer can imagine with the same right that the aether is at rest
with respect to hìm (or is moving with an arbitrary velocity).  To me this was a
discovery.  From the very moment that I comrehended this, I didn't make a single
mistake anymore in solving the standard problems given by the teaching books on
STR (in sharp contrast to before).  Yet I keep on hearing: "But the aether doesn't exist,
this is a proposition of the TR", or ". . . that would include, something like 'absolute
movement' exists, but this is not so" or ". . . Einstein has demonstrated, aether doesn't
exist".  
    Einstein never demonstrated that.  He has merely proposed to abandon the idea of
an aether, because we cannot measure with respect to which inertial frame the aether
is at rest, and to see the Lorentz transformation as an abstract, mathematical procedu-
re.  One often says "as a transformation of space itself".  This of course is no more
than play on words.  We replace "measured distances and times" by "space".
    The aether simply is a handy mental model.  Imagine the aether is at rest with
respect to yourself.  Then all clocks moving with respect to you are running too
slowly (slowed down with a factor ), all measuring rods having a certain velocityγ
relative to you are too short (contracted with a factor  in the direction of theirγ
velocity) and Einstein-sychronicity is then nothing more than an incorrect synchroni-
sing of the clocks, namely without taking into account the aether wind.  In this way
you can completely think in three (spacial) dimensions, because time, your time, has
become absolute again (and keep in the back of your mind the fact that each other
observer can reason in just the same way, with the aether at rest with respect to him).
    Looked at in this way, Rohrlichs explanation is completely unsatisfactory.  Integra-
ting in three spacial dimensions while considering time as a constant should give the
right momentum.  It is not true that in three dimensions we get an incomplete picture
of a relativistic system.
    I myself think that something in the EM-theory is wrong.  When I calculate for an

electron with a constant velocity which velocity the field mass has in each point of
v
v

the field (this I calculate again with the method of dividing the Poynting vector by the

energy density, see footnote 4 on page 29), I would expect to find . Instead I find a
v
v

complicated stream pattern, in which the field mass continually overtakes the electron
in a curved path around it, and is subsequently overtaken by the electron.

    So the EM-part of the electron mass has never been found and the problem of the
factor 4/3 has never been solved.  Does this undermine my view on relativistic mass?
I don't think so.  The problems manifest themselves in the so called source terms, thus
in the terms describing the field of an electrical charge at the points where the charge
is located.  My formula (6), on page 28, is not a real source term.  It doesn't contain
the square of the charge's own field, but the product of its own field and the external
field.  I therefore cherish the hope such terms behave themselves properly.
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    For some time I have thought that it would be possible to deduce the term  v*dm/dt
from the Maxwellian stress theorem.  The Maxwellian stress theorem forms, together
with the theorem of Poynting, a relativistic covariant four by four tensor.  The
Maxwellian stress theorem has already been given on page 30.  Here it is again: 
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    As already explained, it states that the EM-force can be seen as an elastic stress in a
solid.  Just as from the stresses in a propeller shaft of a ship the amount of force
transferred per square centimetre from motor to propeller can be calculated, the same
can be done for the EM-force;  the left hand side of (8) is the total EM-force on

volume V and is transmitted by the surface A of V to V's content.  is the force on a
v
F

possible electrical charge in V.  In the ship's shaft, while accelerating its rotation, a
part of the stresses is necessary to accelerate the shaft itself.  In the same manner in
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separated from the left hand side of (8), represent the force necessary to accelerate the

mass of the EM-field inside V.  I have tried to prove   and the otherc
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terms are equal to .  I did not succeed. Later I found out by way of a thought
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experiment these expressions cannot be equal.  What    represents is somet-
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⋅
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d
hing which takes place on the boundary layer between field and charge.  I am now
inclined to think this is a region in which the Maxwell equations no longer apply, so
the Poynting vector cannot be of help either.  I think Poincaré was right, i.e. that
stresses of a non EM-nature are at work here.  As soon as we know these, it is
possible to calculate the stream field of the mass in this region.

    For a simple case I have been able to reason out that the velocity of the field mass
streaming toward the charge is perpendicular to the velocity of that charge at the
places where that mass is entering the charge (that is in the boundary layer).  That is
in agreement with the idea that the field mass has to be accelerated form speed zero to
the velocity of the charge; the component of the mass' velocity in the direction of
movement of the charge is zero.

*
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§ 9

Relativistic mass is the mass

    As soon as we consider relativistic mass as being the mass, a considerable number
of things become simpler.  That is what I have tried to make clear and I will resume it
here.  I will do so in a question and answer form, like Taylor and Wheeler do in
Spacetime Physics, but with the important difference that in their dialogue relativistic
mass falls short in respect to rest mass.  Of course I will make the opposite happen.
Besides, I don't give only (in bold type) my own arguments/answers in favour of
relativistic mass, but subsequently also (in italics) the arguments/answers of the rest
mass adherents.  It is important to realize in the bold text the word 'mass' is seen as
the relativistic mass and in the italic text 'mass' is seen as the rest mass.

1. Does the equivalence of energy and mass,  E = m.c2, mean that the notions of
energy and mass, except for their historically grown units, are identical?

Yes.

