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Introduction

These notes are based on the course “Geometry” given by Dr. N.I. Shepherd-Barron in
Cambridge in the Easter Term 1996. These typeset notes are totally unconnected with
Dr. Shepherd-Barron.
These notes are incomplete. If you have a problem with this, then you can sort
them out yourself. Dr. Shepherd-Barron has an updated version on his web page.
Other sets of notes are available for different courses. At the time of typing these
courses were:

Probability Discrete Mathematics
Analysis Further Analysis
Methods Quantum Mechanics
Fluid Dynamics 1 Quadratic Mathematics
Geometry Dynamics of D.E.’s

Foundations of QM Electrodynamics
Methods of Math. Phys Fluid Dynamics 2

Waves (etc.) Statistical Physics
General Relativity Dynamical Systems
Combinatorics Bifurcations in Nonlinear Convection

They may be downloaded from

http://www.istari.ucam.org/maths/
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Chapter 1

Spherical Trigonometry

1.1 Introduction

Fix a sphereS in R? with centre0 and radiusl. A line on S is a great circle (e.g. the
equator). Given any two non-antipodal poift@nd(@ on S, there exists just one great
circle throughP and@. A spherical triangle looks like
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whereAB, BC and AC' are segments of great circles. The length of the Hie
is the angle subtended @t Any great circle isS N H, whereH is a plane through the
origin. « is defined as the angle between the two relevant planes.

ni, ny andng are the unit normals and, B andC are the position vectors of,
B andC. Note that

_CxB

A xC B x A
n; = =

- ny, = 5 and ng = - .
sina sinb sine¢

Theorem 1.1. sin a sin b cosy = cos ¢ — cos a cos b.

Proof. Use(C x B) - (A x C) = (A - C)(B-C) — (C-C)(B-A). Now|C| = 1,
so(CxB)-(AxC)=(A-C)(B-C)— (B-A).
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2 CHAPTER 1. SPHERICAL TRIGONOMETRY

Now

(CxB)-(AxC)
sinasinb
(A-C)(B.C)-—(B-A)
sin a sin b
cosbcosa — cosc

—COSY =11 Ny =

sinasin b

Theorem 1.2. sin asin 3 cos ¢ = cosy + cos « cos 3.

Proof. Use the same identity am, x ng = A sina, ng xn; = Bsin S andn; xn; =
Csin~y. Now
sinasin fcosc = (ng X ng) - (ng x ny)
= (n1 - n3)(n2 - n3) — (N1 - n2)
= cos(m — ) cos(m — a) — cos(m — )

= cosy + cos a cos 3.

Theorem 1.3. ) ) )
sina sin b sinc

sina  sinf  siny’
Proof. Use(A x C) x (CxB)=(C- (B x A))C.

(AXxC)x(CxB)=—(n; xny)sinasinb and
n; xng =Csiny SO
—sinasinbsina C = (C- (B x A))C.

Now

C- (A xB) =sinasinbsin~y
A (B xC)=sinbsincsina
B (C x A) =sincsinasin g.
Divide by sin a sin bsin ¢ to get result. O

These results can be compared to the Euclidean case, ayiieand ¢ are very
small. Theorem 1.1 gives the cosine rule, theorem 1.2 is uninteresting and theorem 1.3
gives the sine rule.

The triangle inequalityd < a + b) can also be deduceddf, 5 and~ are less than
5 anda, b andc are less tham.

cosc—cosacosb =sinasinbcosy SO
cosc > cosacosb
> cos(a+b) thus
c<a+b.
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1.2 Areas of Spherical Triangles

Theorem 1.4. SupposeA is a spherical triangle with angles, 8 and~. Then the
areaofAisa+ 0+~ —.

Proof. SupposeA and B are antipodal points on the unit sphefeand suppose we
have two great circles through and B. These 2 circles cu$ into 4 pieces called
lunes.

