An Analysis of the Excel 2007 “65535” Bug

Chris Lomont, www.lomont.org, Nov 2007, Version 1.2

Overview

On September 22, 2007, a serious Excel 2007 bug was reported on a newsgroup [7] and
was soon featured on numerous news sites (Slashdot [2], Digg [3], News.com [4]). The
bug showed up when a user tried to multiply 850 by 77.1, which should result in 65535.
However Excel 2007 returns 100,000, as shown in Figure 1.

I];' MultBug - Microsoft Excel (Trial) - B X

' £ | =850%77.1 v
A B C D E F L

1 IDDDDD.I

2

M 4 » M| Sheetl | Sheet2 - Sheet3 [i [

Ready U@lﬁl 100% (=) [} (s

Figure 1 — Excel 2007 bug. The result should be 65535.

Similarly, Excel 2007 mis-formats the value 65536-2(-37) as 100001, as in Figure 2.

ﬁ;' MultBug - Microsoft Excel (Tr... = B X
' fe | =65536-21(-37) ¥
A B C D B
1 IDDDDI!
2
4 4 » M| Sheetl | Shedl i I
£ (O] 1] [p00sam— 1] +

Figure 2 — Another view of the same bug.

Soon a Microsoft Excel blog site [1] reported that the bug was only in rendering and not
used internally for other calculations. Since the value 850*77.1 + 1 erroneously results in
100,001, this confused many people, making them think this was indeed a math bug and
that the internal value was incorrect. Unfortunately, this second example happened to hit
one of the other values affected by the bug. 850*77.1-1 and 850*77.1+2 both return the
correct values, 65534 and 65537 respectively. The site claimed exactly 12 of the
9.2*10"18 possible 64-bit floating-point values suffer from this bug, with six values

1Vv1.0, Oct 2007, Initial release. Version 1.1 Oct 2007, minor typos. Version 1.2, Nov 2007, typos.

http://www.lomont.org/

between 65534.99999999995 and 65535, and six between 65535.99999999995 and
65536.

This note:

1. details how the bug works,

2. shows the bug is a rendering bug, not a math error as many reported,

3. shows how it was likely introduced by comparison to Excel 2002 and Excel 2000
behavior (the bug seems to have been inserted when updating an older 16-bit
formatting routine to a 32-bit equivalent),

4. explains how the just released hotfix corrects the behavior, confirming the
analysis of the bug,

5. and demonstrates why exactly twelve values out of more than 9*10718 (approx
2763) possible 64-bit floating-point values suffer from this bug.

In particular, I disassembled Excel 2007, located the source of the bug, and found the
error to be in the 64-bit floating-point to string conversion routine. | did a comparison to
similar routines from Excel 2000, Excel 2002, and Excel 2007 with the hotfix for this
error.

One reason | investigated the code is that security vulnerabilities are often found near
bugs in programs, due to complexity, poor programming, oversights, etc. Since this bug
can conceivably be accessed from a rogue Excel spreadsheet, there was some chance it
was a security hole. Under detailed analysis | found no security hole.

Another reason | did this work was to provide details on the scope and (lack of?) severity
of the bug, in contrast to the numerous bloggers and news stories that speculated on all
sorts of wild fantasies about this bug. Digg humorously titled their article “Critical Excel
2007 bug cripples users®,” and although I repeatedly saw the bug during testing, 1 am still
pretty healthy.

A final reason | dissected the code is to practice my skills at taking apart software and
understand how things work. Taking this apart, and especially being successful at doing
it, has been a rewarding experience. | wrote this up for the fun of it.

The bug seems to be introduced when the formatting routine was updated from older 16-
bit assembly code used in previous versions of Excel to a presumably faster 32-bit
version in Excel 2007. It is surprising such a bug slipped through, but to anyone thinking
they can write an IEEE 754 floating-point to text routine using only bit twiddling and
integer math with no “sprintf” cheating, please try to write one and see how hard it is to
get right!

During my analysis of the bug Microsoft released a hotfix, which was integrated into my
earlier version of this document.

2 http://digg.com/microsoft/Critical Excel 2007 bug cripples users

http://digg.com/microsoft/Critical_Excel_2007_bug_cripples_users

Floating-point format

For overview, here is how floating-point values are stored (roughly) on a PC. They are
stored in what is called IEEE 754 [12] format, which is a specification giving bit layout,
size requirements, and accuracy requirements for floating-point operations. Here is why
such things are needed:

Any real number can be written as powers of 2. Integers are simple: 100=64+32+4,
which can be written as consecutive powers of two as 1*276 + 1*275 + 0*2"4 + 0*2"3 +
1*272 + 0*2~1 + 0*2"0, or in binary, as 1100100,. This extends to all real numbers using
negative powers of two: 0.5 = 2°(-1), 3/8 = 1/4 + 1/8 = 0*2/\(-1) + 1*2/(-2) + 1*2/(-
3)=0.011,. A computer stores numbers as a finite string of these bits.

However, numbers such as 0.1 cannot be exactly represented since they require an
infinite length base 2 expansion, 0.1 = 0.000110011001100...,. So when you enter 0.1
into a floating- point value the resulting number stored and used in computations is
slightly less due to truncation. When 77.1 was entered and then multiplied by 850, the
result internally is really 65535-2"(-37), which the old routine correctly rounded to 65535
when printing. The new routine failed.

Due to this misunderstanding of the limits of computability, message boards discussing
the Excel bug are filled with people claiming to have found many other bugs, like 4.1 — 4
returning 0.09999999999 instead of exactly 0.1. As shown, it is impossible to compute
4.1-4 exactly using IEEE 754 format numbers® — the best one can do is approximate
answers.

IEEE 754

IEEE 754 floating-point 64-bit numbers are stored using 1 bit for the sign, 11 bits to store
an exponent, and 52 bits to store the mantissa, which is where the “digits” are stored.
This is shown in Figure 3. A good way to think of this is that the format stores 52 bits of
the expansion (of possibly infinite length) for a number, and the exponent explains where
the sliding window takes a snapshot of the digits. Most often the left edge of the window
is chosen one past the leading 1 digit in the binary expansion.

exponent fraction{mantissa)
sign (11 bit) (52 bit)
|| I
L] L] L]
63 52 0

Figure 3 - IEEE 754 bit layout

® Without using numerical tricks and other techniques, which make a lot more possible. But these tricks are
often unacceptably slow for the types of computation needed in Excel.

The sign bit is 0 for positive values and 1 for negative values. The 11-bit exponent E
takes integer values 0-2047, and is biased by 1023, giving a true exponent e=E-1023. The
mantissa M is left shifted until the highest 1 bit shifts out of the window (called
normalized). This leading 1 bit is then discarded and the rest of the mantissa bits are
stored, giving an extra bit of precision. Write the stored value as V=2"(E-1023)*(1.M) =
2"e * (1.M), using the 1.M notation to show the implied 1 bit and that the mantissa M is
the fractional part.

52 bits of mantissa corresponds to 15 digits of decimal accuracy®, so Excel traditionally
rounds numerical answers to 15 digits.

There are other subtleties for denormalized® numbers, infinities, underflow, and NaN
(Not-a-Number) bit settings, but we don’t need them here. More details are in my article
on the Inverse Square Root [10] on my website or my article on floating-point hacks in
Games Programming Gems 6 [11]. There are also many other places to learn these
details, but the Games Gems article is pretty detailed and clear.

For this article we’ll use the word “number” to denote a real number, and “value” to
denote a representation of a number in 64-bit IEEE 754 floating-point format. Thus 0.1 is
a number, but there is no value for it. The closest value is slightly smaller and is what
gets stored in an IEEE 754 format.

