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Abstract 

When William Thomson (Lord Kelvin) created the concept of "absolute" 

temperature, his main concern was to make the definition of temperature 

independent of the properties of particular thermometric substances, rather than 

to count temperature from an absolute zero.  He tried out a succession of 

definitions based on the thermodynamics of ideal heat engines; most notably, in 

1854 he gave the ratio of two temperatures as the ratio of quantities of heat 

taken in and given out at those temperatures in a Carnot cycle.  But how could 

such definitions be used for experimental work, when it was not possible even to 

approximate an ideal Carnot engine in reality?  More generally, how can one 

connect an entirely abstract concept to concrete situations in order to allow 

physical measurements?  Thomson argued that an ideal gas thermometer would 

indicate his absolute temperature, and that the deviation of actual gas 

thermometers from the ideal could be estimated by means of the Joule-Thomson 

effect, namely the cooling (or heating) of a gas in expanding through a porous 

barrier.  However, the measurement of the Joule-Thomson effect itself required 

measurements of temperature, so there was a clear circularity.  The legitimacy of 

Thomson's procedure can be shown by understanding it as part of an iterative 

process of "successive approximations".      
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1. William Thomson's quest for the absolute 

"This may justly be termed an absolute scale, since its 

characteristic is quite independent of the physical property of any 

specific substance." 

     -- William Thomson (1848), p. 104. 

 

 William Thomson, better known to posterity as Lord Kelvin, made 

pioneering efforts to create the concept known to us as "absolute temperature", 

counted in "degrees Kelvin" in his honor.  Thomson's work laid the foundation of 

the thermodynamic concept of temperature established in the latter half of the 

19th century, which still provides the theoretical underpinning for the most 

rigorous measurements of temperature.  But it was no easy task to measure 

absolute temperature in concrete empirical situations.  Thomson's definition of 

absolute temperature was intentionally and resolutely abstract, making no 

reference whatsoever to any properties of any particular material substances.  

How was such a concept susceptible at all to measurement by physical 

instruments?  In this paper we conduct a close examination of how absolute 

temperature was rendered measurable.  The results of our investigation should 

also provide some instructive insights for the general problem of linking abstract 

theoretical schemes to concrete physical situations.   

In 1848, Thomson presented a brief paper on "an absolute thermometric 

scale" to the Cambridge Philosophical Society.  The young Glaswegian professor 

of natural philosophy was still vividly impressed by the work of Victor Regnault 

that he had witnessed and assisted in Paris just a few years earlier.  Thomson 

began this paper by recognizing that the problem of thermometry had received 

"as complete a practical solution . . . as can be desired" thanks to the "very 

elaborate and refined experimental researches" in recent years, particularly by 

Regnault.  Still, he lamented, "the theory of thermometry is however as yet far 

from being in so satisfactory a state."1  Regnault had consolidated his precision 

air thermometry by shrinking from theories of heat and temperature.2  Much as 
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Thomson admired Regnault's work, his austere anti-theoretical manner of doing 

science did not appeal to Thomson.   

Thomson did appreciate quite well the powerful way in which Regnault 

demonstrated that the air thermometer was a good instrument to use because it 

gave highly consistent readings even when its construction was made to vary 

widely.  Such "comparability" was shown to be lacking in other common 

thermometers, for instance the mercury thermometer and the alcohol 

thermometer.  Even so, Thomson complained: 

"Although we have thus a strict principle for constructing a definite system 

for the estimation of temperature, yet as reference is essentially made to a 

specific body as the standard thermometric substance, we cannot 

consider that we have arrived at an absolute scale, and we can only 

regard, in strictness, the scale actually adopted as an arbitrary series of 

numbered points of reference sufficiently close for the requirements of 

practical thermometry."3  

So Thomson set about looking for a general theoretical principle on which to 

found thermometry.  He first mentions the old idea that in a perfect thermometer 

equal increments of temperature should correspond to equal additions of heat.  

While not denying the theoretical cogency of this principle in itself, Thomson 

states that it cannot be used in practical thermometry because the specific heat 

of any given body will vary as a function of temperature; it is an "experimentally 

demonstrated fact that thermometry under this condition is impossible".4  Since 

specific heat is generally a function of temperature, the addition of equal amounts 

of heat to a body actually results in different amounts of temperature increases at 

different points of the temperature scale.  And this variation is impossible to 

investigate experimentally, unless we already have clear methods of measuring 

the increments of temperature and heat (and the latter independently of 

temperature measurements).  Given this circular morass, it is understandable 

that Thomson declared: "We are left without any principle on which to found an 

absolute thermometric scale."5   

 It was clear to Thomson that the theoretical concept of temperature should 

be defined without recourse either to particular material substances, or to a 
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circular reference to temperature itself.  In other words, he needed to find a 

theoretical relation expressing temperature in terms of other general concepts.  

The conceptual resource Thomson needed for this purpose came from 

something that he had learned while working in Regnault's laboratory in Paris, 

namely Sadi Carnot's little-known theory of heat engines, which Thomson himself 

was to raise into prominence later.  It is useful here to recall that "Regnault's 

great work" was the result of a government commission to determine the 

empirical data relevant to the understanding of steam engines, and the way he 

conceptualised the working of the steam engine was actually not so different from 

Carnot's theoretical framework.6  Carnot's theory gave Thomson precisely what 

he was looking for:  

"The relation between motive power and heat, as established by Carnot, is 

such that quantities of heat, and intervals of temperature, are involved as 

the sole elements in the expression for the amount of mechanical effect to 

be obtained through the agency of heat; and since we have, 

independently, a definite system for the measurement of quantities of 

heat, we are thus furnished with a measure for intervals according to 

which absolute differences of temperature may be estimated."7   

In short, Carnot's theory provides a theoretical relation between three variables 

pertaining to an idealized heat-engine: heat, temperature, and work.  If we can 

measure heat and work directly, we can infer temperature by means of the 

theory.   

Thomson's basic idea (to be modified later) was that the interval of one 

degree of temperature should be defined as the amount which would result in the 

production of unit amount of mechanical work in a "Carnot engine" operating with 

a unit amount of heat in that temperature interval.  In his own words: 

"The characteristic property of the scale which I now propose is, that all 

degrees have the same value; that is, that a unit of heat descending from 

a body A at the temperature T° of this scale, to a body B at the 

temperature (T-1)°, would give out the same mechanical effect, whatever 

be the number T.  This may justly be termed an absolute scale, since its 
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characteristic is quite independent of the physical property of any specific 

substance."8  

(Note that this work was done before he adopted energy conservation.)  So 

Thomson created an impeccable theoretical definition of temperature.  But in a 

way, that was the easy part; relating the theoretical concept back to the realm of 

observations was a different matter altogether.  Linking up a theoretical concept 

with physical operations is generally a non-trivial problem, but it was made starkly 

difficult in Thomson's case, since he had deliberately fashioned the absolute 

temperature concept to make sure that any connections to any particular objects 

or materials were severed.  How was Thomson going to turn around later and 

say, excuse me, but now I would like to have those connections back?    

 

2. Measurement: How the concrete was smuggled into the 

abstract  

 In order to have a true appreciation of the epistemic problem that 

Thomson faced, we need to pause a moment to reflect on the nature of Carnot's 

theory.  Although Carnot was interested in practical concerns of engine 

efficiency, he started with a completely general theory of heat-engines, which 

meant that the "working substance" in his theoretical engine was in the first 

instance conceived as an abstract body possessing only the properties of 

pressure, volume, temperature and heat content.  How was Carnot able to 

deduce anything useful at all about the behaviour of a substance of such skeletal 

description?  He made use of some general assumptions, such as the 

conservation of heat and some propositions found in the latest physics of gases, 

but they were still not sufficient to allow the deduction of anything definite about 

the efficiency of the heat-engine (the ratio of mechanical work produced to the 

amount of heat input).  Quite plainly, in actual situations the efficiency will depend 

on the particular design of the engine and the nature of the particular working 

substance. 
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 Carnot made theoretical headway by treating only a very restricted class 

of heat engines, though he still avoided invoking particular properties of the 

working substance.  The following were the most important of Carnot's 

restrictions.  (1) Carnot only treated engines that worked through a cyclical 

process, in which the working substance returned, at the end of a cycle, exactly 

to the macroscopic state in which it started.  (2) The Carnot engine was not only 

cyclical, but cyclical in a very specific way, with definite strokes constituting the 

cycle.  (3) Finally, the Carnot cycle was also perfectly reversible; not only did that 

imply the absence of friction and other forms of dissipation of heat and work, but 

also that heat was never transferred across any temperature differences.   

 With those restrictions in place, Carnot was able to prove some important 

results about his theoretical heat engines.  But Thomson faced a great difficulty in 

the fact that the object of Carnot's theory was so utterly removed from any 

actually constructable heat engine.  The conceptually straightforward scheme for 

measuring Thomson's absolute temperature would have been the following: take 

an object whose temperature we would like to measure; use it as a Carnot heat 

reservoir, run a Carnot engine between that and another reservoir whose 

temperature is previously known; and measure the amount of mechanical work 

that is produced, which gives the difference between the two temperatures.  The 

difficulty of realizing that procedure can only be imagined, because there is no 

record of anyone ever who was crazy enough to attempt it.  In order to meet the 

standard of precision in thermometry established by Regnault, the instrument 

used would have needed to be frighteningly close to the theoretical Carnot 

engine.  That route to the operationalisation of absolute temperature would have 

been a non-starter. 

