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Introduction

These notes are based on the course “Fluid Dynamics” given by Dr. J.R. Lister in
Cambridge in the Michaelmas Term 1996. These typeset notes are totally unconnected

with Dr. Lister.
Other sets of notes are available for different courses. At the time of typing these

courses were:

Probability Discrete Mathematics
Analysis Further Analysis
Methods Quantum Mechanics
Fluid Dynamics 1 Quadratic Mathematics
Geometry Dynamics of D.E.’s

Foundations of QM Electrodynamics
Methods of Math. Phys Fluid Dynamics 2

Waves (etc.) Statistical Physics
General Relativity Dynamical Systems
Combinatorics Bifurcations in Nonlinear Convection

They may be downloaded from

http://www.istari.ucam.org/maths/


http://www.istari.ucam.org/maths/
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Chapter 1

Kinematics

1.1 Continuum Fields

Everyday experience suggests that at a macroscopic scale, liquids and gases look like
smooth continua with densify(x, t), velocity u(x, t) and pressurg(x, t) fields.

Since fluids are made of molecules this is of course only an approximate descrip-
tion. On large lengthscales we can define these fields by averaging over a Mdlume
smaller than the scale of interest but large enough to contain many molecules. The
effect of this averaging is to exchange an enormous number of ODESs that describe the
motion of each molecule for a few PDESs that describe the averaged fields.

This continuum approximatiois not always appropriate. For instance the veloc-
ity structure about a spacecraft during re-entry has a lengthscale comparable with the
molecular mean free path. Similarly, blood flow in capillaries must take the red blood
cells into account.

1.2 Flow Visualization

There are many experimental techniques for obtaining a description of the velocity field
u(x,t). Three simple visualisation techniques give rise to the ideagreamlines
pathlinesandstreaklines We will illustrate these ideas by application to the simple
two-dimensional example(x,t) = (¢,y).

Streamlinesre curves that are everywhere parallel to the instantaneous flow. They
are visualised experimentally by the short-time exposure of many brightly-lit particles
— the streamlines are obtained by joining the resulting short segments in a manner
analogous to obtaining magnetic fields from iron filings.

Mathematically, a streamline is a cursés; x,t) at a given fixed time with s
varying along the curve and passing through a given pgjrihat satisfies

0
87)5( =u(x,t) x(0; zg,t) = xg.

For our example we have

x(s;%x0,t) = a0 + ts y(s;%0,t) = yoe®.
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This gives the curve

Pathlinesare particle paths: paths traversed by particles moving with the flow. They
are visualised experimentally by the long-time exposure of a few brightly-lit particles.
Mathematically, a pathline is a curegt; xo,to) corresponding to a particle re-

leased fromx = xg att = ty. The differential equation is

0x
— =u(x,t x(to; to) = Xo.
ot ( ) ) (0,1’0, 0) 0
Our example gives
2 — 13
2

to

x(t;Xo,t0) = To + y(t;xo,t0) = yoe'~

For a particle released &f = 0 this gives a curve
y = yoeV2r7r0),

Streaklinesgive the position at some fixed time of dye released over a range of
previous times from a fixed source (e.g. an oil spill).

Mathematically, a streakline is a cursgto; x, t) with ¢, varying along the curve
and a fixed observation tinte To obtain it, we still solve

0
87)16( = u(x,1) x(to; zo, to) = Xo,

but then fixt instead oft,. Suppose we observe our flowtat 0 — we can use
our previous solution to get a streakline

y = yoe "0 = yoe V),

Note that for this unsteady flow we get different results from each method of visu-
alisation. The different methods give the same result if the flow is steady.

1.3 Material Derivative

This is a rate of change “moving with the fluid”. For any quanfitythe rate of change
in that quantity seen by an observer moving with the fluid is the material or Lagrangian
derivative 2.

X + 0x,t + 6t) — F(x,1)
ot

F
=(x-V)F + &%ﬁ + smaller terms.

5F:F(

Hence
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1.4 Conservation of Mass

Consider an arbitrary (at least smooth — this is applied maths) volirfiged in space
with bounding surfacel and outward normah. The mass insid& is

M:/ pdV,
14

and the mass changes due to the flow over the boundary, so
oM = —/ pu-ndA.
ot A

Application of the divergence theorem gives

0
ldv+/ V- (pu)dV = 0.
v ot v
SinceV is arbitrarily small,
Ip
En +V-(pu) =0,
or rewritten using the material derivative
Dp

— V-u=0.
Dt+p u

1.5 Kinematic Boundary Condition

This is an expression of mass conservation at a boundary. If the velocity of the bound-
ary isu?, the condition for no mass flux is

p (u(x,t) —u?(x,t)) - nsAst = 0,

which gives thatu - n = u? - n. For a fixed surfaceu”® = 0, so the surface is a
streamline.

