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Chapter 1

Real Numbers

1.1 Ordered Fields

Definition 1.1. A field is a setF equipped with:

• an element0 ∈ F and a binary operation+: F 7→ F, makingF an abelian
group; we write−a for the additive inverse ofa ∈ F;

• an element1 ∈ F and a binary operation· : F 7→ F such

– multiplication distributes over addition, that is:a · 0 = 0 anda · (b + c) =
a · b + a · c

– 1 6= 0, multiplication restricts toF× = F\{0}, andF× is an abelian group
under multiplication; we writea−1 = 1/a for the multiplicative inverse of
a ∈ F×

Examples:Q (rational numbers);R (real numbers);C (complex numbers).

Definition 1.2. A relation < on a setF is a strict total orderwhen we havea 6< a,
a < b andb < c ⇒ a < c, a < b or a = b or b > a for all a, b andc in F. We write
a ≤ b for a < b or a = b, and note that in a total ordera ≤ b ⇔ b 6< a.

Familiar ordered fields areQ andR, but notC.

1.2 Convergence of Sequences

Definition 1.3. In an ordered field we define theabsolute value|a| of a as:

|a| =


a a > 0
−a a < 0
0 a = 0

and then we have thedistanced(a, b) = |a− b| betweena andb.

In an ordered field the distanced(a, b) satisfies

d(a, b) ≥ 0 and d(a, b) = 0 iff a = b

d(a, b) = d(b, a)
d(a, c) ≤ d(a, b) + d(b, c).

1
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Proof. Proof of this is easy. Start from

− |x| ≤ x ≤ |x|
− |y| ≤ y ≤ |y| .

Add these to get

−(|x|+ |y|) ≤ x + y ≤ |x|+ |y|
|x + y| ≤ |x|+ |y| .

Putx = a− b, y = b− c for result.

In general the distance takes values in the field in question; but in the case ofQ and
R, the distance is real valued, so we have ametric.

Example 1.4. Any ordered field has a copy ofQ as an ordered subfield.

Proof. We set
n = 1 + 1 + . . . + 1 + 1︸ ︷︷ ︸

n times

and so get−n, and so getr/s, r ∈ Z, s > 0 in Z, all ordered correctly.

Definition 1.5. A sequencean converges to a limita, or an tends toa in an ordered
field F, just when for allε > 0 in F, there existsN ∈ N with |an − a| < ε for all
n ≥ N .

We write limn→∞ an = a or an → a as n → ∞ or just an → a, whenan

converges to a limita. So we have

an → a ⇔ ∀ε > 0 ∃N ∀n ≥ N |an − a| < ε

Example 1.6.

1. an → a iff |an − a| → 0

2. bn ≥ 0, bn → 0, 0 ≤ cn ≤ bn, thencn → 0

3. Suppose we haveN, k ∈ N such thatbn = an+k for all n ≥ N , thenan → a iff
bn → a.

4. The sequencean = n for n = 0, 1, 2, . . . does not converge.

Proof. Supposean = n → α, say.

Takingε = 1/2, we can findN such that|an − α| < 1/2 for all n ≥ N . Then

1 = |an+1 − an| ≤ |an+1 − α|+ |an − α| < 1/2 + 1/2 = 1.

This is a contradiction and soan does not converge.1

Lemma 1.7 (Uniqueness of limit). If an → a andan → a′ thena = a′.

1This is a rigorous form of the thought—ifn → α we can’t have bothn, n + 1 within 1/2 of α.
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Proof. Givenε > 0 there existsN such thatn ≥ N implies |an − a| < ε andK such
thatn ≥ K implies|an − a′| < ε. Let L be the greater ofN andK. Now

|a− a′| = |a− an + an − a′|
≤ |a− an|+ |an − a′|
≤ ε + ε = 2ε.

But 2ε > 0 is arbitrary, so|a− a′| = 0 anda = a′.

Observation 1.8. Supposean → a and an ≤ α for all (sufficiently large)n. Then
a ≤ α.

Proof. Supposeα < a, so thatε = a− α > 0. We can findN such that|an − a| < ε
for all n ≥ N .

Consider

aN − α = (aN − a) + (a− α) = ε + (aN − a) ≥ ε− |an − a| > ε− ε = 0.

SoaN > α — a contradiction. We deducea ≤ α.

Example 1.9. We “know” that 1/n → 0 in R. WHY? There are ordered fields in
which1/n 6→ 0 (e.g.Q(t), field of rational functions, ordered so thatt is “infinite”)

(Easy to see that1/n → 0 in Q).

Proposition 1.10. Suppose thatan → a andbn → b. Then

1. an + bn → a + b

2. λan → λa

3. anbn → ab.

Proof of 1 and 2 are both trivial and are left to the reader.

Proof of 3. Givenε > 0 takeN such that|an − a| < ε for all n ≥ N andM such that
|bn − b| < min{ε, 1} for all n ≥ M . Let K = max{M,N}. Now

|anbn − ab| ≤ |an − a| |bn|+ |a| |bn − b|
≤ ε(1 + |b|+ |a|)

for all n ≥ K. Now ε(1 + |b|+ |a|) can be made arbitrarily small and the result is
proved.

1.3 Completeness ofR: Bounded monotonic sequences

Definition 1.11. A sequencean is (monotonic)increasingjust whenan ≤ an+1 for all
n; it is (monotonic)decreasingjust whenan ≥ an+1 for all n. To cover either case we
say the sequence ismonotonic.

N.B.an is increasing iff(−an) is decreasing.
A sequencean is bounded abovewhen there isB with an ≤ B for all n; it is

bounded belowwhen there isA with an ≥ A for all n; it is boundedwhen it is bounded
above and below.
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Axiom (Completeness Axiom).The real numbersR form an ordered field and every
bounded monotonic sequence of reals has a limit (ie converges).

Remarks.

• This can be justified on further conditions, but here we take it as an axiom.

• It is enough to say an increasing sequence bounded above converges.

• In fact, this characterizesR as the completion ofQ.

From now on, we consider only the complete ordered fieldR, and occasionally its
(incomplete) ordered subfieldQ.

Proposition 1.12 (Archimedean Property).

1. For any realx, there isN ∈ N with N > x.

2. For anyε > 0 there isN ∈ N with 0 < 1
N < ε.

3. The sequence1n → 0.

Proof.

1. Recall thatan = n is an increasing non-convergent sequence. Hence it is not
bounded above and so for anyx ∈ R there isN with x < N .

2. If ε > 0, then considerε−1(> 0) and takeN ∈ N with ε−1 < N . Then
0 < 1/N < ε

3. Givenε > 0 we can findN with 0 < 1
N < ε. Now if n ≥ N ,

0 < 1/n ≤ 1/N < ε

and the result is proved.

Definition 1.13. If an is a sequence and we haven(k) for k ∈ N, with

n(k) < n(k + 1)

then(an(k))k∈N is asubsequenceof an.

Observation 1.14. Supposean → a has a subsequence(an(k))k∈N. Thenan(k) → a
ask →∞.

Theorem 1.15 (The Bolzano-Weierstrass Theorem).Any bounded sequence of reals
has a convergent subsequence.

Cheap proof.Let an be a bounded sequence. Say thatm ∈ N is a ‘peak number’ iff
am ≥ ak for all k ≥ m.

Either there are infinitely many peak numbers, in which case we enumerate them
p(1) < p(2) < p(3) < . . . in order. Thenap(k) ≥ ap(k+1) and soap(k) is a bounded
decreasing subsequence ofan, so converges.

Or there are finitely many peak numbers. LetM be the greatest. Then for every
n > M , n is not a peak number and so we can findg(n) > n: the leastr > n with
ar > an.

Defineq(k) inductively byq(1) = M + 1, q(k + 1) = g(q(k)).
By definitionq(k) < q(k + 1) for all k, andaq(k) < aq(k+1) for all k, soaq(k) is a

bounded, (strictly) increasing subsequence ofan and so converges.
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This basis of this proof is that any sequence in a total order has a monotonic subse-
quence.

1.4 Completeness ofR: Least Upper Bound Principle

Definition 1.16. Let (∅ 6=)S ⊆ R be a (non-empty) set of reals.

• b is anupper boundfor S iff s ≤ b for all s ∈ S and ifS has such, S isbounded
above.

• a is a lower boundfor S iff a ≤ s for all s ∈ S, and ifS has such, S isbounded
below.

• S is boundediff S is bounded above and below, ie ifS ⊆ [a, b] for somea, b.

b is theleast upper boundof S or thesupremumof S iff

• b is an upper bound

• If c < b thenc < s for somes ∈ S (ie c is not an upper bound forS)

Similarly,a is thegreatest lower boundof S or the infimum of S iff

• a is a lower bound

• If a < c thens < c for somes ∈ S (ie c is not a lower bound).2

Notation: b = lubS = sup S; a = glbS = inf S.

Theorem 1.17 (Least Upper Bound Principle).A non-empty setS of reals which is
bounded above has a least upper bound.

Proof. SupposeS 6= ∅ and bounded above. Takeb an upper bound anda (in S say) so
that[a, b] ∩ S 6= ∅.

Seta0 = a, b0 = b so thata0 ≤ b0 and definean ≤ bn inductively as follows:
Supposean, bn given, thenan+1, bn+1 are defined by stipulating:-

• If
[

an+bn

2 , bn

]
∩ S 6= ∅ thenan+1 = an+bn

2 , bn+1 = bn.

• If otherwise, thenan+1 = an, bn+1 = an+bn

2 .

We can see inductively that:

1. an ≤ an+1 ≤ bn+1 ≤ bn for all n.

2. (bn+1 − an+1) = 1
2 (bn − an) for all n.

3. [an, bn] ∩ S 6= ∅ for all n.3

2Aside: If b, b′ are both least upper bounds ofS, then can’t haveb < b′ and can’t haveb′ < b and so
b = b′.

3True forn = 0, and inductively, certainly true forn + 1 in first alternative, and in the 2nd alternative
since »

an + bn

2
, bn

–
∩ S = ∅»

an,
an + bn

2

–
∩ S = [an, bn] ∩ S 6= ∅

by induction hypothesis
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4. bn is an upper bound ofS for everyn.4

By 1. bn is decreasing, bounded below bya so bn → β say; an is increasing,
bounded above byb soan → α

By 2. (bn − an) = 1
2n (b0 − a0) → 0 asn → ∞. But bn − an → β − α and so

β = α.
Claim: α = β is supS.

• Eachbn is an upper bound ofS and soβ = limn→∞ bn is an upper bound —
for if s ∈ S we haves ≤ bn all n and sos ≤ limn→∞ bn

• Takeγ < β = α = limn→∞ an. We can takeN such thatan > γ for all
n ≥ N .5

But then[aN , bN ] ∩ S 6= ∅ and so there iss ∈ S such thats ≥ an > γ.

This shows thatβ is the least upper bound.

Observation 1.18. We can deduce the completeness axiom from the LUB principle.

Proof. If an is increasing and bounded above thenS = {an : n ∈ N} is non-empty
and bounded above and so we can seta = supS

Supposeε > 0 given. Nowa− ε < a and so there isN with aN > a− ε but then
for n ≥ N , a− ε < aN ≤ an ≤ a and so|an − a| < ε.

1.5 Completeness ofR: General Principle of Conver-
gence

Definition 1.19. A real sequencean is a Cauchy Sequenceif and only if for all ε > 0
there existsN with

|an − am| < ε ∀n, m ≥ N.

That isan is Cauchy iff

∀ε > 0 ∃N ∀n, m ≥ N |an − am| < ε

Observation 1.20. A Cauchy sequence is bounded, For ifan is Cauchy, takeN such
that |an − am| < 1 for all n, m ≥ N . Thenan is bounded by

±max(|a1|, |a2| , . . . , |aN + 1|)

Lemma 1.21. Supposean is Cauchy and has a convergent subsequencean(k) → a as
k →∞. Thenan → a asn →∞.

4 True forn = 0 and inductively, trivial in first case and in the second, clear as

[bn+1, bn] ∩ S = ∅

5Let ε = β − γ > 0. We can findN such that|an − β| < ε and thusan > γ.
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Proof. Given ε > 0, takeN such that|an − am| < ε for all m,n ≥ N , and takeK
with n(K) ≥ N (easy enough to requireK ≥ N ) such that

∣∣an(k) − a
∣∣ < ε for all

k ≥ K.
Then ifn ≥ M = n(K)

|an − a| ≤
∣∣an − an(k)

∣∣+ ∣∣an(k) − a
∣∣ < ε + ε = 2ε.

But 2ε > 0 can be made arbitrarily small, soan → a.

Theorem 1.22 (The General Principle of Convergence).A real sequence converges
if and only if it is Cauchy.

Proof. (⇒) Supposean → a. Given ε > 0 takeN such that|an − a| < ε for all
n ≥ N .

Then ifm,n ≥ N ,

|an − am| ≤ |an − a|+ |am − a| ≤ ε + ε = 2ε.

As 2ε > 0 can be made arbitrarily small,an is Cauchy.

(⇐) Supposean is Cauchy.6 Then an is bounded and so we can apply Bolzano-
Weierstrass to obtain a convergent subsequencean(k) → a as k → ∞. By
lemma 1.21,an → a.

Alternative Proof.Supposean is Cauchy. Then it is bounded, sayan ∈ [α, β]
Consider

S = {s : an ≥ s for infinitely manyn}.

First, α ∈ S and soS 6= ∅. S is bounded above byβ + 1 (in fact byβ). By the
LUB principle we can takea = supS.

Givenε > 0, a−ε < a and so there iss ∈ S with a−ε < s. Then there are infinitely
manyn with an ≥ s > a − ε. a + ε > a, soa + ε /∈ S and so there are only finitely
manyn with an ≥ a + ε. Thus there are infinitely manyn with an ∈ (a− ε, a + ε).

TakeN such that|an − am| < ε for all m,n ≥ N . We can findm ≥ N with
am ∈ (a− ε, a + ε) ie |am − a| < ε. Then ifn ≥ N ,

|an − a| ≤ |an − am|+ |am − a| < ε + ε = 2ε

As 2ε can be made arbitrarily small this showsan → a.

Remarks.

• This second proof can be modified to give a proof of Bolzano-Weierstrass from
the LUB principle.

• In the proof by bisection of the LUB principle, we could have used GPC (general
principle of convergence) instead of Completeness Axiom.