Values
The twelve erroneous values shown in Table 1 were found and posted on [1].

Value Hex Value Hex
65535-2~(-35) 40efFfdf 65536-2~(-35) 40eTFFFf
frrffffa frrffffa
65535-27(-36) 40efffdf 65536-2"(-36) 40efffff
fFFFrfrfb frFrfrffb
65535-2"(-37) 40effFFdf 65536-2"(-37) 40efFFFff
frrffffc frrffffc
65535-2"(-35)- 40efffdf 65536-2"(-35)- 40effFfrff
2°(-36) frrfrrfrfd 2N (-36) frrrrffd
65535-2"(-36) - 40efffdf 65536-2"(-36)- 40effFfrff
27N(=37) frrffrffe 2N(=37) frrfrfffe
65535-2"(-36) - 40efffdf 65536-2"(-36)- 40effFfrff
27 (-37) FFEFFFfFr 27 (-37) FFEFFFFF

Table 1 — Twelve values Excel 2007 formats wrong.

* Log(2%) < 15.5 < Logs(2*)

® For very small numbers which are at the edge of the possible exponent values, the leading 1 is no longer
implied, but shown, and the mantissa represents all the digits. These non-normalized numbers (called
denormals) are required by IEEE 754.

The left half values all evaluate incorrectly to 100,000, and right half values all evaluate
incorrectly to 100,001. These values can be directly entered into Excel, as shown in
Figure 4 (along with some nearby correctly formatting values).

[

E‘-:l . =9 - s MultBug - Microsoft Excel (Trial) e A
—e") Home Insert Page Layout Formulas Data Review View e - T X
== ¥ Calibri -1 - |= =S¢ | General - Al @ E- &7~
= 3 (|B & U -||A &= == |$ - % »| E' g
o |ERAT |([EEE] (w2

Clipboard ™ Font] Alignment] Number T Editing

fe | v
B C D E F Z

1

2 |65535-24(-37) 100000 65536-24(-37) 100001

3 65535-2%(-36) 100000 65536-2(-36) 100001

4 | 65535-24(-35) 100000 65536-27(-35) 100001

5 |65535-2%(-34) 65535 65536-2°(-34) 65536

6 |65535-27(-36)-2/(-37) 100000 65536-27{(-36)-2/(-37) 100001

7 |65535-24(-35)-2/(-37) 100000 65536-27(-35)-2/(-37) 100001

8 |65535-27(-35)-2/(-36) 100000 65536-27{(-35)-2/(-36) 100001

9 B65535-27(-35)-2"(-36)-2~-37) | B5535 65536-2"(-35)-24-36)-2(-37) | 65536

10

m| .

M 4 » M| Sheetl _ Sheet? | Sheet3 -~ ¥J [m Tl

[Ready [EEEPT e

Figure 4 — All 12 erroneous values displayed.

These values all are of the form 0x40EFFFyF FFFFFFFz where y=D or F and z = A, B,
C, D, E, or F. Immediate questions are why precisely this pattern? For example, why
cannot y=E? What about z=9? The reasons these are the only 12 values are covered in the
Analysis section.

Roughly, the main reason that y cannot be E is then the value is near 65535.5, and the
non-integer output goes down a different conversion path in the floating-point to string
code, a path that works correctly. The values for z below those listed avoid setting a
certain carry, which triggers again a different yet correct piece of code.

The C++ program in the appendix demonstrates that 850*77.1 in IEEE 754 results in
Ox40 ef ff df ff ff ff ff. Some constants used in the C++ code and
following table are

// some negative powers

double e35 = pow(2.0,-35.0);
double e36 = pow(2.0,-36.0);
double e37 = pow(2.0,-37.0);
double e38 = pow(2.0,-38.0);

Here is the output from the C++ program showing IEEE values for various expressions
similar to the one under consideration.

0x40
0x40
0x40
0x40
0x40
0x40
0x40
0x40
0x40
0x40
0x40
0x40
0x40
0x40
0x40
0x40
0x40
0x40
0x40
0x40

ef ff e0O 00 00 00 OO0 = 65535 = 65535

ef ff df ff ff ff ff = 65535 = 850*77.1

ef Tf ff f f ff ff = 65536 = 850*77.1+1

ef ff ef f f f ff = 65535.5 = 850*77.1+0.5

fO 00 00 00 00 00 00 = 65536 = 65536

ef ff e0O 00 00 00 OO0 = 65535 = 65535-e38

ef ff df ff ff ff ff = 65535 = 65535-e37

ef ff df ff ff ff fe = 65535 = 65535-e36

ef ff df ff ff ff fd = 65535 = 65535-e36-e37

ef ff df ff ff ff fc = 65535 = 65535-e35

ef ff df ff fFf ff fb = 65535 = 65535-e35-e37

ef ff df ff ff ff fa = 65535 = 65535-e35-e36

ef ff df ff ff ff 9 = 65535 = 65535-e35-e36-e37
ef ff ff ff f ff ff = 65536 = 65536-e37

ef Tf ff f f f fe = 65536 = 65536-e36

ef ff ff ff ff ff fd = 65536 = 65536-e36-e37

ef ff ff ff ff ff fc = 65536 = 65536-e35

ef ff ff ff ff ff tbh = 65536 = 65536-e35-e37

ef ff ff ff f ff fa = 65536 = 65536-e35-e36

ef ff ff ff ff ff O = 65536 = 65536-e35-e36-e37

Notice that 850*77.1 is stored internally the same as 65535-2"(-37), not as 65535, and
that 2/°(-38) is too small to make a difference.

Locating the bug

To locate the bug, I downloaded the Excel 2007 trial from Microsoft, installed it in a
VMWare image, and used IDAPro to disassemble/debug it. Here are roughly the steps |
followed.

1.

Run Excel from IDA Pro. Surprisingly there were no anti-debug hooks in Excel,
which surprised me. | was expecting a fight to remove anti-debugging code before
finding the bug itself.

Enter =850*77.1 into cell Al. Excel outputs the incorrect value
100,000.

Break into Excel by pausing IDA Pro. > "

Open a hex view, showing the entire memory space visible to = 4 ===

Excel.

Find the output string “100000” in memory (Figure 5). | used search sequence of
bytes, and looked for “100000.” No hits. | switched to “case sensitive” and “use

Unicode,” reran it, and found dozens of hits. 100000 might conceivably be used in
a lot of places: documentation, system constants, various output strings, so | tried
a hopefully less common string....

v | Search Wiew Debugger Options Winc Binary search

nesxk code Ale+C
P nexk data Chrl+D Enter binary search string:

nexk explored Chrl+4 ating | *100000" i
:E ﬁ nexk unexplored Chrl+U
= immediate value. ., Alb+I
: ﬁ nexk immediate value Chel4+I © Search Down @ HEH.

() Search Up () Decimal
Uiy et Ale+T O Octa
- ﬁ ek bexk CErl+T
sequence of bytes. ..

E ﬁ next sequence of bytes Crl4-B Case-serzitive
o nok Funckion alk+ IInicode ztrings
o nesxk void Chrl44
= error operand Ckrl+F

all void operands Find all occunences
n all error operands

1 Search direction [ak. l ’ Cancel] [Help
T TAARARATLN

Figure 5 - Locating strings in Excel

6. | re-ran the steps above using another of the
incorrect values 850%77.1+1, which gives the [Tt eI (i |
wrong value 100,001, which seemed less —
likely to common. This resulted in only a few | Addiess | Ux30EAEF14
hits. One was address Ox30EABF14 (your

address may vary). Enabled Hardware breakpoint

Hardware breakpoint zettings

7. To find the routine that created the 100001 | Sie=: |4 £
string at address _0x30EABF14, | created a Modes: (3 Flead/wiite
hardware breakpoint (Figure 6) that stops O wiite
whenever an instruction read or wrote to this
location. x86 architecture luckily can break
when an instruction access a memory address; Londition
without this locating the instruction writing
this string would be very difficult.