 So Thomson took a conceptual detour.  Instead of attempting to measure 

temperature directly with a thermometer constructed out of an actual, fully-

concrete Carnot engine, he constructed particularized theoretical systems, 

backed up by assurance of universality.  The basic strategy was to consider 

versions of the Carnot engine that were concrete enough to allow the use of 

certain empirical data in the description of its workings.  If a measure of absolute 

temperature could be established in any version of the Carnot engine, then it 
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would have universal validity because Thomson's definition of absolute 

temperature was only based on those features that were shared by all Carnot 

engines.  The key to making a reliable connection between the abstract definition 

of absolute temperature and actual empirical data was to use a model that was 

sufficiently concrete yet still idealized so that Carnot's propositions about engine 

efficiency would be satisfied.  Thomson worked out two such models, following 

Carnot: a system made of water and steam, and a system with only air in it.  

Here we will only give the details of his water-steam system.9  The important 

advantage of this system is that the pressure of "saturated" steam is only a 

function of temperature, which simplifies the reasoning a great deal as we shall 

see below.  The theoretical model allowed Thomson to compute the heat-work 

relation from empirical data.  As we shall see, the relevant empirical data were 

certain parameters measured as functions of temperature measured by an air 

thermometer.  Putting such data into the definition of absolute temperature 

yielded a relation between absolute temperature and air-thermometer 

temperature, with which he could convert air-thermometer temperature into 

absolute temperature.  Let us now see how this calculation was made. 

 

 The net outcome of a Carnot cycle is that a certain amount of work, W, is 

produced and a certain amount of heat, H, is passed through the system from the 

heat-reservoir at temperature S to the heat-reservoir at temperature T, where 

S>T.  We need to evaluate W, which is visually represented by the area enclosed 

by the quadrilateral AA1A2A3 in Figure 1.10  In this pressure-volume diagram, the 

mechanical work done by an operation represented in a curve is given by the 

area under it (being the integral ?pdv).  In the cycle, the net work is given by the 

area of the quadrilateral, which represents the amount of work done by the 

steam-water system in strokes (1) and (2), minus the amount of work done to the 

steam-water system in strokes (3) and (4).   
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Figure 1. Thomson's diagram representing the working of the ideal steam-water 

cycle.  The numbers designating the four strokes have been added. 

 

 Thomson actually estimated the area in question by performing the 

integration along the pressure axis, as follows: 

 

     ……………. (1) W = ξ
p2

∫  

where p1 and p2 are the pressures in strokes 1 and 3, which are constant 

because the temperatures are; ξ is the length of the line parallel to the volume-

axis delimited by the curvilinear sides of the quadrilateral.  Now, what does ξ 

represent physically?  This is the crucial point:  

dp
p1

"We see that ξ is the difference of the volumes below the piston at 

corresponding instants of the second and fourth operations, or instants at 

which the saturated steam and the water in the cylinder have the same 

pressure p, and, consequently, the same temperature, which we may 

denote by t.  Again, throughout the second operation the entire contents of 

the cylinder possess a greater amount of heat by H units than during the 

fourth; and, therefore, at any instant of the second operation there is as 

much more steam as contains H units of latent heat, than at the 

corresponding instants of the fourth operation."11 

8 



  

The operative assumption here is that there is a strict correlation between the 

temperature and pressure of saturated steam; by the time Thomson was writing, 

this was generally accepted as an empirical law.  Now we must ask how much 

volume increase results from the production of the amount of steam embodying 

latent heat H.  This volume increment is given as follows: 

 

 ξ = (1-σ)H/k,   …………… (2) 

where k denotes the latent heat per unit volume of steam at a given temperature, 

and σ is the ratio of the density of steam to the density of water.  The formula is 

to be read as follows: The input of heat H produces H/k liters of steam, from σH/k 

liters of water; the net increase of volume is given by subtracting the original 

water volume from the final steam volume. 

 Substituting that expression into the expression for the net work produced 

in the cycle, we have: 

      

     …………… (3) W = (1 −σ )
H

dp
p2

∫
Now, because all of the parameters in the above equation (except H) are 

empirical parameters measured as a function of air-thermometer temperature t, 

we can rewrite the integral in terms of t (taking H out as a constant), as follows: 

kp1

      

     ……………… (4) 
W = H (1 −σ )

dp
dt

kdtT

S

∫  
 

According to Thomson's definition, the difference between S and T will be the 

unit increment in absolute temperature if W/H is the unit amount; in that case the 

quantity (S-T) in air-thermometer degrees will give the conversion factor 

expressing how many air-thermometer degrees correspond to one degree of 

absolute temperature interval, at that point on the scale. 

Therefore the measurement of absolute temperature by means of the 

steam-water cycle came down to the measurement of the pressure, density, and 

latent heat of saturated steam as functions of air-thermometer temperature.  

Detailed measurements of these quantities had been made, by none other than 
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Regnault.  Using Regnault's data, Thomson constructed a table with "a 

comparison of the proposed scale with that of the air-thermometer, between the 

limits 0° and 230° of the latter".12  Table 1 gives some of Thomson's results, 

converted into a more convenient form.  Note that the relationship between the 

air-temperature and the absolute temperature is not linear; the size of one 

absolute temperature degree becomes smaller and smaller in comparison to the 

size of one air-temperature degree as temperature goes up.  (As we shall see 

later, this absolute scale had no zero-point but stretches to negative infinity.) 

 

air-thermometer 
temperature 

absolute 
temperature 

0°C 0°C 
5 5.660 
10 11.243 
15 16.751 
20 22.184 
25 27.545 
30 32.834 
35 38.053 
40 43.201 
45 48.280 
50 53.291 
55 58.234 
60 63.112 
65 67.925 
70 72.676 
75 77.367 
80 82.000 
85 86.579 
90 91.104 
95 95.577 
100 100 
150 141.875 
200 180.442 
231 203.125 

 

Table 1. Thomson's comparison of air-thermometer temperature and his absolute 

temperature (first definition, without absolute zero), assuming that the two scales 

are made to agree at 0°C and 100°C. 
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Let us now consider whether Thomson at this stage really succeeded in 

his self-imposed task of measuring absolute temperature.  There are three major 

difficulties.  The first one was clearly noted by Thomson himself: The formulae 

given above require the values of the latent heat of steam by volume (k), but 

Regnault had only measured the latent heat of steam by weight.  Lacking the 

facility to make the required measurements himself, Thomson converted 

Regnault's data into what he needed by assuming that steam obeyed the laws of 

Boyle and Gay-Lussac.  He knew that this was at best an approximation, but 

thought there was reason to believe that it was a sufficiently good approximation 

for his purposes.13   

Secondly, in the derivation of the mechanical effect, the entire analysis is 

premised on the assumption that the pressure of saturated steam depends only 

on temperature.  As noted above, that pressure-temperature relation was not 

something deducible a priori, but an empirically obtained generalization.  The 

rigorous reliability of this empirical law was not beyond doubt.  Besides, doesn't 

the use of the pressure-temperature relation amount to a reliance on an empirical 

property of a particular substance, just the thing Thomson wanted to avoid in his 

definition of temperature?  In Thomson's defence, however, we must keep in 

mind that his use of the pressure-temperature relation was not in the definition of 

absolute temperature, but only in its operationalisation.   

 Finally, in the theoretical definition itself, absolute temperature is 

expressed in terms of heat and mechanical effect.  We have quoted Thomson 

above as taking comfort in that "we have, independently, a definite system for the 

measurement of quantities of heat", but it is not clear what he had mind there.  

The standard laboratory method for measuring quantities of heat was through 

calorimetry based on the measurement of temperature changes induced in a 

standard substance (e.g. water), but of course that had to rely on a thermometer.  

Recall that Thomson's scheme for operationalising absolute temperature was to 

express W/H as a function of air-thermometer temperature.  A complex circularity 

would have arisen if the measure of H itself depended on the use of the air 

thermometer (i.e. if it had to be kept inside the integral in formula (4)).  In one 

place Thomson mentions using the melting of ice for the purpose of calorimetry,14 
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but there were significant difficulties in any actual use of the ice calorimeter.  Still, 

we could say that in principle heat could be measured by ice calorimetry (or any 

other method using latent heat), in which case the measure of heat would be 

reduced to the measure of weight and the latent heat of the particular change-of-

state involved.  But the last step would end up involving an empirical property of 

a particular substance, again contrary to Thomson's original intention! 

 

3. Absolute temperature in the climate of energy conservation 

 How Thomson himself might have proposed to deal with the above-

mentioned difficulties is an interesting question.  However, it is also a 

hypothetical question.  Almost as soon as Thomson advanced his initial concept 

of absolute temperature, he began to abandon the entire framework in which that 

concept was couched.  This was in large part a consequence of his encounter 

with James Prescott Joule.15  The general course of Joule and Thomson's 

collaboration is well known to historians of science.16  When Thomson heard 

Joule present his idea about the interconvertibility of heat and mechanical work at 

the 1847 meeting of the British Association for the Advancement of Science in 

Oxford, he was interested but skeptical.  After reading Thomson's 1848 paper on 

absolute temperature, Joule wrote urging him to reformulate his idea on the basis 

of the interconvertibility of heat and work, rather than holding on to Carnot's 

assumption that heat passed through the heat engine intact: "I dare say they 

[your ideas] will lose none of their interest or value even if Carnot's theory be 

ultimately found incorrect."17  Thomson sent a lengthy reply, in which he was 

quite congenial to Joule: "I am quite [aware] of the importance of the objection 

you adduce to Carnot's theory … which I admit in its full force…."  However, 

Thomson was not quite ready to renounce Carnot yet, and the contents of his 

letter, which we will discuss further later, make it clear that he was hard at work in 

trying to reach a better understanding of Carnot's theory.18  The result was 

Thomson's paper of 1849 containing an exposition of Carnot's theory.  While this 

was the paper in which Thomson gave the operationalisation of absolute 

temperature in terms of Carnot's theory, as discussed in the last section, it also 
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expressed serious doubts about the caloric theory as employed in Carnot's 

memoir.19     

 By early 1851, Thomson had committed himself to a serious modification 

of Carnot's theory in the light of Joule's ideas about the interconversion of heat 

and work.  The few years after Thomson's conversion to interconversion were 

both highly unsettled and highly productive.  The entire basis on which he had 

defined absolute temperature in 1848 had to be changed, because the 

understanding of the Carnot engine had to be revised fundamentally if heat was 

no longer considered to be conserved, and the generation of mechanical effect 

was seen as the conversion of a fraction of the heat into work, rather than a by-

product of the movement of heat.20  It is fascinating to follow the twists and turns 