6This second direction contains the completeness information.
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• We can prove GPC directly from completeness axiom as follows:

Givenan Cauchy, define

bn = inf{am : m ≥ n}

bn is increasing, sobn → b (= lim inf an). Then showan → b.

• The Completeness Axiom, LUB principle, and the GPC are equivalent expres-
sions of the completeness ofR.



Chapter 2

Euclidean Space

2.1 The Euclidean Metric

Recall thatRn is a vector space with coordinate-wise addition and scalar multiplication.

Definition 2.1. TheEuclidean norm1 ‖·‖ : Rn 7→ R is defined by

‖x‖ = ‖(x1, . . . , xn)‖ = +

√√√√ n∑
i=1

x2
i

and theEuclidean distanced(x, y) betweenx andy is d(x, y) = ‖x− y‖.

Observation 2.2. The norm satisfies

‖x‖ ≥ 0, ‖x‖ = 0 ⇔ x = 0 ∈ Rn

‖λx‖ = |λ| ‖x‖
‖x + y‖ ≤ ‖x‖+ ‖y‖

and the distance satisfies

d(x, y) ≥ 0, d(x, y) = 0 ⇔ x = y

d(x, y) = d(y, x)
d(x, z) ≤ d(x, y) + d(y, z).

2.2 Sequences in Euclidean Space

We can writex(n) or x(n) for a sequence of points inRp. Then

x
(n)
i = xi(n) 1 ≤ i ≤ p

for theith coordinate of thenth number of the sequence.

1The norm arises from the standard inner product

< x, y >=
nX

i=1

xiyi

9



10 CHAPTER 2. EUCLIDEAN SPACE

Definition 2.3. A sequencex(n) converges tox in Rp when for anyε > 0 there exists
N such that2 ∥∥∥x(n) − x

∥∥∥ < ε for all n ≥ N

In symbols:

x(n) → x ⇔ ∀ε > 0 ∃N ∀n ≥ N
∥∥∥x(n) − x

∥∥∥ < ε

Proposition 2.4. x(n) → x in Rp iff x
(n)
i → x in R for 1 ≤ i ≤ p.

Proof. Note that

0 <
∣∣∣x(n)

i − xi

∣∣∣ ≤ ∥∥∥x(n) − x
∥∥∥→ 0

and

0 ≤
∥∥∥x(n) − x

∥∥∥ ≤ p∑
i=1

∣∣∣x(n)
i − xi

∣∣∣→ 0.

Definition 2.5. A sequencex(n) ∈ Rp is bounded if and only if there existsR such that∥∥x(n)
∥∥ ≤ R for all n.

Theorem 2.6 (Bolzano-Weierstrass Theorem forRp). Any bounded sequence inRp

has a convergent subsequence.

Proof (Version 1).Supposex(n) is bounded byR. Then all the coordinatesx(n)
i are

bounded byR. By Bolzano-Weierstrass inR we can take a subsequence such that
the 1st coordinates converge; now by Bolzano-Weierstrass we can take a subsequence
of this sequence such that the 2nd coordinates converge. Continuing in this way (inp
steps) we get a subsequence all of whose coordinates converge. But then this converges
in Rp.

Version 2.By induction onp. The result is known forp = 1 (Bolzano-Weierstrass in
R) and is trivial forp = 0. Suppose result is true forp.

Takexn a bounded subsequence inRp and write eachx(n) asx(n) = (y(n), x
(n)
p+1)

wherey(n) ∈ Rp andx
(n)
p+1 ∈ R is the(p + 1)th coordinate.

Now y(n) andx
(n)
p+1 are both bounded, so we can apply Bolzano-Weierstrass inRp

to get a subsequencey(n(k)) → y. Apply Bolzano-Weierstrass inR to getx(n(k(j)))
p+1 →

x. Then
x(n(k(j))) → (y, x) asj →∞.

Definition 2.7. A sequencex(n) ∈ Rp is a Cauchy sequenceiff for any ε > 0 there is
N with

∥∥x(n) − x(m)
∥∥ < ε for n, m ≥ N . In symbols this is

∀ε > 0 ∃N ∀n, m ≥ N
∥∥∥x(n) − x(m)

∥∥∥ < ε.

2xn → x in Rp iff
‚‚x(n) − x

‚‚ → 0 in R.
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Observation 2.8. x(n) is Cauchy inRp iff eachx
(n)
i = xi(n) is Cauchy inR for

1 ≤ i ≤ p.

Proof. Supposex(n) is Cauchy. Take1 ≤ i ≤ p. Givenε > 0, we can findN such
that

∥∥x(n) − x(m)
∥∥ < ε for all n, m ≥ N . But then forn, m ≥ N ,

|xi(n)− xi(m)| ≤
∥∥∥x(n) − x(m)

∥∥∥ < ε

so asε > 0 is arbitrary,xi(n) is Cauchy.
Conversely, suppose eachxi(n) is Cauchy for1 ≤ i ≤ p. Givenε > 0, we can find

N1, . . . , Np such that

|xi(n)− xi(m)| < ε for n, m ≥ Ni (1 ≤ i ≤ p)

Now if n, m ≥ N = max{N1, . . . , Np} then

∥∥∥x(n) − x(m)
∥∥∥ ≤ p∑

i=1

∣∣∣x(n)
i − x

(m)
i

∣∣∣ < pε

As pε can be made arbitrarily small,x(n) is Cauchy.

Theorem 2.9 (General Principle of Convergence inRp). A sequencex(n) in Rp is
convergent if and only ifx(n) is Cauchy.

Proof. x(n) converges inRp

iff xi(n) converges inR (1 ≤ i ≤ p)
iff xi(n) is Cauchy inR (1 ≤ i ≤ p)
iff x(n) is Cauchy inRp.

2.3 The Topology of Euclidean Space

Fora ∈ Rp andr ≥ 0 we have theopen ballB(a, r) = O(a, r), defined by

B(a, r) = O(a, r) = {x : ‖x− a‖ < r}

Also we have theclosed ballC(a, r) defined by

C(a, r) = {x : ‖x− a‖ ≤ r}

Also we shall sometimes need the“punctured” open ball

{x : 0 < ‖x− a‖ < r}

Definition 2.10. A subsetU ⊆ Rp is openif and only if for alla ∈ U there existsε > 0
such that

‖x− a‖ < ε ⇒ x ∈ U

[That is: U is open iff for alla ∈ U there existsε > 0 with B(a, ε) ⊆ U ].

The empty set∅ is trivially open.

Example 2.11.
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• O(a, r) is open, for ifb ∈ O(a, r), then‖b− a‖ < r, setting

ε = r − ‖b− a‖ > 0

we seeO(b, ε) ⊆ O(a, r).

• Similarly{x : 0 < ‖x− a‖ < r} is open.

• ButC(a, r) is not open for anyr ≥ 0.

Definition 2.12. A subsetA ⊆ Rp is closediff wheneveran is a sequence inA and
an → a, thena ∈ A. In symbols this is

an → a, an ∈ A ⇒ a ∈ A

Example 2.13.

• C(a, r) is closed, for supposebn → b andbn ∈ C(a, r) then‖bn − a‖ ≤ r for
all n. Now

‖b− a‖ ≤ ‖bn − b‖+ ‖bn − a‖ ≤ r + ‖bn − b‖

As bn → b, ‖bn − b‖ → 0, and sor + ‖bn − b‖ → r as n → ∞. Therefore
‖b− a‖ ≤ r.

• A product[a1, b1] × . . . × [ap, bp] ⊆ Rp of closed intervals is closed. For if
c(n) → c and

c(n) ∈ [ ]× . . .× [ ]

then eachc(n)
i → ci with c

(n)
i ∈ [ai, bi] so thatci ∈ [ai, bi]. Therefore

c ∈ [ ]× . . .× [ ].

• ButO(a, r) is not closed unlessr = 0.

Proposition 2.14. A setU ⊆ Rp is open (inRp) iff its complementRp \U is closed in
Rp. A setU ⊆ Rp is closed (inRp) iff its complementRp \ U is open inRp.3

Proof. Exercise.

2.4 Continuity of Functions

We consider functionsf : E 7→ Rm defined on someE ⊆ Rn. For now imagine that
E is a simple open or closed set as in§2.3.

Definition 2.15. Supposef : E 7→ Rm (with E ⊆ Rn) Thenf is continuous ata iff
for anyε > 0 there exists4 δ > 0 such that

‖x− a‖ < δ → ‖f(x)− f(a)‖ < ε for all x ∈ E.

In symbols:

∀ε > 0 ∃δ > 0 ∀x ∈ E ‖x− a‖ < δ ⇒ ‖f(x)− f(a)‖ < ε.

f is continuousiff f is continuous at every point.

3Warning: Sets need not be either open or closed: the half open interval(a, b] is neither open nor closed
in R.

4The continuity off ata depends only on the behavior off in an open ballB(a, r), r > 0.
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This can be reformulated in terms of limit notation as follows:

Definition 2.16. Supposef : E 7→ Rn. Thenf(x) → b asx → a in E5 if an only if
for anyε > 0 there existsδ > 0 such that

0 < ‖x− a‖ < δ ⇒ ‖f(x)− b)‖ < ε for all x ∈ E.

Remarks.

• We typically use this whenE is open and some punctured ball

{x : 0 < ‖x− a‖ < r}

is contained inE. Then the limit notion is independent ofE.

• If f(x) → b asx → a, then definingf(a) = b extendsf to a function continuous
at a.

Proposition 2.17. Supposef : E 7→ Rm

• f is continuous (inE) if and only if wheneveran → a in E, thenf(an) → f(a).
This is known assequential continuity.

• f is continuous (inE) if and only if for any open subsetV ⊆ Rm:

F−1(V ) = {x ∈ E : f(x) ∈ V }

is open inE.

Proof. We will only prove the first part for now. The proof of the second part is given
in theorem 5.16 in a more general form.

Assumef is continuous ata and take a convergent sequencean → a in E. Suppose
ε > 0 given. By continuity off , there existsδ > 0 such that

‖x− a‖ < δ ⇒ ‖f(x)− f(a)‖ < ε.

As an → a takeN such that‖an − a‖ < δ for all n ≥ N .
Now if n ≥ N , ‖f(an)− f(a)‖ < ε. Sinceε > 0 can be made arbitrarily small,

f(an) → f(a).
The converse is clear.

Remark. f(x) → b asx → a iff ‖f(x)− b‖ → 0 asx → a.

Observation 2.18.

• Any linear mapα : Rn 7→ Rm is continuous.

Proof. If α has matrixA = (aij) with respect to the standard basis then

α(x) = α(x1, . . . , xn) =

 n∑
j=1

aijxj , . . . ,
n∑

j=1

amjxj


5Thenf is continuous ata iff f(x) → f(a) asx → a in E.
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and so

‖α(x)‖ ≤
∑
ij

|aij | |xj | ≤

∑
i,j

|aij |


︸ ︷︷ ︸

K

‖x‖ .

Fix a ∈ Rn. Givenε > 0 we note that if‖x− a‖ < ε then

‖α(x)− α(a)‖ = ‖α(x− a)‖ ≤ K ‖x− a‖ < Kε

As Kε can be made arbitrarily small,f is continuous ata. But a ∈ Rn arbitrary,
sof is continuous.

• If f : Rn 7→ Rm is continuous ata, andg : Rm 7→ Rp is continuous atf(a),
theng ◦ f : Rn 7→ Rp is continuous ata.

Proof. Givenε > 0 takeη > 0 such that

‖y − f(a)‖ < η ⇒ ‖g(y)− g(f(a))‖ < ε.

Takeδ > 0 such that‖x− a‖ < δ ⇒ ‖f(x)− f(a)‖ < η.

Then‖x− a‖ < δ ⇒ ‖g(f(x))− g(f(a))‖ < ε.

Proposition 2.19. Supposef, g : Rn 7→ Rm are continuous ata. Then

1. f + g is continuous ata.

2. λf is continuous ata, anyλ ∈ R.

3. If m = 1, f · g is continuous ata.

Proof. Proof is trivial. Just apply propositions 1.10 and 2.17.

Supposef : Rn 7→ Rm. Then we can write:

f(x) = (f1(x), . . . , fm(x))

wherefj : Rn 7→ R is f composed with thejth projection or coordinate function.
Thenf is continuous if and only if eachf1, . . . , fm is continuous.

Theorem 2.20. Suppose thatf : E 7→ R is continuous onE, a closed and bounded
subset ofRn. Thenf is bounded and (so long asE 6= ∅) attains its bounds.

Proof. Supposef not bounded. Then we can takean ∈ E with |f(an)| > n. By
Bolzano-Weierstrass we can take a convergent subsequencean(k) → a ask →∞ and
asE is closed,a ∈ E.

By the continuity off , f(an(k)) → f(a) ask → ∞. But f(an(k)) is unbounded
— a contradiction and sof is bounded.

Now supposeβ = sup{f(x) : x ∈ E}. We can takecn ∈ E with

|f(cn)− β| < 1
n

.

By Bolzano-Weierstrass we can take a convergent subsequencecn(k) → c. AsE is
closed,c ∈ E. By continuity off , f(cn(k)) → f(c), but by constructionf(cn(k)) → β
ask →∞. Sof(c) = β.
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Essentially the same argument shows the more general fact. Iff : E 7→ Rn is
continuous inE, closed and bounded, then the imagef(E) is closed and bounded.
N.B. compactness.

2.5 Uniform Continuity

Definition 2.21. Supposef : E 7→ Rm whereE ⊆ Rn. f is uniformly continuouson
E iff for any ε > 0 there existsδ > 0 such that

‖x− y‖ < δ ⇒ ‖f(x)− f(y)‖ < ε for all x, y ∈ E.

In symbols:

∀ε > 0 ∃δ > 0 ∀x, y ∈ E ‖x− y‖ < δ ⇒ ‖f(x)− f(y)‖ < ε

Compare this with the definition of continuity off at all pointsx ∈ E:

∀x ∈ E ∀ε > 0 ∃δ > 0 ∀y ∈ E ‖x− y‖ < δ ⇒ ‖f(x)− f(y)‖ < ε

The difference is that for continuity, theδ > 0 to be found depends on bothx and
ε > 0; for uniform continuity theδ > 0 depends only onε > 0 and is independent of
x.