P’, Q" andR’ are the antipodes d?, Q and R respectively and\}, A}, andA, are
the antipodal triangles aA;, A, and A3 respectively.A’ is the antipodal triangle of
A, which is the exterior of the figure shown. Note that- A;, A + As andA + Aj
are lunes with areas @k, 23 and2~ respectivelﬂ
Now S C R3, and the transformation sendingto its antipodes:’ is the matrix
—1I, which is area-preserving. Thds = A’ and so on. HencA + A; + Ay + A3 =
A+ A} + AL + A, But these 8 triangles make up the whole sphere, and thus
A+ A; + As + Az = 27, From the lunes3A + Ay + As + Az = 2(a + 8+ 7),
andthusA = a+ f+ v — . O

The area thus depends only on the angles. But the sides determine the angles, and
thus the area.

Theorem 1.5 (Polygons on the sphere)Supposdl is ann-gon onsS with interior
anglessy,...,0,. Thenthe area dflis ), o; — (n — 2)7.

1In an abuse of notation x will be either the triangle or its area.
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Proof. CutIl into n — 2 triangles (prove this is possible by induction). Suppose the
angles ofA; area;, 5; and~y;. Then the area dfl is

n—2

n—2
ZAi =Y (i +Bi+7)— (n—2)m

i=1
= ian — (n —2)m.
i=1

O

Corollary 1.6 (Gauss-Bonnet Formula). Suppose tha$ is cut into polygons labelled
II4, ..., IIp. Say there ard” edges and’ vertices in total. The? — E + F = 2.

Proof. Suppose thdll; hasn; edges and its interior angles sunrtoNote that_ 7; =
27V andY !, n; = 2E. Then

1.3 Sterographic projection of S into C

Let C., = C U {}. C has a co-ordinaté. Near the point at infinity, use the co-
ordinatew = 1/¢. Thus to make calculations at or near infinity, usimstead of(.
ConsiderP € Sand¢ : S — C,, be the map defined by makiny, P and
¢(P) colinear. To get an explicit formula fas, take P = (x,y, z). We know that
¢(P) = t(x,y,2) + (1 — t)(0,0,1) for somet € [0,1]. Thuszt+1—1¢ = 0 and

t=1/(1-z2)and
R E——

N.B. ( = % and the north pole corresponds to the point at infinity.

Recall thatC, has the group of Nbius transforms acting on it arfihasSO(3).

If (: 6) is a2 x 2 complex matrix with non-zero determinant, then it actsthp

1)
by
(a ﬁ) (=t
vy 0)> A+
Theorem 1.7. Via ¢, every rotation of5 gives rise to a Mbius transform o ,. (Not
every Mobius transform comes from a rotation.)

Proof. Step 1. Deal with rotations about thexis through an arbitrary anghe(R., ).
This is the same as rotating the complex plane thrdugbout0, accomplished by

619/2 0
0 6—19/2 :
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Step 2. Now look at a rotatioR, =z . This is a3 x 3 orthogonal matrix
0 0 1
0 1 0],
-1 0 0
and¢ — (' = jﬁ—f The Mobius transforng — i{% does the trick. (Proof by churn.)
Step 3. NowR,, _/, for any horizontalb. Seti to be the angle betweenand the
y axis. Then
Rl/,—Tr/Q = Rz,qﬁRy,—ﬂ'/Q (Rz,w)_l )
and thusi,, _ > gives a Mbbius map.

Step 4. Now a general rotatiaR, 9. Rotater about the x axis to/, which is
horizontal. Then’ = R, ,,(v) for somey. Hence

RV,O - Rw,wRV’,G (R‘Tﬂl’)_l ’

so the general rotation gives rise to @Mus map. O

The question remains as to whicholius transforms arise from rotations. Rota-
tions have 3 real degrees of freedom, whereébiMs transforms have 6,(1 andoo
can each go anywhere @, ). In fact, Mobius transforms arising from rotations are
the ones given byl € SU(2). A proof is via quaternions.
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Chapter 2

Reflexions and Tessellations

Suppose that in Euclidean spa® we have hyperplaned, ..., Hx (not necessarily
containing the origin), with unit normals;. EachH; dividesR" into two pieces; say
R™ \ H; = Af U A7, with A] being “the vectors on the same sidea$. Put

C =n;Af.
Define the angld,; € [0,7) betweenH, and H; by n;.n; = —cos#f;;. Lets;
denote reflexion irff; and putS = {s1,...,sy}. We shall be interested in the group

W = Ws = (s1,...,5n) generated by and how the regions(C), wherew € W,
fit together.

