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Introduction

These notes are based on the course “Fluid Dynamics” given by Dr. J.R. Lister in
Cambridge in the Michælmas Term 1996. These typeset notes are totally unconnected
with Dr. Lister.

Other sets of notes are available for different courses. At the time of typing these
courses were:

Probability Discrete Mathematics
Analysis Further Analysis
Methods Quantum Mechanics
Fluid Dynamics 1 Quadratic Mathematics
Geometry Dynamics of D.E.’s
Foundations of QM Electrodynamics
Methods of Math. Phys Fluid Dynamics 2
Waves (etc.) Statistical Physics
General Relativity Dynamical Systems
Combinatorics Bifurcations in Nonlinear Convection

They may be downloaded from

http://www.istari.ucam.org/maths/ .
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Chapter 1

Kinematics

1.1 Continuum Fields

Everyday experience suggests that at a macroscopic scale, liquids and gases look like
smooth continua with densityρ(x, t), velocityu(x, t) and pressurep(x, t) fields.

Since fluids are made of molecules this is of course only an approximate descrip-
tion. On large lengthscales we can define these fields by averaging over a volumeV
smaller than the scale of interest but large enough to contain many molecules. The
effect of this averaging is to exchange an enormous number of ODEs that describe the
motion of each molecule for a few PDEs that describe the averaged fields.

This continuum approximationis not always appropriate. For instance the veloc-
ity structure about a spacecraft during re-entry has a lengthscale comparable with the
molecular mean free path. Similarly, blood flow in capillaries must take the red blood
cells into account.

1.2 Flow Visualization

There are many experimental techniques for obtaining a description of the velocity field
u(x, t). Three simple visualisation techniques give rise to the ideas ofstreamlines,
pathlinesandstreaklines. We will illustrate these ideas by application to the simple
two-dimensional exampleu(x, t) = (t, y).

Streamlinesare curves that are everywhere parallel to the instantaneous flow. They
are visualised experimentally by the short-time exposure of many brightly-lit particles
— the streamlines are obtained by joining the resulting short segments in a manner
analogous to obtaining magnetic fields from iron filings.

Mathematically, a streamline is a curvex(s;x0, t) at a given fixed timet with s
varying along the curve and passing through a given pointx0 that satisfies

∂x
∂s

= u(x, t) x(0;x0, t) = x0.

For our example we have

x(s;x0, t) = x0 + ts y(s;x0, t) = y0e
s.

1
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This gives the curve
x− x0

t
= log

y

y0
.

Pathlinesare particle paths: paths traversed by particles moving with the flow. They
are visualised experimentally by the long-time exposure of a few brightly-lit particles.

Mathematically, a pathline is a curvex(t;x0, t0) corresponding to a particle re-
leased fromx = x0 at t = t0. The differential equation is

∂x
∂t

= u(x, t) x(t0;x0, t0) = x0.

Our example gives

x(t;x0, t0) = x0 +
t2 − t20

2
y(t;x0, t0) = y0e

t−t0 .

For a particle released att0 = 0 this gives a curve

y = y0e
√

2(x−x0).

Streaklinesgive the position at some fixed time of dye released over a range of
previous times from a fixed source (e.g. an oil spill).

Mathematically, a streakline is a curvex(t0;x, t) with t0 varying along the curve
and a fixed observation timet. To obtain it, we still solve

∂x
∂t

= u(x, t) x(t0;x0, t0) = x0,

but then fixt instead oft0. Suppose we observe our flow att = 0 — we can use
our previous solution to get a streakline

y = y0e
−t0 = y0e

−
√

2(x0−x).

Note that for this unsteady flow we get different results from each method of visu-
alisation. The different methods give the same result if the flow is steady.

1.3 Material Derivative

This is a rate of change “moving with the fluid”. For any quantityF , the rate of change
in that quantity seen by an observer moving with the fluid is the material or Lagrangian
derivativeDF

Dt .

δF =
F (x + δx, t+ δt)− F (x, t)

δt

= (δx · ∇)F + δt
∂F

∂t
+ smaller terms.

Hence
DF
Dt

= (u · ∇)F +
∂F

∂t
.
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1.4 Conservation of Mass

Consider an arbitrary (at least smooth – this is applied maths) volumeV , fixed in space
with bounding surfaceA and outward normaln. The mass insideV is

M =
∫
V

ρdV,

and the mass changes due to the flow over the boundary, so

∂M

∂t
= −

∫
A

ρu · ndA.

Application of the divergence theorem gives∫
V

∂ρ

∂t
dV +

∫
V

∇ · (ρu) dV = 0.

SinceV is arbitrarily small,

∂ρ

∂t
+∇ · (ρu) = 0,

or rewritten using the material derivative

Dρ
Dt

+ ρ∇ · u = 0.

1.5 Kinematic Boundary Condition

This is an expression of mass conservation at a boundary. If the velocity of the bound-
ary isuA, the condition for no mass flux is

ρ
(
u(x, t)− uA(x, t)

)
· nδAδt = 0,

which gives thatu · n = uA · n. For a fixed surface,uA = 0, so the surface is a
streamline.

