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Abstract

Due to planetary perturbations, there exists a large
chaotic zone for the spin of the terrestrial planets (Laskar
and Robutel, 1993). The crossing of this zone in the past,
can lead Venus’ spin to its present retrograde configura-
tion for most initial conditions, but through two different
processes (Correia and Laskar, 2001). Here, we present in
full details the dissipative models used for this study of
the spin evolution of Venus.

The present state of Venus is an equilibrium between
gravitational and thermal atmospheric tidal torques (Gold
and Soter, 1969). We present here a revised model for the
thermal atmospheric tides which does not suffer the sin-
gularity at synchronous states arising in previous studies.
This new model should thus provide a more realistic de-
scription of the final stages of Venus’ evolution. Assuming
that the present spin of Venus is in a final state, we de-
scribe the resulting constraints on the various dissipative
parameters. We show that the capture in the 1:1 spin orbit
resonance during Venus’ history is unlikely and becomes
impossible when the dense atmosphere is present as this
resonance becomes unstable. Our study is presented in a
very general setting, and should apply to any terrestrial
planet with a dense atmosphere.

Key Words: Venus; obliquity; spin dynamics; reso-
nances; atmospheric tides; core mantle friction.

1 Introduction

In 1962, by means of wave radar measurements, the pe-
culiar spin state of Venus was discovered (Smith, 1963,
Goldstein, 1964, Carpenter, 1964, 1966, 1970): a slow ret-
rograde rotation, with an obliquity close to 180◦ and a 243
day period. Since, various hypothesis have been studied
for the evolution of Venus’ rotation, aiming to answer the
question: was Venus born retrograde or not?

The first success was that of Gold and Soter (1969) who
proposed that the present spin was near a steady state
resulting from a balance between a gravitational tidal dis-
sipation which drives the planet toward synchronous rota-

tion and a thermally driven atmospheric tides which drives
it away. However, tidal effects alone could not explain how
to prevent Venus’ spin axis from rolling over to a prograde
orientation (Dobrovolskis, 1978).

Goldreich and Peale (1970) proposed that friction at
a core-mantle boundary should drive the spin pole to a
fully dampened obliquity state which ends with retro-
grade rotation. The only requirement for this is that the
planet’s orientation is already retrograde when the core-
mantle friction becomes important. Taking into account
the dissipation of tides (both gravitational and thermal)
and core-mantle friction, Lago and Cazenave (1979), Do-
brovolskis (1980), Shen and Zhang (1989), McCue and
Dormand (1993), and Yoder (1995a) proposed different
scenarios where the Venusian axis was tilted down during
its past evolution, but this still required high values of the
initial obliquity.

Laskar and Robutel (1993) discovered that for all ter-
restrial planets, there is a wide set of possible spin states
for which the obliquity undergoes strong chaotic varia-
tions with large amplitudes over a few million years. This
is due to some resonance overlap between the precession
frequency and combinations of secular frequencies of the
planetary orbits. The future Earth’s passage through the
chaotic zone was analyzed as well (Néron de Surgy and
Laskar, 1997), and it was shown that our planet’s spin has
a high probability to reach obliquities as high as 90◦ within
a few billion years. The chaotic zone of Venus (Fig.1) be-
ing comparable to the Earth’s one, Laskar and Robutel
(1993) suggested that planetary perturbations could have
played an essential part in the history of the Venusian
spin. If Venus was born with an obliquity lower than 90◦

and initial rotation period faster than 5 days, it surely
wandered for a while in the chaotic zone. Indeed, Néron
de Surgy (1996) and Yoder (1997) showed that dissipative
effects combined with planetary perturbations could tilt
the spin axis to 180◦ starting with any initial obliquity.
Finally, Correia and Laskar (2001) confirmed this last re-
sult and found that the present spin state of Venus is the
most probable for almost any initial condition. They also
showed that it is possible to evolve to the present config-
uration through a different scenario where retrograde ro-
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tation is developed while the obliquity goes towards zero
(suggested by Kundt, 1977).

Although the outcomes of the dissipative effects are sup-
posed to be well understood, their precise mechanisms are
poorly known, as well as the initial spin state of Venus.
The present paper is the continuation and presentation
with full details of the work by Correia and Laskar (2001).
Here, we revisit the theory of dissipative effects, in par-
ticular the thermal atmospheric tides. We also discuss
the possibilities for the spin evolution and the constraints
imposed by the present observed spin state.

In the next section we give the averaged conservative
equations in a suitable form for the simulations of the
long-term variations of Venus’ spin, including the preces-
sion motion with planetary perturbations. In section three
is defined a model for taking into account the tidal effects
and the core-mantle friction. Section four is devoted to
dynamical equations’ analysis and their implications are
discussed in the last section (five). In a companion paper
(Correia and Laskar, 2002), we perform massive numer-
ical integrations, where different models and dissipative
parameters are tested in order to understand the influ-
ence of each unknown quantity on the final evolution.

2 The secular variations of Venus’
spin axis

2.1 The conservative Hamiltonian of the
system with planetary perturbations

Venus is considered here as an homogeneous rigid body
with moments of inertia A ≤ B < C. As pointed by
Yoder (1995a), the axis of rotation differs from the axis
of greatest inertia (the C axis) by about 0.5◦. However,
for long-term integrations we can simplify the equations
by averaging the nutation of the axis, which allows us to
merge the two axis.

The averaged Hamiltonian of the motion H can be writ-
ten using canonical Andoyer’s action variables (L, X) and
their conjugate angles (`,−ψ) (Andoyer, 1923, Kinoshita,
1977). L = Cω is the projection of the angular momentum
with rotation rate ω on the C axis and X its projection
on the normal to the ecliptic; ` is the hour angle between
the equinox of the date and a fixed point of the equator
and ψ the general precession angle. For a slow precessing
planet (ψ̇ ¿ ω), X ' L cos ε, where ε is the obliquity. If
we keep the resonant term with argument (`− pM) with
p = ±1 and M the mean anomaly, we have (Kinoshita
1977, Laskar 1986, Néron de Surgy and Laskar, 1997):

H =
L2

2C
− α

X2

2L
− αr

2L
(L + pX)

2
cos 2(`− pM)

(1)

+
√

L2 −X2 [A(t) sin ψ − B(t) cos ψ] + 2C(t)X .

The quantities A, B and C depend on the secular motion
of the orbit of Venus undergoing planetary perturbations
(Laskar and Robutel, 1993).

α =
3Gm¯

2a3(1− e2)3/2

Ed
ω
' 3

2

n2

ω
Ed (2)

is called the “precession constant”. G, m¯, a, n and e
are respectively the gravitational constant, the solar mass,
Venus’ semi major axis, the mean motion and the eccen-
tricity (which varies with time due to the planetary per-
turbations). Ed is the dynamical ellipticity, which is com-
posed of two different parts:

Ed =
C − 1

2 (A + B)

C
=

kfR
5

3GC
ω2 + δEd , (3)

where R is the planet’s radius and kf the fluid Love num-
ber (pertaining to a perfectly fluid body with the same
mass distribution as the actual planet). The first part of
this expression corresponds to the flattening in hydrostatic
equilibrium (Lambeck, 1980), and δEd corresponds to the
departure from this equilibrium. At present its value is
estimated to be 1.3 × 10−5 (Yoder, 1995a), but it may
change over time. Finally, the spin-orbit contribution in
the synchronous resonance is given by (eg. Goldreich and
Peale, 1966):

αr =
3Gm¯
8a3ω

B −A

C
' 3

8

n2

ω

B −A

C
. (4)

When |` − pM | À 0, the mean value of cos(` − pM)
is zero which allows us to neglect the contribution of
the 1:1 resonance in the averaged Hamiltonian (1). The
mean value of the eccentricity of Venus is about 0.036,
its maximal value e ' 0.08 (Laskar, 1994a) and the
axially asymmetric distribution of mass (B − A)/C =
(2.16±0.03)×10−6 (Konopliv et al., 1993). In the present
work we will neglect the resonant terms weaker than the
product eB−AC and the only resonances where Venus can
be trapped are then the synchronous rotation ones. For
more details about the resonances see section 2.4.

2.2 Conservative equations for the pre-
cession motion

Since Andoyer variables (X, −ψ) are canonical, we have:

dX

dt
=

∂H
∂ψ

;
dψ

dt
= −∂H

∂X
; (5)
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that is,





dX

dt
= L

√
1− X2

L2 [B(t) sin ψ −A(t) cos ψ]

−pαrL
(
1 + pXL

)2
sin 2(`− pM) ,

dψ

dt
= αX

L − 2C(t) + pαr
(
1 + pXL

)
cos 2(`− pM)

− X

L
√

1−X2

L2

[A(t) sin ψ + B(t) cos ψ] .

(6)

The previous system of equations has a singularity for
sin ε = 0, that Venus may encounter during its evolution.
Replacing ψ by the complex variable Ψ = L sin εeiψ, we
eliminate the singularity and (6) becomes:





dX

dt
= Im(Ψ)B(t)−Re(Ψ)A(t)

−pαrL
(
1 + pXL

)2
sin 2(`− pM) ,

dΨ

dt
= i

[
αX
L − 2C(t)

]
Ψ + X [A(t)− iB(t)]

+ipαrΨ
(
1 + pXL

)
cos 2(`− pM) .

(7)

According to (2), the precession rate becomes infinite
for ω = 0. This apparent singularity results from the ap-
proximation X ' L cos ε, only valid when ψ̇ ¿ ω. For
an almost zero rotation planet, we need to use the com-
plete set of Andoyer variables (Andoyer, 1923). The total
angular momentum never being null, then sets an upper
limit for the precession rate.

2.3 Global view of the dynamics of the
obliquity

The evolution of the precession angle and obliquity is given
by a numerical integration of the system of equations (7),
in combination with the secular theory of the Solar Sys-
tem (Laskar 1988, 1990). One can then obtain a global
view of the rotational dynamics by integrating many ini-
tial conditions on α and ε, using frequency map analysis
(Laskar 1990, 1999). In the conservative view, that is,
over a short time of a few million years, the rotation rate
ω of the planet can be considered as a constant, and so
will be the precession constant α (Eq.2). But over a very
long time interval, of several billion years, the various dis-
sipative effects will change ω and therefore, the precession
constant. Nevertheless, a global view of the dynamics
of the obliquity can be obtained by constructing the fre-
quency map for a wide range of the α parameter. This
was done for all the planets (Laskar and Robutel, 1993),
and the results for the planet Venus are given in figure 1.
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Figure 1: Venus’ chaotic zone (Laskar and Robutel, 1993).
The regions with thin lines correspond to stable trajectories where
the obliquity oscillates moderately around a mean constant value. In
the region filled with thick points the variations are strongly chaotic
due to the overlap of resonances between the precession of the axis
and the secular orbital motion. The chaotic diffusion allows the
obliquity to wander in a few million years on horizontal lines in the
chaotic region.