Thomson took in reshaping absolute temperature, but it may be most instructive 

to start by examining the final formulation (for this period), which was given in 

1854 in one of Thomson's famous joint papers with Joule: 

"If any substance whatever, subjected to a perfectly reversible cycle of 

operations, takes in heat only in a locality kept at a uniform temperature, 

and emits heat only in another locality kept at a uniform temperature, the 

temperatures of these localities are proportional to the quantities of heat 

taken in or emitted at them in a complete cycle of operations."21 

To put it simply, 

 T1/T2=Q1/Q2.     …………….. (5) 

Essentially the same definition was also attached to a paper by Thomson on 

thermo-electricity published in the same year.22     

 Some explanation is required as to how Thomson crafted a definition of 

such pleasing simplicity, and what this new definition had to do with the original 

definition.  Recall that the original definition of temperature rested on the amount 

of mechanical effect produced in a Carnot cycle, for a given amount of heat 

passing through the engine.  A crucial factor in such consideration of engine 

efficiency was what Thomson called "Carnot's coefficient", which is the parameter 

µ in the following equation:  

 

W = H µ(t)dt
T

S

∫
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     ………………. (6) 

W is the mechanical work produced in the cycle, H the amount of heat taken in 

and given out by the engine, and t the temperature.  So µ, which is a function of 

temperature, gives an indication of how much mechanical effect is produced per 

unit amount of heat when a Carnot cycle is operated between temperatures S 

and T.23 Then Thomson's original 1848 definition of temperature came down to 

defining t so that µ is a constant, which would make the work produced 

proportional to the temperature difference between the two reservoirs, as the 

above equation would reduce to: 

 W=Hµ(S-T).   ……………… (7) 

 When Thomson revised Carnot's theory, he preserved a very similar 

factor, which he still indicated by µ and called "Carnot's function".24  This was 

defined similarly to the old Carnot coefficient, but with two differences.  First of 

all, because heat was no longer a conserved quantity, H in the above equation 

became meaningless; therefore Thomson substituted it with the amount of heat 

absorbed from the high-temperature reservoir in the first stroke of a Carnot cycle.  

Secondly, this time µ was defined for an infinitesimal Carnot cycle, where τ is the 

infinitesimal difference in the temperatures of the two heat reservoirs.  With those 

adjustments, Thomson defined µ through the following work-heat relation parallel 

to equation (6) above: 

 W = (Mdv)µτ   ………………. (8), 

where Mdv denotes the heat absorbed in the first stroke, which consists in an 

isothermal expansion by the volume increment dv. 

 The mechanical work, W above, produced in the whole cycle is also given 

by Thomson as follows: 

 W = dp
dt τ.dv   ........…………. (9) 

Thomson simply says that this is "obviously the whole work done in the complete 

cycle", and does not provide a justification for the expression.  The following is 

our intuitive understanding: The net work done in the complete infinitesimal cycle 

is, to the first order, the difference between the work done by the gas when it 

expands by absorbing heat, and the work done to the gas when it is compressed 
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while releasing heat (the net work arising from the difference of mechanical effect 

between the two other strokes would be a second-order quantity, and can be 

ignored).  The net work performed by the engine is positive because the 

expansive operation (1st stroke) takes place at a higher pressure than the 

compressive operation (3rd stroke); this is achieved by carrying out the 

expansive operation at a higher temperature than the compressive operation.  

The net work will be roughly proportional to the pressure difference between the 

two operations, because in both strokes the amount of volume change is 

essentially the same.  The quantity (dp/dt)τ expresses this pressure difference, if 

the two operations differ by τ in temperature; multiplying it by the volume change 

in each stroke, dv, gives the net work as expressed in formula (9).25  (Here it is 

essential that there is a definite correlation between p and t, so this derivation is 

unproblematic only for a liquid-vapor system; for a simple-gas system and other 

systems for which p is not uniquely determined by t, Thomson would either have 

to make a different derivation, or appeal to the presumed universality of the 

Carnot cycle and say that the same expression for work holds for all kinds of 

working substances.)  Inserting equation (9) into equation (8), Thomson obtains 

the following expression for Carnot's function µ: 

 µ =
dp / dt

M
   ........………. (10) 

Having defined Carnot's function to suit the new thermodynamics with energy 

conservation, Thomson's next step was to liberalize the theoretical concept of 

temperature.  The new Carnot's function did express something about engine 

efficiency, to which Thomson still wanted to tie the temperature concept.  But 

Thomson now realized that nothing theoretical actually dictated the exact relation 

that Carnot's function should bear to temperature; his initial notion of defining 

temperature so that µ became a constant was much too restrictive, for no 

compelling reason.  Therefore the Joule-Thomson paper of 1854 stated:  

"Carnot's function (derivable from the properties of any substance 

whatever, but the same for all bodies at the same temperature), or any 

arbitrary function of Carnot's function, may be defined as temperature".26   
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This theoretical liberalization allowed Thomson much more freedom in matching 

up the theoretical absolute temperature with existing practical temperature scales 

(or any other pre-existing meaning of temperature).  In linking the abstract back 

to the concrete, one would look for a theoretically simple definition that was also 

maximally congruent with the already-established practical temperature measure.  

This was a substantially different configuration of constraints, compared to how 

Thomson dealt with the operationalisation of his original 1848 definition of 

absolute temperature. 

 But how was Thomson to go about finding a function of µ that meshed 

nicely with the air-thermometer temperature?  As it turned out, the most valuable 

clue for this step came unsolicited from Joule.  In 1854, Thomson made a very 

important point about absolute temperature in a very unlikely place, namely a 

long footnote attached to a paper on thermo-electric currents.  There he noted an 

inconvenience with his first definition of absolute temperature, namely that the 

comparison with air-thermometer temperature showed "very wide discrepancies, 

even inconveniently wide between the fixed points of agreement."  (See Table 1 

above.)  Then he added:  

"A more convenient assumption has since been pointed to by Mr Joule's 

conjecture, that Carnot's function is equal to the mechanical equivalent of 

the thermal unit divided by the temperature by the air thermometer from its 

zero of expansion".27  

What Thomson calls "the temperature by the air thermometer from its zero of 

expansion" harked back to Guillaume Amontons's idea that the absolute zero of 

temperature could be obtained by extrapolating the known pressure-temperature 

relation of gases out to the zero-point of pressure; we will refer to it as the 

Amontons air-temperature, or simply Amontons temperature.28   

  

 

Joule's conjecture can be expressed as follows: 

 

     …………….. (11),  µ =
JE

1+ Et
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where J is the constant giving the mechanical equivalent of heat, and E is the 

coefficient of gaseous expansion.29  Thomson took the value of E as "very nearly 

equal to 0.00366 (the centigrade scale of the air-thermometer being referred 

to)".30   A more intuitive way of writing the formula would be: 

 µ=J/(273.2+t), or µ=J/T,  …………….. (12), 

where T is Amontons temperature.  As Keith Hutchison demonstrates very 

clearly, Joule's conjecture and other related ideas that fall under the rubric of 

"Mayer's hypothesis" played a key role in the early development of 

thermodynamics.31 

 

 Before explaining how Joule's conjecture led to Thomson's new definition 

of absolute temperature (equation (5)), we will address another interesting 

question that is not clearly answered in the existing literature: How did Joule ever 

come up with such an idea?  The answer turns out to be very instructive.  In 

Joule's letter of 9 December 1848, where he states the conjecture to Thomson, it 

is evident that the idea arises from Joule's critique of the values of "W/Q" that 

Thomson had sent him in a previous letter.32  What is this quantity W/Q?  

Tantalizingly, the letter in which Thomson discusses that quantity has been 

damaged and is hardly legible in the crucial portions.  However, the parts that we 

are able to make out do suggest very strongly that what Thomson wrote to Joule 

there was reproduced almost verbatim in an appendix to his 1849 paper on 

Carnot's theory.33  What Thomson discusses in that appendix (read 30 April 

1849) is his attempt to understand the heat generated by the compression of air 

(adiabatic heating) in terms of Carnot's theory.  The mysterious W/Q is the ratio 

of work spent in compressing the air, to the amount of heat generated by the 

compression. 

 Analysing this operation in terms of Carnot's theory (basically as the third 

stroke in a simple-gas Carnot engine), Thomson derived the following formula: 

      

     ………………. (13). W
=

µ Et
Q

(1+ )
E
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Using the values of µ that he had calculated using Regnault's data, Thomson 

came to the conclusion that W/Q was a function of temperature, although at a 

given temperature it was a constant, in which case the work spent was 

proportional to the heat evolved.  For Thomson this was merely another neat 

consequence of Carnot's theory, but to Joule it was a confirmation of his 

fundamental belief in the interconversion of heat and work.  So the quantity W/Q 

embodied for Thomson the release of heat by mechanical pressure, and for Joule 

the transformation of work into heat.  (The productive Joule-Thomson discourse 

on W/Q seems to be a perfect instantiation of Peter Galison's notion of "trading 

zones" in science.34)  But Joule could not accept that W/Q, for him the 

mechanical equivalent of heat, was a function of temperature; it had to be a 

universal constant.  Therefore Joule was convinced that there must be defects in 

Thomson's estimates of W/Q via the estimation of µ from available empirical 

data.  Instead, Joule suggested that W/Q should be taken to be a constant a 

priori, and that µ should be inferred to have just the form that would make W/Q a 

constant.  That is, µ should be proportional to E/(1+Et).  If we write J=W/Q and 

simply rearrange equation (13), we obtain equation (11).  This, we believe, was 

the origin of Joule's conjecture.  (A rigorous energy-based analysis of adiabatic 

heating was a more complicated matter than Joule had realized, as we will see in 

detail in the next section.) 