1.6 Incompressible Fluids

For this course, we restrict ourselves to fluids withρ = const. Mass conservation
reduces to∇ · u = 0. Such a velocity fieldu is said to be solenoidal.

1.7 Streamfunctions

This gives a representation of the flow satisfying∇·u = 0 automatically. For example,
in 2D Cartesians, any velocity fieldu = (u, v, 0) is solenoidal if there existsψ(x, y, t)
such thatu = ∂ψ

∂y andv = −∂ψ
∂x .

In 2D polars, we wantψ such thatur = 1
r
∂ψ
∂θ anduθ = −∂ψ

∂r .
In axisymmetric cylindrical polars, we wantΨ such thatuz = 1

r
∂Ψ
∂r andur =

− 1
r
∂Ψ
∂z . Ψ is called a Stokes streamfunction.
In axisymmetric spherical polars, we wantΨ such thatur = 1

r2 sin θ
∂Ψ
∂θ anduθ =

−1
r sin θ

∂Ψ
∂r .
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Chapter 2

Dynamics

2.1 Surface and volume forces

Two types of force are considered to act on a fluid: those proportional to volume (e.g.
gravity) and those proportional to area (e.g. pressure). This is a simplification appro-
priate to the continuum level description — e.g. surface forces in a gas are the average
result of many molecules transferring momentum by collision with other molecules
over the very short distance of the mean free path.

Volume forces

We denote the force on a small volume elementδV by FV (x, t)δV . The volume force
is often conservative, with a potential energy per unit volumeχ, so thatFV = −∇χ
(or potential energy per unit massΦ, so thatFV = −ρ∇χ.

The most common case is

FV (x, t)δV = ρgδV.

Surface forces

We denote the force on a small surface elementnδA byFA(x, t,n)δA, which depends
on the orientationn of the surface element. A full description of surface forces includes
the effects of friction of layers of water sliding over each other or over rigid boundaries
(viscosity).

Viscous effects are important when theReynolds number

UL

ν
≤ 1,

whereU is a typical velocity,L a typical length andν is the dynamic viscosity, which
is a property of the fluid.

In many cases fluids act as nearly frictionless and in this course we neglect frictional
forces completely. For a treatment of viscous fluids see the Fluid Dynamics 2 course
in Part IIB.

For inviscid (frictionless) fluids the surface force is simply perpendicular to the
surface with a magnitude independent of orientation:

5



6 CHAPTER 2. DYNAMICS

FA(x, t)δA = −p(x, t)nδA,

wherep is the pressure. The minus sign is so that pressure is positive.

2.2 Momentum Equation

Consider an arbitrary (at least smooth – this is applied maths) volumeV , fixed in space
with bounding surfaceA and outward normaln. The momentum insideV is∫

V

ρudV,

and the momentum changes due to the flow over the boundary, surface forces and
volume forces, so

d
dt

∫
V

ρudV = −
∫
A

ρu(u · n) dA+
∫
A

−pndA+
∫
V

FV dV, (2.1)

which is the momentum integral equation. Written in component form

d
dt

∫
V

ρui dV = −
∫
A

ρuiujnj dA+
∫
A

−pni dA+
∫
V

FVi dV

ρuiuj is called the momentum flux tensor.
V is fixed, so LHS is

∫
V
∂ρui

∂t dV , and using the divergence theorem on the RHS,
then lettingV be arbitrarily small, we achieve the Euler momentum equation

ρ

(
∂u
∂t

+ (u · ∇)u
)

= −∇p+ FV . (2.2)

The associated dynamic boundary condition is that given forces are applied at the
boundary (i.e.p is given).

2.2.1 Applications of integral form

Uncoiling of hosepipes

Assume a steady uniform flowU through a pipe of constant cross-sectionA. Neglect
gravity. Now (2.1) becomes∫

walls
+

∫
ends

(ρu(u · n) + pn) dA = 0.
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The integral over the walls is∫
walls

pndA = force on pipe,

sinceu · n = 0 on the walls. The integral over the ends is

(ρU2 + p)A(2− 1)

and so the force on the pipe isF = (ρU2 + p)A(1− 2).

Pressure change at abrupt junction

Apply a momentum balance to the sketched shape. Neglect gravity, and also neglect
the time derivative, which is zero on average.

The momentum integral equation (2.1) becomes∫
(ρu(u · n) + pn) dA = 0.

The horizontal component gives

ρu2
1A1 + p1A1 = ρu2

2A2 + p2A2,

and mass conservation givesu1A1 = u2A2. Then we see that

p2 − p1 = ρu2
1

A1

A2

(
1− A1

A2

)
> 0.