No, not identical. The kinetic energy of the system as a whole has no mass. On
the other hand, when a system is built up of moving point masses, their kinetic
energy relative to the rest inertial frame of the system contributes to the total
mass of the system.
EM-fields themselves have no mass, but belonging to a bigger system they can
contribute to the mass of the system. The equivalence means that mass can be
converted to energy and vice versa. Mass is a form of energy. 'In that way the
notion of energy gets a more fundamental character than the notion of matter'
(I am quoting professor Nienhuis).
With E = m.c2 we can, for example, calculate the energy released during the
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explosion of a hydrogen bomb. Here, part of the sum of masses of the nuclei is
converted to energy. The mass of the system as a whole does not change as
long as it does not interact with the outside world. In the words of Wheeler
and Taylor: "Thus part of the mass of the constituents has been converted to
energy; but the mass of the system has not changed."

2. Can we say of a single photon that its mass is equal to its energy divided by c2?

Yes.

No, a photon has no mass, it has only energy.  This is a subtle point; a mas-
sless photon may "transfer" nonvanishing mass (this is stated by Okun on
page 34 in his article, see ref 10, page 52).

3. In classical mechanics the momentum of a pointmass is defined as its mass
times its velocity.  Can we maintain this definition in STR in such a way that
again a law of conservation of momentum is valid and apply it also to photons?

The answer to both questions is yes.

No, material bodies in the STR have a momentum which is times the classi-γ
cal momentum.  Photons have a momentum equal to their energy divided by c.
For momentum of material bodies we need another definition than for momen-
tum of photons.

4. Can we, if we merge two systems into one, add both their masses to find the
mass of the combined system?

Yes.

No, mass isn't additive.  This is only possible when 'two non-interacting
objects move freely and in step, side by side' (I cite Wheeler and Taylor,
page 247 of "Spacetime Physics", second edition. Notice, they don't say: "With
equal velocities". The velocity for a non-point mass has a cumbersome defini-
tion, unless you simply define it as the velocity of the centre of mass.  But in a
moment we will see that the centre of mass cannot be defined in the rest mass
view).
We have to determine again the length of the energy-momentum vector of the
combined system and divide it by c.
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5. Can we say that the energy density of the EM-field, as long as we don't take
into account the self energy of the source terms with that factor 4/3, has mass
density, can we attribute velocity to it and can we say, this velocity times this
mass density is equal to impulse density, just as in classical hydrodynamics?

To all three questions the answer is yes.

No, to the energy of any EM-field we cannot attribute mass density, because
then we should do the same to an EM-radiation field and next we would have
to attribute mass to photons.  To photons we can attribute velocity, but to
different forms of EM-field energy, or to any other form of field energy, we
cannot do so.  We have indeed no criterion for the "velocity" of the energy
density of a field.

6. Can an inertial observer (who of course by definition doesn't step over to an
inertial system with a different velocity) use mass as a measure for the amount
of matter, for matter in the sense of a conserved, indestructible quantity?

Yes.

I repeat the quotation (page 41) in this paper of Taylor and Wheeler: 'Nature
does not offer us any such concept as "amount of matter".  History has struck
down every proposal to define such a term.  Even if we could count number of
atoms or by any other counting method try to evaluate amount of matter, that
number would not equal mass. First, mass of the specimen changes with its
temperature.  Second, atoms tightly bonded in a solid weigh less - are less
massive - than the same atoms free.  Third, many of nature's atoms undergo
radioactive decay, with still greater changes of mass.  Moreover, around us
occasionally, and continually in stars, the number of atoms and number of
particles themselves undergo change.  How then speak honestly?  Mass, yes;
"amount of matter," no.'

7. Can the centre of mass of a system of particles with non-zero rest mass and
photons in the STR have the same definition as in classical mechanics?

Yes.

The notion centre of mass in fact has taken French leave in the STR. We prefer
to speak of the rest inertial frame, this is the frame in which the total momen-
tum is zero.  That is nothing more than doing one's poor best, for this frame
only tells us with what velocity the CM moves, not where it is situated.  This
poor best however is unavoidable, because EM-fields do have momentum, but
no mass.  If then we would calculate the CM in the classical way, we could not
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take the EM-fields into consideration, because their mass is zero.  But then
their momentum is also missing on the roll-call, so we would find an incorrect
value for the total momentum linked with the CM, thus also an incorrect value
for the state of movement of the CM.  That Einstein with his "box of Einstein"
used the CM and found in this way a correct deduction of E = m.c2 has to be
seen as an historical lucky dip, for it is an 'inconsistent conclusion' (the latter
is said by Okun, page 34 of his article, see ref. 10).

8. Are relativistic dynamics the same as Newtonian?

Yes. See the explanation in § 6, page 27 to 34.

No. Consider a rectilinear accelerated movement of a mass. The magnitude of

the total force is more than we would expect on the ground of  .
v v
F m a= ⋅

9. Is the formula for centripetal force in the STR the same as in classical dyna-

mics, namely   ?| | . .| |F m rc = ω 2

Yes.

No, in the STR it becomes   | | . . .| |F m rc = γ ω 2

10. Which quantity is equal to the length of the energy-momentum vector?

Rest mass times c.

Mass times c.