 

 Now comes the final step.  If Carnot's function has the form proposed by 

Joule, then it can be shown from thermodynamic theory that the ratio of the heat 

taken in and the heat given out in a Carnot cycle is proportional to the ratio of the 

absolute temperature of the hot reservoir and the temperature of the cold 

reservoir.35  Thus we arrive at Thomson's revised definition of absolute 

temperature (equation (5)).  The derivation of this result is not given by Thomson 

in a straightforward way, and it is more perspicacious to follow the exposition 

given by Andrew Gray's derivation in 1908, in his intellectual biography of 
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Thomson published shortly after his death.36  Gray was Thomson's successor in 

the Glasgow chair of natural philosophy, and his account, though little known 

now, is probably the best available exposition of the technical aspects of 

Thomson's work.  

 From equations (9) and (10) above, we have the following expression for 

the work done in an infinitesimal Carnot cycle: W=µMdvdt.  Putting that together 

with equation (8), we get W=µQdt, where Q denotes the amount of heat taken in 

by the engine in the first stroke.  Now, if we adopt Joule's conjecture in the form 

of equation (12), that reduces to W=QdT/T.  If we translate this result into a 

cycle with a finite temperature interval (writing T-T' instead of dT), we get  

W=Q(T-T')/T.  But according to energy conservation, W is equal to the amount of 

heat destroyed in the operation of the Carnot engine; in other words, W=Q-Q' if 

we write Q' for the amount of heat released by the engine into the cold reservoir 

in the third stroke.  That gives Q-Q'=Q(T-T')/T, which reduces to Q/Q'=T/T' on 

rearranging the terms.  This is just equation (5) with a slightly different notation.  

Now there are some questionable steps in this derivation, especially the jump 

from the infinitesimal cycle to the finite cycle.  But we will not enter into fine-tuned 

disputes about this derivation, since it rests in any case on the questionable 

assumption that Joule's conjecture is exactly true.  The best test of Joule's 

conjecture was given in the series of researches which we now identify as the 

"Joule-Thomson experiment", which was also the crucial link in the measurement 

of Thomson's revised concept of absolute temperature. 

 

4. The Joule-Thomson effect and the operationalisation of 

Thomson's second absolute temperature 

 Having clarified the nature of Thomson's revised concept of absolute 

temperature (which we will call his second definition of absolute temperature, or 

just his second absolute temperature), let us now see how he went about 

measuring it.  Thomson, now in full collaboration with Joule, faced the same 

basic problem as before: A credible Carnot engine could not be constructed in 

19 



  

reality.  The operationalisation of Thomson's second absolute temperature was a 

long and gradual process, in which a variety of analytical and material methods 

were tried out by Joule and Thomson, and by later physicists.  The initial method 

adopted by Joule and Thomson was based on the assumption that gas 

thermometers gave close enough approximations to Thomson's absolute 

temperature to provide a good starting point.  An ideal gas would give the 

absolute temperature exactly.  The Joule-Thomson experiment was taken to give 

a measure of how much the actual gases deviated from ideal behaviour, and 

hence a measure of how much the temperatures measured by actual gas 

thermometers deviated from absolute temperature.  Then actual gas 

thermometers corrected by the results of the Joule-Thomson experiment would 

give the absolute temperature. 

What was actually measured in the Joule-Thomson experiment 

(sometimes referred to as the "porous plug experiment") was the amount of 

cooling that gases experienced in passing through small orifices.  The intuitive 

idea was the following: If it requires energy merely to expand a body of gas 

without changing its temperature (as is the case with stretching a spring), then in 

the absence of other sources of energy such an expansion would require the 

consumption of the heat contained in the gas itself, resulting in the cooling of the 

gas.  The basic scheme of the experiment was laid out by Thomson in 1851, 

inspired by an 1845 paper of Joule's.37  The procedure consisted in forcing a 

continuous stream of gas through two (spiral) pipes connected to each other 

through a very small orifice.  The pipes are long enough for the incoming gas to 

be brought to the ambient temperature t before it enters the orifice, and for the 

exiting gas to be brought back to that same temperature by the time it reaches 

the far end of the pipe on the other side (whatever temperature change it may 

have suffered in the process of coming through the hole).  A unit amount of gas 

(occupying volume V before the passage, and V' on the other side, V'>V because 

P'<P, where P and P' are the corresponding pressures) will emit (or absorb) a 

certain amount of heat (H) in thus being brought back to the original temperature.  

H gives a direct measure of the cooling effect.   
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As mentioned above, the measured cooling effect was used to derive an 

equation for the behaviour of actual gases as a function of absolute temperature, 

showing how they deviate from the ideal gas law.  Joule and Thomson's 

“complete solution” was the following:38  

v =
Ct
p

− 1
3 AJK

273.7
t

 
  

 
  

2

 ………. (14). 

This equation expresses t, "the temperature according to the absolute 

thermodynamic system of thermometry", in terms of other parameters, all of 

which are presumably measurable: v is the volume of a given body of gas; p is its 

pressure; C is a parameter “independent of both pressure and temperature”; A 

seems to be a constant that is characteristic of each type of gas; J is the 

mechanical equivalent of heat; and K is the specific heat per unit mass of the gas 

under constant pressure.  So equation (14) in principle indicates a 

straightforward way of measuring t.  The second term on the right-hand side 

gives the measure of deviation from the ideal; without it, equation (14) would 

simply reduce to the ideal gas law, which would mean that the conventional gas 

thermometer correctly indicates the “temperature according to the absolute 

thermodynamic system of thermometry”.   

 The derivation of equation (14) was a complex theoretical and 

experimental matter on which Joule and Thomson spent a decade, but we can 

offer the following summary.  Thomson started with an estimate of the heat 

absorbed (or emitted) by the gas in being brought back to the original 

temperature.39  One part of this is "the heat produced by the fluid friction", and 

the other part (assumed to be negative) is the heat emitted from the gas "in virtue 

of its expansion".   

In order to estimate the first part, begin by noting that the overall outcome 

of this process is to take a unit amount of the fluid from the initial state occupying 

volume V at pressure P and temperature t, to the final state occupying volume V' 

at pressure P' and the same temperature t.  Thomson's derivation is quite murky 

after that point, but a corresponding passage in his 1854 paper with Joule is 

clearer.40  As a result of the specified expansion, the gas would do the following 

amount of work:  
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w = pdv
V

V'

∫   …............ (15). 

Part of this work, P'V', would be spent in pushing out against the pressure P' on 

the exit end; on the other hand, an amount of work PV would be done on the gas 

by the external agent pushing on the entry end.  So overall, the amount P'V'-PV 

would be spent by the gas in its interaction with its external environment.  

Subtracting that amount from w above gives the work done that is not spent in 

the above macroscopic dynamic effects, which must be turned into heat (internal 

energy).41  That, divided by the mechanical equivalent of heat, gives the amount 

of heat produced by the fluid friction: 

 
1
J

pdv + PV − P' V'
V

V'

∫{ }  ........……  (16) 

 The estimation of the second part (the heat emitted by the gas "in virtue of 

its expansion") is done by noting that the expansion of the gas with fixed 

temperature is equivalent to the first stroke of the Carnot cycle (isothermal 

expansion with heat input from hot reservoir).  The heat absorbed in that process 

can be expressed as: 

     ..........…… (17), Mdv
V

V'

∫
which can serve as the definition of the quantity M, as in equation (8), for the 

infinitesimal case.  The next important step, for our current purposes, is to 

express this quantity in terms of µ --- if we could do that, then we would be able 

to express the observed Joule-Thomson effect as a function of µ.  Substituting 

equation (10) into equation (17) gives the desired expression for the amount of 

heat absorbed by the expanding gas: 

 
1
µ

dp
dt

dv
V

V'

∫    ........……….  (18) 

 Finally, then, the total heat emitted in the Joule-Thomson process by a unit 

amount of gas is given by subtracting equation (18) from equation (16):42 

 H =
1
J

pdv + PV − P' V'
V

V'

∫{ }−
1
µ

dp
dt

dv
V

V'

∫  ........….. ... (19). 
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This can be turned into a usable expression for µ (Carnot's function) by the 

following few simple steps: write w  as above; write H = –Kδ, where δ is 

the 

= pdv
V

V '

∫
cooling effect in temperature when the gas is allowed to cool, and K is the 

specific heat of the gas under constant pressure).  Then simply re-arrange some 

terms, to get:43 

 
1
µ

=
1
J w − (P' V' −PV){ }+ Kδ

dw
dt

  ........…….  (20) 

(Here and elsewhere, we have changed Joule and Thomson's notation slightly.)   

Equation (20) can be rearranged and simplified as follows, noting that 

t=J/µ, according to Thomson’s new definition of absolute temperature.44    

JKδ = t
dw
dt

− w − (P' V' −PV){ }  …………… (21). 

This, in turn, can be written as follows, putting in the definition of w from above, 

and exchanging the order of differentiation and integration: 

δ =
1

JK
t

dp
dt

− p 
 

 
 v

v'

∫ dv + P' V' -PV( 
 
 

 
 
 

)  ……………. (22), 

which is the most convenient of the various possible relations which can yield t 

from other measurable quantities (in this case J, K, p, v, δ).45  Picking up this 

relation again in the addendum to their paper of 1862, Joule and Thomson 

transform it further as follows.  They use ϑ, the observed Joule-Thomson 

temperature rise, instead of δ (so, ϑ=−δ).  They also re-write the formulae with p 

instead of v as the independent variable; this involves putting w as vdp
P

P'

∫  into 

equation (21) above.  And then they differentiate both sides of the equation with 

respect to p, to arrive at the following formula:46  

 
dϑ
dp

= −
1

JK
t
dv
dt

− v 
 

 
    …………… (23). 