2.4 Spin-orbit resonances

A spin-orbit resonance occurs when there is a commen-
surability between the rotation rate ω and the mean mo-
tion of the orbit n, with the synchronous rotation of the
Moon as the most common example. After the discov-
ery of the 3:2 spin-orbit resonance of Mercury (Colombo,
1965), this effect was studied in great detail (Colombo
and Shapiro, 1966, Goldreich and Peale, 1966, Counsel-
man and Shapiro, 1970). Non-synchronous spin-orbit res-
onances require a large orbital eccentricity, which is not
the case of Venus. Thus, here we will only study the par-
ticular case of the synchronous resonances, also known as
1:1 resonances. Far from the resonances, the term in αr
appearing in the expression of the averaged Hamiltonian
(1) can be neglected, since (`− pM) is a fast angle. How-
ever, for the 1:1 resonances we obtain

dL

dt
= −∂H

∂`
= −αrL

(
1 + p

X

L

)2

sin 2(`− pM) , (8)

that is,

dω

dt
= −3Gm¯

8a3

B −A

C
(1 + p cos ε)

2
sin 2(`− pM) . (9)

The width of the corresponding resonance, centered at
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ω = pn, is:

∆ω = n (1 + p cos ε)

√
3

B −A

C
. (10)

2.4.1 Capture probabilities

Due to dissipative torques (see section 3) the mean ro-
tation rate of Venus will not remain constant and may
cross one of the above resonances where it may be cap-
tured. Goldreich and Peale (1966) computed a first es-
timation of the capture probability Pcap, and subsequent
more detailed studies proved their expression to be essen-
tially correct (for a review, see (Henrard, 1993)). Since the
dissipative torques acting on Venus can be described by
means of the torques considered by Goldreich and Peale
(1966), we will adopt here the same notations but in a
more general formulation. Let

dω

dt
=< T >= −W − Z sign(γ̇)−K

γ̇

n
, (11)

where γ̇ = ω − pn and W a positive and constant torque.
K and Z are also constant torques, but not necessarily
positive. Thus, with

η = Z + K
∆ω

πn
, (12)

the probability of capture into resonance is given by:

Pcap =





0 if η ≤ 0 ,

2

1 + W/η
if 0 < η < W ,

1 if η ≥W .

(13)

2.4.2 Escape probabilities

The torques K, W and Z, appearing in equation (11), can
change with time. It is possible that for a given date η
is positive, but later on becomes negative. If the planet
was first captured in the resonance (for η > 0), it will
then be forced to abandon it (when η < 0). However,
there are two different possible paths for the rotation rate
in that situation: we can leave the resonance with a ro-
tation rate smaller than the resonant rotation (ω < pn)
or leave it with a rotation rate larger than the resonant
rotation (ω > pn). This distinction is important, because
it leads to two distinct evolutions: in the first situation
the planet skips the resonance just as if it had never been
captured, whereas in the second situation the planet’s ro-
tation will increase. To estimate the escape probabilities
of each side of the resonance (P− and P+ respectively),
we use the quantities ∆E and ∆E′ defined by Goldreich
and Peale (1966). ∆E can be understood as the energy
variation in the semi-cycle of positive γ̇ inside the reso-
nance and ∆E′ the same quantity corresponding to the

negative semi-cycle. With these notations,

P+ =
∆E

∆E + ∆E′
; P− =

∆E′

∆E + ∆E′
. (14)

Using the generalized torques defined in (11) we have:

P+ =
1

2

(
1 +

W

η

)
; P− =

1

2

(
1− W

η

)
. (15)

For P± > 1, we have P± = 1, and P± = 0 for P± < 0.
As for η = 0−, P− = 1, during the transition from η > 0
to η < 0, the planet always leaves the resonance with a
rotation rate smaller to the resonant one.

3 Dissipative effects

In the global vision of the stability of Venus’ obliquity
given in section 2.1, only conservative aspects are consid-
ered. Nevertheless, as the dissipative effects have time
scales that are in general much longer than the ones in-
volved in the chaotic diffusion, the previous study pro-
vides a general framework where all the possible scenarios
for the long time evolution of Venus rotation axis will fit.
Under billion-year time scales, and specially when consid-
ering the past evolution of Venus, the dissipative effects
to consider are due to tidal dissipation and core-mantle
friction.

3.1 Tidal effects

Tidal effects arise from differential and inelastic deforma-
tions of the planet due to a perturbing body. Among
these effects we count the gravitational tides and thermal
atmospheric tides generated from the solar heating of the
atmosphere. The estimations for the contributions to the
spin variations are based on a very general formulation of
the tidal potential, initiated by George H. Darwin (1880).
In both cases, we first write the complete tidal potential
expression, U , expressed in the canonical Andoyer’s vari-
ables. In this formulation, the contributions to the spin
are easily obtained as:

dL

dt
= −m¯

∂U

∂l
;

dX

dt
= m¯

∂U

∂ψ
; (16)

where m¯ is the mass of the interacting body which is
the Sun in the case of Venus. As we are interested here
in the study of the long term evolution of the spin, we
will average (16) over the periods of mean anomaly, longi-
tude of node and perigee of the perturbing body. All this
work is done with the help of the algebraic manipulator
TRIP (Laskar, 1989, 1994b), which expands the potential
in Fourier series, as in (Kaula, 1964).
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3.1.1 Gravitational tides

As discussed in any text book on tides, the attraction of
the Sun at a distance r¯ from the center of mass of Venus
can be expressed as the gradient of a scalar potential which
is a sum of Legendre polynomials:

V g =

∞∑

l=2

V g
l = −Gm¯

r¯

∞∑

l=2

(
r

r¯

)l
Pl(cos S) , (17)

where r is the radial distance from Venus’ center, and S
the angle from the axis from the Sun to the planet center.
The distortion of the planet by this potential gives rise to
a tidal potential,

Ug =

∞∑

l=2

Ug
l , (18)

where Ug
l = klV

g
l at the planet’s surface and kl is the

Love number for potential. Since the tidal potential Ug
l is

an lth degree harmonic, exterior to the planet it must be
proportional to r−l−1 (solution of a Dirichlet problem, see
eg. Lambeck, 1980). Furthermore, as upon the surface
r = R ¿ r¯, we can retain in the expansion only its first
term, l = 2:

Ug ' Ug
2 = −k2

Gm¯
R

(
R

r¯

)3(
R

r

)3

P2(cos S) . (19)

In general, imperfect elasticity will cause the phase an-
gle of Ug to lag behind that of V g (Kaula, 1964) by an
angle δg(σ) such that:

δg(σ) =
σ∆tg(σ)

2
, (20)

∆tg(σ) being the time lag associated to the tidal frequency
σ (a linear combination of the inertial rotation rate of
Venus, ω, and of the mean orbital motion around the Sun,
n). Using (16), we are now able to write the contributions
to the spin





dL

dt
= −Gm2

¯R5

a6

∑
σ bg(σ)Λgσ(

X
L , e) ,

dX

dt
= −Gm2

¯R5

a6

∑
σ bg(σ)Ξgσ(

X
L , e) ,

(21)

where e is the eccentricity of the planet’s orbit and the
series are infinite. However, since the eccentricity is very
small, these series can be truncated. The mean and maxi-
mal eccentricity of Venus are about 0.036 and 0.08 respec-
tively (Laskar 1994a), so we can neglect the terms in e2.

We write then:

∑
σ bτ (σ)Λσ = bτ (ω) 3

4
X2

L2

(
1− X2

L2

)

+ bτ (ω − 2n) 3
16

(
1 + X

L

)2 (
1− X2

L2

)

+ bτ (ω + 2n) 3
16

(
1− X

L

)2 (
1− X2

L2

)

+ bτ (2ω) 3
8

(
1− X2

L2

)2

+ bτ (2ω − 2n) 3
32

(
1 + X

L

)4

+ bτ (2ω + 2n) 3
32

(
1− X

L

)4
+ O(e2) ,

(22)
and

∑
σ bτ (σ)Ξσ = bτ (ω − 2n) 3

8

(
1 + X

L

)2 (
1− X2

L2

)

− bτ (ω + 2n) 3
8

(
1− X

L

)2 (
1− X2

L2

)

− bτ (2n) 9
16

(
1− X2

L2

)2

+ bτ (2ω − 2n) 3
32

(
1 + X

L

)4

− bτ (2ω + 2n) 3
32

(
1− X

L

)4
+ O(e2) .

(23)
Expression (22) is the same as expression (11) obtained
by Dobrovolskis (1980). Dissipation equations must be
invariant under the change (ω, ε) by (−ω, π − ε) which
imposes that bτ (σ) = −bτ (−σ), that is, bτ (σ) is an odd
function. Although mathematically equivalent, the cou-
ples (ω, ε) and (−ω, π − ε) will correspond to a different
physical situation (Fig.5). For gravitational tides, the fac-
tor bg(σ) is given by:

bg(σ) = k2 sin 2δg(σ) = k2 sin (σ∆tg(σ)) . (24)

Dissipation of the mechanical energy of tides in the in-
terior of Venus is responsible for the time delay ∆tg(σ)
between the position of “maximal tide” and the subsolar
point. A commonly used dimensionless measure of tidal
damping is the quality factor Q (Munk and MacDonald
1960), defined as the inverse of the “specific” dissipation
and related to the phase lags by

Qσ =
2πE

∆E
= cot 2δ(σ) , (25)

where E is the total tidal energy stored in the planet, and
∆E the energy dissipated per cycle. We can rewrite (24)
as

bg(σ) = sign(σ)
k2√

Qσ
2 + 1

' sign(σ)
k2

Qσ
. (26)

As the rheology of terrestrial planets is badly known, the
relation between the frequency and the time lag is often
subject to some rough approximations. Different models
are commonly used to deal with this problem:

The constant Q model. Since Q for the Earth changes
by less than an order of magnitude between the Chandler
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wobble period of about 440 days and seismic periods of a
few seconds, it is common to treat the specific dissipation
as independent of frequency. Thus,

bg(σ) ' sign(σ)
k2

Q
, (27)

where Q is taken constant with plausible values between
10 and 150 (Goldreich and Soter, 1966).

The viscous model (or “weak friction” model). In
this model, we assume that the response time delay to the
perturbation is independent of the tidal frequency, i.e., the
position of the “maximal tide” is shifted from the subsolar
point by a time lag ∆t. This model can be made linear
(Mignard, 1979, 1980):

bg(σ) = k2 sin(σ∆t) ' k2σ∆t . (28)

This linear approximation is justified because we usually
have σ∆t ¿ 1. For the Earth ∆t ' 638 s (Mignard,
1979, Néron de Surgy and Laskar, 1997) and σ ' ω =
7.29 × 10−5 rad s−1, and thus σ∆t ' 0.05. For slower
rotations (like Venus) the linear approximation is even
more accurate.

Interpolated model. The choice of a dissipation model
for Venus is not easy: during its evolution Venus is be-
lieved to spin rapidly at the beginning which contrasts
with the present slow rotation. Most of the previous stud-
ies on the rotation of Venus used a constant Q model.
However, for near zero tidal frequencies (σ ' 0), which
occurs for slow rotation rates (ω ∼ n), the dissipation
cannot be constant because expression (27) would intro-
duce several discontinuities in dynamical equations (22)
and (23). A viscous model seems then more appropriate.
Therefore, in our study, we have decided to use an inter-
polated model which behaves like the viscous model for
small tidal frequencies, but which reduces to the constant
one for the high tidal frequencies. We choose a natural
interpolation function between those two models as:

bg(σ) = sign(σ)
k2

Q

(
1− (1−Q/Qn)

|σ|
n

)
, (29)

where Q is the quality factor for the fast rotating planet
and Qn the same factor but for σ = n.

3.1.2 Thermal atmospheric tides

The differential absorption of the Solar heat by the
planet’s atmosphere gives rise to local variations of tem-
perature and consequently to pressure gradients. The
mass of the atmosphere is then permanently redistributed,
adjusting for an equilibrium position. More precisely, the
particles of the atmosphere move from the high tempera-
ture zone (at the subsolar point) to the low temperature

areas. Indeed, observations on Earth show that the pres-
sure redistribution is essentially a superposition of two
pressure waves (see Chapman and Lindzen, 1970): a daily
(or diurnal) tide of small amplitude (the pressure is min-
imal at the subsolar point and maximal at the antipode)
and a strong half-daily (semidiurnal) tide (the pressure is
minimal at the subsolar point and at the antipode).

