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Introduction

These notes are based on the course “Methods” given by Dr. E.P. Shellard in Cam-
bridge in the Michælmas Term 1996. These typeset notes are totally unconnected with
Dr. Shellard. They are more vaguely based on the course than my notes usually are,
and I have mainly used Dr. Shellard’s notes to get a sense of ordering and content.

Other sets of notes are available for different courses. At the time of typing these
courses were:

Probability Discrete Mathematics
Analysis Further Analysis
Methods Quantum Mechanics
Fluid Dynamics 1 Quadratic Mathematics
Geometry Dynamics of D.E.’s
Foundations of QM Electrodynamics
Methods of Math. Phys Fluid Dynamics 2
Waves (etc.) Statistical Physics
General Relativity Dynamical Systems
Combinatorics Bifurcations in Nonlinear Convection

They may be downloaded from

http://www.istari.ucam.org/maths/ .

v

http://www.istari.ucam.org/maths/
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Chapter 1

Fourier series

1.1 Properties of sine and cosine

Consider the set of functions

gn(x) = cos
nπx

L
hn(x) = sin

nπx

L

with n ∈ N. These functions are periodic on[0, 2L] and are alsomutually orthog-
onal:

∫ 2L

0

sin
nπx

L
sin

mπx

L
dx =

{
Lδmn m,n 6= 0
0 m = n = 0.∫ 2L

0

sin
nπx

L
cos

mπx

L
dx = 0∫ 2L

0

cos
nπx

L
cos

mπx

L
dx =

{
Lδmn m,n 6= 0
2Lδ0n m = 0.

These properties are easy to verify by direct integration.
In fact the functionsgn, hn form acomplete orthogonal set; they span the space of

functions periodic on[0, 2L].

1.2 Definition of Fourier series

We can expand any sufficiently well-behaved real periodic functionf(x) with period
2L as

f(x) =
1
2
a0 +

∞∑
n=1

an cos
πnx

L
+

∞∑
n=1

bn sin
πnx

L
, (1.1)

wherean andbn are constants such that the series is convergent for allx. They are
calledFourier coefficientsand can be found using the results on orthogonality ofsin
andcos:

1



2 CHAPTER 1. FOURIER SERIES

∫ 2L

0

f(x) sin
mπx

L
dx =

∞∑
n=1

bnδnm = Lbm∫ 2L

0

f(x) cos
mπx

L
dx = Lam.

Note that the1
2a0 is (1.1) is not a typo, but the12 is required for the above integral

to work for alln. Note also that the particular interval used doesn’t matter, provided it
is of length2L.

Example: sawtooth wave

Definef(x) by
f(x) = x − L < x ≤ L

and letf be periodic elsewhere. We have

an =
1
L

∫ L

−L

x cos
nπx

L
dx = 0 (odd function),

but

bn =
2
L

∫ L

0

x sin
nπx

L
dx =

2L
nπ

(−1)n+1 (integrate by parts).

Therefore the Fourier series is

f(x) =
2L
π

(
sin

πx

L
− 1

2
sin

2πx
L

+
1
3

sin
3πx
L

+ . . .

)
.

We can plot the approximation

f(x) ≈ 2L
π

N∑
i=1

(−1)i+1 sin
iπx

L
.

This is shown in figure 1.1. We see that asN increases the following occurs.

• The approximation improves away from the discontinuity — it is convergent
wheref is continuous.

• The Fourier series tends to0 atx = L — the midpoint of the discontinuity.

• The Fourier series has a persistent overshoot atx = L of approximately9%
(Gibbs’ phenomenon).

1.2.1 The meaning of good behaviour

The Dirichlet conditions are sufficiency conditions for a well-behaved functionf(x) to
have a convergent Fourier series.

Theorem 1.1. If f(x) is a bounded periodic function with period2L with a finite num-
ber of maxima, minima and discontinuities in[0, 2L] then its Fourier series converges
to f(x) at all points wheref is continuous. At discontinuities the series converges to
the midpoint of the discontinuity:12 (f(x−) + f(x+)).
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Figure 1.1: Fourier series approximation showing Gibbs’ phenomenon (L = 1)

Proof. Omitted.