Actions
8. | then went to Excel, highlighted the cell, and | | [¥]Break [Trace
pressed enter to cause a recompute. IDAPro’s
debugger broke on the location in Figure 7. A Lok | ’ Lancel]

few more runs showed there were several

Figure 6 — IDAPro hardware
breakpoint

locations all accessing the memory in question.

\; I

LM

3822F562 ;
3822F562
J822F562
J822F562
J022F564
J022F569
J0822F56B

loc_3822F562:
shr ecx,

mou
rep stosd
adc

eax, offset unk_300838

eCX, BCX

START OF FUHCTIOH CHUHK FOR sub_3886655C

J822F56D rep stosw
J822F578 ; EHD OF FUHCTION CHUNK FOR sub_3886655C |

EEN L

EE N

38866618

MRARLLLAN Tnan TRARELELEAN =

Figure 7 — IDA Pro disassembly and graph view.

3829A75A

aRANATCEA Tana 0

9. I now had a plausible location to dig around. After looking through the code at

each of the places that stepped on this memory location, | found the routine

creating the erroneous formatting at address . text:0x30066344.

10. After some analysis, | understood a bit of this routine — it is a routine that converts

the binary representation of a 64-bit IEEE 754 double to a Unicode text string. It
is disassembled and dissected in the Bug Disassembly and Analysis section.

i Trace window

Edit Search

Thread
12 000003E 8
152 00000388
152 00000388
1% nooo03es
00000368
00000368

159 00003ES

£ £t B

=
=
=]
=
=
)
m
o

000003e3

00o003es
00000368
i
i

0000383

0000383
000003e3
000003e3
000003es
000003e S
00000368
000003e3
000003e3
isy 000003B3
iy 00000363

EG GE§ GE% G20 G20 GE§ 2 SEG GG GE GEG G41 GE0 GO GH1 GE) OEG

s

Address

text:FormatFloat
text:FormatFloat+ 7
tewt:FormnatFloat+d,
test:FormatFloat+C
test:FormatFloat+11
et FormatFloat+17
text:FormatFloat+ 14
text:FormatFloat+1F
text:FormnatFloat+21

st:FormatFloat+27
test:FarmatFloat+23
test:FormatFloat+2F
test:FormnatFloat+34

text:FormnatFloat+39
test:FormnatFloat+ 38
test:FormnatFloat+3E
test:FormatFloat+41
test:FormatFloat+46
et FormatFloat+43
test:FormatFloat+4E
text:FormnatFloat+51
text:FormatFloat:Format1 6Bt
text:FormnatFloat+59

Instruction

mov dword phr [edi+1ER]. O
moy eax, [esi+d]
moy eds, eax
and eawx, FFFO0000R
g nullzub_33
shr eax. 14h
sub eax, 3FEh
mov ebx, eax
eax, 3821h

ahd edy, 80000000
add eax, 400100000
and eax, OFFFFO000R
o eds eax

mov [edi+1Eh], edx
shr eax, 10h

sub eawx, 4000k

or b, eby

il loc_3013C232
cmp ebx, 10k

fle short Format1BBit
push edi

push ecx

Result
5T0=1.05T1=1.0 5T2=1.000000119209283550

EAX=40EFFFDF
EDX=40EFFFOF
EX=40E00000 PF=1

EAx=40E PF=0AF=1
E&x=10AF=0

ED=0 PF=1 AF=D ZF=1
E4=40050108 FF=0 ZF=D
E4=40050000 PF=1
ED%=40050000

EAX=4005 AF=1
E4=E AF=0
PF=0
PF=12F=1

ESP=12F433
ESP=12F434

-

JlLine 11 of 83

Figure 8 — Instruction tracing.

11. The routine was very complicated and most of it was not touched by this bug. To
narrow down the analysis, | ran an instruction trace, which only records
instructions executed and stores register values through the tracing (Figure 8). To
gather runs of data, | caused a break at the start of the formatting routine and
formatted the various bug values. Enabling “Trace instructions” and running the
routine until it returned to caller gathered a run of all the registers and instructions
executed.

With data gathered on successful formatting for nearby values and examples of incorrect
formatting, | dissected the resulting code.

Faulty routine location

To assist others in stepping through this routine, here are the locations of the buggy
routine.

The Excel version | dissected was Excel.exe, file version 12.0.4518.1014. File offset
0x65474 starts with the bytes C7 47 1E 00 00 OO 00, which marks the first
instruction of the formatting routine, “mov dword ptr [edi+1Eh], 0~

The block in memory when running looks like this, with the starting offset being
0x30066344 .

-text:30066340 5D C2 08 00 C7 47 1E 00 00O OO0 OO 8B 46 04 8B DO
-text:30066350 25 00 00 FO 7F OF 84 29 E8 OC 00 C1 E8 14 2D FE
-text:30066360 03 00 00 8B D8 69 CO 21 9A 00 00 D1 F8 81 E2 00

Given the routine location, it should be easy to break there and debug it yourself.
OllyDbg® and Visual Studio should work as well as IDAPro.

Bug Disassembly and Analysis

Call Graph

IDAPro generated graphs for the floating-point to string routines for Excel 2002 and
Excel 2007, shown in Figure 9. There are a few cases where this routine calls outside
subroutines, but not in the path that affects the bug. Unfortunately the right side of the
call graph for Excel 2007 is not really needed, but IDAPro added it anyways. So the
actual graph is somewhat simpler by about a third. The highest box on the right and its
descendants should be removed to get a fairer comparison.

One thing that stands out though is the increase in complexity of the routine, and this
clearly shows that it was modified. From analysis it seems this was mostly done for

® http://www.ollydbg.de/

http://www.ollydbg.de/

performance reasons, changing from 16-bit registers to 32-bit ones, and as is often the
case, the increased complexity of a high performance routine leads to a higher incidence
of bugs.

[] T
-
—
= e
sl — Excel 2002
= Floating-Point
T Formatting
T | =
iﬁl:?l_'_l__'_l
Excel 2007
Floating-Point
Formatting

Figure 9 — Routine call graph comparisons.

The code seems to be written directly in assembly, since it has no C/C++ style stack
frame or register usage. Also, the usage of some rare assembly instructions’ also points to
it being hand coded assembly. This was likely done for performance — converting
floating-point values to text needs to be high performance for Excel.

The biggest difference between the 2002 and the 2007 versions is that the routine was
rewritten to use 32-bit registers instead of 16-bit ones. As shown below this led to a
subtle bug, causing the formatting error.

The function in question takes a pointer to the floating-point value to convert in register
ESI, and writes out a text string to EDI, which also points to the beginning of a structure,
likely a cell information structure. The routine seems to fill only as many leading digits as
are nonzero, and a calling routine then fills the remaining text buffer with “0”s. Also, this

"Such as shld, scasw, and cwde.

10

routine does not seem to place a decimal point, but it does return the number of digits
placed and presumably the location of the decimal point.

11

An outline of the routine is as follows:

1. Given the float value V to output, find E so 2"E >=V

2. For decimal output, Find D so 10D >= 2”E using the first magic constant. This
tells how many digits are needed for output.

3. Based on the size of the output, choose a formatting routine. Certain ranges of
values allow faster routines to be chosen, which is why this step seems to be here.
This is also where the bug occurs, and it appears to have come directly from the
16-bit to 32-bit code rewrite.

