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Ergo Overview

Ergo is an interactive theorem prover based on Sequent
Calculus.

Ergo is implemented in Qu-Prolog - an extension of
Prolog that provides built-in support for object variables,
quantifiers and substitutions.

The Ergo release comes with about 50 predefined
theories, approximately 2000 theorems and many
predefined tactics.

It contains the predefined Gumtree proof interface
which comes with its own Gumtree tactic language and
tactic compiler.

Ergo (and Qu-Prolog) can be downloaded from
http://www.itee.uq.edu.au/˜pjr
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Ergo Architecture I

Ergo maintains soundness while providing flexibility by
using a layered architecture.

The inner layer (the Ergo kernel) is responsible for
managing proofs and the theory database.

The theory database stores information about the
theories: axioms, definitions, symbol declarations,
theory inheritance, etc..

The proof engine constructs proof trees by applying
rules supplied by the user directly or via a tactic.
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Ergo Architecture II

The outer layer is where user interfaces and tactics live.

Users are free to write and use their own interfaces and
tactics without fear of producing unsound inferences.

As an example at this level, Ergo comes with the
predefined Gumtree proof interface and tactic language.
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Ergo Architecture III

The implementation contains several "hooks" which
allow users to modify the behavior of some (non-critical)
parts of the system.

The implementation allows "documentation nodes" to
be attached to code. This documentation is added to
the database. Users are able to use a hook to
determine how this documentation is to be displayed.

In the emacs interface, a predefined hook causes the
documentation to be displayed as hypertext within
emacs. Another hook causes the documentation to be
translated into latex form, and yet another causes the
documentation to be translated to HTML form. The
system makefile uses the last two hooks to produce
both a latex and HTML reference manual.

An Introduction to the Ergo Theorem Prover – p.6/57



Ergo Architecture IV

The architecture of Ergo showing the emacs interface
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Sequent Calculus I

In a sequent calculus proof, the main data structure is a
sequent.

A sequent consists of a ’goal’ (i.e. a formula to be
proved) and hypotheses (assumed to be true for the
proof of the goal).

A proof in sequent calculus is typically done in a ’goal
directed’ or ’backward’ style starting with what is to be
proved and applying inference rules to reduce the
problem to simpler problems until all (sub) problems
have been proved.
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Sequent Calculus II

A sequent calculus proof constructs a ’proof tree’.

A proof tree is a tree with each node being a sequent,
where the root node is the sequent representing the
theorem being proved.

The children of each node is related to the node by the
application of an inference rule.

A node of a proof tree is ’closed’ if an inference rule has
been applied to the node, and ’open’ otherwise.
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Sequent Calculus - Example Rules I

We will use the notation

� � � �

to represent the sequent where

�

is the goal (conclusion)
and

�

is the collection of hypotheses (antecedents).
In Ergo

�

is a single formula, but in some variations of
Sequent Calculus

�

can also be a collection of formulae.

� � � A �
� � � B

� � � A

�

B

This rule is often called and-r or and-intro.
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Sequent Calculus - Example Rules II

�
� A � B � � �

�
� A

�

B � � � (and-l or and-elim)

�
� A � � B

� � � A

�

B
( implies-r or implies-intro).

� � � A

� � � �

x A
provided x is not free in

�

�
�

�

x A �
�

B

	

x




A � � �

�
�

�

x A � � �

where the notation

�

B
	

x



A represents the term A with all free
occurrences of x replaced by B.
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Sequent Calculus - Semantics

To get the semantics of a sequent you conjoin the
hypotheses, turn the sequent arrow into an implication, and
universally quantify all the free variables.
The axioms of a given theory can then be justified by
appealing to the semantics of the sequents by arguing that
the conclusion of the rule follows from the premises of the
rule at the semantics level.
For example, to justify the all-intro rule, we argue that the
formula

� � �

x A
follows from the formula

�

x

� � �

A

�

(given that x is not free in

�

)
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Variables in Ergo

Before giving examples of Ergo rules we need to look at the
kinds of variables that can occur in Ergo rules. (These are
the same kinds of variables that appear in Qu-Prolog.)

Variables we call schematic variables (also often called
meta-variables) – these variables ‘range over’ terms within
the object logic. These variables appear as strings
starting with a capital letter.

