
Smalltalk Conferences from December 2006 to May 2007 1
Smalltalk Conferences from December 2006 to May 2007
This document contains my reports of
• the Cincom User Group conference in Frankfurt, December 5 - 7, 2006
• the Smalltalk Solutions conference in Toronto April 30 - May 2, 2007
• the VASmalltalk User Group conference in Frankfurt, May 24, 2007
As a number of talks (the vendor roadmap talks of course, but also others)
had shared material across these conferences, I attended such talks in the
user conferences and the talks in rival threads in the Smalltalk Solutions
conference. I have therefore combined these three conference reports into
a single document. They follow in the order in which conferences occurred.

Style
‘I’ or ‘my’ refers to Niall Ross; speakers (other than myself) are referred to
by name or in the third person. A question asked in or after a talk is prefixed
by ‘Q.’ (sometimes I name the questioner; often I was too busy noting their
question). A question not beginning with ‘Q.’ is a rhetorical question asked
by the speaker (or is just my way of summarising their meaning).

Author’s Disclaimer and Acknowledgements
These reports were written by Niall Ross of eXtremeMetaProgrammers
Ltd. No view of any other organisation with which I am connected is
expressed or implied. They are as accurate as my speed of typing in talks
and my memory of them afterwards can make it; please send comments
and corrections to nfr at bigwig dot net. I thank all the organisers, and the
speakers and participants whose work gave me something to report.

Cincom Smalltalk User Group conference, Frankfurt, 5-7 December 2007
I came back from this conference with an umbrella, an excellent choice of
freebie for a visitor from Britain and particularly so for one who had left
his own umbrella on a tram during his last visit to the continent exactly one
month before. :-)

See http://www.cincomsmalltalk.com/scripts/UserConference2006 for
slides and other conference information.

Cincom Smalltalk Update
Cincom Smalltalk Roadmap, James Robertson, Cincom
Cincom Smalltalk started with regular releases to correct the ObjectShare-
inspired impression that the product was dying. The product was going
toward known goals but a particular release might or might not contain the
completion of any particular goal. The new focus will be on specific feature
releases pre-announced in the 13-16 month range, plus one annual bugfix
release. Jim then discussed some candidates for these specific features.

Which goodies are supported, which are contributed? Icons indicate but
more clarity is needed.

2 Smalltalk Conferences from December 2006 to May 2007
They aim to support ‘projects’, a higher level of control than bundles and
packages. Users will be able to define kinds of projects, load all project
prerequisites as a single operation, etc.

Who has used DLLCC? (many hands) Who has enjoyed using it? (two
hands were raised; “You people are weird.”) DLLCC tries to do too much:
it offers to parse the header file and do everything but it cannot actually
deliver when the header file is non-trivial. Many people have told James
that integrating with C libraries is harder than it needs to be. Integration
with C can save you reinventing a wheel. For example, BottomFeeder
needs to display data in a WithStyle widget from XML but the XML from
the feeds is often ill-formed and LibTidy is a C program that cleans it up.
Using this was a lot quicker than writing a tidier and let James concentrate
on other things.

Ruby, Python, etc., people are used to messages, objects, etc., but they are
used to writing code scripts and running them. Jim wants to let such people
try that and so get them in easier than ‘dive into the image, you’ll be fine’.
Letting people carry on with file-based support while they are adjusting to
Smalltalk would also be helpful - never the recommended route of course
but possible.

Creating an executable is also harder than it should be. RuntimePackager
by default quits when it sees a DNU (Jim overrode this to carry on in
BottomFeeder). More generally, building up an application would be better
than stripping down.

Q. Pollock? First release will be winter 2007 for Pollock and Splash. Not
all tools will be redone as Pollock tools then. (The transfer to the current
GUI framework took several iterations up to VW 2.5 so they expect the
same this time.)

Q. Threads? There are many reasons why VM will remain single threaded.

Q. Full unicode support? The goodie parcel does it now. Jim will provide a
fuller answer on blog after he has talked to the people doing it.

Native widgets in Windows will be done via OS and so not soon.

Moving to ObjectStudio 8, Mark Grinnell, Andreas Hiltner, Cincom
There are various syntax differences (and one difference of opinion
between Georg and Mark over whether unary minus is one of them :-). VW
does not allow assigning to method parameters (but VW can if a VM
setting is changed, Vassili tells me). OS is stricter in preventing duplicate
class or instance variables, references to undefined Globals and changes to
immutables. Mark will make the OS Smalllint tool available again (was on
wiki but has disappeared).

OS 8 uses the VW Magnitude and Collection hierarchy. OS7 had
conversion behaviour in collections so that
(Set with: ‘2006 12 3’ asDate) includes: ‘2006 12 3’

Smalltalk Conferences from December 2006 to May 2007 3
returned true in OS7; it does not in OS8. Collection classes use methods
(e.g. =) from VW so do not use any OS-specific equivalent methods. The
VW collection requirements (e.g. that subclasses of Collection which add
instVars must reimplement copyEmpty) must now be met in OS.

OS single-parameter collection methods return self; VW’s return the
parameter. You may need to add yourself to various calls.

Attempts to create invalid dates no longer succeed. Months are case
sensitive.

OS 7 used native threads. The VW VM does not and neither does OS 8;
they find this is an improvement. Developers have spent ages debugging
native thread issues; Smalltalk runs far better than native threads and they
are far less expensive. You cannot specifically exploit multi-processor
CPUs but otherwise it is all gain. (Jim mentioned that spawning multiple
sockets in Smalltalk threads is far safer than spawning via native threads;
BottomFeeder would bring any Windows machine swiftly to its knees if it
spawned native threads.)

OS SendHooks were evaluated for every method and slowed any system
200%; they are now replaced by MethodWrappers.

DLLs will need recompiling with the same flags as OS8; an example
makefile is provided. NULLs and 0 no longer work as nil equivalents.

Q. VW has limit on symbols per method? No, not any more.

Q. Dictionaries could not have nil values in OS? This non-adding of nil is
still true if you do osAt: aKey put: nil but not in Dictionaries as such.
(Questioner felt it was an improvement that nil values are now possible.)

Q Native access to SQL server? No we use ODBC which is the ‘native’
access now; the old DLL is not going forward. Generally, they aim to call
APIs directly, not via DLLCC.

Q. Oracle connection has two flavours: proC and OCI (this uses generic
DLLCC). In old OS, OCI was very slow due to slow garbage collection; in
VW, GC is better and it should be faster. (Some discussion of dynamic SQL
which Andreas said was used by both proC and OCI so was not a factor.)
Generally, precompilers generated C code, not C++ code so were a
problem for the port.

Current and Upcoming Store Developments, Alan Knight
In 7.5, Store will be internationalised.

Shadow compiling: Store may partially load code because it detects
unloadable code (superclass missing), because loading causes a walkback,
or because both old and new versions are internally consistent but a half-
loaded state is not, e.g. loading a new Oracle Connect version from an
Oracle Store database may crash half-way through.

4 Smalltalk Conferences from December 2006 to May 2007
If a file-in errors, it DNUs: the prior code is in the image and you must
usually quit. Parcel loading reads all the code into internal data structures
and applies it all once finished; if there is an error, no code is installed.
Parcels also support uninstalled code; extensions to classes not in system
will be remembered and applied if and when those classes are loaded.

Store has
• source loading: fairly like file-in but cleverer; it handles unloadable

code better and gives you a UI in which to view and work on it
• binary loading: very like parcel loading
Shadow Compilation is like a file-in in that it compiles source, but like
parcels in that it compiles elsewhere, creating a mirror of the namespace
hierarchy to ensure that variable bindings refer to the right thing. From the
user’s point of view, everything works as before but loading is more robust.
(Envy calls this Atomic loading. The main developer dislikes the word
‘Atomic’: does it mean ‘cannot be divided’ or does it mean ‘causes huge
explosion’? :-). The support code for this was included in 7.4.1. It is all in
7.5. but not turned on as there are still some serious bugs (you can execute
useShadowloader: true if you are willing to risk them).

Q. Reaction of system when an error happens? Alan demoed by loading a
version of AT Parser Compiler that he knew would not load without the
parser. It caused a walkback. He closed the debugger and showed that no
AT Parser Compiler code had been left in the system.

Q. Can hook for nightly builds. Alan and I answered: yes, you can build
overnight, can handle errors and react (by increasing memory and restart
appropriate context or whatever is appropriate to that error) resume or quit
with log as appropriate.

Q. Impact on speed? Superficially it looks faster but no benchmarks have
been run. Speed enhancements were not the aim. (However a speed gain
was achieved by only flushing the change log at the end.)

The merge tool has been improved. It offers a hierarchical view (package
to class to methods). You can hide image-only mods to see only changes
made from the common ancestor in the version you are merging into your
image.

Q. Can you choose the base ancestor instead of always going back to the
latest common ancestor? No but Alan thinks that merging into the image
would handle the situation correctly (he will check). There was more
discussion of this at the BoF.

The merge tool also hides full names by default as being rarely interesting.
The icons are better and there is help on them. Operations can be done on
nodes in the hierarchy (e.g. merge all for this bundle/package/class). Class
extensions on renamed classes are handled better, detecting and advising
you of method remove-add pairs that look like just a rename of the
extended class. You can zoom the text view as in the standard browsers.

Smalltalk Conferences from December 2006 to May 2007 5
Q. Property handling? Much as in old tool.

StoreGlorp (c.f. Niall’s talk) gives a better object model and handles
changes to the schema better (Store complains when fields are renamed or
removed). Because Glorp runs in other dialects, you can use it to talk to
Store from other Smalltalk dialects. StoreGlorp provides replication:
copying code between databases without loading it. It can also publish
loaded code and Alan has been using it to publish his code for the last 3
months. It can load and compare and merge (the work of linking to the
merge tool is incomplete; it is integrated but does not yet give the right
answers). It offers Envy-like class versions (in rough code that is none too
fast but it works). The Store workbook has useful expressions to guide you
towards writing your own ad-hoc queries as needed.

Autoreconcile walks your image and detects which versions of database
pundles are in your image and reconciles them all to the correct versions.

Projects and Streams addresses configuration management. This work is
still in an early stage. The team are no longer yelling at each other about
what is needed so now you the users are invited to do so. The aim is a
higher level than pundles.
• One part is a tool that does not just show a huge list of bundles and

packages; Vassili will work on this.
• The other part is how to manage and deploy.

— A motivating use case is VisualWorks; the components are all
versioned in Store but how do you find the December 01 release
build of VW in terms of all the components which cannot all be
loaded at once (loading all would take too much memory and in any
case some are incompatible and cannot be loaded together).

— Another is wanting to load just some components but always in the
context of an overall project of many more components. These
projects should be deployable in several different ways and must be
able to include non-Smalltalk artefacts.

Another aim is to have explicit branches, not just relying on conventions
for naming versions (e.g. 1.3.4.2). The aim is to have explicit branches,
which will be called ‘streams’. Then you have an explicit notion of
synchronising. People who come to Store from Envy miss the idea of an
open edition; people release into an open map and you update by reloading.
However this destructive modification has problems. Explicit streams will
have a version history, unlike the finally-versioned Envy map that only
knows its start and end state (snapshotting in Envy did something like this).
This will enable much more automation of merging.

Advanced Object-Relational Mapping with Glorp, Alan Knight
Alan will use a Ruby on Rails metaphor to motivate his talk. Glorp is an
open source OR LGPL(S). Ruby on Rails comes from the school of
opinionated software; you can go very fast where the rails go; you cannot
go anywhere else. It is a reaction against J2EE/.NET ideas. Ruby is a
scripting language that uses many Smalltalk-like tricks.

6 Smalltalk Conferences from December 2006 to May 2007
For persistence, Ruby uses ‘active records’; a very simple object-relational
framework. Active records and Glorp are very different. Glorp has explicit
meta-data for what the classes are, what the tables are and how the two
connect. Active records use conventions; for example, class Person expects
to map to a database table called People (Ruby speaks English only :-).

In Glorp you have a single broker, the session, which you ask for the
objects, which does the implicit writes. You can have multiple sessions. In
Ruby, the classes are the brokers. There is no object identity and only one
database session for the whole app. Writes are explicit.

Glorp’s typical use case is that you have 300 classes and tables, neither of
which you can change, and you must make them connect performantly.
Active records aims at simplicity with minimal metadata, very fast to get
going but very restrictive.

Alan wondered if ‘Hyperactive Records’ could be provided in Glorp to
give the same speed of getting started but with a graceful transition to the
more complex real world.

The first aim is to read the database schema and map. This is now done for
Oracle and PostgreSQL. Most databases expose the schema as tables. This
is a standard i.e. different but similar for every database. Thus Glorp can
read these information tables and map them to an information schema.

For database fields, matching is simple; create a direct mapping between
the field and the column, except for primary key. In Smalltalk, this is a
boolean. In the database, the primary key has a one-many relationship to
those columns that make up the primary key i.e. a two level column with a
subselect we want to map to a boolean. We therefore use a block (common
in Glorp) [:each | each primaryKeyConstraint notEmpty]
where nonEmpty does the subselect and primaryKeyConstraint is less
complex than it looked on Alan’s slide (which it filled) and does the joins
to discover the primaryKey-contributing fields. beForPseudoVariable
lets Alan avoid adding a primary key instvar to his Smalltalk schema while
still letting him refer to it in queries. Subselects map to Smalltalk collection
protocol: isEmpty, nonEmpty, select:, anySatisfy: and so on. Thus
any simple Smalltalk-like expression can be converted into very ugly and
complex SQL without the developer having to worry about it. By the time
foreign keys target fields and source fields, the generated code will have
five nested joins, giving you even more reason to hide it behind Glorp.

This has let us do something complex without changing our schema but it
has involved reading only. Writing has its own challenges.

Glorp uses descriptorFor* methods on the classes to hold their table
metadata. So active records for Glorp needs to create these based on
starting conventions. The Inflector in Ruby on Rails does the mapping
between singulars and plurals, etc., and was very easy to port into Smalltalk
(there were a couple of Regex expressions that Vassili’s Regex code did not
handle in the same way but they were easy to fake). RoR also has hints

Smalltalk Conferences from December 2006 to May 2007 7
(hasMany, hasAndBelongsToMany, ...) that he handled as class attributes.

Alan brought up the Glorp workspace: it is aware of the Glorp session, etc.,
so you can trial expressions in it.
session
beginUnitOfWork;
register: person1;
register: address1;
commitUnitOfWork.

He showed the volumes of SQL this generates scrolling on the transcript.
A more RoR-like API is session save: person1. In RoR, there is only
one session. In Glorp, ProcessEnvironment at: #glorpSession
associates a session to the thread running this window manager workbook.

You can modify on the fly e.g. send byExclusive to the address attribute
mapping so it will be deleted if the person whose address it is gets deleted.
RoR cannot handle a tree node connected by a table to another tree node.
Glorp can; he demoed retrieving tree nodes by primary key.

He then looked at doing this in a web context. Seaside examples include a
sushi store demo. Alan made it persistent via Glorp by writing 11 methods
and two new classes WAGlorpSession and the new abstract WA superclass
that all the demo classes derived from. He had to rewrite findItem: to
replace match:, sent as a method, to code that was translatable to SQL. He
got a new session. He also made allItems get a VirtualCollection: this
defers retrieval and creation of a real collection until the full query is
constructed; select, collect, etc., methods sent to it do not immediately
retrieve the collection but instead are stored to modify the final query. (He
had the usual demo hiccough but Seaside let him get the debugger, change
the offending method to commitUnitOfWork and proceed.)

He can write deferred tweaks to generated mappings, e.g. saying to change
the type in the image of a mapping from String in the database to an integer
in the image, and these will be applied when the mapping is generated.

Alan generated a schema from the Cincom HR demo with RoR plurals true
and showed it finding the schema (with one case where plurals rule was not
obeyed in the schema).

Q. Release status: preview.

Q. Use for taking one-off datafills? Yes that is one possible use case (may
be large hammer for small nail but if you have little time and effort to spare,
a large hammer may be what you need).

Customer Experience Reports
Exploratory Modelling, One Team’s Approach at SAP, Heinz
Roggenkemper, SAP Labs
They are a team without direct product responsibilities. Their task is to look
at areas where there is mismatch between customer desires and what their
products can do today.

8 Smalltalk Conferences from December 2006 to May 2007
Customers need to adopt best practices just to keep up but they also need
to differentiate themselves from their competitors. The second task
requires creativity, fact and need finding, holistic thinking and ‘design’.
When software is involved, there is rarely one best design. Design is a
complex and iterative process. They practice a ‘design-led’ software
engineering process.

It starts with fact-finding from users. In the past they thought putting
developers in front of customers was the way to do that but this task needs
skills that are not conventional software engineering skills. When users tell
you something they may be projecting from what they already know. You
need to put the users’ remarks in context.

The second step is to debate this user information in a conference room.

The third is iterative prototyping. They start with a very rough UI design
with some functional code behind it in critical areas.

Finally they stay engaged during the formal creation of the delivered
product.

Example: invoices in accounts payable systems. Do invoices get paid
twice? Can the company recover them. This is a serious business. Service
companies make a business out of recovering such invoices. “Just let us
scan your data and for every dollar we recover for you we will charge a
modest percentage.” They built an ERP system to discover such duplicate-
payment invoices. They quickly built a working prototype that analysed
large numbers, ranked possible duplicates, etc. Customers were very happy
(and sent letters saying so). They themselves were less happy; they did not
feel they had fully understood and so fully solved the problem.

At that point, they got a call from Georg, “Have you ever thought of doing
something in Smalltalk?” They honest answer was “No” but they decided
to try it for this problem. A three week joint project with Georg Heeg made
surprising progress - so much that they were past where they had best
hoped to be in less than three weeks. After two weeks they felt they
understood the data a lot better. Why? Because in that short time they had
gone through many iterations.

In the review, he asked his team, “OK Georg’s people are good. Could good
people have done the same in our environment.” The answer was no,
because it cannot iterate as fast as Smalltalk.

Then they looked at supporting shipping managers in selecting carriers,
service products and service options. The data that users base their rules on
varies greatly. They implemented a prototype in Smalltalk, benefiting
greatly from the speed of iteration between customer visits. On becoming
a product, the rule maintenance was done in a Java front end but the rules
were run in the Smalltalk: the prototype became the deliverable.

Heinz then handed over Georg for his view of the work. He looked at the

Smalltalk Conferences from December 2006 to May 2007 9
duplicate analyser. Naive rules don’t work. Suppliers who are paid twice
often do not complain :-/). The first thing they found (usual for non-
Smalltalk customers) is the classic schism of computing: thinking in data
and in processes (see Georg’s dentist example in his Smalltalk Solutions
2006 talk). So they started modelling predefined notions without
considering data. What is an invoice? The answer is not some rows in a
database. So they transferred the data into this model and verified it thrice
a day. They modelled and remodelled a duplicate invoice; the users found
they could control the concept of similarity “as if with a joystick” giving a
high-speed iteration of the model. They found more duplicate invoices.

The carrier problem started with an inconsistent table of rules (some
carriers care about weight, some about volume, etc.) The rules were very
haphazard. As before, there was confusion between rules and tables. They
implemented a prototype for rules and iterated with the product manager
and then with short cycles (two a day) to correct and to make more precise.

In 1807 Thomas Young used energy to mean the product of the mass of an
object and its velocity squared. He went beyond tangible objects to define
a new concept. The idea of energy was key to industrialization. (The idea
that capital must not decrease might be called the second law of
thermodynamics in business :-).

Smalltalk is the best environment. Why? Because every notion can be
modelled in Smalltalk. Georg has been doing this for 23 years and even
smalltalk’s enemies have never denied that it is the best prototyping
environment ever. Today, the gain is that people are also realising that
Smalltalk also makes a fully functional product without loss of quality.
Finding the right models is key in business.

Heinz then resumed to talk about key success factors in SAP. He looked at
some issues that newcomers to Smalltalk can meet.

Smalltalk’s need for its own environment is sometimes an issue but it was
a plus point for them; they could easily put it on a laptop and have the
whole thing available when travelling, in meetings, etc.

Prototyping in Smalltalk and then building in another environment does in
fact make sense in this case; it is very wise to get the model right before
moving to the slower-to-iterate environment, which is used by many
customers and will live for a long time. (Niall: this is an example of my
Smalltalk Solutions 2005 talk on ‘first make it run, then make it right, last
make it fast’ where ‘last make it fast’ can mean trading refactoring
flexibility for a range of factors - deployed platform compatibility,
organisational convenience - as well as or instead of speed.) Thanks to
understanding the problem, they can choose the most suited of their
existing rule engines to use and populate that engine with the right rules.

They will not use Smalltalk for everything. They will certainly use it again
(and again and again). Other SAP teams are showing some interest; the
learning curve may delay their take up.

10 Smalltalk Conferences from December 2006 to May 2007
Introducing SAP/NetWeaver Connect for VisualWorks, Rolf Ehret of
SAP and Taylan Kraus-Wippermann of Georg Heeg
A year ago they started, following on from the carrier project Heinz and
Georg described, to integrate their Smalltalk rule engine to the SAP
system. Since SAP use Smalltalk for exploratory modelling, can SAP
customers profit directly from this by using Smalltalk for extra
functionality.

Clients are logical systems that share data. They wanted to integrate
VisualWorks Products with SAP Solutions, and thus enable backend
functions powered by Smalltalk. They used SAP-endorsed integration
technologies: WSDL/SOAP, Remote Function Calls and eXchange
Infrastructure Adaptor. RFC is a standard for accessing different computers
and destinations.

NetWeaver Connect makes Smalltalk a first class citizen in SAP
NetWeaver. Customers can use Smalltalk as easily as Java and ABAP, and
the tight integration means they can use Smalltalk modules with modules
built in these other languages. Connect talks via RFC between VW and
SAP NW. It uses an enhanced VW web services model. Service execution
is session-based.

They showed an example of planning truck loads. Routes may be seasonal
(the shortest route uses a pass that is closed in Winter). They connect the
SAP order system to a VW transportation zone system. SAP/NetWeaver
modules get the order and finds the business partner, then VisualWorks gets
the transport zone for that order and uses the transport zone to plan the
truck loads. They opened an SAP window and searched for a business
partner. (Usual demo hiccough - a VW debugger timeout warning; see
below.)

The algorithm to find the transportation zone was complex and would not
have been easy to do in SAP. It needs the order and also the business partner
so a second server, to get the business partner from that SAP component,
was needed (that was what timed out while they were demoing).

They opened VW and showed an enhanced web service menu. A
ServiceModule acts like ApplicationModel to let them create modules with
services. He showed the business partner demo service - implemented in a
method that creates the service object and demoed (usual demo hiccough;
they had left in a breakpoint?). The response was the business partner
object.

You can model a service and then store it in a WSDL file. A
SessionRepository manages Sessions to the BusinessPartnerModules
which talk to BupaWebServices (abstract class subclassed to proxies and
implementations). Service classes are generated from WSDL. Service
modules configure the service and maintain their state. It is a symmetric
approach (Smalltalk can call or be called by other SAP modules) and the
tool support makes usage easy.

Smalltalk Conferences from December 2006 to May 2007 11
This will be available in VW7.5. Future work will provide access to SAP
BAPI repository, automatic access to RFC function definitions (must know
and type attributes by hand today) and access to the Enterprise Service
Repository. Integration with the XIA will support business process
management.

Smalltalk’s strengths are now available to SAP’s 34,000 customers. 500
SAP partners can replace a white space in their SAP business map with
certifiable applications built in VisualWorks. Thus VW is now a first class
citizen of SAP.

Q. Transactions when calling and being called? Yes, there are two
transactions but you are controlling their joint commit.

Q. Communication is synchronous? Yes, but this is not a restriction.

Q. Two-phase commit in the future? TBD.

Q (Georg) how many of you are from organisations that also use SAP? One
third of the audience raised their hands. A BoF was organised.

Q. Release? It is not on the VW75 CD but you can download it separately
and Cincom customers do not have to pay extra for it.

Entity Control Boundary: Architecture Patterns in Computer-aided
timetable construction System RUT-K, Jochen Eckert, DB Systems
They are partners with DeutchBahn, the German rail system. RUT-K plans
train timetables on heavily used tracks. (When two trains seek to occupy
the same track at the same time it is called a conflict. If they are travelling
in different directions at the time, it is called a serious conflict. :-) Seven
independent regional business units run trains in Germany (and there are
also border stations). Each of the 7 has some 50 users of RUT-K.

They are delivering a new release in 7.5.1 next week. A very fat client
handles visualisations, and conflict analysis and resolution. The server
holds the data.

Excellent visualisations are key to RUT-K’s tasks. He demoed. The system
is very interactive and uses all three mouse buttons. He logged in, selected
the time period he would work in and loaded the track data (tracks, signal
locations, bridges, speed limits, etc.), the train objects (35 in his simple
demo, 20-30,000 in a real system) and various business objects. He showed
the rail network map for Frankfurt. As he moved the mouse over the tracks,
popups showed train stations, etc. He chose a part of the network and
loaded the train running information for it. He expanded some tracks and
showed train paths in one window and train running times in the parallel
window below. He showed a conflict in the lower window, a parallelogram
of the two signal passing points between the two train running-time lines.
He then resolved the problem on the parallel track diagram above, routing
it on a different path, and re-timed. (A background business rule finds
optimal paths.) The system calculated the new running times and showed

12 Smalltalk Conferences from December 2006 to May 2007
the impact (new running time 4.18 minutes longer than before).

The system supports many ways of visualising the data. He showed some
of them, zooming in on a view of very heavily used track and examining
and altering train connections, dragging the timelines and invoking
subviews and operations. Constructing timetables is a hard problem and
can be time critical; a cargo train may demand a timetable to let it start
travelling half-an-hour later. Of that half-hour, the timetablers may only
have five minutes to use the system to compute the solution.