The gravitational potential generated by all of the par-
ticles in the atmosphere at a generic point of the space ~r
is given by:

V a = −G

∫

(M)

dM
|~r − ~r′| , (30)

where ~r′ = (r′, θ′, ϕ′) is the position of the atmosphere
mass element dM with density ρa(~r

′) and

dM = ρa(~r
′)r′

2
sin θ′ dr′ dθ′ dϕ′ . (31)

Assuming that the radius of Venus is constant and that
the height of the atmosphere can be neglected, we approx-
imate expression (31) as:

dM =
R2

g
ps(θ

′, ϕ′, t) sin θ′ dθ′ dϕ′ , (32)

where g is the mean surface gravity acceleration, and ps
the surface pressure, which depends on the solar insola-
tion. Thus, ps depends on S, the angle between the direc-
tion of the Sun and the normal to the surface:

ps(θ
′, ϕ′) = ps(S) =

+∞∑

l=0

p̃l Pl(cos S) , (33)

where Pl are the Legendre polynomials of order l and p̃l
its coefficients. Developing also |~r − ~r′|−1 in Legendre
polynomials we rewrite (30) as:

V a = −1

ρ̄

+∞∑

l=0

3

2l + 1
p̃l

(
R

r

)l+1

Pl(cos S) , (34)

where ρ̄ is the mean density of Venus. Since we are only
interested in pressure oscillations, we must subtract the
term of constant pressure (l = 0) in order to obtain the
tidal potential Ua. We also eliminate the diurnal terms
(l = 1) because they correspond to a displacement of the
center of mass of the atmosphere bulge which has no dy-
namical implications. Thus, since we usually have r À R,
retaining only the semidiurnal terms (l = 2), we write:

Ua = −3

5

δp̃

ρ̄

(
R

r

)3

P2(cos S) , (35)

where δp̃ ≡ p̃2. According to expression (16), the dynam-
ical equations are then:





dL

dt
= −3m¯R3

5ρ̄a3

∑
σ ba(σ)Λaσ(

X
L , e) ,

dX

dt
= −3m¯R3

5ρ̄a3

∑
σ ba(σ)Ξaσ(

X
L , e) .

(36)
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Here, too, there is a delay before the response of the
atmosphere to the excitation. We name this delay ∆ta(σ)
and the corresponding phase angle δa(σ) (Eq.20). The
terms Λaσ and Ξaσ are different from their analogs in grav-
itational tides, Λgσ and Ξgσ. Nevertheless, when neglecting
the terms in e2, they become equal:

{
Λaσ(e = 0) = Λgσ(e = 0) = Λσ ,

Ξaσ(e = 0) = Ξgσ(e = 0) = Ξσ .
(37)

This allows us to use for thermal atmospheric tides the
same expressions (22) and (23) where bτ (σ) is now:

ba(σ) = δp̃(σ) sin 2δa(σ) = δp̃(σ) sin(σ∆ta(σ)) . (38)

Siebert (1961) and Chapman and Lindzen (1970)
showed that when

|δp̃(σ)| ¿ p̃0 , (39)

the amplitudes of the pressure variations on the ground
are given by:

δp̃(σ) = i
γ

σ
p̃0

(
∇ · ~vσ −

γ − 1

γ

Jσ
gH0

)
, (40)

where γ = 7/5 for a perfect gas, ~v is the velocity of tidal
winds and J the amount of heat absorbed or emitted by
a unit mass of air per unit time. H0 = RT̄s/M̄g is the
scale height at the surface, R the universal gas constant,
M̄ the mean molecular weight of air and T̄s the mean
temperature at surface level. We can write (40) as,

δp̃(σ) =
γ

|σ| p̃0

∇ · ~vσ −
γ − 1

γ

Jσ
gH0

 e±iπ2

(41)

= |δp̃(σ)|e±iπ2 ,

where the factor e±iπ2 can be seen as a supplementary
phase lag of ±π/2:

ba(σ) = |δp̃(σ)| sin 2
(
δa(σ)± π

2

)
= −|δp̃(σ)| sin 2δa(σ) .

(42)
The minus sign above causes pressure variations to lead
the Sun whenever δa(σ) < π/2 (Chapman and Lindzen
1970, Dobrovolskis and Ingersoll 1980). Unfortunately,
our knowledge of the atmosphere response is not as com-
plete as we wished it to be. As for the gravitational tides,
models are developed to deal with the unknown part. Do-
brovolskis and Ingersoll (1980) use in their paper a so
called model, ‘heating at the ground’, where they sup-
pose that all the solar flux absorbed by the ground Fs is
immediately deposited in a thin layer of atmosphere at the
surface. The heating distributing may then be written as
a delta-function just above the ground:

J(x) =
g

p̃0
Fsδ(x− 0+) . (43)

Neglecting ~v over the thin heated layer, expression (40)
simplifies:

δp̃(σ) = i
5

16

γ − 1

|σ|
Fs
H0

= i
5

16

γ

|σ|
gFs
cpT̄s

, (44)

where the factor 5/16 represents the second-degree har-
monic component of the insolation contribution (Dobro-
volskis and Ingersoll, 1980) and cp is the specific heat at
constant pressure.

Nevertheless, this model has a serious problem: accord-
ing to (44), if σ = 0, the amplitude of the pressure varia-
tions, δp̃(σ), becomes infinite. We know that this cannot
be true, as for a tidal frequency equal to zero, a steady
distribution is attained, and thus δp̃(0) = 0. For ω = n,
this effect is known as solar equilibrium tide (Chapman
and Lindzen, 1970). Indeed, expression (40) is not valid
when σ ' 0 because the condition (39) is no longer sat-
isfied. Using the typically accepted values for the Venu-
sian atmosphere, cp ' 1 000 K kg−1s−1, T̄s ' 730 K and
Fs ' 100 Wm−2 (Avduevskii et al., 1976) we compute:

|δp̃(σ)| ' 10−4 p̃0
n

|σ| , (45)

which means that for σ ∼ n, the ‘heating at the ground’
model of Dobrovolskis and Ingersoll (1980), can still be ap-
plied. Since we are only interested in long term behaviors
we can set δp̃(σ) = 0 whenever |σ| < n/100, and the com-
mitted error will be very small. Moreover, for those tidal
frequencies the dissipation lag sin σ∆ta(σ) ' σ∆ta(σ) also
goes to zero. In order to minimize even more this error,
in computations, we will use an interpolating function to
smooth the discontinuities:

|δp̃(σ)| = 5

16

γ

|σ|
gFs
cpT̄s

(
1− e−103( 2σ

n )
2)

. (46)

We expect that further studies about the extra solar
synchronous planets’ atmospheres, like the one done by
Joshi et al. (1997), may provide an accurate solution for
the case σ ' 0.

In presence of a dense atmosphere, another kind of tides
can arise: the atmosphere pressure upon the surface gives
rise to a deformation, a pressure bulge, that will also be
affected by the solar torque. At the same time, the at-
mosphere itself exerts a torque over the planet’s bulges
(gravitational and pressure bulge). Nevertheless, we do
not need to take them into account as their consequences
upon the dynamical equations can be neglected (Hinderer
et al., 1987, Correia and Laskar, 2002b).

3.2 Core-mantle friction

The last effect to consider is the electromagnetic and vis-
cous friction occurring at the core-mantle boundary. Al-
though without magnetic field, Venus has probably a liq-
uid outer core (Konopliv and Yoder, 1996). This assump-
tion is based on the Earth’s case, which should not be very

7



        

different due to the similarities of the density and the size
of the two planets. We also make here the assumption that
the internal structure of the planet remains constant along
its evolution. The core and the mantle do not have the
same dynamical ellipticity because of their different shapes
and densities. Since the precession torques exerted by the
Sun on Venus’ core and mantle are proportional to their
dynamical ellipticity, the two parts tend to precess dif-
ferently around an axis perpendicular to the orbital plane
(this results from Poincaré’s study (1910) on the motion of
an inviscid fluid contained in a rotating ellipsoidal shell).
This tendency is more or less counteracted by different
interactions produced at the interface. The main torques
are:

- the torque ~N of non-radial inertial pressure forces
of the mantle over the core provoked by the non-
spherical shape of their interface.

- the torque of the viscous friction (or turbulent) be-
tween the core and the mantle.

- the torque of the electromagnetic friction, caused by
the interaction between electrical currents of the core
and the bottom of the magnetized mantle.

Rochester (1976) showed that the last two types of fric-
tion are collinear. Thus, we can consider these two ef-
fects as a single effective friction effect ~Φ, which depends
only on one parameter, κ (effective friction coupling con-
stant). At present, Venus does not have a significant mag-
netic field, maybe because its liquid core has solidified
lately (Arkani-Hamed and Toksöz, 1984). In fact, it is be-
lieved that Venus’ core was certainly liquid before the last
great resurfacing event some 0.5 ± 0.3 Gyr ago (Schaber
et al., 1992) and hence core friction (viscous and electro-
magnetic) should have had a major influence on Venus’
tidal history. The effect of core viscosity in the Earth’s
case was treated by Stewartson and Roberts (1963) and
Roberts and Stewartson (1965) for low values of viscos-
ity, by linearizing the equations for the viscous boundary
layer. Busse (1968) further studied the effect of the non-
linear advective term in the equations. As pointed out by
Rochester (1976), for the Earth, the results obtained from
those studies agree closely with those obtained assuming
that the friction torque on the core can be expressed as

~Φ ' −κ(~ωc − ~ω) = −κ~δ , (47)

where ~ωc is the core spin vector. Sasao et al (1980) showed
that the inertial torque can be expressed by:

~N = ~ωc × ~Lc − ~Pc , (48)

where ~Pc is the precessional torque on the core, and the
subscripts (c) and (m) refer respectively, to the core and to
the mantle. Since the derivative of the angular momentum

is given by the sum of external torques, the contribution
of the core-mantle friction (CMF) is the solution of the
system:





d~Lm
dt

= ~Pm − ~N − ~Φ = ~P − ~ωc × ~Lc + κ~δ ,

d~Lc
dt

= ~Pc + ~N + ~Φ = ~ωc × ~Lc − κ~δ .

(49)

where ~P = ~Pm + ~Pc. The contribution of the previous
equations to the secular variation of the obliquity is given
by (Rochester, 1976, Pais et al, 1999):

ε̇ ' −κ
α2 cos3 ε sin ε

γelCEc
2ω2

, (50)

where Ec is the dynamical ellipticity of the core and
γel ' 0.75 the correcting factor accounting for the elas-
tic deformation of the mantle. In addition, the system of
equations (49) also implies that the normal component of
the spin momentum Cω cos ε is conserved (neglecting the
orbital contribution). Thus,

d(Cω cos ε)

dt
=

dX

dt
' 0 . (51)

We then find the equations (Néron de Surgy and Laskar,
1997) for the secular evolution of the spin of Venus:





dL

dt
' −κ

9C3n4

4L3γel

(
Ed
Ec

)2(
1− X

L

)2
X2

L2 ,

dX

dt
' 0 .

(52)

For laminar boundary layer or viscous friction, κ is given
by (Roberts and Stewartson, 1965, Busse, 1968)

κ(lam.) = 2.62 Cc|ω|
√

ζe , (53)

where
ζe =

ν

|ω|Rc
2 (54)

is the Ekman number of the core. The kinematic viscosity
(ν) is poorly known. Even in the case of the Earth, its un-
certainty covers about 13 orders of magnitude (Lumb and
Aldridge, 1991). It can be as small as ν = 10−7 m2 s−1

for the Maxwellian relaxation time and experimental val-
ues for liquid metals or as big as ν = 105 m2 s−1 for the
damping of the Chandler wobble or attenuation of shear
waves. The best estimate so far of the actual value of this
parameter is ν ' 10−6m2s−1 (Gans, 1972, Poirier, 1988).
However, when we take into account the electromagnetic
friction, ν is replaced by an effective friction, which is
stronger. Néron de Surgy and Laskar (1997), in a study
about the couples (∆t, ν) which give an evolution of the
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length of the day similar to the ones given by the observa-
tions of the Earth’s ground over the last two billion years
(Williams, 1989, 1993) give an upper limit for the effective
viscosity ν ' 103m2s−1. This value is close to the limit
estimated by Toomre (1974): ν < 102m2s−1.