Variables we call object variables – these are also
meta-level variables but they are restricted to range
over the variables of the object logic. These variables
appear as strings starting with a lower-case letter. They
are distinguished from Qu-Prolog atoms by declaration
(within the theory).
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Context and Rule Constraints

Ergo has been designed to allow for different kinds of
hypotheses – each kind is called a context in Ergo.
However, the only context used so far is called the hyp
context and corresponds to the usual idea of
hypotheses within Sequent Calculus.

Ergo rules can have associated constraints, the most
common being not_free_in constraints and
context_search constraints that determines if a
hypothesis of a given form is present.

Other constrains are also possible and include
user-defined programs (ofter referred to as oracles).
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Ergo Rules

Ergo contains two kinds of rules:

Axioms – (really primitive inference rules)

Theorems – (really derived inference rules). Users
declare theorems in their theory files but Ergo refers to
them as postulates until they are proved.
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Ergo Rule Example: and intro

axiom and_intro ===
A, B
-------
A and B.

The keyword axiom introduces an axiom. This is followed
by the name of the axiom, then === which can be read as
‘is defined as’ and finally the statement of the axiom.

In this example the hypotheses are not mentioned and

means that the current collection of hypotheses is un-

changed by the application of the rule.
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Ergo Rule Example: and elim c

theorem and_elim_c(A:thy(term), B:thy(term)) ===

hyp---[CId ::: A and B]+++[A,B] ---> C

---------------------------------------

Node ::: C

provided

context_search(hyp, Node, CId, A and B).

There are several things to notice about this rule:

The rule contains arguments that have associated
types – in this case the type says that the arguments
are theory terms.

The conclusion of the rule has a node identifier labelled
Node.
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Ergo Rule Example: and elim c continued

theorem and_elim_c(A:thy(term), B:thy(term)) ===

hyp---[CId ::: A and B]+++[A,B] ---> C

---------------------------------------

Node ::: C

provided

context_search(hyp, Node, CId, A and B).

The rule has an associated context_search
constraint that requires that the proof node the rule is
applied to must have an hypothesis that matches
A and B (with context identifier CId)

When the rule is applied the hypothesis A and B (with
context identifier CId) is removed and the hypotheses A
and B are added.
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Ergo Rule Example: imp intro

axiom imp_intro ===

hyp+++[A] ---> B

----------------

A => B.
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Ergo Rule Example: all intro

axiom all_intro(x:obvar) ===

hyp ??? nfi(x) ---> A

---------------------

all x A.

This rule has an argument (of type obvar – i.e. it is an
object variable) that is the variable bound by all.

It also shows the application of a not_free_in filter to
the hypotheses – it filters out all hypotheses that
contains free occurrences of x.
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Ergo Rule Example: all elim c, ex elim c

theorem all_elim_c(A:thy(term),x:obvar,T:thy(term)) ===

hyp +++ [[T/x]A] ---> C

------------------------------------

Node ::: C

provided

context_search(hyp, Node, CId2, all x A).

theorem ex_elim_c(x:obvar,A:thy(term)) ===

hyp --- [CId ::: ex x A] ??? nfi(x) +++ [A] ---> C

------------------------------------

Node ::: C

provided

context_search(hyp, Node, CId, ex x A),

x not_free_in C.
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Ergo Rule Example: do arith lt1

axiom do_arith_lt1(Exp1:thy(term), Exp2:thy(term)) ===

Exp1 < Exp2

provided delay_until(ground(Exp1 < Exp2),

arith_oracle(Exp1 < Exp2, true)).

This is an example of a rule that uses a user-defined
oracle.

In this case arith_oracle is a user-defined
Qu-Prolog predicate that interfaces with an infinite
precision calculator.

Because the calculator requires numbers (and not
variables) the call on the oracle is delayed until no more
variables remain in the expressions.
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Proofs in Ergo

For the example proofs we will use the Gumtree
interface with the (experimental) Ergo GUI xergo

The Gumtree interface is mostly interested in two kinds
of proof nodes:

Open nodes – nodes which have not yet proved.
Current nodes – a subset of the open nodes that the
user is currently working on.

All proof commands the user supplies apply to the
current nodes.

If there is a mismatch between the number of current
nodes and the number of nodes required by the proof
command then the command fails.
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Proof Commands in Ergo

There are four kinds of proof commands:

Information commands that display information about
the proof or the theory database.