Lemma 2.1. If H is a side o andw € W, then “reflexion in w(H)" is an element of
w.

Proof. If o is reflexion inH, thenwow ! is reflexion inw(H). O
Notation. If o = s;, then we sometimes wrilzejf, H, instead ofA,fE and H,.
N.B. o(A}) = AF.

Definition 2.2. For w € W, define theS-lengthof w, ¢5(w) as the leasp > 0 such
thatw = s;,,...,si,, 8, € 5.

N.B. If " C S andu € Wr, thenlg(u) < {7 (u).

Assume now that every dihedral andlg is either a fraction ofr, 6,; = w/m,; for
somem,;; € Nor;; = 0. In this latter case, we writer;; = co.

Lemma 2.3. Suppose, s’ € S, s # &', T = {s,s'} andv € Wr. PutAf nAf, =P.

s’ T

Thenu(P) is contained in eithed [ or A7 and in the latter casér(sv) = £ (v) — 1.

Proof. Suppose thafl and H’ are the hyperplanes correspondingstands’ respec-
tively. There are 2 cases to consider.

Case 1:H, H' are parallel. Label the image$P) by the element. Clearlyv(P)
lies in just one of the regiond, A, . Also,v(P) C A iff

v E {s,ss,ss's,s5'ss',...}
and in this casér(sv) = ¢p(v) — 1.

Case 2. The dihedral angle betweBnand H' is 7/m, m € N. Then take a 2-
planeL perpendicular tdf N H' and divideL into 2m equal sectors by lines through

7



8 CHAPTER 2. REFLEXIONS AND TESSELLATIONS

LN HnN H', which we will regard as the origin ih. One of these sectors corresponds
toP.

Wr = {1,¢',5's,8'ss',...;u = (s's...)} U{s,ss',88's,...,w = (ss'...)},
wherelr(u) = m — 1 andép(w) = m. Note thatiVr is DQm, the dlhedral group with
2m elements or the symmetry group of a regutaigon.

v(P) is clearly one of these sectors (draw a picture to convince yourself), and so

lies in just one ofAf, A;. Moreover,u(P) C A; iff v € {s,ss,...,w}, and thus
éT(S’U) = éT( ) 1. O

This next result is the main step in constructing tessellations of Euclidean space
and spheres. By definition, a tessellation of a space is a partition of it into disjoint
congruent regions. Sometimes it is demanded that these regions have finite volume.

Theorem 2.4. If w € W andw(C) N C is nonempty, thew = 1.

Proof. Non-examinable. O

2.1 Regular Polyhedra

We are now back ifR3. Assume) € H; V i. Take the unit spher§. EachH; cutsS
in a great circle, and N S is a spherical polygoiil.

If N = 3thenll is a triangle, with angles, 3, v = «w/p, ©/q, ©/r with p, q,
r > 2. The area ofll i57r(]%+§+% —1), and sof + 1 + 1 > 1. Solve these
equations to get

Identify reflection ofR? in H with reflection ofS in SN H. Let W be the group
generated by reflections in the sidesIdf Claim thatw(IT) will cover the sphere.
Suppose otherwise, then somewhereSahere is something like:

|
uncovered
region

v(m)

Now reflect inl. Thus we have covered the sphere with disjoint congruent spherical
triangles.

