Scrap More Boilerplate: Reflection, Zips,
and Generalised Casts

Ralf Lammel
Vrije Universiteit & CWI, Amsterdam

Abstract

Writing boilerplate code is a royal pain. Generic programni
promises to alleviate this pain by allowing the programmestite
a generic “recipe” for boilerplate code, and use that reripaany
places. In earlier work we introduced the “Scrap your bpikie”
approach to generic programming, which exploits Haskelist-
ing type-class mechanism to support generic transformstiond
queries.

This paper completes the picture. We add a few extra “ingosp
tive” or “reflective” facilities, that together support achi variety
of serialisation and de-serialisation. We also show howetdgom
generic “zips”, which at first appear to be somewhat trickypim
framework. Lastly, we generalise the ability to over-ridgeseric
function with a type-specific one.

All of this can be supported in Haskell with independentbeful
extensions: higher-rank types and type-safe cast. The @Gkt
mentation of Haskell readily derives the required type sgasfor
user-defined data types.

Categories and Subject Descriptors

D.2.13 [oftware Engineering: Reusable Software; D.1.1
[Programming Techniqueg: Functional Programming; D.3.1
[Programming Language$: Formal Definitions and Theory

General Terms
Design, Languages

Keywords

Generic programming, reflection, zippers, type cast

1 Introduction

It is common to find that large slabs of a program consist ofl“bo
erplate” code, which conceals by its bulk a smaller amouritref
teresting” code. So-callegeneric programmindechniques allow

Permission to make digital or hard copies of all or part o thork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear ttiseand the full citation
on the first page. To copy otherwise, to republish, to posteowess or to redistribute
to lists, requires prior specific permission and/or a fee.

Proc ACM International Conference on Functional Prograngi(iCFP’04), Snow-
bird, Utah, Sept 2004, pp244-255 (with typos fixed).

Copyright 2004 ACM 1-58113-905-5/04/0009 ...$5.00

Simon Peyton Jones
Microsoft Research, Cambridge

programmers to automate this “boilerplate”, allowing effm be
focused on the interesting parts of the program.

In our earlier paper, Scrap your boilerplate[16], we described
a new technique for generic programming, building on theetyp
class facilities in Haskell, together with two fairly modesten-
sions (Section 2). Our approach has several attractiveeptiop:

it allows the programmer to over-ride the generic algoritnex-
actly the desired places; it supports arbitrary, mutueglgdrsive
data types; it is an “open-world” approach, in which it is\e&s
add new data types; it works without inefficient conversiosdme
intermediate universal data type; and it does not requirepie-
time specialisation of boilerplate code.

The main application in our earlier paper was traversalsjamdies
over rich data structures, such as syntax trees or termeefhrasent
XML documents. However, that paper did not show how to imple-
ment some of the best-known applications of generic progriaug,
such as printing and serialisation, reading and de-sgai#in, and
generic equality. These functions all require a certain sbtype
introspection or reflection

In this paper we extend our earlier work, making the follagvirew
contributions:

e We show how to support a general form of type reflection,
which allows us to define generic “show” and “read” functions
as well as similar functions (Sections 3 and 4).

e These classical generic functions rely on a new reflectioh AP
supported on a per-data-type basis (Section 5). Once defined
this API allows other generic reflective functions to be de-
fined, such as test-data generators (Section 5.4).

e Functions like generic equality require us to “zip together
two data structures, rather than simply to traverse one. We
describe how zipping can be accommodated in the existing
framework (Section 6).

e A strength of theScrap your boilerplateapproach is that it

it easy to extend a generic function to behave differently on

particular, specified types. So far it has not been clear loow t

extend a generic function for particular typenstructors In

Section 7 we explain why this ability is very useful, and show

how to generalise our existing type-safst operator so that

we can indeed express such generic function extension.
Everything we describe has been implemented in GHC, and many
examples are available online at the boilerplate web sitg [lNo
new extensions to Haskell 98 are required, beyond the tveaayr
described inScrap your boilerplatenamely (a) rank-2 types, and
(b) type-safe cast. The latter is generalised, howeverati& 7.2.

2 Background

To set the scene for this paper, we begin with a brief ovengéw
the Scrap your boilerplat@pproach to generic programming. Sup-
pose that we want to write a function that computes the siznof
arbitrary data structure. The basic algorithm is “for eacHey add
the sizes of the children, and add 1 for the node itself”. Hiethe
entire code fogsi ze:

gsize :: Data a =>a -> Int

gsize t =1 + sum (gmapQ gsize t)
The type forgsi ze says that it works over any tyge provideda
is adatatype — that is, that it is an instance of the cléssal
The definition ofgsi ze refers to the operatiogmapQ, which is a
method of thebat a class:

class Typeable a => Data a where

...other nethods of class Data...

gmapQ :: (forall b. Datab =>b ->r) ->a->[r]
(The classTypeabl e serves for nominal type cast as needed for
the accommodation of type-specific cases in generic funstid/e
will discuss this class in Section 7, but it can be ignorednio.)
The idea is thafgmapQ f t) applies the polymorphic functioh
to each of the immediate children of the data structur&ach of
these applications yields a result of typeandgnmapQreturns a list
of all these results. Here are the concrete definitiongmapQ at
typesMaybe, list, andl nt respectively:

instance Data a => Data (Maybe a) where
gmapQ f Nothing =[]
gmapQ f (Just v) = [f v]
instance Data a => Data [a] where
gmapQ f [] =]
gmapQ f (x:xs) = [f x, f xs]
instance Data Int where
gmapQ f i =[] - An Int has no children!

Notice thatgmapQ appliesf only to theimmediatechildren of its
argument. In the second instance declaration akdoiseapplied to

x andxs, resulting in a list of exactly two elements, regardless of
how long the tailks is. Notice too that, in this same declaratién,

is applied to arguments of different typeshas a different type to
xs), and that is why the argument goapQ must be golymorphic
function. SogmapQmust have a higher-rank type — that is, one with
aforal | tothe left of a function arrow — an independently-useful
extension to Haskell [20].

It should now be clear hogsi ze works for termt whose type is
an instance of the clag®&t a. The call(gmapQ gsi ze t) applies
gsi ze to each oft 's immediate children, yielding a list of sizes.
The standard functiosum :: [Int] -> Int sums this list, and
then we add 1.

The clasdat a plays a central role in this paper. Our earlier paper
placed three generic mapping operations in class: the opera-
tion gmapQ for generic queries, as illustrated above, and the opera-
tionsgmapT for transformations, angnapMfor monadic transfor-
mations. In fact, all such forms of mapping can be derivednfro
a single operatogf ol dI for generic folding, as we also described
in the earlier paper. The instanceshaft a are easy to define, as
we saw for the operatiognapQabove. The definition aoff ol dl is
equally simple. In fact, the instances a@easy and regular that a
compiler can do the job, and GHC indeed does so, when insttuct
by a so-calledderi vi ng” clause. For example

data Tree a = Leaf a | Node (Tree a) (Tree a)
deriving(Eq, Typeable, Data)

INote: in our earlier paper [16] the class now call&dt“a” was
called “Ter nf'.

The “deriving(Eq)” part is standard Haskell 98, and in-
structs the compiler to generate an instance declaration fo
instance Eq a => Eq (Tree a). GHC extends this by support-
ing deri vi ng for the classe3ypeabl e andDat a as well.

While the operatiorgf ol dl is sufficient for transformations and
queries, it is not enough for other applications of generagpam-
ming, as we shall shortly see. Much of the rest of the papsrdiit
theDat a class with a few further, carefully-chosen operations.

3 Generic “show” and friends

We will now consider generic functions that take any dataieal
whatsoever, and render it in some way. For instance, a gesteoiv
operation is a generic function that renders terms as tedthance
it is of the following type:

gshow :: Data a => a -> String
That is,gshowis supposed to take any data value (i.e. any instance
of classDat @), and to display it as a string. The generic function
gshow has many variants. For example, we might want to perform
binary serialisation wittdat a2bi t s, where we turn a datum into
a string ofZer os andOnes (Sections 3.2 and 3.3). We might also
want to translate a datum into a rose tree vdéh a2t r ee, where
the nodes store constructor names (Section 3.4).

data2bits Data a => a -> [Bit]

data2tree Data a => a -> Tree String
A generalisation oflat a2t r ee can perform type erasure for XML.