Proof management commands – save proofs, quit
proofs.

Tactic calls – these commands extend the proof tree by
applying a tactic. A tactic could be as simple as a rule
application or as complicated as a tactic that searches
for a complete proof.

Backtracking commands: retry – find another solution to
the previous tactic call; undo – undo the effect of the
previous tactic call.
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Ergo Proof Example

We will now start up Ergo and do a few very simple proofs.
The examples used throughout are based on the
self-guided emacs tutorial for Ergo.

Start Ergo
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Gumtree Tactics - Modes and Arities

Modes (probably should be called types) describe the
types of arguments to tactics.

Arities describe how the tactic transforms proof nodes –
the input arity is the number of nodes the tactic applies
to; the output arity is the number of nodes the tactic
produces.

Gumtree tactics have a declaration part and definition
part:

The declaration part gives the name of the tactic, the
mode and arity and optional documentation.
The definition part gives the code for the tactic.
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Gumtree Tactics - tacticals.gum

The file tacticals.gum contains several useful tactics
that combine other tactics – could be called
higher-order tactics.

The name comes from Isabelle where there is a
distinction between tactics and tacticals that ‘glue’
tactics together in some way.

Ergo makes no distinction between them – they are all
tactics – its just that some may take tactics as
arguments.
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Gumtree Tactics - repeat I

tactic

repeat(Tactic)

doc

’Repeatedly call Tactic until it fails.’,nl,

’repeat(Tactic) always succeeds and all alternatives are’,nl,

’removed on termination.’

mode

repeat(tactic)

arity

_.

tactic repeat(Tactic) ===

!(

Tactic;

repeat(Tactic)

’|’

skip

).
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Gumtree Tactics - repeat II

The ! removes alternatives and is similar to once in
Prolog.

The ’|’ is tactic disjunction – it provides alternatives.

skip is the tactic that matches against any number of
open nodes and always succeeds.

; is tactic composition
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Gumtree Tactics - deep I

tactic

deep(Tac)

doc

’Try applying Tactic to each open node, and then apply deep(Tac)’,nl,

’to each successful result. Alternatives are removed from’,nl,

’each successful application of Tactic.’

mode

deep(tactic)

arity

_.

tactic deep(Tac) ===

!(

zero

’|’

[!(one;Tac;deep(Tac) ’|’ one), deep(Tac)]

).
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Gumtree Tactics - deep II

zero is the tactic that matches against zero open
nodes (and succeeds in this case).

one is the tactic that matches against exactly one open
node.

Note that the supplied tactic Tac must have input arity
one.

The initial one is there to enforce this constraint, but
also to help the gumtree compiler produce efficient
code.

The Prolog list notation is used for parallel tactics where
the tactics in the list partition the open nodes (in order)
with each tactic applying to the corresponding partition.
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Table Tactics

Gumtree comes with a predefined mechanism for
supporting user-defined collections of tactics.

Users can declare the name of a tactic table.

Users can then add entries into the table.

The entries are typically rule applications but can be
any tactic of input arity one.

Users can then call the table as a tactic (with input arity
one).
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Table Tactics - Example I

declare_tactic_table

simplify

doc

’A table of rules for attempting a propositional proof.’.

erase_tactic_table(simplify).

in_tactic_table(simplify, context(hyp, ID, H);term(T);

{’==’(H, T)};rule(assump(ID))).

in_tactic_table(simplify, rule(true), true).

in_tactic_table(simplify, rule(not_not_true), not _).

in_tactic_table(simplify, rule(imp__imp__iff), _ <=> _).

in_tactic_table(simplify, imp_to_rule(and_intro_r), X and X).

in_tactic_table(simplify, rule(imp_intro), _ => _).

in_tactic_table(simplify, rule(hyp_iff_intro)).

in_tactic_table(simplify, rule(and_elim_c)).

.....
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Table Tactics - Example II

The optional third argument is for matching against the
current goal.

context is used to extract information form the context
of the current open node.

term is used to extract the goal of the current open
node.

{} is used to escape to the Qu-Prolog level.
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Elves

The elves tactic is a special (user-defined) tactic that
is called before each user interaction with the Gumtree
interpreter.

