Lightweight Tool Support For Effective Code Reviews

Karl Wiegers Peter Moore
Process Impact CenquaPty Ltd
http://www.processimpact.com http://www.cenquacom

Every programmer has had the experience of struggling to find asmall butelusve bug No
matter how much you study the code you smply can@see it. So you ask a colleagueto come
look over your shoulder. Asyou explain the problem you@e trying to solve, oneof two things
hgppens Either you spot the problem yourself while explaining it, or after you describethe
problem, your colleagueimmediately findsthelikely cause. It wasthere all thetime, staring
youin theface, butyoujug couldn®see it. Often we®e too close to our own work to spotthe
defects. We need to get alittle hdp from our friendsthroughthe simple techniquecalled peer
review.

Theben€fits of software peer reviews have been known for decades, yet many develope's
don®Operform them, for avariety of reasons Thiswhite pgoer describes severa types of
software peer reviews, the benefits they can provide to any organization, and some of the
reasonswhy developas don©peform such reviews routindy. The pgoer aso describes the
characteristics of atool that can facilitate the way a software devel opment team collaborates
througheffective peer reviews. Combining thetool with effective review techniques can hdp
any software team improveits development effectiveness and efficiency by theearly
detection and removd of codeerrors.

What Is a “Peer Review”?

A peer review refersto any activity in which someoneother than the author of a software
work produd examines tha work produd with the specific intent of finding defects. A key
aspect of software peer review isthat the author of thework is never evaluaed; only the
work itself is examined to find ways to make it better. Althoughsource codeis themos
obviouscandidate for review from the programmer@ perspective, any ddiverable created on
a software project could potentially undergo peer review. Such ddiverablesindude
requirements specifications architecture descriptions designs user interfaces, test
procedures and test cases, and any kind of project plan. In short, any work produd that has
thepotential for containing an error isa candidate for beng reviewed.

Theearlier in theprocess tha a defect is discovered, theless damageit does and the cheaper
itisto correct. Therefore, oneof the highest leverage qudity practices available to the
software indugry isthoroughreview of requirements specifications because an errorin a
requirement has such far-reaching ramifications

There are several different types of peer review approaches. They rangefromthevery
informal, ad hocreview described aboveN asking a colleagueto hep you find onespecific
problemN to thefull rigor of aformal softwarelnaoectlon Figure 1 places several peer
review methodsalongaformality scale. Themost formal peer reviews, such as ingections
have several characteristics:

* Defined review objectives
* Participaion by atrained team and leadership by atrained modeator
* Specific paticipant roles and responsbilities

! Wiegers, Karl E. 2002. Peer Reviews in Software: A Practical Guide. Boston, Mass: Addison-Wesley.

Lightweight Tool Support for Eff eciive Code Reviews Page 1

Most Formal Least Formal

| 1 1 I
1 1 | I
Inspection Team Review Walkthrough Peer Deskcheck, Ad Hoc Review
Passaround

Figure 1. The peer review formality spectrum.

A doaumented review procedure with explicit entry and exit criteria
Reporting of results to management

Tracking of defectsto closure

Recording of process and qudity daa

Following are brief descriptionsof these different types of reviews:

Ingoection: An inspection follows awell-defined procedure that indudes six stages:
planning, overview, individud preparation, ingection meeting, rework,
and follow-up. Certain paticipants have assigned roles. author,
modeator, reader, and recorde. Thereviewers use work aidssuch as
checklists of thetypes of defects commonly foundin certain work
produds to carefully examinethework produd for possible errors. Data
collected is used to improvethe organization@ ingection process and
software engineering processes.

Team Review: Team reviews are planned and structured but are lessformal and less
rigorousthan ingections Theoverview and follow-up ingoection stages
are typically omitted, and some participant roles may be combined. The
author mightlead ateam review and thereader role is omitted. Indead,
themodeator asks thereviewersif they have any issues on specific
sectionsof thework produd.