3.1 Datato text

We can almost dgshow already, because it is very likgsi ze?:
gshowt = "("
++ concat (intersperse " "
+=+ ")
Of course, this function only outputs parentheses!
gshow [True, False] ="(() (() O))"
We need to provide a way to get the name of the constructor used
to build a data value. It is natural to make this into a new afyen
of the clasdat a:

class Typeable a => Data a where

(gmapQ gshow t)

toConstr :: a -> Constr
Rather than delivering the constructor name as a strio@onst r
returns a value of an abstract data tygmast r, which offers the
functionshowConst r (among others — Section 5):
showConstr :: Constr -> String
Given this extra function we can write a working versiorgehow:

gshow :: Data a =>a -> String

gshow t
= "(" ++ showConstr (toConstr t)

++ concat (intersperse " "

+=+)"

We have made use of an intermediate data §gestr so that, as

well as supportinghowConst r, we can also offer straightforward

extensions such as fixity:

constrFixity :: Constr -> Fixity
The typeFi xi t y encodes the fixity and precedence of the construc-
tor, and we can use that to write a more sophisticated version
gshow that displays constructors in infix position, with minimum
parenthesisation.

(gmepQ gshow t))

2The standard functiortoncat :: [[a]] -> [a] concate-
nates the elements of a list of lists, whilet er sperse :: a ->
[a] -> [a] inserts its first argument between each pair of ele-
ments in its second argument.

Built-in data types, such asit, are also instances of that a class,
so(toConstr (3::1nt)) is a value of typeConstr. Applying
showConst r to this value yields the string representation of the in-
teger values.

3.2 Binary serialisation

Our next application is binary serialisation, in which wen#o
encode a data value as a bit-string of minimum length:

data Bit = Zero | One

data2bits :: Data a => a -> [Bit]
Rather than outputting the constructor name as a wastefogst
the obvious thing to do is to output a binary representatibitso
constructor indexso we need another function ov@mst r :

constrindex :: Constr -> Conl ndex

type Conlndex = Int -- Starts at 1; 0 for undefined
But how many bits should be output, to distinguish the camstr
tor from other constructors of the same data type? To angvier t
question requires information about the entire data type,feence
a new functiondat aType(f :

class Typeable a => Data a where

toConstr a -> Constr
dat aTypeOt a -> DataType
We note thatdat aTypeOf never ever examines its argument; it
only uses its argument as a proxy to look-up information &lisu
data type? The abstract data typeat aType offers the operation
maxConst r I ndex (among others):
maxConstrindex :: DataType -> Conl ndex
Using these functions, we are in a position to wdat a2bi t s:
datazbits :: Data a => a -> [Bit]
data2bits t = encodeCon (dataTypeOXf t) (toConstr t)
++ concat (gmapQ data2bits t)

- The encoder for constructors

encodeCon :: DataType -> Constr -> [Bit]
encodeCon ty con = natToBin (max-1) (idx-1)
wher e
max = maxConstrlndex ty
idx = constrlndex con

Here we have assumed
natToBin :: Int ->Int -> [Bit] where (natToBin m x)
returns a binary representationyofn the narrowest field that can
representn

3.3 Fancy serialisation

One could easily imagine more sophisticated serialisersiéta
values. For example, one might want to use adaptive ariibmet
coding to reduce the number of bits required for common coost
tors [23, 18]. To do this requires the serialiser to carrynglthe
encoder stateand to update this state whenever emitting a new
constructor. So the fancy encoder will have this signatw@ch
simply adds a state #ncodeCon’s signature:

data State -- Abstract
initState :: State
encodeCon :: DataType -> Constr

-> State -> (State, [Bit])
Now we just need to modify the plumbing dat a2bi ts. At first
blush, doing so looks tricky, becaugeapQ knows nothing about
passing a state, but we can use a standard trick by makimgQ

30ne could instead use a ‘phantom type’ for proxies, to make
explicit thatdat aTypeXf does not care about values of typd.e.:

data Proxy a = Proxy

dataTypeOf :: Proxy a —> DataType

a simple encoder for natural numbers enit

return a list of functions of typgState -> (State,[Bit])]:

data2bits :: Data a => a -> [Bit]
data2bits t = snd (show bint initState)

show bin :: Data a => a -> State -> (State, [Bit])
show bint st = (st2, con_bits ++ args_bits)
where
(stl, con_bits) = encodeCon (dataTypeOt t)
(toConstr t) st
foldr do_arg (st1,[])

enc_args

(st2, args_bits) =

enc_args :: [State -> (State,[Bit])]
enc_args = gmapQ show bin t

do_arg fn (st,bits) = (st’, bits'" ++ bits)
wher e
(st’, bits') = fn st

Notice that the call tgnapQpartially applieshow_bi n to the chil-
dren of the constructor, returning a list of state transtmsnThese
are composed together by thel dr do_arg. Of course, the ap-
pending of bit-strings is not efficient, but that is easilpiaed by
using any O(1)-append representation of bit-strings (sgd@)).

A more elegant approach would instead present the encoder in
monadic way:

data EncMa -- The encoder nonad

i nstance Monad EncM where ...

runknc EncM () -> [Bit]

em tCon :: DataType -> Constr -> EncM ()
The monadEncM carries (a) the sequence of bits produced so far
and (b) any accumulating state required by the encodinghtéch
ogy, such as$t at e above. The functiorni t Con adds a suitable
encoding of the constructor to the accumulating output ugtthtes
the state. The functiorunEnc runs its argument computation start-
ing with a suitable initial state, and returns the accunadatutput
at the end. All the plumbing is now abstracted, leaving aaath
compact definition:

data2bits :: Data a => a -> [Bit]

data2bits t = runEnc (enit t)

Data a => a -> EncM ()
enit t = do { emtCon (dataTypeO' t) (toConstr t)
; sequence_ (gmapQenit t) }

Here, the standard monad function
sequence_ :: Mnad m=>[ma] -> m()
is used to compose the list computations produceghapQ eni t .

3.4 Type erasure

The rendering operations so far are all forms of seriatisatiVe
can also render terms &rees where we preserve the overall shape
of the terms, but erase the heterogeneous types. For iestaec
can easily turn a datum into a rose tree of the following kind:

data Tree a = Tree a [Tree a]
The rendering operation is easily defined as follows:

data2tree :: Data a => a -> Tree String

data2tree x = Tree (showConstr (toConstr X))

(gmapQ dat a2tree x)

Rendering data values as rose trees is the essence of tgpesdiar
XML. Dually, producing data values from rose trees is thesaes
of type validation for XML. Generic functions for XML type &+
sure and type validation would necessarily reflect varieabnical-
ities of an XML binding for Haskell [21, 2]. So we omit the tedis
XML-line of scenarios here.

4 Generic “read” and friends

Our rendering functions are all genedonsumersthey consume
a data structure and produce a fixed ty@®er(ng or [Bit]).

(Generic traversals that query a term, are also consumdiise)
inverse task, of parsing or de-serialisation, requireggeproduc-

ers that consume a fixed type and produce a data structure alt is f

from obvious how to achieve this goal.

The nub of the problem is this. We are sure to need a new mem-

ber of theDat a class,fronConstr, that is a kind of inverse of

toConstr. But what is its type? The obvious thing to try is to

reverse the argument and result oConst r :
class Typeable a => Data a where

a -> Constr
Constr -> a

toConstr v
fromConstr :: -- NB: not yet correct!

But simply knowing theconstructoralone does not give enough

information to build a value: we need to know what the chiftdoé
the constructor are, too. But we can't pass the childrengasaents
to fronConst r, because then the type fofonConst r would vary,
just as constructor types vary.

We note that the typeConstr -> a could be usedas is if
fronConst r returned a term constructor filled by bottoms. {}.
A subsequent application gfrapT could still fill in the sub-terms
properly. However, this is something of a hack. Firstly, bue-

toms imply dependence on laziness. Secondly, the appradsh f

completely for strict data types. So we seek another salutio
The solution we adopt is to pass a generic functiofrtanConst r

that generates the children. To this end, we employ a monad to

provide input for generation of children:

fromConstrM:: (Mnad m Data a)
=> (forall b. Data b => mb)
-> Constr -> ma

We will first demonstratér onConst r M and then define it.