Take (p,q,7) = (2,3,5). Then the area ofl is 7/30. Now w(II) tessellatesy
with % = 120 triangles. Use these triangles to construct a regular icosahedron -
that is a tessellation &f by 20 congruent equilateral triangles. Group together the 120
triangles 6 at at time as shown:
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How many vertices does the icosahedron have? Now E + F' = 2, E = 30,
F = 20,s0V = 12. So the spheré is tessellated into 20 congruent equilateral
triangles with angle@r /5. There are 12 vertices aridtriangles around each vertex.
W is a group of symmetries of the icosahedron becalispreserves the tessellation.
The 6-grouping is unique because the vertices of the big triangles are those points
surrounded by 10 little triangles. & preserves the tessellation into 20 big triangles.
Also, W acts transitively on faces, edges and vertices.

Proof for faces.The elements ofl” correspond to 120 small triangles, soe W
corresponds ta(II). Now [W| = 120, so|Orb F| = 532= and thugOrb F| > 20,
so|Orb F'| = 20. There is just one orbit, SB” acts transitively on the faces. The proof
for edges and vertices is similar. O

Also, given a vertexP, there are 5 faces arourfel Stab P acts transitively on
these 5 facesStab P = Doy 5.

At the same time, we can construct a regular dodecahedron. Take 10 small triangles
aroundP. They form a regular pentagon, and by repeating we get a tessellation of the
sphere into 12 regular pentagons — a regular dodecahedron with symmetry properties
analogous to those of the icosahedron.

) b

(p.q.r) | shapes | number of little triangles
(2,3,4) | cube and octahedro 48
(2,3,3) tetrahedron 24
(2,2,n) 4dn
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Chapter 3

Hyperbolic Geometry

This is the third kind of 2D geometry where the group of isometries has 2 degrees of
freedom.

3.1 Riemannian Metrics

Suppose/ C R? with co-ordinatesc andy. Then a Riemannian metric di is an
expressionls? = Adx? + 2B dx dy + C dy? such that the matrix

A B\ . . -
(B C’) is positive definite andl > 0.

Note that4, B andC are not necessarily constant.

Now ds? can be used to compute lengths of curves, angles between curves and
areas as follows.

Supposel” is a path fromP to Q in U, v : [0,1] — U with v(0) = P and
~(1) = Q. Then the length ofF is

1
/ds:/ ds g
0% t=0 de

! dz\? dz dy dy 2
-/, \/A<dt> 25 Yo () an where(t) = (2(0).u(0)

It is easy to show that i/’ is a different parametrisation &f, the length is found
to be the same.

Now, suppose that = (v1,v2) andw = (w1, we) starting atP. Then define the
angled between them by.w = ||v|| ||w|| cos §, wherev.w =

e ) (50 o) ()
Define||v|| = v/v.v.

If I'; andI'y are two curves meeting &, then the angle between them is defined
to be the angle between their tangent vectors.

11



12 CHAPTER 3. HYPERBOLIC GEOMETRY

As for areas: Suppose we have a small parallelografi.itMeasure the lengths
and angles according t2. Then the area i’ AC — B2 §z §y. So given some subset

Q c U, the areaof) is
/ v AC — B2 dz dy.
Q

Definition 3.1. Supposels? anddu? are 2 Riemannian metrics dii. They are said
to beconformalif ds? = ¢du?, where¢ is differentiable and greater thamon U.

Lemma 3.2. If ds? anddo? are conformal then they define the same notion of angle.

Proof. Letds? = Adx? +2Bdzdy + C dy? andde? = acdz? + 28 dx dy + v dy?.

Letv = (m) andw = (wl)
V2 wo

Call the angle betweenandw defined byds? #; and the angle betweanandw
defined bydo? 6,. Similarly, let||v||, be the norm defined bys? and (v.w); be the
dot product fromids? (and so on fot|v||, and(v.w)s).

Now

(vw)y = [Jvlly [[wlly cos 6

— (5 o)w

(5 9

= ¢(v.w)sg
= ¢(P)(v.w)z = ¢(P) ||v]|, |wll, cos b1
= |lvll5 lwlly cos B

= cosfly = cos b

3.2 The Hyperbolic Plane
Definition 3.3. Define the hyperbolic planH as{z € C | Sz > 0}.

Definition 3.4. Defineds? = dg”zy%dyz — the hyperbolic metric.