***
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APPENDIX I 

Conservation of momentum and the centre of mass

CONSERVATION OF MOMENTUM IN CLASSICAL MECHANICS

The law of conservation of momentum for n point masses in classical mechanics states:
If n point masses experience forces exerted by each other but not by the outside world,
the sum of their momenta is conserved.
The law of conservation of momentum in classical mechanics can be deduced from Newton’s
laws:
For particle i we can write:
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If we choose the masses so that they are not a function of time, as is usual in classical
mechanics (it is really a matter of choosing, think of a rocket burning fuel as a counter
example), mi can be carried through the d of the differential quotient. If we then sum over i as
well we get:
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Now on the left-hand side all forces cancel in pairs, because of Newton’s third law.
Integrating the equation to time yields the classical law of conservation of momentum for n
pointmasses:
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Notice that, contrary to relativistic mechanics, classical mechanics permits forces to be

of the type actio in distans; there is no need for the action and reaction forces  and 
v
Fi j,

r
Fj i,

to be contact forces.
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Suppose external forces do act on the particles. Then on the left hand side of

equation (9) the summation appears. If this summation is zero, then the total
v
Fi ext

i

n

,
=

∑
1

momentum of the system is still conserved. So in classical mechanics the total momentum of
a system is also conserved when external forces do act on some or all particles of the system,
provided the sum of these forces is zero. It is important to realize that these forces don’t have
to sum up to zero for each individual particle. In a moment we will see that two extra
conditions have to be added if we want the relativistic total momentum to be conserved in
every inertial system.

CONSERVATION OF MOMENTUM IN RELATIVISTIC MECHANICS

If in equations (9) and (10) classical mass is replaced by the relativistic mass
equation (10) becomes the relativistic law of conservation of momentum for pointmasses in a
given inertial system and equation (9) the essential step in its derivation; the derivation is
completely analogous to the classical case. If, however, we want the law to be valid for all
inertial systems, two extra conditions must be added. The first condition concerns the internal

forces. Neither action nor its reaction force, so neither  nor , should be of the type
v
Fi j,

v
Fj i,

actio in distans. They should be contact forces, which are exerted for an infinitesimal amount
of time during the collisions of the point masses. In other words, the particles can only collide
if their position vectors are the same. If this were not demanded, a Lorentz transformation
whould cause a violation of Newton’s third law, because when action and reaction forces are
not exerted at the same point in space, it whould mean that after a Lorentz transformation
these forces are not necessarily opposite to each other because of the time difference caused

by the transformation (after a Lorentz transformation  could start to act sooner than  
v
Fi j,

v
Fj i,

for instance). So the first condition has to be that the internal forces are contact forces which,
just as in classical mechanics, obey Newton’s third law. The second condition concerns
external forces. Suppose there are external forces whose sum is zero in the given inertial
system and which are acting on different particles at different positions. In this case, again, the
momentum is only conserved in the given inertial system. In certain other inertial systems the
Lorentz transformation would cause the forces to start and end at different moments, and they
would therefore no longer compensate for each other’s effects (same argument as above with
the internal forces). Only when each external force is compensated by one or more external
forces acting on the same particle of the system can we expect relativistic momentum
conservation to be valid also in all other inertial systems. I will call these forces locally
compensating forces. So the second condition is that all external forces are locally
compensating forces.
Because in relativistic mechanics force is defined as:

v
v

F
m v

t
≡

d

d
rest . ( )11
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the derivation of conservation of the total relativistic momentum of a system of n point masses
in one and only one inertial system is completely analogous to that in the classical case given
above. The two extra conditions we just posed are necessary to ensure that momentum
conservation will also to be valid in any other inertial system. The derivation remains true if
photons are involved (of course the forces involved are infinite, because in the relativistic case
we assume the collisions to take place in an infinitesimal amount of time. These forces should
be represented by Dirac delta functions. This poses no real problem. Moreover, we can avoid
talking about the forces altogether and simply state that during a collision the increase of
momentum of one particle is equal to the decrease of momentum of the other particle(s). This
argument is correct for collisions between photons and rest mass particles as well as for
collisions between rest mass particles among each other).

Suppose that an electromagnetic field is part of the system, for instance because some of
the point masses in the system are electrically charged. This would not change the above
reasoning. The system could now be split up into an infinite number of infinitesimal volumes,
each touching its neighbours at its boundary surface. Imagine these volumes to move along
with the energy that they contain (see again footnote 4 on page 29). These volumes can be
seen as point masses which, according to Maxwell’s stress tensor, exert only contact forces on
each other. Now Maxwell’s stress tensor is a complete analogy for the classical stress tensor
for stress forces in a solid or a liquid. And the stress forces in a solid or a liquid across each
surface are contact forces that obey Newton’s third law (see again page 30, from formula (8)
to page 31, the first blank line). So these volumes can be considered as point masses exerting
Maxwellian contact forces on each other which also obey Newton’s third law. This means that
the classical deduction of the law of momentum conservation is also valid for an
electromagnetic field. The question is, what will be the interaction between these infinitesimal
EM-field volumes and the “material” point masses (after all, the material point masses can at
all times absorb and create the masses in these infinitesimal EM-field volumes). If  Poincaré
was right (see page 43, line 15 to 19), then in this process stress forces of a non-
electromagnetic nature are at work. I simply suppose that these stress forces are also contact
forces and that they too obey Newton’s third law. Then the proof of momentum conservation
in the classical case can be carried over word for word into the relativistic case for a system
consisting of point masses and EM-fields. 