4.1 Textto data

Here is the code for a generic read, where we ignore the need to

consume spaces and match parentheses:
gread :: Data a => String -> Maybe a
gread input = runDec input readM

readM ::
readM =
do { constr <- parseConstr ??? -- to be conpleted

; fronConstrM readM constr }

Data a => DecM a

The two lines of eadMcarry out the following steps:
1. Parse &onstr from the front of the input. This time we
employ a parser monaflecM with the following signature:
data DecMa -- The decoder nonad
instance Mnad DecM where ...
runDec String -> DecMa -> a
parseConstr :. DataType -> DecM Constr

The functionr unDec runs the decoder on a particular input, discard-
ing the final state and unconsumed input, and returning thdtre
In case the monadic presentation seems rather abstractjefly b
sketch one possible implementation of eeMmonad. A parser
of typeDecM a is represented by a function that takes a string and
returns a depleted string together with the parsed valuspped in
aMaybe to express the possibility of a parse error:

newtype DecMa = D (String -> Mybe (String, a))
The typeDecMcan be made an instance Idfnad in the standard
way (see [10], for example). It remains to define the parser fo
constructors. We employ a new functiatat aTypeConstr s, that
returns a list of all the constructors of a data type. We trsntich
each constructor with the beginning of the input, where wmig
the issue of constructors with overlapping prefixes:

parseConstr :: DataType -> DecM Constr
parseConstr ty = D (\s -> match s (dataTypeConstrs ty))
wher e
match :: String -> [Constr] -> Maybe (String, Constr)
match _ [] = Nothing
mat ch input (con:cons)
| take (length s) input == s
= Just (drop (length s) input, con)
| otherwise
= mat ch i nput cons
wher e
s = showConstr con

The same code fagr ead, with a different implementation decM
and a different type forunDec, would serve equally well to read
the binary structures produced bgt a2bi t s.

4.2 Definingf r onConstr M

The functionf r onConst r Mcan be easily defined as a new mem-
ber of theDat a class, with the type given above. Its instances are
extremely simple; for example:
instance Data a => Data [a] where
fromConstrM f con
= case constrlndex con of

1->return []

2->do{ a<-f; as < f; return (a:as) }
However, just asgmapQ gnmapT and gmapM are all instances
of the highly parametricgf ol dl operation, so we can define
f romConst r Mas an instance of the dualgffol dl — a highly para-
metric operation for unfolding. This operatioqunf ol d needs to
be added to thBat a class:

class Typeable a => Data a where

gunfold :: (forall br. Data b

=c (b->r) ->cr)
-> (forall r. r ->cr)
-> Constr
->cCc a

The two polymorphically typed arguments serve for buildium-
empty vs. empty constructor applications. In this mangenrf ol d
really dualisegf ol dI , which takes two similar arguments for the

The monad carries (a) the as-yet-unconsumed input, and (b)traversal of constructor applications. The operatigunsf ol d and
any state needed by the decoding technology. The function 9f 0l dI @lso share the use of a type constructor parancsitetheir
parseConstr parses a constructor from the front of the input, esult types, which is key to their highly parametric qualit
updates the state, and returns the parsed constructoedsne The instances ofgunfol d are even simpler than those for

the Dat aType argument so that it knows how many bits to fronConstrM as we shall see in Section 5.1. The operation
parse, or what the valid constructor names are. (This argume fr onConst r Mis easily derived as follows:

still needs to be filled in for “???” above.)

2. UsefronConstrMto call r eadM successively to parse each

child of the constructor, and construct the results intolaera
built with the constructor identified in step 1.

fronConstrMf = gunfold k z

wher e
kc=do{c < ¢ b<-f; return (c b) }
z =return

Here, the argumentin (gunfol d k z) turns the empty construc-
tor application into a monadic computation, whKeunfolds one
child, and combines it with the rest.

4.3 Getting hold of the data type

In the generic parser we have thus-far shown, we left opequbs-
tion of how to get thebat aType corresponding to the result type,
to pass tqar seConst r, the “???” in r eadM The difficulty is that

class Typeable a => Data a where

dat aTypeO' :: a -> DataType

toConstr :: a -> Constr

gunfol d ;o (forall br. Datab=>c(b->r) ->cr)
-> (forall r. r ->cr)
-> Constr
->ca

dat aTypeCOf needs an argument of the result type, but we have not Every instance oflat aTypef is expected to be non-strict — i.e.

yet built the result value.

This problem is easily solved, by a technique that we fretiyen
encounter in type-class-based generic programming. Hetiei
code forr eadMwithout “??7?":

readM:: Data a => DecM a
readM = read_hel p
wher e
read_hel p
=do { let ty = dataTypeOf (unDec read_hel p)
; constr <- parseConstr ty
; fromConstrM readM constr }

unDec :: DecMa -> a
unDec = undefined

Here, unDec’s type signature maps the tyfecM a to a as de-
sired. Notice the recursion here, whermad_hel p is used in its
own right-hand side. But recall thdat aTypeO is not interested
in thevalueof its argument, but only in its/pe the lazy argument
(unDec read_hel p) simply explains to the compiler whéat a
dictionary to pass tdat aTypeCf .

Rather than using an auxiliampDec function, there is a more direct
way to express the type afat aTypef 's argument. That is, we
can use lexically-scoped type variables, which is an inddeetly
useful Haskell extension. We rewriteadMas follows:

readM:: Data a => DecM a
readM = read_hel p
wher e
read_help :: DecMa
=do { let ty = dataTypeO* (undefined::a)
; constr <- parseConstr ty
; fromConstrM readM constr }

The definition

read_help :: DecMa = ...
states thatread_hel p should have the (monomorphic) type
DecM a, for some type, and furthermore brings the type variable
a into scope, with the same scoperasd_hel p itself. The argu-
ment todat aTypeCf , namely(undefi ned: : a), is constrained to
have the same typ® because the type varialdeis in scope. A
scoped type variable is only introduced by a type signatireety
attached to a pattern (e.gead_hel p :: DecM a). In contrast, a
separate type signature, such as

read_help :: Data a => DecM a
is short for
read_help :: forall a. Data a => DecMa

and does not introduce any scoping of type variables. Homveve
we stress that, although convenient, lexically-scoped tygriables
are not required to support ti8erap your boilerplatepproach to
generic programming, as we illustrated with the initial di¢tion of
read_hel p.

5 Type reflection — the full story

The previous two sections have introduced, in a piecemshlda,
three new operations in thgat a class. In this section we sum-
marise these extensions. The three new operations are these

does not evaluate its argument. By contrasiConstr must be
strict — at least for multi-constructor types — since it givgeresult
that depends on the constructor with which the argumentiis bu

The functiondat aTypeO offers a facility commonly known as “re-
flection”. Given a type — or rather a lazy value that serves as
a proxy for a type — it returns a data structuBat(aType) that
describes the structure of the type. The data tyjaType and
Constr are abstract:

data DataType -- Abstract, instance of Eq

data Constr -- Abstract, instance of Eq
The following sections give the observers and constructors
Dat aType andConstr.

5.1 Algebraic data types

We will first consider algebraic data types, although the i&Rle-
fined such that it readily covers primitive types as well, &swill
explain in the next section. These are the observerBaficaTy pe:

dat aTypeNane . DataType -> String
dataTypeConstrs :: DataType -> [Constr]
maxConstrindex :: DataType -> Conl ndex

i ndexConst r .. DataType -> Conlndex -> Constr
type Conlndex = Int - Starts at 1

These functions should be suggestive, just by their namds an
types. For exampld,ndexConstr takes a constructor index and
aDat aType, and returns the correspondifgnstr. These are the
observers foConstr:

constrType :: Constr -> DataType
showConstr :: Constr -> String
constrindex :: Constr -> Conlndex
constrFixity :: Constr -> Fixity
constrFields :: [String]

Constr ->

data Fixity = - Details omtted

(The name ofhowConstr is chosen for its allusion to Haskell’s
well-knownshowfunction.) We have already mentioned all of these
observers in earlier sections, excephst r Type which returns the
constructor'sDat aType, andconst r Fi el ds which returns the list
of the constructor’s field labels (¢ if it has none). Values of
typesDat aType andConst r are constructed as follows:

mkDat aType :: String -> [Constr] -> DataType

mkConst r Dat aType -> String -> [String]

-> Fixity -> Constr

The functionr eadConst r parses a given string into a constructor;
it returnsNot hi ng if the string does not refer to a valid constructor:

readConstr :: DataType -> String -> Maybe Constr
When the programmer defines a new data type, and wants to use it
in generic programs, it must be made an instancBabh. GHC
will derive these instance if deri vi ng clause is used, but there
is no magic here — the instances are easy to define manually if
desired. For example, here is the instanceVige:

instance Data a => Data (Maybe a) where
- gfoldl as before

dat aTypeOf _ = maybeType
toConstr (Just _) = justCon
toConstr Nothing = nothingCon

gunfold k z con
case constrlndex con of

1 ->2z Nothing -- no children
2 ->k (z Just) -- one child, hence one k
justCon, nothingCon :: Constr

not hi ngCon = nkConstr maybeType "Not hing" [] NoFixity

j ust Con = nkConstr maybeType "Just" [1 NoFixity
maybeType :: DataType
maybeType = nkDataType "Prel ude. Maybe"

[not hi ngCon, | ust Con]

Notice that the constructors mention the data type and \@csay so
that starting from either one can get to the other. Furthesnthis
mutual recursion allowskDat aType to perform the assignment of
constructor indices: the fact thibt hi ng has index 1 is specified
by its position in the list passed bd&Dat aType.