The notion of angle is the same as in the Euclidean case, but lengths and areas are
different.
An isometry ofH is one which preserves the hyperbolic metric - that ig#f, y) =
122 4-dy? de?+dn?
(€,7|7_)étthen”;; oo it

G:{(: 5)|OK,B,’Y,6ER,Q(S—B’7:1}:SLQ(R)_

Now G acts as a group of Bbius transforms of€ . and preserves the real lifie
ThusG acts as a group of Bbius transforms o/, and preserve€ \R = H U H_.
(Need to check that € G cannot flipH and H_ — not hard.)

Proposition 3.5. GG preserves the hyperbolic metric.
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Proof. We will work with z andz, thus

dzdz _ —4dzdz
(z—z2)/20)%  (z—2)?"

ds® =

Now takeg = <: ﬁ) and set = g(z) = 2242

) yz+6 "
o (vz+9) (az + )
adz (yz+9) —vdz (az + 9
d¢ = = 0) “d
¢ (2 £ 0)2 (vz+06)"dz,
andd¢ = (yz + §)~2dz. Then put everything together — it works! O

Definition 3.6. A hyperbolic line inH (or a H-line) is either a semi-circle meetirfig
at right-angles or a vertical line. We shall see that thégdines minimize distance in
H.

It follows from facts about circles that given twi-lines L and M there are 3
possibilities.

1. L meetsM at 1 pointinH.

2. L meetsM at 1 pointinR U {co}. In this caseL and M are said to be parallel.

3. L andM do not meet — they are said to be ultraparallel.

If L andM are not ultraparallel then we can define an angle between them. In case
1, take it to be the Euclidean angle between them, otherwise the angle is 0.

Definition 3.7. A hyperbolic triangle is a region defined byiB-lines, no two of which
are ultraparallel.

Example.

A has three anglesy, g and~y -y = 0.
Proposition 3.8. The area ofA ism — (a + 8 + 7).

To prove this, we need a few facts about maps preserving the Riemannian metric.
Supposey is a curve fromP to (Q, andg takesy to v;. Now g preservesls?, sods is

preserved and so is
/ ds = length
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Now given{) C U, the area of) is
/ VAC — B? dz dy.
Q

Letg(z,y) = (&, n), so that

o= e an (5 2) (&)= o (3 2) (%),
(i) = (6 8) (i) - ().
75 0= (5 o)

and thus(det J)?(ay — %) = AC — B? andvAC — B2 = |det J| y/ay — 32. So

the area of is
/\/AC’—B2dxdy:/ |detJ\\/a'y—ﬁ2dxdy:/ Vay — (32 dEdn,
Q () 9(9)

which is the area of(12).
We are now in a position to prove the proposition.

Now

So

Proof. 3 ¢ € G taking a side ofA to a vertical line. If one of the sides & is a
semi-circle fromP = (¢,0) to @, theng = ((1) _1t> shifts P to 0. Thus we may
assume thaP = 0. Now if Q = (s,0), g = ;11 _01 shiftsQ to co.

Now, we may assume we have something looking like:

Area(A + Aq) = / dz _ d—x

140475 Y r, Y
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o\/ W

Putz = re?, sodz = —rsin #dd andy = rsin 6. Thus the required integral is

/F —d9:/7:¢—d9:7r—(¢+w).

Thusthe area of\, is7 — (7 — 3+ ) and the area oh + Ay ism — (o + v+ 9).
Thusthe area dh ism — (a + B + 7). O

3.3 Another look at the hyperbolic plane

Now introduceA = {z € C | |z| < 1} with do? = éizzg)i. We firstly want to find a

Mobius mapy taking A to H and we then want to show thatis an isometry.
Now there exists a unique dbius map with the properties that:

—-1+—0,
0~ 2and

1 +— o0.

Let ¢ (=) be this map, that ig)(z) = —Zt1. Now ¢ (2) is real, sop must take the
unit circle toR U {oo}. Thusiy must takeA to eitherH or H~. But#(0) = 1, S0t
takesA to H.