The persistence framework layer is well encapsulated so both the databases
and the persistence layer itself can be replaced if it were ever advantageous.
It uses various techniques to minimise network load, e.g. accumulating
events.

Q. (Georg) How do these half-hour-warning trains get passed to the actual
drivers, etc. and how are delays, engine failures, etc., handled. They
produce coarse-grained views that are passed to the outside world via a
special file-based interface. Many other train systems use this interface and
this is how the data is passed to those who need it. The Operation Centre
has other systems, even more complicated and not in Smalltalk (RUT-k: 20
developers in 3 years, other system: 3 companies, hundreds of developers,
many years (still not finished) and using RUT-K’s models.) The other
system handles the actual conflict of a late train and offers a proposal for
solving it.

Between Desert and Jungle - On the way to an efficient and
maintainable test framework, Torsten Happ, Uwe Liebold, AMD
AMD build smart micro devices. You all buy AMD products. CEI baseline
is their project for automating chip production. Advance Micro Devices
was founded in 1969. They have 15000 employees world-wide. Their HQ
is in California but 79% of their sales are international. Recently, memory
and microdevices were split into two companies. Uwe works at AMD in
Dresden; the factory has been quite a success story and is ranked as one of
the 5 best employers in Germany. The site is large (3000 AMD, 3000 in
other companies co-located).

Semiconductors is a fast moving industry. Automated precision
manufacturing is one of AMD’s core competencies. APM is a large suite
of components that effect the 800 process steps, taking 2 - 3 months, that
create a microprocessor, starting with a wafer. 700 such wafers are started
every day. Wafers in process have great value invested in them so
downtime is very low; only a few hours per year. They have to have an hour
downtime every year just to handle daylight saving time - please remember
this next time you write software. :-/)

Uwe works on automation. The Factory Control System has many
Equipment Interfaces. Their generic EI is customised for the many specific
EIs that connect recipe management, data mining, etc., via the many
protocols used: file, corba, MQ, HTTP, SECS. This runs in VW7.2 and has
3000 classes, 45000 methods and a 27 Mb runtime image.

Smalltalk Conferences from December 2006 to May 2007 13
Recently they put much effort into expanded their testing and are seeing
much benefit from this. They can test everything except the actual
equipment which they must simulate in Smalltalk or via an emulator
supplied by the manufacturer. Their control process is very strict so
changing on the fly is not done. Each baseline release must go through a
manual testing process. They have been developing SUnit tests since 5i.4.

Running all automated tests before integrating to the baseline sounds easy
but in fact at starting the tests were not well enough maintained. This is
now addressed. Now a CEI baseline is never released before all SUnit tests
are green.

They have developed a matrix test to make it easy to test that given input
pin values return given output pin results. A table maps set to get vectors;
the test applies these to the component. He demoed a test passing, then
failing when code was changed. It is very useful for straightforward
components but there is a combinatorial explosion if too many parameters
are needed for the component. The initial set up of a large test matrix can
be very expensive.

The RuntimeTestRunner runs the tests in their stripped GUI-less image,
reporting any failures. In future they will refactor SUnit tests to use a
uniform set of test resources, especially as mock objects. They want to be
able to inject errors.

Their new process is agile with short cycles.

Q. On the fly changes during debugging? Our apps are headless so they
rely on their detailed error reporting to let them analyse production issues.

Complex MultiMedia Applications: Secure Deployment for Mass
market, Andre Schnorr, Cognitome GmbH
Cognitome is a startup in Hamburg, Germany, specialising in desktop apps
for professional music production and education. Their customers are
‘prosumers’: some very professional music composers and many more
enthusiastic amateurs. Hamburg is a ‘silicon valley’ for professional music
software world-wide with Apple, Steinberg, Ableton, Native Instruments
and MAGIX. Such music software retails for from £300 - $1000.

Their product is called Music Prototyping Studio. It is the first product in
the world that can understand and reinterpreting musical performances. It
visualises the theory of harmony in the Harmony Navigator. It aims to be
to music making what 3-dimensional modelling is to physical design.

He then started the product. He started some music and then used the visual
harmony display to analyse its harmonies. He then brought up the clefs and
showed dragging and dropping note sequences to revise and play music.
These scores can be loaded from any music on the net. He played various
tunes, including some Bach reworked ‘for a more contemporary sound.’ If
the client asks you for an advertising tune “in the style of Bach” then there
you are in four minutes.

14 Smalltalk Conferences from December 2006 to May 2007
Typically programs like this take 12 -16 years of effort. With Smalltalk the
first two products were completed in 4 years (there was also some 3 years
of underlying scientific research not included in this figure).

CxStates: a dynamically defined state model not based on the state
pattern, Alfred Wullschegel, Swiss National Bank
(See Alfred’s talk at ESUG 2006 in Prague for a prior version of this.) They
wanted to use metadata rather than classes for states and to communicate
with the outside world easily. The ANSI event model guided the
implementation. CxBaseState defines a state with name and transition
table. CxTransitionEntry defines transitions by symbols and the new state.
It can have transition actions. CxActionSequence and CxAction define
these actions for execution of methods in the ‘outer’ system.
CxStateEnsemble holds the model. Transitions are delegated from the base
state to the transition and finally to the action. The receiver can be
polymorphically set during this process.

Their environment needs a rapid evolution of state models as their
customers discover new requirements. They built a model with 36 states,
42 transition symbols and 415 transitions. It was very easy to make errors
but also very easy to correct errors. They need to modify StateEnsembles
from time to time, which they do by adding a new state, by adding a new
transition symbol or by changing transitions using become: (important
because the base states are wrapped into larger ‘states’ that maintain the
base environment objects). It is in production supporting workflow of
Swiss National Bank handling messages from all the banks that must
supply data to it.

During the last month of testing with users just before and just after going
into production, they made 6 major changes in the model. This meta-
programmed model would be hard to implement in a non-Smalltalk
environment.

Q(Georg) When are state machines like these appropriate and when not?
Apart from workflow, which was their application area, Alfred is not sure.
They chose it to meet their practical need and have seen they can use it for
three other small problems to date.

1) An ITIL-compliant CMDB Solution (2) Standard Software (3)
Developing Standard Software for Different Platforms, Uwe
Danzeglocke, Steynmayer Net Intelligence
He sent in three possible topics and saw that they had become a single title
for his 15 minute slot. So he will talk briefly about all three. Steynmayer
have used Smalltalk since 1994 and have 100+ customers.

IT Infrastructure Library is a best practice idea from 1986 and is now the
basis for ISO 2000 (BS15000) so if you want the compliance certificate
you need to know what it is. The Configuration Management DataBase
stores the network data MACs (Moves, Adds, Changes), etc.

Standard software for controlling ITC networks should document all

Smalltalk Conferences from December 2006 to May 2007 15
network types (LAN, traffic light network, ...) and all workflows that these
networks require and asset management for all their nodes (computers,
traffic lights, etc.) They therefore store all this data in a single universal
database. Steynmayer have various products: Cable-NSM, Task-NSM and
Logic-NSM, and Compact-NSM for small enterprises. All their products
live in one image and share one data model; licence keys determine which
modules function for given users.

They migrated to VW7 and a customer said no, make it look like the last
one (VW3) so they had to provide a VW3 look in VW7.

They have many interfaces to other programs (GIS, ERP, CAFM). A
colleague used their program to model the London underground so he
could compute routes when he visited.

They provide very configurable products but do no customer-specific
development. Instead they listen to their customers and set their roadmap
accordingly. Then they concentrate on delivering the expected features.

They use an Oracle database. Multi-platform delivery is very important to
them so VW is valuable here too.

Web Techniques and Experience Reports
Web 2.0 Seaside, Michael Bany, Cincom
Michael Bany works for the European Professional Services and Support
group; his office is in Geneva. Seaside was written by Avi Bryant of
Smallthought systems. Two years ago, a customer wanted a web interface
and Michael looked at Seaside. The customer found Seaside very easy to
use and they were very successful.

Lukas Renglii gave a presentation in Prague recently at the ESUG
conference; Michael’s presentation borrows from his.

Web 2.0 has a big constraint; it must work in IE. Therefore it has to be
based on old technology. Javascript is ten years old. Web 2.0 aims to
exploit some features that have been in the browsers for a long time; it is
not a big bang, just a lot of small bangs, using XHTM 1.0, CSS 2.0,
Javascript, XML, RSS, HTTP.

Seaside supports all these. Seaside lets you say it all in Smalltalk; no mix
of HTML and Smalltalk in your code. It guarantees XHTML conformance.
Seaside’s rendering metaphor is of a canvas painted on by brushes.

Michael then demoed. He brought up the XHTML generation workspace:
it showed the writing panes, the rendering code, the generated HTML and
what it looks like. renderContentOn: is the method that renders Seaside
code. Its argument is the canvas on which you paint. You ask the canvas for
a brush and you then send it methods to make it paint. Michael showed the
code and then applied style sheets.

He showed how blocks are used to nest HTML elements. He then changed

16 Smalltalk Conferences from December 2006 to May 2007
to an anchor brush and asked it for a callback, showed a text input field and
how to echo what was typed in it elsewhere in the page, etc.
html anchor callback: ... with: ...
html form:
[html textInput
value: data;
callback: [:v | data := v].

html div: data.
...
He then showed real Seaside applications written in VW. The developers
wrote all the Smalltalk and hired a professional to write the CSS, and that
is Michael’s advice; don’t do the CSS yourself, get an professional to do it.
He showed what the app looks like in another style. He then went to the
Zen Garden website and showed a few styles. There is also a Swedish guy
who publishes open source CSS demos and does SeaChart demo styles
(SeaChart is an open-source Seaside goodie for adding various graphs and
effects to your Seaside application). He then showed CSS styling and then
exploiting Javascript in your Seaside demos; fade-in for slideshow. He
went to the slideshow Smalltalk code; add the slides to the container,
implement children method to return them. Another example was a
Smalltalk app supplying numbers to Javascript that ran in the browser, not
on the server which only downloads the values.

Ajax is advanced Javascript that sends requests to the server. It sends
standard HTTP requests and gets responses, thus allowing update of pane
elements rather than updating the whole page to make a simple change.
With Ajax, you can have the client do trivial work and the server send just
the data needed. Ajax has several libraries of which Seaside uses two:
Prototype library and Scriptaculous. So Ajax can make your UI look much
more responsive. Be aware that the Ajax libraries may slow the initial load
of your page (Seaside caches as much as possible to minimise) and it uses
more browser features so some browsers may fail on them.

The Seaside download includes the latest versions of these libraries and its
script.aculo.us support hides the Javascript for you; you can say it all in
Smalltalk (but you should be aware you are using Javascript and know its
features to use it sensibly). Michael showed Smalltalk code that generated
Javascript, not HTML

html effect shake
generates

new Effect.Shake(this)

He then showed how to shake someone else instead of yourself :-), pressing
a button to shake a text field, then changed the frequency and duration of
the shake. Then he showed using onClick: to make events such as
clicking on widgets cause responses.

html updater id: ...; callback: ...

lets you update an element with some data. He showed a simple example
then one that also removed the prompting button from the page after the
update. He demoed causing visual effects, toggling values, scrolling

Smalltalk Conferences from December 2006 to May 2007 17
sliders, drag and drop, all without having to go to the server.

He then showed the Seaside class browser application without and then
with AJAX. The AJAXified one was noticeably faster to update as you
browsed, generating much less server traffic.

Debugging in Seaside will usually be done in the Smalltalk debugger. If
you need to debug Javascript use Firefox and Firebug even if that is not
your main target platform; its debugging is much better.

Comet is another technology that pushes info from the server to the client,
e.g. to update stock prices in a display. Comet uses server push onto a long-
lived HTTP connection. He brought up three counter apps and evaluated
code in the Seaside inspector workspace; comet updated all the counters.
He then demoed a comet chat application, using push to send an
‘Administrator: please logout’ command to all in the chatroom.

Web Security, Martin Kobetic, Cincom
Martin created a simple web server (see his slides for the code), viewed the
response - some HTML that displayed hello world - then focused on to
authentication. Certificates from a site are signed by someone else: a third
party whom the user trusts; that is how they work. This third party is a
certificate authority.
caKeys := DSAKeyGenerator keySize: 1024.
caName := Name new O: ‘TrustMe’; L: ‘Palermo’; C:
‘Italy; yourself.
ca := Certificate new
...
issuer: caName;
subject:caName; “these are usually the same”
...

publicKey: caKeys publicKey;
“never use privateKey in cert, of course”

forCertificateSigning
“what is the purpose of this certificate”

You sign a certificate using the private key
caSignUsing: caKeys privateKey

The signing by someone trusted is what matters; the certificate as such is
only a convenient way of packaging all this. Server certificates have a
similar protocol. forKeyExchange lets you establish a common key
between two parties, which is what a web server usually wishes to do.

Public keys are embedded in certificates. Private keys must be stored and
retrieved. There are standards for this.
...
[sKeys privateKey writeOn: file password: pwd]
ensure: [file close]
“openssl pkcs8 -inform DER -in server.pk8“

or
[sKeys privateKey writeOn: file] ensure: [file close]
“openssl x509 -inform DER -in server.cer -text“

18 Smalltalk Conferences from December 2006 to May 2007
Martin showed the list of the really secure cyphers:
SSL_RSA_WITH_RC4_128_SHA
SSL_RSA_WITH_RC4_128_MD5
SSL_RSA_WITH_DES_CBC_SHA
SSL_RSA_WITH_3DES_EDE_CBC_SHA

and explained how, in ssl, to switch to HTTPS via contexts
sCtx := SSLContext newWithSecureCypherSuites.
sCtx certificate: sCert key: sKeys privateKey.
...
Using this context, you can replace a simple HTTP transport configuration
with an HTTPS transport configuration, copying the old marshaller, etc.
configuration soReuseAddr: true.

tells it that you will reuse (e.g. on Linux you set it up but might not be
available for brief time). He then returned to “Hello World” and got a
typical certificate warning that the signing authority was unknown (of
course, as Martin has just created the certificate). He browsed the
certificate in the browser and then looked at the browser’s list of trusted
authorities (quite a long list; did you know you were trusting all these
people?).

VW does not ship any list. Martin strongly recommends not to have a
registry with so many entries. Choose your trusted people deliberately and
wisely. Put them in the registry. The registry verifies the chain of trusted
authorities that connect you to the original issuer of a certificate being
offered to you.
registry := X509Registry new.
registry addTrusted: ca.

chain := Array with: sCert.
registry validateCertificateChain: chain.

Martin revoked and revalidated the certificate and demoed the behaviour
in the two cases. You can populate your registry from the files in Firefox,
from the Linux file and so on as you wish. You can also write VW
certificates to the Firefox registry and elsewhere.
sCtx := SSLContext
newWithSecureCypherSuitesUsing: registry.

...
Q TLS (PLS?) as well? No, just SSL. It would not be hard to do. It appears
on the to do list every year but somehow we never do it.

Q. Webtoolkit? This is OpenTalk toolkit. Webtoolkit only uses some of
OpenTalk today; the integration should reach this by VW7.5.1 (but Martin
noted that Alan smiled when he said that :-).

Do not use a key for multiple purposes. If you use a key for signing do not
also use it for encrypting. There is a straightforward attack if this is
neglected: an authority gives certificate to John Doe Inc in a legitimate role
but they then reissue it to Bank of America in another role. If Peter hands
you John’s certificate that does not prove that Peter is John. The CN field

Smalltalk Conferences from December 2006 to May 2007 19
is the one that clients compare to see that the certificate matches the server
they are trying to reach. Emails can also be validated:
transport clientValidator:
[:nm | ‘*@oogle.com’ match: nm email]

...
They do not have pcks12 support yet so use
openssl pcks12 -export -in client.pem -inkey

(At this point, while importing into Firefox, the usual demo hiccough
occurred; it would not accept his password for a while.)

All Martin’s slides will be published in the Cincom public repository
Presentations-MK bundle contains all his slides and the slide framework so
you can download and try his code.

Web Services, Martin Kobetic, Tamara Kogan, Cincom
Tamara Kogan is a Cincom expert for web services who helped Martin
greatly in preparing this talk. Martin may not be the prime evangelist for
web services but he can make them work. (He can also make screen
projectors work - after an epic struggle. :-)

He used the VW Web Services Wizard tool to generate the VW classes and
methods needed by the google search web service. The wizard’s first step
is to show you a workspace with suggested calls for the various services so
you can exercise it. You must supply a google key to use the engine; he put
this in a shared variable. He supplied arguments, guessing from the method
name what the parameters should be (“safeSearch sounds like a boolean -
and a good idea”) and obtained a WebServices.Struct, a slightly web-clever
dictionary. You can then create the classes suggested in the script. With the
class created, you now get instances of it returned instead of a struct.

He then read in a WSDL file for a service that reported the current time
(rather easier than GoogleSearch to implement during a demo). From this
he generated a server class, put ̂ Time now at the right point and showed
the client receiving the time from the server. He told us to remember to do
server start and server stop when using the workspace, noted
that he would probably forget during this demo, so also did passErrors.

Now Martin considered an application that you want to expose as a service.
No specification exists a priori. He looked at a unit converter application.
The wizard leads you through specifying the class and its protocol for the
service. The wizard prompts you for result types and parameter types for
the protocol’s methods. Complex types raise a dialog in which you find
their classes. Simple ones provide a menu of simple classes. Types can be
defined as collections of such classes. It then asks you to define the
complex types’ classes’ aspects in terms of simple types.

He then generated the server and client classes, and used the workspace to
start the server, start the client and get a conversion; it worked!!! He then
requested conversion of an invalid unit pair (how many feet in a kilogram)
and got a SOAP client error (client error means you can probably fix and

20 Smalltalk Conferences from December 2006 to May 2007
reissue the request. Server error means the server is probably in trouble and
resubmitting may not help). (Niall: if you know too much science you can
become less certain which unit pairs are inconvertible; for example, in
relativistic units, the earth weighs 9 microseconds.) Martin then added
exception types (UnknownUnit, UnknownMeasure). He demoed these but
found he had forgotten to stop the server, seeing DNU ‘address already in
use’ after he had thrown away his reference to it, so evaluated a expression
the expression at the foot of the workspace to find and close all servers.
server := UnitConverterServer new start.
client := UnitConverterClient new start.
client getMeasures.
client getUnits: ’weight’.
[client convert: 7.5 from: ’mm’ to: ’yd’ measure:
’length’]
on: UnknownUnit, UnknownMeasure
do: [:ex | ...].

[client getUnits: ’volume’]
on: UnknownMeasure
do: [:ex | ...].

client stop.
server stop.

Header processing was added to their server support to avoid polluting
domain code with common stuff such as login and password handling, etc.
The wizard has a four-pane page for configuring this. You define the class
as usual (ClientAuthorisation in this case) and then add input headers and
output headers to appropriate operations. He updated the schema and went
back to the workspace. This now had a
RefactoringBrowser newOnClass: ClientAuthorisation

to browse and fill out the class (which had some methods already defined,
e.g. addInputHeader:transport:). He then restarted the server (had
not stopped it again :-/) and saw first an OK pass with right password then
a DNU soap server error with his message. It should have been a soap client
fault as the client had the wrong password but the error he had coded was
a generic self error: not a defined one. He changed it to raise the error
BadPassword which he defined in the Wizard for the ClientAuthorisation
header, set BadPassword type, created a BadPasswordProcessor and
regenerated. The repeat demo raised a BadPassword error.

Q Resumable exceptions? Not easy as several processes are involved.
Resumption does not really make sense when you would need to resume a
server process that has completed by returning the error. (Jim: and the
server might not be a Smalltalk server; resume might make no sense to it.)

How to scale a Smalltalk Server without any Planning, James
Robertson, Cincom
Jim started BottomFeeder with no experience of standard web
development. To use the term architecture would be overstating the case at
starting. All the code is in the public repository; look for Silt*. Early on, he
had too few classes doing too much. Running on an ancient Linux box with
256 RAM, he only ever had one crash when an article of his got startling
exposure in three major outlets on the same day, and in that case, the HTTP

Smalltalk Conferences from December 2006 to May 2007 21
and comms server failed before the Smalltalk server did. Persistence was
never a problem in size (he writes ~ 10 blogs a day maximum so bossing a
daily file was fine) but searching got slow as the blog grew. He starting
caching the current page just before a major interest post occurred; the
caching kept the server alive just long enough for him to push the relevant
page into a static Apache cache.

He started by putting more Smalltalk code on the page but then had
versioning problems between his page files and his Store versions, so he
moved to minimal hooks in the pages with all behaviour in the Smalltalk
server. He started with a single class with a singleton pattern. Then Michael
Lucas-Smith asked for a blog and after three months of thinking it might
be hard to change, Jim tried and found it was very easy. There are now 27
active blogs.

As his daily readers rose to the hundreds he profiled, noticed that each
request read the same few files 4-5 times, so added a cache of all the posts
on the front page. Each post can have a category and category searches
required a search of all posts. He replaced this with a cache of which
categories were in which files; only opening matching files speeded things.
Looking at his blogs he saw many frequently-repeated search keywords so
caching matching files for them also speeded things. He has just noticed
that google are now introducing some technology for that so he may
replace his by theirs.

If a name is only mentioned once it did not become a keyword, so search
still had to search all posts. The server would stop while the same-priority
search thread hogged the processor. He used the class Promise to fork off
the thread at userBackgroundPriority in a minimal code change. Searches
were still expensive but Jim noticed that only newer posts changed; he does
not edit old posts and he switches off comments on older than 4 days posts
to prevent spammers from cheating their google refs by commenting in
your old unwatched posts (for the first 4 days, he monitors comments via
the RSS feed). Thus he can cache, relying on old posts never changing.

Spam was a major problem. Trackbacks he just turned off; it is a spam
garden. Jim monitors who referers to your site to see who keeps coming
back and why - did they come from a rival site? He no longer offers a public
referers page because that would include much spam-inserted stuff that
Cincom would not wish to appear to present on their page.

No more than 8 HREFs per post is a good rule; comments with more are
almost certainly spam. Any site that hits you multiple times in a short space
he blocks; it is probably an issue. He has a word blacklist which
occasionally sounds false alarms. His referral log was being read every
three hours and slowed the server (Apache lets it grow to 90Mb before
caching) so he moved it to a separate image run by a cron job.

He never had a scaling problem that was the fault of the Smalltalk server.
Every problem was in Jim’s code. He solved these problems as they
emerged and fixed them while the server was running. He twice made basic

22 Smalltalk Conferences from December 2006 to May 2007
mistakes (from which he learned) and had to take the server down and
reload, but otherwise he has done major changes on the fly without
problems (for example, he added CSS styling without any takedown).

Porting Techniques and Experience Reports
Changing the engine while the garage is in motion: Porting to VW7,
Niall Ross, eXtremeMetaProgrammers
Long ago I read an article in The Smalltalk Report by Wilf LaLonde called
‘Changing the engine while the car is in motion’ about how Smalltalk lets
24 x 7 systems upgrade while they are running. If ‘changing the engine’
means evolving a system to meet new business needs then porting a system
to a new platform must be like moving the garage while you do it.

The fantasy scenario for porting is “Sure, we’ll freeze all development
while you port.” When porting to Java or .Net, an infatuated management
may actually do this (see e.g. Karen Hope’s talk at Smalltalk Solutions
2006) but when porting to a Smalltalk dialect, you are more likely to have
frenetic development continuing while you port. So how to handle this?

One commonly suggested approach is to do trial runs then ‘suddenly port.’
This can work. However such a strategy can face difficulties.
• Technical problems: a large complicated evolving application with

associated tools, system extensions and tests can simply pose too many
big port tasks to do in a single step. Code that handles essential
performance and multi-user or multi-threaded behaviour may be
adapted (perhaps unknowingly) to the source dialect and platform,
needing serious exercise and study on the new platform. The port team
may need to deploy in-situ, test and revert as needed.

• Work interruptions: the frenetic development may suddenly need the
port team.

• Commercial or political issues: stakeholders will be ready and happy in
their own time, not at the port’s convenience, and may change their
anticipated schedules with little warning.

Any of these can derail the port schedule unforeseeably: then the port
preparation work decays as the system moves on.

An alternative approach is to accept you may not be able to port suddenly
and instead arrange port work to be agile, working with these pressures, not
against them. You can keep the port synchronised with the evolving system
by using StoreGlorp (c.f. Alan’s talk) to reconcile and replicate each
integrated system increment from your source’ CM (e.g Envy) into Store
on a regular (e.g. daily) basis. You can assist this by minimising code
changes through deferring them wherever possible.

I spoke first about these deferral strategies.

“NameSpaces are about invisibility.” (Georg Heeg, ESUG 2006). When
porting from a single-namespace source dialect to multi-namespace VW7,
you know that every name in the source dialect has a single resolution, so

Smalltalk Conferences from December 2006 to May 2007 23
every name the port cares about must have a single valid resolution in
VW7. It is a necessary truth that you can define a namespace (call it
MyApplication) with appropriate imports to offer the valid resolution as
the first found, suppressing unwanted duplicate binding errors with
NameSpace>>conflictingImports: key firstFound: bind
^self == MyApplication
ifFalse:
[super conflictingImports: key firstFound: bind]

ifTrue: [bind]

• Define a package in VW7 with (only) the namespace definition and the
above code, and prereqs DefaultPackageNamespaces (use 7.4.1 release
version or later, or an appropriate version from the Cincom OR; these
have an essential fix for the case of ExternalInterface methods). Assign
your namespace as the namespace of all packages the port creates.

• Define global MyApplication := Smalltalk in your source-
dialect application and rewrite any references to Smalltalk in your
application to use MyApplication instead.