Given equation (23), the next task was to reduce this equation so that it was only 

in terms of p, v and t (with no differentials), after which it could serve as "the 

equation of elasticity".  That is where data from the Joule-Thomson experiments 

helped, because they provided an empirical formula for dϑ/dp.   
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 The empirical formula given by the results of these experiments was an 

inverse-square function of t, with different coefficients A for different gases:  

-dϑ/dp=A(273.7/t)2   …………….. (24). 

The value of A is 0.92 for air, and 4.64 for carbonic acid.47  Substituting (24) into 

(23), we get the following differential equation for v as a function of t: 

 t
dv
dt

− v = AJK
273.7

t
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  .......... ………. (25), 

to which Joule and Thomson give the following solution: 

 v = Bt − 1
3 AJK

273.7
t
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  ………............  (26), 

where B is "an arbitrary constant with reference to t, which, so far as this 

integration is concerned, may be an arbitrary function of p" .  In determining the 

form of B, Joule and Thomson noted: "Now it is generally believed that at higher 

and higher temperatures the gases approximate more and more nearly to the 

rigorous fulfilment of Boyle's law."48.  In that case, (26) should reduce to a simpler 

form indicating a proportionality between v and 1/p; considering that the second 

term on the right-hand side will tend to 0 as t becomes large, this means that B 

should be "approximately C/p, C being independent of both pressure and 

temperature".  Substituting that into (26) gives Joule and Thomson's "complete 

solution", namely equation (14) above.49    

 Now it seemed that Thomson and Joule had finally succeeded in reducing 

absolute temperature to measurable quantities, and they in fact proceeded to 

compute some numerical values for the deviation of the air thermometer from the 

absolute scale.  The results (see Table 2) were quite reassuring for the air 

thermometer: although the air-absolute discrepancy increased steadily as the 

temperature increased, it was estimated to be only about 0.4°C at around 300°C 

for Regnault's standard air thermometer.50  Joule and Thomson were quite 

justifiably pleased. 

 

 However, there remained a serious quandary, which Thomson clearly 

acknowledged many years later.  The crucial empirical parameters entering into 

equation (24) above, namely J, K, and dϑ/dp, were all calculated from 
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temperatures measured by ordinary thermometers.  Thus the Joule-Thomson 

measurement of absolute temperature still had to rely on practical thermometers.  

The correction of the air thermometer to give absolute temperature was done by 

the measurement of the Joule-Thomson effect, but the latter measurement was 

given by the air thermometer itself (actually, by the mercury thermometer 

underwritten by the air thermometer).  In that situation, how can we be assured 

that the correction was correct?  Note that the situation here is fundamentally 

different from that of Thomson's scheme for operationalising his first definition of 

absolute temperature.  In that case, the use of empirical data taken with the air 

thermometer did not pose a problem because Thomson was seeking an explicit 

correlation of absolute temperature and air-thermometer temperature.  To see 

that the Joule-Thomson scheme is different, it is sufficient for now to note that the 

differential equation (25) cannot be solved if one t there denotes absolute 

temperature and the other t denotes air-thermometer temperature.  But we will 

return to this issue in more detail in section 6. 

Absolute 
temperature, with 
zero set at -273.7°C 

Air-thermometer 
temperature, with zero 
set at the same point 

0 0  
20 20 + 0.0298 
40 40 + 0.0403 
60 60 + 0.0366 
80 80 + 0.0223 
100 100  
120 120 - 0.0284 
140 140 - 0.0615 
160 160 - 0.0983 
180 180 - 0.1382 
200 200 - 0.1796 
220 220 - 0.2232 
240 240 - 0.2663 
260 260 - 0.3141 
280 280 - 0.3610 
300 300 - 0.4085 
 

Table 2. Joule and Thomson's (1854) comparison of absolute temperature with 

temperature indicated by a constant-volume air thermometer filled with a body of 
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air at atmospheric pressure at the freezing point of water.  The size of one 

absolute degree is set to be the same as one centigrade degree. 

 

 

5. Thomson's re-formulation of the second definition of absolute 

temperature 

 As seen in the last section, Joule and Thomson by 1862 indicated quite 

clearly how Thomson's second absolute temperature could be operationalised, 

by taking the air thermometer or another gas thermometer and correcting its 

readings by means of the observed values of the Joule-Thomson effect.  But we 

have not seen evidence that much use was made of this absolute temperature in 

any practical way in the following two decades.  Perhaps spurred on by the 

dearth of application, Thomson returned to the subject of absolute temperature 

seriously when he was commissioned in 1878 to write the entry on "Heat" for the 

9th edition of the Encyclopaedia Britannica.  This contribution constituted a 

distinct advance over his joint work with Joule up to 1862, as will be explained 

below. 

 In the Britannica article, published in 1880, Thomson gave two new 

formulations of the absolute temperature concept, both meant to be equivalent to 

the second definition.  Both are puzzling.  We have not been able to make clear 

sense of the first formulation, but merely mention it here in the hope that 

someone with more insight will be able to propose a way of understanding it.51  At 

any rate, the second formulation is the one that Thomson actually makes use of.  

It is only given verbally, as follows:52  

"Let the thermometric body be infinitesimally warmed by stirring a portion 

or the whole of itself if it be partially or wholly fluid, or by stirring a quantity 

of fluid in space around it if it be all solid; and during the process let the 

stress upon the body be kept unchanged. The body expanding or 

contracting or changing its shape with the heat, as the case may be, does 

work upon the surrounding material by which its stress is maintained. Find 
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the ratio of the amount of work thus done to the amount of work spent in 

the stirring. For brevity we shall call this the work-ratio. Again, let the 

stress be infinitesimally increased, the thermometric body being now for 

the time enclosed in an impermeable envelope so that it may neither gain 

nor lose caloric. It will rise (or fall) in temperature in virtue of the 

augmentation of stress. The ratio of this infinitesimal elevation of 

temperature to the whole absolute temperature is equal to the work-ratio 

multiplied into the ratio of the infinitesimal augmentation of stress to the 

whole stress." 

To the best of our knowledge, Thomson never published an explanation of how 

the above cumbersome formulation was equivalent to the simple definition of 

1854.  In the following we will give our own interpretation, in which we have been 

helped once again by Andrew Gray's exposition.53 

 The 1880 formulation can be understood as an intermediate product of a 

long chain of reasoning aimed at rendering Thomson's second definition of 

absolute temperature (1854) in more and more measurable terms without 

actually constructing a perfectly reversible Carnot engine.  Let us start by making 

a definition of the efficiency of a heat engine, η, as the ratio of the overall work 

produced in one cycle of the engine's operation, to the amount of heat absorbed 

in the first stroke.54  The efficiency can be written as follows: 

 η=∆W/Q   …………… (27). 

Similarly as in the reasoning given in the last paragraph of Section 3, we can 

estimate ∆W as follows.  Because of energy conservation, the work produced in 

the cycle would be equal to the amount of heat destroyed in the operation of the 

engine, which is just the difference between the amount of heat taken in by the 

working substance in the first stroke (Q) and the amount of heat given out by the 

working substance in the third stroke (Q').  Therefore the efficiency can be 

expressed as: 

 η = (Q-Q')/Q   ……………... (28), 

using the same units for work and heat.  But, according to the 1854 definition of 

absolute temperature, such a ratio of heats would correspond directly to the ratio 
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of absolute temperatures (T, T') at which the heat input and output take place:

 η = (T-T')/T   ……………… (29). 

Now, if we take this for a cycle in which T is just infinitesimally higher than T', we 

can write the above as: 

 η = dT/T   ……………….. (30). 

Putting that together with the original definition of efficiency, equation (27), we 

have a promising relationship: 

 ∆W/Q = dT/T   …..…………… (31). 

But the quantities ∆W and Q are still not measurable, since they refer to the 

perfect Carnot engine.  So Thomson sought to express the ∆W/Q ratio in terms 

of the work and heat amounts involved in the first stroke of the cycle only.55  If we 

can just deal with the first stroke, we do not have to deal with the full impossibility 

of creating a material version of the perfect Carnot cycle.  The first stroke alone is 

quite a lot easier to realize in a material system: simply a working substance that 

does work by expanding with the absorption of heat.  This still needs to be a 

reversible process, so by no means straightforward to realize, but the difficulty 

would be reduced. In order to simplify the theoretical derivation, Thomson 

stipulated that the first-stroke expansion should take place under constant 

pressure ("during the process let the stress upon the body be kept unchanged", 

in the passage quoted above).  That is not a condition that can be met in an 

isothermal stroke of a Carnot cycle whose working substance is only a gas, but it 

would be conveniently met in a liquid-vapor system.  Now conceive ∆W as the 

difference between the work done by the working substance in the first stroke 

and the work done to it in the third stroke, ignoring the second-order infinitesimal 

quantities of work involved in the second and fourth strokes.  Then we can write: 

∆W = W - W'.  That can be expressed in a simple way in terms of the pressures 

involved, since we are assuming the pressure to be constant in each of the two 

strokes.  So, 

 ∆W = pdv - p'dv = dpdv  …………… (32), 
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where dv is the infinitesimal increment of volume in the first stroke, which is equal 

to the contraction of volume in the third stroke, to the first order.  The above can 

be re-written as follows: 

 ∆W = (dp/p)(pdv) = (dp/p)W ……………. (33). 

Inserting this into equation (31) above, we have: 

 dT/T = ∆W/Q = (W/Q)(dp/p) …. ………… (34), 

which is a formal expression of Thomson's verbal formulation cited initially, since 

W/Q is what he means by the work-ratio. 