Example 2.22. x 7→ x−1 : (0, 1] 7→ [1,∞) is continuous butnot uniformly continu-
ous.

Consider ∣∣∣∣ 1x − 1
y

∣∣∣∣ = ∣∣∣∣y − x

xy

∣∣∣∣
Takex = η, y = 2η. Then ∣∣∣∣ 1x − 1

y

∣∣∣∣ = ∣∣∣∣ 1
2η

∣∣∣∣
while |x− y| = η.

Theorem 2.23. Supposef : E 7→ Rm is continuous onE, a closed and bounded
subset ofRn. Thenf is uniformly continuous onE.

Proof. Supposef continuous but not uniformly continuous onE.
Then there is someε > 0 such that for noδ > 0 is it the case that

‖x− y‖ < δ ⇒ ‖f(x)− f(y)‖ < ε ∀ x, y ∈ E.

Therefore6 for everyδ > 0 there existx, y ∈ E with ‖x− y‖ < δ and

‖f(x)− f(y)‖ ≥ ε.

6We want the “opposite” of

∀ε > 0 ∃δ > 0 ∀x, y ∈ E ‖x− y‖ < δ ⇒ ‖f(x)− f(y)‖ < ε.

It is:
∃ε > 0 ∀δ > 0 ∃x, y ∈ E ‖x− y‖ < δ and ‖f(x)− f(y)‖ ≥ ε.
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Now for everyn ≥ 1 we can takexn, yn ∈ E with ‖xn − yn‖ < 1
n and

‖f(xn)− f(yn)‖ ≥ ε.

By Bolzano-Weierstrass, we can take a convergent subsequencexn(k) → x as
k →∞. x ∈ E sinceE is closed.

Now ∥∥yn(k) − x
∥∥ ≤ ∥∥yn(k) − xn(k)

∥∥+
∥∥xn(k) − x

∥∥→ 0 ask → 0.

Henceyn(k) → x. Soxn(k)−yn(k) → 0 ask →∞ and sof(xn(k))−f(yn(k)) → 0
(by continuity off ). So∥∥f(xn(k))− f(yn(k))

∥∥︸ ︷︷ ︸
≥ε

→ 0 ask →∞.

This is a contradiction and it follows thatf must be uniformly continuous.



Chapter 3

Differentiation

3.1 The Derivative

Definition 3.1. Let f : E 7→ Rm be defined onE, an open subset ofRn. Thenf is
differentiableat a ∈ E with derivativeDfa ≡ f ′(a) ∈ L(Rn, Rm) when

‖f(a + h)− f(a)− f ′(a)h‖
‖h‖

→ 0 ash → 0.

The idea is that the best linear approximation tof at a ∈ E is the affine map
x 7→ a + f ′(a)(x− a).

Observation 3.2 (Uniqueness of derivative).If f is differentiable ata then its deriva-
tive is unique.

Proof. SupposeDfa, D̂fa are both derivatives off ata. Then

∥∥∥Dfa(h)− D̂fa(h)
∥∥∥

‖h‖
≤

‖f(a + h)− f(a)−Dfa(h)‖
‖h‖

+

∥∥∥f(a + h)− f(a)− D̂fa(h)
∥∥∥

‖h‖
→ 0.

Thus

LHS =
∥∥∥∥(Dfa − D̂fa)

(
h

‖h‖

)∥∥∥∥→ 0 ash → 0.

This shows thatDfa − D̂fa is zero on all unit vectors, and soDfa ≡ D̂fa.

Proposition 3.3. If f : E 7→ Rm is differentiable ata, thenf is continuous ata.

Proof. Now

‖f(x)− f(a)‖ ≤ ‖f(x)− f(a)−Dfa(x− a)‖+ ‖Dfa(x− a)‖

17
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But ‖f(x)− f(a)−Dfa(x− a)‖ → 0 asx → a and‖Dfa(x− a)‖ → 0 as
x → a and so the result is proved.

Proposition 3.4 (Differentiation as a linear operator). Suppose thatf, g : E 7→ Rn

are differentiable ata ∈ E. Then

1. f + g is differentiable ata with (f + g)′(a) = f ′(a) + g′(a);

2. λf is differentiable ata with (λf)′(a) = λf ′(a) for all λ ∈ R.

Proof. Exercise.

Observation 3.5 (Derivative of a linear map). If α : Rn 7→ Rm is a linear map, then
α is differentiable at everya ∈ Rn with α′(a) = α(a).

Proof is simple, note that

‖α(a + h)− α(a)− α(h)‖
‖h‖

≡ 0.

Observation 3.6 (Derivative of a bilinear map). If β : Rn × Rm 7→ Rp is bilinear
thenβ is differentiable at each(a, b) ∈ Rn × Rm = Rn+m with

β′(a, b)(h, k) = β(h, b) + β(a, k)

Proof.

‖β(a + h, b + k)− β(a, b)− β(h, b)− β(a, k)‖
‖(h, k)‖

=
‖β(h, k)‖
‖(h, k)‖

If β is bilinear then there is(bij
k ) such that

β(h, k) =

 n,m∑
i=1,j=1

bij
1 hikj , . . . ,

n,m∑
i=1,j=1

bij
p hikj



‖β(h, k)‖ ≤
∑
i,j,k

|bij
k | |hi| |kj | ≤

∑
i,j,k

|bij
n |︸ ︷︷ ︸

=K

‖h‖ ‖k‖ ≤ K

2
(‖h‖2 + ‖k‖2)

So ‖β(h,k)‖
‖(h,k)‖ ≤

(
K
2

)
‖(h, k)‖ and so→ 0 as(h, k) → 0.

Example 3.7. The simplest bilinear map is multiplicationm : R × R 7→ R and we
have

m′(a, b)(h, k) = hb + ak(= bh + ak).
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3.2 Partial Derivatives

Example 3.8 (Derivative of a functionR 7→ R). Supposef : E 7→ R with E ⊆ R
open is differentiable ata ∈ E. Then the derivative mapf ′(a) ∈ L(R, R) and any

such is multiplication by a scalar, also called the derivativef ′(a) = df
dx

∣∣∣
a
.

Now

|f(a + h)− f(a)− f ′(a)h|
|h|

=
∣∣∣∣f(a + h)− f(a)

h
− f ′(a)

∣∣∣∣→ 0 as h → 0

we see that

f ′(a) = lim
h→0

f(a + h)− f(a)
h

.

WARNING: This limit formula only makes sense in this case

Definition 3.9 (Partial derivatives). Supposef : E 7→ R with E ⊆ Rn open. Take
a ∈ E. For each1 ≤ i ≤ n we can consider the function

xi 7→ f(a1, . . . , ai−1, xi, ai+1, . . . , an)

which is a real-valued function defined at least on some open interval containingai.
If this is differentiable atai we write

Dif(a) =
∂f

∂xi

∣∣∣∣
a

for its derivative—theith partial derivative off at a.

Now supposef is differentiable ata with derivativef ′(a) ∈ L(Rn, R). From linear
maths, any such linear map is uniquely of the form

(h1, . . . , hn) 7→
n∑

i=1

tihi

for t1, . . . , tn ∈ R (the coefficients w.r.t. the standard basis). Therefore

|f(a + h)− f(a)−
∑

tihi|
‖h‖

→ 0

ash → 0. Specialize toh = (0, . . . , 0, hi, 0, . . . , 0). We get

|f(a1, . . . , ai−1, ai + h, ai+1, . . . , an)− f(a1, . . . , an)− tihi|
|hi|

→ 0 ashi → 0.

It follows that ti = Dif(a) ≡ ∂f
∂xi

∣∣∣
a

and thus the coefficients off ′(a) are the

partial derivatives.

Example 3.10. m(x, y) = xy. Then

∂m

∂x
= y,

∂m

∂y
= x

and

m′(x, y)(h, k) =
∂m

∂x
h +

∂m

∂y
k = yh + xk
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Proposition 3.11. Supposef : E 7→ Rm with E ⊆ Rn open. We can write

f = (f1, . . . , fm),

wherefj : E 7→ R, 1 ≤ j ≤ m. Thenf is differentiable ata ∈ E if and only if all the
fi are differentiable ata ∈ E. Then

f ′(a) = (f ′1(x), . . . , f ′m(x)) ∈ L(Rn, Rm)

Proof. If f is differentiable withf ′(a) = ((f ′(a))1, . . . , (f ′(a))m) then

|fj(a + h)− fj(a)− (f ′(a))j(h)|
‖h‖

≤ ‖f(a + h)− f(a)− f ′(a)(h)‖
‖h‖

→ 0.

So(f ′(a))j is the derivativef ′j(a) ata. Conversely, if all thefj ’s are differentiable,
then

‖f(a + h)− f(a)− (f ′1(a)(h), . . . , f ′m(a)(h))‖
‖h‖

≤
m∑

j=1

∣∣fj(a + h)− fj(a)− f ′j(a)(h)
∣∣

‖h‖
→ 0 ash → 0.

Thereforef is differentiable with the required derivative.

It follows that if f is differentiable ata, thenf ′(a) has the matrix
∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fm

∂x1
· · · ∂fm

∂xn


all evaluated ata with respect to the standard basis.

Remark. If the ∂fj

∂xi
are continuous ata thenf ′(a) exists.

3.3 The Chain Rule

Theorem 3.12 (The Chain Rule).Supposef : Rn 7→ Rm is differentiable ata ∈ Rn

and g : Rm 7→ Rp is differentiable atb = f(a) ∈ Rm, theng ◦ f : Rn → Rp is
differentiable ata ∈ Rn and(g ◦ f)′(a) = g′(f(a)) ◦ f ′(a).

Proof. Let f(a + h) = f(a) + f ′(a)(h) + R(a, h), where

‖R(a, h)‖
‖h‖

→ 0 ash → 0.

We also haveg(b+k) = g(b)+g′(b)(k)+S(b, k), whereS(b, k) → 0 in the same
manner.

We can now defineσ(b, k) = S(b,k)
‖k‖ for k 6= 0, andσ(b, k) = 0 otherwise, so that

σ(b, k) is continuous atk = 0.
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Now

g(f(a + h)) = g(f(a) + f ′(a)(h) + R(a, h))
= g(f(a)) + g′(f(a))(f ′(a)(h) + R(a, h))
+ σ(f(a), f ′(a)(h) + R(a, h)) ‖f ′(a)(h) + R(a, h)‖
= g(f(a)) + g′(f(a))(f ′(a)(h)) + g′(f(a))(R(a, h)) + Y

asg′(f(a)) is linear. So it remains to show that

g′(f(a))(R(a, h)) + Y

‖h‖
→ 0 ash → 0.

1.
g′(f(a))(R(a, h))

‖h‖
= g′(f(a))

(
R(a, h)
‖h‖

)
but ash → 0, R(a,h)

‖h‖ → 0, and sinceg′(f(a)) is continuous

g′(f(a))(R(a, h))
‖h‖

→ 0 ash → 0.

2.
‖f ′(a)(h)‖

‖h‖
≤ K

‖h‖
‖h‖

= K

asf ′(a) is linear (andK is the sum of the norms of the entries in the matrix
f ′(a)). Also

‖R(a, h)‖
‖h‖

→ 0 ash → 0

so we can findδ > 0 such that0 < ‖h‖ < δ ⇒ ‖R(a,h)‖
‖h‖ < 1. Therefore, if

0 ≤ ‖h‖ < δ then
‖f ′(a)(h) + R(a, h)‖

‖h‖
< K + 1

Hencef ′(a)(h)+R(a, h) → 0 ash → 0 and soσ(f(a), f ′(a)(h)+R(a, h)) →
0 ash → 0. Thus Y

‖h‖ → 0 ash → 0.

Remark. In the 1-D case it is tempting to writef(a) = b, f(a + h) = b + k and then
consider

lim
h→0

g(f(a + h))− g(f(a))
h

= lim
h→0

g(b + k)− g(b)
k

f(a + h)− f(a))
h

.

But k could be zero. The introduction ofσ is for the analogous problem in many
variables.

Application. Supposef, g : Rn 7→ R are differentiable ata. Then their product
(f · g) : Rn 7→ R is differentiable ata, with derivative1

(f · g)′(a)(h) = g(a) · f ′(a)(h) + f(a) · g′(a)(h)
1multiplication inR is commutative!
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3.4 Mean Value Theorems

Supposef : [a, b] 7→ R is continuous on the (closed, bounded) interval[a, b] and dif-
ferentiable on(a, b). Then we have both Rolle’s theorem and the mean value theorem.

Theorem 3.13 (Rolle’s Theorem).If f(a) = f(b) then there existsc ∈ (a, b) with
f ′(c) = 0.

Proof. Eitherf is constant and the result is then trivial, or else without loss of gener-
ality, f takes values greater thanf(a) = f(b). Then there existsc ∈ (a, b) such that
f(c) = sup{f(t) : t ∈ [a, b]}. Thusf ′(c) = 0.2

Theorem 3.14 (Mean Value Theorem).Supposef : [a, b] 7→ R(a < b) is continuous
and differentiable on(a, b). Then there existsc ∈ (a, b) with

f(b)− f(a)
b− a

= f ′(c).

Proof. Setg(x) = f(x) − x−a
b−a (f(b) − f(a)). Theng(a) = f(a) = g(b) so we can

apply Rolle’s theorem to getc ∈ (a, b) with g′(c) = 0. Thisc does the trick.

Theorem 3.15. Suppose thatf : E 7→ Rm (E open inRn ) is such that the partial
derivatives

Difj(x) =
∂fj

∂xi

evaluated atx (exist and) are continuous inE. Thenf is differentiable inE.

Proof. Note that sincef is differentiable iff eachfj is differentiable(1 ≤ j ≤ m), it
is sufficient to consider the casef : E 7→ R. Takea = (a1, . . . , an) ∈ E.

For h = (h1, . . . , hn) write h(r) = (h1, . . . , hr, 0, . . . , 0). Then by the MVT we
can write

f(a + h(r))− f(a + h(r − 1)) = hrDrf(ξr)

whereξr lies in the “interval”(a + h(r − 1), a + h(r)). Summing, we get

f(a + h)− f(a) =
n∑

i=1

Dif(ξi)hi.