In addition, unlike Earth’s case, friction between the
core and the mantle on Venus may become turbulent. In-
deed, for slow rotation rates, the Reynolds’ number (Re)
for precessional flow is so large that turbulence at the
core-mantle boundary is almost certain unless the angle
between the core and the mantle spin vectors becomes ex-
tremely small. Turbulence usually sets in for Re ∼ 105 to
106 and a typical Re is

Re =
sin2 χ

ζe
, (55)

where χ is the angle between ~ωc and ~ω given by:

sin χ ' α cos ε

ωEc
sin ε . (56)

An estimate of the turbulent stress can be obtained us-
ing mixing length theory (Goldstein, 1965, Yoder, 1995a)
in which the laminar, viscous boundary layer is replaced
by two layers: an interior, laminar viscous sublayer with
thickness D which is matched with an exterior turbulent
boundary layer. The velocity profile in the laminar sub-
layer increases linearly with the distance d from the wall
(~u = ~uD d/D) up to a layer thickness D and velocity uD.
The turbulent coupling parameter is then

κ(turb.) ' |L|
2

(
uD
u0

)2

sin χ , (57)

where ~u0 = ~δ× ~Rc is the velocity limiting value in the outer
boundary. The value uD/u0 ≤ 1/10 for the expected core
parameters. From equations (53), (55) and (57) we have

(
uD
u0

)2

' 5.2√
Re
× κ(turb.)

κ(lam.)
. (58)

In order to ensure the continuity between the κ values
when we change from one regime to another, we will use
the transition Reynolds’ number RT to evaluate uD/u0.
For instance, with RT = 106, we have uD/u0 ' 1/13.87.

4 Dynamical evolution

In this section we analyze the dynamical equations ob-
tained previously. The main goal is to describe both evo-
lution and final stages for the spin of Venus in order to
understand the results of numerical experiments presented
in the companion paper (Correia and Laskar, 2002). This
analysis will also allow to determine plausible dissipation
coefficients as well as plausible initial conditions for Venus.

4.1 Obliquity calculus

Until now, we have been expressing the variations of the
spin in Andoyer’s variables. Despite their practical use,
these variables do not give a clear view of the obliquity
variation. Since X = L cos ε, one obtains:

d cos ε

dt
=

1

L

(
dX

dt
− X

L

dL

dt

)
. (59)

For the CMF effect, the variation of ε is easily computed
from the previous equation, since dX/dt ' 0 (Eq.52):

dε

dt
' 1

L

dL

dt
cot ε . (60)

For tidal effects, we express dε/dt using the eccentricity
series for dL/dt and dX/dt (Eq.21):

d cos ε

dt
= −Kτ

ω

∑

σ

bτ (σ)

(
Ξσ −

X

L
Λσ

)

= Kτ sin2 ε

ω

∑

σ

bτ (σ)Θσ(cos ε) , (61)

where Kτ is a constant, whose values for each kind of
tide (τ = g or τ = a) are given in table 1, as well as the
expression of bτ (σ). Truncating the series as in (22) and
(23) we obtain:

dε

dt
= −Kτ sin ε

ω





bτ (2n) 9
16 sin2 ε

+ bτ (ω) 3
4 cos3 ε

− bτ (ω − 2n) 3
16 (1 + cos ε)2(2− cos ε)

+ bτ (ω + 2n) 3
16 (1− cos ε)2(2 + cos ε)

+ bτ (2ω) 3
8 sin2 ε cos ε

− bτ (2ω − 2n) 3
32 (1 + cos ε)3

+ bτ (2ω + 2n) 3
32 (1− cos ε)3 .

(62)
A similar expression was first established by Dobrovolskis
(1980). However, there is a misprint in the sign of the
second term bτ (ω) appearing in his expression (12). Shen
and Zhang (1988) also reproduce the same error. This is
not a very serious mistake, since this term plays a minor
role in the evolution. Finally, for the planetary perturba-
tions, we have from the system of equations (6) and from
expression (59):

dε

dt
= A(t) cos ψ − B(t) sin ψ . (63)

4.2 Consequences of tidal effects

We have considered two different kinds of tidal effects:
gravitational tides (g) and thermal atmospheric tides (a).
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Although they have the same nature (a periodic response
of the planet to a solar perturbation), their contributions
to the dynamical equations are quite different. For ex-
ample, atmospheric tides can either control the spin evo-
lution or simply be neglected, according to the tidal fre-
quency. The magnitude of each effect depends upon the
product of the constant Kτ appearing in expression (62)
and the respective dissipation term bτ (σ). In table 1, we
reported their relative strength. The magnitude computa-
tion is performed using the same parameters of the stan-
dard model (Correia and Laskar, 2002) and dividing by
the magnitude of the gravitational tides.

Tide (τ) Kτ bτ (σ) Magn.

g
Gm2

¯R5

Ca6 k2 sin 2δg 1

a
3m¯R3

5Cρ̄a3 −|δp̃| sin 2δa 1.92
(

2n
σ

)

Table 1: Tidal effects comparison. The tidal effects’ contribu-
tions to the dynamical equations are the same to first order in e,
only the constant Kτ and the dissipation factor bτ (σ) change for
each tidal effect (τ = g or τ = a).

In the following sections we will analyze each tidal ef-
fect separately. We will assume that the rotation rate ω
is positive, but this asumption is not restrictive, as results
for ω < 0 can be deduced using the symmetry of the dis-
sipation equations (section 3): the couple (−ω, ε) behaves
identically to the couple (ω, π − ε).

4.2.1 Gravitational tides

We will first look at the situation ω > 2n, where the
planet is believed to spend most of its evolution. Here,
the evolution tendency of dω/dt is the same for any dis-
sipation model, because all the terms in expression (22)
have the same sign. Thus, in this regime, gravitational
tides can only brake the rotation rate. On the contrary,
when 0 < ω < 2n, some terms in expression (22) be-
come negative and we must considerer the various dissi-
pation models. Except for the constant Q model, all the
dissipation models become linear for these slow rotation
rates. In fact, the constant model is not realistic in this
situation because when the tidal frequencies becomes null
(σ = 0), a discontinuity occurs in the equations. Using a
linearized dissipation model (Eq.28) in the limit of slow
rotation rates, one can simplify (22) as,

dω

dt
= −ξ

[
(1 + cos2 ε)

ω

2n
− cos ε

]
+O(e2) , (64)

with

ξ =
3Gm2

¯R5

Ca6

k2

Qn
. (65)

From expression (64) we deduce

dω

dt
≤ 0 if ω ≥

(
2 cos ε

1 + cos2 ε

)
n . (66)

Thus, as long as ω > n, the rotation rate decreases for
any value of the obliquity. Conversely, if ω < −n, the
rotation rate always increases. For inertial rotation rates
values within −n < ω < n, both behaviors are possible
and will depend on the obliquity. For each obliquity value
ε the transition value is an equilibrium point for the rota-
tion rate:

ωe =

(
2 cos ε

1 + cos2 ε

)
n . (67)

When ω > ωe the rotation of the planet decreases, whereas
when ω < ωe it increases. Contrary to the rotation rate,
in the expression of the obliquity variations for tidal ef-
fects (62), different sign terms are present for any rotation
rate, so the obliquity variations will always be model de-
pendent. Using as before the linear model, we have:

dε

dt
= −ξ

sin ε

ω

(
1− ω

2n
cos ε

)
+O(e2) , (68)

and for a given value of ω, the “equilibrium” obliquity εe,
obtained as solution of dε/dt = 0, will be:

{
εe = arccos

(
2n
ω

)
if ω > 2n ,

εe = 0 if 2n ≥ ω > 0 .
(69)

In the case of Venus, the only possible behavior of the
gravitational tides alone is thus to lead the planet’s spin
to the synchronous state (ω = n, ε = 0), as shown in figure
2. Other resonant states exist but since the eccentricity of
Venus and its non-axial deformation are very small, cap-
ture in these states is unlikely (see section 2.4). This final
evolution can also be visualized in terms of the normal and
oblique components of Venus’ spin (Dobrovolskis, 1980).

4.2.2 Thermal atmospheric tides

As for gravitational tides, since all terms in expression (22)
have the same sign for ω > 2n, the evolution tendency
of dω/dt in this regime is independent of the dissipation
model. However, since this sign (negative for gravitational
tides) is positive here, thermal atmospheric tides acceler-
ate the planet’s rotation (as long as δa(σ) < π/2). If
0 < ω < 2n, the analysis is more complicated. Indeed,
due to the surface pressure variations term δp̃(σ) (Tab.1),
we can no longer establish a simple and general expression
as for gravitational tides. Since the function Λσ (22) is a
polynomial of degree four in cos ε, all one can say is that
there exists for each rotation rate at most four roots of
dω/dt, two corresponding to stable points and the other
two to unstable points of the rotation rate. The same
difficulty occurs for the study of the obliquity variations,
which always depend on δp̃(σ). According to expression

10



                

ω
>
2
n


ε = 0

ε = arccos(2n/ω)

ε = π


< 0dω/dt

ε = 0

ε = π


2
n
>
ω
>
0


ω −
→ n

Figure 2: General consequences of the gravitational tides
for (ω > 0). The planet’s spin evolves to the resonant state (1:1).
However, during the time that the rotation rate is slowed down, the
obliquity tends to a provisional stable point, cos ε = 2n/ω.

(40), the surface pressure variations are inversely propor-
tional to σ, so for fast rotation rates (ω À n), dε/dt is
dominated by the first term in (62). There will be two
obliquity values where dε/dt vanishes, 0◦ and 180◦, the
first one corresponding to a unstable position and the last
one to a stable equilibrium position for the obliquity.

As we approach slow rotation rates (ω ∼ n), all the
terms of (62) become important and more complex be-
haviors are expected. Nevertheless, since the function
Θσ(cos ε) appearing in expressions (61) and (62) is a poly-
nomial of degree three in cos ε, dε/dt has at most three
zeros in the interval [0, π]. These roots can be computed
analytically, but we will need to specify the dissipation
model. Using (44), we observe that for ω > 2n, the insta-
bility point at ε = 0◦ will be displaced to an equilibrium
obliquity close to εe such that

cos εe ' −1 +
3ω

4n
− 1

4

√
9
ω2

n2
− 48

ω

n
+ 96 , (70)

whereas the point ε = 0◦ becomes a stable equilibrium
point (Fig. 3). When 0 < ω < 2n there are inversions in
the signs of the terms ba(σ) and a general solution becomes
quite complicated.

All atmospheric tidal terms ba(σ) are proportional to
the factor 2n/σ, resulting from the surface pressure varia-
tions term δp̃(σ) (Table 1). Then, for very low values of σ,
their strength become much more important than gravita-
tional tides. On the other hand, for initial rotation rates
we have typically σ ∼ 100 n and thus the contribution
of thermal atmospheric tides to the rotation rate can be
neglected. This result is important as we do not know ex-
actly when a dense atmosphere was formed in the planet’s
evolution (Walker, 1975, Pepin, 1991, Hunten, 1993). If
we assume a fast original rotation, the formation of the

ω > 2n

e

ε = 0

ε ε=

ε = π


> 0dω/dt

Figure 3: General consequences of the thermal atmospheric
tides for (ω > 2n). The rotation rate is always accelerated and
the obliquity is essentially reversed. However, for slow rotation rates
the obliquity decreases when it is inferior to a critical value εe (70).

atmosphere in the beginning of the Solar System or only
after one billion years will not directly affect the evolu-
tion of the rotation rate. However, the same is not true
for the obliquity evolution. Due to the presence of the
term ba(2n) 9

16 sin2 ε (first term in expression 62) there is
a constant small contribution from thermal atmospheric
tides for obliquities around 90◦.