With these changes you can defer all resolution-code changes. Code like
MyApplication at: aClassNameSymbol ifAbsent: [...]

just goes on working and by using namesAndBindingsDo: you can
provide VW7 implementations of any allClassesDo: or similar
methods that are not already there. All your application’s methods
(including, thanks to DefaultPackageNamespaces, all methods that extend

Store/VisualWorks 7Source CM / Source Dialect

replicate / reconcile

replicate / reconcile

replicate / reconcile

replicate / reconcile

integration base port
image

rewritten
image

replicate
/ rewrite

replicate
/ rewrite

replicate
/ rewrite

...

...

image

24 Smalltalk Conferences from December 2006 to May 2007
base classes) will be resolved with respect to MyApplication so will find
the correct bining for the port. The effect is that the port can proceed as if
from one single-namespace dialect to another.

A change you can not so much defer as manage is class definition coding
style. Store began life before NameSpaces; it still has class-side definitions
and so can still load classes defined in the old style. A few fixes are needed
- DatumDescriptor needs isMeta, some Store loading routes no longer
bother to set the class-side package instVar and this must be reverted - and
you need the old class definition protocol, which is in the base image or in
FileOut30, or is easy to add (to ClassDescription and to ExternalInterface
and to ExecuteCodeChange). With this, your daily synchronisation can
have a loadable intermediate target stage (see diagram above) in which the
ported class definitions are still in the old style, simplifying change
comparison with today’s source, and with yesterday’s source and target.

How clean is your application’s configuration management structure?
Have developers been ignoring warning 49 for years, or worse? In the
fantasy scenario, the application builds cleanly in its existing dialect with
no warnings. In reality, the build may take two forced loads during which
the Transcript shows screeds of warnings, or a living image may preserve
an application whose clean rebuild would be a major undertaking.
Obviously, such applications will not load and initialize package-by-
package from Store. Equally obviously, taking the time to clean up the
application in situ before porting would be a frustrating additional cost. By
tweaking Store so that the replicated packages have a special blessing level
which defers all package initialisations to the outermost bundle, the
problem can be deferred and the port loaded in the VW7 environment.
Loaded code is always easier to fix and since the repackaging of code is
one of Store’s strengths, it will almost certainly be easier to track and clean
code here than in the source’ CM.

I also covered some minor matters. When a loaded Store bundle’s parents
in two different databases contain different sets of packages, switching
between them can confuse the image’s understanding of what packages the
loaded bundle has; have the fix for this loaded when doing this work. The
MyApplication namespace/global is an example of the general fact that
mapping between classes, globals and namespaces can avoid the need to
rewrite code. For example, CharacterEncoderPool is a namespace in VW7;
making it a class in VW3 minimises code rewrites in backports to VW3 of
utilities that use it and forward ports of tweaks to them.

The central idea is to use Store for Glorp to replicate and reconcile between
the source and Store, exploiting the Refactoring Browser frameworks.
(Sometimes you can also replicate the base system. You cannot load this of
course but it can sometimes be useful when comparing your changes to the
source base classes with the cross-dialect base changes.)

Glorp is a framework for connecting SQL databases to Smalltalk. It is
declarative, eliminates impedance mismatch and has a natural Smalltalk
style of coding, e.g.

Smalltalk Conferences from December 2006 to May 2007 25
matchingPundles :=
session read: StorePackage where:
[:each | each name = aName &

(each currentBlessingLevel =
self replicationBlessingLevel)].

...
session transact: [session register: newPundle].

See Alan’s talk for (much) more detail on Glorp. Store for Glorp uses Glorp
to read and write to Store databases. It is available in several dialects
including VASmalltalk and VW3. It is wholly distinct from the Store code
as far as the VW7 image is concerned (be aware of this).

The Refactoring Browser is in most dialects. I exploited three of its
frameworks in this work:
• RB UI extensions let you shadow-browse code in Store databases from

the source image (a BrowserNavigator views an environment; making
it a StoreForGlorpBrowserEnvironment enables shadow-browsing).

• BrowserEnvironment framework extensions define what code is to be
exported. A BrowserEnvironmentWrapper is a view of a subset (of a
subset of a subset ...) of the image. In normal use, the last environment
in the wrapper chain is a BrowserEnvironment, representing the whole
image. When exporting, it is a StoreForGlorpBrowserEnvironment,
representing the whole (source) image and also the target database.

• Refactoring framework extensions enhance the BrowserEnvironment
extensions to let you refactor code in an RBNamespace and export it
without having to recompile these changes in the source image. An
RBNamespace inserted at the penultimate position of an environment
wrapper chain can presents a refactored view of code in the image.

These were natural frameworks to exploit. BrowserEnvironments are
usually the easiest choice for code management work because they are
cross-dialect, easy to construct using standard RB functions (the source
dialect’s code units, e.g. Envy Applications, will usually already have
environment subclasses adapted to them) and their UI and tools come free.
(Where a dialect lacked a bundle-equivalent or the idea of extension
methods, I exploited the little-used MultiEnvironment.) RBNamespace
already offered most BrowserEnvironmentWrapper protocol, so it was
straightforward to add the polymorphism needed by the exporter utility. I
had to add a little protocol to handle the fact that RB environments care
who includes a class whereas CM systems like Store care who defines it.

(In VW7’s RB, environment wrapping has been eliminated; I restore it via
RBProgramItem
RBNameSpace
RBRootNameSpace
RBNamespace

where the final class in the hierarchy is added by my extending utility to
wrap browser environments. Note its similarity to the second class’ name.
Keeping the VW7 final class’ name the same as the equivalent base RB
class of all other dialects simplifies writing cross-dialect scripts.)

26 Smalltalk Conferences from December 2006 to May 2007
With this machinery, replication and reconciliation can be done. The utility
adds suitable environments to the replication list and a subclass of the
standard StoreGlorp replicator lazily creates StoreForGlorp pundles from
them during the background replication process. Aggressive reconciliation
ensures that the daily run captures only new code from the source.

Once replication and reconciliation are working, the next stage is trying to
load and run in VW7, and resolving the issues that arise. Minimising code
changes during the port was stated to be the ideal. Perhaps it would be
better stated as minimising the effort of managing code changes. Rewriting
code to be dialect-neutral is as usual the ideal, but not always realisable,
solution: whenever possible, feed back the changes VW7 needs to the
source image (via the shadow browser or the FileOut30 utility), test them
and integrate them. However sometimes these changes would not give the
same behaviour or would not be performant. Then you can capture the
changes as RB changes and run them in the image before replicating. This
gives easy code browsing and is fully reversible (executing refactoring
changes returns their undo change equivalents). However, some changes
that VW7 needs may not compile in the source image, or if they could they
would break it. These can be run in an RBNamespace that the replication
environments wrap.

While discussing the above, I demoed using the utility bundle to replicate
itself from VW3 (non-Envy, to show that the utility did not depend on a
source CM system) to VW7. I then reran, demonstrating that replicating
identical code gave an exact reconcile, then effected changes and reran,
browing them with Store’s comparison tools from a VW7 image. I also
browsed a database of the VW7.4 base reconciled to the VW3.1 base,
showing how you could use it to see how an application’s changes to the
base might interact with dialect or version base changes.

The experience of rewriting code between dialects suggests refactorings
for those dialects. It makes sense to capture as many dialect differences as
possible in run-once refactorings instead of handling each individually.
Some are trivial and specific (rename this class, that method) while some
are general. I walked through a simple example: a refactoring that
converted all class names in UI specs to qualified names, useful when
mapping utilities from pre-namespaces VW3 to VW7.

To replicate and reconcile 1000+ application package environments, each
with an average of 15 classes, 225 ordinary application methods, 6 large
application methods (can be > 64k), and 2.5 base overrides / extensions can
complete in 3 hours when running from a performant client machine to a
dedicated Store database server machine. The same replication takes over
6 hours when a low-spec machine with other tasks is both the client and the
server. Thus the natural frequency of use is overnight replication and build.

Summarising, a port needs to be as agile as a standard development or more
so. Large complex systems have large complex ports. The customers are
the developers, not the end-users, i.e. the porting activity is at the bottom
of the food chain and must endure all the changes created by higher layers.

Smalltalk Conferences from December 2006 to May 2007 27
When porting to VW7, you can deal with this by exploiting extensions of
the Store Glorp utility to keep your port synchronised daily. Since you are
starting without namespaces, you can and should keep them invisible till
the port is finished. Solve problems where and when it is easiest, i.e. in
whichever image or CM system best knows what a given rewrite needs.

(I spoke briefly of test style techniques that assist porting. All that material,
much better presented, is in my Smalltalk Solutions 2007 talk; see below.)

Store more like Envy, Jan Lukes, Gehe
They are porting from VW3 to VW7 while still developing, so hundreds of
changes will occur. Coming to Store from Envy, the notice that Store lacks
the ‘always on’ state, versions of classes, version colouring, the application
manager browser and some comparing tool aspects. They could modify
Store protocol or just modify the tools. Their solution was to publish
automatically on accept, creating a sub-version. They use one package for
each class. They hide packages completely; thus bundles are more like
applications in Envy. They created a hierarchical comparing tool.

He showed the old and new (coloured to show state) version browser, then
the published items bundle, with one more pane on the right showing the
class/app contents of the bundles (its layout was inspired by the Envy
config manager). They use the RB’s first two panes to show the application
manager, with bundle version displayed by its name as in Envy. He then
showed the old comparing tool, which of course did not suit a style of one
class per package. They again modified the RB so the code compare tool
did the compare with the left two panes showing the two lists.

Q(Georg) Config maps and override-handling? No and they’ve not looked
at it particularly.

Q(Niall) Use these tools but not have just one class per package? Yes; the
system packages have many classes of course and can be browsed in these
tools. (Niall: I know that many people coming to Store from Envy miss
class versions, as I did at first, but I found it was better to generalise my
CM approach, and so discover that what I thought was basic was in fact just
an adaption to Envy’s model. Methods and class definitions, not whole
classes are the basic units of an ideal CM system. Higher level groupings
are also essential but groupings based on classes are not particularly
fundamental; indeed, I find Envy’s limiting - Store’s too, of course.)

History and Process
Small Matters can Matter a Lot, George Bosworth
(See my write-up of George’s talk in my report of Smalltalk Solutions 2004
for George’s background. Since I arrived during this talk, I only managed
to take a few notes during it. Thus the following paragraphs give just a few
choice remarks that I culled from it.)

Back in the early 90s, IBM developed a product in Digitalk and demoed it
in an announcement. They had to restart during the demo so the Digitalk
splash screen appeared. Digitalk were promptly called by the press: “IBM

28 Smalltalk Conferences from December 2006 to May 2007
is displaying Digitalk in a major announcement; what’s the story?”

Necessity is the mother of cost-effective invention. In one printer project
they faced a major disaster when suddenly paper had to be rotated 90
degrees at one point in the flow a few days before release. Moving paper is
a hard task; paper is not aerodynamic. An engineer built a trivial solution
out of a pin and a tube that evening. If the deadline had been 3 months
away, they would have taken three months to build an elaborately designed
and costlier solution.

Digitalk customers were often ‘people who program’ not programmers,
people who deeply understood their problem domain and found that
Smalltalk did not get in the way of expressing that understanding to solve
problems.

The Open Unified Process, Scott Ambler
Scott is practice leader for IBM’s attempt to become agile; is his group part
of the problem or part of the solution? Let us see. This talk is not about
Java; to prove this, he showed his talk overview written in Smalltalk:
presenter tellLameJoke. presenter giveStandardWarning.
and so on.

In many organisations management will fight the very thing they
desperately want: to save time and money. Scott has some data that might
help convince them to stop doing so. Scott is selling ideas and Scott is a
firm believer of telling it like it us - one could say he is blunt at times. For
example, he sees writing a requirement spec early in a project as a
spectacularly bad idea and an indication of bad practice. You should pick
those of his ideas that you have a chance of selling to your organisation -
unless you like seeking employment elsewhere of course.

Agile development is iterative, incremental, evolutionary, highly
collaborative development with just enough ceremony to produce high
quality software that meets the changing needs of its stakeholders. It values
individuals and interactions over processes and tools; working software
over documents; customer collaboration over contract negotiation;
responding to change over following a plan. It is not that the less preferred
items don’t matter; it is just that they do not matter as much.

Agile reduces the feedback cycle. For 30 years we’ve known that the later
you find a fault the harder it is to fix. The agile cost of change curve is flat?
No, Scott argued, it is exponential just like elsewhere but short cycles keep
you near the early flat-looking initial part of the curve. (Niall: I would also
stress the test suite’s role in making later refactoring much less terrifying,
so I would not wholly agree with Scott in denying the relative flatness of
the agile cost-of-change curve versus those of its rival methods.)

The concept of a repeatable process has absolutely nothing to do with
success. Repeatable results are what you want to aim for; not repeatable
process.

Smalltalk Conferences from December 2006 to May 2007 29
There was RUP. Then in late 90’s Scott introduced Enhanced RUP which
became the Open Unified Process and there are lots of other *UPs out
there. A 3 person team working together for 5 months will have a different
process from a 40 strong team working together for years. RUP has often
been adopted by companies in a not-so-agile manner but this does not mean
it cannot be used in an agile manner.

A method framework has a base process with plugins. People are working
on a Scrum plugin and others, so maybe a Smalltalk plugin would be
welcome. (Plugins can be sold commercially or made open source; Scott
recommends open source but it is your choice.) IBM donated a portion of
RUP as a starting point; it has now been much refactored. There is a round
table of roles in OUP (like King Arthur’s round table - all roles are equal).
The various roles in OUP are not positions; because you need stakeholders,
analysts, etc., in OUP does not mean that a person must try to be just a
stakeholder or an analyst, a common mistake in original RUP.

EPF (needs JVM to run; endure it) can be downloaded by process people
and used to get and see the plugins. Many people are involved and this is
the most active area in Eclipse today. He opened a browser and went to the
OUP home page and navigated to the ‘run developer tests’ task, then to the
architecture tasks. People who know what they are doing will never look at
this but new people in your company may look at it and others may check
it to compare with their own process. OpenUP is free, tailorable and the
tailoring tool is also free. It is agile and you can tell managers you have a
well-defined complete process. Get it from www.eclipse.org/epf/.

Developers rarely love process. For most developers, process is what gets
forced on them. If it is going to be forced on you, OpenUP may let you get
in front of the problem and manage it. Large organisations who adopted
RUP may have adopted it poorly (a polite way of saying it when waterfall
people are tasked with introducing it) and OpenUP may be a way of
remediating (escaping from) such situations.

Feedback and BoFs
Feedback from users, James Robertson, Suzanne Fortman, Cincom
Of the categories offered to solicit feedback, the results, in order (most to
least), were
• CCom better
• VW as a DLL
• Tools
and more minor
• Support for scripting: minor in this conference but Jim would get

different answers at a conference of non-Smalltalkers (Alan, “Is that
like the bindings for Vi issue?” Jim, “Anyone sitting next to Alan feel
free to strike him hard.”)

(Various other offered categories were mentioned.) In the ‘Other’ category,
people had suggested:

30 Smalltalk Conferences from December 2006 to May 2007
• Making Store better and faster,
• Oracle non-EXDI: assume this means direct socket connection like

some Java but Cincom cannot because it is a proprietary protocol and
Oracle will not release it (they have asked)

• New look and feel for OS: we will look at whether Microsoft WDL
work can be slotted in

• easier-to-create COM stuff, don’t use DLL calls, etc., all about making
C connectivity easier (like the first point above)

Alan asked the audience about C++ as well. It is harder to do owing to the
less standardised compilers but Swig is being used elsewhere and Ian
Upright did a Smalltalk version. Who would be interested? A few hands
were raised. Who has heard of Swig; almost all the same hands were raised.

Jim asked who knew about the screencasts he has been doing almost daily.
These take 3-5 minutes to describe how, starting from a base non-
commercial image, some function can be done, utility can be used, etc.

Q. StarTeams? The star team members are the product experts in Cincom’s
product lines. At this conference, tell the Smalltalk star team people what
is good, what is not, what is needed.

Tom Nies decided two years ago that as Smalltalk was doing so well with
almost no marketing effort, what might it achieve if they put publicising
effort behind it. Suzanne was hired soon after and has spent 18 months on
the road talking to Cincom Smalltalk customers and to Cincom customers
about Smalltalk and generally publicising Smalltalk. She wants to hit
vertical conferences. Write success stories; we will print them.

George Bosworth was very impressed at this conference to see so many
amazing applications written in Smalltalk.

Suzanne values all information from customers, negative as well as
positive, and is grateful to those customers who have told her about various
situations that occurred even five years ago (and grateful they told her
instead of yelled at her) and also to all those who have told her about things
that pleased them.

Alfred has learned about the number of people still using VSE. Is there a
roadmap for how they move forward. VSE fared ill in the ParcPlace-
DigiTalk merger. The VSE team did Parts for Java which was sold to
SingleSoftware in Atlanta, who no longer do anything with it. Cincom
needs all its effort to support the products it owns. Cincom cannot move
forward a product it cannot own. Pollock’s match to VSE UI means that
migration to VW/Pollock will be a feasible way forward. They have one
customer moving from VSE to OS8 and will monitor feedback from them.
A company in Europe have talked to SingleSoftware / Seagull about
buying the source. In summary, they lack resource and Suzanne spent hours
with Tom Nies reading the contracts and remained unsure whether they
would have the IPR to do anything even if they had the resource.

Smalltalk Conferences from December 2006 to May 2007 31
Q. The Mac product does not look ideal for those who download it? We are
working on these and will have a stable VM, good fonts, etc. It will not look
entirely like a Mac product but will be stable usable and similar. We are not
ignoring the platform. (Alan) significant usage of Macs in the Cincom
Smalltalk team. (Niall) ESUG uses Macs a lot and is growing young people
into Smalltalk.

Q. Workshop sessions? Monika is preparing some, deciding which areas
and what is needed: introductory or advanced. Some want a workshop in
their native language. Some want it internal and customised to their team.
Some wanted it but at another time than early December (German
attendees miss having St. Nicholas day with their families). Times are
tricky: September is ESUG, October is OOPLSA, November is
Thanksgiving, December is Christmas, January is NetObjects, February is
not a popular month, March is Cebit and so it goes. In the next few weeks
Monika will make some proposals.

Q. Since the last CSTUG, have you acquired new users? Yes; we are seeing
a lot of growth. Current customers are building new applications and new
customers, including new ‘name’ customers (just last week a product
manager phoned her “I have 5 new named customers and two new partners
and I don’t think you even know these people”). After last year’s Smalltalk
Solutions that marketed Smalltalk to 100,000 instead of 250, Suzanne got
calls and new customers.

Q. Geographic distribution? Some are in Germany (a few new name
customers and more new applications), many are in the US, a new name in
Canada, India has a brand new customer and Chascart (measures India’s
energy usage). Giorgio mentioned that India has the problem of keeping
workers because Smalltalk is in demand; after a year, a trainee Smalltalker
moves to a higher paying company. Jim mentioned the job postings. Jim
includes a 3 minute report from James Foster on new jobs in Jim’s weekly
podcast.

A customer in Europe has just hired 8 new Smalltalkers. One in the US has
just hired 6. Suzanne has found herself putting Smalltalkers in touch with
customers. Monika mentioned that Helge is a contact in Europe for the
same thing so if you are looking for Smalltalkers or looking to move tell
Helge. Helge has recently been looking for some Smalltalkers for a Mac
application. Heeg mentioned two Universities using Smalltalk, one north
of Hamburg, “the professor is here” (he stood up), the other in Kothen, and
others are discussing it. OOPSLA had a dynamic language symposium
with many young people demoing Seaside and other Smalltalk things.

Q. When will you have one logo? Cincom changed their corporate look and
feel last year. Most products just want a corporate logo but Suzanne wants
also a Smalltalk-specific logo at events so they still have it.

Suzanne on taking feedback, “I heard this was supposed to be painful. This
was pretty easy so far.”

32 Smalltalk Conferences from December 2006 to May 2007
Q. Why not every year? (Monika) given time conflicts, she thinks biennial
is the right timeline. It may be that a changed format (more customer and
partner presentations) would suit annual. So give us those feedback forms.

Someone mentioned that in Frankfurt every two months they have a
Smalltalk round table in a restaurant and every time he is impressed at who
he meets there and what they do. Organise similar things in your location
(or if you speak German come to Frankfurt).

Q. Pollock has been announced for years, Alan says he’s busy, there are
various loose ends in VW. Do you plan to add people to product
engineering? The requirements are now getting to our management team.
Suzanne now shows them printed emails and they are now hearing it. When
she says she wants feedback she means it. Suzanne has turned down sales
positions saying she wants more engineers. So point heard and she is
working on it.

Jim then spoke about getting the product more focused. When Cincom first
took over the product, regular broad releases were very important to correct
the ObjectShare-created impression that the product was dying. Now that
impression has been corrected and he will focus much more on fully
solving specific problems rather than broad forward movement.

Pollock will be a fully supported product in the next major release. That
will be within 18 months (and may be earlier; 18 months is just the
maximum window in the new model). Whether the API is frozen or not-
quite is still being decided. In Pollock, as in Webservices and other things,
there is the theory of how things should work and there is the practice of
how developers use it, leading to the standard back-and-forth that will be
resolved over the next few months.

Q. How to submit contributions that fix real or perceived problems and/or
enhance? It depends on who you know. If the star team know the person
they may look at it; if not, they may not. A more formal process has
disadvantages as well as advantages. (Niall) Think about making it easy for
the people who must review what you submit; especially, make it easy for
them to compare your changes with their base, e.g. try and separate heavy
renaming of packages and classes into versions that are distinct from your
code-changing versions. (Martin) work may not be as finished as the
offerer thinks; many things offered have no tests for example, others have
very incomplete tests. Supported stuff must be hard on all platforms, etc.
(Jim) getting something in as a contributed item is not too hard. Getting it
into the product is harder. Jim mentioned an add-on of his own that solved
a useful problem but was not generic enough to make it into the product.

OpenTalk BoF, Martin Kobetic, Cincom
There is a remote debugger and remote pair-programming application
using OpenTalk which could benefit from further work. It has no
optimisation (you need 200 messages to open the browser, which is OK on
localhost but not when pairing across the Atlantic). It can be used for
headless debugging and is set up for that; load it into a headless image and

Smalltalk Conferences from December 2006 to May 2007 33
it prompts for another image to connect to for debug.

OpenTalk exposes objects via a naming service or whatever. You can then
use a regular inspector and via that show objects on the web or wherever.

Early OpenTalk embedded IP addresses in connections so had problems
when an IP address no longer fitted your context. This is fixed in VW7.4.1
(start server in DMZ zone, unmatched address advertises external firewall
address) but even in 7.5 if you use an ssh tunnel, e.g. from your local office
to a remote office, you do double translation of IP addresses and this does
not yet work.

There is a load-balancing application that also handles making the servers
it load-balances look like a single cluster to the outside world. There are no
analysis tools to let you see what is going on when you turn a client-server
application into an OpenTalk application (there was a distributed profiler
but Florean’s MultiProfiler overtook it; it may need rework). Minimising
the number of messages is more important than minimising their size. He
hopes that OpenTalk is faster than DLLCC marshalling but he has not seen
a comparison. A user thought he saw ColorValue passed by reference;
Martin believes most colour stuff is passed by value. Martin described an
OpenTalk application: trader images communicating via OpenTalk to a
server with a cache of portfolios, front-ending an SQL database.

Early OpenTalk was one-way but connections are bidirectional. That was
needed when a machine behind a firewall spoke to an internet service that
found it needed to send back a request. It is robust to dropping connections.

Q. Compression? OpenTalk has no compression; he assumes compression
will happen in the lower network layers it runs on, so it is not clear there
would be any advantage, plus some data does not compress well.

The SSL layer can be wrapped round any stream (but it makes little sense
unless the stream is a SocketStream). The only significant issue against
pulling back the security layer into OpenTalk is configuration: should
every OpenTalk node playing a server and client role have a certificate?

Q. Multicast? Yes.

Q. Relationship between Opentalk and WebToolkit? We wrote OpenTalk to
replace Distributed Smalltalk so focused on CORBA and Smalltalk-to-
Smalltalk. It soon became obvious it had many similarities to web services.
Different protocols and marshallers were just plugged-in to the generic
OpenTalk framework to do functions of VisualWave and WebToolkit. The
older parts are still there for some stuff, e.g. VisualWave uses OpenTalk to
create the connection but then hands it to VisualWave to use directly, not
via OpenTalk-HTTP. This will be replaced with full use of OpenTalk.

Jan Lukes of Gehe remarked that implementing in OpenTalk was very easy
if you use sockets. If you use something else, e.g. a serial connection, the
assumption of sockets is at several levels so is non-trivial to reset. Martin

34 Smalltalk Conferences from December 2006 to May 2007
agreed. Andreas has also noticed that there is no need to have object tables
for simple cases; work on this should be done.

Q. MQ library? No. MQConnect was done by Heeg for AMD. It is a thin
layer around MQ Series DLLs. It could be integrated with OpenTalk but
only serious customer interest would make it happen.

Tuning is done by setting a low limit (become slow to accept connections)
and a high limit (stop accepting connections). There was discussion about
transaction monitors. In the end, application logic controls transactions so
is there a generic answer? The ‘standards’ disagree with each other.
Discussion with Giorgio and others looked at building headers to effect it.

VSE-to-VW Porting
My notes about the VSE-to-VW BoF at CSTUG in December 2006 were
later typed up from rough (and sometimes obscure :-) hand-jottings. There
were five groups of participants besides myself.
• Christian Haider, smalltalkedVisuals: see the VSE-to-VW porting talk

he gave at ESUG 2004 in Kothen
• Daniel Poon and other staff from Romax, based in Nottingham, UK:

see Daniel’s talk on Romax at Smalltalk Solutions 2005 in Orlando.
• Debica Insurance, based in Coblenz: I noted down the name of one of

their staff as something like Roel Adid (very scrawled in my notes)
• Guy, from the U.S. or Canada IIRC: I can't find his last name and

company in my notes
• Jerry Blinton of Caesar Systems: he gave a talk on his system at

Smalltalk Solutions 2002; see my StS 2002 report on the web

Debica needed to put their system on the web so ported the model layer to
VW and used VisualWAF, working with Heeg (Heeg have also done a port
assessment project for an Italian customer, who IIRC decided to wait for
Pollock / Widgetry). They had to handle some base class and method
differences but it was not bad. They had some Delphi DLLs. They simply
rewrote their DLLs as they could not migrate DLL handling between the
two (but the DLLs rarely change so one-off rewrite was not a problem).