Hence

|f(a + h)− f(a)−
∑n

i=1 Dif(a)hi|
‖h‖

=
|
∑n

i=1(Dif(ξi)−Dif(a))hi|
‖h‖

≤
n∑

i=1

|Dif(ξi)−Dif(a)| .

As h → 0, theξi → a and so by the continuity of theDif ’s the RHS→ 0 and so
the LHS→ 0 as required.

Alternatively: Givenε > 0, takeδ > 0 such that3 for 0 < |h| < δ,

|Dif(a + h)−Dif(a)| < ε.

Then if 0 < |h| < δ, |ξi − a| < δ and so LHS≤ RHS< nε, which can be made
arbitrarily small. This shows that the LHS→ 0 ash → 0.

2This requires proof, which is left as an exercise.
3B(a, δ) ⊆ E is also necessary.
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3.5 Double Differentiation

Supposef : E 7→ Rm (E open inRn) is differentiable. We can thus consider the
function

f ′ : E 7→ L(Rn, Rm) given byx 7→ f ′(x).
Vulgarly, we can identifyL(Rn, Rm) with Rmn via matrices, and so can ask

whetherf ′ is differentiable. If it is differentiable ata ∈ E, then its derivativef ′′(a) is a
linear mapRn 7→ L(Rn, Rm). It is better regarded as a bilinear mapRn × Rn 7→ Rm.
Thus (f ′′(a)(h))(k) is regarded asf ′′(a)(h, k). Similarly, if the partial derivatives
Difj exist inE, we can ask whether the functions

x 7→ Difj(x), E 7→ R

are differentiable or even whether their partial derivatives

DkDifj(a) ≡ ∂2fj

∂xk∂xi

∣∣∣∣
a

exist.

Theorem 3.16. Supposef : E 7→ Rm with E ⊆ Rn open, is such that all the partial
derivativesDkDifj(x) (exist and) are continuous inE. Thenf is twice differentiable
in E and the double derivativef ′′(a) is a symmetric bilinear map for alla ∈ E.

Remarks.

• Sufficient to deal withm = 1.

• It follows from previous results thatf ′′(a) exists for alla ∈ E.

• It remains to showDiDjf(a) = DjDif(a), inE, wheref : E 7→ R.

For this we can keep things constant except in theith andjth components.

It suffices to prove the following:

Proposition 3.17. Supposef : E 7→ R, E ⊆ R2 is such that the partial derivatives
D1D2f(x) andD2D1f(x) are continuous. ThenD1D2f(x) = D2D1f(x).

Proof. Take(a1, a2) ∈ E. For(h1, h2) small enough (fora + h ∈ E) define

T (h1, h2) = f(a1 + h1, a2 + h2)− f(a1, a2 + h2)
−f(a1 + h1, a2) + f(a1, a2)

Apply the MVT toy 7→ f(a1 + h, y)− f(a1, y) to getŷ ∈ (a2, a2 + h2) such that

T (h1, h2) = (D2f(a1 + h, ŷ)−D2f(a1, ŷ))h2

Now apply MVT tox 7→ D2f(x, ŷ) to getx̂ ∈ (a1, a1 + h1) with

T (h1, h2) = (D1D2f(x̂, ŷ))h1h2

As h1, h2 → 0 separately,(x̂, ŷ) → (a1, a2), and so, by continuity ofD1D2:

lim
h1→0,h2→0

T (h1, h2)
h1h2

= D1D2f(a1, a2)

Similarly

lim
h1→0,h2→0

T (h1, h2)
h1h2

= D2D1f(a1, a2).

The result follows by uniqueness of limits.
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3.6 Mean Value Theorems in Many Variables

Suppose first thatf : [a, b] 7→ Rm is continuous and is differentiable on(a, b). Then
the derivativef ′(t) ∈ L(R, Rm) for a < t < b. We identifyL(R, Rm) with Rm via

α ∈ L(R, Rm) 7→ α(1) ∈ Rm

Then write‖f ′(t)‖ = ‖f ′(t)(1)‖.
Theorem 3.18. Withf as above, suppose‖f ′(t)‖ ≤ K for all t ∈ (a, b). Then

‖f(b)− f(a)‖ ≤ K |b− a| .

Proof. Sete = f(b)− f(a) and letφ(t) = 〈f(t), e〉, the inner product withe. By the
one dimensional MVT we haveφ(b)− φ(a) = φ′(c)(b− a) for somec ∈ (a, b).

We can calculateφ′(t) by the chain rule asφ′(t) = 〈f ′(t), e〉. (f ′(t) regarded as
begin a vector inRm). Now

φ(b)− φ(a) = 〈f(b), e〉 − 〈f(a), e〉
= 〈f(b)− f(a), f(b)− f(a)〉

= ‖f(b)− f(a)‖2 .

Therefore

‖f(b)− f(a)‖2 = |〈f ′(c), e〉| |b− a|
≤ ‖f ′(c)‖ ‖f(b)− f(a)‖ |b− a|

and so‖f(b)− f(a)‖ ≤ K |b− a|.

Finally, take the casef : E 7→ Rm differentiable onE with E open inRn. For any
d ∈ E, f ′(d) ∈ L(Rn, Rm).

Forα ∈ L(Rn, Rm) we can define‖α‖ by

‖α‖ = sup
x6=0

‖α(x)‖
‖x‖

So‖α‖ is least such that
‖α(x)‖ ≤ ‖α‖ ‖x‖

for all x.

Theorem 3.19. Supposef is as above anda, b ∈ E are such that the interval[a, b]
(line segment),[a, b] = {c(t) = tb + (1− t)a : 0 ≤ t ≤ 1}.

Then if‖f ′(d)‖ < K for all d ∈ (a, b),

‖f(b)− f(a)‖ ≤ K ‖b− a‖ .

Proof. Let g(t) = f(c(t)), so thatg : [0, 1] 7→ Rm. By theorem 3.18,

‖f(b)− f(a)‖ = ‖g(1)− g(0)‖ ≤ L · 1 = L

for L ≥ ‖g′(t)‖, 0 < t < 1. But by the chain rule

g′(t) = f ′(t) (b− a)︸ ︷︷ ︸
=c′(t)

,

so that‖g′(t)‖ ≤ ‖f ′(t)‖ . ‖b− a‖ ≤ K ‖b− a‖. The result follows.
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Integration

4.1 The Riemann Integral

Definition 4.1. A dissectionD of an interval[a, b] (a < b), is a sequence

D = [x0, . . . , xn] where a = x0 < x1 < x2 < . . . < xn = b.

A dissectionD1 is finer than (or arefinementof) a dissectionD2 if and only if all
the points ofD2 appear inD1. WriteD1 < D2. 1

Definition 4.2. For f : [a, b] 7→ R bounded andD a dissection of[a, b] we define

SD =
n∑

i=1

(xi − xi−1) sup
xi−1≤x≤xi

{f(x)}

sD =
n∑

i=1

(xi − xi−1) inf
xi−1≤x≤xi

{f(x)}.

These are reasonable upper and lower estimates of the area underf . For generalf
we take the area below the axis to be negative.

Combinatorial Facts

Lemma 4.3. For anyD, sD ≤ SD.

Lemma 4.4. If D1 ≤ D2, thenSD1 ≤ SD2 andsD1 ≥ sD2 .

Lemma 4.5. For any dissectionsD1 andD2, sD1 ≤ SD2 .

Proof. Take a common refinementD3, say, and

sD1 ≤ sD3 ≤ SD3 ≤ SD2

It follows that thesD are bounded by anSD0 , and theSD are bounded by any
sD0 .

1The meshof D = [x0, . . . , xn] is max1≤i≤n{|xi − xi−1|}. If D1 ≤ D2 then mesh(D1) ≤
mesh(D2).

25
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Definition 4.6. For f : [a, b] 7→ R bounded, define the upper Riemann integral

S(f) ≡
∫ b

a

f(x) dx = inf
D
{SD(f)}

and the lower Riemann integral

s(f)
∫ b

a

f(x) dx = sup
D
{sD(f)}.

Note thats(f) ≤ S(f). f is said to beRiemann integrable, with
∫ b

a
f(x) dx = σ

iff s(f) = S(f).

Example 4.7.

• f(x) =

{
0 x irrational,

1 x rational.
x ∈ [0, 1]

ThenS(f) = 1, s(f) = 0 and sof is not Riemann integrable.

• f(x) =

{
0 x irrational,
1
q x rational = p

q in lowest terms.
x ∈ [0, 1]

is Riemann integrable with ∫ 1

0

f(x) dx = 0

Conventions

We defined
∫ b

a
f(x) dx for a < b only. Fora = b,

∫ b

a
f(x) dx = 0 and forb < a,∫ b

a
f(x) dx = −

∫ a

b
f(x) dx.

These give a general additivity of the integral with respect to intervals, ie:
If f is Riemann integrable on the largest of the intervals,

[a, b], [a, c], [c, b]

then it is integrable on the others, with∫ b

a

f(x) dx =
∫ c

a

f(x) dx +
∫ b

c

f(x) dx.

This makes sense in the obvious casea ≤ c ≤ b, but also in all others, egb ≤ a ≤ c.

Proof. Left to the reader.

4.2 Riemann’s Condition: A GPC for integrability

Theorem 4.8. Supposef : [a, b] 7→ R is bounded. Thenf is Riemann-integrable iff
for all ε > 0 there exists a dissectionD with SD − sD < ε.
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Proof.
(⇒) Takeε > 0, PickD1 such that

SD1 −
∫ b

a

f(x) dx <
ε

2

PickD2 such that ∫ b

a

f(x) dx− sD2 <
ε

2

Then ifD is a common refinement,

SD − sD ≤

(
SD1 −

∫ b

a

f(x) dx

)
+

(∫ b

a

f(x) dx− sD2

)
< ε

(⇐) Generally,SD ≥ S ≥ s ≥ sD Riemann’s condition givesS − s < ε for all
ε > 0. HenceS = s andf is integrable.

Remarks.

• If σ is such that∀ε > 0 ∃D with SD − sD < ε andSD ≥ σ ≥ sD thenσ is∫ b

a
f(x) dx.

• A sum of the form

σD(f) =
n∑

i=1

(xi − xi−1)f(ξi)

whereξi ∈ [xi−1, xi], is anarbitrary Riemann sum. Thenf is Riemann inte-
grable with ∫ b

a

f(x) dx = σ

if and only if∀ε > 0 ∃δ > 0 ∀D with mesh(D) < δ and all arbitrary sums

|σD(f)− σ| < ε

Applications

A functionf : [a, b] 7→ R is

increasing if and only if

x ≤ y ⇒ f(x) ≤ f(y), x, y ∈ [a, b]

decreasing if and only if

x ≤ y ⇒ f(x) ≥ f(y), x, y ∈ [a, b]

monotonic if and only if it is either increasing or decreasing.

Proposition 4.9. Any monotonic function is Riemann integrable on[a, b].
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Proof. By symmetry, enough to consider the case whenf is increasing. Dissect[a, b]
into n equal intervals, ie

D =
[
a, a +

(b− a)
n

, a + 2
(b− a)

n
, . . . , b

]
= [x0, x1, . . . , xn].

Note that ifc < d thensupx∈[c,d]{f(x)} = f(d) and infx∈[c,d]{f(x)} = f(c).
Thus

SD − sD =
n∑

i=1

(xi − xi−1)(f(xi)− f(xi−1))

=
b− a

n

n∑
i=1

(f(xi)− f(xi−1))

=
b− a

n
(f(b)− f(a))

Now, the RHS→ 0 asn →∞ and so givenε > 0 we can findn with

b− a

n
(f(b)− f(a)) < ε

and so we haveD with SD − sD < ε. Thusf is Riemann integrable by Riemann’s
condition.

Theorem 4.10. If f : [a, b] 7→ R is continuous, thenf is Riemann integrable.

Note thatf is bounded on a closed interval.

Proof. We will use theorem 2.23, which states that iff is continuous on[a, b], f is
uniformly continuous on[a, b]. Therefore, givenη > 0 we can findδ > 0 such that for
all x, y ∈ [a, b]:

|x− y| < δ ⇒ |f(x)− f(y)| < η

Taken such thatb−a
n < δ and consider the dissection

D =
[
a, a +

(b− a)
n

, a + 2
(b− a)

n
, . . . , b

]
= [x0, x1, . . . , xn].

Now if x, y ∈ [xi−1, xi] then|x− y| < δ and so|f(x)− f(y)| < η. Therefore

sup
x∈[xi−1,xi]

{f(x)} − inf
x∈[xi−1,xi]

{f(x)} ≤ η.

We see that

SD − sD ≤
n∑

i−1

(xi − xi−1) · η = (b− a)η

Now assumeε > 0 given. Takeη such that(b − a)η < ε. As above, we can find
D with SD − sD ≤ (b − a)η < ε, so thatf is Riemann integrable by Riemann’s
condition.
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4.3 Closure Properties

Notation. DefineM(f ; c, d) ≡ supx∈[c,d]{f(x)} andm(f ; c, d) ≡ infx∈[c,d]{f(x)}.

Proposition 4.11. If f, g : [a, b] 7→ R are Riemann integrable, so are

1. f + g : [a, b] 7→ R, with
∫ b

a
(f + g) dx =

∫ b

a
f dx +

∫ b

a
g dx.

2. λf : [a, b] 7→ R (λ ∈ R) with
∫ b

a
λf dx = λ

∫ b

a
f dx.

Proof of 1. Given ε > 0. Take a dissectionD1 with SD1(f) − sD1(f) < ε
2 and a

dissectionD2 with SD2(g)− sD2(g) < ε
2 . Let D be a common refinement. Note that

M(f + g; c, d) ≤ M(f ; c, d) + M(g; c, d)
m(f + g; c, d) ≥ m(f ; c, d) + m(g; c, d)

Hence

sD(f) + sD(g) ≤ sD(f + g) ≤ SD(f + g) ≤ SD(f) + SD(g)

and soSD(f + g)− sD(f + g) < ε. Thusf + g is Riemann integrable (by Riemann’s
condition). Further, givenε > 0 we have a dissectionD with

SD(f)− sD(f) <
ε

2
SD(g)− sD(g) <

ε

2
.