Note that these are very weak conditions (compare Taylor’s theorem). Pathological
functions (e.g.x−1, sinx−1) are excluded. The converse to this theorem is not true:
sinx−1 has a convergent Fourier series.

1.3 Complex Fourier series

It is obvious that we can rewrite (1.1) as

f(x) =
∑
n∈Z

cne
ınπx

L ,

where

cn =
1

2L

∫ 2L

0

f(x)e−
ınπx

L dx.

This is sometimes useful (and also makes the analogy with Fourier transforms
slightly more obvious).

1.4 Sine and cosine series

Consider a functionf(x) defined only on the half interval[0, L]. We can extend its
range in two obvious ways by making it either odd or even on[−L,L].

If we make it odd then we putan = 0 and

bn =
2
L

∫ L

0

f(x) sin
nπx

L
dx
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in (1.1).
If we make it even thenbn = 0 and

an =
2
L

∫ L

0

f(x) cos
nπx

L
dx.

1.5 Parseval’s theorem

This is a relation between the average of the square of a function and its Fourier coef-
ficients.

∫ 2L

0

f(x)2 dx =
∫ 2L

0

(
1
2
a0 +

∞∑
n=1

an cos
πnx

L
+

∞∑
n=1

bn sin
πnx

L

)2

dx

=
∫ 2L

0

(
1
4
a2
0 +

∞∑
n=1

a2
n cos2

πnx

L
+

∞∑
n=1

b2n sin2 πnx

L

)
dx

= L

(
a2
0

2
+

∞∑
n=1

(
a2

n + b2n
))

.

This is also called acompleteness relation.

Example: sawtooth wave

Recall the sawtooth wave (page 2). Here we hadan = 0 andbn = 2L
nπ (−1)n+1. Then

applying Parseval’s relation gives

2
3
L3 =

∫ L

−L

x2 dx = L

∞∑
n=1

4L2

n2π2
,

and so
∞∑

n=1

n−2 =
π2

6
.



Chapter 2

The Wave Equation

2.1 Waves on an elastic string

Consider small displacements on a stretched string with the endpoints fixed and the
initial conditions (displacement and velocity) given.

Resolve horizontally to get

T1 cos θ1 = T2 cos θ2.

Now for smallθ, cos θ ≈ 1− 1
2θ

2, and soT1 = T2 with errorO( ∂y
∂x )2.

Resolving vertically,

FT = T1 sin θ1 + T2 sin θ2 = T

(
∂y

∂x

∣∣∣∣
x+dx

− ∂y

∂x

∣∣∣∣
x

)
= T

∂2y

∂x2
dx.

Therefore (from Newton II)

µdx
∂2y

∂t2
= T

∂2y

∂x2
dx,

and so
∂2y

∂t2
=
T

µ

∂2y

∂x2
.

This is the wave equation, withc =
√

T
µ . In general, the 1D wave equation is

∂2y

∂t2
= c2

∂2y

∂x2
. (2.1)

5
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2.2 Separation of variables

We want to solve (2.1) given theboundary values

y(0, t) = 0 y(L, t) = 0

and theinitial conditions

y(x, 0) = p(x)
∂y

∂t

∣∣∣∣
(x,0)

= q(x).

We try a substitutiony = X(x)T (t) in (2.1). This gives

c−2 T̈

T
=
X ′′

X
.

Since the LHS depends only ont and the RHS only onx they must both be equal
to a constantλ.

We have therefore split the PDE into two ODEs:

X ′′ − λX = 0 and T̈ − c2λT = 0.

We solve thex equation first:

X ′′ − λX = 0 X(0) = X(L) = 0.

Since we don’t know anything aboutλ we have to learn something...