Meanwhile their VSE system, much to their surprise, ran OK on Vista in
an experiment, removing one porting necessity.

Whereas Debica have a web interface, for Romax, GUI is the issue. They
had thought of porting WindowBuilder to VW but think it might be
comparable to the ObjectStudio port in the amount of work. They had also
thought of porting some GUI code and displaying VSE widgets inside VW
windows. There was discussion of a utility from SmallcomX (a small
company near Munich, N.B. not Smalltalk/X) that lets them create such
widgets, exploiting the directness of VSE windows widget handling and so
simplifying their GUI port. The approach worked for wholly self-contained
widgets (demo IIRC) but how to interact with subcomponents of the widget
from VW remained TBD.

Smalltalk Conferences from December 2006 to May 2007 35
The near approach of some size limits motivates Romax' port. They are
pushing 32 bit (must configure old-space to avoid customers seeing
OutOfMemory warnings, and are seeing 1 Gig file-outs of model and
analysis files) and can see 64bit becoming essential.

They have automatic DLL-conversion via a method that holds a context.
These method create input descriptions for DLLs that can be called to
create the strings they need. These methods are created by a generator in
VSE and work immediately in VW when ported across. They still have
some file-reading and copy layer stuff to rewrite (mention of COBOL copy
book method) before they port. Romax use the GH change list and
FileOut30 to read file-outs and assess differences.

Serialization was an issue for both Romax and Guy. Romax have users with
existing files that must boss in to the new system (perhaps with conversion
but must not be too clunky and must not be a do-it-all-at-once as these files
are large and dispersed and many will never be reused but others will be;
which ones is unpredictable). Guy must also reuse existing object files.
Romax experimented with SRP but found it was slow and had problems for
large files (may have been an understanding or configuring issue). SIXX
(XML-based) has no VSE version.

Guy's port is motivated by rivals putting their apps on the web. They would
port tomorrow if Pollock / Widgetry were there. Otherwise, there is no
motive as “it just keeps working” and they are not yet near any size limits.

There was discussion of the possibility of putting non-VW-graphics within
VW windows. Getting the window handle for a rectangle within a window
is the key issue. Pollock has form rectangle so getting window handles for
that should be doable. OS maybe could help. (Other idea: vxSqueak port).

Glorp BoF, Alan Knight, Cincom
(The Glorp BoF was held on the last day and I had to leave before it ended
to catch my flight.) Several people listed applications where Glorp might
be of use. For example, Jochen Eckert has no love for the persistence
framework of DeutchBahn’s timetabling system (see his talk above) and
would like to replace it. Gehe have an old VW system using Toplink that
they might migrate to VW7 and Glorp if it were supported. Alan thought
Toplink would migrate to Glorp easily. Cincom considered declaring
support for Glorp in 7.5 but decided against because it depends on
DefaultPackageNamespaces; I urged them to support that as well.

Michael Lucas-Smith provided TimedExpiringProxy which can improve
many garbage-collection issues in Glorp. Recently, Alan has been
improving the mappings. David Shaeffer implemented strategy-controlled
mapping of object hierarchies to tables; strategies are filtered (one large
table), horizontal (all concrete leaf classes are in their own tables, so joins
are not very performant) or a root table pointing to subtables (most like
Smalltalk in structure, but writing a large bushy object to some 20 tables
can also be unperformant).

36 Smalltalk Conferences from December 2006 to May 2007
Glorp has a two-level sort: topological (based on foreign key constraints)
and minimal perturbation (based on instance-level relationships, e.g. an
employee’s relationship to another employee who is also a manager).

For Oracle, Glorp uses Array bindings to do updates. In Toplink, having the
cache distinguish insert and update was one of four configurable policies.
If you create the same objects (same primary key) in different images, e.g.
from Gemstone, and then wrote them, Glorp would need a pluggable policy
to tell it when objects not in the cache were nevertheless already in the
databases.

Q. Replication depth? (Don’t want proxies that are resolved one by one
instead of in a single round trip.)
q retrieve: [:eachTrain | eachTrain car asOuterJoin]

is good for latency but bad for bandwidth. useFilteredRead means that
q read: Customer where: ... will get the order for all customers
at once, not one by one.

Q. Any value in defining views to help Glorp? Alan thought not. It might
be easier to describe the mapping and a materialised view might be faster
but generally it will not help you.

Q. Can you specify tuned SQL instead of the default style? Yes for reads,
where it is most needed, not for writes. It’s not an especially elegant syntax.

VirtualCollections tend not to be kept up to date, though they could be.
Glorp avoids tracking the domain objects (saw the great dangers of doing
so aggressively in EJB). A compatibility layer to let existing Toplink or
Lens applications use Glorp unchanged might be useful and might need it.

Q. Can you unload things from the cache? Yes. You can remove objects
explicitly and you can tone the cache policy on a per-class basis.

Q. Glorp and StoreGlorp port status? Alan last used the VA StoreGlorp port
at CSTUG 2004. Niall has worked with it since (found some bitrot, much
of which he has remedied). Niall has also fixed and improved the VW3
port. Noone has worked with the Dolphin port for some time. Radislav
Hachichack was maintaining the Squeak port and Tod Blanchard said he
would look at it again.

Q. StoreGlorp state in VW7? Today the Store schema is brittle because it
uses the EXDI tables * -> instVars trick so one extra column will break it.

Other Discussions at CSUG
I had discussions about porting approaches with Jan Lukes from Gehe in
Prague (they would like to port an application from VW3/Envy), and from
Janos Kazsoki of Cincom who would like to port the Smallbrain utility. I
met Troudo Manz again (she was at CSTUG 2004). She would like Glorp
for SQLlite. The lack of transactions in SQLLite is a problem for the tests.

Smalltalk Conferences from December 2006 to May 2007 37
Smalltalk Solutions 2007, Toronto, 30 April - 2 May 2007
I spent the days before and after the conference with a friend at Oakville,
20 miles west along the lake from Toronto. The weather was beautiful
when I was there but colder and rainy during the conference itself - which
was the ideal balance for me.

This year’s Smalltalk Solutions was combined with the IT360 conference
(renamed and somewhat changed from the Linux World and Network
World conference that we paired with last year).

I have sorted the talks I attended into various categories:
• Keynotes, Initiatives and Overviews
• Application Frameworks and Experience Reports
• Coding and Testing Patterns
• BoFs and the Coding Contest
followed by Other Discussions, Follow-up Actions and my Conclusions.

As there were usually two parallel Smalltalk programme tracks (and
several others), I could not attend, still less report on, all I wished to see.
James Robertson’s blog posts cover some talks I missed, as do those of
other Smalltalk bloggers. David Buck blogged Thomas Stalzer’s talk.

Keynotes, Initiatives and Overviews
Ruby on Rails for Smalltalkers, Chad Fowler
Chad has been in Ruby since before most people think it existed. In 2000,
Chad decided to learn Smalltalk after reading ‘this feature was borrowed
from Smalltalk’ in language after language that he had learned. However
while waiting for Smalltalk Best Practice Patterns to arrive, he decided to
look at Ruby - so much for learning Smalltalk (but since then he has played
with it enough to understand it).

When talking to non-Smalltalkers there is much he has to explain that he
can skip with us. Up to 2003, everyone in Ruby conference knew each
other; less so now. (Tomorrow he will speak at a conference keynote on
why this is no longer so; why Ruby, who in 2003 thought they had ‘the
thing’ but the stupid industry couldn’t figure it out, has broken out from
there to become a hot thing. Slides are at http://chadfowler.com/sts07.pdf)
• Smalltalkers are at a huge advantage in learning this hot technology.
• All of it is what Smalltalk can already do (better in many cases)
So you need to understand why it sells.

Windows has a one-click installer (http://rubyforge.org) and likewise for
Mac; others install from source (do not use Debian packages!) in unix-
style. The program is ruby and runs on command line (so very ugly with
respect to Smalltalk “and he has put it on a green-on-black command
prompt to emphasise how archaic it is.” :-)

38 Smalltalk Conferences from December 2006 to May 2007
Ruby 1.86 creates an AST and walks it so is strictly interpreted. Ruby 2.0
will do byte-code compilation. There has been discussion of porting ruby
to run on top of Smalltalk VMs as they are better than the ruby VM (Q. has
been done by Brian Davis and others to the ‘it works’ stage; Dave Simmons
also did it).

It used to take all afternoon to install rails. Now you use rubygems (not yet
shipped with ruby) from rubyforge.org/project/rubygems. This gives you
another program gem that lets you do gem install rails -y and
suchlike. Thus ruby gem is a package manager.

Q. (Bruce) Tension with Debian project will be resolved? Some people
have been working on it for two years and it is still broken. I could give you
my opinions on why but you might quote them. :-)

Then you run irb to get the ‘workspace’ for ruby; type ruby expressions
at the prompt and get the results echoed back. There is no browser, there is
no IDE so the irb is the IDE. Ruby is not image-based; any changes you
make in another copy of the interactive ruby process will not be reflected
here. If you want to find methods available on a string you can do e.g.
“asdf”.methods and they are echoed. “Show this to Java programmers
and they say ‘Wow!’; show it to Smalltalkers and they say ‘So?” Likewise
you do “asdf”.class and “asdf”.class.superclass, etc. The
class of Object is Class, as is the class of Class, etc.; there is no Metaclass.

Rails is a way to get people into ruby. Companies are getting used to
jumping on the best available language; ruby could be a gateway into
Smalltalk.

Ruby has four different kinds of variables:
• Global: $name - this is very rarely used
• Local: name - scoped to method or context you are in; declared

wherever used, not necessarily at beginning
class MyRubyClass

local_here = “masked by def below”
def a_method
local_here = “whatever”

end
(no compiler warning of masking)
• Instance: @name - scoped to method or context you are in; declared

wherever used, not necessarily at beginning
class MyRubyClass
def a_method
@local_here = “whatever”

end
def b_method
@local_here = “same var as before”

end
(variables are initialised to nil if referenced before written, as in Smalltalk;
nil is an object in Ruby as in Smalltalk; there are no primitive types)

Smalltalk Conferences from December 2006 to May 2007 39
• Class variable: little used
• [] is an array, {} a hash literal, i.e. association or dictionary in Smalltalk
An assignment starting with an uppercase letter is a ‘constant’ (in fact a
variable but you will be warned when you reassign it). Generally, in Ruby
as in Smalltalk, you can “cut your feet off” unlike Java which “is written
for stupid people, i.e. not that Java programmers are stupid but the
language assumes they are.”

Q. Debate in Ruby community about whether programmers should be
‘protected from themselves’? Often new programmers say they like Ruby
but ‘I really miss static typing; let’s add that’ and the Ruby ‘anti-bodies’
deal with this; the newbie either runs away or stays and if they stay then six
months later they will be an anti-body attacking the next newbie who says
‘let’s add static typing’. When the community was small, it really needed
these anti-bodies; now it is larger, they maybe need to calm down a little.

Class names are therefore constants and can be reassigned (but of course
reassigning String to a non-class object will cause problems quickly; you
can do it and then quickly do String = “asdf”.class and so recover).

AnObject.new.a_method() is Ruby’s equivalent of Smalltalk’s
AnObject new aMethod and similarly methods with parameters are
AnObject.new.a_method(a_param, b_param). You can collect
parameters into arrays; def a_method(a_param, b_param, *rest)
gets the remaining params into an array. Thus the same method can take an
arbitrary number of parameters. You can inspect as in Smalltalk - he did
rest.inspect in the method definition to show us both the array and
inspecting (which popped up pure text window; no interaction).

Ruby syntax has implicit self calls: in self.a_method() you can omit
the self. But self. is public so a private method called inside another will
always use the implicit self as an explicit will always be treated as if it were
being called not from within an instance of that object. (Use private
keyword to identify such methods). super is always explicit but must
always be a call of the same method as that in which it is defined i.e. you
write super, not super a_method - the a_method is implicit.
def a_method(a_param, b_param = 123, ...)
...

end

means if b_param is missing in the call, it will be set to 123. All optional
parameters must be after all compulsory. Ruby has no named params as yet
(it will in 2.0). Thus you must use documentation (if it exists!) or read code.
Ruby 2.0 is worse vapour-ware than perl 6 but is finally seeing some real
work and is due for beta release this year and will have keyword arguments.

Methods are not objects but you can get a reference to an object that
encapsulates a method and you can invoke it via call, assign it to another
object, ask it for its arity. It is not as lame as Java because you can create
these and manipulate them at runtime but they are not true objects.

40 Smalltalk Conferences from December 2006 to May 2007
“You talk to Java programmers and their eyes glaze over and they do not
understand why this stuff is cool. You guys understand why it is not cool!”

Avi Bryant has been playing at translating Ruby to Smalltalk. Any VM that
can handle continuations can translate and run Ruby code.

In Ruby, conditionals are syntax:
if 2 > 1 puts “Y” elseif 3 > 2 puts “N” else puts “oops”

They have TrueClass instance true, and FalseClass instance false, but no
superclass BooleanClass. They also have syntax variants:
puts “yes” if 3 > 2
puts “yes” unless 3 > 2
while 3 > 2 do aBlockOfCode end
for i in (0..2) do | num | ... end

These are all keywords. Blocks are objects in Ruby as in Smalltalk,
delimited by do...end. Blocks can have local arguments (same syntax as
smalltalk). You can assign blocks to variables and call them or pass them
as parameters. However you cannot serialise a which, combined with the
fact that this is not image-based, is limiting.
the_block = lambda do | num | puts num * 2 end
1.upTo(10, &the_block)
the_block.call(123)
(The ampersand is Ruby syntax to say this parameter is a block, so you
cannot pass blocks and non-blocks to the same parameter. You can pass an
array argument containing a block or non-block.)

A proc is an anonymous block; self yield executes the one (only)
anonymous block passed (actually just attached). Ampersand makes a real
block object that you can assign to, etc. The ‘yield’ pattern was first and is
quicker to type (Ruby tolerates having more than one way to do things).
The result is that Ruby does not have detect:ifNone: and suchlike
collection protocols.

After a break, we moved on to Rails. Avi showed him Seaside and he thinks
it’s the coolest stuff; Rails is not going to make you abandon Seaside.
However it is worth knowing about because while Smalltalk has a
technically better framework, Rails, unlike Seaside is very popular; it has
done the better marketing. So let’s look at some of the social aspects by
building an ugly functional application in front of you.
gem install rails

Rails is a wrapper on top of other frameworks, activerecords and
actionpack are the core items. activerecords implements Martin Fowler’s
pattern for object-relational mapping. actionpack implements all of the
web stuff in an MVC way - actioncontroller and actionview. Running rails
generates an empty application for you.
rails addressbook

Smalltalk Conferences from December 2006 to May 2007 41
A rails buzzword is ‘convention over configuration’. There are many ways
of doing things in ruby but there is one published way for doing things; this
saves a lot of project set up time. It generates a default structure for your
app. Rails is a little less green-screen than ruby; it has a UI with checkboxes
for the parts of your app. You select them to see the green screen. server
starts up a server on localhost:3000 and you can see it - a page telling you
what to do next. I typed one command and I have a web app running (less
exciting to Seasiders than to others). Now we create a model
generate model Contact

lists what it creates. Rails provides code for creating tables incrementally.
class Contact < ActiveRecord::Base
def self.up
create_table :contacts do | t|
t.column :first_name, :string
t.column :last_name, :string
...
t.column :contacted_at, :datetime

end
end
The class Contact extends (i.e. subclasses) ActiveRecord. ActiveRecord
assumes you will have an id field that will be automatically implemented.
That is created when you generate. Rails produces the SQL from the code
above and assumes you use mysql (can use another program to generate
your DB if you want). Files are named with version numbers 001 and
thereafter as you change your rails code and regenerate.

He opened the green screen and looked at the Contact class in ruby (vast
numbers of generated methods). The column name have accessors; the =
syntax provides setters.
myContact.first_name = “Niall”
myContact.last_name = “Ross”

will assign to column names, or you can use a hash (like a kind of keyword
function - Rails wanted keywords so they use hashes a lot in this way)
myContact.create({:first_name => ”Chad”, :last_name =>
”Fowler”})

myContact.find(:all, conditions => [‘first_name’ = ?,
”Chad”})

Meta-programming tricks gives you a range of detailed methods like
chad =
myContact.find_by_first_name_and_last_name(“Chad”,
“Fowler”)

You can then set values on what you’ve found and commit.
chad.contacted_at = ...
commit

He recommends keeping the log running all the time when programming
Rails. Like many high-level abstractions, this leaks all over the place and
you need to understand the SQL being generated when things get complex.

42 Smalltalk Conferences from December 2006 to May 2007
The above is how to build the M part of MVC. Next he showed the C part.
generate controller Contacts

class ContactsController < ApplicationController
def index
@contacts = Contact.find(:all)

render :text => @contacts.inspect
end

end

He then went to the web app and showed the textual inspect output of the
contacts list (only one created so far). Finally he created a view by
embedding ruby tags into raw html code.
<html>
<body>
<h1>Contacts</h1>
<% @contacts.each do | contact | %>
<%= @contact.first_name %> <%= @contact.last_name

%>
<% end %>
...
the %= embeds (a % alone does not embed). There are other pluggable
view-layer programs you can use instead of the default he showed. Rails is
instantly ‘gettable’ by JSP, PHP, etc., programmers and saves them from
much timewasting activity.

You can use a script to generate scaffolding that will add some ‘obvious’
things’; view to show all columns, add drop-downs for dates, etc. He ran
this and showed the raw form to add a new contact, to paginate contacts
(e.g. 10 per page). The methods show, list, new, create, etc. are
mapped to URLs .../show/id and suchlike.
<% @contact.send(column_name) %>

sends the message column_name to the contact object. Helpers generate
field setters. Why is

<% text_field ‘contact’ ‘last_name’ %>
not

<% text_field @contact ‘last_name’ %>

He does not know but the second is a better guide to the meaning although
the helper provides the first. He raised an error to show the huge
keyword-hashes that pass objects from a form and parse it into an object.

Q(Bernard) Much code generation? Rails generation is about giving
structure and creating ‘opinionated software’. You can then change it but
any regeneration will overwrite your changes. People use generation to
learn and to get started but not to maintain their apps. (It was also a
marketing tool; he could have built an address book app twice during this
talk using the scaffolding and this speed looks good in demos.)

Finally he added address books to his contacts model. This created a class
AddAddressBookToContacts which managed adding (and removing, if he
decided later to revert his model) the foreign key identifying the address

Smalltalk Conferences from December 2006 to May 2007 43
book for a given contact. Class AddressBook has_many :contacts
which is recognised by naming conventions as ‘maps to a model Contacts’
(has_many is a method, defined on ActiveRecord, not a keyword).

Q. Debug? He usually types raise into the text. There are debuggers but
most ruby programmers don’t use them, which correctly suggests that they
are not very good; if we had a better debugger we would use it. (“Yes,
Seaside kicks our ass.”)

Bert Freudenberg, One Etoy per child
Alan introduced Bert as ‘this guy I’ve never met before’. (At this Smalltalk
Solutions, it is no longer the case that everyone knows everyone else; this
is a very good sign. :-) Bert has been doing Smalltalk for ten years. For the
last five, he’s been paid to do it.

Bert showed the machine, a dinky lightweight but chunky-style (its for kids
use) laptop, and passed it around. The one-etoy-per-child is an educational
project. We all know the history of the Dynabook vision. Its emphasis was
on ‘book’ not ‘tool’, and it followed on to LOGO, to Lisp, to cell-oriented
ideas from biology and so on. (Read the “Tracing the dynabook”
dissertation by John W. Maxwell.) The specs still read sensibly except for
the RAM (they thought that 64k would do) and the processor speed (they
would have been happy with less than 1Mhz).

The OLPC XO Hardware has to be robust (must last 5 years) and cheap (5
years of textbooks cost circa $100) and low power (must last for an 8 hour
school day). Low power is achieved by making it hibernate fast (100ms) so
that the machine can be powered down except for display while the user is
reading a page.

It is the first implementation of the 802.11s standard for networking so
each machine connects to any other in its vicinity with no configuration. It
is always on so routes packages even when it is closed, routing based on
battery-state of the machine.

The display is hi-res low-power sunlight-readable (goes to black and white
in strong light but remains very readable) 200dpi and it is cheaper than a
regular display. The colour is controllable on every third pixel, not on every
one, which means that diagonal lines can sometimes become coloured,
which is circumvented by anti-aliasing in hardware to spread out the
colours over neighbouring pixels. In the usual screen the colour filter is
above the reflective layer but theirs is below, which is why the backlighting
shows colours but strong external light shows only black and white; the
much greater strong-light readability makes this trade worth it.

They run plain Fedora Linux, X11, GTK+, Cairo for rendering, D-Bus for
comms. The device drivers are written in Forth. The power-on GUI is
called Sugar and is written in Python. Because all apps must run in full
screen (because the screen is small) so they use the Nokia cell-phone-
oriented OS as it does that. They are working on the security framework,
called BitFrost, which puts each app into a separate virtual machine, a

44 Smalltalk Conferences from December 2006 to May 2007
lightweight one that does not emulate a whole PC but only separates the
application spaces from each other.

They call their applications Activities because they do more than regular
apps: they can be shared and they save their state automatically. The
machine has limited RAM so activities must be able to be swapped out and
in easily. Example activities are a journal, an Evince-based reader for PDF,
DejaVu, an Abiword-based writer for Crossmark, a Firefox-based web
browser, an app called TamTam for music synthesis and, of course, EToys.

Why is the UI stuff in the machine done in Python? The implementation
effort is led by RedHat, not by Alan Kay; they used Python because they
were used to it (maybe Alan did not fight this because he never liked
Smalltalk-80; he thought it too restrictive). They wanted to take things
apart and reassemble them differently. (They plan to have a view source
button to let you look at it for whatever activity you are in.) If there had
been EToys in Python they would use it but the Python community is not
building Squeak-like things such as EToys so they need us.

EToys is a collaborative multi-lingual (English, German, Japanese, etc.)
media-rich authoring environment in which authoring is always on.
Designing your software for children ensures it is simple and so adults like
it too. EToys was influenced by LOGO, Smalltalk, HyperCard and morphic
ideas (Self’s originally, which became the basis of Squeak’s UI).

In morphic you are actually scripting instances in effect (implemented by
subclass, change object to subclass but this shields the end-user from
having to learn the class concept). A metaphor of players and costumes for
them guides the scripting and you can clone to start variants. Work is done
in projects. He demoed bringing up the right menu-list with position data
etc. so you can drag the object and see the menulist change or change
values in the menulist and see the objects move or change.

Q. In all languages? He changed to German and all the menupicks etc.
changed? Then he had to change it back, which meant finding the now-
German-named menupick: “OK who speaks German? Oh yes, I do.” :-)

He showed scripting by the tiler and by writing Smalltalk directly (but
there is no back-mapping to the tiler if you write direct Smalltalk). This is
because it is a restricted environment for children with much unexposed
(e.g. they have ‘if’ but no looping constructs).

Projects are basically desktops. A tree of objects is saved as
ImageSegments (found by the GC’s marker) and this is very fast. Because
this uses the actual layout of objects in memory it does not let you transfer
to another environment; they are also working on a higher-level save e.g.
in open-document format.

Tweak is a next-version EToys. It extends EToys scripting to the system
level. It replaces polling with notification; every change to an instance
variable generates a change event (no more need for self change) but you

Smalltalk Conferences from December 2006 to May 2007 45
don’t want these events to be handled synchronously; updating three
instvars of an object needs not to block on other processes looking at the
object, so these events are added to the event loop.

Sophie is a Squeak program whose UI is in Tweak. The Sophie project is
run by the Institute for the Future of the Book. They are finishing the 1.0
release; you can download it for free. Plopp is a $15 (free on Linux) kids
drawing program with UI in Squeak that won the ESUG award last year. It
is the only program that uses a tube colour mixing paradigm.

Q. Mix Plopp with scripting? Scratch is a Squeak tool that lets you draw
(poorer than Plopp) but you can also script the graphics. Scratch is made to
learn programming. EToys is not made to learn programming. Generally,
yes, if there was any money in kids software they would have done this
already.

Tweak is not on OLPC because it needs a high end machine for these
‘notify on every instvar update’ change events.

They are implementing D-Bus in Squeak to eliminate a Python wrapper.
They must integrate with the journal activity and the clipboard for non-file
cut and pastes.

Q Fullscreen drag and drop? Frame button lets you see all apps and drag
from one to another.

OLPC forced them to re-license Squeak. The original licence forced you to
share any base system mods but anything above your base you could keep.
This was slightly non-standard and so they re-licensed to the Apple Public
Source Licence (took 2 months to get through lawyers) and then the open-
source people started muttering don’t really like APSL and so they re-
licensed the original Squeak 1.1 again to Apache 2.0 which can live with
everything. All subsequent contributions are now being re-licensed to the
MIT (free-est of all; just says ‘don’t sue me’) so everything will be Apache
2.0 or better. (“Squeakers who have not yet signed the letter, please do.”)

They want better ability to send messages direct to the hardware (c.f.
Michael’s talk). See vpri.org.

Q. Classroom experience? They have 10 years of experience. One problem
is that EToys is a blank sheet of paper. They are working to provide
example projects to get started.