Then

sD(f) + sD(g) ≤ sD(f + g)

≤
∫ b

a

(f + g) dx

≤ SD(f + g)
≤ SD(f) + SD(g)

and so(∫ b

a

f dx− ε

2

)
+

(∫ b

a

g dx− ε

2

)
<

∫ b

a

(f + g) dx

<

(∫ b

a

f dx +
ε

2

)
+

(∫ b

a

g dx +
ε

2

)

Sinceε > 0 arbitrarily small, we have:∫ b

a

(f + g) dx =
∫ b

a

f dx +
∫ b

a

g dx

Proof of 2 is left as an exercise.
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Proposition 4.12. Supposef, g : [a, b] 7→ R are bounded and Riemann integrable.
Then|f |, f2 andfg are all Riemann integrable.

Proof. Note that

M(|f | ; c, d)−m(|f | ; c, d) ≤ M(f ; c, d)−m(f ; c, d),

and so, givenε > 0, we can find a dissectionD with SD(f)− sD(f) < ε and then

SD(|f |)− sD(|f |) ≤ SD(f)− sD(f) < ε.

Therefore|f | is Riemann-integrable.
As for f2, note that

M(f2; c, d)−m(f2; c, d)
= [M(|f | ; c, d) + m(|f | ; c, d)]× [M(|f | ; c, d)−m(|f | ; c, d)]

≤ 2K (M(|f | ; c, d)−m(|f | ; c, d))

whereK is some bound for|f |.
Givenε > 0, take a dissectionD with SD(|f |)− sD(|f |) < ε

2K . Then

SD(f2)− sD(f2) ≤ 2K(SD(|f |)− sD(|f |)) < ε.

Thereforef2 is Riemann-integrable.
The integrability offg follows at once, since

fg =
1
2
(
(f + g)2 − f2 − g2

)
.

Estimates on Integrals

1. SupposeF : [a, b] 7→ R is Riemann-integrable,a < b. If we takeD = [a, b] then
we see that

(b− a)m(f ; a, b) ≤
∫ b

a

f(x) dx ≤ (b− a)M(f ; a, b).

It follows that if |f | ≤ K then∣∣∣∣∣
∫ b

a

f(x) dx

∣∣∣∣∣ ≤ K |b− a| .

This is true even ifa ≥ b.

2. Supposef : [a, b] 7→ R is Riemann-integrable,a < b. ThenSD |f | ≥ SD(f)
and so ∫ b

a

|f | ≥
∫ b

a

f dx.
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Also SD |f | ≥ SD(−f). and so∫ b

a

|f | ≥ −
∫ b

a

f dx

Thus2 ∣∣∣∣∣
∫ b

a

f dx

∣∣∣∣∣ ≤
∫ b

a

|f | dx.

4.4 The Fundamental Theorem of Calculus

If f : [a, b] 7→ R is Riemann-integrable, then for any[c, d] ⊆ [a, b], f is Riemann
integrable on[c, d].3 Hence forc ∈ [a, b] we can define a function

F (x) =
∫ x

c

f(t) dt

on [a, b].

Observation 4.13.

F (x) =
∫ x

c

f(t) dt

is continuous on[a, b] if f is bounded.

Proof. Note that

|F (x + h)− F (x)| =
∫ x+h

x

f(t) dt ≤ |h|K

whereK is an upper bound for|f |. Now |h|K → 0 ash → 0, soF is continuous.

Theorem 4.14 (The Fundamental Theorem of Calculus).Supposef : [a, b] 7→ R is
Riemann integrable. Takec, d ∈ [a, b] and define

F (x) =
∫ x

c

f(t) dt.

If f is continuous atd, thenF is differentiable atd with F ′(d) = f(d).4

Proof. Supposeε > 0 is given. By the continuity off atd we can takeδ > 0 such that
(d− δ, d + δ) ⊂ (a, b) and

|k| < δ ⇒ |f(k + d)− f(d)| < ε.

2 For generala, b; ˛̨̨̨Z b

a
f dx

˛̨̨̨
≤

˛̨̨̨Z b

a
|f | dx

˛̨̨̨
3For if D is a dissection of[a, b] such thatSD(f) − sD(f) < ε thenD restricts toD′, a dissection of

[c, d] with SD′ (f)− sD′ (f) < ε.
4 In the cased is a or b (a < b), we have right and left derivatives. We ignore these cases (result just as

easy) and concentrate ond ∈ (a, b).
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If 0 < |h| < δ then∣∣∣∣F (d + h)− F (d)
h

− f(d)
∣∣∣∣ =

∣∣∣∣∣ 1h
∫ d+h

d

(f(t)− f(d)) dt

∣∣∣∣∣
≤ 1
|h|

ε |h|

< 2ε.

Corollary 4.15 (Integration is anti-differentiation). If f = g′ is continuous on[a, b]
then ∫ b

a

f(t) dt = g(b)− g(a).

Proof. SetF (x) =
∫ x

a
f(t) dt. Then

d
dx

(F (x)− g(x)) = F ′(x)− g′(x) = f(x)− f(x) = 0

and soF (x)− g(x) = k is constant. Therefore∫ b

a

f(t) dt = F (b)− F (a) = g(b)− g(a).

Corollary 4.16 (Integration by parts). Supposef, g are differentiable on(a, b) and
f ′, g′ continuous on[a, b]. Then∫ b

a

f(t)g′(t) dt = [f(t)g(t)]ba −
∫ b

a

f ′(t)g(t) dt.

Proof. Note that
d
dx

(f(x)g(x)) = f(x)g′(x) + f ′(x)g(x),

and so

[f(t)g(t)]ba = f(b)g(b)− f(a)g(a)

=
∫ b

a

(fg)′(t) dt

=
∫ b

a

f ′(t)g(t) dt +
∫ b

a

f(t)g′(t) dt.

Corollary 4.17 (Integration by Substitution). Takeg : [a, b] 7→ [c, d] with g′ is con-
tinuous in[a, b] andf : [c, d] 7→ R continuous. Then∫ g(b)

g(a)

f(t) dt =
∫ b

a

f(g(s))g′(s) ds.
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Proof. SetF (x) =
∫ x

c
f(t) dt. Now

∫ g(b)

g(a)

f(t) dt = F (g(b))− F (g(a))

=
∫ b

a

(F ◦ g)′(s) ds

=
∫ b

a

F ′(g(s))g′(s) ds by Chain Rule

=
∫ b

a

f(g(s))g′(s) ds.

4.5 Differentiating Through the Integral

Supposeg : R× [a, b] 7→ R is continuous. Then we can define

G(x) =
∫ b

a

g(x, t) dt.

Proposition 4.18. G is continuous as a function ofx.

Proof. Fix x ∈ R and supposeε > 0 is given. Nowg is continuous and so is uniformly
continuous on the closed bounded setE = [x− 1, x + 1] × [a, b]. Hence we can take
δ ∈ (0, 1) such that foru, v ∈ E,

‖u− v‖ < δ ⇒ |g(ux, ut)− g(vx, vt)| < ε.

So if |h| < δ then‖(x + h, t)− (x, t)‖ = |h| < δ and so

|g(x + h, t)− g(x, t)| < ε.

Therefore|G(x + h)−G(x)| ≤ |b− a| ε < 2 |b− a| ε, and as2 |b− a| ε can be
made arbitrarily smallG(x + h) → G(x) ash → 0.

Now suppose also thatD1g(x, t) = ∂g
∂x exists and is continuous throughoutR ×

[a, b].

Theorem 4.19. ThenG is differentiable with

G′(x) =
∫ b

a

D1g(x, t) dt

Proof. Fix x ∈ R and supposeε > 0 is given.
Now D1g is continuous and so uniformly continuous on the closed and bounded set

E = [x− 1, x + 1]× [a, b]. We can therefore takeδ >∈ (0, 1) such that foru, v ∈ E,

‖u− v‖ < δ ⇒ |D1g(a)−D1g(x, t)| < ε.
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Now∣∣∣∣∣G(x + h)−G(x)
h

−
∫ b

a

D1g(x, t) dt

∣∣∣∣∣
=

1
|h|

∣∣∣∣∣
∫ b

a

g(x + h, t)− g(x, t)− hD1g(x, t) dt

∣∣∣∣∣ .
But

g(x + h, t)− g(x, t)− hD1g(x, t) = h(D1g(ξ, t)−D1g(x, t))

for someξ ∈ (x, x + h) by the MVT.
Now if 0 < |h| < δ we have‖(ξ, t)− (x, t)‖ < δ and so

|g(x + h, t)− g(x, t)− hD1g(x, t)| < |h| ε.

Hence

∣∣∣∣∣G(x + h)−G(x)
h

−
∫ b

a

D1g(x, t) dt

∣∣∣∣∣ ≤ 1
|h|

|b− a| |h| ε

< 2 |b− a| ε.

But 2 |b− a| ε can be made arbitrarily small, so that

G′(x) =
∫ b

a

D1g(x, t) dt.

4.6 Miscellaneous Topics

Improper Integrals

1. Casef : [a, b] 7→ R but is unbounded (and possibly undefined at a finite number
of places). Set

fN,M (x) =


N f(x) > N

f(x) −M ≤ f(x) ≤ N

−M f(x) < −M.

If ∫ b

a

fN,M (x) dx → limit

asN,M →∞ (separately), then the limit is the improper integral∫ b

a

f(x) dx.
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2. Casef : (−∞,∞) 7→ R say.

Then if ∫ +y

−x

f(t) dt → limit

asx, y →∞ then the limit is the improper integral∫ ∞

−∞
f(t) dt.

Integration of Functions f : [a, b] 7→ Rn

It is enough to integrate the coordinate functions separately so that∫ b

a

f(t) dt =

(∫ b1

a1

f1(t) dt, . . . ,

∫ bn

an

fn(t) dt

)
,

but there is a more intrinsic way of defining this.
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Chapter 5

Metric Spaces

5.1 Definition and Examples

Definition 5.1. A metric space(X, d) consists of a setX (the set ofpointsof the space)
and a functiond : X ×X 7→ R (themetricor distance) such that

• d(a, b) ≥ 0 andd(a, b) = 0 iff a = b,

• d(a, b) = d(b, a),

• d(a, c) ≤ d(a, b) + d(b, c) ∀a, b, c ∈ X.

Examples

1. Rn with the Euclidean metric

d(x, y) = +

√√√√ n∑
i=1

(xi − yi)2

2. Rn with thesup metric

d(x, y) = sup
1≤i≤n

{|xi − yi|}

3. Rn with the “grid” metric

d(x, y) =
n∑

i=1

|xi − yi|

4. C[a, b] with thesup metric12

d(f, g) = sup
t∈[a,b]

{|f(t)− g(t)|}

1Define
C[a, b] = {f : [a, b] 7→ R : f is continuous}

2This is the standard metric onC[a, b]. It’s the one meant unless we say otherwise.

37
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5. C[a, b] with theL1-metric

d(f, g) =
∫ b

a

|f(t)− g(t)| dt

6. C[a, b] with theL2-metric

d(f, g) =

(∫ b

a

|f(t)− g(t)|2 dt

) 1
2

analogous to the Euclidean metric.

7. Spherical Geometry: ConsiderS2 = {x ∈ R3 : ‖x‖ = 1}. We can consider
continuously differentiable pathsγ : [0, 1] 7→ S2 and define the length of such a
path as

L(γ) =
∫ 1

0

‖γ′(t)‖ dt.

The spherical distance is

S(x, y) = inf
γ a path fromx to y in S2

{L(γ)}.

This distance is realized along great circles.

8. Hyperbolic geometry: Similarly forD: the unit disc inC. Takeγ : [0, 1] 7→ D
and

L(γ) =
∫ 1

0

2 |γ′(t)|
1 + |γ(t)|2

dt.

Then
h(z, w) = inf

γ a path fromz to w in S2
{L(γ)}

is realized on circles throughz, w meeting∂D = S′ (boundary ofD) at right
angles.

9. The discrete metric: Take any setX and define

d(x, y) =

{
1 x 6= y

0 x = y

10. The “British Rail Metric”: OnR2 set

d(x, y) =

{
|x|+ |y| x 6= y

0 x = y

Definition 5.2. Suppose(X, d) is a metric space andY ⊆ X. Thend restricts to a
mapd|Y×Y 7→ R which is a metric inY . (Y, d) is a (metric) subspaceof (X, d), d on
Y is theinduced metric.

Example 5.3. AnyE ⊆ Rn is a metric subspace ofRn with the metric induced from
the Euclidean metric.3

3For instance, the Euclidean metric onS2 is

(x, y) 7→ 2 sin

„
1

2
S(x, y)

«
.
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5.2 Continuity and Uniform Continuity

Definition 5.4. Let (X, d) and(Y, c) be metric spaces. A mapf : X 7→ Y is continu-
ous atx ∈ X if and only if

∀ε > 0 ∃δ > 0 ∀x′ ∈ X d(x, x′) < δ ⇒ c(f(x), f(x′)) < ε.

Thenf : (X, d) 7→ (Y, c) is continuous ifff is continuous at allx ∈ X.
Finally f : (X, d) 7→ (Y, c) is uniformly continuous iff

∀ε > 0 ∃δ > 0 ∀x, x′ ∈ X d(x, x′) < δ ⇒ c(f(x), f(x′)) < ε.

A bijective continuous mapf : (X, d) 7→ (Y, c) with continuous inverse is ahome-
omorphism.

A bijective uniformly continuous mapf : (X, d) 7→ (Y, c) with uniformly continu-
ous inverse is auniform homeomorphism.

1. There are continuous bijections whose inverse is not continuous. For instance

(a) Letd1 be the discrete metric onR andd2 the Euclidean metric. Then the
identity mapid : (R, d1) 7→ (R, d2) is a continuous bijection; its inverse is
not.

(b) (Geometric Example) Consider the map

[0, 1) 7→ S1 = {z ∈ C : |z| = 1},
θ 7→ e2πiθ

with the usual metrics. This map is continuous and bijective but its inverse
is not continuous atz = 1.

2. Recall that a continuous mapf : E 7→ Rm whereE is closed and bounded in
Rn is uniformly continuous. Usually there are lots of continuous not uniformly
continuous maps: For example

tan:
(
−π

2
,
π

2

)
7→ R

is continuous but not uniformly continuous, essentially because

tan′(x) →∞ as x → π

2
.