Walkthrough A walkthrough is an informal review in which theauthor of awork
produd describesit to a group of colleagues and solicits comments. The
Author takes thedominant role; other specific review rolesusudly are not
defined. Walkthroughsare informal because they typically do notfollow
adefined procedure, do not specify entry or exit criteria, require no
reporting, and generate no metrics.

Peer Deskcheck: During apeer deskcheck only oneperson besides the author examines the
work produd. A peer deskcheck can befairly formal if thereviewer uses
defect checklists, andysis methods and standard record forms.

Passaround A multiple, conaurrent peer deskcheck is called apassaround. The author
ddivers copies of thework produd to several reviewers and collates thar
feedback.

Informal reviews are fully appropriate in certain situaions They are quick and cheap, do not
require advanced planning or preparation, demand no organizationd infrastructure, and can
hdp thework produd@ author proceed on an improved course. [t@ important to select a
review techniquefor each situaion that fits the project@ culture, time condraints, and review
objectives. Making a review more complicated and time-consuming than necessary is not
cod effective. Conveasaly, only supeaficialy reviewing acritical piece of codecould miss

Lightweight Tool Support for Eff eciive Code Reviews Page 2

major problems. 1t a goodideato consder risk when selecting an appropriate review
techniqgue Consder both the probability tha a specific body of work contains defects and
how severe theimpact of an undiscovered defect could be Asagenera guiddine use more
formal reviews for high-risk work produds and less formal reviews for those having lower
risk.

Benefits of Peer Reviews

Many companies have learned tha theresults yielded by a goodpeer review process far
outweigh the cods of peformingthem, particularly for ingpections As an example, the Jet
Propulsion Laboratory estimated anet savingsof $7.5 million from 300ingections
performed on software produced for NASA.” Another large company estimated an annud
savingsof $2.5 million dueto ther ingection activities, based on cods of $146to fix amajor
defect foundby ingpection and $2,900to fix onefoundby the customer Hewlett-Packard@
ingpection program yielded a retum on investment of ten to one® Companies as diverse as
Aetnalnaurance Company and AT& T BeII Laboratories have reported increases in coding
produdivity after introduang maoectlons The produdivity increase comes aboutbecause
detecting coding errors early meansthat it cogts lessto fix them then if they weren®
discovered until much later in the development process or even after ddivery.

In additionto revealing defects that need to be corrected, reviews also suggest improvements
theauthor could make in thework produd. Theauthor might notincorporate every
improvement suggestion, butthereview inputlets him improve how he peforms similar
work in thefuture.

Oneof thegreat sidebendfits of reviews is eduction.. Codereviews engble teams to share
knowledgeof howther software works between develope's working on different projects.
This leadsto better cross-fertilization of ideas and quicker identification of blind aleys that
developea's might have gonedown. A reviewer who is not already intimately familiar with the
codecan often ask the nasve questionstha chdlengeassumptionsand discover shortcomings
that people immersed in the project jus didn@ see. such informa knowledgeexchange
enables develope's to move more readily from oneproject to another. Thae@@ a smaller
learning curve if thedevelope already has had arole as areviewer onthe new project.
Giving team members alook unde thehoodat someoneelse(8 codemakesit easier for them
if they need to maintain or extend that codein thefuture.

Reviews can be a valuable mentoring technique Less experienced developas who have thar
codereviewed can learn aboutcommon gotchas to avoid, inefficiendes, and goodcoding
idioms. Reviews a so provide atechniquefor bringing new develope's up to speed with the
local coding culture, such as naming conventions and layout style.

Barriers to Performing Reviews

If peer reviews are so wondeful, why don@all develope's do them already? Asking your
colleaguesto tell you wha you®e donewrongis alearned behavior, notan inginctive
behavior. Having someonepoint outan error you®e madeis athreat to your ego, and
developeasinginctively want to protect their egos During areview meeting, egoscan get in
theway if authors are defensve aboutpossible defects that are raised or if reviewers aren®

? Ebenau, Robert G., and Susan H. Strauss. 1994. Software Inspection Process. New Y ork: McGraw-Hill.

® Grady, Robert B., and Tom Van Slack. 1994. (Key Lessons in Achieving Widespread Inspection Use,OIEEE
Software 11(4): 46-57.