According to the relativistic principle one can assume that the same can be said for all
other force fields (a gravity force field for instance). So for each system consisting of point
masses and force fields the total relativistic momentum is conserved in each inertial
system, provided there are no external forces acting on the system, other than locally
compensating forces, and provided all internal forces are contact forces obeying
Newton’s third law. However, the total momentum is not the same in all inertial systems, so
momentum is not invariant. Furthermore, several external forces with zero sum and acting on
the same point of the system are allowed (these are what I call locally compensating forces);
they will leave momentum conservation unaffected in each inertial system.

Because conservation of relativistic momentum is always experimentally confirmed, this
indirectly confirms the validity of Newton’s third law in relativistic mechanics.
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NEWTON’S SECOND LAW AND THE CENTRE OF MASS IN CLASSICAL
MECHANICS

Consider a system of n point masses exerting forces on each other (not necessarily
contact forces) while some or all are experiencing an individual force from the outside world,
the individual forces not necessarily being the same. The masses don’t change in time. Then
for point mass i Newton’s second law can be written as:

v v
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=
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 In classical mechanics it can be shown that the total external force on a system of point
masses, the total mass and the acceleration of the centre of mass obey Newton’s second law.
When equation (12) is summed over i and the time differential operator is put in front of the
sum on the right hand side of the equation (allowed, because mi is not time dependent) the
result is:
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The internal forces cancel again. We write   for the sum of the external forces
v
Ftotal

external

and M for the sum of the masses.We define the position of the centre of mass M by:

Because M is independent of time, we can write:

v v
F M atotal

external
M= . ( )15

which is Newton’s second law for the centre of mass in classical mechanics.

THE ROLE OF THE CENTRE OF MASS IN RELATIVISTIC MECHANICS

Because relativistic mass is the legitimate successor of the classical mass it is a logical
step to define the centre of mass of a relativistic system using the same formula as is used for
the classical case, that is formula (14), with the classical masses being replaced by the
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relativistic ones, this time with  n + m  point masses,  n  non-zero rest mass particles and  m
photons. So:

Now the question is, whether this relativistic centre of mass has any meaning in the
sense, that it obeys Newton’s laws. The answer is, it obeys Newton’s first law if the total
external force on each separate point mass is zero; several forces on different point masses,
even if their sum is zero, are not allowed. Why this is so, is explained in the following
example, see figures (h) and (i). Figure (h) represents a system consisting of two ions (A and
B) of opposite charge and one atom (C), all three bodies being at rest. Then their centre of
mass is also at rest. The system is in a homogeneous electrical field. This field is so strong,
that the interaction forces between A and B are very small compared with the forces on A and
B caused by the external field. All fields, also the ones of A and B, are considered as not being
part of the system. Now A and B are allowed to accelerate, while C remains at rest. The force
on A is minus the force on B, so the total external force on the system is

fig (h)       fig (i)

zero. Yet the relativistic masses of A and B increase, so the centre of mass of the system
moves, in figure (i) in an upward direction. The centre of mass therefore undergoes a change
in velocity while the total external force on the body is zero. So in relativistic mechanics the
centre of mass does not always obey Newton’s second law, nor does it obey the first if
external forces with sum zero are present. However, in the absence of external forces, it does
obey Newton’s first law. Consider a system of n point masses, not experiencing forces from
the outside world and only exerting contact forces on each other, so the forces are only acting
during possible collisions between some of the particles, while at the moment of collision the
colliding particles can be said to be at the same position. In these conditions it can be shown
that the centre of mass of the system described above does not change its velocity. Take the
time derivative of equation (16). Because M  is not time dependent one can write:
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The sum of the first two summations in (17) is zero, because for particles not in
collision the time derivative of  their relativistic mass is zero, while for particles in collision

the  are the same. This means that  can be placed outside brackets, while inside these
v
r si '

v
ri

brackets the terms   cancel each other out, because of energy
( ) ( )d

d

d

d

rest photonm

t

E c

t

i i j, ,.γ
+

−2

conservation. Strictly speaking, the time derivative of the photon mass,  Ephoton /c
2,  is not

defined; the appearance/disappearance of a photon is a discontinuous process. Formally this
process could be described with the Heavyside step function. However, I have avoided this in
order to make the notation as transparent as possible. A similar remark can be made about the
time derivative of  the mass of the material particles, when we consider their collisions to take
place in an infinitesimal amount of time. The essence of the argument doesn’t suffer from this.
When, for example, a photon is absorbed by an atom, the disappearance of a relativistic mass
of Ephoton/c

2 is simultaneous with the appearance of an equal increase in the relativistic mass of
the atom. This happens at the same , because we consider the particles as point masses. 

v
r

In the last summation in (17), the differential quotients  are equal to , in which 
d

d

v
r

t
j

c e j⋅ v v
e j

represents the unit vector in the direction of movement. So this last summation is the sum of
the momenta of the photons. Therefore the sum of the third and the last summation is the total
relativistic momentum of the system. The total relativistic momentum therefore can be written
as the relativistic mass of the system (see definition 3 on page 5) times the velocity of the
relativistic centre of mass. Because the relativistic mass of this system as well as its total
momentum are independent of time, so is the velocity of the centre of mass. The relativistic
centre of mass obeys Newton’s first law and in this aspect is meaningful. However, as already
pointed out above, work-performing external forces the sum of which is zero and which are
acting on different particles in different locations are not allowed, this in contrast with the
classical case.