5.2 Primitive types

Some of Haskell's built-in types need special treatment. njvla
built-in types are explicitly specified by the language toabge-
braic data types, and these cause no problem. For example, th
boolean type is specified like this:

data Bool = False | True
There are a few types, howevewimitive types that cannot be
described in this wayl nt, | nt eger, Fl oat, Doubl e, andChar .
(GHC happens tamplementsome of these as algebraic data types,
some with unboxed components, but that should not be revéale
the programmer.) Furthermore, GHC adds several otherh, asic
Wor d8, Wr d16, and so on.

How should the “reflection” functionsjat aTypeCf, toConstr,

and so on, behave on primitive types? One possibility woed b
to supportdat aTypeX for primitive types, but not oConstr and
fronConst r. That has the disadvantage that every generic function
would need to define special cases for all primitive types.il&/h
there are only a fixed number of such types, it would still lbe-ti
some, so we offer a little additional support.

We elaborateConst r so that it can represent a value of primitive
types. ThentoConstr constructs such specific representations.
While Const r is opaque, we provide an obsereenst r Rep to get
access to constructor representations:

constrRep :: Constr -> ConstrRep
data ConstrRep
= AlgConstr Conlndex -- Al gebraic data type
| IntConstr Integer -- Primtive type (ints)
| FloatConstr Double -- Primtive type (floats)

| StringConstr String --

The constructors from an algebraic data type havélatonst r
representation, whoséonl ndex distinguishes the constructors of
the type. AConstr resulting from anl nt or | nt eger value will
have an nt Const r representation, e.g.:

constrRep (toConstr (1::1nt)) IntConstr 1
The samd nt Const r representation is used for GHC’s data types
\Wr d8, I nt 8, Word16, I nt 16, and others. Theél oat Constr rep-
resentation is used féit oat andDoubl e, while St ri ngConstr is
used for anything else that does not fit one of these moreesftici
representations. We note th@tar s are represented &st eger s,

Primtive type (strings)

andSt ri ngs are represented as listsloft eger s.
There is a parallel refinement bét aType:
dat aTypeRep :: DataType -> Dat aRep
dat a Dat aRep
= Al gRep [Constr] - Algebraic data type
| IntRep - Primtive type (ints)
| Float Rep - Primtive type (floats)

| StringRep - Primtive type (strings)

There are dedicated constructors as well:

nkl nt Type ;1 String -> DataType
nkFl oat Type ;. String -> DataType
nkStringType :: String -> DataType
nkl nt Constr .. DataType -> Integer -> Constr

-> Constr
-> Constr

nkFl oat Constr :: Dat aType -> Doubl e
nkStringConstr :: DataType -> String

The observersonst r Type, showConst r andr eadConst r all work
for primitive-type Const rs. All that said, theDat a instance for a
primitive type, such abnt , looks like this:

instance Data Int where
gfoldl kzc=12zc
gunfold k z ¢ = case constrRep ¢ of
IntConstr x -> z (fromntegral x)
_ -> error "gunfol d"
toConstr x = nkintConstr intType (fromntegral x)

int Type = nklntType "Prelude.|nt"

5.3 Non-representable data types

Lastly, itis convenient to givBat a instances even for types that are
not strictlydatatypes, such as function types or monalditypes.
Otherwisederiving (Data) would fail for a data type that had
even one constructor with a functional argument type, saites
would instead have to write thgat a instance by hand. Instead,
we make all such types into vacuous instanceBabf. Traversal
will safely cease for values of such types. However, valddésase
types can not be read and shown.

For example, the instance for>) is defined as follows:
instance (Data a, Data b) => Data (a -> b) where

gfoldl kzc =zc

gunfold _ _ _ = error "gunfol d"

toConstr _ = error "toConstr"
dataTyped _ = nkNoRepType "Prel ude. (->)"

Here we assume a trivial constructor for non-representgples:
mkNoRepType :: String -> DataType
To this end, the data tyfd#at aRep provides a dedicated alternative:
data DataRep = ... -- As before
| NoRep -- Non-representable types
Some of GHC's extended repertoire of types, notably, fall into
this group of non-representable types.

5.4 Application: test-data generation

As a further illustration of the usefulness dét aTypeCf, we
present a simple generic function that enumerates the thaiz s
tures of any user defined type. (The utility of generic pragrang
for test-data generation has also been observed elsewtéf¢ [
Such test-data generation is useful for stress testinggreiftial
testing, behavioural testing, and so on. For instance, weusa
systematic test-data generation as a plug-in for QuickiCfgjc

Suppose we start with the following data types, which coumsti
the abstract syntax for a small language:

data Prog = Prog Dec Stat

data Dec = Nodec | Ondec |d Type | Manydecs Dec Dec
datald =A| B

data Type = Int | Bool

data Stat = Noop | Assign Id Exp | Seq Stat Stat
data Exp = Zero | Succ Exp

We want to define a generic function that generates all teffnas o
given finite depth. For instance:
> genUpTo 3 :: [Prog]
[Prog Nodec Noop, Prog Nodec (Assign A Zero),
Prog Nodec (Assign B Zero), Prog Nodec (Seq Noop

Noop), Prog (Ondec A Int) Noop, Prog (Ondec A Int)
(Assign A Zero), Prog (Ondec A Int) (Assign B Zero),
Prog (Ondec A Int) (Seq Noop Noop), ...]

Here is the code fogenUpTo:

genUpTo :: Data a => Int -> [a]
genUpTo 0 =[]

genUpTo d = result

wher e

- Recurse per possible constructor
result = concat (map recurse cons)

- Retrieve constructors of the requested type
cons :: [Constr]
cons = dataTypeConstrs (dataTypeOX (head result))

- Find all ternms headed by a specific Constr
recurse :: Data a => Constr -> [a]
recurse = fromConstrM (genUpTo (d-1))

The non-trivial cased > 0) begins by findingons, the list of all
the constructors of the result type. Then it mapsur se overcons

to generate, for eacBonstr, the list of all terms of given depth
with that constructor at the root. In turnecur se works by using

f romConst r Mto rungenUpTo for each child. Here we take advan-
tage of the fact that Haskell's list type is a monad, to predac
result list that consists of all combinations of the listaireed by
the recursive calls.

The reason that we bintksul t in the where-clause is so that we
can mention it in the type-proxy argumentdat aTypeC , namely
(head result) — see Section 4.3.

Notice that we have not taken account of the possibility ahpr
tive types in the data type — indeedht aTypeConstrs will fail

if given a primitive Dat aType. There is a genuine question here:
what value should we return for (say) Bm node? One very sim-
ple possibility is to return zero, and this is readily accondated
by usingdat aRep instead ofdat aTypeConstrs:

cons = case dataTypeRep ty of
Al gRep cons -> cons

I nt Rep -> [kl ntConstr ty 0]
Fl oat Rep -> [kl ntConstr ty 0]
StringRep -> [nkStringConstr ty "foo"]

wher e
ty = dataTypef (head result)

.. Data a

=> (forall b. Data b =>b ->r)

->a ->[r]

gzipWthQ :: (Data al, Data a2)

=> (forall bl b2. (Data bl, Data h2)
=> bl ->Db2 ->7r)

->al ->a2 ->[r]

The original function(gmapQ f t), takes a polymorphic function
f that it applies to each immediate child bf and returns a list
of the results. The new functiofigzi pWthQ f t1 t2) takes a
polymorphic functionf that it applies tocorresponding pairs of
the immediate children dfl andt 2, again returning a list of the
results. For generality, we do not constraihanda2 to have the
same outermost type constructor, an issue to which we réturn
Section 6.5.