Definition 5.5. Letd1, d2 be two metrics onX. d1 andd2 areequivalentif and only if
id : (X, d1) 7→ (X, d2) is a homeomorphism. In symbols, this becomes

∀x ∈ X ∀ε > 0 ∃δ > 0 ∀y ∈ X d1(y, x) < δ ⇒ d2(y, x) < ε and

∀x ∈ X ∀ε > 0 ∃δ > 0 ∀y ∈ X d2(y, x) < δ ⇒ d1(y, x) < ε.

Notation. DefineO(x, r) ≡ N(x, r) ≡ Nr(x) ≡ {y : d(x, y) < r}.

Thend1 andd2 are equivalent if and only if
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1. ∀x ∀ε > 0 ∃δ > 0 N1
δ (x) ⊆ N2

ε (x).

2. ∀x ∀ε > 0 ∃δ > 0 N2
δ (x) ⊆ N1

ε (x).

Definition 5.6. d1 andd2 areuniformly equivalentif and only if

id : (X, d1) 7→ (X, d2)

is a uniform homeomorphism. In symbols this is

∀ε > 0 ∃δ > 0 ∀x ∈ X N1
δ (x) ⊆ N2

ε (x) and

∀ε > 0 ∃δ > 0 ∀x ∈ X N2
δ (x) ⊆ N1

ε (x)

The point of the definitions emerges from the following observation.

Observation 5.7.

1. id : (X, d) 7→ (X, d) is (uniformly) continuous.

2. If f : (X, d) 7→ (Y, c) andg : (Y, c) 7→ (Z, e) are (uniformly) continuous then so
is their composite.

Hence

(a) for topological considerations an equivalent metric works just as well;

(b) for uniform considerations a uniformly equivalent metric works as well.

Example 5.8. OnRn, the Euclidean,sup, and grid metrics are uniformly equivalent.

Proof. Euclidean andsup

NEuc
ε (x) ⊆ N sup

ε (x) and N sup
ε√
n
⊆ NEuc

ε (x)

(A circle contained in a square; and a square contained in a circle).

Euclidean and Grid

Ngrid
ε (x) ⊆ NEuc

ε (x) and NEuc
ε√
n
⊆ Ngrid

ε (x).

Compare this with work in chapters 2 and 3.

5.3 Limits of sequences

Definition 5.9. Let xn be a sequence in a metric space(X, d). Thenxn converges to
x as n → ∞ if and only if∀ε > 0 ∃N ∀n ≥ Nd(xn, x) < ε. Clearly xn → x iff
d(xn, x) → 0 asn →∞.

Note that the limit of a sequence is unique. Proof is as in lemma 1.7.
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Theorem 5.10. Suppose(X, dX) and(Y, dY ) are metric spaces. A map

f : (X, dX) 7→ (Y, dY )

is continuous if and only if wheneverxn → x in X thenf(xn) → f(x) in Y .

Proof.

⇒ Assumef continuous and takexn → x in X. Supposeε > 0 given. By the
continuity off , we can takeδ > 0 such that

d(x, x′) < δ ⇒ d(f(x), f(x′)) < ε

As xn → x we can takeN such that, for alln ≥ N , d(xn, x) < δ. Now if
n ≥ N , d(f(xn), f(x)) < ε. But sinceε > 0 was arbitraryf(xn) → f(x).

⇐ Supposef is not continuous atx ∈ X. Then there existsε > 0 such that for any
δ > 0 there isx ∈ Nδ(x′) with d(f(x), f(x′)) ≥ ε.

Fix such anε > 0. For eachn ≥ 1 pick xn with d(xn, x) < n−1 and
d(f(xn), f(x)) ≥ ε. Thenxn → x butf(xn) 6→ f(x).

Definition 5.11. A sequencexn in a metric space(X, d) is Cauchyif and only if

∀ε > 0 ∃N ∀n, m ≥ N d(xn, xm) < ε.

Observation 5.12. If f : (X, dX) 7→ (Y, dY ) is uniformly continuous, thenxn Cauchy
in X ⇒ f(xn) Cauchy inY .

Proof. Takexn Cauchy inX and supposeε > 0 is given. By uniform continuity we
can pickδ > 0 such that

∀x, x′ ∈ X dX(x, x′) < δ ⇒ dY (f(x), f(x′)) < ε.

Now pickN such that∀n, m ≥ NdX(xn, xm) < ε. ThendY (f(xn), f(xm)) < δ
for all m,n ≥ N . Sinceε > 0 arbitrary,f(xn) is Cauchy inY .

Definition 5.13. A metric space(X, d) is completeif and only if every Cauchy se-
quence inX converges inX.

A metric space(X, d) is compactif and only if every sequence inX has a conver-
gent subsequence.

Remarks.

1. [0, 1] or any closed bounded setE ⊆ Rn is both complete and compact.

(0, 1] is neither complete nor compact.

Indeed ifE ⊆ Rn is compact it must be closed and bounded and ifE is complete
and bounded, it is compact.

2. Compactness⇒ completeness:

Proof. Take a Cauchy sequencexn in a compact metric space. Then there is a
convergent subsequencexn(k) → x ask → ∞. Thereforexn → x asn →
∞.
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HoweverC[a, b] with thesup metric is complete but not compact.

What is more, givenf ∈ C[a, b] andr > 0, the set{g : d(g, f) ≤ r} is closed
and bounded — but not compact.

3. Compactness is a “topological property”. If(X, dX) and (Y, dY ) are homeo-
morphic, thenX compact impliesY compact.

However, this isn’t true for completeness:(0, 1] is homeomorphic to[1,∞) via
x 7→ 1/x but (0, 1] is not complete while[1,∞) is.

However if(X, dY ) and(Y, dY ) are uniformly homeomorphic, thenX complete
impliesY complete.

5.4 Open and Closed Sets in Metric Spaces

Definition 5.14. Let (X, d) be a metric space. A subsetU ⊆ X is open iff whenever
x ∈ U there isε > 0 with d(x′, x) < ε ⇒ x′ ∈ U or4 Nε ⊆ U .

Observation 5.15. Nε(x) is itself open in(X, d).

Proof. If x′ ∈ Nε(x) thend(x′, x) < ε so thatδ = ε − d(x, x′) > 0. Therefore
Nδ(x′) ⊆ Nε(x).

Theorem 5.16. Let (X, dX) and(Y, dY ) be metric spaces. Then

f : (X, dX) 7→ (Y, dY )

is continuous if and only iff−1(V )5 is open inX wheneverV is open inY .

Proof.

⇒ Assumef is continuous. TakeV open inY andx ∈ f−1(V ). As V is open
we can takeε > 0 such thatNε(f(x)) ⊆ V . By continuity off at x we can
take δ > 0 such thatd(x, x′) < δ ⇒ d(f(x′), f(x)) < ε, or alternatively
x′ ∈ Nδ(x) ⇒ f(x′) ∈ Nε(f(x)) so thatx′ ∈ Nδ(x) ⇒ f(x′) ∈ V . Therefore
x′ ∈ f−1(V ) and soNδ(x) ⊆ f−1(V ) andf−1(V ) is open.

⇐ Conversely, assumef−1(V ) is open inX wheneverV is open inY . Takex ∈ X
and supposeε > 0 is given. ThenNε(f(x)) is open inY and so by assump-
tion f−1(Nε(f(x))) is open inX. But x ∈ f−1(Nε(f(x))) and so we can
take δ > 0 such thatNδ(x) ⊆ f−1(Nε(f(x))). Therefored(x′, x) < δ ⇒
d(f(x′), f(x)) < ε and asε > 0 is arbitrary,f is continuous atx. As x is
arbitrary,f is continuous.

Corollary 5.17. Two metricsd1, d2 onX are equivalent if and only if they induce the
same notion of open set. This is becaused1 andd2 are equivalent iff

• For all V d2-open,id−1(V ) = V is d1-open.

• For all U d1-open,id−1(U) = U is d2-open.

4Recall that in a metric space(X, d): Nε(x) = {x′ : d(x, x′) < ε}.
5Wheref−1(V ) = {x ∈ X : f(x) ∈ V }.
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Definition 5.18. Suppose(X, d) is a metric space andA ⊆ X. A is closed if and only
if xn → x andxn ∈ A for all n impliesx ∈ A.

Proposition 5.19. Let (X, d) be a metric space.

1. U is open inX if and only ifX \ U is closed inX.

2. A is closed inX if and only ifX \A is open inX.

Proof. We only need to show 1.

⇒ SupposeU is open inX. Takexn → x with x ∈ U . As U is open we can take
ε > 0 with Nε(x) ⊆ U . As xn → x, we can takeN such that

∀n ≥ N xn ∈ Nε(x).

Soxn ∈ X for all n ≥ N . Then ifxn → x andxn ∈ X \ U thenx 6∈ U , which
is the same asx ∈ X \ U . ThereforeX \ U is closed.

⇐ SupposeX \U is closed inX. Takex ∈ U . Suppose that for noε > 0 do we have
Nε(x) ⊆ U . Then forn ≥ 1 we can pickxn ∈ N 1

n
(x) \ U . Thenxn → x and

so asX \ U is closed,x ∈ X \ U . But x ∈ U , giving a contradiction. Thus
the supposition is false, and there existsε > 0 with Nε(x) ⊆ U . As x ∈ U is
arbitrary, this showsU is open.

Corollary 5.20. A mapf : (X, dX) 7→ (Y, dY ) is continuous ifff−1(B) is closed in
X for all B closed inY .6

5.5 Compactness

If (X, d) is a metric space anda ∈ X is fixed then the functionx 7→ d(x, a) is (uni-
formly) continuous. This is because|d(x, a)− d(y, a)| ≤ d(x, y), so that ifd(x, y) <
ε then|d(x, a)− d(y, a)| < ε.

Recall. A metric space(X, d) is compact if and only if every sequence in(X, d) has a
convergent subsequence.

If A ⊆ X with (X, d) a metric space we say thatA is compact iff the induced
subspace(A, dA) is compact.7

Observation 5.21. A subset/subspaceE ⊆ Rn is compact if and only if it is closed
and bounded.

Proof.

⇒ This is essentially Bolzano-Weierstrass. Letxn be a sequence inE. As E is
bounded,xn is bounded, so by Bolzano-Weierstrassxn has a convergent sub-
sequence. But asE is closed the limit of this subsequence is inE.

6Becausef−1(Y \B) = X \ f−1(B).
7 xn ∈ A impliesxn has a convergent subsequence.
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⇐ SupposeE is compact. IfE is not bounded then we can pick a sequencexn ∈ E
with ‖xn‖ > n for all n ≥ 1. Thenxn has no convergent subsequence. For if
xn(k) → x ask →∞, then∥∥xn(k)

∥∥→ ‖x‖ ask →∞,

but clearly ∥∥xn(k)

∥∥→∞ ask →∞.

This shows thatE is bounded.

If E is not closed, then there isxn ∈ E with xn → x 6∈ E. But any subsequence
xn(k) → x 6∈ E and soxn(k) 6→ y ∈ E as limits of sequences are unique—a
contradiction.

This shows thatE is closed.

Thus, quite generally, ifE is compact in a metric space(X, d), thenE is closed
andE is bounded in the sense that there existsa ∈ E, r ∈ R such that

E ⊆ {x : d(x, a) < r}

This is not enough for compactness. For instance, take

l∞ = {(xn) : xn is a bounded sequence inR}

with d((xn), (yn)) = supn |xn − yn|. Then consider the points

e(n) = (0, . . . , 0,

nth position︷︸︸︷
1 , 0, . . .), or

(
e(n)

)
r

= δnr

Then d(e(n), e(m)) = 1 for all n 6= m. So E = {e(n)} is closed and bounded:
E ⊆ {(xn) : d(xn, 0) ≤ 1} But

(
e(n)

)
has no convergent subsequence.

Theorem 5.22. Supposef : (X, dX) 7→ (Y, dY ) is continuous and surjective. Then
(X, dX) compact implies(Y, dY ) compact.

Proof. Takeyn a sequence inY . Sincef is surjective, for eachn pickxn with f(xn) =
yn. Thenxn is a sequence inX and so has a convergent subsequencexn(k) → x as
k → ∞. As f is continuous,f(xn(k)) → f(x) ask → ∞, or yn(k) → y = f(x) as
k →∞.

Thereforeyn has a convergent subsequence and soY is compact.

Application. Supposef : E 7→ Rn, E ⊆ Rn closed and bounded. Then the image
f(E) ∈ Rn is closed and bounded. In particular whenf : E 7→ R we havef(E) ⊆ R
closed and bounded. But ifF ⊆ R is closed and bounded theninf F, supF ⊆ F .
Thereforef is bounded and attains its bounds.

Theorem 5.23. If f : (X, dX) 7→ (Y, dY ) is continuous with(X, dX) compact thenf
is uniformly continuous.

Proof. As in theorem 2.23.
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Lemma 5.24. Let (X, d) be a compact metric space. IfA ⊆ X is closed thenA is
compact.

Proof. Take a sequencexn in A. As (X, d) is compact,xn has a convergent subse-
quencexn(k) → x ask → ∞. As A is closed,x ∈ A and soxn(k) → x ∈ A. This
showsA is compact.

Note that ifA ⊆ X is a compact subspace of a metric space(X, d) thenA is closed.

Theorem 5.25. Supposef : (X, dX) 7→ (Y, dY ) is a continuous bijection. Then if
(X, dX) is compact, then (so is(Y, dY ) and)f is a homeomorphism.

Proof. Write g : (Y, dY ) 7→ (X, dX) for the inverse off . We want this to be contin-
uous. TakeA closed inX. By lemma 5.24,A is compact, and so asf is continuous,
f(A) is compact inY . Thereforef(A) is closed inY .

But asf is a bijection,f(A) = g−1(A). ThusA closed inX implies g−1(A)
closed inY and sog is continuous.

5.6 Completeness

Recall that a metric space(X, d) is complete if and only if every Cauchy sequence in
X converges. IfA ⊆ X thenA is complete if and only if the induced metric space
(A, dA) is complete. That is:A is complete iff every Cauchy sequence inA converges
to a point ofA.

Observation 5.26. E ⊆ Rn is complete if and only ifE is closed.

Proof.

⇐ This is essentially the GPC. Ifxn is Cauchy inE, thenxn → x in Rn by the GPC.
But E is closed so thatx ∈ E and soxn → x ∈ E.

⇒ If E is not closed then there is a sequencexn ∈ E with xn → x 6∈ E. But xn is
Cauchy and by the uniqueness of limitsxn 6→ y ∈ E for anyy ∈ E. SoE is not
complete.