4. The routine for 16-bit or less mantissa is chosen, but a divisor table pointer is
pointing to the wrong divisor due to the bug.

5. A loop outputs digits, and returns.

In brief: a digit loop takes a value N, a pointer to a table of divisors
{10000,1000,100,10,1}, and uses the table to output decimal digits. A pointer is
initialized to point to the largest table value needed based on the number of digits being
output. When N=65535 and the pointer to the table is correct, this outputs 6,5,5,3,5. The
bug causes the table pointer to point one past the 10000 entry to a 65535 entry.

Thus, when N=65536 (with the needed small error to cause the table mismatch), the first
digit output is 65536/65535 = 1, with a remainder of 1. Then the divisor loop walks the
table for 10000, 1000, 100, 10, and finally 1, outputting ‘0" for each division, and a 1 in
the units place. Thus the output is the erroneous 100001, instead of 65536.

The values near 65535 work similarly.

Tracing 850*77.1+1 to 100001 formatting

Here is a trace showing the error, and how values other than the six listed avoid the error.
This trace walks through the value 850*77.1+1 which should be 65536, but formats to
100001 instead. I chose this value for demonstration because it is easier to see the bug
than in the 100000 case, but the same analysis works for the other values. Due to
rounding errors from the IEEE 754 format, the computation creates the floating-point
value Ox40EF FFFF FFFF FFFF instead of true 65536 which would be 0x40F0 0000
0000 0000. This should still format correctly when rounded, but a bug causes this to
fail.

Note that the bug causing 65535 -2°(-37) to format as 100000 is not quite the same
bug as this one, but is in the same section of code, and is also caused by the table
being misaligned. The misalignment is due to another error than the one here. To
save space | do not detail this trace here.

Tables used

First come two tables used in the routine. The first contains divisors (powers of 10) used
to extract digits from the mantissa, along with a “cap” of 65535 to denote the top size in
the table. The second table contains constants used to round IEEE values for 15
significant digit output.

12

// table of divisors, used to extract decimal digits, at .text:301102D0

byte DivTbl[] = {
0x01, Ox00, O0x00, Ox00, OxOA, Ox00, Ox00, Ox00, // values 1, 10,
Ox64, Ox00, Ox00, Ox00, OXE8, ©x03, Ox00, 0x00, // values 100, 1000,
0x10, 0x27, Ox00, 0x00, OxFF, OxFF, 0x00, 0x00}; // values 10000, 65535,

// table of rounding values, used to get 15 digit accuracy, at .text:300663F7
byte RndTbl[] =
{
Ox49, 0x68, Ox01, 0x00, // digits =
OxE1l, 0x12, OxOE, 0x00, // digits =
@xCC, OxBC, Ox8C, 0x00, // digits =
OxF8, Ox5F, @x7F, 0x@5, // digits =
OxB3, OxBF, OxF9, 0x36 // digits =
}s

uuh wnNnPRE

- value=0x36F9BFB3 used here

Now we trace through the routine to see the bug in action.

Determining answer size

This part of the routine determines the size of the answer, and selects the appropriate
formatting routine based on the output type, number of bits, larger than 0, etc. A tricky
part to decode was the magic constant 0xX9A21, which was used to multiply the exponent.
This turns out to be 2*17 * log2 rounded up, which converts the base 2 exponent to a
base 10 exponent, allowing the number of decimal digits before the decimal point in the
answer to be extracted.

// We are formatting a 64-bit IEEE 754 value V=2"e*(1.M)

// The 11-bit exponent E in the bit representation is e+1023.

// the 52 bit mantissa is the fractional part, with an implied

// 1 bit, hence written 1.M

// The value is 850*77.1+1 in Excel, which is 65536-2"(-37)

// The hex representation of the value V is is Ox4@EFFFFF FFFFFFFF

// Initial registers

STO= 1.0 ST1l= 1.0 ST2= 1.0000001192092895508 ST3= 5.9604644775390625e-8
ST4= 9.9999994039535522461e-1 ST5= 1.0 ST6= 0.0 ST7= 1.0

CTRL=137F CS=1B DS=23 ES=23 FS=3B GS=0 SS5=23

EAX=FFFE EBX=FFED@61E ECX=F EDX=12F4C@ ESI=12F548 EDI=12F9E2

EBP=12F4C4 ESP=12F49C EFL=202

// EDI - points to output structure, first entry is output text buffer.
// ESI - points to the hex value for the float.

Format mov dword ptr [edi+lEh], © // result value - assume ©

mov eax, [esi+4] EAX=40EFFFFF // high part of double 850*77.1+1

mov edx, eax EDX=40EFFFFF // store a copy

and eax, 7FF00000h EAX=40E00000 // mask out to get exponent E only

jz nullsub_33 // if © exponent (V=0,denormalized)
// so bail out, string then '@".

shr eax, 14h EAX=40E // move E to low word

sub eax, 3FEh EAX=10 // subtract 1022, which leaves e+l,
// e the true exponent

mov ebx, eax EBX=10 // save this: 27~EBX > V

13

imul

sar

and
add
and
or

mov
shr
sub

or
jl

cmp
jle

Bitl6 push
push
mov
mov

xchg

shl
and
or

mov
sub
mov
shr

neg
shld
shl
mov

sub

cmp

jnb
tag2 test
jz
add

adc
jb

eax, 9A21h EAX=9A210
eax, 1 EAX=4D108
edx, 80000000h EDX=0

eax, 40010000h EAX=4005D108
eax, FFFFO000h EAX=40050000
edx, eax EDX=40050000
[edi+1Eh], edx

eax, 10h EAX=4005
eax, 4000h EAX=5

ebx, ebx PF=0
loc_3013C232

ebx, 10h PF=1 ZF=1
short Bitl6

edi ESP=12F498
ecx ESP=12F494
edx, [esi] EDX=FFFFFFFF
esi, [esi+4] ESI=40EFFFFF
eax, esi

esi, 2 ESI=14

eax, OFFFFFh EAX=FFFFF
eax, 100000h EAX=1FFFFF
ecx, 15h ECX=15

ecx, ebx ECX=5

ebx, eax EBX=1FFFFF
eax, cl EAX=FFFF

cl ECX=FB

ebx, edx, cl EBX=FFFFFFFF
edx, cl EDX=F8000000
ecx, edx ECX=F8000000
esi, 4 ESI=10

eax, DivTbl[esi]

short tag2

ecx, ecx

loc_300664A3

ecx, RndTbl[esi] ECX=2EF9BFB3

ebx, © EBX=0

tag3

// x92A1 = ceil(2717 * log2)

// this imul gives base 10 exponent

// in 15.17 fixed point

// now EAX holds signed 16.16 fixed

// point base 10 exponent

// Get sign into EDX

// rounds up, and some number foo

//

// restore sign

// save value (decimal point place?)
// to low word

// EAX = # base 10 digits before '.’
// - determines table location later
// see if exponent < @ (V < 1)

// if so, format using other routine
// is V <= 27162

// if in this cutoff range, can use

// routine (we can use 16 bit math?)
// else V outside range [0,65536)

// save these (used later for digit
// counting)

// get low part of the double value
// and the high part

EAX=40EFFFFF ESI=5 // EAX = V high 32 bits,

// ESI = number of decimal digits,
// used for table index

// 4 bytes per divisor table entry
// EAX = mantissa high bits

// prepend 1 bit since normalized

// shift so EAX=integer part only

// shift value, move fraction out

// make a copy for later shift

// shift out fractional part,

// EAX = integral part

// shift rest of mantissa

// low mantissa bits

// shift bits up...