2.3 Bernoulli’s Theorem

For a steady flow (∂u∂t = 0) with potential forces (FV = −∇χ),

ρ (u · ∇)u = −∇(p+ χ),
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which can be written

ρ

(
1
2
∇u2 − u ∧ (∇∧ u)

)
= −∇(p+ χ). (2.3)

We define thevorticity ω = ∇ ∧ u and then letH = 1
2ρu

2 + p + χ. Then
∇H = ρu∧ω. Nowu · ∇H = 0, soH is constant on streamlines. This is Bernoulli’s
theorem.

Note also thatω · ∇H = 0 and thatH is constant on vortex lines.
The constancy ofH means thatp is low at high speeds.

2.3.1 Application

Consider a water jet hitting an inclined plane.

Neglect gravity, so that on the surface streamlinep = pa the speed is constant. Let
this speed beU .

Now apply the momentum integral equation (2.1) to get∫
A

ρuu · n + (p− pa) · ndA = 0.

Now u · n = 0 except at the ends. Mass conservation gives

ρaU = ρa1U + ρa2U.

Now balance the momentum parallel to the wall to get

ρaU2 cosβ = ρa2U
2 − ρa1U

2.

Thus

a1 =
1 + cosβ

2
a and a2 =

1− cosβ
2

a.

Balancing the momentum perpendicular to the wall we getF = ρaU2 sinβ.

2.4 Vorticity and Circulation

2.4.1 Vorticity Equation

Start with the Euler momentum equation (2.2) with potential forces

ρ

(
∂u
∂t

+ (u · ∇)u
)

= −∇(p+ χ)
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and take its curl to obtain

∂ω

∂t
= (ω · ∇)u− (u · ∇) ω + u∇ · ω − ω∇ · u.

Now∇ · u = 0 and∇ · ω = 0, so we obtain

∂ω

∂t
= (ω · ∇)u− (u · ∇)ω

or
Dω

Dt
= (ω · ∇)u. (2.4)

2.4.2 Interpretation of vorticity

Consider a material line element (ie a line element moving with the fluid). Then in a
time δt, δl → δl + (δl · ∇)uδt, which gives that∂δl∂t = (δl · ∇)u. Hence the tensor
∂ui

∂xj
determines the local rate of deformation of line elements.

∂ui
∂xj

=
1
2

(
∂ui
∂xj

+
∂xj
∂ui

)
+

1
2

(
∂ui
∂xj

− ∂xj
∂ui

)
= eij +

1
2
εjikωk.

The local motion due toeij is called the strain. The motion due to the second term
1
2εjikωkδlj = 1

2 (ω ∧ δl) is rotation with angular velocity12ω.

2.4.3 Ballerina effect and vortex line stretching

The vorticity equation (2.4) can be interpreted as saying that vorticity changes just like
the rotation and stretching of material line elements. This is just the conservation of
angular momentum.

Consider a rotating fluid cylinder, initially with angular velocityω1, radiusa1 and
length l1. Conservation of mass givesa2

1l1 = a2
2l2 and conservation of angular mo-

mentum givesa4
1l1ω1 = a4

2l2ω2. These combine to give

ω1

ω2
=
l1
l2
,

which says that vorticity increases as the fluid is stretched. This explains the bathtub
vortex.

2.4.4 Kelvin’s Circulation Theorem

Assumeρ constant andFV = −∇χ. Define the circulationC(t) around a closed
material curveΓ(t) by

C(t) =
∮

Γ(t)

u(x, t) · dl.

Then
∂C(t)
∂t

=
∮

Γ(t)

Du
Dt

· dl + u · d
dt

dl
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sinceΓ moves with the fluid. But from the momentum equationDu
Dt = −∇p+χ

ρ and
d
dtdl = (dl · ∇)u. Hence

∂C(t)
∂t

=
∮

Γ(t)

(
∇

(
1
2
u2 − p+ χ

ρ

))
· dl

= 0 sinceΓ is closed

So, for an inviscid fluid of constant density with potential forces, the circulation
around a closed material curve is constant.

2.4.5 Irrotational flow remains so

A flow with ω = 0 is said to be irrotational. Ifω = 0 everywhere att = 0, then the
vorticity equation (2.4) becomesDω

Dt = 0, implying thatω = 0 for all timest ≥ 0.
This isn’t quite true, vorticity can leave a stagnation point, especially at sharp trail-

ing edges.



Chapter 3

Irrotational Flows

You will want to find a table of vector differential operators in various co-ordinate
systems. There is one in the back of Acheson.

3.1 Velocity potential

The vorticity equation tells us that an initially irrotational flow remains so for all time.
Since∇∧u = 0 for all time there exists a velocity potentialφ(x, t) such thatu = ∇φ.
Note both the+ sign and that any functionf(t) can be added toφ. Givenu, we can
find φ from

φ =
∫ x

x0

u(x, t) · dl.

The result is independent of path since∇∧ u = 0. Note thatφ can be multivalued
in 2D if there are holes with ∮

hole
u · dl 6= 0.

Mass conservation for an incompressible fluid reduces to·φ = 0, and so ifu = ∇φ
we have to solve∇2φ = 0.1

The kinematic boundary conditionuA · n = u · n is

uA · n = n · ∇φ ≡ ∂φ

∂n
.