Suppose that EM fields are part of the system. This would not change the above
reasoning. The system could again be split up in an infinite number of infinitesimal volumes
in the same way as was done on page 55. These volumes can be seen as relativistic point
masses which, according to Maxwell’s stress tensor, exert only contact forces on each other.
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Then exactly the same reasoning and conclusion as just given above are valid. Therefore it can
be stated that in relativistic mechanics a system of electrically charged point masses and EM
fields experiencing no external forces has a centre of mass obeying Newton’s first law.
According to the relativistic principle, one can assume that for other force fields the same can
be said. Then one can say that any system in relativistic mechanics has a centre of mass
obeying Newton’s first law (on condition that the external force on each separate point mass
is zero; it is not sufficient that the sum of the external forces on different particles is zero in a
given inertial frame).

In one case it can be shown that the centre of mass does obey Newton’s second law.
This is the case of a system consisting of point masses, some of which experience an external
force perpendicular to their velocity, while others experience no external force at all, but none
experiences a force not perpendicular to its velocity. These forces do not necessarily have to
be equal, either in direction or in magnitude. In this case the relativistic masses of the bodies
are not changed by the external forces, so the proof given above starting from equations (12)
to (15), can also be applied to the relativistic case.

See page 57, the text around figures (h) and (i). Here a system is described that does not
obey Newton’s second law and that has a non-constant invariant mass. Could it be that each
system whose centre of mass obeys Newton’s second law has a constant invariant mass? No,
the counter example is the following. Imagine a system of two point masses, one electrically
charged, the other not. They move with equal initial velocities in a B-field, not parallel to the
B-field lines. Neither the B-field nor the overlap field (see footnote 3, page 28) are seen as part
of the system. The charged point mass will describe a helix, whereas the velocity of the
uncharged point mass is unaltered. Now according to the preceding paragraph the centre of
mass obeys Newton’s second law. However, the invariant mass changes, because the point
masses are no longer immobile with respect to each other (most of the time).

Could it be that each system of free point masses, which undergo the same acceleration
at the same moment, has a centre of mass obeying Newton’s second law? I tried to prove this
but wasn’t able to. I suspect it is so, when all particles have the same acceleration in their
momentaneous rest system. As already pointed out, all (relativistic) mass obeys Newton’s
third law.

The position vector of M, the centre of mass, in general does not transform under a
Lorentz transformation like a position vector of a point mass. This is the easiest to prove for
the y- or z-coordinate. Look at a system of two point masses with equal x-coordinates at
moment  t  and different velocities in the x-direction in coordinate system S. Then:

 y
m y m y

m mM

rest rest

rest rest

≡
+

+

γ γ

γ γ
1 1 1 2 2 2

1 1 2 2

18
. . . .

. .
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Consider a Lorentz transformation from S to S* (with their relative velocities along their x-
axes). It can be shown that  does not transform in the same manner as the position vectoryM

of a single point mass, that is to say,    is not true.y yM M= *
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For convenience, in equation (18) all -s  will be replaced by the corresponding E.γ .mrest

Now the question is, whether the right hand side of equation (18) is equal to:

It is not.  Proof:

First, the transformation of the energies is needed:

With this, (19) can be rewritten:

Now  p1,x = E1.c
-2.v1,x  and   p2,x = E2.c

-2.v2,x.  These p-s can be substituted in equation (20).
Then the E-s in the nominator can be placed outside the brackets. A similar pair of brackets
can be created in the denominator. But because  v1,x  is  not equal to  v2,x,  the right hand side
of (20) cannot be reduced to that of (18). The time-space vector of the centre of mass is not
relativistically covariant. This does not contradict the fact that the centre of mass obeys
Newton’s first law in a given inertial system.
Notice that, if  v1,x  and  v2,x  had been equal,  y1*  and  y1  would indeed have been equal.
It can be shown, that if all point masses of a system have equal velocities, the time-space
vector of  the centre of mass does transform as the position vector of a single point mass.
I leave the proof to the reader.

It is worthwhile having a closer look at the relativistic conservation law of energy and
momentum and its covariance. As was pointed out on page 54, if internal forces in the system
of point masses were of the type of actio in distans and if momentum conservation were valid
in this system of point masses in a given inertial system, there would always be other inertial
systems in which momentum would not be conserved. Of course, we expect momentum
conservation to be valid in every inertial system. In other words, we want the law of
conservation of momentum to be relativistically covariant. Now in several courses on
relativity I saw deductions being made with respect to this covariance which were more or less
incomplete. Take, for instance, the teaching notes of Mr. Hesselink, who gives a course on
special relativity at the Vrije Universiteit van Amsterdam. It is a copy of a part of the book
A course in modern Physics, by Brehm and Mullin, published by John Whiley & Sons, Inc.
The following text concerns an isolated system of point masses colliding with each other. P is
the total momentum:
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∆∆∆∆∆∆
∆ P P Pafter before= −

and
∆ E E E= −after before

The transformation rules in Equations (1-32) can then be used to deduce the
corresponding differences determined by an observer in another Lorentz frame S ’
in motion relative to S. The relations are

                                          (1-40)
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Next, we suppose that the observer in S confirms momentum conservation by
finding  Pbefore  to be the same as   Pafter  so that  .  We also assume that the∆ P = 0
observer in S’ agrees, finding the momentum to be conserved in the form

.  Equations (1-40) then imply that    in  S  and that ∆ P' = 0 ∆ E = 0 ∆ E ' = 0
in  S’. Thus, both observers agree that the total relativistic energy is conserved
because they have already agreed that the total momentum is conserved.