// and place here. Integer in EAX,
// fractional in EBX:ECX

// divisor table start index

// see if the integral part >= 65535
// jump if so
// (else ESI =
//

ESI-4 omitted)

// adds Ox36F9BFB3, representing

// 2~(-35)+2"(-36)=4.36557*10"-11,
// rounds to 15 decimal digits.

// add carry up to EBX, and jump if
// carry (means value near integer)

All the above work determined that the value satisfies the 16-bit formatting routine size
requirements, and added a rounding value to the value for output. Register EAX holds the

14

integer part, and EBX:ECX holds the fractional part. The rounding overflowed into EBX,
which then overflowed, indicating the answer is close to an integer, and a jump was taken
accordingly. This overflow will be accumulated into EAX below.

Why only six values?

The addition of a magic constant was used to round the mantissa based on number of
digits to create the proper rounded 15 decimal digit answer. For the bug to happen, the
EBX has to overflow, causing the code below to execute, which leads to a bad table start
position. Table 2 shows the relation between the last byte of the mantissa to the value in
ECX to the overflow situation. In this case the value 2°(-35)+2"(-36) was added.

Last byte of Resulting value in ECX | Result when Carry?
Mantissa Ox36F9BFB3 Added

OxFF OxF8000000 Ox12EF9BFB3 Yes
OXFE OxF0000000 Ox126F9BFB3 Yes
OxFD OxE8000000 Ox11EF9BFB3 Yes
OxFC OxE0000000 Ox116F9BFB3 Yes
OxFB 0xD800000 Ox10EF9BFB3 Yes
OxFA 0xDO00Lo Ox106F9BFB3 Yes
OxF9 0xC8000000 OxOFEF9BFB3 NO
OxF8 0xC000BLO OxOF6F9BFB3 NO

Table 2 — Rounding overflow

This explains why only those values ending in @xFF-0OxFA are affected. Other values
avoid the overflow into EBX, and thus avoid the route needed to misalign the table
pointer. Now back to the story.

The Bug

From comparison to Excel 2002, the error seems to occur in the following section. There
isajz skip (jump if zero) instruction that fails to do its intended job now exactly when
the EAX register contains xFFFF. This code is reached when the above EBX overflows
and EAX is incremented. In Excel 2007, the 32-bit inc eax causes an increment to the
high 16 bits of the register. In Excel 2002 this is the 16-bit version inc ax, which rolled
over, not setting any bits in the high part. In Excel 2007, the jump is mistakenly not
taken, which then goes on to change the value of the divisor table pointer ESI, leading to
an incorrect initial digit being computed. In the 16-bit version only the lower 16 bits were
considered for the zero comparison, causing AX=0xFFFF to take the jump. Follow
carefully.

tag3 xor ecx, ecx ECX=0 // integer-1 to in EAX, fract in EBX
mov edx, 1 EDX=1 //
inc eax EAX=10000 // carry from EBX into EAX=65536
jz skip // Excel 2002 jumps here since prev

// instruction was 16-bit inc ax
// Jumping here prints correctly?

cmp eax, DivTbl[esi+4] PF=0 // check against max div value
jb loc_300664A3 // EAX too big?
jmp tagd // Jjump to some fixup routine??

15

tagsd cmp
jz
inc
add
jmp

eax, OFFFFFFFFh CF=1
Digits

word ptr [edi+20h]
esi, 4
Digits

One bad digit gets another
Now we’re in position to create the digits. All it takes to make them correct is for ESI to
point to the 10000 position in the divisor table, instead of one entry past that to the 65535
entry. By pointing too high with EAX=65536, the first digit is basically the base 65535
digit, which gives the incorrect ‘1’, and then the remainder 1 is formatted in base 10
using power of 10 divisors, leading to the remaining “00001” string. This loop repeats
until all divisors are used up.

Digits xor

skip div
or
mov
mov
add
or
jz
mov
sub

ja

Digits xor

skip div
or
mov
mov
add
or
jz
mov
sub

ja

Digits xor

skip div
or
mov
mov
add
or
jz
mov
sub

ja
Digits xor
skip div

or

edx, edx
DivTbl[esi]
al, 306h
[edi], al
byte ptr [edi+l], ©

edi, 2

edx, edx PF=0
tagb

eax, edx EAX=1
esi, 4 ESI=10
short Digits

edx, edx

DivTbl[esi]

al, 3e0h EAX=30
[edi], al

byte ptr [edi+l], ©
edi, 2

edx, edx

tagé

eax, edx EAX=1
esi, 4 ESI=C
short Digits

edx, edx EDX=0
DivTbl[esi]

al, 30h EAX=30
[edi], al

byte ptr [edi+l], ©
edi, 2

edx, edx PF=0
tagb

eax, edx EAX=1
esi, 4 ESI=8
short Digits

edx, edx EDX=0
DivTbl[esi]

al, 3e0h EAX=30

ESI=14

EDX=0
EAX=1 EDX=1
EAX=31 AF=0

EDI=12F9E4

EDX=0 PF=1
EAX=0 EDX=1

EDI=12F9E6

EAX=0 EDX=1

EDI=12F9ES8

EAX=0 EDX=1

//
//
//

/7

//
//
//
//
/7
//
!/
//
/7
//
//

//
!/
//
//
//
//
/7
//
//
//
/7

//
//
//
//
//
//
//
//
//
//
//

/7
//
//

leads to other class of bugs.
move decimal point again

jump to digit printing loop

EAX=integer, EDX=remainder
EDX:EAX / 65535 -> 1:1 error!
text for '1' - First digit wrong!
save character here

Unicode - @ here for 2-byte char
next char position

see if any remainder

exit if no remainder

move remiander to EAX

move divisor table pointer

and loop if table not empty

EAX=integer, EDX=remainder
EDX:EAX / 10000 = 0:1

text for '@’

save character here

Unicode - © here for 2-byte char
next char position

see if any remainder

exit if no remainder

move remiander to EAX

move divisor table pointer
and loop if table not empty

EAX=integer, EDX=remainder
EDX:EAX / 1000 = 0:1

text for '@’

save character here

Unicode - @ here for 2-byte char
next char position

see if any remainder

exit if no remainder

move remiander to EAX

move divisor table pointer
and loop if table not empty

EAX=integer, EDX=remainder
EDX:EAX / 100 = 0:1
text for 'O’

mov [edi], al // save character here

mov byte ptr [edi+1l], © // Unicode - © here for 2-byte char
add edi, 2 EDI=12F9EA // next char position
or edx, edx // see if any remainder
jz tagé6 // exit if no remainder
mov eax, edx EAX=1 // move remiander to EAX
sub esi, 4 ESI=4 // move divisor table pointer
ja short Digits // and loop if table not empty
Digits xor edx, edx EDX=0 // EAX=integer, EDX=remainder
skip div DivTbl[esi] EAX=0 EDX=1 // EDX:EAX / 10 = 0:1
or al, 30h EAX=30 // text for '@’
mov [edi], al // save character here
mov byte ptr [edi+l], © // Unicode - © here for 2-byte char
add edi, 2 EDI=12F9EC // next char position
or edx, edx // see if any remainder
jz tagé6 // exit if no remainder
mov eax, edx EAX=1 // move remiander to EAX
sub esi, 4 ESI=0 // move divisor table pointer
ja short Digits // table empty, jump not taken
The final digit
The mistake has been made. We finish out the digits and return.
test eax, OFFh // final digit amount = 255?
jz tagé6
jmp tag5s
tagh or al, 36h EAX=31 // text for '1°
mov [edi], al // save character here
mov byte ptr [edi+l], © // Unicode - © here for 2-byte char
add edi, 2 EDI=12F9EE // next char position
tagb mov eax, ebx EAX=0 // fractional part to EAX
or eax, ecx ZF=1 // ???
jnz loc_30150AD8
mov word ptr [edi], 36h ; '0Q' // write another '@' character
pop ecx ECX=F ESP=12F498 // clean stack
pop ebx EBX=12F9E2 ESP=12F49C // clean stack, old EDI
mov edx, edi EDX=12F9EE //
sub edx, ebx EDX=C // number of bytes put onto EDI
sar edx, 1 EDX=6 // number of characters written

tag7 mov eax, [ebx+lEh] EAX=40060000 //

and eax, OFFFF0000h AF=0 //

or eax, edx EAX=40060006 // info about string just made
mov [ebx+1lEh], eax // save into some field

and eax, 7FFFFFFFh // chop top?

sub eax, 40000000h EAX=60006 // number of digits written?
ror eax, 16h // orient for return code

retn ESP=12F4A0 // fini

// end - no more disassembly

And that demonstrated the bug in its entirety. To validate parts of this analysis, next I
show to how this got in the code, and how the fix works.

