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Lecture 22/23

Lecturer: Scott Aaronson Scribe: Chris Granade

1 Quantum Mechanics

1.1 Quantum states of n qubits

If you have an object that can be in two perfectly distinguishable states |0〉 or |1〉, then it can also
be in a superposition of the |0〉 and |1〉 states:

α |0〉+ β |1〉

where α and β are complex numbers such that:

|α|2 + |β|2 = 1

For simplicity, let’s restrict to real amplitudes only. Then, the possible states of this object–which
we call a quantum bit, or qubit– lie along a circle.

Figure 1: An arbitrary single-qubit state |ψ〉 drawn as a vector.

If you measure this object in the “standard basis,” you see |0〉 with probability |α|2 and |1〉
with probability |β|2. Furthermore, the object “collapses” to whichever outcome you see.

1.2 Quantum Measurements

Measurements (yielding |x〉 with probability |αx|2) are irreversible, probabilistic, and discontinuous.
As long as you don’t ask specifically what a measurement is—how the universe knows what

constitutes a measurement and what doesn’t—but just assume it as an axiom, everything is well-
defined mathematically. If you do ask, you enter a no-man’s land. Recently there’s been an
important set of ideas, known as decoherence theory, about how to explain measurement as ordinary
unitary interaction, but they still don’t explain where the probabilities come from.
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1.3 Unitary transformations

But this is not yet interesting! The interesting part is what else we can do the qubit, besides
measure it right away. It turns out that, by acting on a qubit in a suitable way–in the case of an
electron, maybe shining a laser on it–we can effectively multiply the vector of amplitudes by any
matrix that preserves the property that the probabilities sum to 1. By which I mean, any matrix
that always maps unit vectors to other unit vectors. We call such a matrix a unitary matrix.
Unitary transformations are reversible, deterministic, and continuous.

Examples of unitary matrices:

• The identity I.

• The NOT gate X =
[
0 1
1 0

]
.

• The phase-i gate
[
1 0
0 i

]
.

• 45-degree counterclockwise rotation.

Physicists think of quantum states in terms of the Schrödinger equation, d|ψ〉dt = iH |ψ〉 (perhaps
the third most famous equation in physics after e = mc2 and F = ma). A unitary is just the result
of leaving the Schrödinger equation “on” for a while.

Q: Why do we use complex numbers?
Scott: The short answer is that it works! A “deeper” answer is that if we used

real numbers only, it would not be possible to divide a unitary into arbitrarily small
pieces. For example, the NOT gate we saw earlier can’t be written as the square of
a real-valued unitary matrix. We’ll see in a moment that you can do this if you have
complex numbers.

For each of these matrices, what does it do? Why is it unitary? How about this one?[
1 1
1 0

]
Is it unitary? Given a matrix, how do you decide if it’s unitary or not?

Theorem 1 U is unitary if and only if UU∗ = I, where U∗ means you transpose the matrix
and replace every entry by its complex conjugate. (A nice exercise if you’ve seen linear algebra.)
Equivalently, U−1 = U∗. One corollary is that every unitary operation is reversible.

As an exercise for the reader, you can apply this theorem to find which of the matricies we’ve
already seen are unitary.
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Now, let’s see what happens when we take the 45-degree rotation matrix, and apply it twice to
the same state.

|0〉 → (|0〉+ |1〉) /
√

2
|1〉 → (− |0〉+ |1〉) /

√
2

(|0〉+ |1〉) /
√

2 →
[
|0〉+ |1〉√

2
+
− |0〉+ |1〉√

2

]
/
√

2

= |1〉

This matrix acts as the “square root of NOT”! Another way to see that is by squaring the matrix.[
cos(45◦) − sin(45◦)
sin(45◦) cos(45◦)

]2

|ψ〉 =
[
0 1
1 0

]
|ψ〉

Already, we have something that doesn’t exist in the classical world.
We can also understand the action of this matrix in terms of interference of amplitudes.

2 Two Qubits

To describe two qubits, how many amplitudes do we need? Right, four – one for each possible
two-bit string.

α |00〉+ β |01〉+ γ |10〉+ δ |11〉

|α|2 + |β|2 + |γ|2 + |δ|2 = 1

If you measure both qubits, you’ll get |00〉 with probability |α|2, |01〉 with probability |β|2, etc.
And the state will collapse to whichever 2-bit string you see.