1.6 Incompressible Fluids

For this course, we restrict ourselves to fluids with= const. Mass conservation
reduces tdv - u = 0. Such a velocity fieldx is said to be solenoidal.

1.7 Streamfunctions

This gives a representation of the flow satisfyWigu = 0 automatically. For example,
in 2D Cartesians, any velocity field = (u, v, 0) is solenoidal if there existg(z, y, t)

such tha = 2% andv = — 22,
y s
In 2D polars, we wani such that,, = 1 2% anduy = —2%.

In axisymmetric cylindrical polars, we want such thatu, = %%—‘f andu, =

—%%—‘f. U s called a Stokes streamfunction.
1 ov

In axisymmetric spherical polars, we wabhtsuch thatu, = ———; 57 anduy =

-1 9w
rsinf Or '’




CHAPTER 1. KINEMATICS



Chapter 2

Dynamics

2.1 Surface and volume forces

Two types of force are considered to act on a fluid: those proportional to volume (e.g.
gravity) and those proportional to area (e.g. pressure). This is a simplification appro-
priate to the continuum level description — e.g. surface forces in a gas are the average
result of many molecules transferring momentum by collision with other molecules
over the very short distance of the mean free path.

Volume forces

We denote the force on a small volume elem&ritoy FV (x, t)6V. The volume force
is often conservative, with a potential energy per unit volumso thatF" = —Vy
(or potential energy per unit mags so thatF" = —pVy.

The most common case is

FY (x,t)6V = pgdV.

Surface forces

We denote the force on a small surface eleneint by F4(x, ¢, n)§ A, which depends
on the orientatiom of the surface element. A full description of surface forces includes
the effects of friction of layers of water sliding over each other or over rigid boundaries
(viscosity).

Viscous effects are important when tReynolds number

E S 17
v
whereU is a typical velocity,L a typical length and is the dynamic viscosity, which
is a property of the fluid.

In many cases fluids act as nearly frictionless and in this course we neglect frictional
forces completely. For a treatment of viscous fluids see the Fluid Dynamics 2 course
in Part I1B.

For inviscid (frictionless) fluids the surface force is simply perpendicular to the
surface with a magnitude independent of orientation:

5
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FA(x,t)0A = —p(x,t)ndA,

wherep is the pressure. The minus sign is so that pressure is positive.

2.2 Momentum Equation

Consider an arbitrary (at least smooth — this is applied maths) volirfiged in space
with bounding surfacel and outward normah. The momentum insid& is

/ pudV,
Vv

and the momentum changes due to the flow over the boundary, surface forces and
volume forces, so

g/ pudV:—/pu(u~n)dA+/ —pndA+/ FV av, (2.1)
dt Jy A A v

which is the momentum integral equation. Written in component form

d
— [ pu; dV = —/ PUUG T dA+/ —pn; dA+/ FiV dv
dt Jy A ‘ A %

pu;u; is called the momentum flux tensor.
V is fixed, so LHS isfv 9pui qy/ | and using the divergence theorem on the RHS,

ot
then lettingl” be arbitrarily small, we achieve the Euler momentum equation

p (%‘; +(u-V) u> = _-Vp+F". (2.2)

The associated dynamic boundary condition is that given forces are applied at the
boundary (i.ep is given).

2.2.1 Applications of integral form

Uncoiling of hosepipes

Assume a steady uniform floW through a pipe of constant cross-sectibnNeglect
gravity. Now [2.1) becomes

/ —|—/ (pu(u-n)+pn) dA =0.
walls ends
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The integral over the walls is

/ pndA = force on pipe,

walls

sinceu - n = 0 on the walls. The integral over the ends is
(pU? +p)A(2 - 1)

and so the force on the pipelis= (pU? + p)A(1 — 2).