17

Previous Excel Versions

Here is a brief comparison with some previous Excel versions. Unfortunately | have been
unable to test Excel 2003 to ensure it has the same code as 2002, but from the above
analysis it seems likely since the routine was clearly rewritten from Excel 2002 to Excel
2007, and Excel 2003 doesn’t have this bug.

Excel 2002 Formatting

The Excel 2002 version | tested it is 10.6834.6830, SP3 from the Help/About menu item.
The Excel.exe version is 10.0.6834.0 in explorer. The format function occurs in memory
at .text:30033733 and starts with the bytes 66 8B 46 06 66 8B DO 66 25 FO
7F. The first instructions are:

mov ax, [esi+6]

mov dx, ax

From this first snippet it shows that the code here is from an old 16-bit version of the
routine. For Excel 2007 32-bit registers are used throughout, resulting presumably in
faster formatting. The structure of the routine is similar, but instead of using 32-bit
registers in divisions Excel 2002 uses 16-bit registers.

Another interesting point is this routine is much simpler than the Excel 2007 one.

It is instructive to see the bug compared to the execution trace in this version. Recall the
error happens in Excel 2007 in this section:

tag3 Xor ecx, ecx ECX=0 // integer-1 to in EAX, fract in EBX
mov edx, 1 EDX=1 //
inc eax EAX=10000 // carry from EBX into EAX=65536
jz skip // Excel 2002 jumps here since prev

// instruction was 16-bit inc ax
// Jumping here prints correctly?

cmp eax, DivTbl[esi+4] PF=0 // check against max div value
jb loc_300664A3 // EAX too big?
jmp tagd // jump to some fixup routine??

The reason | claim this is the bug is that the trace in Excel 2002 behaves slightly
different, missing the table misalignment:

tag3 Xor ecx, ecx ECX=0
sar esi, 1 ESI=8
mov dx, 1 EDX=F8000001
inc ax EAX=0

jz skip // Excel 2007 fails at this point due to 32 bit extension?

Here is the crux of the whole analysis: in Excel 2002, the AX register was incremented
as a 16-bit value, and the rollover caused the jz (jump if zero) branch to be taken
correctly. When this code was converted to 32-bit, this overflow, possible only when
EAX = 65535 (as in all the bug cases) and the value was sufficiently near an integer. The
fix from Microsoft, covered below, confirms this is indeed a bug.

18

The bug seemingly was introduced when converting the 16-bit formatting routine to a 32-
bit one. It is easy to see that the conversion above, with the jump if zero that can only hit
in very rare cases, would be easy to miss in the conversion. What is surprising is that an
extremely detailed analysis (which was likely done by Microsoft engineers before
accepting the code) did not catch this bug before shipping.

A complete trace of this run is in the Appendix.

Excel 2000 Formatting
For Excel 2000, I ran the same steps on the file Excel.exe version 9.0.0.8924, SP-3. The
corresponding formatting function starts at memory offset .text:0x30182242 with
the bytes 66 8B 46 06 66 8B DO 66 25 FO 7F. The firstinstructions again are:
mov ax, [esi+6]
mov dx, ax

The function is almost identical to the Excel2002, with minor changes having been made
to Excel 2002. Again it uses a lot of 16-bit registers and operands.

The Microsoft Hotfix

While | was writing this analysis, Microsoft released a 33MB hotfix for the rendering bug
on Oct 10, 2007, at http://support.microsoft.com/kb/943075.

This knowledge base article states that the result of a calculation returning a value from
65534.99999999995 to 65535 is performed correctly, but the result is incorrectly shown
as 100000. Also the result of the calculation returning a value from 65535.99999999995
to 65536 is also performed correctly, but incorrectly formats as 100001.

The fix works for values near 65536 by fixing the EAX overflow not being caught by 16-
bit math like it was in the Excel 2002 version. Here is the unfixed Excel 2007 code from
above:

tag3 xor ecx, ecx ECX=0 // integer-1 to in EAX, fract in EBX
mov edx, 1 EDX=1 //
inc eax EAX=10000 // carry from EBX into EAX=65536
jz skip // Excel 2002 jumps here since prev

// instruction was 16-bit inc ax
// Jumping here prints correctly?

And here is the same code after the fix is applied:

tag3 xor ecx, ecx ECX=0 // Excel 2007 fix does new check:
inc eax EAX=10000 // carry from EBX into EAX=65536
cmp eax, OFFFFh // New check - avoids the
jg Digits // overflow causing table pointer

// to be set wrong

19

http://support.microsoft.com/kb/943075

The fix replaces the incorrect Excel 2007 code with an additional check on EAX,
jumping as needed on the overflow. This fixes the incorrect formatting for the 6 values
near 65536. The other 6 values are fixed by a similar check done at a slightly different
place in the code. The missing EDX operation is moved to an appropriate spot in the
code. Figure 10 shows the results of running the 12 values through the fixed version of
Excel 2007.

For completeness, here is the hotfix file information. Excel.exe is now 17894936 bytes,
and version number 12.0.6042.5000. The Format routine is at location
.text:3006402B, and begins with the bytes C7 47 1E 00 00 00 00 8B 46 04
8B DO 25. The tables are identical, with the Divisor table at .text:3010E400 and
the rounding table at . text:300640D7.

: E,_' = s MultBug - Microsoft Excel (Trial) ST
- Home | Insert Page Layout Farmul Dat Revi View @ - 7 x
ame nse dJe Layou armulas ata eviaw view 1.
Bl X |licalior 111 ||| == 5 || Geneml "Il A gealnsert - || X - g~
J_Q (Bl (A | = == 5 - || |8 S| P Delete - | B]- 34~
Paste 2 (@[[|8 0 | Eromat - | 2+
Clipboard ™ Font P Alignment I Number = Cells Editing
I fe | ¥
B G D E F G E
il
2 |65535-24-37) 65535 65536-27(-37) 65536
3 |65535-2"{-38) 63535 B3536-2"(-36) 5536 =
4 |65535-2*(-35) 65535 65536-27(-35) 05536
5 |65535-2(-34) 05535 05536-2"(-34) 05530 |
B |65335-2-36)-24(-37) 63535 B3536-2%(-36)-2-37) B3536 i
7 |65535-27{-35)-24-37) 65535 65536-27(-35)-27(-37) 5530
& |65535-2"-35)-2(-36) 65535 B5536-2%(-35)-2"(-3a) 63536
9 |65535-28-35)-24{-36)-24{-37) 83535 B5536-27(-35)-21(-36]-2(-37) 05536
10
11| _ T
4 4 » M| Sheetl .~ Sheet? | Sheet3 /%2 [m | 1
Ready |Jlﬁ 1| 100% (s &»’L:.:.