It is typically used to carry out proof steps that might be
considered to always be a good idea.

It can be turned on and off by setting an Ergo
parameter.

This parameter can also be used to change the
behavior of the elves tactic.
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The init proof tactic

Ergo can prove derived inference rules that have
premises.

Ergo requires that the remaining open nodes in such
proofs be in exactly the same order as in the statement
of the theorem.

This can be tricky to organize.

The init_proof tactic gets around this problem by
transforming the problem so that the premises are
generated immediately (as open nodes) in the correct
order, and are added to the hypotheses of the goal of
the theorem.

init_proof takes care of modifications to the hyps
(including not-free-in filters)
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Rule Browsing

Ergo comes with a large number of predefined rules.

Without help, it can be difficult to find rules that might be
useful in a given situation.

The rule browser is called as rules(Query) where
Query is a term of the rule query language.

The command use(Query) uses the rule browser to
find a rule matching Query and then tries to apply the
rule.

Back To Ergo
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Proofs Involving Quantifiers

The following issues relate to proofs involving quantifiers
and substitutions.

Unification involving quantified terms can generate
not-free-in constraints and substitutions (from a change
of bound variable).

Unification involving substitutions can generate delayed
unification problems.

Such constraints can lead to overspecialization in
proofs. Ergo will reject proofs that contain relevant
constraints that were not stated explicitly in the
statement of the theorem being proved.
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Using Rules Involving Quantifiers

In order to minimize the number of substitutions and
not-free-in constraints it is often a good idea to use a
variant of rule called srule.

srule first tries ‘structural unification‘ – if that fails it
reverts to normal unification (and so is the same as
rule)

Structural unification treats quantified terms and terms
with substitutions in the same way as compound terms.

If two terms structurally unify then they unify but
typically don’t produce the most general unifier (at least
when quantifiers and substitutions are involved).

Because srule often reduces the number of
substitutions and not-free-in constraints it can have a
dramatic improvement on the performance of Ergo.

An Introduction to the Ergo Theorem Prover – p.39/57



Solving Delayed Unification Problems

Ergo comes with a predefined Qu-Prolog predicate called
incomplete_retry_delays that attempts to find
solutions to the collection of delayed unification problems.

Mostly, delayed unification problems are created
because the problem has more than one solution.

incomplete_retry_delays is a heuristic that tries to
find (on backtracking)different solutions to a collection
of delayed problems.
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Dealing with Constraints

If you attempt to save a proof where the constraints
don’t match the constraints specified in the statement of
the theorem then Ergo will display a message showing
the problem and then fail.

Users can look at the constraints at any time during the
proof by using the command show_constraints

At any time users can call the tactic
{incomplete_retry_delays} – i.e. escape to
Qu-Prolog.

Sometimes it is simpler for the user to help Ergo by
supplying more information – e.g.

{ x not_free_in A } may simplify a delayed
unification problem
unify_terms(T1, T2) may also help.
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Window Inference I

Window Inference is a form of transformational
reasoning that tries to maximize the amount of context
information that can be used to transform (sub)terms.

It was the basic reasoning style for earlier versions of
Ergo.

In the current Ergo Window Inference is carried out
using a combination of rules and tactics (that apply
these rules).

WI can be used to simplify expressions and to carry out
proofs that are transformational in style - e.g. program
refinement.

Sequent Calculus and WI styles can be freely mixed
within a single proof.
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Window Inference II

There are three groups of WI tactics:

Opening a ‘window’ – a single tactic supported by
opening rules – gives access to subexpressions for
transformation.

Transformations – supported by transitivity rules and
transformation rules.

Closing a window – a single tactic supported by
reflexivity rules.
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Window Inference III

A window is represented by a sequent whose goal is of
the form Expr WindowRelation SimpExpr where

Expr is the expression to be transformed;
WindowRelation is the (transitive, reflexive)
relation to be used; and
SimpExpr is the result.
Throughout, schematic variables are used for
‘placeholders’ that are incrementally instantiated as
rules are applied.

Typically SimpExpr is initially a schematic variable.
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Opening Rule Example

theorem open_and_1_imp ===

hyp+++[A] ---> C => B

------------------------------

(C and A) => (B and A).

Each rule has a standard form for the name.

In this case => is the window relation.