∆∆∆∆∆∆

Firstly, it is remarkable that nowhere is the premise explicitly stated, that the internal
forces are not of the actio in distans type. Undoubtedly, this is tacitly assumed by the author
while he thinks of an interaction of bare point masses, which are free as long as they don’t
collide. Now he assumes momentum in S  as well as in S’  to be conserved. This implies that
there is no actio in distans, at least when  S’  can be chosen at random. Then it can be
concluded that  is zero indeed. The author fails, however, to demonstrate this. He even∆ P'
gives me the impression that I should think that    is equivalent to momentum∆ P' = 0
conservation in S’,  irrespective of the presence of actio in distans.  It is not.  Let us take as an
example a system of two particles which collide. Then  is in fact a shorthand notation for∆ P'
 p’1, after  +  p’2, after  -  p’1, before  -  p’2, before .  Of course we can write out  (without prime) in a∆ P
similar way. It is important to realise that the  p’-s and the  p-s  are functions of time (for they
change at the moment of collision). Now if we want  to represent the law of∆ P = 0
conservation of momentum in  S,  then all the  p-s   in it are, have to be, observed at the same
time. Observing them at different times is only allowed if, in the corresponding time interval,
no collisions have taken place. Now the p’-s are obtained from the corresponding  p-s  by a
Lorentz transformation. Because the particles to which the  p-s  belong can be at different
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positions (at the same time), the  p’-s  can be the momenta in  S’  at different times. In that
case we measure  p’1, after  at one moment and   p’2, after  at another. If in the time interval
between those moments the particle has changed momentum (due to a collision), our
measurement of the total momentum is false. Can such a false measurement happen? Only
when there is actio in distans. See figure (j), the actio in distans collision (the contact force
collision is discussed later). In the unprimed system the momentum is assumed to be
conserved, . The horizontal line at  ct1  intersects the two world lines. The momenta∆ P = 0
found at the intersection points always have the same sum, no matter how much the line is
moved up or down (remaining horizontal, so parallel to the x-axis). The transformed
momenta, however, are given at different times, namely  ct’1  and  ct’2. Their sum stays
constant when the horizontal line is moved up or down, because    (a consequence of∆ P' = 0
the fact that  and the linearity of the Lorentz transformation). But this is an incorrect∆ P = 0
way of checking momentum conservation in the primed system. The momenta should be
measured  at the same time. So the correct way is to perform the same procedure with a line
parallel to the x’-axis,  for instance with the line ct’2. When this line is moved over the bent

fig. (j)

parts of the world lines (keeping it parallel to the x’-axis), we see that momentum 2  is
changing earlier than momentum 1.  So momentum is not conserved in  S’. 
When we repeat this procedure for the contact force collision in figure (j), there is no problem.
Now we do find that the momentum is conserved in the primed system. This demonstrates,
once more, that in relativistic mechanics there is no place for actio in distans.
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This knowledge gives us a more elegant theoretical treatment of the conservation laws of
relativistic momentum and relativistic energy:

1) Relativistic momentum conservation in one inertial system can be proven from
Newton’s third law, a law from classical mechanics also valid in the RT (see page 54).

2) Relativistic energy conservation in one inertial system is identical with mass
conservation, also known in classical mechanics; mass conservation in classical
mechanics, together with the non-classical addition that energy also has mass, gives us
the conservation law of relativistic energy.

3) From 1),  from 2),  from the exclusion of actio in distans and from the linearity of the
Lorentz transformation, it can be proven that both laws are then also valid in any other
inertial system.

The proof of  3)  is as follows (underscore means four vector):
Statements 1) and 2) in formula form give: .   Now transform to another inertial∆ P = 0

system:   .  Because  is a linear transformation,       has to be  ∆ Λ ∆P P' = Λ ⇒ ∆ P ' 0

too.  Because  exists and because the inverse of a linear transformation is linear too, weΛ −1

can write: .   Again,   does not yet tell us that energy and∆ ∆P P= ⇔ =0 0' ∆ P ' = 0
momentum are conserved, because the energies and momenta of the different particles are
measured at different times. We must accept only forces that are contact forces. Then the
reasoning with the contact force collision in the Minkowski diagram (see previous page) can
also be applied to an energy-momentum four-vector like . It then follows that∆ P '
momentum and energy are conserved in any inertial system.
As said before, because the mass stored in the EM field can also be seen as a collection of
infinitesimal point masses exerting contact forces on each other, the above reasoning is also
valid for a system of point masses and EM-fields together. According to the relativistic
principle it can be supposed to be true for systems of point masses together with all kinds of
fields.

-*-
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APPENDIX  II

An example of rest mass sum being confused with rest mass

The following text is a part of a course ‘Relativiteitstheorie’ given by prof. Terwiel in 1995,
University of Leyden, Netherlands (translation is given below):

∆∆∆∆∆∆

Voor  een collectie  vrije deeltjes {i}  geldt (additiviteit van de vierimpuls).P p
i

i

= ∑
Voor de relativistische totale massa M, gedefinieerd volgens - zie (3.4) -

 (3.20)Mc P P≡ ⋅( ) /1 2

houdt dit in dat M  in het algemeen niet gelijk is aan , want de vierlengtemi
i

∑
van een som van viervectoren is in het algemeen niet de som van de vierlengtes van
die viervectoren. Als niet alle lichtachtige vierimpulsen in dezelfde richting zijnp

i

is  tijdachtig, en dus M  > 0.  Er is dan een inertiaalsysteem, het ‘Center ofP
Momentum’-  of CM-systeem SCM, waarin het ruimtelijk deel van , de totale impulsP

  is. In het  SCM heeft  de componenten , dus
v v v
P pi

i

= ∑ , 0 P ( / , )E cCM
v
0

(3.21)

Naast de massa’s  dragen dus de kinetische energieën , gedeeld door , totmi Ti
CM c2

M  bij.