How about the case of the gas engine?  The above derivation, premised 

on the assumption of constant pressure in the isothermal first stroke of the 

Carnot cycle, is not applicable when the working substance is a simple gas.  In 

fact, as in an earlier derivation, it is quite puzzling how Thomson intended his 

new formulation of absolute temperature to be applied to the case of gas 

engines.  A gas cannot stay at the same temperature if it is to increase its volume 

under constant pressure, but the 1854 definition of absolute temperature only 

applies to a cycle in which the working substance takes or loses heat at fixed 

temperatures.  We can only conclude that Thomson's 1880 formulation 

constituted a non-trivial broadening of the absolute temperature concept, in effect 

a third definition. 

Now let us see how Thomson made use of relation (34) in order to 

measure absolute temperature. How the operationalisation should go in the 

steam-water case is quite straightforward, at least in principle.  In that case Q, 

reckoned per unit volume of the working substance, is simply the latent heat of 

steam evolved in mechanical units, which Thomson writes as Jρκ, where ρ is the 

density of steam and κ is the latent heat of steam per unit mass, and J is the 

mechanical equivalent of heat.  W is the work done by the created steam in 

pushing against pressure p for the relevant volume increment, which is 1-σ, 

where σ is the density-ratio of steam to water, so W=p(1-σ).  Substituting these 

expressions for Q and W into relation (34) gives an easily soluble differential 

equation.  Thomson was quite pleased with this result, and expressed his hope 

that the steam-pressure thermometer built on his scheme was "destined to be of 
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great service both in the strictest scientific thermometry and as a practical 

thermometer for a great variety of useful applications."56 

How was the Joule-Thomson effect treated in this new mode of analysis?  

What Thomson gives in his 1880 article is more elegant than the derivations in 

the original Joule-Thomson papers, but it is still somewhat elaborate, so we will 

give a simplified version, again taking our cue from Gray's exposition.57  The 

Joule-Thomson experiment can be conceptualised as a process in which a body 

of gas at a higher pressure goes into a more expanded state at a lower pressure.  

We can write that the body of gas has pressure p+δp and volume v before it 

enters the plug, and pressure p and volume v+δv afterwards.  The gas will 

change its temperature in the process.  To conclude the experiment, the gas is 

brought back to its initial temperature; Thomson stipulates that this is done 

through a mechanical agitation that provides a certain amount of frictional heat by 

mechanical action, the amount of which is δw.  Now consider the change (δe) 

made by this entire process in the internal energy (e) of the gas, which consists 

of two parts.  First, the net mechanical work done on the gas in the process of 

pushing it through the plug is: (p+δp)v - p(v+δv) = vδp - pδv.  Then there is the 

heat added by mechanical agitation.  Summing the two, we have: 

 δe = vδp - pδv + δw   ……. …….. (35) 

Now imagine going from the same initial state of the gas to the final state, but in 

a different process.  In particular, if we let the change take place isothermally, the 

gas would go through an expansion in which it does external work pδv while 

absorbing a certain amount of heat, which we can simply write as δQ.  But how 

can the work simply be pδv, when the pressure will be changing from (p+δp) to p 

in the process?  That would be because the contribution to the total work amount 

caused by the pressure change would be in the order of δvδp, which is second-

order, and hence negligible if δv and δp are much smaller than v and p.  Allowing 

that approximation, the change in internal energy for the isothermal case is the 

following: 
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 δe = δQ - pδv   ………….. (36). 

Since the two processes have the same endpoints, they should have the same 

amount of overall change in internal energy.  So we can equate (35) and (36), 

which gives: 

 δQ = vδp + δw  …………... (37). 

 We can now consider the isothermal expansion as the vehicle for the 

operationalisation of absolute temperature, referring back to equation (34) 

above.  The work ratio is: 

 (pδv) / (vδp + δw)  …………... (38). 

If we consider the infinitesimal case, we can insert that expression into equation 

(34), which gives the following: 

     ……………. (39). 
 

 

But it is not clear why the analysis of the infinitesimal case would be relevant, 

because the pressure and volume changes in the Joule-Thomson experiments 

are certainly not infinitesimal.  Setting that point aside for now, if we carry on with 

the derivation for the infinitesimal case, the above equation can be rewritten as 

follows: 

dT
T

=
pdv

vdp + dw

 

 
  

 

 
  

dp
p

 

       …………….. (40). v d
=

vdp
=

1
=

1
T

T
dv vdp + dw 1 + dw

vdp
1 + JK

v
dθ
dp 

 

In the last step we have substituted dw with JK(dθ), where J is the mechanical 

equivalent of heat, K is the specific heat of the gas under constant pressure, and 

dθ is the Joule-Thomson cooling effect obtained through an expansion 

accompanied by the reduction of pressure by dp.  Therefore we have now an 

equation that expresses T in terms of v and p, and some empirically determined 

parameters.  This equation is equivalent to equation (23) in section 4, and can 
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be solved by putting in the empirical formula for dθ/dp, inferred from the observed 

variation of cooling effect with pressure.  More details about the solutions were 

given in that section.    

 

 Aside from increased theoretical sophistication (e.g. the explicit use of the 

internal energy function), Thomson's 1880 article was also epistemologically 

more aware than his previous works.  He now noted clearly the epistemic 

quandary with which we closed section 4 above, namely that the Joule-Thomson 

correction of the air thermometer was being calculated on the basis of 

measurements taken by the air thermometer itself.  (Joule actually used mercury 

thermometers, which was justified by the fact that the mercury thermometer and 

the air thermometer agreed very well in the relevant temperature range.)  In the 

1880 paper, Thomson confessed: 

"We have no right to measure these [Joule-Thomson] heating and cooling 

effects on any scale of temperature, as we have not yet formed a 

thermometric scale…." 

He indicated how the problem could be avoided, in principle: "Now, instead of 

reckoning on any thermometric scale the cooling effect or the heating effect of 

passage through the plug, we have to measure the quantity of work (δw) required 

to annul it".  But he was aware, of course, that "the experiments as actually made 

by Joule and Thomson simply gave the cooling effects and heating effects shown 

by mercury thermometers".   

 Thomson's level of awareness was, however, not quite matched in the 

quality of the solution he proposed in the end: 

"The very thermometers that were used [in the Joule-Thomson 

experiment] had been used by Joule in his original experiments 

determining the dynamical equivalent of heat [J], and again in his later 

experiments by which for the first time the specific heat of air at constant 

pressure [K] was measured with sufficient accuracy for our present 

purpose. Hence by putting together different experiments which had 

actually been made with those thermometers of Joule's, the operation of 

32 



  

measuring δw, at all events for the case of air, was virtually completed. 

Thus according to our present view the mercury thermometers are merely 

used as a step in aid of the measurement of δw, and their scales may be 

utterly arbitrary…."58 

 

 What Thomson claims here is that the temperature measurements are 

merely particular ways of getting at the value of the quantity δw, and the final 

result is independent of the particular method by which it is obtained.  Thomson's 

claim is hollow, unless it happens to be the case that the resulting empirical 

formula for δw is not a function of mercury-temperature at all.  But we have seen 

that δw is a function of mercury-temperature (t) in general.59  The same point can 

be seen even more clearly if we take the view that certain errors are introduced 

into the values of J, K, and dθ/dp, if those values are obtained on the basis of the 

assumption that the mercury thermometer readings indicate the absolute 

temperature.  Under that view, Thomson's claim amounts to insisting a priori that 

all such errors cancel each other out in the final result.  In this case, errors in J, 

K, and dθ/dp should cancel each other out in the expression JK(dθ/dp).  That is 

just about possible, but by no means guaranteed. 

 

6. Iteration in the measurement of absolute temperature 

 That seems to be where Thomson left the problem.  In the corpus of 

Thomson's work after the time of the Britannica article, we have not found any 

further contributions to the measurement of absolute temperature.  Thomson was 

apparently quite satisfied in 1880 with the theoretical understanding of absolute 

temperature that he had been able to secure in the framework of a fully 

developed theory of thermodynamics, and in practical terms he was happy with 

the old Joule-Thomson empirical results that gave sufficient indication that the 

deviations of gas-thermometer temperature from his second absolute 

temperature were quite small.  But a much more satisfying epistemic 

understanding of the problem of operationalising absolute temperature was to 

emerge within a decade, apparently starting with the work of Hugh Longbourne 
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Callendar, English physicist and engineer who made important observations on 

the properties of steam and crucial contributions to platinum-resistance 

thermometry.  In this section we will present the basic points of Callendar's work, 

mostly on the basis of the exposition given by Henri Louis Le Chatelier.60 

 The most important starting point of Callendar's analysis was to make it 

plainly explicit that air-thermometer temperature and absolute temperature had 

not been shown to be equal to each other.  He also recognized that they could 

not be compared with each other in any direct way since there was no method of 

estimating absolute temperature without making use of measurements taken with 

the air thermometer (or some other practical thermometer).  Therefore he 

consciously engaged in an iterative process, starting with air-thermometer 

temperature as given and sketching out loops of self-improvement to approach 

absolute temperature in stages.   

 In Le Chatelier's version of Callendar's method, we start by writing the law 

governing the thermal behaviour of actual gases as follows: 

 pv = RT(1-φ)   ……………. (41), 

where R is a constant, T is absolute temperature, and φ is an as-yet unknown 

function of T (and p).  The factor φ is what makes (41) different from the ideal gas 

law, and φ is presumed to be small in magnitude, although its exact form is 

unknown.  The form of φ could be determined if a data series giving sets of 

values for p, v and T could be entered into (41).  But T is the absolute 

temperature and cannot be measured, so instead we enter t, the temperature 

values measured by the air thermometer (which is an instrument that assumes 

that φ is zero for air).  If t is an approximation to T, then φ computed by this 

procedure will be an approximation to the true form of it.  Using this approximate 

φ-function, corrections to t can be made so that it approximates T more closely.  