Pressure change at abrupt junction

Apply a momentum balance to the sketched shape. Neglect gravity, and also neglect
the time derivative, which is zero on average.
The momentum integral equatidn (2.1) becomes

/(pu(u -n) +pn) dA =0.
The horizontal component gives

pui Ay + p1 A = pujzAs + paAo,

and mass conservation givegsA; = us A>. Then we see that

A A
2411 1

- = a— 1 - T .
P2 — P1 pu ) ( 2) >0

2.3 Bernoulli's Theorem

For a steady row%% = 0) with potential forcesEy = —Vy),

p(u-Viu=-V(p+x),
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which can be written
1
p(2v 2—uA(VAu)) =-V(p+x)- (2.3)

We define thevorticity w = V A u and then letH = %,ou2 +p+ x. Then
VH = puAw. Nowu-VH = 0, SOH is constant on streamlines. This is Bernoulli's
theorem.

Note also thatv - VH = 0 and thatH is constant on vortex lines.

The constancy off means thap is low at high speeds.

2.3.1 Application

Consider a water jet hitting an inclined plane.

Neglect gravity, so that on the surface streamfine p, the speed is constant. Let
this speed bé&/.
Now apply the momentum integral equatipn {2.1) to get

/puu-n—|—(p—pa)-ndA:0.
A

Now u - n = 0 except at the ends. Mass conservation gives
palU = pa1U + pasU.
Now balance the momentum parallel to the wall to get
palU? cos B = pasU? — pa,U>.
Thus

:1+;osﬂa and az:l—;osﬂ

Balancing the momentum perpendicular to the wall welget paU? sin 3.

al a.

2.4 \Vorticity and Circulation

2.4.1 Vorticity Equation
Start with the Euler momentum equati¢n {2.2) with potential forces

p<%‘;+(U~V)U> =-V(p+x)
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and take its curl to obtain

%—L::(w-V)u—(u-V)w—l—uV-w—wV-u.
Now V -u = 0andV - w = 0, so we obtain
%—‘;}:(w~V)uf(u~V)w
or D
w

2.4.2 Interpretation of vorticity

Consider a material line element (ie a line element moving with the fluid). Then in a
time dt, 81 — d1 + (61 - V) udt, which gives that% = (01- V) u. Hence the tensor
9u: determines the local rate of deformation of line elements.

Oz
Ou; 1 (0u; Oz 1 /0u; Ouxj
6.’Ej 2 8(Ej 8ui 2 8xj 8u2
1

= e + §€j,;kwk.

The local motion due te;; is called the strain. The motion due to the second term
s€jikwidl; = % (w A 1) is rotation with angular velocity w.

2.4.3 Ballerina effect and vortex line stretching

The vorticity equatior{(2]4) can be interpreted as saying that vorticity changes just like
the rotation and stretching of material line elements. This is just the conservation of
angular momentum.

Consider a rotating fluid cylinder, initially with angular velocity, radiusa; and
lengthl;. Conservation of mass give§l; = a3l and conservation of angular mo-
mentum givesi}l;w; = a3lows. These combine to give

wr  h

w2 B E’
which says that vorticity increases as the fluid is stretched. This explains the bathtub
vortex.

2.4.4 Kelvin's Circulation Theorem

Assumep constant and®¥’ = —Vy. Define the circulatiorC(¢) around a closed

material curvd’(t) by
C(t) = j{ u(x,t) - dl
r(t)

oC(t) Du d
i L7 Z——.d1 —dl
ot 7&) by Mg

Then
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sincel" moves with the fluid. But from the momentum equatigh = —V”*TX and
4dl = (dl- V)u. Hence

LO(t) = 7{ (V (1u2 _PptXx X)) -dl
ot T() 2 p
=0

sincel is closed

So, for an inviscid fluid of constant density with potential forces, the circulation
around a closed material curve is constant.

2.4.5 Irrotational flow remains so

A flow with w = 0 is said to be irrotational. & = 0 everywhere at = 0, then the
vorticity equation[(2.4) become%f‘;’ = 0, implying thatw = 0 for all timest > 0.

This isn't quite true, vorticity can leave a stagnation point, especially at sharp trail-
ing edges.



Chapter 3

Irrotational Flows

You will want to find a table of vector differential operators in various co-ordinate
systems. There is one in the back of Acheson.

3.1 Velocity potential

The vorticity equation tells us that an initially irrotational flow remains so for all time.
SinceV Au = 0 for all time there exists a velocity potentia(x, ¢) such thaun = V.
Note both thet sign and that any functioyi(¢) can be added t¢. Givenu, we can
find ¢ from

(b:/xxu(x,t)~dl.