A hyperbolic line inA is a circle meetingA at right-angles. Sincé is Mobius,

it takes hyperbolic lines ia\ to hyperbolic lines inA.

Proposition 3.9. ¢ is an isometry.

Proof. Lett(z) = (. Then dwz,;;dyz = _(?i%ff. Then

—1dz(z — 1) +o(z+1)dz  2udz
12 RS

—21dz

CEEN

¢ =

d¢ =
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Now, substituting fokl¢ anddc¢, we get

da? 4 dy? _ 4dzdz

2 1=z

and thusy is an isometry. O

On H we haveG = SL»(R) preservingls?. Thusy~1gy is a Mobius transform
from A to A preservingdo?. SoTl' = {¢~1gy | g € G} acts as a group of bbius
transforms om\ preservinglo?. These are the x 2 complex matricesi such that

—— (1 0
A*JA =, whereJ(O _1>.

619/2 0
N.B.InT, Stab0 =< (“ " ) [0€R

Proposition 3.10. In A and H, givenP # @, 3! hyperbolic line joiningP to Q.

Proof. We will prove this inA.

If P = 0 the hyperbolic lines are precisely the diameters, so giyeg: 0 3!
diameter througld).

If P=( #0,claim3~y € T such thaty(¢) = 0. To show this, go back to the
upper half plane. We must show that givere C,3 g € G such thaty(z) = . Let

z = x + 1y, and then put
-1
\/@ T
g=<0 o
VY

This works, and reduces the problem to the previous case. O

Now we want to define a distancedor H. If P # @ we will define the distance
from P to Q as the Iengtﬂ of the unique hyperbolic line joining® and @, ando if
P = Q. We will compute this inA when one point? = 0. PutQ onR™ (say
Q@ = X). Call the H-line joining P andQ ~.

Q
L(7) =/ ds.
P
Also, ds = Vdg? = 2V dede - 2dz L o
1-¢¢  (1—22?)
X
dt 1+ X
= 2 — = 1 T~
() /t:olftz 8T

IMeasured according s or do2.
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3.4 Geodesics

We want to find the paths which minimise distanceA\inWe shall use the calculus of
variations to minimise d
S
ds= [ —dt.
/ ’ / d

thus we wish to minimise

/ 2(I2 + y'2)1/2
1— (2% +y?)
Use polars, so that = r cos § andy = rsin 6, to get

2(i2+y~2)1/2

ds __
Now g7 = @

dt.

272 4 r24%)1/?

F:
1— 72

Thus, by the Euler-Lagrange equations

d
SF=F
dt
d
P =F
a6~

By applying a Mbbius map we may assume that= 0.

Now Fy = 0, so %Fé = 0. Now F; = (’zzlf:z"?, and evaluating at = 0 gives
thatF; = 0, sof = 0.

ThusinA, the geodesics are the hyperbolic lines. It is an obvious corollary that the
same result holds il .

N.B. GivenP, @Q € A, the distance fron® to Q) gives a metric (in metric space sense).

Theorem 3.11. Take P € A and fixr > 0. Then the hyperbolic circl€ with hy-
perbolic centreP and hyperbolic radiug: (that is {z € A : dpy,(P,2) = r})is a
Euclidean circle, but possibly with a different centre and radius.

Proof. We may assume thdt = 0 (otherwise apply a Mbius isometry — which pre-
serves both Euclidean and hyperbolic circles).

If h is Mdbius and inStab0 thenh(C) = C. But thenh is a rotation, sa is
rotationally invariant and thus a Euclidean circle. O

Theorem 3.12.In A, Euclidean circles are hyperbolic circles.

Proof. Given a Euclidean circl€’ in A, we may rotate it so that its centre is Bnso
we may assume that its centre isRnNow consider the Nbius isometries

cosht sinht
{(sinht cosht) [te R}
Considerg,(C'). Fort > 0, the centre ofy(C') > 0 and fort < 0 the centre of
g:(C) < 0. So3t' € R such that the centre @t (C) is 0.