We can gain extra insight into these types by using some thpe a
breviations. We define the type synongemner i cQas follows:

type CenericQr = forall a. Dataa=>a->r
That is, a value of typ€eneri cQ r is a generic query function that
takes a value of any type in claBat a and returns a value of type
Haskell 98 does not support type synonyms that coritaiml | s,
but GHC does as part of the higher-rank types extension. 8xch
tended type synonyms are entirely optional: they make typa®
perspicuous, but play no fundamental role.

gmapQ

Now we can write the type afmapQas follows:

gmapQ :: GenericQr -> GenericQ [r]
We have taken advantage of the type-isomorphisno, — 6, =
01 — Va.0, (Wherea ¢ 01) to rewritegmapQs type as follows:

gmapQ :: (forall b. Data b =>b ->r)

-> (forall a. Data a=>a->1]r])

Applying Generi cQ we obtainGenericQr -> CGenericQ [r].
SogmapQthereby stands revealed ageneric-query transformer
The type ofgzi pWt hQis even more interesting:

gzi pWthQ :: GenericQ (GenericQr)

-> CGenericQ (GenericQr])

The argument tgzi pW t hQis a generic query that returns a generic
query. This is ordinary currying: when the function is apglto the
first data structure, it returns a function that should bdiagjpo the
second data structure. Thgmi pWt hQis a transformer for such

We might also pass around a random-number generator ta seleccurried queries. Its implementation will be given in Sext&®3.

primitive values from a finite list of candidates. We can alse
fine the illustrated approach to accommodate other covendige

ria [15]. We can also incorporate predicates into term garmr

so that only terms are built that meet some side conditiorthén
sense of attribute grammars [6]. Type reflection makes atimea
of clever test-data generators possible.

6 Generic zippers

In our earlier paper, all our generic functions consumesingle
data structure. Some generic functions, such as equalitpror
parison, consuméwo data structures at once. In this section we
discuss how to program such zip-like functions. The ovédaia is

to define such functions as curried higher-order generictians
that consume position after position.

6.1 Curried queries

Consider first the standard functiomsp andzi pWt h:

map g (b->c) -> [b] ->[c]

zipWth :: (a->b->c) ->[a] -> [b] -> [c]
By analogy, we can attempt to defirgzi pWthQ — a two-
argument version ajmapQthus. The types compare as follows:

6.2 Generic comparison

Givengzi pWt hQ, it is easy to define a generic equality function:

geq’ GenericQ (GenericQ Bool)

geq’ x y = toConstr x toConstr vy

&& and (gzi pWthQ geq’ x y)

Thatis,geq’ x y checks thak andy are built with the same con-
structor and, if so, zips together the childrerxadindy with geq’
to give a list of Booleans, and takes the conjunction of thiesalts
withand :: [Bool] -> Bool. That is the entire code for generic
equality. Generic comparison (returnibd, EQ, or GT) is equally
easy to define.

We have called the functiogeq’ , rather thargeq, because it has a
type that is more polymorphic than we really want. If we sjoei
theGener i cQsynonyms we obtain:

geq’ (Data al, Data a2) => al -> a2 -> Bool
But we do not expect to take equality between values of differ
types,al anda2, even if both do lie in clasBat a! The real function
we want is this:

geq :: Data a =>a -> a -> Bool

geq = geq’

Why can’t we give this signature to the original definitiorgef]’ ?
Because if we did, the callgzi pWthQ geq’ x y) would be
ill-typed, becaus@zi pWt hQ requires a function that is indepen-
dently polymorphic in its two arguments. That, of courset joegs
the question of whethayzi pW t hQ could be less polymorphic, to
which we return in Section 6.5. First, however, we descrime t
implementation ofjzi pWt hQ

6.3 Implementinggzi pWt hQ

How can we implemengzi pW t hQ? At first it seems difficult, be-
cause we must simultaneously traverse two unknown data-stru
tures, but theggmap combinators are parametric in just one type.
The solution lies in the type ajzi pWt hQ, however: we seek a
generic query that returns a generic quengo we can evaluate
(gzipWthQ f t1 t2) intwo steps, thus:

gzipWthQ f t1t2 - NB: not yet correct!
= gAppl yQ (gmapQ f t1) t2

Step 1: use the ordinargmapQto applyf to all the children of 1,
yielding a list of generic queries.

Step 2: use an operatiopAppl yQto apply the queries in the pro-
duced list to the corresponding childrent&f.

Each of these steps requires a little work. First, in step Hatvis
the type of the lis{ gmapQ f t1)? It should be a list of generic
queries, each of which isgolymorphicfunction. But GHC'’s sup-
port for higher-rank type still maintaingredicativity What this
means is that while we can pass a polymorphic function asgan ar
ment, we cannot make a list of polymorphic functions. Sire t
really is what we want to do here, we can achieve the desisedtre
by wrapping the queries in a data type, thus:

newtype GQQr = GQ (CGenericQr)
gzipWthQ f t1 t2
= gApplyQ (gmapQ (\x -> &Q (f x)) t1) t2

Now the call togmapQ has the result typ€GQ r], which is fine.
The use of the construct@) serves as a hint to the type inference
engine to perform generalisation at this point; there isuretime
cost to its use.

Step 2 is a little harder. A brutal approach would be to gdizhl yQ
directly to the clas®at a. As usual, the instances would be very
simple, as we illustrate for lists:

class Typeable a => Data a where

APl yQ 1 [@Qr] -> a -> [r]

instance Typeable a => Data [a] where

0Pl yQ [GQ g1, GQ q2] (x:xs) = [ql X, G2 xs]
0App! yQ [] 0 =0

But we can't goon adding new functions t@at a, and this one
seems very specific to queries, so we might anticipate treeth
will be others yet to come.

Fortunately,gAppl yQ can be defined in terms of the generic fold-
ing operatiorgf ol dI from our original paper, as we now show. To
implementgAppl yQ, we want to perform a fold on immediate sub-
terms while using aaccumulatorof type([GQ r], [r]). Again,
for lists, the combination of such accumulation and foldingnap-
ping is a common idiom (cfmapAccunL in moduleDat a. Li st).
For each child weonsumen element from the list of queries (com-
ponent[&Q r]), while producingan element of the list of results
(componenfr]). So we want a combining functidalike this:

k:: Datac=>([&Qr], [r]) ->c->([&r], [r])

k (GQq: gs, rs) child = (gs, g child : rs)

Herec is the type of the child. The functiok simply takes the
accumulator, and a child, and produces a new accumulatdre (T
results accumulate in reverse order, but we can fix that upeat t
end usingr ever se, or we use the normal higher-order trick for
accumulation.) We can perform this fold usigigpol dl , or rather a
trivial instance thereof —gf ol dl Q
gApplyQ :: Data a => [GQr] -> a -> [r]
gApplyQ gs t = reverse (snd (gfoldiQk z t))
wher e
k (GQq: gs, rs) child = (gs, q child : rs)
z = (as, [])
The folding functiongf ol dl Qhas this typ&:
gfoldlQ:: (r -> GenericQr) ->r -> GenericQr
The definition ofgf ol dl Qemploys a type construct®to mediate
between the highly parametric typegifol dI and the more specific
type ofgfol dl Q@

newype Rr x = R{ unR:: r }
gfoldlQk zt = unR (gfoldl k' z' t)
wher e

z7 _ =Rz -- replacenent of constructor

k" (Rr) c=R(krc) --
6.4 Generic zipped transformations

We have focused our attention on generic zipgeeries but all the
same ideas work for generic zippgdnsformationsboth monadic
and non-monadic. For example, we can proceed for the ladter a
follows. We introduce a type synonyr@eneri cT, to encapsulate
the idea of a generic transformer:

type CenericT = forall a. Data a =>a ->a
Then gmapT, from our earlier paper, appears as a generic trans-
former transformer; its natural generalisatigggi pWthT, is a
curried-transformer transformer:

gnapT .. GenericT -> GenericT

gzi pWthT :: GenericQ CGenericT -> GenericQ CenericT
The typeGeneri cQ Generi cT is a curried two-argument generic
transformation: it takes a data structure and returns aifumthat
takes a data structure and returns a data structure. Weiteane
plementation as an exercise for the reader, along with airndde
for gzi pWt hM Programmers find these operations in the generics
library [17] that comes with GHC.