The result is independent of path sirfée\ u = 0. Note thatp can be multivalued
in 2D if there are holes with
u-dl #£0.
hole
Mass conservation for an incompressible fluid reducesg te 0, and so ifu = V¢
we have to solva/2¢ = 0[]
The kinematic boundary condition® - n = u - nis
uA-n:n-ngi%.
on
Thus solving the Euler momentum equatipn [2.2) reduces to solving the more fa-
miliar Laplace’s equation with Neumann boundary conditions. The flow is only non-
zero because of the applied boundary conditionsggr(on bodies, surfaces and at

infinity).
3.2 Some simple solutions
For simple geometries it is often possible to write down solution¥&h = 0 as a

sum of separable solutions in suitable co-ordinate systems. See the Methods course for
detalils.

IHence irrotational flows are sometimes called potential or harmonic flows.

11
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Cartesians
e ¢ = U -xgivesu = U. This is uniform flow with velocityU (e.g. flow in a
straight pipe).
e ¢ = (et** or coshkz or sinh kz) x (e**** or cos kz or sin kz) gives a flow
which is periodic inx (e.g. waves).

Spherical polars
The general axisymmetric solution §%¢ = 0 in spherical polars is
o= Z (Anr" + Bnr_”_l) P, (cos@),
n>0
where theP, are the Legendre polynomials. We will only use the first few modes.

o ¢ = —- givesu = ﬁ}z. This is a radial flow. The total outflow over a sphere

~dnr
of radiusR is 47 R?u,. = m, which is independent aR by mass conservation.

This is apoint sourceof strengthm. (If m < 0 it is apoint sink)
e ¢ = Urcosf = Uz gives uniform flow again.

e ¢ x r~2cosd givesdipole flow

Plane polars
The general solution d72¢ = 0 in plane polars is
¢ =K+ Aglogr + Byf + Z (Anr” + Bnr_") emd.
n>1
We again use only the first few modes.

e ¢ = 5-logrgivesu = 5. Thisis a radial flow, a line source of strength

o )= % givesu = £ 8 The circulation about a circle of radiuis «, which is

2mr”

independent ol by V A u = 0. This is aline vortexof circulationx.

e ¢ ox r~!cosfisa2D dipole.

e ¢ xr?cos = x? — y? is a 2D straining flow.

3.3 Applications

3.3.1 Uniform flow past a sphere

Consider a hard sphere of radiu a fluid having a uniform velocity/ at infinity.
We have to solve the equations

Vip=0 inr > a,
g—f:() atr = q,

and¢ ~ Ur cos 6 asr — oo.
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3.3. APPLICATIONS

We can satisfy the Laplace equation and boundary condition at infinity with
¢ = U cosf (r+ B2) .
T
The boundary condition at= « yields B = % Thus
CLS . a3
u= (Ucos@ <1 — 7“3> ,—Usin6 <1+ 27“3> ,0>

in spherical polarsr, 9, ¢).

3.3.2 Uniform flow past a cylinder
Consider a hard cylinder of radiusn a fluid with a uniform velocityU at infinity and

with a circulations.
We have to solve

V2 =0 inr>a,
%:0 atr = a,
asr — oo.

and¢ ~ Ur cos 6



14 CHAPTER 3. IRROTATIONAL FLOWS

We further need

§oudi—n-p,,

to obtain a unique solution. These conditions give

2 0
¢ =Ucosf <T+a> +i.
r 2

In plane polargr, §), we therefore have

2 2
u=|Ucosf 1fa— ,—Usiné 1+a— +i .
r2 r2 2mr

3.4 The pressure in irrotational potential flow with po-
tential forces

The momentum and vorticity equatiofs (4.2 2.4) become

p(?ﬂu-V)Q =-V{p+x)

and

respectively, and these combine to give

99 1 _

which integrates to give

9¢

P+ %mﬂ +p + x = f(t) independent ok. (3.1)

Application

We can apply this theory to the free oscillations of a manometer. We need to calculate

o(x,1) :/xxu-dl.
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Let s be the arc length from the bottom, with the equilibrium points at —i1, I5.
From mass conservation the flow is uniform, so that i everywhere. Therefore
¢ = hs, and so

o .
—| =hs.

otl,
At the interfaces the pressure is constant. Using the equation for potential flow
@) we get

p(=ly + h)h + Lph? + p, — pghsina = p(lz + h) + Lph? + p, + pghsin B.
This simplifies to give

i g(sina + sin )