4.3 Consequences of the CMF effect

We now look at the CMF implications. Just as in
section 4.2, due to the symmetry between (ω, ε) and
(−ω, π − ε), our analysis is restricted to (ω > 0). The
first equation of system (52) can be rewritten as:

dω

dt
' −ωKf (ω, κ) cos2 ε sin2 ε , (71)

where

Kf (ω, κ) =
κ

γelC

(n

ω

)4
(

3Ed
2Ec

)2

(72)

is positive. Thus, for any obliquity value, and ω ≥ 0,

dω

dt
≤ 0 . (73)

The contribution of the CMF effect to dω/dt is null for
ε = 0◦, 90◦ and 180◦. Making use of (60) we obtain from
(71) for a given value of ω:

dε

dt
' −Kf (ω, κ) cos3 ε sin ε , (74)

which implies that, for any rotation rate, the CMF brings
the equator to the ecliptic (Fig. 4), while dε/dt vanishes
for ε = 0◦ and ε = 180◦ (stable positions) and ε = 90◦ (un-
stable equilibrium). The decrease of the rotation rate and
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the obliquity variations are intimately coupled. Indeed,
dX/dt ' 0 (Eq.52) imposes that for an initial rotation
rate ωi and obliquity εi 6= π/2:

ω =
ωi

cos εi
cos ε . (75)

As equation (74) implies that | cos ε| → 1 as time goes on,
from the previous expression (75) the equilibrium rotation
rate is attained for ωe = ωi/| cos εi|.

ε = 0

ε = π


ω
>
0


< 0dω/dt

Figure 4: General consequences of the CMF effect for (ω >
0). The rotation rate is continuously decreased at the same time
that the equator is brought to the ecliptic plane.

4.3.1 Comparison between CMF and tidal effects

Combining expressions (55), (57) and (58) we can write:

κ(turb.) ' κ(lam.)
√

Re/RT ≥ κ(lam.) , (76)

that is, for the same set of parameters, the strength of
CMF effect in the turbulent regime is always stronger than
its equivalent in the viscous regime. This allows us to
extend the conclusions obtained in the viscous regime to
the turbulent one. Let β be defined as:

β = |ω|7/2Kf (ω, κ) , (77)

then, combining expression (53) and (76) we obtain

β ≥ 0.5
n4
√

ν

γelRc

(
Ed
Ec

)2

. (78)

The dynamical ellipticity of the core and the mantle also
change slightly with the rotation rate (3). For the Earth
values, when the hydrostatic term is dominating (fast ro-
tation rates) we have Ed/Ec ' 4/3 (Rochester, 1976),
while for the non-hydrostatic term (slow rotation rates)
Ed/Ec ' 1/4 (Herring et al., 1986). If we assume that

Ed/Ec is constant, the coefficient β becomes independent
of ω and ε. We now rewrite equations (71) and (74) as:

dω

dt
' − ω β

|ω|7/2 cos2 ε sin2 ε , (79)

dε

dt
' − β

|ω|7/2 cos3 ε sin ε . (80)

In order to estimate the relative magnitude of CMF and
tidal effects we divide dω/dt by the magnitude of gravi-
tational tides, ξ (Eq.65), as it was done in Table 1. We
have

β |ω|−5/2

ξ
≥ 7.1× 103

√
ν

(
n

|ω|

) 5
2

, (81)

where we used the non-hydrostatic value as a minimal es-
timate for Ed/Ec. Yoder (1995a) computes a theoretical
value for the non-hydrostatic core ellipticity, δEc ' 29 δEd
that would set a smaller limit. However, he recognizes
(Yoder, 1997) that this value of the non-hydrostatic core
ellipticity is probably too large (though not physically un-
reasonable). Yoder calculated this parameter assuming a
constant Q tidal model for slow rotation rates while our
model is linear. If we use a constant model, the strength
of the thermal atmospheric tides becomes infinite when
tidal frequencies are zero which does not seem to be a
very realistic situation (see section 3.1.2). Thus, we prefer
to assume a Venusian ellipticity closer to the Earth one,
instead of using Yoder’s estimation. In order to simplify
future calculations, we will introduce now the dimension-
less parameter %, defined as

% =
β

ξn5/2
. (82)

This parameter, which depends on the dissipation models,
will be used to quantify the relative strength of the CMF
effect to the tidal ones. From (77) and (81), we have:

% ≥ 7.1× 103
√

ν . (83)

As pointed out by Dobrovolskis (1980) and Yoder
(1995a), the CMF effect displays a rapid increase in
strength as Venus approaches its present spin state
(Eq.81). More, in the limit of slow rotation rates, CMF
becomes turbulent, and thus, independent of the effective
viscosity ν (see section 3.2). When the regime transition
occurs (for ω < 4n), the strength of the turbulent friction
becomes, at least, equivalent to the strength of laminar
friction with ν ' 10−4m2s−1 (Fig.21, Correia and Laskar,
2002). For lower viscosities, the transition of regime oc-
curs for even faster rotation rates. Then, using that vis-
cosity as inferior limit for % in the turbulent regime, we
can deduce

%(turb.) ≥ 71 . (84)
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4.4 Evolution final states

The first measurements of the rotation of Venus (Smith,
1963, Goldstein, 1964, Carpenter, 1964, 1966) led to think
that its rotation was in 5:1 resonance with the Earth or-
bital motion (Goldreich and Peale, 1966). This was un-
likely, but the introduction of thermal atmospheric tides
seemed to make it possible (Gold and Soter, 1969). How-
ever, more accurate measurements found an observed rate
ωo that was not close enough to the resonant rate (243.16
d) to maintain that configuration (Davies et al., 1992,
Konopliv et al., 1993). We still do not know if Venus
has actually attained its final rotation state, but in this
section we will assume that the present measured period
Pf = 243.0185 ± 0.0001 d (Davies et al., 1992) is a final
rotation spin state. We will not yet consider the planetary
perturbations.

4.4.1 Obliquity final states

For a fast rotation rate (ω >> n), the surface pressure
term (46) remains small and the contribution of atmo-
spheric tides to the rotation rate can be neglected (see
section 4.2.2). Since the gravitational tides and the CMF
friction both decelerate the planet’s rotation, its rate will
slow down until it reaches the regime of slow rotation
(ω ∼ n). Once in this regime, the thermal atmospheric
tides can counterbalance the braking effect and give rise
to stable positions for both rotation rate and obliquity.

Although many unknowns remain in the physical mod-
els and dissipative parameters, it is possible to show (Ap-
pendix 5) that in the slow rotation regime, a non-negligible
CMF effect controls the general obliquity evolution, and
that there are only two stable stable positions for the
obliquity, at ε = 0◦, ε = 180◦. A critical point is also
present around ε = 90◦, but in the slow regime this crit-
ical point is unstable for ρ > 6, which is always true in
presence of CMF (see the previous section).

4.4.2 Rotation final states

For a planet with a dense atmosphere like Venus, when
the final stable positions of the obliquity are ε = 0◦ and
ε = 180◦, there are only four possibilities for its rotation
rate (Correia and Laskar, 2001). Indeed, for these two
obliquity values, the CMF contribution to dω/dt vanishes
(71), and the tidal components become very simple, with
(at second order in the planetary eccentricity) a single
term of tidal frequency σ = 2ω − 2n for ε = 0 and σ =
2ω + 2n for ε = π. As Λ2ω−2n(0) = Λ2ω+2n(π) = 3/2,

dω

dt

∣∣∣∣
0

= −3

2
[Kgbg(2ω − 2n) + Kaba(2ω − 2n)] ,

dω

dt

∣∣∣∣
π

= −3
2
[Kgbg(2ω + 2n) + Kaba(2ω + 2n)] ,

(85)

where Kg and Ka are given in Table 1. Let f(σ) be defined
as

f(σ) =
ba(2σ)

bg(2σ)
. (86)

As bτ (σ) is an odd function of σ (see section 3.1), f(σ)
is an even function of σ of the form f(|σ|). Thus, at
equilibrium, with dω/dt = 0, we obtain an equilibrium
condition

f(|ω − pn|) = −Kg

Ka
, (87)

where p = +1 for ε = 0 and p = −1 for ε = π. Moreover,
for all dissipative models (Gold and Soter, 1969, Lago and
Cazenave, 1979, Dobrovolskis and Ingersoll, 1980, Shen
and Zhang, 1989, McCue and Dormand, 1993, Yoder,
1995a, 1997), f is monotonic and decreasing for slow ro-
tation rates. There are thus only four possible values for
the final rotation rate ωf of Venus, given by

|ωf − pn| = f−1

(
−Kg

Ka

)
= ωs . (88)

Assuming that the present rotation state of Venus corre-
sponds to a stable retrograde rotation, as ωs > 0, the only
possibilities for this final state are ε = 0 and ωo = n−ωs,
or ε = π and ωo = ωs − n. In both cases, ωs = n + |ωo|
(ωs is thus the synodic frequency). With

ωo = 2π/243.0185 d ; n = 2π/224.701 d , (89)

we have
ωs = 2π/116.751 d . (90)

We can then determine all four final states for Venus (ta-
ble 2). There are two retrograde states (F−0 and F−π )
and two direct states (F+

0 and F+
π ). The two retrograde

states correspond to the observed present state of Venus
with period 243.02 days, while the two direct states have
a rotation period of 76.83 days. Looking to the present
rotation state of the planet, it is impossible to distinguish
between the two states with the same angular momentum
(Fig.5). These final states do not depend on the precise
dissipative model. Indeed, if ω+

f is the final rotation rate

in a direct state and ω−f the final rotation rate in a retro-
grade state, these two quantities are related by:

ω+
f = ω−f + 2pn , (91)

and when we replace ω−f by the observed value ωo, we
have:

|ω+
f | = |ωo|+ 2n . (92)

4.4.3 Different observed final rotation rates

To compute the rotation rate in the direct final state,
we assumed that the Venusian present rotation rate has
reached its final spin value. If that is not the case, for
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state ε ω P (days) Ps (days)

F+
0 0◦ n + ωs 76.83 116.75

F−0 0◦ n− ωs −243.02 −116.75
F+
π 180◦ −n− ωs −76.83 116.75
F−π 180◦ −n + ωs 243.02 −116.75

Table 2: Possible final spin states of Venus. There are two
retrograde states (F−0 and F−π ) and two direct states (F+

0 and F+
π ).

In all cases the synodic period Ps is the same.

F+
0 F−
0

F+
π
 F−
π


Figure 5: The four final states of Venus (Correia and Laskar,
2001). There are two retrograde states (F−0 and F−π ) and two direct

states (F+
0 and F+

π ). The two retrograde states correspond to the
observed present state of Venus with period 243.02 days, while the
two direct states have a rotation period of 76.83 days. At present it
is impossible to distinguish between the two states of each group.

small variations of the present period of rotation Po we
can deduce from expression (92) a simple formula which
gives the variations in the direct final state P+

f :

δP+
f '

(
P+
f

Po

)2

δPo '
δPo
10

. (93)

A variation of 1 day in Po gives rise to a variation of only
0.1 day in P+

f . We can then conclude that, in absence of

planetary perturbations, the final rotation period of the
direct rotation final state is always close to 76.8 days.