* Humphreys, Watts S. 1989. Managing the Software Process. Reading, Mass.: Addison-Wesley.

Lightweight Tool Support for Eff eciive Code Reviews Page 3

thoughtul abouthow they present their observationsaboutthework produd. Ingppropriate
behavior duning areview meeting can lead to raging debaes and hurt feelings ingead of
qudity improvementsin the code

If theauthortakes thelead role during a review meeting he can dominae it, turing the
meeting into a presentation rather than an open and honest quest for errors. Some developas
are unwilling to chdlengethework doneby more experienced develope's, particularly in the
semi-public setting of areview meeting. Thisis aparticular problem if theauthor isan
aggressive and domineering sort whoisn@receptive to inputfrom his colleagues. If the
paticipantsin areview have widdy different skill and experience levels, some might not be
able to contribute effectively while others are bored and feel ther time is beng wasted.

Therationde behind holding areview meeting is that the interaction between reviewers can
lead the team to discover defects tha noindividud reviewer foundon his own. This so-called
synergy effect has been termed the Qphantom ingpector, O reflecting the nation tha thewhole
is greater than thesum of its parts. However, oneof the biggest problems with review
meetingsistha they can easily turn into problem-solving discussions After al, software
developes are problem-solving kindsof people who love atechnical chdlenge Every review
minute spent fixing a problem, though,is a minute not spent looking for the next problem.
[t up to thereview moderator to keep the meeting discussion focused on its primary
obijective of discovering as many potential defects as possible.

Often it@ difficult for reviewers to coordinae ther schedules and locationsto hold a
traditiond review meeting. Thisis particularly truewith geographically distributed teams. In
these situaions asynchronousreviews that do notrequire a face-to-face meeting can work
well. For example, in thereview techniquecalled a passaround, multiple reviewers contribute
thar comments onthework produd at ther own convenience. The author then recondles
comments from different reviewers and requests follow-up discussion or clarification when
necessary. A tool tha facilitates asynchronousreview and pullstogeher inputfrom multiple
reviewersinto asingle view hdpscoordinae thework of developes and reviewers working
in different places.

Busy developeas sometimes regard codereviews as a waste of time. They mightwelcome the
inputfrom ther colleagues, and everyonewants his work to beas goodas possible. However,
time spent in meetingscan seem overly time-conuming and bureaucratic. Also, usng pgpe
formsto record issues broughtup during the meeting seems archac and inefficient,
paticularly if information fromtheforms mus betranscribed into a daabase, perhgpsto
andyze defect pdterns

In addition, traditiond peer reviews involve some process overhead. Someonemus be
responsble for gahering the artifacts to bereviewed and any suppoting doaumentation and
distributing thereview packageto the paticipants. Reviewers need to receive theinformation
afew days prior to thereview meeting so they can peform ther individud preparation,
where mog defects are discovered. Meetingsmug be scheduled, rooms booked, and input
from multiple reviewers collated. Althoughnot overwhdming, this overhead effort inhibits
some teams from peforming reviews as frequently as they should.

The Tool Solution

Aswith many software development chdlenges, tools are available to assist with code
reviews. Given theintringcally collaborative nature of thecodereview process, it is
important to be cognizant of howtools subtly (and not so subtly) changeemphasis and

® Fagan, Michael E. 1986. QAdvancesin Software Inspections,OIEEE Transactions on Software Engineering
12(7): 744-51.

Lightweight Tool Support for Eff eciive Code Reviews Page 4

behavior. Onlinereview processes can be as varied as the offline processes beng suppoted
or replaced. Tool-assisted codereviews are probably notgoing to bea onefor-one
replacement of aformal codeingpection process, but this isn@necessarily a downsde of
usng review tools.