If the iteration works, repeating this procedure will bring t closer and closer to T, 

until it is close enough for whatever purposes we have. 

 The procedure using the Joule-Thomson measurements is somewhat 

more complicated.  For that case the iterative procedure goes as follows.  The 

theoretical framework is equation (37) from section 5, which is obtained by 
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assuming that the change in internal energy of the gas in the Joule-Thomson 

experiment is the same as when the gas expands with pressure going from P1 to 

P2 but with no overall change in the temperature, which is T at the beginning and 

the end of the process.  What (37) expresses is the amount of heat absorbed by 

the gas in the process, and it can be re-written in integral form, as follows:61 

  ……………… (42). 
+=

11 dpdwvdpQ    
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Similarly, if we have the same equation applying to a situation at a different 

temperature, T', we have the following parallel relation: 
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The theoretical set-up is completed by two further steps.  First, substitute for v in 

(42) and (43) the expression RT(1-φ)/p, which follows from the initial premise of 

Callendar's analysis.  Then set Q/T-Q'/T'=0, which is simply Thomson's second 

definition of absolute temperature (from 1854).  Then we have: 
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where the primed quantities are those pertaining to processes taking place at 

temperature T'.  Le Chatelier states that the first term in (44) is zero according to 

the law of adiabatic expansion, which is assumed to hold approximately.  The 

only way, then, for (44) to hold generally is for the integrand to go to zero in each 

of the latter two terms.  That gives an expression for the function φ, as follows: 

     ………………… (45). φ =
dw

p
J 1

dp R T
 

 

 Now the theoretical part is over, and the experimental data can be entered 

into equation (45).  As before the Joule-Thomson data gives observations for the 

term dw/dp.  Inserting the formula for the case of air, and the values of J and R, 

Le Chatelier gives the following empirical expression for φ: 

     ………………. (46), p  

 
φ = 0.001173

po

To

T
 

  
 

  
3

 

where po is the atmospheric pressure and To is the temperature of melting ice.   
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 Le Chatelier was very clear that equation (46) did not give the final 

correction: "This is still an approximate result, for we have depended upon the 

experiments of Joule and Thomson and on the law of adiabatic expansion; 

however the approximation is more close.  If it seems sufficient for air, it is 

certainly not so for carbonic acid.  Neither is the formula rigorously exact for 

air."62  More iterative loops would yield more fine-tuning.  However, it seems that 

no one was worried enough to make the second-round corrections or beyond.  

Callendar calculated the first-round corrections on air up to 1000°C; the 

corrections did get larger with increasing temperature, but turned out to be only 

0.62° at 1000°C for the constant-volume air thermometer, and 1.19° for the 

constant-pressure air thermometer.  As 1000°C was about the very limit at which 

any gas thermometers could be made to function credibly,63 the fact that the 

corrections would grow rapidly beyond that point was not so much of a practical 

concern.  Le Chatelier was happy to declare: "The deviations of the air-

thermometer at high temperatures are thus very slight if concordance is 

established at 0° and 100°; we shall not have to occupy ourselves further with the 

differences between the indications of the thermodynamic thermometer and 

those of the gas-thermometer."  One only needed to avoided gases like carbon 

dioxide, for which the corrections were significantly larger.64 

 A similar assessment of the situation was given twenty years later by A. L. 

Day and R. B. Sosman, also with the greatest conceptual clarity on the matter 

that we have come across: 

"It is important at this point to recall that our initial measurements with the 

gas-thermometer tell us nothing about whether the gas in question obeys 

the law pv=kθ or not.  Only measurements of the energy-relations of the 

gas can give us that information.  But since such measurements involve 

the measurement of temperature, it is evident that the realisation of the 

temperature scale is logically a process of successive approximations.  

Practically, the first approximation is sufficient, so nearly do the gases 

commonly used in gas-thermometers conform to the 'ideal' behaviour 

expressed in the law pv=kθ."65 
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 We will close the discussion with a few epistemological points about the 

iterative process of "successive approximations".  First of all we must recognize 

the wondrous groundlessness of it.  No one whose work we have examined has 

demonstrated that there will certainly be a convergence to a well-defined limit in 

the successive approximations to absolute temperature, if they are carried out.  

In mathematics, conditions of iterative convergence can be discerned easily, 

because the true function we are trying to approximate is already known, or at 

least knowable.  In the epistemic version of iteration the true function is not 

known.  So the only thing we can do is to carry on with the iteration until we are 

pragmatically satisfied that a convergence seems destined to happen in further 

loops.  And whether there will be such a satisfactory outcome cannot be 

predicted before actually carrying out the iteration.  The case of absolute 

temperature is a happy story, because one iterative loop turned out to be enough 

for all practical purposes.66 

 The groundlessness of epistemic iteration means that one's exact starting 

point is not important, as long as it is within certain reasonable limits.  Equation 

(41) happened to hit the nail nearly on the head, but the iterative correction 

process could have started from various other initial approximations and reached 

similar final results.  This makes sense of why Thomson was able to make 

certain shortcuts and apparently unwarranted approximations in his various 

derivations without much of a tangible consequence, just as it was allowable for 

Callendar to use the Joule-Thomson data and the adiabatic gas law, knowing 

that both were not guaranteed to be exactly right.  Therefore Thomson's defence 

of the use of the mercury thermometer in the Joule-Thomson experiment was not 

only invalid as noted in Section 5, but also unnecessary.  The Joule-Thomson 

experiment was not the only way to obtain the desired results either.  In fact, 

Joule and Thomson themselves noted in 1862, with evident pleasure, that 

Rankine had used Regnault's data to obtain a formula for the law of expansion of 

actual gases that was basically the same as their own result based on the Joule-

Thomson experiment (our equation (14)).67 
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 Similarly, identifying the operationalisation of absolute temperature as an 

iterative process also helps us recognize that the theoretical definition of 

temperature did not need to be very precise or restrictive, no more than the 

processes of reasoning used in its operationalisation.  The use of the Carnot 

cycle was definitely unnecessary, and Thomson should have felt free to kick that 

ladder away.  Even the liberalized definition of 1854 was overly restrictive, since 

it required the estimation of heat input and output in isothermal processes.  A 

concept of temperature transcending the properties of particular gases could 

have been created by simply postulating an "ideal gas temperature", which is 

given by the expansion of an ideal gas.  Seeing that actual gases expand nearly 

uniformly according to various gas-thermometer temperatures, one could have 

created a theoretical system in which an ideal gas expands uniformly with 

absolute temperature.  The concepts of "ideal gas" and "absolute temperature" 

created in that way would have been rather empty and very imprecise in many 

ways, but they would have been sufficient to support iterative processes along 

the lines of Callendar's work, or Joule and Thomson's, or Rankine's. 

 Those last remarks lead to the question of truth.  If the absolute 

temperature concept could be derived from an idealization of the behaviour of 

actual gases, doesn't that suggest a rather straightforward realist construal of the 

whole episode?  Consider, for example, Stathis Psillos's take on the epistemic 

status of the ideal gas law: "The law of gases, PV=RT …. is approximately true of 

real gases, since it is true of ideal gases and the behaviour of real gases 

approximates that of ideal gases under certain conditions."  This brief example is 

given as an illustration of Psillos's intuitive theory of truth-likeness, in which a 

theoretical description is said to be truth-like about a real system if it is strictly 

true about a model that approximates the real system.68  The trouble is that it is 

not so simple to know whether the behaviour of real gases approximates the 

behaviour of ideal gases.  We can surely observe that real gases nearly obey the 

ideal gas law, but that is done by interpreting the "T" term in the law as 

temperature measured by an actual gas thermometer.  The "T" term in the ideal 

gas law that is strictly obeyed by an ideal gas is Thomson's abstract absolute 

temperature.  Therefore the observed approximation to the "ideal gas law" says 
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nothing about how similar real gases are to ideal gases, unless we already know 

that gas-thermometer temperature is close enough to absolute temperature.  It is 

this circularity that necessitates the process of successive approximations, or, 

epistemic iteration. 

 In terms of truth, then, what is it that we can really know?  Can we ever 

say whether we have obtained the true values of absolute temperature?  That 

question only makes sense if there is sufficient objective reality to the concept of 

absolute temperature so that there is an objectively determinate value of absolute 

temperature to each physical situation.69  But whether or not there is such 

objective reality is only determined by the iterative procedure.  And that 

determination is constitutive -- that is to say, Thomson's absolute temperature 

does not have objective reality aside from the convergence of its iterative 

operationalisation.  When we have achieved convergence in some 

operationalisation of absolute temperature, and only then, can we meaningfully 

ask how much the temperatures indicated by various actual thermometers differ 

from absolute temperature.  The kind of successive approximation we have 

witnessed is, when it works, surely an approach to a kind of truth.  However, that 

truth is a destination that is only created by the approach itself. 
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Notes 