B L+

and so we have SHM (even for large oscillations).

h,

3.5 Bubbles

3.5.1 General theory for spherically symmetric motion

The pressure is(r,t), and the far-field pressure jgoo,t). We have radial motion,

u x —5. If the radius of the bubble ig(t), thena = u, atr = a, which gives that

u = %aa? = Vo. So¢ = —49° and 2 = — 4a’+2i%  pytting all this together
gives
aa® +2a’a  palat
—p . + 9 4 +p(r,t) = p(co, t).
Atr=a 3
—pia — §pd2 = p(oo,t) —p(a,t),
or

% (;paw) = a2a (p(a, t) — p(co, 1)) .

This can be interpreted as “rate of change of kinetic energy equals rate of working by
pressure forces”.
Another rewrite gives

s e
|
%‘@
IS N
~__

p(r,t) — p(oo,t) = (p(a,t) — p(co,t)) g + %aQ (

3.5.2 Small oscillations of a gas bubble

Assumeu(t) = ap + da(t) and that, (¢) is small,p, is constant in time and that the
gas in the bubble has pressure such dpgis = —ypoo 22« (**which can be obtained
from PV constant for ideal adiabatic gas**). Neglect surface tension. Linearising

ao

.. 3 .
—piia — 5pa® = p(oo,t) = pla, 1)

abouta = ag anda = 0 we obtain

which is SHM withw = (?wp;e)

paZ
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3.5.3 Total collapse of a void

Bernoulli implies that the pressure decreases as the speed increases. If this makes the
pressure negative, then the liquid will break to form a void filled only with vapour. This
has important consequences for valves and propellors (cavitation).

Consider a spherical void (iga,t) = 0) at rest witha = ag anda = 0 att = 0
with a constant background presspre. Now

% (;pa%?) = a’a (p(a,t) — p(oo, 1)),

SO 1 1
ipang = gpC><> (ag — a3) .

Integrate this again (numerically!), to get

2\ 4
tcollapse: 0.92 <ZO> .

3.6 Translating sphere & inertial reaction to accelera-
tion
3.6.1 Steady motion

Use the inertial frame moving steadily with the sphere. It was show{8i8.] that
uniform flow past a fixed sphere has

3
¢ =Ucosf (r+ a> and

22

ad . a?
u= (UCOS@<1T3> ,Usm9<1+2rg) ,O,).

Hence atr = q, |u| = %U sin f. Potential flow means we can apply

p%(f + %qu + p+ x independent ok,

with %—f = 0 (since steady motion) to compare= a andr = oco. This gives

1 9
p(a,0) = poo + =pU? [ 1 — Zsin? 0 | .
2 4
This pressure distribution is symmetric fore and aft and around the equator, so
no force is exerted on a steadily moving sphere (**or indeed any 3D body**). This
surprising result is called D’Alembert’s paradox.

3.6.2 ** Effects of friction **

D’Alembert’s paradox can be understood only by analogy with Newtonian dynamics:
in the absence of friction forces are needed only for acceleration and not for uniform
motion.
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This potential flow result is a good approximation for bubbles in steady motion,
because they have slippery surfaces. It is a bad approximation for rigid spheres in
steady motion. What is observed in experimenteigarationand awake

The small amount of friction produces a thin layer of fluid next to the rigid surface
that is slowed down from the potential flow. This tthiaundary layeis sensitive to the
slowing down of the surrounding potential flow from the equator to the rear stagnation
point, and detaches from the sphere into the body of the fluid to produce a shear layer
of concentrated vorticity (this is calleskeparation. Separation also occurs behind
other bluff bodies in steady translation but can be suppressed to a certain extent behind
streamlined/tapered bodies. Boundary layers are covered in more detail in Part [IB and
Part Ill courses.

We can estimate the drag force as proportional to the projected area (A) times the
pressure difference: applying Bernoulli gives

drag force= 1CppU?A,

whereCp, is a dimensionless coefficient that must be measured experimentally (0.4 for
a sphere, 1.1 for a disc, 1.0 for a cylinder).

3.6.3 Accelerating spheres

Potential flow is useful for slippery bubbles, rapid accelerations of small (rigid) parti-
cles and small oscillations.