Figure 10 - Fixed formatting

Execution traces are on my website for analysis.

Security Implications

Quite often poorly written routines contain holes exploitable by attackers. Since this
routine is used in formatting, and specially constructed floating-point values cause an
incorrectly formatted string, and is reachable from possible malformed Excel files, I
attempted to find possible holes or exploits. | was unable to do so, but that does not mean

20

there are none. | think it is unlikely since it seems from my testing that the cases above
are the only ones that format incorrectly, and they do not overflow the fixed length (?)
string buffers used.

Conclusion

This document covers the execution of the bug in depth, but does not claim to have
covered the issue completely. It does validate Microsoft’s claim as to the scope of the
bug, sheds some light on how the bug came to be, and shows how to reproduce and
examine the bug.

The basic blog rehash of the bug is well summarized by the Joel Spolsky admittance that
he does not know what caused the bug, yet feels the need to blog about it, closing with
[13]:

“And let's face it -- do you really want the bright sparks who work there now, and
manage to break lots of perfectly good working code -- rewriting the core
calculating engine in Excel? Better keep them busy adding and removing dancing
paper clips all day long.”

It would be much more useful and interesting if he actually figured out what was going
on instead of taking easy potshots about the subject. | hope this dispels some speculation
and uninformed critique. Another example: an amazing number of people guessed the
bug had something to do with the 65536 row limit, showing the flaws in belief in
numerology. It was these types of unfounded statements that originally led me to consider
finding the real answer to the bug.

If any reader thinks they can write a high performance IEEE 754 formatting routine from
scratch (without using library calls), I’d like the see the result and proof of correctness. It
will be hard to do it well.

More data is available at www.lomont.org, including large images of the entire function
graph (2K x 5K pixels) for the offending function in Excel 2007 and the correct one in
Excel 2002. There are the numerous function traces and associated data tables, and the
C++ code from this article.

A final comment to lawyers confused about fair-use issues, reverse-engineering for
interoperability, First Amendment and DMCA issues, and the like. Be sure to do your
homework before you contact me. It will save us both time and one of us embarrassment.

One last thing that would make this complete — an analysis of the Excel 2003 formatting
code, which | suspect it very similar to the Excel 2002 version. | predict a rewrite from
Excel 2003 to Excel 2007 introduced this bug. With the information presented here it
should be easy for someone to do the check.

21

http://www.lomont.org/

Links and references

[1] http://blogs.msdn.com/excel/archive/2007/09/25/calculation-issue-update.aspx

[2] http://it.slashdot.org/it/07/09/24/2339203.shtml

[3] http://digg.com/microsoft/Critical _Excel 2007 bug_cripples users

[4] http://www.news.com/8301-13580 3-9785728-39.html

[5] http://www.joelonsoftware.com/items/2007/09/26b.html

[6] http://en.wikipedia.org/wiki/IEEE_floating-point standard

[7]
http://groups.google.com/group/microsoft.public.excel/browse_thread/thread/2bcad1ala4861879/2f8806d5
400dfe22?hl=en#2f8806d5400dfe22

[8] http://support.microsoft.com/kb/943075

[9] http://babbage.cs.qc.edu/IEEE-754/Decimal.html

[10] Chris Lomont, Fast Inverse Square Root, 2003, http://www.lomont.org/Math/Papers/2003/InvSgrt.pdf
[11] Chris Lomont, Floating Point Tricks, Games Programming Gems 6, 2006, ISBN 1-58450-450-1

[12] http://en.wikipedia.org/wiki/IEEE_floating-point_standard

[13] http://www.joelonsoftware.com/items/2007/09/26b.html

Appendix
C++ Code

// code to investigate the Excel 2007 bug

// Chris Lomont 2007

// put =850*77.1 in a cell, text shows 100,000, correct is 65535
#include <iostream>

#include <cmath>

using namespace std;
#define Dump(a) DumpVal(#a,a)

void DumpVal(char * text, double v)
{
unsigned char * byte = reinterpret_cast<unsigned char*>(&v);
cout << hex << "ox";
for (int a = sizeof(double)-1; a >= 0; --a)
{
int val = byte[a];
if (val < 10) cout << '0’';
cout << val << ' ';
}
cout << dec;
cout << " = \t" << v << "\t = " << text;
cout << endl;
} // DumpVal

int main(void)

{

// some negative powers
double e35 = pow(2.0,-35.0);
double e36 = pow(2.0,-36.0);
double e37 = pow(2.0,-37.0);
double e38 = pow(2.0,-38.0);
Dump (65535) ;

Dump(850*77.1);
Dump(850*77.1+1);
Dump (850*77.1+0.5);

22

http://blogs.msdn.com/excel/archive/2007/09/25/calculation-issue-update.aspx
http://it.slashdot.org/it/07/09/24/2339203.shtml
http://digg.com/microsoft/Critical_Excel_2007_bug_cripples_users
http://www.news.com/8301-13580_3-9785728-39.html
http://www.joelonsoftware.com/items/2007/09/26b.html
http://en.wikipedia.org/wiki/IEEE_floating-point_standard
http://groups.google.com/group/microsoft.public.excel/browse_thread/thread/2bcad1a1a4861879/2f8806d5400dfe22?hl=en#2f8806d5400dfe22
http://groups.google.com/group/microsoft.public.excel/browse_thread/thread/2bcad1a1a4861879/2f8806d5400dfe22?hl=en#2f8806d5400dfe22
http://support.microsoft.com/kb/943075
http://babbage.cs.qc.edu/IEEE-754/Decimal.html
http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf
http://en.wikipedia.org/wiki/IEEE_floating-point_standard
http://www.joelonsoftware.com/items/2007/09/26b.html

Dump (65536) ;

// show this too small, does not effect outcomes
Dump (65535-e38);

// all combinations of e35 to e38
Dump (65535 -e37);
Dump (65535 -e36);
Dump (65535 -e36-e37);
Dump (65535-e35);
Dump (65535-e35 -e37);
Dump (65535-e35-e36)
Dump(65535-e35-e36-e37);

Dump (65536 -e37);
Dump (65536 -e36);
Dump (65536 -e36-e37);
Dump (65536-e35)s
Dump (65536-e35 -e37);
Dump (65536-e35-e36);
Dump(65536-e35-e36-e37);

return 9;

// end - ExcelBug.cpp

Excel 2002 Trace

// Excel 2002 trace for formatting 850*77.1+1 = 65536-2"(-37)

// divisor table

// table starts at word_3005FE@0, and 16 bits per entry
//.text:3005FEQO 01 00 OA 00 64 00 E8 ©3 10 27 FF FF 07 24 00 00
byte DivTbl[] = {01 00 OA 00 64 00 E8 03 10 27 FF FF};

// ECX rounding table

//.text:3005FE10 49 68 91 00 E1 12 OE @@ CC BC 8C 00 F8 5F 7F 05
//.text:3005FE20 B3 BF F9 36 00 00 00 00 00 00 00 00 00 00 00 00
//.text:3005FE30 0O 00 00 00 00 00 00 A@ 02 40 04 00 00 00 00 00
byte RndTbl[] =

0x49, 0x68, 0x01, 0x00, // digits =
OxE1l, 0x12, OxOE, 0x00, // digits =
oxCC, OxBC, Ox8C, 0x00, // digits =
OxF8, Ox5F, Ox7F, 0x@5, // digits = 4