Q.Will OLPC take more Squeak projects? Each country can choose what
software to install on the machine. It is very easy to download stuff from
the web with a one-click. Go to laptop.org and become a developer (only
way to get your hands on a machine right now).

Q(Yann) Use SqSquare for collaboration? Time will tell which is best.

Q(Bruce) How to keep up with OLPC code evolution? Download from

46 Smalltalk Conferences from December 2006 to May 2007
wiki on laptop.org; it’s findable. To see what version, you must open a shell
and (finished answer offline).

Q. Audio chatting? Yes, and camera and microphone.

Q. How is it sold, marketed? They plan to ship millions to developing
world governments (by year-end it is hoped; the date has slipped from this
summer) and that is how they keep costs low (no distribution cost) so
selling in the west is an unsolved issue.

GLASS: Gemstone Linux Apache Seaside Smalltalk, James Foster,
Dale Henrix, Gemstone
Ruby on Rails is giving buzz to the Ruby community. Seaside is providing
similar buzz to the Smalltalk side. However Seaside, although it does what
it does much better, is not as complete a story on the database side. The
Smalltalk Enterprise Application Server Integrated Development
Environment provides the layered abstractions over HTML and HTTP that
lets you quickly build and modify highly interactive web applications.
Because these applications use the web, they do not need you to build a UI
and so what has otherwise been a limitation of Gemstone Smalltalk is less
important.

Avi created a Ruby framework and then ported it to Smalltalk because the
IDE was so much better and the class libraries so much more mature.
However he almost went back to Ruby as it had built in continuations -
until he realised that in Smalltalk you can add them in 10 lines of code.

Building complex web apps is hard because HTTP is designed to serve
static pages and so is stateless. Other frameworks tend to have to marshal
all state and the back button is a problem. In Seaside, each served page is
associated with a continuation of the stack, which leads to a far more
natural coding style. James then reviewed the WACounter code and
behaviour (see the many prior Seaside talks written up in my reports an d
elsewhere) stressing the various renderers, brushes, etc.

Seaside originated in Squeak and has been ported to VW, Dolphin and now
Gemstone. Seaside needs continuations. Squeak and VW just added a little
code. Dolphin released a new VM that supported them. VASmalltalk
roadmap is to add continuations. Now Gemstone supports them.

Continuation is a class with methods class continuationDo:,
valueWithArguments:, etc.

All other dialects are single-user, non-persistent, so the user must add
multi-user and persistent behaviour when their website needs it. You can
persist in the image, which is very easy but you risk loss of data if the image
quits and it is not shared across multiple images. Another choice is a
BOSS-out but object identity is lost on file-in. Putting it in an external
database involves coding and impedance mismatch. Multi-user can be
done with several users per VM (scaling and query-directing code), or
multiple images (needs coordination through file system or whatever).

Smalltalk Conferences from December 2006 to May 2007 47
Gemstone provides multi-user persistence by default.

Seaside requires a web server. Smalltalk has Swazoo, Hyper (a Swazoo
branch), Kom (formerly Comanche), etc. External servers require
FastCGI; you can use Apache, Lightppd, etc. Smalltalk servers are great
for development. You can deploy on them or on external, which may
amortise an existing server on the host or whatever.

James started a Hyper server and opened the SuchiStore demo application,
showing the HTTPServer instance handling the connections.

The latest official version of Seaside is always in Squeak. VW and Dolphin
maintain ports. Porting needs you to export file-out from Squeak in suitable
format and then import to your dialect. They preferred Monticello, which
is Squeak’s distributed concurrent versioning system. Monticello is
repository-independent so can use Gemstone; they made the very
important decision to port Monticello, not just Seaside so any seaside app
versioned into Monticello would automatically port.

Method overrides are an issue in a multi-user system; you cannot let just
anyone load a method that changes a kernel class for everyone. Session
methods add a sessionMethods dictionary decorating the methodDict, so
that method lookup looks in each class’ sessionMethods dictionary, then in
each class’ methodDict, then looks in the super’s sessionMethods then in
the super’s methodDict and so on.

Q. How to remove? Override with DNU call or (better) raw super call.

Q. Like Method Wrappers? Yes, we think. (Niall: in session methods, two
dictionaries are consulted in turn and the session method is not expected to
call the masked implementation. A method wrapper is a replacement value
inserted into a single method dictionary with a pointer to the compiled
method that it has replaced, which it need not but frequently does call.)

Thus you load Squeak directly from Monticello, making some mods to the
code. (They were modifying _ to := but this makes it hard to see what
interesting changes were made so they have allowed underscore. Someone
in the audience noted that Squeak is now dropping underscore.)

SqueakSource is two things: a web domain and a Seaside application (the
web domain happens to run the Seaside app).

Most Seaside apps use a Smalltalk server but production ones often want
to run another, especially if the programmers and the IT department are
separate. Let Apache manage static pages, SSL, load-balancing, fail-over
backup, etc. He stopped and restarted an apache server, briefly showing
where the things you configure lived.

FastCGI communicates between a web server and an application server:
mod_fastcgi.conf showed localhost:<port> for his demo but in general this
is of course very distributed. He then demoed using topaz scripts (which he

48 Smalltalk Conferences from December 2006 to May 2007
noted are “Rubyish”) to test the basic functions, launched from a web page.

Dale built a framework (Tsunami) to do denial of service attacks against
Seaside servers and studied when the CPU saturated. Squeak saturated at
30 pages per second. VisualWorks saturated at 60 pages per second (with
Swazoo). Gemstone saturated at 60 if it committed every page and at 200
if it committed every 200 pages. (Disclaimer: for Squeak and VW the
continuations are kept in memory whereas Gemstone dumped them to
memory, so the VM GC was not spending lots of time on it. They did not
tweak the VW memory servers, which Jim knows can make a huge
difference. Gemstone was writing 6Gig per hour as the alternative to GC.)

In Gemstone, each VM gets shared access to the data so scaling is easy and
close to linear by adding VMs. (They have customers who run 1500 VMs
on 200 hosts.)

James opened the SuchiStore example and showed two browsers to two
different ports. He showed the two seeing the same data which he changed
and showed both saw it. If you commit on every hit then the continuation
objects are saved and so any VM can continue. If you want to assign
affinities to distinct VMs, Apache can do that. He assumes Apache-capable
people using this will assign the appropriate patterns for doing this; they
have not explored that yet.

His Squeak image has access through the foreign function interface to a
library that can login to Gemstone. He thus gets a transcript in which he can
execute and browse Gemstone code. This is a very watered down version
of what GBS provides. Squeak does not have a rich toolset yet but may
grow some, however it will never have transparent replication (not for free
at least :-).

If you do not have a 64-bit machine (or don’t have time to install
Gemstone) but want to play with it, apply for an account on
http://seaside.gemstone.com/ (where you can also find the slides). Use the
mailing list at http://www.seaside.cst/Community/MailingList/ sending
subscribe-gemstone-smalltalk at earth dot lyris dot net. Send emails to
James dot Foster or Dale dot Heinrichs at GemStone.com.

(Later discussion with Jim: the main way to tweak Seaside memory in VW
is to increase Eden and SurvivorSpace by 10x - 25x because you do not
want the many objects that Seaside creates surviving into oldspace; they
die young so let the scavenger collect them. Another is to optimise the
settings for memory growth; make them aggressive, not procrastinating.
Lastly, make sure your external server serves anything static.)

Application Frameworks and Experience Reports
Seaside Experience Support, Boris Popof, DeepCove Labs
DeepCove is a small technology group in a larger company (120-130 in
Vancouver and Ireland). They like XP and use lots of test-driven
development, no code ownership, frequent small releases, on-site-
customer (they share the floor with their customer) and 40 hour weeks.

Smalltalk Conferences from December 2006 to May 2007 49
Their product is called Raven. It processes international payments in 150+
currencies in more than 65 countries in many types. They do millions of
transactions a month, so they are significant but not huge. They are an all-
Smalltalk shop running on 7.4.1 (7.5 tested) talking to a Microsoft SQL
server using a homegrown minimal OR mapping. Clients can batch
requests or submit them one at a time in REST style.

Raven Online is a web portal for clients. Clients need to initiate payments
and to obtain detailed reporting. The project started soon after Avi’s and
Andrew’s hands-on Seaside session at Smalltalk Solutions 2006. Boris had
not seen Seaside before. On the flight back he built a simple prototype in 3
hours (he showed the simple login and upload transaction page he created).
To do that on a plane with no access to tutorial or whatever impressed him.

Their clients were then sending them WebDAV files. This was awkward for
many clients and Windows built-in support for it is flaky; the uploaded files
sometimes don’t upload so you see what is not there, etc. (and it is even
worse in Vista). Generally, the push model for getting these files was a
problem (client might accidentally delete file then think they had not
downloaded it); they wanted to shift the obligation to get files to the client.

There was also a fear factor delaying web projects as there were only 4 of
them in the group and servlets and SSP seemed harder than they should be.

The next stage was a mock-up which took 8 days. They regarded this as
about learning Seaside; there are few and old tutorials.

Q. Changes rapidly; what impact on your code? Could be significant if you
want to move to the latest version from the old API; otherwise, the changes
are compatible. It is important to talk to the Seaside community and not just
use the old tutorials which will point you at deprecated code.

Visual design matters: a professional look motivates you. So make it look
good early. Also, layout affects functionality which affects layout and so
on. By pure luck, he saw a book on CSS and saw an author photo showing
a Vancouver background so contacted him; it turned out to be David Shay,
author of ZenGarden. Do not let developers do a web designer’s job; let the
one who knows how to do web art do the web art. Boris asked Avi how to
interact with the web designer. His rules were: express what you want to
get done, not how, showing existing brand materials and ideas if any.
Hopefully the designer’s initial patterns will be reasonable and then you
need little interaction, just iterations of him sending you the latest CSS and
you loading it and seeing what you think. Now, 12 month later, he showed
various (very professional-looking) CSS stylings of the application.

Q. Javascript used; if so, whose responsibility? Yes we used it for one
feature and it was Boris’ responsibility. Some web designers might offer
help on that, others would not.

They needed two-factor authentication. RSA or Verisign are the two main
players; they used RSA because Verisign would not even talk to them (they

50 Smalltalk Conferences from December 2006 to May 2007
were too small). They found RSA very flexible, willing to negotiate based
on projected volumes. Their devices start at ~$80 including six years of
service fee (after which it costs a few dollars per year).

Seaside is all about components. A root component has children which
have children and it really was that simple. HTML generation is not magic;
you must get your hands dirty and you have to know what you are doing.
However it is all messages, not templates, so you reuse and refactor instead
of endless copy and paste. The new render API is good. You get your brush
(html div), cascade settings onto it and finally call with: which closes
the brush or starts brushing with it.

Callbacks are blocks and are for actions, input fields or anything that
returns a value. The value: and callback: methods are key, the
callback being what happens when the value: is changed.
html form:
defaultAction: [self process];
with:
[html label

toolTip: ‘Minor units with decimals e.g. 19.95’;
with: ‘Amount’.

html textInput
class: ‘required’;
value: self amount;
callback: [:value | self amount: value].

html submitButton
yui;
callback: [self process];
text: ‘Process’].

They wrote yui, a call that lets you use yahoo styling on your buttons.
They will open-source it if they have the time. Ajax effects let them flash
green for approved, red for rejected and so on. scipt.aculo.us is used by
ruby on rails, Apple, Digg and Gucci because it has been much objectified
by Lucas.

He found that late binding is good. He ripped the system apart and put it
together again several times so the fact that you will not get it right first
time is no cause for worry. Seaside makes refactoring and reuse easy:
smaller components give you less coupling.

Initially they deployed a headful image with all resources talking to
Apache and SSL. Then they moved all the resources (CSS, Javascript and
images) to Apache. Next they made the Seaside headless and cloned the
whole setup beneath a load balancer (Microsoft NLB - somewhat flaky but
it works). They also cloned the SQL DB to mirror it.

Then they put all their resources into Amazon S3 for 24 cents/month, while
the load balancer talked just to two Apaches in front of two headless
Seasides. Amazon only have a north America centre for S3 today but they
are in north America so it was not a problem for them. This was easier than
mapping resources from windows-based seaside servers to linux-based
web servers when they deployed.

Smalltalk Conferences from December 2006 to May 2007 51
They created an automated build process that they can run once all tests
pass. They upgrade in the middle of the night when there are no sessions
since sessions running when they upgrade disappear. Exceptions terminate
a session but leave the image running (they have their own ways of
handling these).

They insist on IE7 or Firefox because they can (in fact Opera also works
OK last he looked). Boris demoed. What the client’s contract supports is
what you see - anything else simply does not appear in the page. The yui
makes their popup responses look nice. It also had nice dynamic-look
charting capabilities to show things their clients should monitor. They use
fusioncharts (like DabbleDB) for these effects. He showed the Smalltalk
that created the chart. There are many searching and reporting options; he
showed Ajax flashing effects. Raw table resports were what they started
with but they soon realised they wanted grouping and substructures.

Q. HTML and CSS; how much did the designer change from your mock-
up? All of it; designers know what they want. Boris was not a designer so
had not set ids to suit. He sent files each evening and he had them integrated
the next morning.Code reuse meant they only needed to change things in
one place.

Tons of credit goes to Michel Bany who keeps Seaside ports up-to-date to
within a day or so.

Interactive Visualization in Widgetry, David Buck, Simberon
A client asked him to do components in what was called Pollock and is now
called Widgetry. His project was called Eagle as it was about seeing things
from high-level or in detail.

His first task was to build a histogram, showing arbitrary number of bars
and of elements in each bar. Thus it shows the objects that are being
counted into a bar. He used it to show all the classes in his image,
categorised by initial letter of name. Moving the mouse over a bar showed
which class was that point of the bar, with separate horizontal and vertical
scrolling. He showed paging and dragging the screen; a home button lets
you return when you get lost. He has implemented his own clipping of the
histogram to the screen (to give good performance). The leftmost vertical
edge is set by the label length.

The announcement mechanism is much nicer to use than the old event
mechanism. Events were symbols and you passed parameters.
Announcements pass the pane, the group and the item index, and
announcements can have their own useful behaviours.

Q. announcements are synchronous? Yes, exactly as for events.

Lines between elements are only shown when you zoom in far enough; at
high-level, the elements are not sensibly distinguishable or selectable and
so they disappear.

52 Smalltalk Conferences from December 2006 to May 2007
The next component was the hyperbolic graph viewer. A large graph
displayed on a two-dimensional sheet soon runs out of space: as low-level
nodes have many children, the high-level nodes must space out more and
more to accommodate them. You solve this by using non-Euclidean space.
Hyperbolic space has more space as you move out from the centre:
• close nodes appear large
• distant nodes appear small
He displays it on a three-dimensional sphere (other projections are also
possible). A 2D hyperbola is the set of points where x2 - y2 = 1. He projects
down to the y = 1 line. In 3D it becomes a saddle x2 + y2 - z2 = 1 (rotation
of 2D). The y = 1 line becomes the z = 1 disc and projection works the same
way. The 4D case x2 + y2 + z2 - w2 = 1. The z = 1 disc becomes the w = 1
sphere and that is what they project. “If you’re good at imagining 4D
spacetime, this is a no-brainer.” (It is just the negative of the Einstein
spacetime metric, with ‘w’ the time dimension. I did a lot of work with
these metrics and geometries when I was younger and had great fun
discussing them with David offline. He regretted he had not known of my
experience with this before as he would have liked to talk it over with me
when he was learning this geometry.)

The widget calculates the spanning tree for each node, then does layout:
think of the central node as a circle surrounded by child circles surrounded
by grandchild circles and so on. The math was challenging as VW does not
have sinh, cosh, tanh (but they were easy to do via ex) and all David’s
geometrical intuitions were wrong in hyperbolical space. Translating a
triangle required two reflections about an intermediate point. Distance
calculations are different.

His first implementation was rather sluggish (30 secs per frame) because
he was drawing all of the nodes, no matter how far away they were. He
improved by drawing the centre node and its neighbours, truncating when
things are too small to see. He had to animate fly-over events (otherwise
you lost track of where you were) and assign translation (to left-drag) and
rotation (to right-drag). Labels had to be greatly restricted to centre and
immediate vicinity only.

(Q. There was a suggestion about using clifford algebras for geometric
computing. I suggested two-spinor decompositions. Discussion continued
offline. I omit highly technical details of interest only to geometers.)

The next component was a world map, with arbitrary pan and zoom,
landmark labels, etc. He demoed, zooming in to the point where country
names start appearing. (“Implementing this has given me a whole new
respect for google maps. It is hard to do all this well.”) As one zooms, there
is sometimes a brief delay as it loads extra detail that has just become
visible. Latitude-longitude lines become more detailed as you zoom.

Data source: He started with data from the 1980s (country boundaries have
changed a lot since then) and then found ESRI (company name and data
format name). It is a binary format, very well-documented so it was easy

Smalltalk Conferences from December 2006 to May 2007 53
for him to write a reader for it.

He used the ‘descriptor method’ pattern (google that phrase for his blog
article on it). The method defines the file format, saving you from
duplicating the knowledge of the format in a reader and also in a writer. The
format implements description methods the reader and writer can use. The
header tells the reader what to expect and the writer what to write, e.g.
header
self
bigEndianInteger: #fileCode value: 9994;
bigEndianInteger: #unused value: 0;
...
littleEndianInteger: #shapeType;
...
mark: #endHeader“tells us to switch to body”

Colouring the country: we all know the four-colour theorem but the U.S.,
like some other countries, does not consist of a single contiguous area;
fortunately, his client did not insist on four colours. To see which countries
are adjacent, he looked at bounding polygons, not at every point on the
boundary which would have been far slower.

Detail versus speed was always an issue. Displaying all the detail in the
high-level view would mean drawing many points to the same pixel, and
would be very slow, so scaling what information a given view displays was
key. He divided the world into 12 x 6 regions and clipped polygons to them
via the Sutherland-Hodgeman but this leaves degenerate edges (a polygon
can become two subregions when clipped, connected by a degenerate edge
along the clipping region’s side). He solved this by breaking the polygon
into clipped and the rest every time he crossed the clipping boundary (if the
rest the produced a wholly external polygon, he just threw it away). He then
summarised the data by ‘average point’. He is still not fully satisfied with
this solution (and it has increased his respect for google maps).

Landmarks: did you know that the centre of the United States is in northern
Africa? For a multi-part polygon, you put the label in the centre of the
biggest part.

Q. How long to do? 150 hours of work (200 hours all told included a couple
of other minor widgets and features).

Q. 100% VisualWorks? Yes.

Q. Why did the client want it all done in VW? He does not know. It may be
they desire to modify these widgets or interact with them in fine-grain
detail. He believes they will use them as a framework.

Q. Other projections? They requested mercator projection, which he did,
and others can be done; you plug in a ‘camera’ object to do the projection.

Q. Using widgetry? It was easy to build a UI programmatically, which is
very difficult to do in wrapper. He found that pushing the left and right

54 Smalltalk Conferences from December 2006 to May 2007
arrows on the menubar left to make room for his close button required him
to override a method. He also wanted to subclass classes which had
platform-specific subclasses already so he could not. (C.f. discussion of
this in my write-up of Sames presentation at ESUG 2002.)

Q. These widgets are now available to us? Up to Cincom and the client.

Cairographics and Smalltalk, Travis Griggs, Cincom
His slides were (impressively) rendered with Cairo; he programmed the
whole thing and every time he hit page-forward the next slide was
rendered; except for some buffering, there were no shortcuts. Travis wrote
his first graphical program in Fortran IV. He has been doing graphics in
Smalltalk since 1992. He joined Cincom last September. Before then he
had worked on ExtraEmphases and wanted anti-aliased fonts. His goal is
to make cool graphics in Smalltalk fun again.

Cairo is a two-dimensional graphics library that supports multiple output
devices (XLib, Beos, Win32, Quartz, etc.) and platforms (Arm processors,
various cell phones, Windows and MacOS X, etc.). It has many language
bindings including a Squeak one (called Rome, which also includes other
stuff) used in Sophie and Firefox. He has had much help from the Cairo
community and from Michael, Holger, Joachim, John Sarkela, Sean and
Andreas. Get it from the home page (http://www.cairographics.org) plus
the libraries.

He started with ExternalInterface LibCairo, parsing the functions in
standard DLLCC style (from cairo.h version 1.2, hand-maintained since)
making the ENUM types into classes. This is where most language
bindings stop (e.g. the ruby bindings, which he looked at). He went on to
build an object model. He tried to use OsHandle but had issues so made his
own, using weak links for finalisation. They kept the method names the
same (despite some being unintuitive if not plain wrong). Methods hide the
memberAt: calls. Opaque structures are UninterpretedBytes subclasses.
For some reason, fractions are not automatically mapped as integers,
doubles, etc., so the message dllccDouble deals with that.

The first thing you do in Cairo is create a surface, in formats a1 a8 rgb24
rgb32. You can do this wholly in Cairo (it manages the bytes):
ImageSurface format: CaitoFormat argb32 extent 100@100.

or by creating a ByteArray in fixed space and telling Cairo to use that.
Pixmaps surfaces are longlasting but you should recall the cairoSurface (to
synchronise - pick up bounds and etc.) every time.
aWindowOrPixmap cairoSurface.

When you have a surface, you then create a context (often abbreviated as
cr or aCR), obtained by aSurface context (like a GraphicsContext
but it has more state, its shape. (Yesterday, Michael and he made it possible
to map any GraphicsContext to the equivalent cairo context.)

The source of a context is a pattern, (aCR source) which is a solid colour,

Smalltalk Conferences from December 2006 to May 2007 55
a gradient (linear or radial, and it can reflect at boundaries), etc. Travis has
created VW helper methods like normal colour setting. Travis then showed
some self-rendering code; the beautiful pattern made the code text hard to
read but hey it’s so cool :-). (Gradients are as fonts were for apple users in
1982. :-) A second self-render (of the Smalltalk balloon) was hard to read
even in large font but showed what you could do with not too much code.

Paths are built via connect the dots: moves, lines, curves (all bezier
quadratics - the wikipedia article has a great animation and explains well)
and closes. Paths can be disjoint and are infinitely thin, not 1 pixel wide.
Paths must be closed to be filled and must be done explicitly: a path not
declared to be closed can return to its start point but it will be unfillable.
Paths are pen-down moves: lineTo: or relativeLineTo:.

Enumerating over paths is tricky as the various elements are so unlike:
moves, lines, curves and closes. They wrote a case-like method as the
easiest way to express an enumeration. He then showed a cincom logo self-
rendering slide (which was very readable). If he had done this in VW not
using Cairo, it would have taken more code and the rounded edges would
be less smooth (no anti-aliasing).

Cairo has some ‘verbs’ which you can apply to a stroke of a path, cleared
at the end of the stroke unless you explicitly preserve: paint, paintAppha,
clip, fill. He showed a VW and Cairo slide, showing how Cairo’s infinitely
thin lines avoid fill overlap in thick boundaries of filled shapes. He showed
various clever things on the Smalltalk balloon leaving the island
background: subtractive clipping, masking.

Cairo is a different way of drawing in which you can apply affine matrix
transforms for everything (“use the matrix”). This is good for doing e.g.
translate to centre, rotate, translate back in a single operation.

Contexts can be saved to a stack and popped again to let you unwind things.
You can group a temporary surface and then pop it; this is handy for double
buffering (can also use it for animation; no significant speed gain).

Cairo has a ‘toy’ text API; he wrote a minimal Pango interface for this
slide; raw Cairo was too tedious.

This is not necessarily faster but it is a lot more attractive (Joachim’s train
simulations look much better but run at the same speed).

Smalltalk in Semiconductor Test, Mark Petersen, IBM
If you have cellphone or an xbox, you probably have an IBM chip. They
are an IBM systems and technology group, but are using VW, not VA, due
to an accident of history. They use Smalltalk to characterise semiconductor
behaviour, not just to test them. (IBM has a site in Bangalore and they are
now pushing Smalltalk into the group there.)

Semiconductors are made on 300mm wafers which are then diced. Wafers
are fabricated, and then tested to understand the behaviour and the process,

56 Smalltalk Conferences from December 2006 to May 2007
perhaps as part of a production process, perhaps before the product is built.
DMACS is a Smalltalk/DB2 application that tracks this testing.

Data mining is an issue. For a wafer barcode field, he would like to know
what products it was used in, whether it had failures in the field, etc., which
at present is data IBM has - but all in separate silos. If Smalltalk can give
that service, it would greatly motivate its further use.

He showed some views that represent the device behaviour. They have
extended VW’s business graphics to let them mark and edit graphs and to
add ‘smith charts’ (an unusual electrical characterisation chart which they
make out of two business charts superimposed). Images (.png) are saved to
the database and pushed into HTML documents.

They have not used Store in the past, just writing some code to their DB2
database. Now the team has grown larger than a couple of developers, they
will use Store.

They have a Smalltalk web server that presents objects as XML on a web
service. They also provide data via ftp and email. They added some
exponential formats (1.0E4, 1.0e+4 would neither be correct in base 7.4).

General Purpose Interface Bus is another communication protocol. They
have built a Smalltalk utility to talk to the gpib32.dll (from National
Instruments) and the NI gpib card (from Intel).

Why Smalltalk? A programming language should be chosen for how well
it solves your problem. They are engineers, not programmers, and find that
Java (both the language and its overhead) makes it too hard to map their
domain into the code.

Q. (Will Loew-Blosser) Why are engineers programming (his company has
merchants doing contracts who are bright but they do not program)? One
is raw cost, another is that they can only ask IBM to program for them and
they cost (their web services cost them $100,000) and take time (the web
services used waterfall and took a year to gather requirements and he could
have done it in a month). Some managers are impressed that he can give
them things in a day or two, whereas they are frustrated by how slow the
standard Java route is but IBM has a corporate strategy.

He showed their language comparison matrix in which they evaluated
Smalltalk against Java, Matlab, C++, LabView along 16 axes grouped as
essential, very important and important. Smalltalk scored best.