6.5 Mis-matched types or constructors

At the end of Section 6.2, we raised the question of whether
gzi pW t hQcould not have the less-polymorphic type:
gzipWthQ :: (Data a)
=> (forall b. (Data b) =>b ->b ->7r)
->a->a->[r]
Then we could defingeq directly in terms ofgzi pWt hQ , rather
than detouring vigeq' . One difficulty is thagzi pWt h@ is now
not polymorphicenoughfor some purposes: for example, it would
not allow us to zip together a list of booleans with a list demers.
But beyond that, an implementationgdi pW t hQ is problematic.
Let us try to use the same definition as fiar pW t hQ
gzipWth@ f t1t2 -- Not right yet!
= gAppl yQ (gmepQ (\x -> & (f x)) t1) t2
The trouble is thagAppl yQrequires a list opolymorphicqueries
as its argument, and for good reason: there is no way to ensure
statically that each query in the list givengppl yQis applied to an
argument that has the same type as the child from which ther que
was built. Alas, ingzi pWthQ the query(f x) is monomorphic,

fold step for child ¢

4Exercise for the reader: defigeapQusinggf ol dl Q Hint: use
the same technique as you use to defiiyein terms off ol dl .

becausd 's two arguments have the same type. However, we can

turn the monomorphic queryf x) into a polymorphic one, albeit
inelegantly, by using a dynamic type test: we simply repléee
call (f x) by the following expression:

(error "gzipWthQ failure" ‘extQ f x)

The functionext Q (described in our earlier paper, and reviewed

here in Section 7.1) over-rides a polymorphic query (thatags
fails) with the monomorphic querff x).

Returning to the operatiogzi pWthQ we can easily specialise
gzi pWt hQ at more specific types, just as we specialiged’ to
geq. For example, here is how to specialise it to list arguments:
gzipWthQ :: (Data al, Data a2)
=> (forall bl,b2. (Data bl, Data b2) => bl -> b2 ->r)
-> [al] ->[a2] ->[r]
gzi pWthQ = gzi pWthQ
A related question is this: what dogsi pW t hQ do when the con-
structors of the two structures do not match? Most of the tie
question does not arise. For instance, in the generic eydiatic-
tion of Section 6.2 we ensured that the structures had the sam
structor before zipping them together. But thg pWt hQ imple-
mentation of Section 6.3 is perfectly willing to zip togethuiffer-
ent constructors: it gives a pattern-match failure if theosel argu-
ment has more children than the first, and ignores excesdrehil
of the second argument. We could also defjnepW t hQsuch that
it gives a pattern-match failure if the two constructorsedifEither
way, it is no big deal.

7 Generic function extension

One of the strengths of th8crap your boilerplate approacto
generic programming, is that it is very easy to extend, or-oide,
the behaviour of a generic function at particular types.his énd,
we employ nominal type-safe cast, as opposed to more stalictu
notions in other approaches. For example, recall the fongtghow
from Section 3:

gshow :: Data a => a -> String
Whengshow is applied to a value of typ8t ri ng we would like
to over-ride its default behaviour. For examp{gshow "fo00")
should return the string"\"foo\"" rather than the string
"o f (:to (¢ "0 [1)))", which is whatgshowwill give
by default, since &t ring is just a list of characters.
The key idea is to provide a type-safast operation, whose real-
isation formed a key part of our earlier paper; we review iBac-

tion 7.1. However, further experience with generic prograny
reveals two distinct shortcomings, which we tackle in tldston:

e The type of type-safeast is not general enough for some

situations. We show why it should be generalised, and how,

in Section 7.2.
e Type-safecast works ontypesbut not ontype constructors

This limitation is important as we show in Section 7.3, where

we also describe how the restriction can be lifted.

We use the term generic function “extension” for the accommo

dation of type-specific cases. We do not use the term “speaial
tion” to avoid any confusion with compile-time specialisat of

generic functions in other approaches. Our approach useg fix

code and run-time type tests. As a separate matter, howawer,
dynamic code can, if desired, be specialised like any otyyee-t
class-overloaded function, to produce type-test-freielves code.

7.1 Monomorphic function extension

In our earlier paper [16], we described a functext Qthat can ex-
tend (or, over-ride) a fully-generic query with a type-sfieguery.
This allows us to refingshow as follows:

gshow :: Data a => a -> String
gshow = gshow_help ‘ext@ showString

gshow help :: Data a => a -> String
gshow_hel p t
- g
++ showConstr (toConstr t)

++ concat (intersperse " " (gmapQ gshow t))

=+ ")
showString :: String -> String
showString s = "\"" ++ concat (map escape s) ++ "\""
wher e
escape '\n" = "\\n"
...etc...

escape ot her_char = [other_char]

Here, the type-specifishowString over-rides the fully-generic
gshow_hel p to make the combined functiogshow. Notice the
mutual recursion betweegshow andgshow_hel p. The function
ext Qis defined in the generics library as follows:

extQ:: (Typeable a, Typeable b)

= (a->r) ->(b->r) ->(a->r)
extQfn spec_fn arg
= case cast arg of
Just arg’ -> spec_fn arg’
Nothing -> fn arg

The function(gshow_hel p ‘extQ showString) behaves like
the monomorphishowSt ri ng if given aSt ri ng, and like the poly-
morphic functiongshow_hel p otherwise. To this engxt Quses a
type-safecast operator, which is regarded as a primitive of the fol-
lowing type:

cast (Typeabl e a, Typeable b) =>a -> Maybe b
If the cast froma to b succeeds, one obtains a datum of the form
Just ..., andNot hi ng otherwise. The constraints on the argu-
ment and result type afast highlight thatcast is not a parametri-
cally polymorphic function. We rather require the tyeandb to
be instances of the cla¥gpeabl e, a superclass dlat a:°

class Typeable a where

typeCf a -> TypeRep

Given a typeable valug, the expressioritypef v) computes
the type representatioiy(peRep) of v. Like dat aTypeCf , t ypeOX
never inspects its argument. Type representations admélieg
which is required to coincide with nominal type equivalenGne
specific implementation of type-safast is then to trivially guard
an unsafe coercion by type equivalence. This and other appes
to casting are discussed at length in [16]. In what follows, axe
merely interested in generalising ttypeof cast .

7.2 Generalisingcast

The scheme that we used for extending geneueriesis specific
to queries. It cannot be reused as is for genteainsformations

extT :: (Typeable a, Typeable b)

=>(a->a) ->(b->b) ->(a->a)
extT fn spec_fn arg
= case cast arg of - V\RONG

Just arg’ -> spec_fn arg’

Nothing -> fn arg
The trouble is that the result epec_fn arg’ has a different type
than the calfn arg. Hence,ext T must be defined in a different
style thanext Q One option is to cast thieinctionspec_f n rather
than theargumentar g:

5We use two separate clasd$is a andTypeabl e to encourage
well-bounded polymorphism. That is, the clagpeabl e supports
nominal type representations, just enough to do cast anaaigs.
The clasdat a is about structure of terms and data types.

extT fn spec_fn arg

= case cast spec_fn of - RIGHT
Just spec_fn' -> spec_fn' arg
Not hi ng -> fn arg

This time, thecast compares the type afpec_f n with that off n,
and uses the former when the type matches. The only infeliit
that we thereby compare the representations of the gqpesand

b- >b, when all wereally want to do is compare the representations
of the typesa andb. This infelicity becomes more serious when we
move tomonadictransforms:

extM:: (1 ???) =>(a->ma) ->(b->mb) ->(a->ma)
extMfn spec_fn arg
= case cast spec_fn of
Just spec_fn' -> spec_fn' arg
Not hi ng -> fn arg

Now, we need to construct the representatioraof> m a, and
hencem a must beTypeabl e too! So the(...???...) must be
filled in thus:

extM:: (Typeable a, Typeable b,

Typeable (ma), Typeable (mb))
= (a->ma) ->(b->mb) ->(a->ma)
Notice the Typeabl e constraints on(ma) and (mb), which
should not be required. The typeasst is too specific. The prim-
itive that wereally want isgcast — generalisedast :

gcast :: (Typeable a, Typeable b) => ¢ a -> Maybe (c b)

Herec is an arbitrary type constructor. By replacicest by gcast
in ext T andext M and instantiating to Aa.a- >a, andAa.a-> ma
respectively, we can achieve the desired effect.

But wait! Haskell does not support higher-order unificatiemhow
can we instantiate to these type-level functions? We resort to the
standard technique, which usesi@t ype to explain to the type
engine which instantiation is required. Hereid M
extM:: (Typeable a, Typeable b)
=> (a->ma) ->(b->mb)
extMfn spec_fn arg
= case gcast (Mspec_fn) of
Just (Mspec_fn') -> spec_fn’
Not hi ng -> fn
newype Mma = M(a -> ma)

Here, (M spec_fn) has type(M m a), and that fits the type of
gcast by instantiatingc to M m We can rewriteext Qandext T
to usegcast , in exactly the same way:

extQ fn spec_fn arg
= case gcast (Q spec_fn) of

->(a->ma)

arg
arg

Just (Q spec_fn') -> spec_fn' arg
Not hi ng -> fn arg
newtype Qr a=Q(a ->r)
extT fn spec_fn arg
= case gcast (T spec_fn) of
Just (T spec_fn') -> spec_fn' arg
Not hi ng -> fn arg

newype Ta =T (a->a)

As with cast before,gcast is best regarded as a built-in primitive,
but in factgcast replacesast. Our implementation ofast , dis-
cussed at length in [16], can be adopted directlygoast . The
only difference is thagcast neglects the type constructoiin the
test for type equivalence [17].