OxB3, OxBF, OxF9, ©x36 // digits = 5 - this value=0x36F9BFB3

// above seems to be end of table based on Excel 2002 version of table

}s

w N R

// execution trace

STO= 7.1510092812520145735e-3921 ST1=-1.8318425593494863852e583
ST2= 6.4477652123115469025e-4051 ST3= 7.2305206786858568894€2850
ST4= 0.0 ST5= 0.0 ST6= 1.0 ST7= 1.0

CTRL=137F CS=1B DS=23 ES=23 FS=3B GS=0 SS=23

EAX=8 EBX=FFECOCO2 ECX=F EDX=3 ESI=30803E10 EDI=13F3FE EBP=13FC@0
ESP=13F348 EFL=212

Format mov ax, [esi+6] EAX=40EF // result value - assume ©
mov dx, ax EDX=40EF //
and ax, 7FFoh EAX=40EQ //
jz loc_30175BFF //
shr ax, 4 EAX=40E //
sub ax, 3FEh EAX=10 //

23

mov bx, ax EBX=FFECO0@10 //
cwde //
imul eax, 9A21h EAX=9A210 //
sar eax, 1i1h EAX=4 //
add ax, 4001h EAX=4005 //
and dx, 8008h EDX=0 //
or dx, ax EDX=4005 //
mov [edi+2@h], dx //
sub ax, 4000h EAX=5 //
or bx, bx //
jl loc_30180554 //
cmp bx, 1eh //
jle short Bitlé6 //
Bitl6 push edi ESP=13F344 //
push ecx ESP=13F340 //
mov edx, [esi] EDX=FFFFFFFF //
mov esi, [esi+4] ESI=4QEFFFFF //
xchg eax, esi EAX=40QEFFFFF ESI=5 //
and eax, OFFFFFh EAX=FFFFF //
or eax, 100000h EAX=1FFFFF //
mov cl, 15h ECX=15 //
sub cl, bl ECX=5 //
mov ebx, eax EBX=1FFFFF //
shr eax, cl EAX=FFFF //
neg «cl ECX=FB //
shld ebx, edx, cl EBX=FFFFFFFF //
shl edx, cl EDX=F8000000 //
mov ecx, edx ECX=F8000000 //
dec si ESI=4 //
shl si, 1 ESI=8 //
cmp ax, DivTbl[esi] //
jnb short tag2 //
tag2 jecxz short loc_300337C0 //
jmp tag2a //
tag2a shl esi, 1 ESI=10 //
add ecx, ds:dword_3005FE1@[esi] ECX=2EF9BFB3
adc ebx, © EBX=0 //
jb tag3 //
tag3 xor ecx, ecx ECX=0 //
sar esi, 1 ESI=8 //
mov dx, 1 EDX=F8000001 //
inc ax EAX=0 //
jz skip // Excel 2007 fails at this point
// due to 32 bit extension?
skip div DivTbl[esi] EAX=6 EDX=F80015A0 // divide by 10000
xor ah, ah // zero byte in top
or al, 306h EAX=36 // output '6'
stosw EDI=13F400 // write 2 byte unicode value
or dx, dx // test for @ remainder
jz short tagé // bail if done
mov ax, dx EAX=15A0 // remainder
sub esi, 2 ESI=6 // new 16-bit table value
ja short Digits // do another digit
//
Digits xor dx, dx EDX=F8000000 //
skip div DivTbl[esi] EAX=5 EDX=F8000218 // divide by 1000
xor ah, ah // zero byte 1in top
or al, 30h EAX=35 // output 'S5’
stosw EDI=13F402 // write 2 byte unicode value
or dx, dx // test for @ remainder
jz short tagé // bail if done
mov ax, dx EAX=218 // remainder
sub esi, 2 ESI=4 // new 16-bit table value
ja short Digits // do another digit
//
Digits xor dx, dx EDX=F8000000 //
skip div DivTbl[esi] EAX=5 EDX=F8000024 // divide by 100
xor ah, ah // zero byte in top
or al, 36h EAX=35 // output '5'

24

write 2 byte unicode value
test for © remainder

bail if done

remainder

new 16-bit table value

do another digit

EAX=3 EDX=F8000006 // divide by 10

//
//
//
//
//
//
//
//

/7
/7
//

zero byte
output '3’
write 2 byte unicode value
test for @ remainder

bail if done

remainder

out of table values

no jump

in top

// test @ remainder

one last '6' digit left to do

cleanup, return values...

EBX=13F3FE ESP=13F348

/7

stosw EDI=13F404
or dx, dx
jz short tagé
mov ax, dx EAX=24
sub esi, 2 ESI=2
ja short Digits
Digits xor dx, dx EDX=F8000000 //
skip div DivTbl[esi]
xor ah, ah
or al, 30h EAX=33
stosw EDI=13F406
or dx, dx
jz short tagé
mov ax, dx EAX=6
sub esi, 2 ESI=0
ja short Digits
or al, al
jz short tagé
jmp tags
tagh xor ah, ah
or al, 30h EAX=36
stosw EDI=13F408
jmp tagé
tagb mov eax, ebx EAX=0
or eax, ecx
jnz loc_3017BC33
mov word ptr [edi], 3©h
pop ecx ECX=F ESP=13F344
pop ebx
mov edx, edi EDX=13F408
sub edx, ebx EDX=A
sar edx, 1 EDX=5
mov eax, edx EAX=5
shl eax, 10h EAX=50000
mov [ebx+1Eh], dl
mov ax, [ebx+20h] EAX=54005
and eax, OFFFF7FFFh
sub ax, 4000h EAX=50005
retn ESP=13F34C

// end - 2002 trace

Call graph image for Excel 2007

Figure 11 is a cleaned up call graph for the unpatched Excel 2007 formatting code. A
high resolution version (2500x5000 pixel PNG) is available from my website

www.lomont.org.

25

http://www.lomont.org/

Excel 2007 Floating
- point Format Routine

Figure 11 — Excel 2007 unpatched call graph

26

	Overview
	Floating-point format
	IEEE 754
	Values
	Locating the bug
	Faulty routine location

	Bug Disassembly and Analysis
	Call Graph
	Tracing 850*77.1+1 to 100001 formatting
	Tables used
	Determining answer size
	Why only six values?
	The Bug
	One bad digit gets another
	The final digit

	Previous Excel Versions
	Excel 2002 Formatting
	Excel 2000 Formatting

	The Microsoft Hotfix
	Security Implications
	Quite often poorly written routines contain holes exploitable by attackers. Since this routine is used in formatting, and specially constructed floating-point values cause an incorrectly formatted string, and is reachable from possible malformed Excel files, I attempted to find possible holes or exploits. I was unable to do so, but that does not mean there are none. I think it is unlikely since it seems from my testing that the cases above are the only ones that format incorrectly, and they do not overflow the fixed length (?) string buffers used.
	Conclusion
	This document covers the execution of the bug in depth, but does not claim to have covered the issue completely. It does validate Microsoft’s claim as to the scope of the bug, sheds some light on how the bug came to be, and shows how to reproduce and examine the bug.
	The basic blog rehash of the bug is well summarized by the Joel Spolsky admittance that he does not know what caused the bug, yet feels the need to blog about it, closing with [13]:
	It would be much more useful and interesting if he actually figured out what was going on instead of taking easy potshots about the subject. I hope this dispels some speculation and uninformed critique. Another example: an amazing number of people guessed the bug had something to do with the 65536 row limit, showing the flaws in belief in numerology. It was these types of unfounded statements that originally led me to consider finding the real answer to the bug.
	If any reader thinks they can write a high performance IEEE 754 formatting routine from scratch (without using library calls), I’d like the see the result and proof of correctness. It will be hard to do it well.
	Links and references
	Appendix
	C++ Code
	Excel 2002 Trace
	Call graph image for Excel 2007
	