Thus solving the Euler momentum equation (2.2) reduces to solving the more fa-
miliar Laplace’s equation with Neumann boundary conditions. The flow is only non-
zero because of the applied boundary conditions on∂φ

∂n (on bodies, surfaces and at
infinity).

3.2 Some simple solutions

For simple geometries it is often possible to write down solutions of∇2φ = 0 as a
sum of separable solutions in suitable co-ordinate systems. See the Methods course for
details.

1Hence irrotational flows are sometimes called potential or harmonic flows.

11
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Cartesians

• φ = U · x givesu = U. This is uniform flow with velocityU (e.g. flow in a
straight pipe).

• φ = (e±kz or cosh kz or sinh kz) × (e±ıkx or cos kx or sin kx) gives a flow
which is periodic inx (e.g. waves).

Spherical polars

The general axisymmetric solution of∇2φ = 0 in spherical polars is

φ =
∑
n≥0

(
Anr

n +Bnr
−n−1

)
Pn(cos θ),

where thePn are the Legendre polynomials. We will only use the first few modes.

• φ = − m
4πr givesu = m

4π
r̂
r2 . This is a radial flow. The total outflow over a sphere

of radiusR is 4πR2ur = m, which is independent ofR by mass conservation.
This is apoint sourceof strengthm. (If m < 0 it is apoint sink.)

• φ = Ur cos θ ≡ Uz gives uniform flow again.

• φ ∝ r−2 cos θ givesdipole flow.

Plane polars

The general solution of∇2φ = 0 in plane polars is

φ = K +A0 log r +B0θ +
∑
n≥1

(
Anr

n +Bnr
−n) eınθ.

We again use only the first few modes.

• φ = m
2π log r givesu = m

2π
r̂
r . This is a radial flow, a line source of strengthm.

• φ = κθ
2π givesu = κ

2π
θ̂
r . The circulation about a circle of radiusR is κ, which is

independent ofR by∇∧ u = 0. This is aline vortexof circulationκ.

• φ ∝ r−1 cos θ is a 2D dipole.

• φ ∝ r2 cos θ ≡ x2 − y2 is a 2D straining flow.

3.3 Applications

3.3.1 Uniform flow past a sphere

Consider a hard sphere of radiusa in a fluid having a uniform velocityU at infinity.
We have to solve the equations

∇2φ = 0 in r > a,

∂φ

∂r
= 0 at r = a,

andφ ∼ Ur cos θ asr →∞.
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We can satisfy the Laplace equation and boundary condition at infinity with

φ = U cos θ
(
r +

B

r2

)
.

The boundary condition atr = a yieldsB = a3

2 . Thus

u =
(
U cos θ

(
1− a3

r3

)
,−U sin θ

(
1 +

a3

2r3

)
, 0

)
in spherical polars(r, θ, φ).

3.3.2 Uniform flow past a cylinder

Consider a hard cylinder of radiusa in a fluid with a uniform velocityU at infinity and
with a circulationκ.

We have to solve

∇2φ = 0 in r > a,

∂φ

∂r
= 0 at r = a,

andφ ∼ Ur cos θ asr →∞.
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We further need ∮
r=a

u · dl = κ = [φ]r=a

to obtain a unique solution. These conditions give

φ = U cos θ
(
r +

a2

r

)
+
κθ

2π
.

In plane polars(r, θ), we therefore have

u =
(
U cos θ

(
1− a2

r2

)
,−U sin θ

(
1 +

a2

r2

)
+

κ

2πr

)
.

3.4 The pressure in irrotational potential flow with po-
tential forces

The momentum and vorticity equations (2.2, 2.4) become

ρ

(
∂∇φ
∂t

+ (u · ∇)u
)

= −∇ (p+ χ)

and

(u · ∇)u = ∇
(

1
2
u2

)
respectively, and these combine to give

∇
(
ρ
∂φ

∂t
+

1
2
ρu2 + p+ χ

)
= 0,

which integrates to give

ρ
∂φ

∂t
+

1
2
ρu2 + p+ χ = f(t) independent ofx. (3.1)

Application

We can apply this theory to the free oscillations of a manometer. We need to calculate

φ(x, t) =
∫ x

x0

u · dl.
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Let s be the arc length from the bottom, with the equilibrium points ats = −l1, l2.
From mass conservation the flow is uniform, so thatu = ḣ everywhere. Therefore
φ = ḣs, and so

∂φ

∂t

∣∣∣∣
x

= ḧs.

At the interfaces the pressure is constant. Using the equation for potential flow
(3.1) we get

ρ(−l1 + h)ḧ+ 1
2ρḣ

2 + pa − ρgh sinα = ρ(l2 + h) + 1
2ρḣ

2 + pa + ρgh sinβ.

This simplifies to give

ḧ =
g(sinα+ sinβ)

l1 + l2
h,

and so we have SHM (even for large oscillations).