Examples.

1. [1,∞) is complete but(0, 1] is not complete.

2. Any setX with the discrete metric is complete.

3. {1, 2, .., n} with

d(n, m) =
∣∣∣∣ 1n − 1

m

∣∣∣∣
is not complete.

Consider the spaceB(X, R) of bounded real-valued functionsf : X 7→ R on a set
X 6= ∅; with

d(f, g) = sup
x∈X

|f(x)− g(x)| ,

thesup metric.
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Proposition 5.27. The spaceB(X, R) with thesup metric is complete.

Proof. Takefn a Cauchy sequence inB(X, R). Fix x ∈ X. Givenε > 0 we can take
N such that

∀n, m ≥ N d(fn, fm) < ε

Then
∀n, m ≥ N d(fn(x), fm(x)) < ε.

This shows thatfn(x) is a Cauchy sequence inR and so has a limit, sayf(x). As
x ∈ X arbitrary, this defines a functionx 7→ f(x) from X to R.

Claim: fn → f . Supposeε > 0 given. TakeN such that

∀n, m ≥ N d(fm, fn) < ε.

Then for anyx ∈ X

∀n, m ≥ N |fn(x)− fm(x)| < ε.

Lettingm →∞ we deduce that|fn(x)− f(x)| ≤ ε for anyx ∈ X.
Thusd(fn, f) ≤ ε < 2ε for all n ≥ N . But 2ε > 0 is arbitrary, so this shows

fn → f .



Chapter 6

Uniform Convergence

6.1 Motivation and Definition

Consider the binomial expansion

(1 + x)α =
∞∑

n=0

(
α

n

)
xn

for |x| < 1. This is quite easy to show via some form of Taylor’s Theorem. Thus

lim
N→∞

N∑
n=0

(
α

n

)
xn = (1 + x)α

As it stands this is for each individualx such that|x| < 1. It is pointwise conver-
gence.

For functionsfn, f : X 7→ R, we say thatfn → f pointwiseiff

∀x ∈ X fn(x) → f(x).

This notion is “useless”. It does not preserve any important properties offn.

Examples.

• A pointwise limit of continuous functions need not be continuous.

fn(x) =


0 x ≤ 0
1 x ≥ 1

n

nx 0 < x < 1
n

is a sequence of continuous functions which converge pointwise to

f(x) =

{
0 x ≤ 0
1 x > 0

which is discontinuous.

47
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• The integral of a pointwise limit need not be the limit of the integrals.

fn(x) =


0 x ≤ 0 or x ≥ 2

n

xn2 0 ≤ n ≤ 1
n

n− n2(x− 1
n ) 1

n ≤ x ≤ 2
n

has ∫ 2

0

fn(x) dx = 1

for all n ≥ 1, butfn converges pointwise tof(x) = 0 which has∫ 2

0

f(x) dx = 0.

We focus on real valued functions but everything goes through for complex valued
or vector valued functions.

We will often tacitly assume that setsX (metric spaces (X, d)) are non-empty.

Definition 6.1. Letfn, f be real valued functions on a setX. Thenfn → f uniformly
if and only if givenε > 0 there isN such that for allx ∈ X

|fn(x)− f(x)| < ε

all n ≥ N . In symbols:

∀ε > 0 ∃N ∀x ∈ X ∀n ≥ N |fn(x)− f(x)| < ε.

This is equivalent to

Definition 6.2. Let fn, f ∈ B(X, R). Thenfn → f uniformly iff fn → f in the sup
metric.

The connection is as follows:

• If fn, f ∈ B(X, R), then these definitions are equivalent. (There’s a bit of< ε
vs≤ ε at issue).

• Supposefn → f in the sense of the first definition. There will beN such that

∀x ∈ X |fn(x)− f(x)| < 1

for all n ≥ N . Then(fn − f)n≥N → 0 uniformly in the sense of the second
definition.

Theorem 6.3 (The General Principle of Convergence).Supposefn : X 7→ R such
that

Either
∀ε > 0 ∃N ∀x ∈ X ∀n, m ≥ N |fn(x)− fm(x)| < ε

or Supposefn ∈ B(X, R) is a Cauchy sequence. Then there isf : X 7→ R with
fn → f uniformly.

Proof. B(X, R) is complete.
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6.2 The spaceC(X)

Definition 6.4. Let (X, d) be a metric space.C(X) ≡ C(X, R) is the space of
bounded continuous functions fromX to R with thesup metric.

This notation is usually used whenX is compact, when all continuous functions
are bounded.

Proposition 6.5. Suppose(X, d) is a metric space, thatfn is a sequence of continuous
real-valued functions and thatfn → f uniformly onX. Thenf is continuous.

Proof. Fix x ∈ X and supposeε > 0 given. TakeN such that for ally ∈ X

∀n ≥ N |fn(y)− f(y)| < ε.

As fN is continuous atx we can takeδ > 0 such that

d(y, x) < δ ⇒ |fN (y)− fN (x)| < ε.

Then ifd(y, x) < δ,

|f(y)− f(x)| ≤ |fN (y)− f(y)|+ |fN (x)− f(x)|+ |fN (y)− fn(x)|
< 3ε.

But3ε can be made arbitrarily small and sof is continuous atx. Butx ∈ X is arbitrary,
sof is continuous.

Theorem 6.6. The spaceC(X) (with thesup metric) is complete.

Proof. We know thatB(X, R) is complete, and the proposition says thatC(X) is
closed inB(X, R).

Sketch of Direct Proof.Takefn Cauchy inC(X).

• For eachx ∈ X, fn(x) is Cauchy, and so converges to a limitf(x).

• fn converges tof uniformly.

• f is continuous by the above argument.

Theorem 6.7 (Weierstrass Approximation Theorem).If f ∈ C[a, b], thenf is the
uniform limit of a sequence of polynomials.

Proof. Omitted.

6.3 The Integral as a Continuous Function

Restrict attention toC[a, b], the space of continuous functions on the closed interval
[a, b].

Proposition 6.8. Supposefn → f in C[a, b]. Then∫ b

a

fn(x) dx →
∫ b

a

f(x) dx in R.
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Proof. Supposeε > 0. TakeN such that∀n ≥ Nd(fn, f) < ε. Then ifc < d in [a, b]

m(fn; c, d)− ε ≤ m(f ; c, d) ≤ M(f ; c, d) ≤ M(fn; c, d) + ε

for all n ≥ N . So for any dissectionD,

sD(fn)− ε(b− a) ≤ sD(f) ≤ SD(f) ≤ SD(fn) + ε(b− a)

for all n ≥ N .
Takingsups andinfs, it follows that∫ b

a

fn(x) dx− ε(b− a) ≤
∫ b

a

f(x) dx ≤
∫ b

a

fn(x) dx + ε(b− a)

for all n ≥ N .
Then asε(b− a) > 0 can be made arbitrarily small,∫ b

a

fn(x) dx →
∫ b

a

f(x) dx.

We can make the superficial generalization: Iff ∈ C[a, b] then so is

x 7→
∫ x

a

f(t) dt.

So ∫ x

a

: C[a, b] 7→ C[a, b].

Theorem 6.9. The map ∫ x

a

: C[a, b] 7→ C[a, b]

is continuous with respect to thesup metric.
That is, iffn → f (uniformly), then∫ x

a

fn(t) dt →
∫ x

a

f(t) dt

(uniformly inx).

Proof. We see from the previous proof that ifN is such that for ally ∈ [a, b],

∀n ≥ N |fn(y)− f(y)| < ε

then ∣∣∣∣∫ x

a

fn(t) dt−
∫ x

a

f(t) dt

∣∣∣∣ ≤ ε(x− a) ≤ ε(b− a) < 2ε(b− a).

As 2ε(b− a) is arbitrarily small (and independent ofx), this shows∫ x

a

fn(t) dt →
∫ x

a

f(t) dt

uniformly in x.
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Uniform convergence controls integration, butnot differentiation, for example the
functions

fn(x) =
1
n

sinnx

converge uniformly to zero asn → ∞, but the derivativescos nx converge only at
exceptional values.

Warning. There are sequences of infinitely differentiable functions (polynomials even)
which converge uniformly to functions which are necessarily continuous but nowhere
differentiable. However, if we have uniform convergence of derivatives, all is well.

Theorem 6.10. Supposefn : [a, b] 7→ R is a sequence of functions such that

1. the derivativesf ′n exist and are continuous on[a, b]

2. f ′n → g(x) uniformly on[a, b]

3. for somec ∈ [a, b], fn(c) converges to a limit,d, say.

Thenfn(x) converges uniformly to a functionf(x), with f ′(x) (continuous and)
equal tog(x).1

Proof. By the FTC,

fn(x) = fn(c) +
∫ x

c

f ′n(t) dt.

Using the lemma that iffn → f uniformly andgn → g uniformly thenfn + gn →
f + g uniformly2, we see that

fn(x) → d +
∫ x

c

g(t) dt

uniformly in X (by theorem 6.9). Thus

fn(x) → f(x) = d +
∫ x

c

g(t) dt

, andf(x) has continuous derivativef ′(x) = g(x) by FTC.

1In these cases we do have

d

dx

“
lim

n→∞
fn(x)

”
= lim

n→∞

„
d

dx
fn(x)

«

2This lemma is not actually part of the original lecture notes
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6.4 Application to Power Series

ForM ≥ N , and|z| ≤ r,∣∣∣∣∣
M∑

N+1

anzn

∣∣∣∣∣ ≤
M∑

N+1

|anzn|

=
M∑

N+1

|anzn
0 |
∣∣∣∣ z

z0

∣∣∣∣n

≤
M∑

N+1

k

(
r

|z0|

)n

< k

(
r

|z0|

)N+1 1
1− r

|z0|

which tends to zero asN → ∞. This shows that the power series is absolutely con-
vergent, uniformly inz for |z| ≤ r. Whence, not only do power series

∑
anzn have a

radius of convergenceR ∈ [0,∞] but also ifr < R, then they converge uniformly in
{z : |z| ≤ r}.

Also, if
∑

anzn
0 converges, so that|anzn

0 | < k say, we have the following for
r < |z0|. Chooses with r < s < |z0|. Then for|z| ≤ r andM ≥ N we have∣∣∣∣∣

M∑
N+1

nanzn−1

∣∣∣∣∣ ≤
M∑

N+1

∣∣nanzn−1
∣∣

≤
M∑

N+1

∣∣anzn−1
0

∣∣n( |z|
s

)n−1(
s

|z0|

)n−1

≤
M∑

N+1

k′n
(r

s

)n−1
(

s

|z0|

)n−1

where
∣∣anzn−1

0

∣∣ ≤ k′.

Forn ≥ N0, n
(

r
s

)n−1 ≤ 1 and so forN ≥ N0,∣∣∣∣∣
M∑

N+1

nanzn−1

∣∣∣∣∣ ≤
M∑

N+1

k′
(

s

|z0|

)n−1

≤ k

(
s

|z0|

)N 1
1− s

|z0|
→ 0 asN →∞.

This shows that the series
∑

n≥1 nanzn−1 converges uniformly inside the radius
of convergence. So what we’ve done, in thereal case3 is to deduce that∑

n≥1

nanzn−1

is the derivative of ∑
n≥1

anzn

within the radius of convergence.

3And with more work, in the complex case.
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6.5 Application to Fourier Series

Proposition 6.11 (Simplest Version).Supposean is a sequence such that∑
n≥1

n |an|

converges. Then ∑
n≥1

an cos nt

converges uniformly and has a derivative∑
n≥1

−nan sinnt

which is uniformly convergent to a continuous function.

Proof. Let SN (t) be the partial sum

SN (t) =
N∑

n=1

an cos nt. Then S′N (t) =
N∑

n=1

−nan sinnt

is a sequence of continuous functions. Now forM ≥ N

|SM (t)− SN (t)| =

∣∣∣∣∣
M∑

N+1

an cos nt

∣∣∣∣∣
≤

M∑
N+1

|an cos nt|

≤
M∑

N+1

|an|

≤
M∑

N+1

n |an| → 0 asN →∞.

Also, |S′M (t)− S′N (t)| =

∣∣∣∣∣
M∑

N+1

−nan sinnt

∣∣∣∣∣
≤

M∑
N+1

|−nan sinnt|

≤
M∑

N+1

n |an| → 0 asN →∞.

So bothSN (t) andS′N (t) are uniformly convergent and we deduce that

d
dt

∑
n≥1

an cos nt =
∑
n≥1

−nan sinnt.
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The right context for Fourier series is theL2 norm arising from the inner product

〈f, g〉 =
1
π

∫ 2π

0

f(t)g(t) dt

on functions on[0, 2π]. We take Fourier coefficients of a functionf(x)

an =
1
π

∫ 2π

0

f(t) cos nt dt n ≥ 0

bn =
1
π

∫ 2π

0

f(t) sinnt dt n ≥ 1

and hope that

f(x) =
1
2
a0 +

∑
n≥1

an cos nx + bn sinnx.

This works for smooth functions; and much more generally in theL2-sense; so that
for example, for continuous functions we have Parseval’s Identity:∫ 2π

0

|f(x)|2 dx =
a2
0

2
+
∑
n≥1

(
a2

n + b2
n

)
.



Chapter 7

The Contraction Mapping
Theorem

7.1 Statement and Proof

Definition 7.1. A mapT : (X, d) 7→ (X, d) on a metric space(X, d) is a contraction
if and only if for somek, 0 ≤ k < 1

∀x, y ∈ X d(Tx, Ty) ≤ kd(x, y)

Theorem 7.2 (Contraction Mapping Theorem). Suppose thatT : (X, d) 7→ (X, d)
is a contraction on a (non-empty) complete metric space(X, d). ThenT has a unique
fixed point.

That is, there is a uniquea ∈ X with Ta = a.1

Proof. Pick a pointx0 ∈ X and define inductivelyxn+1 = Txn so thatxn = Tnx0.
For anyn, p ≥ 0 we have

d(xn, xn+p) = d(Tnx0, T
nxp)

≤ knd(x0, xp

≤ kn[d(x0, x1) + d(x1, x2) + . . . + d(xp−1, xp)]

≤ knd(x0, x1)[1 + k + k2 + . . . + kp−1]

≤ kn

1− k
d(x0, x1).