For the accelerating sphere, it is best to have the fluicbadt rest. Consider a
sphere of radius and centrex,(t) and velocityu(t) = %¢(t). The velocity potential
problem is then

Vip=0inr>a,
¢ — 0asr — oo,

% t =u(t) -nonr =a.
with solution
U cos fa®
0=
_oous(x— xo(t)) a®
2[x — xo(t)|”

To calculate the force, we need

0¢ —u-ra’ . .
—| = ———— +u- (termslinearinkg) .
ot |, 2r3 ( )
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Now V¢ = terms linearim. These linear terms must be the same as for steady
motion. Hence the pressure on the sphereis p., + p%F + 2pU? (1 — 9 sin”0).
The force on the sphere is given by

_ __Pr 1o 2
'/T:a pndA = 2/T:a(u r)adA

4ma?

Now by the isotropy of the spherﬁ,:a rir; dA = Z5-4;4, SO
1 .4ma*1 .-
F——ﬁpu 5 L, mu

ima’ the added (or effective or virtual) mass.

1
wherem™ = 3 puid =5

3.6.4 Kinetic Energy

The kinetic energy of fluid motion in a volunié is

T:/V%qudV
=5 | worav
I ANGOR ST
=§/S¢<V¢>-ds
= [ fom-vyoas

For the translating sphere we gét= %m*UQ.

3.7 Translating cylinders with circulation

The potential for flow past a uniform cylinder with circulatieris

2
¢:U0059<r+a)+w7
r 27

2 2
u=|Ucosf lfa— ,—Usiné 1+a— +L .
r2 r2 2mr

Oonr =a,|u| = —-2sin U + 50—, thus

with

1 9 K . 2
p(a,8) = poc + ol (U - (% - 2Usm9) )
and so (by doing the integralf = (0, —pUk) (in Cartesians). This is a lift force
perpendicular to the velocity. The same lift force applies to arbitrary aerofoils (at least
to the first approximation).
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3.7.1 ** Generation of circulation **

In order to calculate the lift on an aerofoil we thus need to know the circulation
Potential flow without circulation would have very large velocities around the sharp
trailing edge.

This is strongly opposed by friction, and the flow avoids these high velocities by
shedding an eddy as the aerofoil starts to move. This eddy is of such a size as to
streamline the flow on the aerofoil.

The circulation around’; + Cs is initially zero and so remains zero at all times
(by Kelvin's theorem). Hence the circulation around the aerofoil (inend vortexis
equal in magnitude to the circulation in the ststarting vortex(but opposite in sign).
The strength is chosen to avoid a singularity at the sharp trailing edge, a condition
which givesk = 7lU sin «, provideda < 14°. Fora > 14° the flow separates and
the aerofoil stall§]

SinceV - w = 0 vortex lines cannot end in the fluid, and in fact the bound vortex
on the wing is connected to the starting vortex by two vortices shed from the wingtips.
These are responsible for the observed vapour trails.

2See Fluids 1B or Acheson for more details.
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3.8 More solutions to Laplace’s equation

3.8.1 Image vortices and 2D vortex dynamics
Recall that a single line vortex has

K0 K
= — i h = —(— .
o 5 with u Sy (—y,x)

Since the potential flow equations are linear we can superpose solutions.

This configuration would give

i0;
¢:Zﬁ2ﬂ"

This gives us a new method of finding solutions in “nice” geometries. For instance,
consider a vortex near a plane wall as shown.

The velocity field is the same as if there wasigrage vortexof opposite strength
so that normal velocities cancel. This image produces a velggityat the real vortex,
and so the vortex trundles along parallel to the wall as shown.
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Application to dispersal of wingtip vortices

We have vortices dttx(t), yo(t)) and so we need to add imageg&teo(t), —yo(t)).
Now

2 2
. K .130 . K yO
Tg=-——s>— and gPp=-————"2—r.
Ar yo (2§ + yg) Ar o2 + y3)
This givesd#e — —% or
g d.’E() - Ig'
1
g+t —==0C
Lo Yo

3.8.2 Flow in corners
We usep = r# sin uf, which satisifies

oo o,
20 _Oona_iQM.