3.5 Bubbles

3.5.1 General theory for spherically symmetric motion

The pressure isp(r, t), and the far-field pressure isp(∞, t). We have radial motion,
u ∝ 1

r2 . If the radius of the bubble isa(t), thenȧ = ur at r = a, which gives that

u = r̂
r2 ȧa

2 = ∇φ. Soφ = − ȧa2

r and ∂φ
∂t

∣∣∣
r

= − äa2+2ȧ2a
r . Putting all this together

gives

−ρ äa
2 + 2ȧ2a

r
+
ρ

2
ȧ2a4

r4
+ p(r, t) = p(∞, t).

At r = a

−ρäa− 3
2
ρȧ2 = p(∞, t)− p(a, t),

or
d
dt

(
1
2
ρa3ȧ2

)
= a2ȧ (p(a, t)− p(∞, t)) .

This can be interpreted as “rate of change of kinetic energy equals rate of working by
pressure forces”.

Another rewrite gives

p(r, t)− p(∞, t) = (p(a, t)− p(∞, t))
a

r
+

1
2
ȧ2

(
a

r
− a4

r4

)

3.5.2 Small oscillations of a gas bubble

Assumea(t) = a0 + δa(t) and thatδa(t) is small,p∞ is constant in time and that the
gas in the bubble has pressure such thatδpgas = −γp∞ 3δa

a0
(**which can be obtained

from PV γ constant for ideal adiabatic gas**). Neglect surface tension. Linearising

−ρäa− 3
2
ρȧ2 = p(∞, t)− p(a, t)

abouta = a0 andȧ = 0 we obtain

−ρa0δ̈a =
3γp∞δa
a0

,

which is SHM withω =
(

3γp∞
ρa2

o

) 1
2
.
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3.5.3 Total collapse of a void

Bernoulli implies that the pressure decreases as the speed increases. If this makes the
pressure negative, then the liquid will break to form a void filled only with vapour. This
has important consequences for valves and propellors (cavitation).

Consider a spherical void (iep(a, t) = 0) at rest witha = a0 andȧ = 0 at t = 0
with a constant background pressurep∞. Now

d
dt

(
1
2
ρa3ȧ2

)
= a2ȧ (p(a, t)− p(∞, t)) ,

so
1
2
ρa3ȧ2 =

1
3
p∞

(
a3
0 − a3

)
.

Integrate this again (numerically!), to get

tcollapse= 0.92
(
ρa2

0

p∞

) 1
2

.

3.6 Translating sphere & inertial reaction to accelera-
tion

3.6.1 Steady motion

Use the inertial frame moving steadily with the sphere. It was shown in§3.3.1 that
uniform flow past a fixed sphere has

φ = U cos θ
(
r +

a3

2r2

)
and

u =
(
U cos θ

(
1− a3

r3

)
,−U sin θ

(
1 +

a3

2r3

)
, 0,

)
.

Hence atr = a, |u| = 3
2U sin θ. Potential flow means we can apply

ρ
∂φ

∂t
+

1
2
ρu2 + p+ χ independent ofx,

with ∂φ
∂t = 0 (since steady motion) to comparer = a andr = ∞. This gives

p(a, θ) = p∞ +
1
2
ρU2

(
1− 9

4
sin2 θ

)
.

This pressure distribution is symmetric fore and aft and around the equator, so
no force is exerted on a steadily moving sphere (**or indeed any 3D body**). This
surprising result is called D’Alembert’s paradox.

3.6.2 ** Effects of friction **

D’Alembert’s paradox can be understood only by analogy with Newtonian dynamics:
in the absence of friction forces are needed only for acceleration and not for uniform
motion.
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This potential flow result is a good approximation for bubbles in steady motion,
because they have slippery surfaces. It is a bad approximation for rigid spheres in
steady motion. What is observed in experiments isseparationand awake.

The small amount of friction produces a thin layer of fluid next to the rigid surface
that is slowed down from the potential flow. This thinboundary layeris sensitive to the
slowing down of the surrounding potential flow from the equator to the rear stagnation
point, and detaches from the sphere into the body of the fluid to produce a shear layer
of concentrated vorticity (this is calledseparation). Separation also occurs behind
other bluff bodies in steady translation but can be suppressed to a certain extent behind
streamlined/tapered bodies. Boundary layers are covered in more detail in Part IIB and
Part III courses.

We can estimate the drag force as proportional to the projected area (A) times the
pressure difference: applying Bernoulli gives

drag force= 1
2CDρU

2A,

whereCD is a dimensionless coefficient that must be measured experimentally (0.4 for
a sphere, 1.1 for a disc, 1.0 for a cylinder).

3.6.3 Accelerating spheres

Potential flow is useful for slippery bubbles, rapid accelerations of small (rigid) parti-
cles and small oscillations.