This generalisation, frorast togcast, is not a new idea. Weirich
[22] uses the same generalisation, froast tocast’ in her case,

albeit using structural rather than nominal type equaNtie used

a very similar pattern in our earlier paper, when we gerszdli
gmapQ gmapT andgmapMto produce the functiopf ol dl [16].

7.3 Polymorphic function extension

The function ext Q allows us to extend a generic function at
a particularmonomorphictype, but not at gpolymorphictype.
For example as it standgshow will print lists in prefix form
(o1 (: [1))". How could we print lists in distfix nota-
tion, thus"[l 2]"?

Our raw material must be lgst-specifi¢ but still element-generic
function that prints lists in distfix notation:
gshowlist :: Data b => [b] -> String
gshowli st xs
= "[" ++ concat (intersperse ","

Now we need to extengshow_hel p with gshowLi st — butext Q
has the wrong type. Instead, we need a higher-kinded verdion
ext Q which we callext 1Q

(mep gshow xs)) ++ "]"

ext1Q: (Typeablea Typeabl el t)
>(r
>(fora|| b. Datab=>1t b->r)
> (a->1)

gshow :: Data a => a -> String

gshow = gshow hel p ‘ext1Q@ gshowii st
‘ext@ showString

Here,ext 1Qis quantified over a typeonstructort of kind *- >*,

and hence we need a new type cldgpeabl el: Haskell sadly
lacks kind polymorphism! (This would require a non-triviah-

guage extension.) We discuBgeabl el in Section 7.4.

To defineext 1Qwe can follow exactly the same pattern asder Q,
above, but using a differenaist operator:
ext1Q fn spec_fn arg
= case dataCastl (Q spec_fn) of
Just (Q spec_fn') -> spec_fn’
Not hi ng -> fn
newtype Qr a=Q(a ->r)
Here, we need (another) n@ast operatordat aCast 1. Its type is
practically forced by the definition @t 1Q
dataCastl :: (Typeablel s, Data a)
=> (forall b. Data b =>c (s b))
-> Maybe (¢ a)
It is absolutely necessary to have tbe a constraint in the argu-
ment todat aCast 1. For example, this will not work at all:

arg
arg

bogusDat aCast1 :: (Typeablel s, Typeable a)
=> (forall c (s h))
-> Maybe (c a)

It will not work because the argument is required to be cotepte
polymorphic inb, and our desired arguments, suclslaswi st are
not; they need thBat a constraint. That is why theDat a” appears
in the namedlat aCast 1.

How, then are we to implemenfat aCast 1? We split the imple-
mentation into two parts. The first part performs the typé(®sc-
tion 7.4), while the second instantiates the argumedataCast 1
(Section 7.5).

7.4 Generalisingcast again

First, the type test. We need a primitivast operatorgcast 1, that
matches theéype constructoof the argument, rather than thge
Here is its type along with that gfcast for comparison:

gcastl :: (Typeablel s, Typeablel t) -- New
=> ¢ (s a) -> Maybe (¢ (t a))
gcast :: (Typeable a, Typeable b) - For conparison

=> c a -> Maybe (c b)

The role ofc is unchanged. The difference is thgatast 1 com-
pares the type constructossandt, instead of the typea and

b. As with our previous generalisation, frocast to gcast, the

Typeabl e constraints concern only the differences between the two

types whose common shap€ is (¢ a)). The implementation of
gcast 1 follows the same trivial scheme as before [16, 17].

The new clas3ypeabl el is parameterised over type constructors,
and allows us to extract a representation of the type cartsiru

class Typeabl el s where
typefl :: s a -> TypeRep
instance Typeabl el [] where
typef1 _ = nkTyConApp (nkTyCon "Prelude.List") []

instance Typeabl el Maybe where
typedf1 _ = nkTyConApp (nkTyCon "Prel ude. Maybe") []

The operatiomk Ty Con constructs type-constructor representations.
The operationnkTyConApp turns the latter into potentially in-
complete type representations subject to further typeicatons.
There is a singl&ypeabl e instance for all types with an outermost
type constructors of kind- >*:

instance (Typeablel s, Typeable a)
=> Typeable (s a) where
typedf x = typeOf1l x ‘nkAppTy' typeXX (undefined :: a)

(Notice the use of a scoped type variable here. Also, gerric
stances are not Haskell 98 compliant. One could instead nse o
instance per type constructor of kihe>*.) The functionmkAppTy
applies a type-constructor representation to an argutypstrep-
resentation. In the absence of kind polymorphism, we saegdn
a distinctTypeabl e class for each kind of type constructor. For
example, for binary type constructors we have:

class Typeabl e2 s where
typedf2 :: s a b -> TypeRep
instance (Typeable2 s, Typeable a)

=> Typeabl el (s a) where
typedf1l x = typeOdr2 x ‘nkAppTy' typed (undefined :: a)

One might worry about the proliferation dfpeabl e classes, but
in practice this is not a problem. First, we are primarilyeieisted
in type constructors whose arguments are themselves of kine-
cause théat a class only makes sense fiypes Second, the arity
of type constructors is seldom large.

7.5 Implementingdat aCast 1
Our goal is to implemerdat aCast 1 usinggcast 1:

dataCastl :: (Typeablel s, Data a)
=> (forall b. Data b =>c (s b))
-> Maybe (¢ a)
gcastl :: (Typeablel s, Typeablel t)
=> ¢ (s a) -> Maybe (c (t a))

There appear to be two difficulties. Firsfgt aCast 1 must work
over any type (¢ a), whereasgcast 1 is restricted to types of
form (¢ (t a)). Seconddat aCast 1 is given a polymorphic ar-
gument which it must instantiate by applying it to a dictipnéor
Data a. Both these difficulties can, indeed must, be met by making
dat aCast 1 into a member of th@at a class itself:

class Typeable a => Data a where

dat aCastl :: Typeablel s
=> (forall a. Data a =>c (s b))
-> Maybe (¢ a)

Now in each instance declaration we have available precisel
the necessaryat a dictionary to instantiate the argument. All
dat aCast 1 has to do is to instantiate, and pass the instantiated
version on taycast 1 to perform the type test, yielding the follow-
ing, mysteriously simple implementation:

instance Data a => Data [a] where

dat aCastl f = gcastl f

The instances afat aCast 1 for type constructors of kind other than
- > returnsNot hi ng, because the type is not of the required form.

instance Data Int where

dat aCast1l f = Nothing

Just as we need a family @fpeabl e classes, so we need a family
of dat aCast operators with an annoying but unavoidable limit.

7.6 Generic function extension — summary

Although this section has been long and rather abstractcdhe
crete results are simple to use. We have been able to gesgerali
ext Q ext T, ext M(and any other variants you care to think of) so
that they handlg@olymorphicas well as monomorphic cases. The
new operators are easy to use — see the definitigstodwin Sec-

tion 7.3 — and are built on an interesting and independargbful
generalisation of th&peabl e class. All the instances f@at a and
Typeabl e are generated automatically by the compiler, and need
never be seen by the user.

8 Related work

The position of theScrap your boilerplateapproach within the
generic programming field was described in the original pape
Hence, we will focus on related work regarding the new countri
tions of the present paper: type reflection (Section 5),imgppom-
binators (Section 6), and generic function extension {Sed?).

Our type reflection is a form of introspection, i.e., the stawe of
types can be observed, including names of constructordsfiahd
types. In addition, terms can be constructed. This is sintldahe
reflection API of a language like Java, where attributes aathod
signatures can be observed, and objects can be construotad f
class names. The sum-of-products approach to genericgmegr
ming abstracts from everything except type structure. &nptre
sum-of-products setup, one cannot define generic read awd sh
functions. There are non-trivial refinements, which eniiuduc-
tion on type structure with cases for constructor apploceatiand
labelled components [7, 4, 8]. In our approach, reflectierin
mation travels silently with th@at a dictionaries that go with any
data value. This is consistent with the aspiration of oureggh
to define generic functions without reference to a universpte-
sentation, and without compile-time specialisation. Alkiech and
McBride’s generic programming with dependent types [1jgasgs
that reflective data can also be represented as types, vehinhre
typeful than our approach.