But what happens if you measure only the first qubit, not the second? With probability
|α|2 + |β|2, you get |0〉, and the state collapses to α|00〉+β|01〉√

|α|2+|β|2
. With probability |γ|2 + |δ|2, you get

|1〉, and the state collapses to γ|10〉+δ|11〉√
|γ|2+|δ|2

. Any time you ask the universe a question, it makes up

its mind; any time you don’t it ask a question, it puts off making up its mind for as long as it can.
What happens if you apply a NOT gate to the second qubit? Answer: You get β |00〉+α |01〉+

δ |10〉 + γ |11〉. “For every possible configuration of the other qubits, what happens if I apply the
gate to this qubit?” If we consider (α, β, γ, δ) as a vector of four complex numbers, what does this
transformation look like as a 4× 4 matrix?

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


Can we always factor a two-qubit state: “here’s the state of the first qubit, here’s the state of the
second qubit?” Sometimes we can:

• |01〉 = |0〉 |1〉 = |0〉 ⊗ |1〉 (read |0〉 “tensor” |1〉).

• |00〉+ |01〉+ |10〉+ |11〉 = 1
2 (|0〉+ |1〉) (|0〉+ |1〉).
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In these cases, we say the state is separable. But what about |00〉 + |11〉? This is a state
that can’t be factored. We therefore call it an entangled state. You might have heard about
entanglement as one of the central features of quantum mechanics. Well, here it is.

Just as there are quantum states that can’t be decomposed, there are also operations that can’t
be decomposed. Perhaps the simplest is the Controlled-NOT, which maps |x〉 |y〉 to |x〉 |x⊕ y〉
(i.e., flips the second bit iff the first bit is 1).

|00〉 → |00〉
|01〉 → |01〉
|10〉 → |11〉
|11〉 → |10〉

What does this look like as a 4× 4 matrix?
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Incidentally, could we have a 2-qubit operation that mapped |x〉 |y〉 to |x〉 |x AND y〉? Why

not?

|0〉 |0〉 → |0〉 |0〉
|0〉 |1〉 → |0〉 |0〉

This is not reversible!

2.1 Obtaining Entanglement

Before we can create a quantum computer, we need some way to entangle the qubits so they’re not
just a bunch of particles laying around. Perhaps the simplest such operation is the CNOT gate
that we saw earlier.

So how do we use CNOT to produce entanglement? We can use a Hadamard followed by a
CNOT, where the Hadamard matrix H puts a qubit into superposition by switching between the
{ |0〉 , |1〉 } basis and the { |+〉 , |−〉 } basis.

|+〉 =
1√
2

(|0〉+ |1〉)

|−〉 =
1√
2

(|0〉 − |1〉)

H =
1√
2

[
1 1
1 −1

]
Applying H to |0〉 and |1〉 results in:

|0〉 → |0〉+ |1〉√
2

= |+〉

|1〉 → |0〉 − |1〉√
2

= |−〉
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Already with two qubits, we’re in a position to see some profound facts about quantum me-
chanics that took people decades to understand.

Think again about the state |00〉 + |11〉. What happens if you measure just the first qubit?
Right, with probability 1/2 you get |00〉, with probability 1/2 you get |11〉. Now, why might that
be disturbing? Right: because the second qubit might be light-years away from the first one! For
a measurement of the first qubit to affect the second qubit would seem to require faster-than-light
communication! This is what Einstein called “spooky action at a distance.”

But think about it more carefully. Can you actually use this effect to send a message faster
than light? What would happen if you tried? Right, the result would be random! In fact, we’re
not going to prove it here, but there’s something called the no-communication theorem, which says
nothing you do to the first qubit only can affect the probability of any measurement outcome on
the second qubit only.

But in that case, why can’t we just imagine that at the moment these two qubits were created,
they flipped a coin, and said, “OK, if anyone asks, we’ll both be 1.” Well, because in 1964, John
Bell proved there are certain experiments where no explanation of that kind can possibly agree with
quantum mechanics. And in the 1980s, the experiments were actually done, and they vindicated
quantum mechanics and in most physicists’ view, dashed Einstein’s hope for a “completion” of
quantum mechanics. That’s on your problem set.

2.2 No-Cloning Theorem

Is it possible to duplicate a quantum state? This would be very nice, since we know we only have
one chance to measure a quantum state. Here is what such a duplication would look like:

α |0〉+ β |1〉 → (α |0〉+ β |1〉) (α |0〉+ β |1〉) = α2 |00〉+ αβ |01〉+ αβ |10〉+ β2 |11〉

This operation is not possible because it is not linear. The final amplitudes α2, β2 and αβ don’t
depend linearly on α and β. That’s the no-cloning theorem, and it’s really as simple as it looks.

3 n Qubits

For 60 years, these were the sorts of examples that drove people’s intuitions about quantum me-
chanics: one particle, occasionally two particles. Rarely did people think abstractly about hundreds
or thousands of particles all entangled with one another. But within the last 15 years, we’ve re-
alized that’s where things get really crazy. And that brings us to quantum computing. It goes
without saying that I’m going to present just the theory at first. Later we can discuss where current
experiments are.