For the accelerating sphere, it is best to have the fluid at∞ at rest. Consider a
sphere of radiusa and centrex0(t) and velocityu(t) = ẋ0(t). The velocity potential
problem is then

∇2φ = 0 in r ≥ a,

φ→ 0 asr →∞,

∂φ

∂r

∣∣∣∣
t

= u(t) · n on r = a.

with solution

φ = −U cos θa3

2r2

= −u · (x− x0(t)) a3

2 |x− x0(t)|3

To calculate the force, we need

∂φ

∂t

∣∣∣∣
r

=
−u̇ · ra3

2r3
+ u · (terms linear inẋ0) .
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Now ∇φ = terms linear inu. These linear terms must be the same as for steady
motion. Hence the pressure on the sphere isp = p∞ + ρ u̇·r

2 + 1
2ρU

2
(
1− 9

4 sin2 θ
)
.

The force on the sphere is given by∫
r=a

−pndA = −ρ
2

∫
r=a

(u̇ · r) r
a

dA

Now by the isotropy of the sphere,
∫
r=a

rirj dA = 4πa4

3 δij , so

F = −1
2
ρu̇

4πa4

3
1
a

= −m∗u̇

wherem∗ = 1
2ρfluid

4πa3

3 , the added (or effective or virtual) mass.

3.6.4 Kinetic Energy

The kinetic energy of fluid motion in a volumeV is

T =
∫
V

1
2
ρu2 dV

=
ρ

2

∫
V

(∇φ)2 dV

=
ρ

2

∫
V

∇ · (φ∇φ)− φ∇2φdV

=
ρ

2

∫
S

φ (∇φ) · dS

=
∫
S

ρ

2
φ (n · ∇)φdS

For the translating sphere we getT = 1
2m

∗U2.

3.7 Translating cylinders with circulation

The potential for flow past a uniform cylinder with circulationκ is

φ = U cos θ
(
r +

a2

r

)
+
κθ

2π
,

with

u =
(
U cos θ

(
1− a2

r2

)
,−U sin θ

(
1 +

a2

r2

)
+

κ

2πr

)
.

On r = a, |u| = −2 sin θU + κ
2πa , thus

p(a, θ) = p∞ +
1
2
ρ

(
U2 −

( κ

2πa
− 2U sin θ

)2
)

and so (by doing the integral),F = (0,−ρUκ) (in Cartesians). This is a lift force
perpendicular to the velocity. The same lift force applies to arbitrary aerofoils (at least
to the first approximation).
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3.7.1 ** Generation of circulation **

In order to calculate the lift on an aerofoil we thus need to know the circulationκ.
Potential flow without circulation would have very large velocities around the sharp
trailing edge.

This is strongly opposed by friction, and the flow avoids these high velocities by
shedding an eddy as the aerofoil starts to move. This eddy is of such a size as to
streamline the flow on the aerofoil.

The circulation aroundC1 + C2 is initially zero and so remains zero at all times
(by Kelvin’s theorem). Hence the circulation around the aerofoil (thebound vortex) is
equal in magnitude to the circulation in the shedstarting vortex(but opposite in sign).
The strength is chosen to avoid a singularity at the sharp trailing edge, a condition
which givesκ ≈ πlU sinα, providedα < 14◦. Forα > 14◦ the flow separates and
the aerofoil stalls.2

Since∇ · ω = 0 vortex lines cannot end in the fluid, and in fact the bound vortex
on the wing is connected to the starting vortex by two vortices shed from the wingtips.
These are responsible for the observed vapour trails.

2See Fluids IIB or Acheson for more details.
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3.8 More solutions to Laplace’s equation

3.8.1 Image vortices and 2D vortex dynamics

Recall that a single line vortex has

φ =
κθ

2π
, with u =

κ

2πr
(−y, x).

Since the potential flow equations are linear we can superpose solutions.

This configuration would give

φ =
∑
i

κiθi
2π

.

This gives us a new method of finding solutions in “nice” geometries. For instance,
consider a vortex near a plane wall as shown.

The velocity field is the same as if there was animage vortexof opposite strength
so that normal velocities cancel. This image produces a velocityκ

4πd at the real vortex,
and so the vortex trundles along parallel to the wall as shown.
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Application to dispersal of wingtip vortices

We have vortices at(±x0(t), y0(t)) and so we need to add images at(±x0(t),−y0(t)).
Now

ẋ0 =
κ

4π
x2

0

y0(x2
0 + y2

0)
and ẏ0 = − κ

4π
y2
0

x0(x2
0 + y2

0)
.

This givesdy0
dx0

= − y3
0
x3
0
, or

1
x2

0

+
1
y2
0

= C.

3.8.2 Flow in corners

We useφ = rµ sinµθ, which satisifies

∂φ

∂θ
= 0 onθ = ± π

2µ
.