• If λ > 0 the solution isX = A cosh
√
λx + B sinh

√
λx. If we apply the

boundary values now we see thatA = B = 0 — so this is not a useful solution.

• If λ = 0 the solution isX = A+Bx, and as beforeA = B = 0 on substituting
the boundary values.

The only possibility now isλ = −ν2, which gives solutions

X = Aν cos νx+Bν sin νx.

Applying the boundary values givesA = 0 andBν sin νL = 0. If Bν = 0 then the
entire solution is trivial, so the only useful solution has

sin νL = 0 ⇒ ν =
nπ

L
⇒ λ = −n

2π2

L2
.

These special values ofλ areeigenvaluesand theireigenfunctionsare

Xn = Bn sin
nπx

L
.

These are thenormal modes. Now all we need to do is to solve thet equation using
these values forλ:

T̈ +
n2π2c2

L2
T = 0.

This has a general solution

Tn = Cn cos
nπct

L
+Dn sin

nπct

L
.
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Thus we have aspecific solutionof (2.1): yn = TnXn. Since (2.1) is linear we can
add solutions to get the general solution

y(x, t) =
∞∑

n=1

(
Cn cos

nπct

L
+Dn sin

nπct

L

)
sin

nπx

L
. (2.2)

This satisfies the boundary values by construction. The only thing left to do is to
satisfy the initial conditions:

y(x, 0) = p(x) =
∞∑

n=1

Cn sin
nπx

L

∂y

∂t

∣∣∣∣
(x,0)

= q(x) =
∞∑

n=1

Dnnπc

L
sin

nπx

L
.

Cn andDn can now be found using the orthogonality relations forsin. They turn
out to be

Cn =
2
L

∫ L

0

p(x) sin
nπx

L
dx Dn =

2
nπc

∫ L

0

q(x) sin
nπx

L
dx.

2.3 Oscillation energy

A vibrating string has both KE and PE. The KE is

1
2
µ

∫ L

0

ẏ2 dx

and the PE is

T

∫ L

0

(√
1 + y′2 − 1

)
dx ≈ 1

2
T

∫ L

0

y′2 dx.

Sincec2 = Tµ−1 the total sum is

E =
1
2
µ

∫ L

0

ẏ2 + (cy′)2 dx,

which eventually evaluates as

1
4
µ

∞∑
n=1

n2π2c2

L2

(
C2

n +D2
n

)
=

∑
normal modes

energy in mode.

The energy is conserved in time — there is no dissipation. Further, there is no
transfer of energy between modes.
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2.4 Solution in characteristic co-ordinates

Consider the 1D wave equation (2.1)

∂2y

∂x2
− c−2 ∂

2y

∂t2
= 0

and make the change of variablesξ = x+ ct, η = x− ct. Using the chain rule this
becomes

4
∂2y

∂ξ∂η
= 0,

with a general solutiony(ξ, η) = f(ξ) + g(η). Thus the general solution to (2.1) is

y(x, t) = f(x+ ct) + g(x− ct).

This is a superposition of left and right moving waves.
Travelling waves (e.g.g(x − ct)) move with a constant speedc and retain their

shape along characteristics (e.g. the linex− ct = const).

2.5 Wave reflection and transmission

Suppose there is a density discontinuity in the string, say atx = 0. This becomes a
discontinuity inc (althoughT is a constant). Let

c =

{
c− x < 0
c+ x > 0.

Consider a given harmonic incident waveA exp ıω
(
t− x

c−

)
. We want to find the

reflected waveB exp ıω
(
t+ x

c−

)
and the transmitted waveC exp ıω

(
t− x

c+

)
.

The string does not break atx = 0, so thaty is continuous for allt. This gives
A+B = D.

We further want the forces to balance atx = 0:

T
∂y

∂x

∣∣∣∣
x=0−

= T
∂y

∂x

∣∣∣∣
x=0+

,

and so∂y
∂x is continuous for all time. This condition gives

− A

c−
+
B

c−
= −D

c+
.
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We can now solve to find

B =
c+ − c−
c+ + c−

A D =
2c+

c+ + c−
A.