Now
kn

1− k
d(x0, x1) → 0 asn →∞,

and soxn is a Cauchy sequence. As(X, d) is complete,xn → a ∈ X. We now claim
thata is a fixed point ofT .

We can either use continuity of distance:

1As a preliminary remark, we see that asT is a contraction, it is certainly uniformly continuous

55
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d(Ta, a) = d
(
Ta, lim

n→∞
xn

)
= lim

n→∞
d(Ta, xn)

= lim
n→∞

d(Ta, Txn−1)

≤ lim
n→∞

d(a, xn−1)

= d
(
a, lim

n→∞
xn−1

)
= d(a, a)
= 0,

and sod(Ta, a) = 0. Or we can use the (uniform) continuity ofT .

Ta = T
(

lim
n→∞

xn

)
= lim

n→∞
Txn

= lim
n→∞

xn+1

= a.

As for uniqueness, supposea, b are fixed points ofT . Then

d(a, b) = d(Ta, Tb) ≤ kd(a, b)

and since0 ≤ k < 1, d(a, b) = 0 and soa = b.

Corollary 7.3. Suppose thatT : (X, d) 7→ (X, d) is a map on a complete metric space
(X, d) such that for somem ≥ 1, Tm is a contraction, ie

d(Tmx, Tmy) ≤ kT (x, y).

ThenT has a unique fixed point.

Proof. By the contraction mapping theorem,Tm has a unique fixed pointa. Consider

d(Ta, a) = d(Tm+1a, Tma)
= d(Tm(Ta), Tma)
≤ kd(Ta, a).

Sod(Ta, a) = 0 and thusa is a fixed point ofT . If a, b are fixed points ofT , they
are fixed points ofTm and soa = b.

Example 7.4. Suppose we wish to solvex2+2x−1 = 0. (The solutions are−1±
√

2.)
We write this as

x =
1
2
(1− x2)

and seek a fixed point of the map

T : x 7→ 1
2
(1− x2)
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So we seek an interval[a, b] with T : [a, b] 7→ [a, b] andT a contraction on[a, b].
Now

|Tx− Ty| =
∣∣∣∣12x2 − 1

2
y2

∣∣∣∣
=

1
2
|x + y| |x− y| .

So if|x| , |y| ≤ 3
4 then

|Tx− Ty| ≤ 1
2
(|x|+ |y|) |x− y| ≤ 3

4
|x− y|

and soT is a contraction on[−3/4, 3/4]. Actually

T :
[
−3

4
,
3
4

]
7→
[
0,

1
2

]
and so certainly

T :
[
−3

4
,
3
4

]
7→
[
−3

4
,
3
4

]
is a contraction.

So there is a unique fixed point ofT in [−3/4, 3/4]. The contraction mapping
principle even gives a way of approximating it as closely as we want.

7.2 Application to Differential Equations

Consider a differential equation

dy

dx
= F (x, y) (7.1)

subject toy = y0 whenx = x0. We assume

F : [a, b]× R 7→ R

is continuous,x0 ∈ [a, b] andy0 ∈ R.

Observation 7.5. g : [a, b] 7→ R is a solution of (7.1) ieg is continuous,g′(x) =
F (x, g(x)) for x ∈ (a, b) andg(x0) = y0, iff g satisfies the Volterra integral equation

g(x) = y0 +
∫ x

x0

F (t, g(t)) dt

on [a, b].

Proof. Essentially the FTC.2

2If g satisfies the differential equation, asF (x, g(x)) will be continuous we can integrate to get the
integral equation and vice-versa.



58 CHAPTER 7. THE CONTRACTION MAPPING THEOREM

Theorem 7.6. Supposex0 ∈ [a, b] closed interval,y0 ∈ R,

F : [a, b]× R 7→ R

is continuous and satisfies a Lipschitz condition; ie there isK such that for allx ∈ [a, b]

|F (x, y1)− F (x, y2)| ≤ K |y1 − y2| .

Then the differential equation (7.1) subject to the initial conditiony(x0) = y0 has
a unique solution inC[a, b].

Proof. We consider the mapT : C[a, b] 7→ C[a, b] defined by

Tf(x) = y0 +
∫ x

x0

F (t, f(t)) dt.

We claim that for alln,

|Tnf1(x)− Tnf2(x)| ≤ Kn |x− x0|
n!

d(f1, f2)

The proof is by induction onn. The casen = 0 is trivial (andn = 1 is already
done). The induction step is as follows:

∣∣Tn+1f1(x)− Tn+1f2(x)
∣∣ = ∣∣∣∣∫ x

x0

F (t, Tnf1(t))− F (t, Tnf2(t)) dt

∣∣∣∣
≤
∣∣∣∣∫ x

x0

K |Tnf1(t)− Tnf2(t)| dt

∣∣∣∣
≤
∣∣∣∣∫ x

x0

K.Kn |t− x0|n

n!
d(f1, f2) dt

∣∣∣∣
=

Kn+1 |x− x0|n+1

(n + 1)!
d(f1, f2)

But

Kn+1 |x− x0|n+1

(n + 1)!
d(f1, f2) ≤

Kn+1 |b− a|n+1

(n + 1)!
d(f1, f2) → 0

asn →∞. So forn sufficiently large,(
kn+1 |b− a|n+1

(n + 1)!
< 1

)

and soTn is a contraction onC[a, b].
ThusT has a unique fixed point inC[a, b], which gives a unique solution to the

differential equation.

Example 7.7. Solvey′ = y′ with y = 1 at x = 0. HereF (x, y) = y and the Lipschitz
condition is trivial. So we have a unique solution on any closed interval[a, b] with
0 ∈ [a, b]. Thus we have a unique solution on(−∞,∞).
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In fact3 we can do better than this and construct a solution by iteratingT starting
fromf0 = 0.

f0(x) = 0,

f1(x) = 1 +
∫ x

0

0 dt,

f2(x) = 1 +
∫ x

0

dt = 1 + x,

f3(x) = 1 + x +
x2

2!
...

and so on. So (of course we knew this), the series forexp(x) converges uniformly on
bounded closed intervals.

We can make a trivial generalization to higher dimensions.
Suppose[a, b] is closed interval withx0 ∈ [a, b], y0 ∈ Rn andF : [a, b]×Rn 7→ Rn

continuous and satisfying a Lipschitz condition:∃K such that

‖F (x, y1)− F (x, y2)‖ ≤ K ‖y1 − y2‖ .

Then the differential equation

dy

dx
= F (x, y)

with y(x0) = y0 has a unique solution inC([a, b], Rn). The proof is the same, but with
‖·‖s instead of|·|s.

This kind of generalization is good for higher order differential equations. For
example if we have

d2y

dx2
= F

(
x, y,

dy

dx

)
with y = y0, dy/dx = v0 atx = x0 we can setv = dy

dx and rewrite the equation as

d
dx

(
y
v

)
=
(

v
F (x, y, v)

)
with (

y
v

)
=
(

y0

v0

)
atx = x0.

With a suitable Lipschitz condition we are home.

7.3 Differential Equations: pathologies

The problem is that the Lipschitz condition seldom holds outright.

3This is not a general phenomenon!
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Trivial way Failure happens asx → something. The typical case isx → ∞ but we
can always consider bounded intervals and then expand them.

OK way Failure happens asy →∞.

Example 7.8.
dy

dx
= 1 + y2

with y(0) = 0. HereF (x, y) = 1 + y2 and so

|F (x, y1)− F (x, y2)| = |y1 + y2| |y1 − y2| ,

which is large fory large.

SoF as a map[a, b]× R 7→ R does not satisfy a Lipschitz condition.

Theorem 7.9. Supposex0 ∈ (a, b), y0 ∈ (c, d), and

F : [a, b]× [c, d] 7→ R

is continuous and satisfies a Lipschitz condition: there isk with

|F (x, y1)− F (x, y2)| ≤ k |y1 − y2|

in [a, b]× [c, d] then there isδ > 0 such that

dy

dx
= F (x, y)

with y(0) = x0, has a unique solution in[x0 − δ, x0 + δ].

Proof. Suppose thatL is a bound forF on [a, b]× [c, d].4

Takeη > 0 such that
[y0 − η, y0 + η] ⊆ [c, d]

Observe that if|x− x0| < δ then

|Tf − y0| =
∣∣∣∣∫ x

x0

F (t, f(t)) dt

∣∣∣∣ ≤ δL

so long asf ∈ C. So setδ = L−1.

ThenC as above is complete, the map

T : f 7→ y0 +
∫ x

x0

F (t, f(t)) dt

mapsC to C, and by the argument of§7.2,Tn is a contraction forn sufficiently
large.

HenceT has a unique fixed point and so the differential equation has a unique
solution on[x0 − δ, x0 + δ].

4 We aim to find a closed and so complete subspace

C ⊆ C[x0 − δ, x0 + δ]

of the form
C = {f : C[x0 − δ, x0 + δ] : |f(x)− y0| ≤ η}

for η > 0 with T mappingC to C.
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Now we have a valuef(x0 + δ) at x0 + δ, so we can solvedy
dx = F (x, y) with

y = f(x0 + δ) atx = x0 + δ, and so we extend the solution uniquely. This goes
on until the solution goes off to±∞. In this example we gety = tan x.

Really bad case“Lipschitz fails at finite values ofy.” For example, considerdy
dx =

2y
1
2 with y(0) = 0.

Now F (x, y) = 2y
1
2 in (−∞,+∞)× [0,∞) and

|F (x, y1)− F (x, y2)| =
|y1 − y2|

y
1/2
1 + y

1/2
2

,

which has problems asy1, y2 → 0. We lose uniqueness of solutions.

7.4 Boundary Value Problems: Green’s functions

Consider the second order linear ODE

Ly =
d2y

dx2
+ p(x)

dy

dx
+ q(x)y = r(x)

subject toy(a) = y(b) = 0. (Herep, q, r ∈ C[a, b]).
The problem is that solutions are not always unique.

Example 7.10.
d2y

dx2
= −y

with y(0) = y(π) = 0 has solutionsA sinx for all A.

Write C2[a, b] for the twice continuously differentiable functions on[a, b], so that

L : C2[a, b] 7→ C[a, b].

Write
C2

0 [a, b] = {f ∈ C2[a, b] : f(a) = f(b) = 0}

and
L0 : C2

0 [a, b] 7→ C[a, b]

for the restricted map. EitherkerL0 = {0} then a solution (if it exists) is unique, or
kerL0 6= {0}, when we lose uniqueness. Note that becausep, q, r have noy or dy

dx
dependence the Lipschitz condition for

Ly =

{
0
r

in the 2-dimensional form

d
dx

(
y
v

)
=
(

v
−pv − qy + r

)
is easy and so initial value problems always have unique solutions.
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AssumekerL0 = {0}. Now takega(x), a solution toLy = 0 with y(a) = 1,
y′(a) = 0. ga(x) 6≡ 0 asg′a(a) = 1. If ga(b) = 0, ga ∈ C2

0 [a, b], contradicting
kerL0 = {0} and soga(b) 6= 0.

We can similarly takegb(x), a solution toLy = 0 with y(b) = 0, y′(b) = 1 and we
havegb(a) 6= 0. Now if h is a solution ofLy = r, then

f(x) = h(x)− h(a)
gb(a)

gb(x)− h(b)
ga(b)

ga(x)

is a solution to the boundary value problem. In fact this solution has an integral form:

f(x) =
∫ b

a

G(x, t)r(t) dt.

We take the Wronskian

W(x) =
∣∣∣∣ga(x) gb(x)
g′a(x) g′b(x)

∣∣∣∣
and note that

W ′(x) + p(x)W(x) = 0

and so

W(x) = C exp
[
−
∫ x

a

p(t) dt

]
W(a) andW(b) 6= 0 soC 6= 0, soW(x) 6= 0. Then we define

G(x, t) =

{
1

W(t)gb(x)ga(t) t ≤ x
1

W(t)gb(t)ga(x) x ≤ t

and check directly that ∫ b

a

G(x, t)r(t) dt

solves the initial value problem.

7.5 **The Inverse Function Theorem**

This is a theorem you should be aware of. Proof is omitted.

Theorem 7.11.Supposef : E 7→ Rn, E ⊆ Rn is open and continuously differentiable
and thatf ′(a) is invertible at some pointa ∈ E. Then there are openU, V with a ∈ U ,
b = f(a) ∈ V with f : U 7→ V bijective and the inverse off , g say, continuously
differentiable.



References

◦ R. Haggarty,Fundamentals of Modern Analysis, Addison-Wesley, 1993.

A new and well-presented book on the basics of real analysis. The exposition is ex-
cellent, but there’s not enough content and you will rapidly outgrow this book. Worth
a read but probably not worth buying.

◦ W. Rudin,Principles of Mathematical Analysis, Third ed., McGraw-Hill, 1976.

This is a good book for this course. It is rather hard though.

◦ W.A. Sutherland,Introduction to Metric and Topological Spaces, OUP, 1975.

This book is good on the metric space part of the course. It’s also good for Further
Analysis.

63


	Introduction
	Real Numbers
	Ordered Fields
	Convergence of Sequences
	Completeness of  R: Bounded monotonic sequences
	Completeness of  R: Least Upper Bound Principle
	Completeness of  R: General Principle of Convergence

	Euclidean Space
	The Euclidean Metric
	Sequences in Euclidean Space
	The Topology of Euclidean Space
	Continuity of Functions
	Uniform Continuity

	Differentiation
	The Derivative
	Partial Derivatives
	The Chain Rule
	Mean Value Theorems
	Double Differentiation
	Mean Value Theorems in Many Variables

	Integration
	The Riemann Integral
	Riemann's Condition: A GPC for integrability
	Closure Properties
	The Fundamental Theorem of Calculus
	Differentiating Through the Integral
	Miscellaneous Topics

	Metric Spaces
	Definition and Examples
	Continuity and Uniform Continuity
	Limits of sequences
	Open and Closed Sets in Metric Spaces
	Compactness
	Completeness

	Uniform Convergence
	Motivation and Definition
	The space C(X)
	The Integral as a Continuous Function
	Application to Power Series
	Application to Fourier Series

	The Contraction Mapping Theorem
	Statement and Proof
	Application to Differential Equations
	Differential Equations: pathologies
	Boundary Value Problems: Green's functions
	The Inverse Function Theorem