Now |u| ∝ rµ−1, and so there are infinite velocities asr → 0 if µ < 1. The effect
of friction here is to introduce a circulation.
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Chapter 4

Free Surface Flows

4.1 Governing equations

The flow is assumed to start from rest and is thus irrotational (and remains so). Let the
free surface be atζ(x, y, t), |ζ| sufficiently small for nice things to happen. So

∇2φ = 0 ζ ≥ z ≥ −h,

ρ
∂φ

∂t
+

1
2
ρ |∇φ|2 + p+ ρgz = f(t),

p = pair atz = ζ,

∂ζ

∂t
+
∂ζ

∂x

∂φ

∂x

∣∣∣∣
z=ζ

+
∂ζ

∂y

∂φ

∂y

∣∣∣∣
z=ζ

=
∂φ

∂z

∣∣∣∣
z=ζ

,

∂φ

∂z

∣∣∣∣
z=−h

= 0.

We will restrict to the 1-D case but even so, to have any hope of solving this we
have to linearise it.

1. Throw out the nonlinear terms.

2. Evaluate atz = ζ using information atz = 0.

3. Throw out new nonlinear terms.

∇2φ = 0 0 ≥ z ≥ −h,

ρ
∂φ

∂t

∣∣∣∣
z=0

+ ρgζ = f(t),

p = pair atz = ζ,

∂ζ

∂t
=
∂φ

∂z

∣∣∣∣
z=0

,

∂φ

∂z

∣∣∣∣
z=−h

= 0.

23
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We seek separable solutions and obtainφ(x, z, t) = A cosh k (z + h) ei(kx−ωt).
Using the dynamic boundary conditionρ ∂φ

∂t

∣∣∣
z=0

+ ρgζ = f(t), we obtain the disper-

sion relation
ω2 = gk tanh kh.

In deep water,h� 1
k , sotanh kh ≈ 1, givingω2 = kh andc =

√
g
k

1. In shallow
water,tanh kh ≈ kh giving ω = k

√
gh andc =

√
gh.

4.1.1 Particle paths under a wave

By linearising, we get that

x(t) = x0 −
ia cosh k (z0 + h)

sinh kh
ei(kx0−ωt)

z(t) = z0 +
a sinh k (z0 + h)

sinh kh
ei(kx0−ωt),

which is elliptic motion.x0 andz0 are the mean positions of the particles in the
(x, z) plane.

In the deep water limit we get circular motion and in the shallow water limit we get
mainly horizontal motion.

4.2 Standing Waves

Consider waves in a deep rectangular box,0 ≤ x ≤ a, 0 ≤ y ≤ b andz ≤ 0. Look for
linearised waves with displacementζ(x, y, t). Try separable solutions to obtain

φ(x, y, z, t) = A cos
mπx

s
cos

nπy

b
ekze−iωt.

The Laplace equation determinesk fromm andn by

k2 = π2

(
m2

a2
+
n2

b2

)
,

and the dynamic boundary conditions determineω2 = gk. This is to be expected, since
a standing wave is the sum of progressive waves.

4.2.1 Rayleigh-Taylor instability

Turn the box in the previous section upside down (or equivalently replaceg with −g).
This makesω imaginary, leading to ae

√
gkt term, which quickly magnifies any devia-

tions fromζ = 0. The largest growth rate is for largek, but this is cancelled by surface
tension in the real world.

4.3 River Flows

These are nonlinear problems, but can be solved since the shallowness of the river in
comparision to its length means that the flow is nearly unidirectional.

1The wave speed...
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4.3.1 Steady flow over a bump

What happens to the free surface at the bump?
We assume that

• the river has vertical sides and constant width;

• it varies only slowly in thex direction, so that the flow is (to a good approxima-
tion) horizontal and uniform across any vertical section (since∂u

∂z = ωy = 0);

• the flow is steady;

• far from the bump (x→ ±∞), ζ → 0, h→ h∞ andU → U∞.

Then mass conservation gives

U(ζ + h) = U∞h∞, (4.1)

whilst applying Bernoulli’s equation (2.3) to the surface streamline gives

1
2
ρU2 + patm + ρgζ =

1
2
ρU2

∞ + patm. (4.2)

Now eliminateζ between (4.1) and (4.2) to obtain

1
2
U2 +

gU∞h∞
U

=
1
2
U2
∞ + gh. (4.3)

We can now extract information from (4.3) graphically.

There are thus two roots and three possibilities.

• If the bump is too big then the assumption of steady/slowly varying flow must
fail. This gives a hydraulic jump — see§4.3.3.
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• If the bump is just right then the flow can pass smoothly from one root the other
(e.g. flow over a weir in§4.3.2).

• If the bump is not too large then the flow stays on the same root. This has two
subcases.

– On the left hand root:U∞ <
√
gh∞ — flow slower than shallow water

waves — we have

bump up⇒ h ↓⇒ RHS↓⇒ u ↑⇒ ζ ↓ .

i.e. slow deep flow converts PE to KE to maintain the mass flux.

– On the right hand root:U∞ >
√
gh∞ — flow faster than shallow water

waves — we have

bump up⇒ h ↓⇒ RHS↓⇒ u ↓⇒ ζ ↑ .

i.e. fast shallow flow converts KE to PE to maintain the mass flux.