We may now assume théat is centred aboub. C is now rotationally invariant
about0 — but these are Bbius isometries, so thét is a hyperbolic circle. O

The obvious corollary is that if/, Euclidean circles are hyperbolic circles.
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Theorem 3.13. Any invertible holomorphic mag: A — A (or H — H) is Mobius.
Any isometryA — A (or H — H) is either holomorphic or has a holomorphic
conjugate.

Idea of proof. g preservess? and thus geodesics. So it takéslines toH-lines. Then
show thaty is determined by 3 points. Then show that 2 triples can be mapped to each
other by a Mybius transformation. O

3.5 Hyperbolic Trigonometry
We now show another model of the hyperbolic plane RfhconsiderQ defined by
2?2 + 1% — 22 = —1 andz > 0. Define a map) fromQ to A,

T+ Yy
z4+1°

Then hyperbolic lines in the disc correspond to planes thraughich cut. We
define a new dot product a3,

x a
< yl,|0b >:ax+by—cz.
z c

T
Q=Ru=|y| eR®|uu=-1,2>0
z

(z,y,2) —

Then

There is a notion of cross product such that

Uy vV w1
w.(v X w)=|ug v2 wa,
Uz V3 ws

with the properties that x w = —w x v and(z x y).(z x t) = (x.t)(y.2) — (z.2)(y.t).
Consider the group' of linear maps which preserve the dot product with determi-
nant+1. ThenA € T'iff ATJA = J, where

10 0
J=10 1 0 |, asbhefore.
0 0 -1

The positive determinant preverdsfrom flipping 2 to its opposite with: < 0.

Proposition 3.14. Elements of" correspond by) to Mobius isometries cA. (That is,
givenA € I, Ay~ is Mobius.)

Proof. First we construct a Riemannian metric @nsuch thaty is an isometry —
do? = dz? + dy? — dz? does the trick. It is not Riemannian @& (it's Lorentzian),
but its restriction td? is Riemannian. Of, x dz + y dy — z dz = 0, substitute forlz
in do2.
Let( = ¢¥(z,y,2) = % Now
(z+1)dz—zdz+1(z+1)dy —ydz

d¢ = Gr1)? :
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and onA ds? = (‘if%‘g)i. Substitute away... it works!
Now, supposd. is a plane inR? with 0 € L andL N Q # (. If (0,0,1) € L,
theny (L N Q) is a straight lineX{ + un = 0, with { = £ + . For generall, 3
many A € I' such that0,0,1) € A(L). Now A(L) — a hyperbolic line, say/, so
L — ¢ A~1y~=Y(M), which is a hyperbolic line. O

We can usé? to derive formulae in\.

Proposition 3.15. If {,(; € A, with ¢ = ¥(u) and {1 = ¥(u1) thendist(¢, (1) =
cosh™! —u.uy.

Proof. The LHS is invariant under Bbius isometries and the RHS is invariant under
I'. Therefore we may assume tiat= 1 so thatu; = (0,0,1). Then if¢ = %
—u.uy = z. Now cosh dist(0, {) = z, S0 we have proved that

1+¢]

dist(0,¢) = log ‘

1—|¢l}

3.6 Hyperbolic Trigonometry

In Q we have:

A, B, C € Qanda, 8, v are the angles in the image i
We want to find these formulae, analogous to those found in the spherical case:

sin acsin 3 cosh ¢ = cosy + cos a cos 8
sinh a sinh b cosy = — cosh ¢ 4+ cosh a cosh b
sina sinb sin ¢

sinha  sinh 3 - sinh ~y

We can maken; - n; = 1, since vectors pointing out of the cone are positive.

Lemma 3.16.
n; x ny = —sinyC
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Unfinished

If you've got this far... the book by Rees is probably the best for this course. When
you've read and understood it, you can complete these notes and remove all of the
errors in the previou®/ pages.

Have fun,
Paul
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