4.4.4 Consequences to the phase lags

Once ωs is determined, directly from the observations or
theoretically, we obtain some constraints on the dissipa-
tion phase lags, δg and δa. Indeed, from equation (88) we
have for any final state σs = 2ωo − p2n = ±2ωs:

sin 2δg(2ωs) =
|δp̃(2ωs)|Ka

k2Kg
sin 2δa(2ωs) . (94)

In addition, since sin 2δa ≤ 1, we obtain:

Q−1
σs ' sin 2δg(2ωs) ≤

Ka

k2Kg
|δp̃(2ωs)| . (95)

Using the ‘heating at the ground’ model (44) for δp̃(σ)
and the present observed values for k2, Ka, Kg and ωs,
we compute:

Qσs ≥ 45.3 . (96)

Inversely, if we are able to measure the Q factor for grav-
itational tides, we can directly estimate the atmospheric
tides phase lags from expression (94):

sin 2δa(2ωs) '
k2K

g

|δp̃(2ωs)|KaQσs

. (97)

For instance, with Qσs = 50 we have:

δa(σs) = 33.8◦ . (98)

4.4.5 An atmospheric tides dissipation model

The exact dependency of the dissipation time lags upon
the tidal frequency is unknown. However, expression (87)
combined with the assumption that Venus is presently in
one of its final states (88) provides us some important
information about the present ratio between the gravita-
tional ∆tg and the atmosphere ∆ta time lags. Replacing
(24) and (42) in expression (87), we obtain

∆ta(2ωs)

∆tg(2ωs)
' sin(2ωs∆ta(2ωs))

sin(2ωs∆tg(2ωs))
=

k2K
g

|δp̃(2ωs)|Ka
. (99)

Assuming that this ratio does not change much with the
tidal frequency, i.e.,

∆ta(σ)

∆tg(σ)
' ∆ta(2ωs)

∆tg(2ωs)
' 36.5 , (100)

we can establish a dissipation model for thermal atmo-
spheric tides. This assumption enables us to simplify
the dynamical equations when the obliquity is ε = 0◦ or
ε = 180◦. In fact, equations (85) can be rewritten as

dω

dt
= −3

2
Kgbg(2ω − p2n)

(
1 +

Kaba(2ω − p2n)

Kgbg(2ω − p2n)

)

' −3

2
Kgbg(2ω − p2n)

(
1− |δp̃(2ω − p2n)|

|δp̃(2ωs)|

)
,(101)
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where p = +1 for ε = 0◦ and p = −1 for ε = 180◦. The un-
certainty remains now only in the gravitational tides dis-
sipation. For small rotation rates, the interpolated model
can be linearized, and thus behave like the viscous one
(28). Equation (101) simplifies in that case like:

dω

dt
' −ξ

(ω

n
− p− ωs

n
sign(ω − pn)

)
, (102)

where ξ is given by expression (65) and ωs/n ' 1.92
(Eq.90). We can now plot the complete evolution of the ro-
tation rate for ε = 0◦ or ε = 180◦ (Fig.6). These graphics
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F−
0 F+
0

F−
π
F+
π


I0

Iπ


ε
=
π


ε = 0

Figure 6: Variation of dω/dt upon ω/n considering all dis-
sipative effects together at ε = 0◦ (a) and ε = 180◦ (b).
As the central fixed point (I0 or Iπ) is unstable, the only possible
final evolutions are the four stable points corresponding to F+

0 , F−0 ,

F+
π and F−π . Venus rotation rate brakes from fast rotations so we

always come from the right hand side of the chart.

are very useful to understand the final evolution of Venus
because the final states are equilibrium points (dω/dt = 0)
that correspond to the intersection of the curve with the
horizontal axis. As the central fixed point (I0 or Iπ) is un-
stable, the only possible final evolutions are the four stable

points corresponding to F+
0 , F−0 , F+

π and F−π . Venus ro-
tation rate brakes from fast rotations so we always come
from the right hand side of figure 6. If ε = 0◦, the only
possibility for ω to stabilize is obtained through the F+

0

state, since it is the first stability point to be encountered.
For the same reason, for ε = 180◦ the planet will stabi-
lize its rotation in F−π . However, before reaching 0◦ or
180◦, according to expression (67), the rotation rate can
reach any value ω ≥ −n. It is then possible that the rota-
tion rate will be comprised between −n and n when the
obliquity stabilizes at ε = 0◦. In that situation the planet
evolves towards F−0 as shown in figure 6a.

4.4.6 Relation between the tidal dissipation Q,
the initial rotation rate ωi and the time
needed to reach a final state ∆tf .

The initial rotation rate of Venus (ωi) is not known. Nev-
ertheless, for a given tidal dissipation (quantified by the
quality factor Q), the age of the Solar System (∼ 4.6 Ga)
imposes a constraint on the time (∆tf ) that the planet
takes to reach its present configuration. In order to find a
relation between these three parameters we need to solve
the dynamical equations which is not easy analytically,
but we can simplify these equations. For fast rotation
rates we can use the constant Q model (see section 3.1)
and the contributions from atmospheric tides and CMF to
dω/dt can be neglected (see sections 4.2 and 4.3). Thus,
we have from equations (21) and (22) with ε = 0◦:

dω

dt
= − c

Q
, (103)

where c = 3k2K
g/2. This equation is valid until the planet

reaches the slow rotation regime (ω ∼ n) at time t = tr.
As we assume that ωi À n, we have ωr − ωi ' −ωi, and
thus

tr − ti ' Qωi/c , (104)

where ti is the initial time. We consider that the planet
reaches a final state when ∆ω = |ω − ωf |/n ¿ 1 (in our
computations ∆ω = 10−5). In fact, the time ∆tr = tf − tr
spent in the slow regime to reach the final state is much
smaller than the total time ∆tf = tf − ti needed to reach
the final state, which we can thus estimate as

∆tf ' Qωi/c . (105)

This expression is very useful as it allows to extrapolate
in a easy way the results obtained for a set of initial con-
ditions to another choice of the parameters. We can use
a faster initial rotation period for Venus, as long as we
increase the dissipation (by reducing Q).

4.5 Effect of the planetary perturbations

In section 4.4.1 we saw that due to the CMF effect, the fi-
nal obliquity can either be 0◦ or 180◦. However, these final
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states correspond to fully damped obliquity states. When
planetary perturbations are taken into account, there is al-
ways a remaining forced obliquity (Eq.63). In this section,
we will only be concerned with small oscillations, that is,
with behaviors outside the chaotic zone (Fig.1). Other-
wise, the obliquity variations would be very large and we
could no longer talk about final states (see section 2.3).
Near a final state, we can then write the obliquity as

ε = εe + δε , (106)

where εe is the final obliquity in absence of planetary per-
turbations and δε the forced obliquity. Usually, δε never
exceed a few degrees (Yoder, 1995a, Correia and Laskar,
2002), so we can assume δε ¿ 1 (in radians). The li-
bration amplitude depends on the CMF strength and on
the precession constant (Yoder, 1995a, 1997). A strong
CMF effect tends to lock the obliquity while a precession
constant close to the chaotic zone (Fig.1) increases its os-
cillations. Taking into account the contribution of this
residual obliquity to the rotation rate, we deduce from
(79) and (102):

dω

dt
' −ξ

[
ω

n
− p− ωs

n
sign(ω − pn) + sign(ω)%

(
n

|ω|

) 5
2

δε2

]
.

(107)
We notice that ωs does not represent anymore the syn-

odic frequency in a final state. The new rotation rate in a
final state is computed from the previous equation when
dω/dt = 0. For the direct states (F+

0 or F+
π ) we have:

|ω+
f | = ωs + n− n%

(
n

|ω+
f |

) 5
2

δε2
+ , (108)

and for the retrograde states (F−0 or F−π ):

|ω−f | = ωs − n− n%

(
n

|ω−f |

) 5
2

δε2
− . (109)

The final rotation rates are no longer fixed and their
oscillations δω follow the forced obliquity variations with

|δω| = n%

(
n

|ω|

) 5
2

δε2 . (110)

Direct rotation final state F+ As in section 4.4.2
we can link the spin rate of the direct final state F+ to
the presently observed value ωo (92). With |ω−f | = ωo in
(109), we can solve for ωs and (108) will give, at first order
in δε2

o, δε
2
+:

|ω+
f | = ωo + 2n + δωf , (111)

where

δωf = n%

(
n

ωo

) 5
2

(
δε2
o −

(
ωo

ωo + 2n

) 5
2

δε2
+

)
. (112)

This result is independent of the atmosphere properties,
but depends on the CMF effect and gravitational tides
(quantified by %) and on the precession constant (by means
of δε). If the obliquity variations δε+ for F+ were iden-
tical to the retrograde case, that is, if δε+ ' δεo, as
(ωo/(ωo + 2n))5/2 ' 0.63, δωf would be positive, and
we would expect a period for F+ faster than the unper-
turbed one (76.8 d). However, for the F+ states, the
planetary perturbations are much larger than in the F−
states, and the term δε2

+ becomes dominant. δωf is thus
negative, and the resulting period becomes larger than in
the unperturbed case. Actually, using the dissipation pa-
rameters of the standard model, we obtained numerically
P+
f ' 135± 5 d (Correia and Laskar, 2002).

4.6 Formation of the atmosphere

The precise evolution of Venus’ atmosphere is not known.
Nevertheless, it seems that there is an agreement among
specialists that the terrestrial planets’ atmospheres result
from an evolutionary process which takes several hundred
million years (Walker, 1975, Hart, 1978, Melton and Gi-
ardini, 1982, Zahnle et al, 1988, Hunten, 1993, Pepin,
1991, 1994). The present atmosphere of Venus is then
a secondary atmosphere that acquired its major proper-
ties about 1 Gyr after the formation of the Solar System
(eg. Hunten, 1993, Kasting, 1993).

As we have seen in the former sections, the presence of
the atmosphere plays a major role in the dynamical evo-
lution of Venus. In its absence, Venus would evolve to
a synchronous or near synchronous rotation equilibrium
(see section 4.6.1). After the formation of the atmosphere,
the planet will inevitably leave the previous configuration
and evolve toward one of the four final states. However,
the probability of ending in each of these final states will
be modified (Correia and Laskar, 2002). The crucial role
played by the date of formation of the atmosphere in the
Venusian spin dynamics is detailed in the following sec-
tions.

4.6.1 Final states in absence of an atmosphere

In absence of atmosphere and planetary perturbations, we
saw in section 4.2 that the single action of gravitational
tides leads Venus into the synchronous final state. Here,
we will show that when CMF effect and planetary per-
turbations are considered, the synchronous configuration
is still possible, though there is another more probable
final evolution possibility. The same arguments used in
section 4.4.1 to sustain that only two values for the final
obliquity are possible, are still valid here, so the final obliq-
uity can either be 0◦ or 180◦. This corresponds to fully
damped obliquity states and, as in section 4.5, we must
include the contribution of a forced obliquity δε in the
rotation rate equations to take into account the residual
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CMF effect provoked by planetary perturbations. From
(64) and (79) we write:

dω

dt
' −ξ

γ̇

n
− ωβ

|ω|7/2 δε2

= −ξ
γ̇

n
− pβ

|γ̇ + pn| 52
δε2 , (113)

where γ̇ = ω − pn and p = +1 for ε = 0◦ and p = −1
for ε = 180◦. The equilibrium will then be reached when
dω/dt = 0, that is, when:

γ̇

n
= − p%

|γ̇/n + p| 52
δε2 . (114)

Since we always have % δε2 ≥ 0, then |γ̇/n + p| ≤ 1. As a
consequence, the equilibrium rotation rate ωe, solution of
the preceding equation (114), must satisfy the following
condition (for p = ±1):

|ωe| ≤ n
(
1− % δε2

)
. (115)

The forced obliquity δε is not constant and its range de-
pends on the CMF strength (%): the stronger is the CMF
effect, the smaller are the forced obliquity librations. This
dependency prevents the equilibrium rotation rate ωe to
become negative (when % → +∞, δε → 0). Roughly, we
can approximate ωe by:

ωe ' n
(
1− % δε2

)
, (116)

where ωe is below the synchronous rotation resonance lim-
its, given by expression (10). Since the planet despins
from fast rotation rates, the only possibility to attain this
equilibrium is to cross the 1:1 resonance. If the planet is
captured, then the final rotation will librate around ω = n,
i.e., it will present a synchronous rotation. Otherwise, the
rotation rate will librate around an equilibrium “mean”
value ω = ω̄e, which can be computed using the “mean”
value of the forced obliquity in expression (116).