Goodtools can increase both the quantity and qudlity of reviews. To achieve thisthey need to
beflexible and lightweight so team members don®©view thetool as beng pat of the problem
ingdead of part of thesolution. Thetools should minimize the effort devoted to administrative
aspects such as scheduling meetings encouraging attendance, and recording review
comments. It should betrivial to gather and distribute artifacts, invite reviewers, and assign
reviewer roles. Ingead of recording issues on separate log forms, thetool should let

reviewers ingert thar commentsin context, right next to theline of codein question. Thetool
should aso facilitate discuss onsamongthe reviewers on issues that are broughtup. Thetool
should suppotN but notrestrictN your organization@ codereview process. An effective code
review suppot tool will indudethefollowing characteristics and capabilities:

Make it easy to begin holding reviews.

Impose avery low administrative burden.

Notify participants of forthcoming reviews and review results.
Easily collect review comments in context.

Enable threaded discussions

Facilitate an established formal review process.

Provide cusomizable metrics generation.

Provide comprehendve reporting of review results.

Gathering a groupof engineersin aroomto congrudively criticize an indvidud @ work can
be a Petri dish for self-aggrandizement and bruised egos Moving the process onlinereduces
theoppotunities for grandstanding and domination. An individud is still able to rant or even
flame, but other reviewers can skip to the next comment, thereby saving ther time and
emotiond energy. An electronic medium does not stop people from making unangructive or
offengve comments. However, thetime needed to type comments sometimes provides a
chance for reflection so thereviewer can phrase hisinputin amore thoughtul and sendtive
fashion. This hdpsall paticipants on both thegiving and receiving end of thereview focus
ontheprodud ingead of the producer. Retaining an accurate history of the comments made
and evolving lines of thoughtis also valuable. A permanent record discourages excessive
harshnessin comments.

A common problem with meeting-based reviews is that reviewers often fail to do adequée
individud preparation prior to the review meeting. Hence they become passive obsrvers or,
worse, cause thereview meeting to degenerate into a walkthroughtha emphasizes
undestanding more than defect-detection. In an onlinereview, in contrast, the preparation
and reviewing activities are combined. Onlinereviews require each reviewer to actively
examine and comment on the artifacts. When examining thelist of review comments itGQ
immediately appaent if an invited reviewer didn@contribute much input

A key ben€fit of asynchronoustool-mediated reviews is the ability to peform reviews at a
time and place that is convenient for each paticipant. Thisis an increasingly important
bendfit in this age of outsourcing, offshoring, and teleworking. Onlinecodereviews are also a
great way to fill in afew minutes when your brainis processing your direct issues. Thisisthe
antithesis of a scheduled meeting interrupting your train of thought This encourages more
reviews with awider rangeof stakeholders.

A nice bonusof electronic reviews is theability to easily record metrics tha classify the
kindsof defects tha are raised. A tool also provides a place to store daarelated to thetime
that reviewers spend on different aspects of thereview activity, induding rework tha the
author performsto correct defects. A goodtool should present statistics and give you the

Lightweight Tool Support for Eff eciive Code Reviews Page 5

ability to andyze your metricsin order to improvethereview aswell as your development
process. Metrics are implicitly linked to thereviewees and reviewers, aswell asto work
produds. These metrics can aid in root cause andysis, in additionto measuring thereview
process itself.

It isimportant to note that usng a codereview tool does not precludehadding traditiond
review meetings Quiteto thecontrary, it should highlight oppotunities where areal-time
discussion will have the mog benefit. These face-to-face meetingscan focuson deeper issues
because the smple problems have aready been found and the paticipants are prepared. In
face-to-face review meetings the discussion often moves from reviewing to problem solving
(or variousother off-topic talk). In areview tool it is more obviouswhen athread is moving
off topic, raise tha as a nondefect outcome (e.g., review of architecture required), and stay
focused on reviewing thecurrent artifacts.

Adoping areview tool might lead your team to dilute the purity of traditiond meeting-driven
codeingection. Butisaso likely to encourage people to perform more reviews. Y ou might
find tha you frequently end up supplementing the onlinereview with atraditiond meetingto
follow up on specific issues, drill down into arigorousexamination of onesection of the
code or even to explore potential solutions Supplementing an effective codereview process
with an appropriate streamlining tool can hdp make your reviews more effective, more
efficient, and maybe even more fun.

Lightweight Tool Support for Eff eciive Code Reviews Page 6