Now |u| < r*~1, and so there are infinite velocitiesas- 0 if u < 1. The effect
of friction here is to introduce a circulation.
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Chapter 4

Free Surface Flows

4.1 Governing equations

The flow is assumed to start from rest and is thus irrotational (and remains so). Let the
free surface be at(z, y, t), || sufficiently small for nice things to happen. So

V=0 (>z2>—h,

dp 1 2 _
por 5P IVOl +p+pgz = f(0),
P = Pair atZ:C7
o, 69| L o] _ 0o
ot Ox dx|,_, Oy dy|._. 0z,
¢ _
a z=—h -0

We will restrict to the 1-D case but even so, to have any hope of solving this we
have to linearise it.

1. Throw out the nonlinear terms.
2. Evaluate at = ¢ using information at = 0.

3. Throw out new nonlinear terms.

V=0 0>2z>—h,

o B
e . +pg¢ = f(t),
P = Pair atz = Cv
o _ 99
o 0z| .,
ol B
7|~ 0.

23
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We seek separable solutions and obtaim, z,t) = Acoshk (z + h) e!(ke—wb),
Using the dynamic boundary conditi(pn% » + pg¢ = f(t), we obtain the disper-

sion relation
w? = gk tanh kh.

In deep waterh > % sotanh kh ~ 1, givingw? = kh andc = In shallow
water,tanh kh =~ kh givingw = k+/gh andc = \/gh.
4.1.1 Particle paths under a wave

By linearising, we get that

iacoshk (20 + h) pilkzo—wt)

(t) = o — sinh kh
B asinh k (zo + h) i(kxo—wt)
dt) =20+ — € ’

which is elliptic motion. zy and z, are the mean positions of the particles in the
(z, z) plane.

In the deep water limit we get circular motion and in the shallow water limit we get
mainly horizontal motion.

4.2 Standing Waves

Consider waves in a deep rectangular bbx; = < a,0 < y < bandz < 0. Look for
linearised waves with displacemefitc, y, t). Try separable solutions to obtain

mnx nmwy

cos kzefzwt.
b

o(2,y,2,t) = Acos

e

The Laplace equation determinke$rom m andn by
2 2
2 2 m n
k—”<y+w>’

and the dynamic boundary conditions determifie= gk. This is to be expected, since
a standing wave is the sum of progressive waves.

4.2.1 Rayleigh-Taylor instability

Turn the box in the previous section upside down (or equivalently repladth —g).
This makesv imaginary, leading to av%** term, which quickly magnifies any devia-
tions from¢ = 0. The largest growth rate is for large but this is cancelled by surface
tension in the real world.

4.3 River Flows

These are nonlinear problems, but can be solved since the shallowness of the river in
comparision to its length means that the flow is nearly unidirectional.

1The wave speed...



4.3. RIVER FLOWS 25

4.3.1 Steady flow over a bump

What happens to the free surface at the bump?
We assume that

e the river has vertical sides and constant width;

e it varies only slowly in ther direction, so that the flow is (to a good approxima-
tion) horizontal and uniform across any vertical section (s%ee: wy = 0);

o the flow is steady;
e far from the bump{ — £00),{ — 0, h — ho andU — U.
Then mass conservation gives
U(¢+ h) = Usshoo, (4.1)

whilst applying Bernoulli's equation (Z.3) to the surface streamline gives

1 1
§PU2 + patm + pg¢ = §PU§O + Patm- (4.2)
Now eliminate¢ between[(4]1) andl (4.2) to obtain

1 5 gUsxhe 1 5
z == h. 4.3
JUt+ I =y g 4.3)

We can now extract information frorn (4.3) graphically.

There are thus two roots and three possibilities.

e If the bump is too big then the assumption of steady/slowly varying flow must
fail. This gives a hydraulic jump — séd.3.3.
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e If the bump is just right then the flow can pass smoothly from one root the other

(e.g. flow over a weir ir{f4.3.2).

e If the bump is not too large then the flow stays on the same root. This has two
subcases.

— On the left hand rootlU,, < v/gh. — flow slower than shallow water
waves — we have

bumpup=h |= RHS|=u 1= (] .

i.e. slow deep flow converts PE to KE to maintain the mass flux.

— On the right hand rootl/,, > +/gho, — flow faster than shallow water
waves — we have

bumpup=h |= RHS|=u |= (1.
i.e. fast shallow flow converts KE to PE to maintain the mass flux.

Normal rivers are in the slow deep state.

4.3.2 Flow out of a lake over a broad weir

This is the same &§F.3.7 but with a smooth change of branch. We need the bump “just
right”.