(3.18) en (3.21) laten zien dat het relativistische massabegrip niet-additief is (in tegen-

stelling tot het niet-relativistische massabegrip, waarvoor   m m m Ma b a b i( , ) { },NR NR= + =

 gepostuleerd wordt).mi
i

NR∑
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3.   Voor een interactieproces  {i} {f}  houdt de relativistische energiebehoudswet→

cP m c T cP m c Ti i
i

f f
f

voor na
0 2 0 2= + = = +∑ ∑( ) ( )

In dat

(3.22)

waaruit men ziet dat  in het algemeen niet gelijk is aan :   in het algemeenm f
f

∑ mi
i

∑
is er sprake van een omzetting van rustenergie (‘massa-energie’) in kinetische energie
(‘thermische energie’) en omgekeerd.

Translation:

For a collection free particles {i}  the expression  holds (additivity of the fourP p
i i

= Σ

momentum). With respect to the relativistic total mass M (the author means the invariant
mass or rest mass of the system, Q.t.S.) , defined by - see (3.4) - 

( )Mc P P≡ ⋅
1 2/

( . )3 20

this implies that in general  M  is not equal to , because the four length of a sum of fourΣ
i

im

vectors in general is not equal to the sum of the four lengths of those four vectors. If not all
 are light-like (I never met an English equivalent of ‘lichtachtig’. It means the length of thep

i

four vector is zero. ‘Tijdachtig’ and ‘ruimteachtig’, meaning  the length being positive
respectively negative, could be translated by ‘time-like’ and ‘space-like’, QtS) four momenta
in the same direction, then  is time-like, and therefore  M > 0. There is thus an inertialP
system, the ‘Centre of Momentum’ or CM system S CM, in which the spacial part of ,  theP

total momentum ,  is equal to .  In  S CM  the components of  are
r r
P p

i
i= Σ

r
0 P

,  so( / , )E cCM
r
0

(3.21)
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So besides the masses  m i  the kinetic energies  Ti 
CM,  divided by c2, contribute to M.

(3.18) and (3.21) demonstrate that the relativistic notion of mass (here the author does not
mean relativistic mass, he means here the only notion that can be called mass in his view,
namely the invariant mass, Q.t.S.) is non-additive (in contrast to the notion of non-relativistic

mass, for which ,  is postulated).m m ma b a b( , )
NR = + M mi

i
i{ }

NR NR= Σ

(I left away the foregoing text with formula (3.18), because it is not important for my
argumentation. It speaks about binding energy. The second last formula refers to (3.18), QtS)

3.   For an interaction process  the relativistic energy conservation law{} { }i f→

cP m c T cP m c Ti i
i

f f
f

before after
0 2 0 2= + = = +∑ ∑( ) ( )

implies that

(3.22)

(in formula (3.22) the i and the f are used both as dummies and as non dummies. I would have
preferred  mi, before and  mi, after , Q.t.S.)
from which it can be seen that is not, in general, equal to : in general we can speakΣ

f
fm Σ

i im

of a conversion of rest energy (‘mass energy’) into kinetic energy (‘thermal energy’) and vice
versa.

∆∆∆∆∆∆

In the text under 3. shown above, the author confuses rest mass and rest mass sum. This
becomes apparent from the last underlined sentence and from (3.22).   He uses the expression
‘rest energy’ in the sense of the rest mass sum times c2. Rest mass sum is not a relativistic
invariant. See page 39, from point 3 to the end of the first paragraph on page 40, and
appendix III. Let us take here as an example of such an interaction process, a uranium nucleus
at rest. The interaction process is the spontaneous fission of the nucleus. While the fission
products are flying away at high speed, their total rest mass is given by M, as given in (3.21) in
prof. Terwiels text, not by  . This mistake is frequently made by authors of texts on RTΣ

i fm

and illustrates the great confusion about mass in relativistic physics.  Each time I asked
questions about this to one of these authors, including prof. Terwiel, they answered that ‘the
rest mass has to be the only mass and that in  E = m*c2  the  m  has to represent the rest mass,
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because it is a relativistic invariant’. The fact that they use a relativistic non-invariant quantity
like the rest mass sum and substitute it into the relation  E = m*c2, undermines their argument
and proves that they are on the wrong track.