Capture probabilities in the resonance. As we have
seen in section 2.4 when the planet crosses a resonance
the capture probability is given by expression (13). In
the vicinity of the resonance γ̇/n ¿ 1 which allows us to
rewrite expression (113) as:

dω

dt
' −ξ

γ̇

n
− β δε2

n5/2

(
p− 5

2

γ̇

n

)

= −ξ

[
p% δε2 +

(
1− 5

2
% δε2

)
γ̇

n

]
. (117)

Using here the same notations of equation (11) we have:

W = p ξ % δε2 , K = ξ

(
1− 5

2
% δε2

)
, (118)

and since Z = 0,

η =
2K

π

√
3

B −A

C
. (119)

According to (13), the capture probability of the planet
into 1:1 resonance will thus be

Pcap =





0 if % δε2 ≥ 2/5 ,

2

1+π
2

[√
3B−AC

(
1

% δε2
− 5

2

)]−1 if % δε2 < 2/5 .

(120)
Since the forced obliquity varies continuously, it is pos-

sible that for a given instant δε is small and the planet
can be captured into resonance. However, once the forced
obliquity increases again, the planet will leave the reso-
nance (see section 2.4). The capture probability should
thus be established using the maximal value of the forced
obliquity in (120). We should also stress that since
(B − A)/C is very small, even when the capture is possi-
ble, the capture probability will remain small. In figure 7
we have plotted several examples of the capture proba-
bility (Eq.120) as a function of the forced obliquity δε for
different CMF (ν) and gravitational tidal (Qn) effects. Ac-
cording to Yoder (1995a), the “mean” forced obliquity on
Venus is about 2◦. For this value, we observe that capture
into resonance can only occur for a strong tidal dissipation
(Qn = 20) and a weak CMF viscosity (ν < 10−2m2s−1)
with a probability smaller than 5%. Hence we conclude
that the capture in the 1:1 resonance is highly improbable.

4.6.2 Evolution of the atmosphere

According to expression (35), the contribution of the ther-
mal atmospheric tides to the dynamical equations in pres-
ence of a growing atmosphere only differs from the present
contributions by the surface pressure variations factor
δp̃(σ), given by expression (40). The dependency of δp̃(σ)
with the tidal frequency σ is unknown for a primordial at-
mosphere and the ‘heating at the ground’ model cannot be
applied. Indeed, this model works at present because tides
in the upper atmosphere are decoupled from the ground
by the disparity between their rotation rates, but this may
not have been so in the past. However, we can modelize
the unknown contribution of the atmosphere by the factor

ζ(t) = δp̃(t)/δp̃(tf ) , (121)

which represents the ratio of the surface pressure varia-
tions at time (t) over the present one at time (tf ). As-
suming that the velocity of tidal winds ~v and that the
heating distribution J do not depend much on the tidal
frequency, the global dynamical equation for the rotation
rate will be the same as in equation (107), but where ωs
is replaced by ζ(t)ωs.
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Figure 7: Capture probabilities for δε in the 1:1 resonance.
Each curve corresponds to a different viscosity. From left to right
we have ν = 100, 10−1, 10−2, 10−3, 10−4, 10−5m2s−1. The
last curve on the right also represents the probability for ν =
10−6m2s−1: for these values of ν and δε, we are in the turbulent
regime, where CMF does not depend on the viscosity. This is also
why the second curve on the right (ν = 10−4m2s−1) merges with
the last curve on the right. Each chart corresponds to a different
tidal dissipation: Qn = 20, Qn = 50 and Qn = 100. The lower are
the viscosity and Qn, the higher is the capture probability.

Excluding planetary perturbations. Before taking
into account the presence of the atmosphere, the dynam-
ical equations had two possible final states corresponding
to the synchronous configuration: (ω = n, ε = 0) and
(ω = −n, ε = π) (see section 4.2). Immediately after the
consideration of the faint atmosphere, each synchronous
state splits in two, one with a period slightly above the
synchronous period and another slightly below. The num-
ber of stable equilibrium possibilities increases then from
two to four. The stronger is the effect of the atmosphere
upon dynamical equations, the larger is the difference be-
tween these two rotations rates and the closer they are to
the four final states of table 2.

We can understand this bifurcation by looking at fig-
ure 8, where we plotted dω/dt with ε = 0◦ for different
stages of the formation of the atmosphere. In absence of
the atmosphere (ζ = 0), there is a single equilibrium point
where (dω/dt = 0), for ωe = n, which corresponds to a
stable position for the rotation rate (synchronization). Af-
ter the introduction of the atmosphere, this equilibrium
point becomes unstable, while two other stable equilib-
rium points appear (one with ωe < n and another with
ωe > n). For ζ = 0.5n/ωs, they both correspond to direct
rotation states. If ζ = n/ωs, we have a curious situation,
where one of the stable positions corresponds to a planet
which does not rotate. As soon as ζ > n/ωs, the stable
position with ω < n becomes retrograde (Fig.6a).

Including planetary perturbations. Just as in the
case of absence of atmosphere (section 4.6.1), when plane-
tary perturbations are considered, a residual forced obliq-
uity resulting from CMF will prevent the planet from be-
ing captured in the synchronous resonance. Indeed, in the
vicinity of the resonance we can use the approximation of
(Eq. 117), and for δε¿ 1 equations (79) and (102) give

dω

dt
' −ξ

[
% δε2 − ζ ωs

n
sign(γ̇) +

(
1− 5%

2
δε2

)
γ̇

n

]
.

(122)
Keeping the notations of equation (11), the torques W
and K are given by expression (118) while the atmospheric
torque Z is now:

Z = −ξ ζ
ωs
n
' −2 ξ ζ . (123)

According to (13), the capture probability will be zero
whenever η = Z +K ∆ω

πn ≤ 0, that is, from equations (10),
(118) and (123), when

% δε2 ≥ 2

5

(
1− ζ π√

3(B −A)/C

)
. (124)

Since % δε2 ≥ 0, the previous expression is always satisfied
when the atmosphere parameter ζ satifies

ζ ≥
√

3(B −A)/C

π
. (125)
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Figure 8: Bifurcation of the equilibrium states at ε = 0◦ for
different stages of the atmosphere. In absence of the atmo-
sphere (ζ = 0), the only stable position corresponds to the synchro-
nization (ω = n). For ζ = 0.5n/ωs, we already notice two equi-
librium positions, but both corresponding to direct rotation states.
If ζ = n/ωs, we have a curious situation, where one of the stable
positions corresponds to a planet which does not rotate. As soon as
ζ > n/ωs, one of the equilibrium positions becomes retrograde. As
ζ increases, the two equilibria move apart until they stabilize in the
final states of figure 6a.

For Venus (B−A)/C ' 2.2×10−6 (Konopliv et al., 1993),
and capture into resonance becomes impossible whenever
ζ ≥ 8× 10−4, that is, in the early stage of the atmosphere
formation. Therefore, if the planet spin comes close to the
1:1 resonance, a weak CMF effect (quantified by a small %
value) in presence of a faint atmosphere is enough to allow
the crossing of the resonance without capture and to let
the spin evolve, first to a rotation rate ω < n, and later
into the retrograde final state F−0 (Fig.6).

Escape probabilities from the resonance. Suppose
now, even if it is not very probable (see section 4.6.1),
that Venus was captured in the synchronous rotation be-
fore the formation of the atmosphere. This requires that
the dissipative torque η is positive (12), but as the at-
mosphere grows, the atmospheric torque Z will no longer
be zero (123), and η will decrease. As soon as η becomes
negative, Venus will leave the synchronous state, with two
different possible paths (see section 2.4), one leading to a
direct final state, with probability P+, and the other to
a retrograde one (Fig.6), with probability P− = 1 − P+,
where P+ and P− are given by equation (14). Replacing
expressions (118) and (123) in (14) we have:

P− =
1

2


1 +

% δε2

2ζ +
2
√

3(B−A)/C

π

(
5
2% δε2 − 1

)


 . (126)

If we assume that the planet was captured in the ab-
sence of the atmosphere, then % δε2 < 2/5 (Eq.120) and

P− >
1

2

[
1 +

% δε2

2ζ

]
. (127)

When the thermal atmospheric tides reach their present
strength (ζ = 1), we find an inferior limit for P− (and a
superior limit for P+):

P+ <
1

2
− % δε2

4
; P− >

1

2
+

% δε2

4
. (128)

As a consequence, the probability of ending in a retro-
grade state is always larger than 50%, independently of the
strength of all the involved effects. Moreover, in the early
stage of the atmosphere formation, for ζ ≤ % δε2/2, the
escape probability into a retrograde state is always 100%
(127). Thus, if we assume a slow transition from ζ(t) = 0
to ζ(t) = 1, the evolution through a retrograde final state
is the only possible, i.e., the planet’s spin evolves just as
if the capture in the resonance never occurred.

5 Conclusion

We have revisited here the theory of thermal atmospheric
tides. We confirm that the dense atmosphere of Venus
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plays an essential role in the dynamical history of this
planet, imposing some constraints upon the spin motion
equations which limit its possible evolutions. We show
that there are only four possible final states for the spin
of Venus, and that gravitational and atmospheric tidal
phase lags are correlated and confined within some limits.
The existence of the four final states is a general feature
for the spin evolution of a planet with a dense atmosphere,
that can be applied to future extra solar planets.

We have discussed different dissipation models, their
advantages and their applicability to the case of Venus.
We show that the constant ‘heating at the ground’ model
cannot be applied to a slowly rotation planet, as the am-
plitude of thermal atmospheric tides becomes infinite for
tidal frequencies equal to zero. We have presented a new
dissipation model for atmospheric tides that takes into
account the constraints imposed by the present observed
spin of Venus, and has the particularity of being more
realistic near a steady state.

We also analyzed the consequences of a late formation
of the atmosphere. Due to a residual CMF effect resulting
from the forced obliquity by planetary perturbations, the
planet can first evolve toward a near synchronous config-
uration with |ω| < n (Eq.115), while capture into reso-
nance is unlikely. As soon as the atmosphere is present,
capture into the 1:1 resonance becomes impossible and a
previously captured planet will leave the resonance. The
crossing of this resonance changes the final evolution of
Venus: paths that would normally end in a direct rota-
tion final state, will now evolve into one of the retrograde
rotation final states corresponding to the present observed
spin of Venus.

The theoretical results established here are illustrated
and confirmed by the numerical experiments performed in
the companion paper (Correia and Laskar, 2002). There
we test several dissipative models for a large set of ini-
tial conditions in order to explore all possible evolution
scenarios for the planet long term evolution.