Q. LDAP interface? The LDAP parcel has problems so they used a perl
script.

Q. Training? They have two courses of one day each to get people aware
of the application. People struggle with Smalltalk, and with OO generally.

He ended by mentioning things he would like: scripting (maybe S# like),

Smalltalk Conferences from December 2006 to May 2007 57
FileManager with read/write features (they have done that and Alan
mentioned that latest VW has it, native for windows and a portable one
which you can also set to have for windows).

Home Automation, Thomas Stalzer, Object Dynamics
[I was presenting in the parallel thread. David Buck wrote up this talk on
his blog and these are his notes.] Thomas said that this was the first project
that he did for himself and just for fun. He may commercialize it later but
no definite plans have been made yet. He started in Smalltalk in 1990 and
worked for IBM and later Enfin. When he left Enfin, he started Object
Dynamics working in Banking, Insurance, Production and other sectors.

His interest in home automation started when he remodelled his house. He
decided to add automation to help make life a bit better. For example, when
he opens the dishwasher, the light above the dishwasher turns on. There are
many things he can do from lighting to controlling appliances that make
things more convenient around the house.

His application was developed in VASmalltalk. It controls appliances
(stove, dishwasher, etc.), power and lights, network based equipment
(www, e-mail, weather, radio, stocks, etc.), custom systems (garage door,
alarm, A/C) and multimedia (MP3 servers, AMX, Bose, Russound, uPnP).

These systems each have their own unique interfaces and there was no
integration. His system gets these devices to work seamlessly with each
other. He does this by abstracting the physical layer from the application
layer. Each device has a driver that controls that device but to upper layers
presents itself as attributes, events and actions that can be wired to other
components in a similar way to the Composition Editor of VASmalltalk.
For example, the ‘Door Open’ event of the dishwasher can be connected to
the ‘Lights on’ event of the light above it. The name of a song playing on
the MP3 player can be connected to a display that shows that name.

Features he has programmed with these event-action or attribute-attribute
connections include:
• opening the dishwasher door turns on the light above the dishwasher
• dishwasher can be turned off with light switches
• if the house is locked, all appliances, music, etc., are turned off
• the lights in the living room blink when the dishwasher or washing

machine are finished
• if a motion detector is triggered, the lights will be turned on (50%

brightness at night)
• if the house is in ‘security mode’ then ringing the doorbell or a motion

detector can cause the sound of a barking dog to be played from an
MP3 player inside the house

• a sensor on the floor of the bedroom detects when you step out of bed
and turns on LED lights along the floor to help you get around without
blinding you

58 Smalltalk Conferences from December 2006 to May 2007
• when an e-mail is received, a light in the room flashes
The system is programmed with a graphical interface that lets you draw
connections between units shown as boxes on the screen. A 3D simulator
with a model of the house lets you try out the programming without
connecting it to the actual house controls yet. Once connected, the
simulator can show and control the devices.

Q. Does the system ever gets messed up causing you to lose all control over
the house? Functions are divided into core and luxury functions. The core
functions will work whether or not the system is operational. You can
always turn on lights from the switches, turn on and off the appliances
manually and control the A/V equipment without automation control. The
luxury features require the system to be operational. If you push the
‘theatre’ button, it closes the curtains, dims the lights and turns on the A/V
equipment. This can all be done manually if the system is down.

Q. Does this affect your buying decisions for appliances? Most high-end
appliances already come with interfaces for automation. In some cases, an
appliance he would have liked to buy did not support automation so he
bought another instead.

Q. Can other household members use the system? Using the system is easy.
He is normally the one who does the visual programming to connect
everything up.

Q. Any crashes? Only three he can remember. One was a hard disk crash
which required a hardware replacement. The other two were caused by
software problems.

Q. What kind of interfaces do these appliances have? RS-232 is a popular
interface for appliances.

This was a fun and interesting talk.

Coding and Testing Patterns
There is no Spoon: Overcoming the Object-Relational Mismatch in
OLTP Systems, Thomas Gagne, Instream Financial
Thomas is the CTO of Instream Financial. Instream Financial buys service
obligations and turns them into financial instruments.

What does the title mean. In the film ‘The Matrix’, someone bends a spoon
and explains how he does it by saying, “There is no spoon.” He feels that
as regards OO-relational mapping there is no spoon. An industry exists to
handle OO-rel but in his systems he avoids the problem. This is a database
heresies talk (like Avi’s ‘web heresies’ talk; he gave the example of having
to use his PDMA as a light recently; if he were the kind of person that
thought Java’s philosophy sensible, he would not have thought of it).

The database is the most important object in his system. It is the first thing
to get back on line if everything stops. The next thing is the correct entry
of data; all else is cosmetic. (A comp.lang.smalltalk discussion with Nick

Smalltalk Conferences from December 2006 to May 2007 59
Malik at Microsoft suggested the term ‘Semantic Persistent Store’ for a
database that you put your app in; Thomas preferred ‘hypostasis’. An
X.500 system is a black box with an interface i.e. it is an object.)

Alan Kay believed that having messages be objects was the main thing
about Smalltalk. Similarly, it is tempting to turn RDB tables, columns, etc.,
into objects but the meaning of identity and suchlike are not the same. OO
systems are proved empirically; RDBs are proved mathematically. In RDB
everything is 2-dimensional whereas OO is N-dimensional. 10 DBAs
would create 9 identical designs from the same requirements which is not
the case for 10 OO people.

Thomas is not here to advocate OODBs or OR mappers or wrappers. Think
of the database as its own independent object apart from Smalltalk. Their
inStream application was constructed by analysing the business and then
designing the database. They did web pages in python at first (why -
irrational fear) and then rewrote them in Smalltalk.

He will spend lots of time thinking what is the least amount of typing he
can do to achieve a task. He tries to hire people for whom this is even more
true. In his system, database people are not separate from OO people.

The language should not control what you do. The business exists before
the technology and the database provides memory and longevity. Why use
stored procedures: because if people cannot grasp using stored procedures
then will they grasp the application server? Smalltalk understands an
object’s data being private; stored procedure access to the database’ data
makes its data private.

You do not need an OO language to think OO. C code in OpenLDAP, CAL
and idbLib/ctLib is very OO in style; you call to something via a handle
you are given.

An Semantic Persistent Store (SPS) is like a Smalltalk object because
• it is a subclass of a more general database (c.f. subclass of model)
• it can dehydrate and rehydrate itself: save to disk, etc.
• it is a state object
• it is a singleton: the SPS is the single instance of the system’s current

state
• it is reflective; you can ask it for its columns tables etc.
• it lives in a virtual machine
• it is cohesive
• it responds to messages
Lastly it reacts poorly to tight coupling: if you see objects with nothing but
getters and setters to let other objects act on its data, that is poor code. So
we should not access our database via direct SQL in our code.

60 Smalltalk Conferences from December 2006 to May 2007
Differences: everything is in fact public; if i know the name of a table, I can
probably access it and you can interrogate the system to get table names.

Java did not exist before ‘95. The databases it works with mostly with
existed earlier.

“Why stored procedures; I can create a view?” Views are select only,
tightly coupled and too simple. Triggers lack parameters and can only use
data in participating tables. Their system has only one trigger (for an
essential unfigurable correlated change that must happen).

He then demoed, showing the SQL test script his system generates (see
slides). Login creates a session key (he could do that in Smalltalk but that
guy in accounts who hacks in to check something; will they use ST?). The
transaction history is the most important thing in their system (and in most
financial systems). Thus all changes can be associated with history by
adding transaction history setting in the stored procedures; all callers see
the same API as before, just as in a Smalltalk object. Validation changes
are similarly changeable without changing the API.

They can use the transactions to reconstruct the past state of any object. By
adding a ‘start and end day balance’ they made such reconstructions in
reports run in seconds instead of in many minutes.

Their system has 613 stored procedures of which 76% are queries.

Many people think the web, or the mainframe-to-PC-change, caught
everyone off guard, forcing much coding to move business rules from one
location to another; not for them. The next disruptive technology will
prompt more such work, but not for them. Your business rules have to be
somewhere that will not change. In summary, treat your database as an
object; respect it as an object; you will be more flexible.

Q(Bruce) Are you saying that in MVC the M should be the database? (The
answer was a discussion that I missed; I think Thomas broadly agreed.)

Q(Davd Buck) Smalltalk handles scaling complexity? 20% of their system
is in Smalltalk but that is the most important part because the database
knows what happens but it does not know why. The Smalltalk knows why.
So it is critical. Thus the Smalltalk has a model but it is a transient model.
Whatever persists long term goes to the database. Their critical Smalltalk
apps each have a different model, one for what to buy, one for how to settle.

Q(Bruce) hard to change DB vendors? We never have; we trust we never
shall. We bought Oracle for a reason, to exploit its specific features not to
avoid them. DBs like languages are not created equal. Follow-up Q(Alan)
some domains sell to others who will run on their DBs? Thomas agreed.

Q(Andres) OO prevents small changes propagating everywhere? In a
transaction-processing system they find they can change how things are
represented to create new products. Example: Delphi went bankrupt in

Smalltalk Conferences from December 2006 to May 2007 61
2005 (declared over a weekend as usual), causing a worried management
meeting on Monday morning (they were $24 million exposed). They had
to change their system to pay 60% against invoices immediately, the rest
when Delphi paid; within 1 hour they had designed this change and were
in QA within 3 hours and were in production that evening.

Q. Using this with an OODB, e.g. Gemstone? That could be a problem for
them because they would need to write more code for all the non-Smalltalk
accesses. In future they will make their API an XML API.

Interfacing to C, Michael Lucas-Smith, Cincom
This is the thing he hates the most about VisualWorks. He has done far too
much of interfacing to C (he will also talk about C++). He will explain
where the rest of the world is, where we are and where we should go.

Why bother with C? Well a great many C libraries exist and it would be
crazy to rewrite them all in Smalltalk; we should reuse what exists.

The state of the art?
• intravenous C: recompiling the VM with the library included or as a dll
• fast foreign interface: telling the VM enough to interface natively, the

C artefacts may be modelled
• Inverted Interface: recompiling the library to support a specific API

which provides the meta-data you need to interface to it
• Pushing the inverted paradigm: Python only does this by automating

generating the stubs for this
VW has a C header file parser that uses K&R so usually doesn’t work. So
you must define the interfaces yourself (which is how almost everyone else
does it as well). VW has nice error handling to get the callback error raised
in the thread that called.

VisualAge uses pragmas to declare C to pool dictionaries.

Squeak, Dolphin and VW are similar (Squeak lets you write faster
generating C code and swapping to the new VM). GNUSmalltalk has a
very limited interface description (only a few basic types but this allows
most things) and you must modify the VM yourself. Understandably not
too much C interfacing has been done in GNU.

Smalltalk/X dynamically compiles C code into itself so you can write
inline C code in your Smalltalk method.

That’s how we do it. How do they do it. Python without boost is the most
primitive interface: call to get back chunk of memory. With boost, it is
much more powerful and in fact is the lead solution. Perl is like Python
without boost. Ruby is second worst, only above Java. It is like very
invasive GNUSmalltalk; you must use the inverted pattern but the Ruby
guys endure it and have done a fair amount of integration.

62 Smalltalk Conferences from December 2006 to May 2007
Q(Jim) do they fall behind an evolving library? Michael thought no, they
just check their code back into the project. (Non-open-source is a problem,
especially if they cannot get source. They can make a wrapper library.)

C# does less than you would expect. It does not parse the header file and
you must write for yourself the ‘use this dll and these are the entry points’.
There are some commercial programs that offer parsing of header files.

Java is by far the hardest. You must modify your original DLL, make an
interface class and another class that uses it. He is amazed that so much has
been integrated; comment on how many Java programmers there are.

Lisp is like VW and Vassili told him he had written a header-file parser in
a previous job but he could not find it, or any other. Scheme is like Lisp but
with different commands because they hate each other.

Forth, like GNU, has a limited description but they do have the first
actually-working header-file-parser. They always compile the library into
their VM.

COM and .Net? VisualWorks COM interfaces are very automatic, because
COM was designed to provide a lot of interface info by default. .Net in VW
subclasses DotNetObject which then transforms C-style calls to .Net calls.

Examples and Morals: don’t reinvent the wheel. LibXSLT is very good so
who needs a VW XSL library, especially as it was an old spec, since much
changed, which can parse little XML code you will find today. A lot of
open-source programs are cross-platform so you do not need to
reimplement them in Smalltalk just for cross-platform. VW uses subclasses
to hold the platform name (so must remember to throw them away when
saving in case the image is moved to another platform) or ExternalInterface
pragmas (better as you can now extend the superclass for a new platform
and dispense with subclasses).

Counter example: LibTidy cleaned up HTML to XHTML. It was not
available on Mac initially and when they finally got it working it was bad;
it only really worked well for Win32 and Linux. They would have been
better writing a Smalltalk version. Another LibTidy moral is don’t use C
interfaces. A python program called cwm transformed RDF to more RDF.
They had to make ExternalProcessStreams and use VW’s only gradually
getting better stdin/stdout story.

Don’t use C moral: LibASpell. You can make progress run much faster in
Smalltalk than in C if you get the algorithm right. LibASpell was oriented
to post-hoc checking and built an automata for each word, whereas the
ImitationLevenshteinAutomata (only implemented once before, by its
inventor) only pretends to make an automata to compare two strings and it
was much faster. It could have been implemented in C but was easier to do
in Smalltalk.

Use C moral: if a program works well on all platforms, use it. BerkelyDB

Smalltalk Conferences from December 2006 to May 2007 63
is a raw table implementation, offering various formats, btree, etc. and is
used in gmail and other places. After using this, they could inspect a 4Gig
byte array in Trippy and look anywhere in it with no delay. While doing
this, they found all kinds of bugs. FixedSpace fragmentation assessment
was reporting fragmented space as free space and tried three times before
failing to use it; they also fixed a GC malloc bug. When Oracle bought
BerkelyDB they changed every magic number in the header file and
Michael took several days to upgrade for it.

FastCMethodPointers: pulling a pointer out of a struct and calling it was
losing VM optimisations so they provided these to run as fast as optimised.

StrongCompositePointers: in a single-threaded call the VM stops when you
call out to C. In a multi-threaded model, call arguments are copied to fixed
space so they will not be garbage collected. However a non-argument will
not be so protected (see slide example) so StrongCompositePointers will
keep those referenced objects too.

Garbage killed it moral: every slow C interface he every created was
always slow due to garbage. LibSDL does two-dimensional rendering and
the interface creates lots of garbage. A streaming web server taking
thousands of requests per second will also create garbage; for ZLib they
created an flyweight pattern for the entropy pool creation which limited
garbage and accidentally gave better compression because ZLib is smart
enough to reuse the entropy pool. BerkelyDB was very fast at creating what
VW was very slow at cleaning up, so much so that they left it single
threaded; the process environment critical lock (prevents two processes
modifying it at once) was just too slow.

Lessons learned: if you could magically identify that you should create
stuff on the stack then you could solve this problem. Modelling C stuff as
classes makes programming easier but can create more garbage, Structures
that deallocate themselves in C when dropped in Smalltalk (Ephemerons)
kill the GC because the VM doesn’t know that this ephemeron is holding
onto 10Mb and needs to be prioritised (this is the same for Python boost
and everyone else).

Michael did what he needed: everyone else does this too. Michael listed
some of the many many C interfaces that interface to parts of the Windows
interface. If the VW C header file parser worked, this could be solved but
no human will ever do all for almost any library; life is just too short.

C is a partially context bound grammar. C++ is a completely context bound
grammar. GLR parsers alone can parse it and they are very hard to write. C
and C++ has application binary interface problems. VW and VA have to
make assumptions when it calls to C and you must compile the right
assumptions for the platform. He described graphviz which has a switch to
force alignment (to be fast on platforms that do memory alignment, its
suppliers say). And in C++ you have all these issues and all the better-
known C++ issues. Finally, the suppliers have learned their lesson; the
latest Intel 64bit C++ compiler has the same ABI everywhere.

64 Smalltalk Conferences from December 2006 to May 2007
Simplified Wrapper and Interface Generator (SWIG) builds language-
specific interfaced versions of C libraries.

Python.Boost is a better SWIG that runs only for Python and provides two
way calling - the C++ can call back into Python as well.

GCC-XML outputs an XML description of GCCs internal representation
so it is a way of dodging writing a GLR parser. Python has a new project
Pyste (pronounce as you judge best :-) uses this with Python.Boost to build
the fast foreign interfaces between Python and C++ automatically.

c++filt claims (and, from his quick examination, correctly claims) to find
the real method name from the symbol table of a C/C++ table.

He closed with his wishlist. Forth can do ANSI-compliant C parsing so we
can. Stack allocation would solve all our GC issues. All common and OS
libraries pre-parsed and delivered with VW would be a ‘Smalltalk is better’
point. Automatic generation of classes from structures would replace code
he has written over and over again; the more time we save creating the
interface, the more time we have to optimise it.

The current state is a barrier to Smalltalk adoption.

Q(Thomas) making the things you bring in Smalltalky (e.g. making things
into streams) is another issue; are there patterns? You could sometimes
recognise that a thing was a stream but not always.

Q(Bruce) how soon to get any of your wishes? The C stuff could be fixed
(e.g. by Pete Hatch) in a hop, skip and a jump. By contrast, the magic
interface to C++ could fall apart due to ABI issues.

Q(Thomas) easier debugging, e.g. of memory allocation; it can be hard to
see how the VM is setting up the arguments just before it makes the call.
Michael just uses the C debugger. Yann Monclair mentioned wrapping a
call to see what was passed and what was returned. Thomas stressed it was
the middle layer of the VM he found hard to see. Michael pointed out that
the marshalling stuff in the VM could be in Smalltalk. Michael wishes
there were no graphics interface code in the VM (recent mouse example).

eXtreme UI Testing, Niall Ross, eXtremeMetaProgrammers
I started by offering a picture of a spiky Stegosaurus as a (somewhat
questionable :-) symbol of agility. Stegosaurus’ walnut-sized brain and
huge spinal ganglia caused the dinosaur-hunter who first found it to think
it had two brains, prompting a wit to claim that

It could reason ‘A priori’,
but also ‘A posteriori’.
If something slipped its forward mind,
'twas rescued by the one behind.
And if in error it was caught,
it had a saving afterthought.

Smalltalk Conferences from December 2006 to May 2007 65
We’re all XP programmers. Most of us have been caught in error and saved
by running the tests. (And most of us, looking at some of the errors thus
revealed, have wondered whether our brains are the size of a walnut. :-) In
my keynote talk in 2005, I described how the conventional programming
philosophy (“Coding from a spec is like walking on water; it’s easier when
it’s frozen.”) was a doctrine for those who think they are clever (enough to
be right first time), whereas the eXtreme Programming philosophy (“First
make it run, then make it right, last make it fast.”) was a doctrine for those
who know they are not (likely to be right without trial and error). Test-
driven coding means that, like Stegosaurus, we can reason ‘A priori’, not,
as in the conventional case by thinking (wrongly), then coding (badly), but
in the XP way of expressing our thoughts as tests, then coding (better). We
can also reason ‘A posteriori’, not as in the conventional case by using the
system, then redoing it (dangerously, if at all), but in the XP way of using
the system, then running its tests while redoing it (safely and as needed).

So what about XP and UI Tests? Can UI tests play an ‘A priori’ and/or an
‘A posteriori’ role?

My first XP lecture was from Kent Beck in 1999. Kent’s dictum was
simple: ignore UI testing. “One of the great things about the web is that it’s
trained our users not to be so picky. They’re now accustomed to seeing UIs
that look like garbage and change without notice.” (I think Seaside may be
undermining this. :-) Some coding tools let you develop in a style like test-
first coding. The Refactoring Browser framework’s rewrite tool is an
example: the best way to develop a metacode pattern is through step-by-
step change of example code, matching on every change. SmaCC is
another: iteratively parsing further and further into examples is one way to
develop a grammar. So I tried to interpret Kent’s approach as meaning: use
GUI frameworks in this way i.e. after test-driven coding of the model layer,
add the UI via a GUI builder, without tests.

My first XP project had no UI tests - and had problems because of it. The
monthly delivery cycle was often fraught because we tested amongst
ourselves but demoed to others and while the model-layer always worked,
making sure that all the UI did was always a post-hoc mini-regression-test.

Abandoning the ‘rigour’ of Kent’s approach, can we add UI tests via tools?
Silvermark’s Test Mentor offers click and type test generation for UI’s built
from standard VW or VA widgets (it can need adaption to application-
specific UI frameworks). It locates widgets by name if they are named, or
by generated name if possible, or by the path from the enclosing subcanvas
or window when duplicate names occur.

In David Buck’s VWUnit, ApplicationModels are located by test-supplied,
test-specific name. Widgets are located by relative location (to others
and/or within bounds) and/or name/id. (See his talk at Smalltalk Solutions
2003. Also c.f. some similarities of style with widget location and
manipulation in David Shaeffer’s Seaside Testing Framework; see David’s
talks at Smalltalk Solutions 2005 and at ESUG 2005.)

66 Smalltalk Conferences from December 2006 to May 2007
James Foster has written extensions to WinRunner. WinRunner offers click
and type test generation for a fixed (inaccurate) view of a Smalltalk
application’s UI. Its widget positions are fragile and its widget names are
not unique. James’ add-ons help you tweak your application to fit
WinRunner’s expectations better (see his talk at Smalltalk Solutions 2004).

My experience of using these tools is very limited (limited commercial
experience of TestRunner, even more limited hobby/open-source use of
VWUnit, none of James Foster’s work) so the following remarks should be
read with caution. I find them good for retrofitting UI tests to stable
systems, and for automating acceptance-style tests, etc. They are also
useful as examples of how to write widget-driving code. But somehow they
lack the XP test-driven feel. In ‘A posteriori’ use, the tests tend to be brittle
under refactoring. This brittleness effectively discourages ‘A priori’ use:
you tend to build a stable UI then retro-fit its tests (and it’s hard to click a
not-yet-existing widget to generate a test :-).

With the above review done, I got down to the meat of my talk. The talk
could have been titled ‘Using Method Wrappers in Tests, with UI-oriented
examples’ as method wrappers are key to all its patterns. I first reviewed
wrappers as not everyone is accustomed to using them. A method wrapper
is the decorator pattern, applied to the values in Behaviour’s ‘methodDict’.

MethodWrapper classInstVar ‘methods’ holds a dictionary of integer-
keyed templates. Each template is generated by the first request to wrap a
method of that number of args. Instantiating a wrapper copies the
(appropriate arg-number) template, rewriting its literal placeholder to self.
(If the args are non-zero, the template also has another placeholder literal
which is rewritten to Array.) If the dialect allows CompiledMethod
subclasses to have named instvars (VW, Squeak) then MethodWrapper
subclasses CompiledMethod. If it does not (VASmalltalk) then (following
John Brant) my preferred implementation is to make MethodWrapping
subclass CompiledMethod while MethodWrapper rewrites the literal to
itself in MethodWrapping. (So in VASmalltalk, the diagram below would
show aMethodWrapping in the methodDict. Its compiled code literals
would contain aBlockMethodWrapper, invoked when it was called.) This
approach maximises shared code across dialects.

Wrappers modify method execution: they may run code before and/or after
the wrapped method, or instead of it (perhaps only if a condition is met), or
constrain its execution in some way, etc.

My earliest UI test ideas were to get at widgets by making UI operations

MyClass
methodDict

#other:select:or:
#toWrap:selector:
#anotherSelector
#...

aCompiledMethod
aBlockMethodWrapper
aCompiledMethod
...

clientMethod
aCompiledMethod

Smalltalk Conferences from December 2006 to May 2007 67
return things or by finding them in system caches or allInstances pseudo-
caches. This soon reached its limits - unreachable popUps, unstable delays,
complex UIs, etc. - and I gradually switched to using method wrappers.

Use wrappers to suppress side-effects, e.g. ignoreHelpAround:, to get
and set values e.g. setup:inClass:toReturn:around: and (c.f.
Mock Objects pattern) to prevent UI-launched tests going too deep, e.g.
executeRefactoringOfSameClassAs:invokedDuring:, and to
handle popUps and manipulate UI objects generally. Method wrappers
naturally separate test and normal modes of use. In Smalltalk, wrappers are
how to achieve what in other languages needs ‘policy’ code.

My next pattern was to derive UI tests from model-layer tests. The UI-layer
and high-level acts on the model layer in a way very similarly to the way
in which top-level model-layer tests (the most powerful and useful tests)
act on the model layer. In normal use, the model layer gets its values from
the UI and returns its results to the UI. Under test, the model layer gets its
values from the test and returns its results to the test. We can therefore
complete the commutative diagram ...

... by creating UI-layer tests as subclasses or delegates of top-level model-
layer tests, e.g. SomeFunctionTest subclass: #SomeFunctionUITest.
• Inherit model-layer tests as UI tests.
• Override value setters/getters to set/get values in/from widgets.
• Override operation invocations to press buttons, select menu picks, etc.
This lets you add UI tests with little (and reusable) extra code. The tests use
the same logic as the model layer ones, so only UI specifics need extra
understanding.

I walked through a simple example, CascadeTest and its subclass
CascadeUITest; CascadeUITest subclasses CascadeTest, inheriting its
tests, almost all without overriding. Utility method overrides change test
set up / execution to UI test set up / execution. Instead of presenting a
subset of source code to the refactoring, they select it in a window. Instead
of executing a refactoring, they find and invoke an item in a menu. A
wrapper is key to grabbing the results just before they compile (you do not
want to effect them but you do want to test invoking from the UI with no
UI-related defer option set). Another simple example is SplitCascadeTest
and SplitCascadeUITest (see the Custom Refactoring project’s CS11 RC3
release for VW 7.5 and earlier, and VASmalltalk 7.5.1 and earlier).