Another remarkable point in the above text is the careful way in which referring to the
‘centre of mass system’ is avoided. The author speaks of the ‘Centre of Momentum’ system.
Many textbooks on RT do the same. The name seems to be inspired by the Centre of Mass
System, or CMS employed in classical mechanics. In the CMS the centre of mass is a clearly
defined point in space. But what is the ‘centre of momentum’? Is it a point in space? I never
saw a definition of it. Mr. Hesselink, who gives a course on special relativity at the Vrije
Universiteit van Amsterdam, told me that the centre of momentum is the point of collision.
I don’t think this can be a meaningful definition, because if we don’t have a single projectile
and a single target, but a system of particles in which several collisions take place, how would
this ‘centre of momentum’ behave? Suppose these collisions whould happen in rapid
succession, or some of them even at the same time. This ‘centre of momentum’ would jump
through space in an irregular way and sometimes even split into more than one point. This
cannot be a meaningful definition and I cannot think of any other meaningful way of defining
such a ‘centre of momentum’. Then what could be the physical meaning of this point? In
classical (non-relativistic) mechanics the physical meaning of the centre of mass is clear; our
view of a system of point masses is simplified by the centre of mass, because the relationships
between its position, the mass of the system and the total external force are described by
Newtons three laws in exactly the same way as for a point mass. But in what way does ‘the
centre of momentum’ simplify our view on the system? And why is this centre never defined?
Of course, the system in which the total momentum is zero, is clearly defined. But this ‘centre
of momentum’ never is. Worse  still, I have never found an explicit statement that the centre
of mass in the RT in general is useless and why it is useless (except in a letter from
prof. G. ‘t Hooft, in which he states that the centre of mass in the RT cannot be defined in a
meaningful way when EM fields are part of the system). 
I think the name ‘centre of momentum’ just expresses the confusion physicists feel at this
point. It looks to me like a half way effort to replace something that has become lost for
unclear reasons. As I have already demonstrated, the unwillingness to use relativistic mass
(including that of the EM fields) has led to the wrong idea that the centre of mass in
relativistic physics has no significance. The centre of mass has significance in the RT, see my
proof on pages 56 to 59.

Look again at the underlined sentence in prof. Terwiels text. He speaks of mass energy
and kinetic energy. This suggests that kinetic energy has no mass. This whould mean mass
and energy are not equivalent. Obviously wrong, mass and energy are equivalent. 

-*-
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APPENDIX  III

Rest mass sum is not a relativistic invariant

First of all it is important to be clear about definitions. The time t, as measured by a
certain inertial observer I will call the observer time, this in contrast with , the proper time.τ
In a certain inertial system I define rest mass, invariant mass, relativistic mass and rest mass
sum each as a function of the observer time belonging to that inertial system. This seems
logical to me, because the RT strives to describe all physical phenomena with quantities
belonging to a certain inertial system. I mean to say, that it does not seem obvious to me to
describe the rest mass sum, for instance, as a function of the proper times, so of the -s ofτ i

the different particles. True, sometimes we use the proper time to describe things. If I would
have to make a relativistic invariant out of the rest mass sum, I see no other option than trying
to describe the system with just as many proper times as there are particles. Because the
number of particles can increase or decrease, this would yield an unattractively complicated
function of time. I therefore stick to my definition, that rest mass sum is a function of the
observer time. 
As a definition of a relativistic (or Lorentz) invariant quantity I take: A relativistic invariant
quantity is a quantity to which all different inertial observers attribute the same value as
measured at the time of the same event. The event can be anything. A red light that gives a
flash, or one object passing another one. When we accept these definitions, the conclusion that
the rest mass sum is not a relativistic invariant is unavoidable. The proof is as follows:
See figure (j), situation I; a system consists of two atomic nuclei, P and Q, observed in an
inertial system IS, at time t1. Q is at rest (for convenience on the x-axis), P has a velocity vP

fig. (j)

(P moves along the x-axis) and at time t1 passes an object C, situated close to the x-axis. This
is situation I. Q splits into the nuclei R and S at time  (I take  positive). Also int t1 + ∆ ∆ t
figure (j), but now on a moment later than , a situation after the fission is rendered.t t1 + ∆
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This is situation II. Now  mrest, R + mrest, S < mrest, Q. The distance  xQ - xC   I call    (and∆ x
I choose it to be positive, see figure (j)). I choose the interval  so, that it is space-( , )∆ ∆ct x
like. Herein  is of course  c  times the time lapse between the “passing-by event” and the∆ ct
fission. Now a Lorentz transformation is performed on to an inertial system  IS*, which has a
velocity of  v  with respect to IS. When we calculate  with the Lorentz transformation we∆ t *
find:  ∆ ∆ ∆t t c x* . . . .= − −γ γ β 1

It is possible to choose  in such a way, that   is negative. This is the case whenβ ∆ t *
.  Because  is always less than 1,  has to be less than 1 too, ifβ > c t x. /∆ ∆ β c t x. /∆ ∆

we want to find values for  obeying the unequality. This condition is fulfilled, because theβ
interval was chosen to be space-like. That    is negative, means that in  IS*  the fission∆ t *
precedes the passing by-event.

At the moment  t1  the situation in IS is that Q has not yet split. So if we see the rest
masses as a function of the observer’s time, then in IS at   t1  the rest mass sum is equal to
mrest, P + mrest, Q.  So if we perform a Lorentz transformation to IS* on the event (ct1, xC), then in
IS* we find the event happens at  t1*, a moment at which the fission of Q has already taken
place and so the rest mass sum is equal to   mrest, P + mrest, R + mrest, S.  A Lorentz transformation
of this event causes a change in rest mass sum. The conclusion is, that rest mass is not a
relativistic invariant. In figure (k) a Minkowski diagram of the thought-experiment is given as
to illustrate the statement above.

fig. (k)

-***-