How fast is the outflow as a function of the minimum/df:)?
The lake is large and deep, so we take the limit — oo, Uy, — 0 With Ugohoe =
Q fixed. Mass conservation gives

U(C+h) =@

and Bernoulli on the surface streamline gives
1
—U? +g¢=0.
2

Eliminating¢ as before gives

U+ %2 = gh(a), (4.4)

which is a cubic for unknowid (z) givenh(z).
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The flow starts high on the LH branch in the lake, but comes out of the weir high
on the RH branch. The minimum éfz) (the crest of the weir) must be at the join of

the branches, and so
8
Q = <27 h3min> )

giving the flow rate as a function of the height of the weir.
1
At the crest of the weill/ = (2gh3;,)* and mass conservation gives

Nl=

1
gcrest: *ghmin

and the fluid depth i%hmm. Also, U2, = g(fluid deptheres; SO that the flow is
travelling at the speed of shallow water waves at the crest. There can therefore be no
communication from after the weir back to the lake.

4.3.3 Hydraulic jumps

GivenU; andh; from river data andi, from tidal theory can we predict the spe&d
of the jump (and the flow/,)?

The energy loss in the turbulent jump makes Bernoulli inapplicable (friction is im-
portant in the small-scale unsteady motions). However the flat-bottomed case provides
an application of the momentum integral equation.

Change to a frame moving with the jump. Away from the jump there is no vertical
acceleration and so the pressure is hydrostatic there.

Taking the horizontal component of
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4 pudV:f/(pu(u~n)+pn) dA+/FVdV,
dt Jy A v

and noting that the flow is steady on average we obtain (from the area integral)

oV 4+ U0 ha + (pahs + 3 p0h3) + pu(hs — ha)
= oV~ Ua)ha + (pahs + 5pgh3).
which boils down to
(V4 U1)Phy — (V = Ua)hs = (0 — 1),

Mass conservation gived” + U;)hy = (V — Us)ha, and eliminatingl” — Us
between these equations gives (eventually)

hi + ho)hs
ViU 229(17,
(V+0h) 2Ny

We can solve this fol and then solve

g(hi + ha)l

— 2 —
(V —Us) 5y

for Us.

Note that ifhy > hy thenV — Uy < /gho andV + U; > \/gh; — the jump
travels faster than shallow water waves on the river side and overtakes all information
of its future arrival.



References

o D.J. AchesonElementary Fluid Dynami¢€OUP, 1990.

This is an excellent book, easy to read and with everything in. It is also good for Fluids
1I1B. Highly recommended.

o G.K. BatchelorAn Introduction to Fluid DynamicsCUP, 1967.

The lecturer recommended this, and it is a reasonably good book for Fluids IIB. Per-
sonally | think you'd be wrong in your head to buy it for this course, but YMMV.

o M. van Dyke,An Album of Fluid MotionThe Parabolic Press, 1982.

Lots of pictures of flows. An excellent book. Go out and buy it. Now.

Related courses

In Part IIA there are courses dmansport Processeand Theoretical GeophysicThe
[IB fluids courses ar&luid Dynamics 2andWaves in Fluid and Solid Medidoth of
which use the material in this course to some extent.

29



	Introduction
	Kinematics
	Continuum Fields
	Flow Visualization
	Material Derivative
	Conservation of Mass
	Kinematic Boundary Condition
	Incompressible Fluids
	Streamfunctions

	Dynamics
	Surface and volume forces
	Momentum Equation
	Applications of integral form

	Bernoulli's Theorem
	Application

	Vorticity and Circulation
	Vorticity Equation
	Interpretation of vorticity
	Ballerina effect and vortex line stretching
	Kelvin's Circulation Theorem
	Irrotational flow remains so


	Irrotational Flows
	Velocity potential
	Some simple solutions
	Applications
	Uniform flow past a sphere
	Uniform flow past a cylinder

	Pressure in irrotational flow
	Bubbles
	General theory for spherically symmetric motion
	Small oscillations of a gas bubble
	Total collapse of a void

	Translating Sphere
	Steady motion
	Effects of friction
	Accelerating spheres
	Kinetic Energy

	Translating cylinders with circulation
	Generation of circulation

	More solutions to Laplace's equation
	Image vortices and 2D vortex dynamics
	Flow in corners


	Free Surface Flows
	Governing equations
	Particle paths under a wave

	Standing Waves
	Rayleigh-Taylor instability

	River Flows
	Steady flow over a bump
	Flow out of a lake over a broad weir
	Hydraulic jumps