UI layer

Model layerModel-layer test

UI layer test

68 Smalltalk Conferences from December 2006 to May 2007
Such UI-test-first code can help ensure the right order of adding new UI
elements. For example:
• In VW7, all RBs become unusable if the UI refers to missing actions,

forcing you to fix the RBCommand entry in the debugger (or in Trippy,
whose class browser remains usable)

• In VA and older VW, the RB hides menu items that it thinks are not
implemented. This was an optimisation of John Brant’s, adapting
common RB UI to multiple platforms some of which did not have all
its model features implemented, but it can catch the XP test-first purist,
who adds the code to the UI first and then cannot find it.

I showed example code of how tests protect me from adding such changes
in the wrong order and so falling over the same trivial and tedious error
again and again. They capture and enforce my safe UI coding procedures.

My final pattern was about how to test a UI that runs in a different process
from its model or in multiple processes; the former is a common situation
and the latter quite common enough. In ordinary SUnit, tests that fail
outside the test process run green but raise walkbacks. This is bearable
when developing tests, less so when running long test suites: who wants to
come back to their computer after lunch, or next morning, and find
thousands of green tests and a debugger notifier popped up by - well, I
wonder which test did that? It’s another demotivator for writing UI tests.

My cross-process test utility makes such tests safely runnable in suites. I
walked through its code, which is straightforward. CrossProcessTestResult
overrides and refactors runCase: aTestCase so that the method it calls
runCase: aTestCase forBlock: aBlock can also be wrapped round
any block spawned by the test. The top-level call installs a cross-process
test strategy before running and waits (on a ProcrastinatingSemaphore,
which can have negative excessSignals value) till the sub threads complete.

The chosen strategy wraps all test-launched other-process blocks in a
runCase:forBlock: call by applying a method wrapper to the key
spawning method: Process class>>forBlock:priority:. The
CrossProcessTestWrapper passes the first-argument block to its strategy.
valueWithReceiver: aClass arguments: args
^clientMethod
valueWithReceiver: aProcessClass
arguments: (testStrategy wrapBlock: args)

The CrossProcessTestStrategy instance applies the test handler.
wrapBlock: anArray
self isUnderTest ifTrue:
[| aBlock | aBlock := anArray first.
anArray at: 1 put:
[[testResult runCase: testCase forBlock: aBlock.
subthreadCompletionSemaphore signal]
on: Process terminateSignal
do: [:ex | subthreadCompletionSemaphore signal.

ex pass]].
subthreadCompletionSemaphore unsignal].

^anArray

Smalltalk Conferences from December 2006 to May 2007 69
The strategy controls wrapping and signalling of (normal and forced)
completion, and how to recognise a test-spawned process in the dialect.
Where the dialect supports stack searching (e.g. VW, VA), we check
whether the stack calls runCase:forBlock:. (Where a dialect does not,
the strategy must tweak a spawned process’ value - e.g. its name - or
capture it to a list. This has been coded and works but is clunkier.) The
strategy also sets the timeout delay of the ProcrastinatingSemaphore (a
timeout is essential during development and prudent during production; if
threads spawned by your test never end, neither will the test unless you
have a timeout :-).

Specific test cases can override the default TestCase-extending strategy for
various reasons:
• The typical UI test opens a window, invokes operations on it and closes

it. In VW, a test closing a window goes through unscheduleWindow
which does not terminate the WindowManager process; the next UI
cycle does that when it sees that the manager has no windows. So if
your test was launched from a test UI (the usual case) then the process
waits for the test UI to update before terminating and the test waits for
the manager’s process to complete before updating its UI - until the test
timeout resolves this deadlock. The wrapProcessesForUI strategy
wraps unscheduleWindow with an afterBlock to force the check:

wm hasWindows ifFalse: ... wm checkForTerminate ..

• Blocks can be created in a test and added to an event queue running in
a process not spawned by the test; in VW, block-holding Actions are
used in UI code. They are queued by DeferrableAction>>block:.
This can be wrapped to ensure that DeferrableActions created by a test
are also run wrapped in its handler if the relevant strategy is used. (A
trivial refactoring override of DeferrableAction>>message: to
call block: is included in the VW implementation to catch all cases.)

• Special strategies can help debug complex multi-threaded applications
once problems are found. These develop naturally during debug work
and capture debug knowledge far better than the Transcript show:
code that often disfigures tricky debugs of multi-process systems and
is lost after every debug, to be hacked back in at the next one.

In summary, UIs can be tested in fully XP fashion, i.e. ‘A priori’ and also
‘A posteriori’. Method wrappers enable such UI tests. The same tests can
drive model-layer coding and UI coding. Tests running across multi-
process UI and model can be added to refactoring suites. Simple examples
are in the Cincom Open Repository in the SUnitUtilities bundle or the
RefactoringBrowserTests bundle. (N.B. not the old ‘Refactoring Browser
Tests’ bundle. Use with appropriate ‘Tools-Refactoring Browser’ version.)

Acknowledgements: John Brant and Don Roberts provided the RB. John
provided Method Wrappers. John’s tests are, or were prior versions of, or
inspired, several basic wrapper examples. I pair-programmed with
Katerina Barone-Adesi and Adriaan van Os on tests using the subclass
pattern. Michael Lucas-Smith pointed out user interface issues for the

70 Smalltalk Conferences from December 2006 to May 2007
cross-process pattern and Reinout Heeck pair-programmed with me to
analyse them and to write the ProcrastinatingSemaphore.

Q(Giorgio) The subclass-model-test-to-UI-test approach will tend to add
all values to the UI widgets in a fixed order for all cases. His UIs may have
40 widgets and the model state updates as a value is added to each one.
Different orders of adding may give different results and this needs to be
tested. Boris suggested that the UI test’s utility method that overrides the
model test’s high-level setter could be further overridden to rerun the test
for all possible orders of adding. I agreed; I think a subclass of the UI test,
(use a subclass to distinguish the run-all-orders case from the run-single-
expected-order case) could override an appropriate method to effect
running every test in every order.

Q(Peter) You can makes MethodWrapper work as a subclass of
CompiledMethod in VA by making its clientMethod an indexed instvar,
dropping the MethodWrapping (of course, specific wrapper subclass
instvars must also be indexed). At first glance, I prefer John Brant’s
approach: it keeps MethodWrapper subclasses’ code identical across
dialects, and indexing errors could lead to horrendous debugs. Peter and I
will exchange versions and review.

I invited discussion whether agile programmers should test UIs at all, and
if so, how? There was much discussion. Most had survived so far while
doing very little but, like me, several had experienced problems and delays
as a result. Some plan to trial the ‘test-driving via UI test subclass’
approach. Yann Monclair, like me, has looked at using TestMentor in
Kapital and noted the need for adaption to the Kapital UI framework. He
mentioned its lack of cross-window drag-drop support.

Application Frameworks: an Experience Report, Arden Thomas,
Cincom
(I only caught the first part of this talk.) Arden has been in Smalltalk since
the 80s. At one point, he worked for a Hedge fund in Connecticut and in
fixing things he needed an application framework. He was not authorised
to build one but he was authorised to buy one.

Frameworks should make things easier, simpler and clearer. It should also
not make it difficult to go beyond the box in which the framework makes
things easier, simpler and clearer. In the early ‘90s, Tim Howard wrote a
book that explained DomainInterface. Steve Abel built the ValueInterface
(inspired by the slamdunk architecture). These framework both had a
single domain and hid things. ValueModel put additional instance variables
in the builder so the ApplicationModel was not cluttered by them.

A ValueModel is a model from which you can get information via a simple
interface (value, value:) with dependency notification. The value, value:
calls can be to blocks that recompute, to buffers, to many things besides
mere data holders, and can be to other value holders and so on (“You can
solve any computing problem by adding a layer of indirection” :-).

Smalltalk Conferences from December 2006 to May 2007 71
ValueInterface extends the ValueModel idea to ApplicationModel. This
makes it easy to connect widgets to the domain and to react to domain
changes. It also makes it easier to reuse applications. (nameChanged will
be run when you change aspect name - issue when refactoring?)

The void object is like nil except that it disregards messages it cannot
understand. (Niall: this is the message-eating pattern of which there is
much debate whether it is good or bad.)

BoFs and the Coding Contest
Smalltalk Industry Council BoF, Georg Heeg, David Buck
STIC’s task is to create and increase awareness of Smalltalk, to promote it
as the superior technology for the construction of IS, to attract skilled
human resource to it and (less important to Georg) to support creating
industry standards.

Q.(Bruce) STIC should get VW, VA and gemstone to standardise simple
things like files, sockets and so on.

Board: Gemstone (Monty Williams), Cincom (Jim, Suzanne, Alan and
Joy) and Instantiations (Eric Clayberg, John O’Keefe and Mark Johnson).
Bob Nemec has been executive director; Georg now takes over.

There are user groups (ESUG, CSUG, Frankfurt User Group, etc.) which
organise the community. STIC’s task is to care about strangers and to
promote awareness in the industry. STIC organises Smalltalk Solutions and
provides web sites.

“Smalltalk is greater than this R stuff”: the ruby presenter.

Bob’s aim was to move to where STIC could advocate Smalltalk from a
solid base. A year ago the finances and the websites were in a poor way.
(Treasurer’s report: took a year to get sorted.)
• Mark Roberts worked on the Smalltalk central site.
• The Smalltalk Solutions site was to be a place for conference archiving.
• Bob Cherniak has a site where you can renew membership.
Chris Cuttington (a one-year Squeak newbie) set up a booth and is setting
up a Seaside hosting site.

Q(Niall) include registration with conference? Requested last year, just
doing registration for this year was so challenging that it was not done this
year. They will try to do it for next year.

A contribution to Smalltalk productivity awareness is the talk available
from Instantiations site. An existing Smalltalk project was asked by their
management to convert their system for a paltry sum; Instantiations
showed metrics that showed the sum was an order of magnitude too low,
using statistics from real projects.

72 Smalltalk Conferences from December 2006 to May 2007
Lines per function point: a spreadsheet may have 6 loc/pt, Smalltalk has
21/pt, C++/Java has 53. A web based Smalltalk app went from 50 to 600
fps over some 8 months. he also looked at fp to effort over time.

Standard code metrics show ratios of elapse, effort and size (loc). Real data
for actual projects produces a model for Smalltalk and then the equivalent
in Java and other languages. In Smalltalk, it takes 50 - 100 months of effort
to build a 3000 fp system. Similar size systems in Java take 200 - 300
months. The talk also shows Smalltalk, Java and Cobol productivity rates.
Smalltalk has gone as high as 100 function points per month.

Smalltalk systems cost between $185 and $536 per function point. Java and
C++ cost more than $1000 per function point. The data was displayed in
tables. Smalltalk programmers are not specially expensive; there are plenty
of .Net and Oracle programmers commanding $200/hour. The cost rations
were serious.

Schedule overruns cause half of project cancellations. A short planned
schedule in a language whose productivity does not allow it leads to poor
quality which leads to a long actual schedule. Smalltalk has 0.14 defects
per function point, whereas Java has 0.50 per function point. (Generally,
statically typed languages are markedly worse than dynamically typed
languages.) Figures for typical defect introduction and solution rates imply
that converting a project will cost the same or more as building the original
cost of building the Smalltalk system.

Q(James) over the last year there have been fewer conversion jobs? He
replied that they are now offshored so might not be seen. Suzanne
mentioned that she and James have helped to place 24 Smalltalkers with
customers and she is definitely seeing less conversion. Vicky has also seen
fewer conversions.

Q. Figures on Ruby? “Ruby is a gateway drug to Smalltalk?” is what the
Ruby guy said. Unlike Java, enterprise customers will not deploy in Ruby
and that means Smalltalk has a chance. However this is because the Ruby
technology is still very immature, which will not last that long.

Bob noted that in 1997 he saw companies switching to Java because they
perceived it as less risky. He hoped these numbers would prompt wiser
decisions today.

When David Buck sees companies perceiving Smalltalk as risky they say
they cannot find Smalltalkers and they cannot find training and if they
found training they could not persuade their staff to be keen about it
because they do not see Smalltalk as a good thing on their CV. There was
discussion of how STIC could help make training available, and known to
be available. David did a video last year on developing in Smalltalk.

Q. Just now the word in the Java community is that Java is the modern
Cobol. People are looking for the next thing.

Smalltalk Conferences from December 2006 to May 2007 73
Jim mentioned that his blog started with 12 views per day but he now gets
15000 views per day. This is done by providing something every day. An
article every six months is no longer very influencing. Example
applications on the web are useful. BottomFeeder gets 200++ downloads
every day. The wikinomics talk was about how the right context becomes
more than what any one person can do.

Email stic_board@heeg.de with your offers and suggestions. www.stic.st
is where the new entry point site. Old sites (e.g. whysmalltalk and other
stic.org etc.), are proving hard to persuade to redirect. (.st is the domain
name of an island. I suggested it was the island from which the Smalltalk
balloon took off. In fact it is the island of San Tome. Suzanne volunteered
to spend a holiday time there to establish our right to use it if necessary . :-)

Q. Still use source forge? Yes, source forge is an OK location for Smalltalk
projects.

Monty has lots of customers who have found Smalltalk ‘sticky’ to get rid
of; one CEO finally announced, after 200 years of effort trying to rewrite
in Java, “If I ever hear about this conversion again I will fire everyone.”

Georg won a free STIC membership for a year long ago and heard nothing
from STIC that year. Should he email once a month? No, email when the
website submission process changes, when STIC has a list we might want
to add to, etc.

Q. Move conference? It is under discussion (and email Suzanne with
suggestions if you know one that would be a good fit).

GemStone Bof
GemStone 64 release 2 has just shipped. It supports Seaside i.e.
continuations (in GemStone 64 only, not in GemStone 6.1.5).

The GBS 7.1.1 release improves performance in object allocation (when
only single objects, not big trees, were involved, it reduced allocation 90%
and up speed by 30%) and large integer hashing (they gained several orders
of magnitude improvement by implementing their own LargeInteger hash).
Object identities are all ByteArrays not LargeIntegers (no math is done on
them so no need for them to be integers; they are read from C buffers so it
is quicker to read them as ByteArrays than to compute LargeIntegers).

The next GBS release will have single-round-trip: forwarder-send has one
trip for execution, one to get the result and one to get the dirty objects; it
will become a single trip, a big win if network latency is poor. evaluate
will also benefit and the lazy versus immediate faulting decision is
removed as there will be no difference. Concurrent traversal buffering
(server can fill buffer as client is processing it) will speed up processing.

They will move all this to their VA version; they appreciate they are a little
behind there just now but they mean to support their VA customers fully
and they will catch up.

74 Smalltalk Conferences from December 2006 to May 2007
They are also looking at forwarding messages on the server, not understood
messages being forwarded etc., in ways that are faster than the uncached
forwarders being used for this today.

Q (David Buck) Going to server during C callback from OS in VA: get
error if waiting on a semaphore so cannot go to Gemstone server? Yes, it’s
a tough problem; they can only workaround today but they would love to
have better solution.

James Foster: Gemstone 64 version 2.2 has continuations (and SUnit tests
for them), letting you run Seaside. Seaside 2.6 has been ported into the
Gemstone server (see James’ presentation on Wednesday at 11:00). Some
character-encoding that HTML needed was slow in Smalltalk so they
added primitives to do that. They also added an underscore operator so that
Squeak source (old source - Squeak has now discarded it) can be easily
ported. You can open a browser from Squeak on Gemstone (it’s a basic tool
at the moment; they hope the community will develop it). Monticello has
been ported so you can use Gemstone as your Monticello back-end.

For a while, they will offer a hosted sandbox of the 64bit product at
seaside.gemstone.com; ask them for an account. This is for 32 bit
customers who do not want to go to 64 yet but want to explore it.

Kernel modifications can be tricky so they offer session methods: they only
show up in your session, not in other people’s sessions.

Q. Squeak or VW as preferred environment for Gemstone + Seaside?
James would see Gemstone as being preferred :-). If you have VW or VA
already, you will want to stick with those mature tools. Otherwise, choose
as you wish. Of course, Seaside offers a web browser; you could use that.

Monty Williams: for years people have found Gemstone too expensive.
Seaside under GLASS offers a Gemstone/S web version with 64 million
objects, 1GB RAM and 4GB disc on Linux with squeak tools (for web
clients only) for free. (If you want support, that would cost, of course.) You
can go to the next stage of $7000 per year for 256 million objects, 2GB
RAM, 64 GB disk with all clients and 20 hours support/year. When that is
too small, you become a standard customer running on Solaris, HPUX or
AIX and as large as the product allows. You can start by logging in to
seaside.gemstone.com.

Q. Documentation? Seaside docs are on the web. You build your app in
Monticello then login to seaside.gemstone.com and suck it out of
Monticello. Gemstone docs come with product. (See the Wednesday talk.)
Using Gemstone in general is complex because there are many things you
may want to do. Using Gemstone in a seaside app is a much more specific
case and you can set it up quickly.

Q. This is exciting as everyone else has to come up with replication
mechanisms to SQL or whatever whereas this maps directly and naturally
and is incredibly scalable.

Smalltalk Conferences from December 2006 to May 2007 75
Q. 2 connections for free, 10 for $7000/year means...? It is how many VMs
you have connected to the DB, i.e. how many Gems (not counting garbage
Gem, symbol Gem, ...). Thus you can have many web browsers being
served by one Gem while another serves developers upgrading things. You
can run at 1-5 requests per second and manage in the free regime. They
trade RAM for disk to handle the 500+ objects that a Seaside hit creates.
(In defining the proposal, they avoided Gemstone-specific terms for wide
comprehensibility. Alan pointed out that ‘database connections’ sounds too
like ‘connected users’ so recommended they call it ‘server processes’.)

Q. If I own a Gemstone/S can I use the free to distribute? Yes but as there
are no VW or VA clients in the free; it will not connect to GBS.

Q. Web client means ...? Gemstone has sockets, Anything that can listen on
a socket, i.e. web browser, RSS aggregator, etc. They support swazoo, fast
cgi.

Q. Modifications to Seaside? They subclassed WASession to modify only
the internals of managing continuations so porting to future versions of
Seaside should be trivial.

Q. Motivation for this? James has been pushing this for two years, along
with Monty and others. They persuaded management that Seaside provides
a way to get new people in easily and it is a perfect match with Seaside
since transparent persistence is exactly what you need to take off. Bruce
Badger’s OpenSkills work was the start-point and an inspiration.

Q. Chances of a windows version of Gemstone 64 v2.2? Bring your cheque
book to that negotiation. Or run in virtual machines; VMware will run
Gemstone on windows.

They are new to Seaside; help from the Seaside community on
seaside.gemstone.com is welcome. Please try it out before the official Q3
release. Existing customers who have a 2.2 licence can download it today.
GBS for VW is available today; otherwise it’s topaz today (so just like
Ruby :-).

Seaside BoF
Seaside is the beach on the Smalltalk Island.

Projects: load balancer? The ones that exist work fine with Seaside. What
is needed is a manager: you stop taking requests and wait till the sessions
die and then do this maintenance and then go back in service.

Seaside is easy to learn but Carl has found scriptaculous and even Seaside
Asynch harder to grasp. The Seaside asynch stuff has a better API and fit
but does less: if you write the component carefully, it is easy to then turn it
into an AJAX component. Scriptaculous is now stable but awkward; the
awkwardness could be fixed.

What other Javascript libraries should we use? Tons but there is little you

76 Smalltalk Conferences from December 2006 to May 2007
cannot already do with scriptaculous and asynch so if someone chooses to
make others available to Seaside that is their call.

Asynch is the first thing to look at because it is easier to understand. Use
scriptaculous for what you need it for. Mixing these and with yui is no
problem; Boris has found it no problem provided the libraries all load
unconflicting. Seaside asynch uses the same render method as the standard
Seaside so you can easily just change the calls. Seaside is stateful so you
(remember to store the state and) have no problems.

Carl Grundel presented Run BASIC. Liberty BASIC was built in Smalltalk
in 1992. Run BASIC is Liberty BASIC for the web. It is ‘Seaside without
Seaside’, a Seaside app that lets you write web apps without knowing
anything about Seaside. Its market is hobbyists, small businesses, students.
The site takes you through simple examples programmed in Basic; you see
the page and inspect the code that creates it as you step through it.
Examples include a number guesser, a sine curve drawer, a hangman game,
a calculator and a version of Tiny BASIC written in Run BASIC. Other
pages let you write and run your own code, email a friend about it, save and
load your projects and publish them to be served on the web.

They don’t use continuations so could make it more performant if they
could switch components off. They could use unregistered SeasideAsynch
to suppress them.

They began adding subroutines to set CSS in odd moments over the past
two weeks.

Q. How does the Basic create HTML? Everything maps to an object model;
the program inserts their renders into the correct places in the component.
The background (i.e. the Basic) program runs in its own process and when
it finishes it waits on a semaphore until the next event. The foreground
process is signalled whenever the background waits and renders the page.

After this demo, we discussed Seaside commercial use. One person is
working with Amazon, one on an academic archive, one on document
management for a company, and one (Boris Popov; see his talk) on a
financial application. They are seeing attention from outside the Smalltalk
community.

Q. Do clients complain you are not using something standard? No, the
customer is our own company and they just want it to work.

Q. How to tell teams that use DreamWeaver to use CSS? If the developers
are very unhappy with CSS then that is a problem but CSS is now mature
and we should use it. Yes, sometimes no more templates scares them

Q(Niall) Present this at web designers talks? Avi’s web heresies talk is
presented at such conferences. Georg suggested going to the conferences
that Ruby on Rails visits.

Smalltalk Conferences from December 2006 to May 2007 77
Boris showed his application again. Marketing: mention that David Shea,
Mr ZenGarden, liked to work with you and Seaside. Boris intends to put
the demo on the web to let the marketing department show customers how
good they are but other people will be able to go to it to show how good
Seaside is.

WATask does not render; it handles flow of the application. It is a crude
version of web transactions.

Q(Bruce) Release S3 code for others to use? Yes, I can publish it to Store.

Q(Bruce) Can you set cache expiry in headers? Seaside’s default URLs are
not really meaningful. You can modify the URL in your component so it
gets a meaningful URL.

Q(Bernard) Content management system for static pages? Can do but it
would be overkill.

Q. Have a canvas that draws in morphic? The renderer does make
assumptions about the HTML that is generated. If they are semantically
aligned then that is OK; otherwise there might be issues. The question is
more what HTML and AJAX can do: windows with overlaps and drag and
drop is the kind of thing a desktop will have that web libraries would be
needed for.

Coding Contest, STIC
This year’s contest was run by Andres Valloud, last year’s winner.

The first round was to write a program to play a simple memory game. Let
an even number of cards, marked with symbols (Andres used the various
icons in the VW UI) be face down on a table. The player can turn over pairs
and if the two cards have the same symbol they can be removed from the
game. Unfortunately, the player has a limited memory and can only recall
10 previous cards they have inspected. Andres implemented this situation
as a computer with 10 slots, registers for the turned-over pair and one
register to move things around. We had to write a program to drive his (via
HTTP protocol) to a complete solution (all cards matched and removed)
with minimal value for some combination of cycles and instructions (we
had to deduce the exact formula he was using). This made quite a good first
round as it was a task that was easy to do but hard to do well.

The three finalists were myself, Michael Lucas-Smith, and Leandro
Caniglia and Valeria Murgia acting as a single entry pair-programming
team (they do all their coding together so Andres allowed them to compete
together; this gave them an advantage but, as you will read below, the result
of the final was influenced by other impacts more significant than this :-).

Andres gave us a new program, driven by the same interface, and we had
to improve our submissions to win against the changed - but he was not
telling us how - program. We started, and started encountering oddities. At
first, Andres assured us that surprising effects were to be expected but

78 Smalltalk Conferences from December 2006 to May 2007
gradually it became clear that we were all encountering a tendency for his
program to run for a while and then suddenly decide that it didn’t know us
and it also became clear that this was a surprise to Andres. The final halted
while he tried to debug this. Michael, recently arrived from Australia,
caught up on sleep, I tried to help Andres debug, and Leandro and Valeria
sensibly tried to understand what the intended surprise was from the scant
data they could get before their runs hit the unintended surprise.

As usual, the problem was blindingly obvious after it was eventually found.
Andres had run a final ‘check it all works’ test in his image before saving
it and the workspace he ran it from was still open and VW’s ‘automatic
workspace variable declaration’ had caught him. (I always make myself
write the temps explicitly in workspace scripts for precisely this reason.)
His final test’s server was held in the workspace’s variable and so not
garbage collected, so his image was offering two servers on the same
localhost port. As we ran our code against his image, our program started
talking to one server and then at a random point in the run suddenly was
routed to the other, which was not in the correct state for it.

By the time this was found and new images distributed, the final was more
than half over. We restarted and tried to work out what the intended change
was. Leandro and Valeria got it right: the player’s limited memory had now
become unreliable, so at random intervals the slots no longer contained
what they seemed to do (i.e. the player could no longer recall where the
card was). They built a version that could handle this and complete in a
reasonable time. Michael and I both started by guessing wrongly that
finding cards had just become harder and that if the player kept seeking a
slot they would find it. Michael submitted a program based on this which
hung forever in the decider run. I realised shortly before the bell that this
could not be correct, so junked it, instead coding something that was not so
much ‘the simplest thing that could possibly work’ as ‘the stupidest thing
that could possibly work’: it remembered nothing but just turned over cards
randomly till at last it completed. It did not hang - but took so long to finish
that it made little difference :-) - and as my code was still running my over-
thorough ‘prove it does not hang’ test when the bell went, technically I did
not submit at all. Thus Leandro and Valeria won, and I drew the tertiary
prize: run next year’s contest. :-)

Overall the final was very enjoyable for the contestants, who smiled when
the contest manager, rather than the contestants, became the one who had
to solve a problem to a tight deadline, but I fear it was less fun for Andres;
I feel for him, having prepared such an impressively professional contest
program to be caught out by such a trivial but hard-to-find bug introduced
at the very last minute by his own ‘let’s just check it one last time’ test. :-/

Contest Assessment: it is good to have a challenge that is easy to solve but
not easy to solve well, nor with a single obvious solution strategy, and
Andres’ task was certainly that. I’m less sure about what one might call the
Nebuchadnezzer approach to task definition: find the definition of the
problem as well as the solution. True, the real world often offers problems
where the definition of what precisely you have to optimise, or what a

Smalltalk Conferences from December 2006 to May 2007 79
changed program to which you must interface is now doing, is inadequate
or wrong or non-existent. Equally, in the real world, things are rarely pure
black boxes: it was not clear to me whether we were expected to decompile
the challenge program or not. During the first round, after creating a
respectably-scoring contest program, I did but solely to verify my theories
about the scoring algorithm. During the final, I did not: I knew I had not
deduced what the change was so did not feel entitled to ‘look in the back
of the book’ to check.