Zipping is a well-known generic operation [12, 4, 13]. Our de
velopment shows that zippers can be defined generically s cu
ried folds, while taking advantage of higher-order genéuicc-
tions. Defining zippers by pattern matching on two paransater
stead, would require a non-trivial language extensionhésum-
of-product approach, zippers perform polymorphic patteatch-
ing on the two incoming data structures simultaneously. his t
end, the generic function is driven by the type structure stiared
type constructor, which implies dependently polymorphguaent
types [12, 4]. Altenkirch and McBride’s generic programmimith
dependent types [1] indicates that argument type depeieteas
in zipping can be captured accordingly with dependent tyipes
this is intended. Their approach also employs a highly patam
ric fold operator that is readily general for multi-paraeretraver-
sal. The pattern calculus (formerly called constructocaiais) by
Barry Jay [13], defines zipping-like operations by simuitans pat-
tern matching on two arbitraigonstructor applicationsLike in our

zippers, the argument types are independently polymarphic

Customisation of generic functions for specific types is bviaus
desideratum. In Generic Haskell, generic function defingi can
involve some sort of ad-hoc or default cases [7, 5, 4, 19]. &pr
proach narrows down generic function extension to the vienple
construct of a nominal type cast [16]. However, our origisaper
facilitated generic function extension with only monomurpcases
as a heritage of our focus on term traversal. The new developm
of Section 7 generalised from monomorphic to polymorphiesa
in generic function extension. This generality of genetindtion
extension is also accommodated by Generic Haskell, bueraih
a static level relying on a dedicated top-level declarat@m for
generic functions. By contrast, our generic function egiem fa-
cilitateshigher-ordergeneric functions.

[2]

(6]
[7]

In a very recent paper [8], Hinze captures essential idiofns o
Generic Haskell in a Haskell 98-based model, which requates
solutely no extensions. Nevertheless, the approach ie geib-
eral. For instance, it allows one to define generic functibas are
indexed by type constructors. This work shares our aspiraif
lightweightness as opposed to the substantial languagesgh of
Generic Haskell [7, 5, 4, 19]. Hinze’s lightweight approaities
not support some aspects of our system. Notably, Hinze'srgen
functions are not higher-order; and generic functions ajgeon a
representation type. Furthermore, the approach exhilitsita-
tion related to generic function extension: ttlassfor generics
would need to be adapted for each new type or type constrihabr
requires a specific case.

(8]
9]

(10]

(11]

(12]

9 Conclusion

We have completed th&crap your boilerplat@pproach to generic
programming in Haskell, which combines the following ditities:

(13]

Lightweight: the approach requires two independently-useful lan- [14]

guage extensions to Haskell 98 (higher-rank types and type-
safe cast), after which everything can be implemented as a
library. A third extension, extending theri vi ng clause to
handleDat a andTypeabl e is more specific to our approach,

but this code-generation feature is very non-invasive. [15]

General: the approach handles regular data types, nested data
types, mutually-recursive data types, type constructearpa
eterised in additional types; and it handles single andimult
parameter term traversal, as well as term building.

Versatile: the approach supports higher-order generic program-
ming, reusable definitions of traversal strategies, ana-ove
riding of generic functions at specified types. There is no [17]
closed world assumption regarding user-defined data types.

Direct: generic functions are directly defined on Haskell data
types without detouring to a uniform representation typshsu
as sums-of-products. Also, Haskell's nominal type equiva-
lence is faithfully supported, as opposed to more struttjura
defined generic functions.

Well integrated and supported: everything we describe is imple-
mented in GHC and supported by a Haskell generics library.

[16]

(18]

[19]

Acknowledgement$le gratefully acknowledge very helpful com-
ments and suggestions by four anonymous ICFP 2004 refesees a
well as by Olaf Chitil, Andres Loh, and Simon Marlow.

(20]
[21]

10 References

[1] T. Altenkirch and C. McBride. Generic programming withilepen-
dently typed programming. I6eneric Programming2003. Proceed-
ings of the IFIP TC2 Working Conference on Generic Prograngmi
Schloss Dagstuhl, July 2002.

(22]
(23]

F. Atanassow, D. Clarke, and J. Jeuring. UUXML: A Typesgarving
XML Schema-Haskell Data Binding. In B. Jayaraman, ediogcti-
cal Aspects of Declarative Languages: 6th Internationahgsium,
PADL 2004, Dallas, TX, USA, June 18-19, 2004. Proceedivigame
3057 ofLNCS pages 71-85. Springer-Verlag, May 2004.

K. Claessen and J. Hughes. QuickCheck: a lightweight frmoran-
dom testing of Haskell programs. In ICFPOO [11], pages 288-2

D. Clarke, J. Jeuring, and A. Loh. The Generic Haskeket#sGuide,
2002. Version 1.23 — Beryl release.

D. Clarke and A. Ldh. Generic Haskell, Specifically. InGibbons
and J. Jeuring, editor®roc. of the IFIP TC2 Working Conference on
Generic ProgrammingKluwer Academic Publishers, 2003.

J. Harm and R. Lammel. Two-dimensional Approximatioov€rage.
Informatica 24(3):355-369, 2000.

R. Hinze. A generic programming extension for HaskellProc. 3rd
Haskell Workshop, Paris, Francd999. Technical report of Univer-
siteit Utrecht, UU-CS-1999-28.

R. Hinze. Generics for the masses. In these proceedatigsl.

R. Hughes. A novel representation of lists and its agpién to the
function reverselnformation Processing Letter2, 1986.

G. Hutton and E. Meijer. Functional pearl: Monadic pagsin
Haskell. Journal of Functional Programming8(4):437—444, July
1998.

ACM SIGPLAN International Conference on Functional Pragra
ming (ICFP’00) Montreal, Sept. 2000. ACM.

P. Jansson and J. Jeuring. PolyLib—A library of polytyfunctions.
In R. Backhouse and T. Sheard, editd?syc. of Workshop on Generic
Programming, WGP’'98, Marstrand, Swed&rept. of Comp. Science,
Chalmers Univ. of Techn. and Goteborg Univ., June 1998.

C. B. Jay. The pattern calculugttp://ww+ staff.it.uts. edu.
au/ ~chj / Publi cations/ pattern_cal cul us. ps, 2003. (accepted
for publication by ACM TOPLAS.).

P. W. M. Koopman, A. Alimarine, J. Tretmans, and M. J. phei-
jer. Gast: Generic Automated Software Testing. In R. Perth an
T. Arts, editors,Implementation of Functional Languages, 14th In-
ternational Workshop, IFL 2002, Madrid, Spain, Septemb&rlg,
2002, Revised Selected Papemlume 2670 o NCS pages 84-100.
Springer-Verlag, 2003.

R. Lammel and J. Harm. Test case characterisation gylae path
expressions. In E. Brinksma and J. Tretmans, edifers¢. Formal
Approaches to Testing of Software (FATES,0Nytes Series NS-01-
4, pages 109-124. BRICS, Aug. 2001.

R. Lammel and S. Peyton Jones. Scrap your boilerplatgracti-
cal design pattern for generic programmidg_M SIGPLAN Notices
38(3):26—-37, Mar. 2003. Proceedings of the ACM SIGPLAN Work
shop on Types in Language Design and Implementation (TLD820

The “Scrap your boilerplate web site: examples, browsable li-
brary, papers, background, 2003—-2004tt p://ww. cs. vu. nl/
boi l erpl ate/.

D. Lelewer and D. Hirschberg. Data compressié&fCM Computing
Surveys19(3):261-296, Sept. 1987.

A. Loh, D. Clarke, and J. Jeuring. Dependency-style&ie Haskell.
In C. Norris and J. J. B. Fenwick, editofBroceedings of the Eighth
ACM SIGPLAN International Conference on Functional Pragra
ming (ICFP-03) volume 38, 9 0ACM SIGPLAN Noticepages 141—
152, New York, Aug. 25-29 2003. ACM Press.

S. Peyton Jones and M. Shields. Practical type inferdac higher-
rank types. Unpublished manuscript, 2004.

M. Wallace and C. Runciman. Haskell and XML: Generic &dm
nators or type-based translation. ACM SIGPLAN International
Conference on Functional Programming (ICFP’'9@ages 148-159,
Paris, Sept. 1999. ACM.

S. Weirich. Type-safe cast. In ICFPQO [11], pages 58—-67

I. Witten, R. Neal, and J. Cleary. Arithmetic coding fiata compres-
sion. CACM 30(6):520-540, June 1987.