Appendix. Obliquity final states

Here we will show that, in the slow rotation regime, a weak
CMF effect is sufficient to control the general obliquity
evolution, with only two stable positions for the obliquity,
at ε = 0◦, ε = 180◦. Putting together the equations (62)
and (80) we rewrite the obliquity variations (for ω > 0)
as:

dε

dt
= fω(ε) = − β

ω7/2
sin ε Φω(cos ε) , (129)

f ′ω(ε) = − β

ω7/2

[
cos εΦω(cos ε)− sin2 εΦ′ω(cos ε)

]
,

(130)

where Φω is given by (Eqs.61, 62):

Φω(x) = x3 +
ω5/2

β

∑

σ

h(σ)Θσ(x) , (131)

and h(σ) = Kgbg(σ) + Kaba(σ). Since we are in a slow
rotation regime, we can use the linear model for gravi-
tational tides (see section 4.2.1) and the approximation
(100) for thermal atmospheric tides. Then, just like ex-
pression (102), the function h(σ) simplifies as:

h(σ) ' Kgbg(σ)

(
1− 2ωs

|σ|

)
' ξσ

3n

(
1− 2ωs

|σ|

)
. (132)

With these simplifications, (131) becomes:

Φω(x) = x3 +
Γω(x)

%
, (133)

where % is given by (82) and

Γω(x) =
(ω

n

) 5
2
∑

σ

σ

3n

(
1− 2ωs

|σ|

)
Θσ(x) (134)

is a degree 3 polynomial in x which can be written as

Γω(x) = a3x
3 + a2x

2 + a1x + a0 , (135)

where the coefficients ai are functions of ω. We have a
stable critical point for the obliquity ε if fω(ε) = 0 and
f ′ω(ε) < 0. An obvious solution for fω(ε) = 0 is obtained
whenever sin ε = 0, that is, for ε = 0 and ε = π. The
critical point ε = 0 corresponds to a stable position for
the obliquity if

Φω(1) > 0⇔ % > −Γω(1) , (136)

and ε = π is stable if

Φω(−1) < 0⇔ % > Γω(−1) . (137)

The two fixed points ε = 0 and ε = π are thus both sta-
ble when ρ > max(−Γω(1), Γω(−1)) (Fig.9). The values
needed to stabilize the critical point ε = π, are larger than
for ε = 0. Indeed, in absence of CMF it is not possible to
find stable positions for this obliquity value (Dobrovolskis,
1978). On the other hand, for turbulent friction, % > 70
(Eq.84). Thus, in presence of a non-negligible CMF ef-
fect the equilibrium points at ε = 0 and ε = π are always
stable positions of the spin axis. The other possible criti-
cal points are obtained for Φω(cos ε) = 0 (Eq.129). From
(136) and (137), using the continuity of Φω, we are cer-
tain that there exists at least one additional critical value
in ]0, π[. The condition that x = cos ε corresponds to a
stable critical point can then be expressed as

g(x) = (a3 + ρ)x3 + a2x
2 + a1x + a0 = 0 (138)

20



                    

/ 0 1

/ 2

1

2

0 1

0 2

3 1

3 2

1 1 4 2 0 0 4 2 3 3 4 2 5 5 4 2 6 6 4 2

1

3 1

6 1

7 1

8 1

0 1 1

1 1 4 2 0 0 4 2 3 3 4 2 5 5 4 2 6 6 4 2

−
Γ(1)

Γ(−
1)

ω/n

9 : ;

9 < ;

Figure 9: Evolution of −Γω(1) (a) and Γω(−1) (b) with ω/n
(Eq.134). ε = 0 (resp. ε = π) is a stable critical point when
ρ > −Γω(1) (resp. ρ > Γω(−1) (Eqs. 136, 137).

g′(x) = 3(a3 + ρ)x2 + a2x + a1 < 0 . (139)

When ρ −→ +∞, g(x) ' ρx3 and g′(x) ' 3ρx2, so for
large values of ρ, g(x) = 0 has a single real root, close to 0,
(i.e. ε ' 90◦), and as g′(x) > 0, this solution corresponds
to an unstable equilibrium. A necessary condition for this
equilibrium to become stable, is that, for a sufficient low
value of ρ, we have g(x) = 0, g′(x) = 0 (this will also
correspond to the bifurcation from one single real root of
g(x) = 0, to three real roots). We can thus eliminate
x in these two relations, and obtain the limit condition
equation

A2ρ
2 + A1ρ + A0 = 0 (140)

with

A0 = +4a0a
3
2 − 18a0a1a2a3 − a2

1a
2
2 + 4a3

1a3 + 27a2
0a

2
3

A1 = −18a0a1a2 + 54a2
0a3 + 4a3

1

A2 = 27a2
0

(141)
The discriminant of this second degree equation is

∆ = 4(27a2
0a

2
1a

2
2 − 9a0a

4
1a2 + a6

1 − 27a3
0a

3
2) . (142)

For 2 < ω/n < 4.5, as ∆ < 0 , there are no solutions
for the critical equation (141), and thus (138) has a sin-
gle real root which corresponds to an unstable equilib-
rium. For 0 < ω/n < 2, it becomes possible to have
a stable equilibrium, but it requires values of ρ smaller
than max(r1, r2), (Fig.10), that are not compatible with
the constraint ρ > 70, derived in section (4.3.1). We
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Figure 10: Solution of the critical equation. The discriminant
∆ of the critical equation (141) is negative for (2 < ω/n < 4.5) (a).
For 0 < ω/n < 2, the discriminant is positive, and the two roots r1
and r2 of (141) are given in (b).

have thus demonstrated that although there exists an ad-
ditional equilibrium value for the obliquity around 90◦,
this value corresponds to an unstable equilibrium, and
the only possible stable critical points are thus ε = 0◦ and
ε = 180◦.
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Néron de Surgy, O., and Laskar, J. 1997. On the long
term evolution of the spin of the Earth. Astron. As-
trophys. 318, 975-989.
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déformables. Bull. Astron. 27, 321-356.

Poirier, J.P. 1988. Transport properties of liquid metals
and the viscosity of the Earth’s core. Geophys. J. 92,
99-105.

Roberts, P.H., and Stewartson, K. 1965. On the motion
of a liquid in a spheroidal cavity of a precessing rigid
body, II. Proc. Camb. Phil. Soc. 61, 279-288.

Rochester, M.G. 1976. The secular decrease of obliq-
uity due to dissipative core-mantle coupling. Geophys.
J.R.A.S. 46, 109-126.

Sasao, T., Okubo, S., and Saito, M. 1980. Linear the-
ory on the dynamical effects of a stratified core upon
the nutational motion of the Earth. Nutation and the
Earth’s Rotation, pp. 165-183. Reidel, Dordrecht.

Schaber, G.G., Strom, R.G., Moore, H.J., Soderblom,
L.A., Kirk, R.L., Chadwick, D.J., Dawson, D.D.,
Gaddis, L.R., Boyce, J.M., and Russell, J. 1992.
Geology and distribution of impact craters on Venus
- What are they telling us?. J. Geophys. Res. 97,
13 257-13 301.

Shen, M., and Zhang, C.Z. 1989. Dynamical evolution
of the rotation of Venus. Earth, Moon, and Planets
43, 275-287.

Siebert, M. 1961. Atmospheric Tides - Advances in Geo-
physics. Academic Press, New York.

Smith, W.B. 1963. Radar observations of Venus, 1961
and 1959. Astron. J. 68, 15-21.

Stewartson, K., and Roberts, P.H. 1963. On the motion
of a liquid in a spheroidal cavity of a precessing rigid
body. J. Fluid Mech. 33, 1-20.

Toomre, A. 1974. On the ‘nearly diurnal wobble’ of the
Earth. Geophys. J. R. Astron. Soc. 38, 335-348.

Walker, J.C.G. 1975. Evolution of the atmosphere of
Venus. J. Atmos. Sci. 32, 1 248-1 256.

Williams, G.E. 1989. Tidal rhythmites: Geochronome-
ters for the ancient Earth-Moon system. Episodes 12,
vol 3.

Williams, G.E. 1993. History of the Earth’s obliquity.
Earth Science Reviews 34, 1-45.

Yoder, C.F. 1995a. Venus’ free obliquity. Icarus 117,
1-37.

Yoder, C.F. 1995b. Astrometric and geodetic properties
of Earth and the Solar System. Global Earth Physics:

23



   

A Handbook of Physical Constants, pp. 1-31. Ameri-
can Geophysical Union, Washington D.C.

Yoder, C.F. 1997. Venusian spin dynamics. Venus II:
Geology, Geophysics, Atmosphere, and Solar Wind
Environment, pp. 1 087-1 124. University of Arizona
Press, Tucson.

Zahnle, K.J., Kasting, J.F., and Pollack, J.B. 1988. Evo-
lution of a steam atmosphere during Earth’s accre-
tion. Icarus 74, 62-97.

24



       

Symbol Designation Eq.
a Venus’ semi major axis 2
A minimal moment of inertia 3
A function of the secular orbital motion 1

ba(σ) atmospheric tides dissipation factor 38
bg(σ) gravitational tides dissipation factor 24

B moment of inertia 3
B function of the secular orbital motion 1
cp specific heat at constant pressure 44
C principal moment of inertia 3
C function of the secular orbital motion 1
e eccentricity of Venus’ orbit 2

Ec core dynamical ellipticity 50
Ed dynamical ellipticity 3
Fs solar flux absorbed by the surface 43
F+ direct rotation final state 88
F− retrograde rotation final state 88
g mean surface gravity 32
G gravitational constant 2
H0 scale height at the surface 40
H averaged Hamiltonian of the motion 1
J heating distribution 40
k2 second Love number 19
kf fluid Love number 3
K constant torque 11
Ka atmospheric tides constant 85
Kf core-mantle friction function 72
Kg gravitational tides constant 85
` hour angle 1
~L angular momentum 1

m¯ solar mass 2
M mean anomaly 1
M mass of the atmosphere 30
n mean motion 2
~N non-radial inertial pressure torque 48
p̃0 mean surface pressure 33
ps surface pressure 32
~P precessional torque 49

Pcap probability of capture into resonance 13
P± escape probability from resonance 14
Pl Legendre polynomials 17
P rotation period 93
Q quality factor 25
~r radial distance from Venus’ center 17
~r¯ Sun distance from Venus’ center 17
R Venus’ radius 3
Re Reynolds’ number 55
RT transition Reynolds’ number 76
S angle between two directions 17

Symbol Designation Eq.
T general dissipative torque 11
T̄s mean surface temperature 40
~v velocity of tidal winds 40

Ua thermal atmospheric tides potential 35
Ug gravitational tides potential 18
V a potential generated by the atmosphere 30
V g gravitational potential 17
W positive and constant torque 11

X projection of ~L on the ecliptic’s normal 1
Z constant torque 11
α precession constant 2
αr precession constant for resonances 4
β core-mantle friction parameter 77
γ perfect gas constant 40
γ̇ relative rotation rate near resonance 11
γel correcting factor for elastic deformation 50
~δ differential core rotation rate 47
δa atmospheric phase lag 38
δg gravitational phase lag 20

δEd residual dynamical ellipticity 3
δp̃(σ) surface pressure variations 40

δε forced obliquity 106
∆ta atmospheric time lag 38
∆tf time needed to reach a final state 105
∆tg gravitational time lag 20
∆ω width of the 1:1 resonance 10
ε obliquity 9

ζ(t) ratio of surface pressure variations 121
ζe Ekman number of the core 53
η composed dissipative torque 12

Θσ tidal coefficient 61
κ effective friction coupling constant 47
Λσ tidal coefficient 22
ν kinematic viscosity 54
ξ viscous model constant 65

Ξσ tidal coefficient 23
ρ̄ Venus’ mean density 34
ρa density of the atmosphere 31
% dimensionless parameter 82
σ tidal frequency 20
~Φ effective friction torque 47
χ angle between two spins 56
ψ general precession angle 1
~ω rotation rate 2
ωf final rotation rate 88
ωi initial rotation rate 104
ωo observed rotation rate 89
ωs synodic rotation rate 88
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