This rule says that we can transform C and A to
B and A (relative to =>) if we can transform C to B with
the added hypothesis A.
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Opening Rule Tactic

op(PosList) is the tactic that, given a list of argument
positions PosList, opens a window at the
subexpression specified by the position list.

The tactic first applies the required transitivity rule and
then applies a sequence of opening rules that
correspond to the positions given in the position list.

For example, below shows the rules applied by opening a
window at position [1,2] in (A => B) => C
not C, A --> B <=> Y

---------------------- (rule open_imp_2_iff)

not C --> (A => B) <=> A => Y

--------------------- (rule open_imp_1_iff)

(A => B) => C <=> (A => Y) => C (A => Y) => C <=> X

---------------------------------------------- (rule iff__iff__iff)

(A => B) => C <=> X
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Transformational Tactics

Transformational tactics use rules (or tactics) to
transform one expression to another relative to the
window relation.

The simplest variant is trans(Tactic) where Tactic
proves a theorem of the form
Expr WindowRelation SimpExpr

The tactic can strengthen or reverse the window
relation to make the supplied tactic applicable.
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Example transformation

Below is an example transformation using the following rule
theorem false_imp ===

(false => A) <=> true.

------------------------ (rule false_imp)

(false => B and C) <=> true

----------------------- (rule iff__imp)

(false => B and C) => true true => X

---------------------------------- (rule imp__imp__imp)

(false => B and C) => X
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Window Closing Tactic

There is a single window closing tactic called
close_win

It simply applies the transitivity rule for the window
relation.

This typically instantiates a placeholder variable on the
RHS to the expression on the LHS.
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Building Theories I

Things to consider when building our theory:

What existing theories should we inherit?

What are the ‘primitive‘ constants?

What are the axioms?

What are the other constants (definitions)?

What are the theorems?
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Building Theories II

Once we have constructed our theory then we might want to

Prove the theorems!

Write some tactics to help us prove those theorems.

Write some tactics to help others use our theory.

We might possibly provide a ‘tactic’ that describes how
the current open nodes should be displayed to others
(not so common).
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Theory Graph for Predefined Theories
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Weak Equality v. Strong Equality

Strong equality allows replacement by equal terms at
any subterm of a term.

This makes strong equality easier to use - e.g. no extra
conditions on rules for fixed points, induction, etc.

Opening rules for equality follow directly from properties
of strong equality.

Weak equality requires rules about localness to get
similar replacement properties.

Strong equality is not suitable for modal logics such as
those used in program refinement or theories about
temporal properties.

We want Ergo to directly support these kinds of theories
so it relies mostly on weak equality.
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Types and Undefinedness I

Theorem provers implemented in a functional
programming language typically require types to be
associated with the declaration of each constant.

For example, in a theory about integers, the declaration
of the constant + is accompanied by a type declaration
that says that + maps a pair of integers to an integer.

By doing this the prover gets the same benefits from
types as the underlying implementation language (and
gets to use its typechecker!).
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Types and Undefinedness II

Ergo does not use types in this way. Constant
declarations do not come with associated types – just
arities.
A given theory can, of course, include constants that
represent types and provide type inference rules – e.g.
theorem add_ints_is_int ===

X:ints, Y:ints

---------------

X + Y : ints.

This mean Ergo does type inference by rule application
– which is less efficient than the other approach BUT
makes type inference explicit.
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Types and Undefinedness III

A major advantage of the Ergo approach is in managing
undefinedness (and partial functions).

The undef theory of Ergo declares the constant ? to
represent undefinedness (often called ‘bottom’).

We can then write down rules that produce or process
undefinedness – e.g.

theorem add_undef === not (X:ints and Y:ints) <=> X + Y = ? .

theorem undef_add_undef === ? + X = ? .

theorem div0_undef === X div 0 = ? .

Dealing with undefinedness in provers that require
constants to have types is nowhere near as
straightforward.
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Future Directions

Development of theories for the B specification
language.

Adding support for theory interpretation and
instantiation – existed in earlier versions but not ported
yet.

Populating Ergo with more tactics.

Further development of xergo
Support for exploring/annotating existing proofs –
useful for giving example proofs for new users and
for auditing proofs.
Dumping mathematical textbook style summaries of
proof.
Adding a GUI interface to the rule browser.
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