Other Discussions at Smalltalk Solutions
David Buck has a customer who wants some DLL libraries wrapped in
DLLCConnect. He also described a Gemstone system whose managers
insisted that the audit trail be in an RDB, prompting three resignations and
thereafter being an immense drag on development. Simberon is putting
Smalltalk courses on CD; these will be available in the Autumn.

Securitas is a Swedish security company active in all Europe, also the UK,
but only the Benelux site where Joost Bossuyt and Wilm work uses
Smalltalk. They use VA (they have looked at VW porting but the VA cost
model - pay per development seat, not a percentage of revenue - suits their
development style better). They are interested in Smalltalk training.

Will Loew-Blosser, who works at Cargill, is interested in porting from VSE
to VW. The approach used to port ObjectStudio into VisualWorks may be
worth reusing. Code exchange and discussion happened at the conference.

Boris Popof works in Vancouver at DeepCove Labs which is part of
PacNet. PacNet’s Europe division is based in Shannon and DeepCove Labs
have had remote sessions (long timezone gap) to them to support their
Smalltalk fat client; the database is in Vancouver and the fat client is both
there and in Shannon. (See his talk for details of the application.)

Peter Hugosson-Miller works at CDC in Stockholm on a Smalltalk system
for warehouse management, helping supermarkets ensure they always
have stock. A team of 6-7 has been whittled down to just him and for the
last five years management have talked of ‘will be rewritten in (language
X)’ but as the system has 60 years of effort in it, this may never happen.

Chris Cunningham is a Squeaker who is targeting Java programmers who
are getting disillusioned and want to try Seaside as something new and do
their own programming. In addition, I suggested web designers who want
to put behaviour behind a customer’s website and want to pair-program
with someone who can teach them something quick and productive. One
might seek such people at web graphics design conferences.

Yann Monclair’s name is actually pronounced Ian Monclair; he’s a Breton
and his name is the Celtic name Ian, using an old Breton spelling. Just like
me, Yann is accustomed to being addressed by various pronounciations of
his name and happy to accept whichever is offered until/unless people ask.

80 Smalltalk Conferences from December 2006 to May 2007
Follow-up Actions
Niall To Do:
• Send notes of the VSE-to-VW porting discussion at the Cincom

Smalltalk User Group to Will Loew-Blosser at Cargill.
• Send VASmalltalk Method Wrappers code to Peter and David.

Conclusions
A thoroughly upbeat Smalltalk Solutions:
• All three Smalltalk vendors are expanding and confident.
• Several new-entry-seeking initiatives: GLASS, SAP/NetWeaver, etc.
As I noticed last year, a Smalltalk-oriented evening event was what we
always had in 2005 and earlier but lacked in the 2006 and 2007 ‘Smalltalk
Solutions within a larger conference’ arrangements. The evening sessions
in the noisy nearby Irish pub were good, but I missed the usual early
evening reception or buffet or event as a forum for industry gossip.

VASmalltalk User Group Conference, Frankfurt, May 24th 2007
Joachim Tuchel welcomed everybody to the conference for ObjectFabrik.
Nicholas Gilman did the same for Instantiations, stressing Instantiations’
commitment to VASmalltalk in Europe and to keeping it a living IDE.

SmallTalk Industry Council, Georg Heeg
STIC’s purpose is to increase the awareness of Smalltalk, and create
awareness where it is absent. We need to recreate the old awareness, to
reinstantiate it (maybe the company could call itself ‘Reinstantiations’ :-).
STIC also promotes recognition of Smalltalk’s superiority, attracts human
resources into Smalltalk and supports standardisation between dialects.
Since 2001 (when it was held in Chicago), STIC has organised the annual
Smalltalk Solutions. STIC works with user groups like ESUG (this year the
ESUG conference is in Lugano, Switzerland), CSUG, Frankfurt SUG, etc.

Cincom, Gemstone and Instantiations are the three main supporters of
STIC. Locate STIC websites from www.stic.st (these websites are being
organised; they are not so at the moment). Please join ($40/year). (If you
want to do more than join, STIC is looking for a secretary.)

In future, STIC might support Smalltalk utilities (STIC seal of excellence),
etc. STIC will help you to create Smalltalk awareness in your environment.
If you need help talking to your managers, contact Georg.

For the first time in more than 10 years, all the Smalltalk vendors are
financially strong. At Smalltalk Solutions 2007, Cincom announced
ObjectStudio 8 and VisualWorks 7.5, Instantiations announced
VASmalltalk 7.5.1, GemStone announced GLASS and their latest version
of Gemstone 64.

VASmalltalk 7.5.1, John O’Keefe, Instantiations
Q. What does the ‘VA’ stand for now? Joseph suggested it stood for Very
Active, which John thought was an excellent idea; until that moment, it

Smalltalk Conferences from December 2006 to May 2007 81
stood for nothing, since IBM did not licence Instantiations to use the term
VisualAge.

John started Smalltalking in 1987, joined IBM in 1990 and left IBM at the
start of this year to join Instantiations. He is learning to introduce himself
as “from Instantiations, working on VASmalltalk” instead of “from IBM,
working on VAST”. He is delighted with his new role (new in some ways,
not new but the natural continuation of his work in others).

Instantiations offer leading-edge tools for Smalltalk, Java (Instantiations
are an IBM partner), etc. John reviewed their history, which started at 1984
and ended at 2007 and was quite involved. The message was: these are
leading, mature Smalltalkers.

VASmalltalk 7.5 works with Vista, SuSE Linux, Windows Large Address
(customer images were hitting the limit), Native Oracle, Windows
XP/Vista themes, Web Services, RB and Envy browser tools.

Q. What makes SuSE Linux special? Not much makes any Linux build
special but to say ‘VASmalltalk supports’ the team must test thoroughly.
VASmalltalk will probably work on many other flavours (John uses
Ubuntu as a test platform and he knows GemStone runs VA on Gentoo) but
they have not tested them. If you want to run on another platform, let them
know and they may be able to advise. The problems are usually set up
problems; the directory structure is differently organised, the shell
processors are different, the set of locales available is not the same, that
kind of thing.

Windows Vista: Vista’s user account control security system is a wholly
new security framework in which administrators run as standard users.
Applications and processes run asInvoker (the default: privileges are those
of the user executing image) or highestAvailable (all the privileges that the
executing user could have) or requireAdministrator (the highest security
privileges). These are set by XML manifests and John showed the
VASmalltalk 7.5 manifest: emsrv.exe, abtntsir.exe and setup.exe need
requireAdministrator because they write to protected areas (the service
registry, etc.). To start and stop emsrv you must have administrator
privileges. In Vista noone is special and you will have to push the ‘allow’
button for your laptop. It was the same on XP, but users are often the
administrator of their laptop under XP so they tend not to notice.

Q. (Joseph) Need an emsrv user as previously? It was only on Unix you
needed this; no change.

John reviewed the per-machine and per-user-file registry locations (the
former need update privilege). ProgramFiles is a protected area and cannot
be modified by the users so standard install must copy them to user-specific
locations (if you install non-standard e.g. to D drive instead of C drive then
you avoid this; of course you no longer have the same degree of windows
security protection).

82 Smalltalk Conferences from December 2006 to May 2007
Windows Aero is the Vista visual style: transparent glass design, subtle
window animations, new colours. VASmalltalk exploits some, by no
means all, in 7.5.1 (not in 7.5; this is recent work).

The help system in VASmalltalk does not use windows help but some add-
ons e.g. GF/ST came with windows help files. These .hlp files are now
deprecated so they have converted them to the new format .chm (they still
also ship the old files).

SuSE Linux (and all others): VASmalltalk is X-windows-based for
graphics, motif-based for widgets.

Q(Marten Feldmann and John; Marten is a customer who had helped find
these points) If using other linux, don’t use unicode support and do use
ISO-8859-15, otherwise you will have lots of problems. The Installer must
use Cshell, so symlink to get it. Newer Ubuntus and others have changed
the locations of the locale files so you need symlinks to the old locations.
(See the discussion forum, FAQs, etc., on Instantiations website.)

Q. Mac OS10? AFAIK, it will not run; by all means try and tell us how you
get on.

Q. UTF8 problem will have fix in 7.5.2? They know it is serious and needs
addressing. Priorities for 7.5.2 are being discussed.

Using Windows Large Address space lets images grow to 3Gb of memory
(prior limit was 1Gb).

Q(Christian) when will you support 64bit? It is a large development effort
that has not yet made it onto the roadmap. They are considering it and will
do steps towards it (e.g. an image that needs 64bit-size will have GC issues
at the moment; they will provided e.g. threaded GC before they do 64bit).

They now support Oracle’s holding LOBs in files, pointed at from the
database, rather than in the database itself. They fixed some Oracle bugs
(stored procedure issues, etc.) and provide examples (in product and on
website) because they received many questions about SQL in Smalltalk.

Q. DB2 CLI interface work? Not in 7.5.1. It is high on their list of things
to consider for 7.5.2.

Windows XP/Vista themes are not enabled by default for VASMalltalk
apps. If you want it, use a manifest (this is the best way to handle the
standard controls) or invoke it explicitly in code if you have custom
controls (if your custom widgets are in C, you must add your invoking code
it C). They ship manifests with obvious commented-out enabling code.

Q. WidgetKit / WindowBuilder widgets? Good question; John will add the
answer to this presentation when it appears on the website.

John showed what an app looks like in Windows classic, then in Vista with

Smalltalk Conferences from December 2006 to May 2007 83
no manifest, then with the full Aero look (assuming sufficient hardware;
Windows will downgrade its look if the graphics adapter or memory are
limited). The differences were mostly subtle, sometimes less so (progress
bars pulse now; some people like it).

The Refactoring Browser framework and UI, and the menus to invoke
refactorings from the Envy browsers, are now released with the product;
each VASmalltalk release ships the Custom Refactoring project’s latest
stable release of that time, coordinating with the project to test on the
upcoming release. (I remarked that, in the same way, any releases that we
post on customrefactor.sourceforge.net are likewise tested on the latest
release and derived from the shipped release, so downloading a released
.dat from customrefactor.sourceforge.net and upgrading should always be
straightforward. As it happens, a new release has this week been posted).
SUnit and SUnitBrowser likewise are now in the release. John thanked the
various open source people involved in maintaining these tools.

The ENVY/QA suite (code critic, code coverage, code formatter, code
publisher) is integrated with the tools. Envy/QA is an extensible
framework so can be a place to start if you wish to add further QA checks
(but they know people are busy building applications, not tools).

Q. Is there documentation on how to use this framework? None recent; they
ship the original OTI docs from way back.)

The VASmalltalk browser icons are now external, not stored as ByteArrays
in the image, and so look different.

The above summarises the current state. What about the future? Version 8
(no schedule decided yet) or sooner will support Seaside (they do not wish
to be unique amongst major Smalltalk dialects in not doing so :-). The main
challenge is that continuations use the reification of the context and
contexts in VA are very different from those in Seaside’s dialects. They
could adapt their context to suit Seaside. They could use ServerSmalltalk
actors. They are mapping the Squeak classes to VASmalltalk classes and
will have a non-running code port soon.

Q. I have experimented on getting continuations to run in VA; simple
changes to process primitives may enable it and are necessary. John agrees
and he can change the VM so he can do that.

Q. Make VM source visible so others can help? The licence agreement with
IBM means they cannot do that, alas.

A seamless all-platform one-click install will be provided. They will have
a wholly new documentation system (the current one is built with IBM
tools).

They’ve had 5000 downloads. They have 2000 active users, 200
commercial companies using it, 650 support cases (many fixes).

84 Smalltalk Conferences from December 2006 to May 2007
Use the Instantiations forum ww.instantiations.com/forum, not the old
IBM forum which is now little monitored.

VASmalltalk has a free evaluation version, fully function except for a nag
screen.

Migrating from VAST to VASmalltalk, Joachim Tuchel, ObjectFabrik
ObjectFabrik have financial and telecoms clients who do much creation of
web apps in VASmalltalk, in VW (Seaside) and on the dark side (Java
Struts work, etc.).
• Example 1: a social security application, begun in 1995 and in service

since 1997, using 720 classes and Oracle 9.2.
• Example 2: a public liability application (car accident call centre) 3100

classes in 58 config maps support 17 commercial applications;
migration from 5.5 to VASmalltalk 7 went smoothly.

• Example 3: A credit processing, collateral management banking
company had 9500 classes in 210 VA apps and 18 config maps. This
application was very easily moved from VAST 6.0 to VASmalltalk 7.0.

How did he migrate? Import all code, continue developing in old library
while making the system work in the new library, then import a delta and
get it working. That’s all? Well, not quite. :-)

VAST 6.0 and VASmalltalk 7.0 are fully compatible. Start a new emsrv
(because the new emsrv has bugfixes and because your old emsrv probably
runs on an old box IT wants to discard). Do not use a multiprocessor
windows machine (IBM decided this old bug was a windows bug, which
may well be so; it is not an issue with any other platform). Then install your
new client which must be able to see the new and old libraries. Produce a
complete versioned line-up for a first port. Continued development on the
old library (often unavoidable) will necessitate a delta port later.

Applications do not define the version of their prereqs whereas maps do.
Use config maps, not apps, to express your dependencies. If you use maps
and use the ‘move all required maps too’ switch, you may import all you
want and much you do not want, so he hesitantly advises that you do not
do it and just put up with a few ‘map missing’ messages making you do a
few more imports. If you want to use it for the delta map, that may be wise.
Generally, removing all references to base maps is wise. (Can exploit z:...
stuff.)

What next? Next you see ‘Load failed’.

Q(Georg) You see the ‘Load failed. OK’ dialog so its OK, OK? :-)

Load from the base layer up. Exploit the preferences setting
cancelIfMethodsDoNotCompile: false and get used to grabbing
Transcript load-failure-explaining text and using the shadow browsers to
examine unloaded code. Then you search ‘Locate Selected Name’ in
configuration maps. Suppose you find something is deprecated; how do
you find what has replaced it? Search for class names to see where it lives

Smalltalk Conferences from December 2006 to May 2007 85
now. It may now be loaded in the base in another app, eliminating the need
for a prereq. You may find that your maps reference inconsistent versions
of a prereq map. Sorting all this out may produce many intermediate
versions so you may wish to export the result to yet another library.
Generally, the cleanness of your system
• non-circularity of prereqs
• freedom from base code prereq references
• up-to-dateness (e.g. no use of VAST 4.5 utility dragged forward)
will determine how hard it will be. Generally allow 2 - 10 days of effort.

One of his example projects migrated on feature release. This reduces
effort (you have to do regression test anyway) at the cost of increasing risk;
reduce risk again by doing the migration early in the cycle. Another
example project shipped a purely technical release with no new
commercial features; this was safe but less commercially valuable.

Don’t plan the port; just do it. The moment you are in front of your browser,
you are doing it: see the problems and solve them. Your developers are the
testers for the migration; make them use the port.

Q. They moved their new code into the old library and ran both old and new
against the one library. This lets them see the differences between the old
and new libraries in the base and in their code. They also build a base image
(i.e. of all utilities they use plus a config map of all their mods to the base).

Q. Oldest versions still in use? John has worked less than a year ago with
customers who were on VA3 (and OS2). There are many 5.5 customers.

Q(Joseph) If you make changes to the base image, write test cases for them.
Even a test that just checks ‘any implementors of this selector’ is useful.

Q. Can the ‘Load fail’ dialog tell us more: which map, which app or
something? John thought this made sense. (Niall: mention Georg’s ‘class
name in load failed widget’ example in VW to John; ensure any such
change is formatted to avoid that confusion.)

John stressed that they want to know what changes to the base code have
been found necessary. They will evaluate them and so maybe you will be
relieved of the burden of maintaining them.

X-Trade Experience Report, Werner Schirp, Maxess Systemhaus
X-Trade is a small ERP system for food and grocery retailers, now
migrated to VASmalltalk 7.5. The company was formed in 1995, has 60
people, has 6.1 million euro turnover, and is located in Kaiserslauten, Graz,
Hamburg and Barcelona. The core application is 100% Smalltalk (it has
small Java apps at outskirts) with 800 persistent and 500 non-persistent
classes, 1500 GUI and 500 report parts.

Why use Smalltalk? Because it is so productive. They have programmers
who work in Java and Smalltalk and all agree on this. Their competitors are

86 Smalltalk Conferences from December 2006 to May 2007
significantly larger so they need this competitive edge. Performance is key
in this domain and their system is one of the best. (Trumpet it: a Smalltalk
application outperforms its rivals! So much for ‘Smalltalk is slow’ claims.)
Product stability and robustness is important and they find their customers
do not have problems they cannot reproduce, unlike in other platforms.
Versioning in Envy helps them manage the many specific features that each
of their 10 customers want. They promise their customers that all specific
changes will be rolled into the next standard release and without Envy this
promise would be hard to keep.

They have made specific single X-Trade features into web services
(customers want this) and now want to move to a wholly service-oriented
architecture so customers can integrate X-Trade with their other software
in detail. Next year they plan to move X-Trade wholly into the IBM service
architecture (and get the certificate from IBM) so customers who also have
IBM tools will exploit it with their other tools.

Q. Database access? They have an in-house framework, optimised for
batch operations and suchlike.

VASmalltalk Web Support, John O’Keefe, Instantiations
Web Connection was the first web support framework shipped with VAST.
Servlets and Web Services came later. Web connection serves web pages.
It offers a high performance HTTP server, either all Smalltalk using Server
Smalltalk Runtime if desired, or you run behind Apache, IIS or whatever.
The web connection visual builder lets you create the pages much as the
standard GUI builder let you build GUIs for fat clients, using visual parts
that map to HTML markup, forms, etc. (You can also wrap externally-
generated HTML files.) It offers non-visual parts to manage session data to
track client state and suchlike.

The visual builder is not a high-powered web builder; it was designed to
build forms pages. Therefore you can also build more expressive pages in
other builders and then mark-up calls to your Smalltalk application in them
via the usual <% ... smalltalk ... %> notation (and you can also
wrap Java applets, active X controls, etc.).

Deploying behind an HTTP server (Apache, IIS) makes sense if many
static pages are to be served in addition to your Smalltalk-generated ones.
Install the server, copy and customise the .exe, .dll, .htm and .cnf files that
Instantiations provides, then update the HTTP server .cnf and abtwsi.cnf.

Deploying a Smalltalk HTTP server (SSR) gives better performance if
most of your web app is dynamically-built pages but Server Smalltalk lacks
the load-balancing, security and redundancy features of e.g. Apache; it
might be more appropriate for intranets than extranets. No setup is needed,
just invoke as http://<servername>/<classname>.

Deploying behind a web application server (e.g. Tomcat, IIS) using the
servlet interface: because CGI is loaded for every page access whereas the
servlet interface is loaded once and then talks in-memory to the Smalltalk

Smalltalk Conferences from December 2006 to May 2007 87
image, the performance can be better. Install the application server, copy
and customise .jar, .pro, .cnf, and, if needed abtwsi.cnf, etc.

Smalltalk is not prone to being infected by anything from the web; they
have never seen an infected Smalltalk web app.

Q. Fast CGI? Not done at the moment; they tested it and perhaps could
offer it easily.

Smalltalk Servlets are like java servlets. They take the standard get post
head put delete protocol, run behind the HTTP server and are invoked in
the same way: http://<servername>/<classname>.

Web services are described in WSDL, published in UDDI (if you do;
maybe you will find the service in other ways; publishing has not gained
the expected popularity). Find service by querying UDDI to get WSDL
bindings and use this to bind a proxy to the service and so invoke the
service over the network.

Web services have around since VAST 6. You can produce .wsdl files via
SstWSXmlGeneration forClass: ...; alas, the tool is not yet very
good. John went through code to deploy and invoke a service. He then
showed the Web Services Demo, a tutorial to be used with the ‘web
services in 10 minutes’ manual. (Niall: see Alison Dixon’s talk at ESUG
2002 for an example of using this; reach my report from www.esug.org.)

Other Discussions at VASmalltalk User Group
Joseph is rolling out SCRUM to Nokia and to Swiss Telecom. He and
Andres are doing further work on SUnit releases. Since he reported on it at
ESUG 2000 in Southampton (see my report), Joseph’s infection scenario
software has been used in some 50 research papers.

It looks like Christian has another customer for smallCharts. I will put him
in touch with Will at Cargill re VSE-to-VW porting.

Dirk Verleysen and Hans-Martin Mostner could use a complete Toplink
decompiler (or Glorp) to move old applications forward. John has Hans’
partial decompiler and others and has had discussions to try to resolve this.

Joachim’s example applications (see his talk) are maintained by teams in
(first example) Wuppertal, (second) Hanover and (third) Frankfurt, all of
whom had developers at the conference.

I had to leave to catch my flight, so missed some BoFs.

Written by Niall Ross (nfr@bigwig.net) of eXtremeMetaProgrammers Ltd

* End of Document *

	Smalltalk Conferences from December 2006 to May 2007
	Style
	Author’s Disclaimer and Acknowledgements
	Cincom Smalltalk User Group conference, Frankfurt, 5-7 December 2007
	Cincom Smalltalk Update
	Cincom Smalltalk Roadmap, James Robertson, Cincom
	Moving to ObjectStudio 8, Mark Grinnell, Andreas Hiltner, Cincom
	Current and Upcoming Store Developments, Alan Knight
	Advanced Object-Relational Mapping with Glorp, Alan Knight

	Customer Experience Reports
	Exploratory Modelling, One Team’s Approach at SAP, Heinz Roggenkemper, SAP Labs
	Introducing SAP/NetWeaver Connect for VisualWorks, Rolf Ehret of SAP and Taylan Kraus-Wippermann ...
	Entity Control Boundary: Architecture Patterns in Computer-aided timetable construction System RU...
	Between Desert and Jungle - On the way to an efficient and maintainable test framework, Torsten H...
	Complex MultiMedia Applications: Secure Deployment for Mass market, Andre Schnorr, Cognitome GmbH
	CxStates: a dynamically defined state model not based on the state pattern, Alfred Wullschegel, S...
	1) An ITIL-compliant CMDB Solution (2) Standard Software (3) Developing Standard Software for Dif...

	Web Techniques and Experience Reports
	Web 2.0 Seaside, Michael Bany, Cincom
	Web Security, Martin Kobetic, Cincom
	Web Services, Martin Kobetic, Tamara Kogan, Cincom
	How to scale a Smalltalk Server without any Planning, James Robertson, Cincom

	Porting Techniques and Experience Reports
	Changing the engine while the garage is in motion: Porting to VW7, Niall Ross, eXtremeMetaProgram...
	Store more like Envy, Jan Lukes, Gehe

	History and Process
	Small Matters can Matter a Lot, George Bosworth
	The Open Unified Process, Scott Ambler

	Feedback and BoFs
	Feedback from users, James Robertson, Suzanne Fortman, Cincom
	OpenTalk BoF, Martin Kobetic, Cincom
	VSE-to-VW Porting
	Glorp BoF, Alan Knight, Cincom

	Other Discussions at CSUG

	Smalltalk Solutions 2007, Toronto, 30 April - 2 May 2007
	Keynotes, Initiatives and Overviews
	Ruby on Rails for Smalltalkers, Chad Fowler
	Bert Freudenberg, One Etoy per child
	GLASS: Gemstone Linux Apache Seaside Smalltalk, James Foster, Dale Henrix, Gemstone

	Application Frameworks and Experience Reports
	Seaside Experience Support, Boris Popof, DeepCove Labs
	Interactive Visualization in Widgetry, David Buck, Simberon
	Cairographics and Smalltalk, Travis Griggs, Cincom
	Smalltalk in Semiconductor Test, Mark Petersen, IBM
	Home Automation, Thomas Stalzer, Object Dynamics

	Coding and Testing Patterns
	There is no Spoon: Overcoming the Object-Relational Mismatch in OLTP Systems, Thomas Gagne, Instr...
	Interfacing to C, Michael Lucas-Smith, Cincom
	eXtreme UI Testing, Niall Ross, eXtremeMetaProgrammers
	Application Frameworks: an Experience Report, Arden Thomas, Cincom

	BoFs and the Coding Contest
	Smalltalk Industry Council BoF, Georg Heeg, David Buck
	GemStone Bof
	Seaside BoF
	Coding Contest, STIC

	Other Discussions at Smalltalk Solutions
	Follow-up Actions
	Conclusions

	VASmalltalk User Group Conference, Frankfurt, May 24th 2007
	SmallTalk Industry Council, Georg Heeg
	VASmalltalk 7.5.1, John O’Keefe, Instantiations
	Migrating from VAST to VASmalltalk, Joachim Tuchel, ObjectFabrik
	X-Trade Experience Report, Werner Schirp, Maxess Systemhaus
	VASmalltalk Web Support, John O’Keefe, Instantiations
	Other Discussions at VASmalltalk User Group