                                                 
1 Thomson [1848] (1882), p.100; emphasis added. 
2 See Chang (2001) for further discussion of Regnault's minimalist metrology. 
3 Thomson [1848] (1882), pp. 101-102; emphases original; see also Joule and Thomson [1854] 
(1882), p. 393. 
4 Thomson [1848] (1882), p.100. 
5 Thomson [1848] (1882), p.101. 
6 See the introductory chapter in Regnault (1847). 
7 Thomson [1848] (1882), p.102; emphases original.   
8 Thomson [1848] (1882), p.104. 
9 For the treatment of the air engine, see Thomson [1849] (1882), pp. 127-133. 
10 This is adapted from the figure in Thomson [1849] (1882), p. 124. 
11 See Thomson [1849] (1882), pp. 125-126, for this passage and the following reasoning. 
12 This table, announced in Thomson [1848] (1882), p. 105, can be found in Thomson [1849] 
(1882), p. 139 and p. 141, in slightly different forms than originally announced. 
13 Thomson [1848] (1882), pp. 104-105.  Thomson also had to use Boyle's and Gay-Lussac's 
laws to get anywhere in reasoning out the air-engine case; see pp. 129, 131. 
14 Thomson [1848] (1882), p. 106. 
15 For details about Joule's life and work, see Cardwell (1989), and Smith (1998). 
16 See e.g., Cardwell (1989), Ch. 5 and Ch. 8. 
17 Joule to Thomson, 6 October 1848, Kelvin Papers, Add. 7342, J61, University Library, 
Cambridge. 
18 Thomson to Joule, 27 October 1848, Kelvin Papers, Add. 7342, J62, University Library, 
Cambridge. 
19 Thomson [1849] (1882), pp. 116-117. 
20 Although Thomson clearly preserved as much as he could from the old analyses in the formal 
sense, the following claim made in 1881 seems to me like unhelpful bravado: "This paper [of 
1848] was wholly founded on Carnot's uncorrected theory …. the consequently required 
corrections …. however do not in any way affect the absolute scale for thermometry which forms 
the subject of the present article." What Thomson did demonstrate was that there is a simple 
numerical conversion formula that holds between the two definitions of absolute temperature: 
T1=100(logT2-log273)/(log373-log273).  See the retrospective note attached to Thomson [1848] 
(1882), p. 106.   
21 Joule and Thomson [1854] (1882), p. 394. 
22 Thomson [1854] (1882), p. 235: "Definition of temperature and general thermometric 
assumption. -- If two bodies be put in contact, and neither gives heat to the other, their 
temperatures are said to be the same; but if one gives heat to the other, its temperature is said to 
be higher. The temperatures of two bodies are proportional to the quantities of heat respectively 
taken in and given out in localities at one temperature and at the other, respectively, by a material 
system subjected to a complete cycle of perfectly reversible thermodynamic operations, and not 
allowed to part with or take in heat at any other temperature: or, the absolute values of two 
temperatures are to one another in the proportion of the heat taken in to the heat rejected in a 
perfect thermo-dynamic engine working with a source and refrigerator at the higher and lower of 
the temperatures respectively." 
23 Thomson [1849] (1882), pp. 133-134.  Here we have written W (for mechanical work) where 
Thomson wrote M, in order to avoid confusion with another parameter that he also denoted as M 
in later papers.  In various other places we have also changed Thomson's notation slightly, for 
clarity and consistency. 
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24 The following derivation of the form of Carnot's function is taken from Thomson [1851a] (1882), 
pp. 187-188 (§21). 
25 What we have here is a partial derivative ?p/?t.  Thomson did not use a separate notation for 
partial derivatives. 
26 Joule and Thomson [1854] (1882), p. 393; emphasis added.  It is stated there that all of this 
was already said in Thomson's 1848 paper, but that is incorrect. 
27 Thomson [1854] (1882), p. 233 (footnote).  A similar statement was also given in Joule and 
Thomson [1854] (1882), pp. 393-394: "Carnot's function varies very nearly in the inverse ratio of 
what has been called 'temperature from the zero of the air-thermometer,' that is, Centigrade 
temperature by the air-thermometer increased by the reciprocal of the coefficient of expansion; 
and we may define temperature simply as the reciprocal of Carnot's function."  
28 Amontons temperature, whose main feature is counting up temperatures from the absolute 
zero point, is quite close to what people commonly mean by "absolute temperature" nowadays if 
they have not studied carefully what is meant by the notion in thermodynamic theory.  When 
Thomson fashioned his new absolute temperature concept in close relation to Amontons 
temperature, the two different senses of "absolute" (not being related to particular materials, and 
having an absolute zero) became forever confounded. 
29 Thomson [1851a] (1882), p. 199.  Here Thomson cited Joule's letter to him of 9 December 
1848. 
30 For the value of E, see Thomson [1849] (1882), p. 131. 
31 Hutchison (1976). 
32 Joule to Thomson, 9 December 1848, Kelvin Papers, Add. 7342, J64, University Library, 
Cambridge; see also D. S. L. Cardwell's account of this letter, in Cardwell (1989), pp. 99-100. 
33 Thomson to Joule, 27 October 1848, Kelvin Papers, Add. 7342, J62, University Library, 
Cambridge. 
34 Galison (1997). 
35 Thomson [1854] (1882), p. 234 (footnote). 
36 Gray (1908), p. 126. 
37 This was Joule's paper "On the changes of temperature produced by the rarefaction and 
condensation of air", which in Thomson's view had "introduced an entirely new method of treating 
questions regarding the physical properties of fluids" by the considerations of the effect of "fluid 
friction" on mechanical effect.  He noted that Joule had already employed two experimental 
methods for studying "the relation between the thermal effects, the external mechanical effects, 
and the internal mechanical effects (vis viva destroyed by fluid friction) due to compressions and 
expansions of air in various circumstances."  Thomson especially liked Joule's second method 
and proposed to develop it further, because it afforded "in each experiment an independent test 
of the truth of Mayer's hypothesis at the temperature used".  Thomson proposed a modified 
version of the second method, simpler than Joule's own and more easily applicable to a wide 
range of temperatures.  See Thomson [1851b] (1882), pp. 210, 215-217. 
38 See Joule and Thomson [1862] (1882), pp. 427-431; reproduced here is the equation (a) from 
p. 430. 
39 Thomson [1851b] (1882), pp. 218-219. 
40 Joule and Thomson [1854] (1882), p. 379. 
41 We find Thomson’s thinking here somewhat strange and unsatisfactory, and it is not clear to us 
that the brief exposition given in Thomson [1851c] (1882), pp. 230-232, is much of an 
improvement. 
42 Thomson [1851b] (1882), p. 219. 
43 This is the relation that Joule and Thomson [1853] (1882), p. 347, take as “equation (f), §74, or 
equation (17), §95, and (8), §88”.  

44 



  

                                                                                                                                                  
44 This is listed as equation (6) in Joule and Thomson [1854] (1882) p. 397, and explicated on pp. 
393-396.  It is the same as equation (12), which was an expression of Joule's conjecture. 
45 Joule and Thomson [1854] (1882), pp. 398-400; equation (22) in the text is Joule and 
Thomson's equation (15). 
46 Joule and Thomson [1862] (1882), p. 428.  Joule and Thomson also stated that "a direct 
demonstration" of this equation could be "readily obtained" from "elementary thermodynamic 
principles", but did not actually give such a demonstration there. 
47 Joule and Thomson [1862] (1882), pp. 428-429.  The data summarized in this formula are 
gathered and processed from various tables earlier in the paper, but are most conveniently 
summarized in two tables on p. 429.  These tables also include theoretical values of the cooling 
effects, agreeing quite well with the actual values. It is not very clear how these are obtained.  A 
quasi-empirical derivation of a similar result, building on Rankine's empirical formula for the 
pressure of carbonic acid, seems to be given in Joule and Thomson [1854] (1882), pp. 375-377; 
see also §1 of "Theoretical Deductions" in that paper, pp. 377-385. 
48 Joule and Thomson [1862] (1882), pp. 429-430. 
49 Unfortunately, Thomson left this derivation in a very precarious state, since in the reprint of this 
paper for his collected papers he added a note (dated Aug. 1879) that the assumption of the 
approach to "the rigorous fulfilment of Boyle's law at very high temperatures" is "certainly false".    
50 Joule and Thomson [1854] (1882), pp. 395-396. 
51 This is given in Thomson (1880), p. 43 (§35). 
52 Thomson (1880), pp. 43-44 (§37); emphasis original. 
53 See Gray (1908), Ch. 8. 
54 Note that the efficiency would not be measured as the ratio of work to the amount of heat 
converted into work; that would simply be the mechanical equivalent of heat, equal in all 
situations. 
55 This interpretation of what Thomson is doing works only if we take him to mean an input of heat 
while the temperature stays the same, when he says in the definition that the body is 
"infinitesimally warmed". 
56 Thomson (1880), p. 44 (§38). 
57 We follow here the outlines of the account given in Gray (1908), pp. 136-137.  For Thomson's 
own derivations, see Thomson (1880), pp. 47-50 (§§47-58).  The notation we use is basically 
Thomson's. 
58 Thomson (1880), p. 49 (§55). 
59 In the case of hydrogen, it was apparently not a function of temperature; see Thomson (1880), 
p. 49. 
60 Callendar (1887) gives the starting point of his analysis (p. 179) and much numerical detail, but 
for the structure of argument it is more instructive to consult Le Chatelier and Boudouard (1901), 
pp. 23-26. We follow the latter source in our exposition. 
61 This is equation (3) in Le Chatelier and Boudouard (1901, p. 24); the notation has been 
changed slightly to harmonize it with equations given earlier in this chapter. 
62 Le Chatelier and Boudouard (1901), p. 25. 
63 According to Day and Sosman (1922, p. 859), up to that time only four attempts had been 
made to reach 1000°C with gas thermometers. 
64 Le Chatelier and Boudouard (1901), p. 26. 
65 Day and Sosman (1922), p. 837; emphasis added. 
66 For further discussions of the character of what we call "epistemic iteration", see Chang 
(forthcoming). 
67 Joule and Thomson [1862] (1882), p. 430.  They refer to Rankine's paper in the Philosophical 
Transactions, 1854, part II, p. 336.  In an earlier instalment of their paper (Joule and Thomson 
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[1854] (1882), pp. 375-377) Joule and Thomson had already reproduced a private 
communication from Rankine on the subject, with commentary. 
68 See Psillos (1999), p. 277 for the quoted statement, and pp. 275-279 for his explication of the 
notion of truth-likeness, which he relates to the approach found in Giere (1988), although Giere 
prefers to speak in terms of similarity instead of truth-likeness. 
69 It may seem odd to speak of the reality of temperature, which is a property and not an object.  
However, there are good arguments to the effect that it makes more sense to address the realism 
question to properties than to entities; see Humphreys (2002), section 15. 
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