Normal rivers are in the slow deep state.

4.3.2 Flow out of a lake over a broad weir

This is the same as§4.3.1 but with a smooth change of branch. We need the bump “just
right”.

How fast is the outflow as a function of the minimum ofh(x)?
The lake is large and deep, so we take the limith∞ →∞,U∞ → 0 with U∞h∞ =

Q fixed. Mass conservation gives

U(ζ + h) = Q

and Bernoulli on the surface streamline gives

1
2
U2 + gζ = 0.

Eliminatingζ as before gives

1
2
U2 +

gQ

U
= gh(x), (4.4)

which is a cubic for unknownU(x) givenh(x).
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The flow starts high on the LH branch in the lake, but comes out of the weir high
on the RH branch. The minimum ofh(x) (the crest of the weir) must be at the join of
the branches, and so

Q =
(

8
27
gh3

min

) 1
2

,

giving the flow rate as a function of the height of the weir.

At the crest of the weir,U =
(

2
3gh

3
min

) 1
2 and mass conservation gives

ζcrest = −1
3
hmin

and the fluid depth is23hmin. Also, U2
crest = g(fluid depth)crest, so that the flow is

travelling at the speed of shallow water waves at the crest. There can therefore be no
communication from after the weir back to the lake.

4.3.3 Hydraulic jumps

GivenU1 andh1 from river data andh2 from tidal theory can we predict the speedV
of the jump (and the flowU2)?

The energy loss in the turbulent jump makes Bernoulli inapplicable (friction is im-
portant in the small-scale unsteady motions). However the flat-bottomed case provides
an application of the momentum integral equation.

Change to a frame moving with the jump. Away from the jump there is no vertical
acceleration and so the pressure is hydrostatic there.

Taking the horizontal component of
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d
dt

∫
V

ρudV = −
∫
A

(ρu(u · n) + pn) dA+
∫
V

FV dV,

and noting that the flow is steady on average we obtain (from the area integral)

ρ(V + U1)2h1 + (pah1 +
1
2
ρgh2

1) + pa(h2 − h1)

= ρ(V − U2)2h2 + (pah2 +
1
2
ρgh2

2),

which boils down to

(V + U1)2h1 − (V − U2)2h2 =
1
2
g(h2

2 − h2
1).

Mass conservation gives(V + U1)h1 = (V − U2)h2, and eliminatingV − U2

between these equations gives (eventually)

(V + U1)2 =
g(h1 + h2)h2

2h1
.

We can solve this forV and then solve

(V − U2)2 =
g(h1 + h2)h1

2h2

for U2.
Note that ifh2 > h1 thenV − U2 <

√
gh2 andV + U1 >

√
gh1 — the jump

travels faster than shallow water waves on the river side and overtakes all information
of its future arrival.



References

◦ D.J. Acheson,Elementary Fluid Dynamics, OUP, 1990.

This is an excellent book, easy to read and with everything in. It is also good for Fluids
IIB. Highly recommended.

◦ G.K. Batchelor,An Introduction to Fluid Dynamics, CUP, 1967.

The lecturer recommended this, and it is a reasonably good book for Fluids IIB. Per-
sonally I think you’d be wrong in your head to buy it for this course, but YMMV.

◦ M. van Dyke,An Album of Fluid Motion, The Parabolic Press, 1982.

Lots of pictures of flows. An excellent book. Go out and buy it. Now.

Related courses

In Part IIA there are courses onTransport ProcessesandTheoretical Geophysics. The
IIB fluids courses areFluid Dynamics 2andWaves in Fluid and Solid Media, both of
which use the material in this course to some extent.

29


	Introduction
	Kinematics
	Continuum Fields
	Flow Visualization
	Material Derivative
	Conservation of Mass
	Kinematic Boundary Condition
	Incompressible Fluids
	Streamfunctions

	Dynamics
	Surface and volume forces
	Momentum Equation
	Applications of integral form

	Bernoulli's Theorem
	Application

	Vorticity and Circulation
	Vorticity Equation
	Interpretation of vorticity
	Ballerina effect and vortex line stretching
	Kelvin's Circulation Theorem
	Irrotational flow remains so


	Irrotational Flows
	Velocity potential
	Some simple solutions
	Applications
	Uniform flow past a sphere
	Uniform flow past a cylinder

	Pressure in irrotational flow
	Bubbles
	General theory for spherically symmetric motion
	Small oscillations of a gas bubble
	Total collapse of a void

	Translating Sphere
	Steady motion
	Effects of friction
	Accelerating spheres
	Kinetic Energy

	Translating cylinders with circulation
	Generation of circulation

	More solutions to Laplace's equation
	Image vortices and 2D vortex dynamics
	Flow in corners


	Free Surface Flows
	Governing equations
	Particle paths under a wave

	Standing Waves
	Rayleigh-Taylor instability

	River Flows
	Steady flow over a bump
	Flow out of a lake over a broad weir
	Hydraulic jumps