How many amplitudes would we need to describe the state of 1000 qubits? Right, 21000. One
for every possible string of 1000 bits: ∑

x∈{0,1}1000
αx |x〉

Think about what this means. To keep track of the state of 1000 numbers, Nature, off to the side
somewhere, apparently has to write down this list of 21000 complex numbers. That’s more numbers
than there are atoms in the visible universe. Think about how much computing power Nature must
be expending for that. What a colossal waste! The next thought: we might as well try and take
advantage of it!
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Q: Doesn’t a single qubit already require an infinite amount of information to spec-
ify?

Scott: The answer is yes, but there is always noise and error in the real world, so we
only care about approximating the amplitudes to some finite precision. In some sense,
the “infinite amount of information” is just an artifact of our mathematical description
of the qubit’s state. By contrast, the exponent in the description of n entangled particles
is not an artifact; it’s real (if quantum mechanics is the right description of Nature).

3.1 Exploiting Interference

What’s an immediate difficulty with taking advantage of this computational power? Well, if we
simply measure n qubits, all we get is a classical n-bit string; everything else disappears. It’s
like the instant we look, nature tries to “hide” the fact that it’s doing an exponential amount of
computation.

But luckily for us, Nature doesn’t always do a good job of hiding. A good example of this is
the double-slit experiment: we don’t measure which of the two slits the photon passed through,
but rather the resulting interference pattern. In particular, we saw that the different paths taken
by a quantum system can interfere destructively and cancel each other out.

So that’s what we want to exploit in quantum computing. The goal is to choreograph things so
that the different computational paths leading to a given wrong answer interfere destructively and
cancel each out, while the different paths leading to a given right answer interfere constructively,
hence the right answers are observed with high probability when we measure. You can see how this
is gonna be tricky, if it’s possible at all.

A key point about interference is that for two computation paths to destructively interfere
with each other, they must lead to outcomes that are identical in every respect. To calculate the
amplitude of a given outcome, you add up the amplitudes for all of the paths leading to that
outcome; destructive interference is when the amplitudes cancel each other out.

3.2 Universal Set of Quantum Gates

Concretely, in a quantum computer we have n qubits, which we assume for simplicity start out all
in the |0〉 state. Given these qubits, we apply a sequence of unitary transformation called “quantum
gates.” These gates form what’s called a quantum circuit.

An example of such a circuit is shown below, where we apply the Hadamard to the first qubit,
then do a CNOT with the second qubit acting as the control bit. Written out, the effect is(
|0〉+|1〉√

2

)
|0〉 CNOT−−→

|00〉+|11〉√
2

, the result being entangled qubits, as we discussed before. A crucial

|0〉 H ��������
|0〉 •

Figure 2: Entangling two qubits

point: each individual gate in a quantum circuit has to be extremely “simple”, just like a classical
circuit is built of AND, OR, NOT gates, the simplest imaginable building blocks. What does
“simple” mean in the quantum case? Basically, that each quantum gate acts on at most (say) 2
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or 3 qubits, and is the identity on all the other qubits. Why do we need to assume this? Because
physical interactions are local.

To work with this constraint, we want a universal set of quantum gates that we can use to build
more complex circuits, just like AND, OR, and NOT in classical computers. This universal set
must contain 1-, 2-, and 3-qubit gates that can be combined to produce any unitary matrix.

We have to be careful when we say any unitary matrix, since there are uncountably infinitely
many unitary matrices (you can rotate by any real-number angle, for instance). However, there
are small sets of quantum gates that can be used to approximate any unitary matrix to arbitrary
precision. As a technical note, the word “universal” has different meanings; for example, we
usually call a set of gates universal if it can be used to approximate any unitary matrix involving
real numbers only; this certainly suffices for quantum computation.

We’ve already seen the Hadamard and CNOT gates, but unfortunately these aren’t sufficient
to be a universal set of quantum gates. According to the Gottesman-Knill Theorem, any circuit
constructed with just Hadamard and CNOT gates can be simulated efficiently with a classical
computer. However, the Hadamard matrix paired with another gate called the Toffoli gate (also
called controlled-controlled-NOT, or CCNOT) is sufficient to be used as a universal set of gates
(for real-valued matrices).

The Toffoli gate will act similarly to the CNOT gate, except that we will control based on the
first two qubits:

|x〉 |y〉 |z〉 → |x〉 |y〉 |z ⊕ xy〉

where xy indicates the Boolean AND of x and y.

|x〉 • |x〉
|y〉 • |y〉
|z〉 �������� |z ⊕ xy〉

Figure 3: The Toffoli Gate diagram

Note, however, that these are not the only two gates whose combination allows for universal
quantum computation. Another example of a universal pair of gates is the CNOT gate taken with
the π/8 gate. We represent the π/8 gate using the following unitary:

T =
[

cos(π/8) sin(π/8)
− sin(π/8) cos(π/8)

]
But how many of these gates would be needed to approximate a random n-qubit unitary? Well,

you remember Shannon’s counting argument? What if we tried something similar in the quantum
world? An n-qubit unitary has roughly 2n×2n degrees of freedom. On the other hand, the number
of quantum circuits of size T is “merely” exponential in T . Hence, we need T = exp(n).

We, on the other hand, are only interested in the tiny subset of unitaries that can be built up
out of a polynomial number of gates. Polynomial time is still our gold standard.

So, a quantum circuit has this polynomial number of gates, and then, at the end, something has
to be measured. For simplicity, we assume a single qubit is measured. (Would it make a difference
if there were intermediate measurements? No? Why not? Because we can simulate measurements
using CNOTs.) Just like with BPP, we stipulate that if x ∈ L (the answer is “yes”), then the
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measurement outcome should be |1〉 with probability at least 2/3, while if x /∈ L (the answer is
“no”), then the measurement outcome should be |1〉 with probability at most 1/3.

There’s a final, technical requirement. We have to assume there’s a classical polynomial-time
algorithm to produce the quantum circuit in the first place. Otherwise, how do we find the circuit?

The class of all decision problems L that can be solved by such a family of quantum circuits is
called BQP (Bounded-Error Quantum Polynomial Time).

4 Bounded-Error Quantum Polynomial Time (BQP)

Bounded-Error Quantum Polynomial Time (BQP) is, informally, the class of problems that can be
efficiently solved by a quantum computer.

Incidentally: the idea of quantum computing occurred independently to a bunch of people in
the 70s and 80s, but is usually credited to Richard Feynman and David Deutsch. BQP was defined
by Bernstein and Vazirani in 1993.

4.1 Requirements for a BQP circuit

To be in BQP, a problem has to satisfy a few requirements:

Polynomial Size. How many of our building-block circuits (e.g., Hadamard and Toffoli) do we
need to approximate an arbitrary n-qubit unitary? The answer is the quantum analogue
to Shannon’s counting argument. An n-qubit unitary has 2n × 2n degrees of freedom, and
there are doubly-exponentially many of them. On the other hand, the number of quantum
circuits of size T is “merely” exponential in T . Hence, “almost all” unitaries will require an
exponential number of quantum gates.

However, we are only interested in the small subset of unitaries that can be built using a
polynomial number of gates. Polynomial time is still the gold standard.

Output. For simplicity, we assume that we measure a single qubit at the end of a quantum circuit.
Just like with BPP, we stipulate that:

Output =

{
if x ∈ L : |1〉 with probability ≥ 2

3

if x /∈ L : |1〉 with probability ≤ 1
3

Circuit Construction. There is a final technical requirement to constructing quantum circuits.
We have to assume that there is a classical polynomial-time algorithm to produce the quantum
circuit in the first place. Otherwise, how do we find the circuit?

4.2 BQP’s Relation to Other Algorithm Families

P ⊆ BQP: A quantum computer can always simulate a classical one (like using an airplane to drive
down the highway). We can use the CNOT gate to simulate the NOT gate, and the Toffoli
gate to simulate the AND gate.

BPP ⊆ BQP: Loosely speaking, in quantum mechanics we “get randomness for free.” More pre-
cisely, any time we need to make a random decision, all we need to do is apply a Hadamard
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to some |0〉 qubit, putting it into an equal superposition of |0〉 and |1〉 states. Then we can
CNOT that bit wherever we needed a random bit. We’re not exploiting interference here;
we’re just using quantum mechanics as a source of random numbers.

BQP ⊆ EXP: In exponential time, we can always write out a quantum state as an exponentially
long vector of amplitudes, then explicitly calculate the effect of each gate in a quantum circuit.

BQP ⊆ PSPACE: We can calculate the probability of each measurement outcome |x〉 by summing
the amplitudes of all paths that lead to |x〉, which only takes polynomial space, as was shown
by Bernstein and Vazirani. We won’t give a detailed proof here.

PSPACE

BQP

BPP

P

EXP

Figure 4: BQP inclusion diagram

We can draw a crucial consequence from this diagram, the first major contribution that com-
plexity theory makes to quantum computing. Namely: in our present state of knowledge, there’s
little hope of proving unconditionally that quantum computers are more powerful than classical
ones, since any proof of P 6= BQP would also imply P 6= PSPACE.

5 Next Time: Quantum Algorithms

Next class we’ll see some examples of quantum algorithms that actually outperform their classical
counterparts:

• The Deutsch-Jozsa Algorithm

• Simon’s Algorithm

• Shor’s Algorithm
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