Note that the phase of the wave can (and generically does) change.
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Chapter 3

Green’s Functions

3.1 The Dirac delta function

Define a generalised functionδ(x− ξ) with the propertiesδ(x− ξ) = 0 for x 6= ξ and∫ ∞

−∞
δ(x− ξ) dx = 1.

These two properties imply∫ ∞

−∞
f(x)δ(x− ξ) dx = f(ξ).

Note that

• δ is not a function, but is classified as a distribution.1

• It is always employed in an integrand as a linear operator, where it is well defined.

3.1.1 Representations

We can represent the delta function as some sort of functional limit. A discontinuous
representation is

δε(x) =


0 x < − ε

2

ε−1 − ε
2 ≤ x ≤ ε

2

0 x > ε
2 ,

and a continuous representation is

δε(x) =
1

ε
√
π
e−

x2

ε2 .

These are obviously both withε→ 0. Examples withn→∞ are

δn(x) =
sinnx
πx

=
1
2π

∫ n

−n

eıkx dx

1See PDE’s IIB for more details (than you could possibly want).

11
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andδn(x) = n
2 sech2 nx.

The Heaviside step function is

H(x) =

{
0 x < 0
1 x ≥ 0,

and can be seen to be

H(x) =
∫ x

−∞
δ(ξ) dξ.

Thus (in some suitably refined sense)H ′(x) = δ(x). We can also define the deriva-
tive of the delta function such that we can integrate it by parts:

∫ ∞

−∞
f(x)δ′(x− ξ) dx = [f(x)δ(x− ξ)]∞−∞ −

∫ ∞

−∞
f ′(x)δ(x− ξ) dx = −f ′(ξ).

3.2 Second order linear ODEs

We wish to solve the general second order linear ODE:

Ly ≡ y′′ + b(x)y′ + c(x)y = f(x). (3.1)

We know that the homogeneous equation (withf ≡ 0) has two linearly independent
solutionsy1 andy2, which give the homogeneous equation thecomplementary function
solutionyc = Ay1 +By2. The inhomogeneous equation also has a particular solution
yp. The general solution of (3.1) is thenyc + yp. Two boundary values (or initial
conditions) are required to findA andB.

We hope to solve the boundary value problem. We will restrict tohomogeneous
boundary values:y(a) = y(b) = 0. More general values can be turned into homoge-
neous ones by judicious use of the complementary function.

3.3 Definition of Green’s function

The Green’s functionG(x, ξ) is the solution of

LG(x, ξ) = δ(x, ξ)

with G ≡ 0 at endpoints. By linearity we can now construct the solution of (3.1)
for generalf :

y(x) =
∫
f(ξ)G(x, ξ) dx.

Now y clearly satisfies the homogeneous boundary values, and it is also easy to see
thatLy = f .
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3.3.1 Defining properties

G(x, ξ) splits into two halves

G(x, ξ) =

{
G1(x, ξ) a < x < ξ

G2(x, ξ) ξ < x < b.

such thatG solves the homogeneous equation forx 6= ξ, is continuous atx = ξ

and satisfies[G′]ξ
+

ξ− = 1. Note that there are many different conventions for this jump
condition.

3.4 ConstructingG(x, ξ): boundary value problems

There is a solution to the homogeneous problemy−(x) such thaty−(a) = 0. Then
G1(x, ξ) = Cy−(x). Similarly there is a solutiony+(x) such thaty+(b) = 0 and so
G1(x, ξ) = Dy+(x). Now impose continuity atx = ξ to give

Cy−(ξ) = Dy+(ξ).

The other equation comes from the jump condition:

Dy′+(ξ)− Cy′−(ξ) = 1.

We can solve these equations to give

C =
y+(ξ)
W (ξ)

D =
y−(ξ)
W (ξ)

,

whereW (ξ) is the Wronskian:

W (ξ) = y−(ξ)y′+(ξ)− y+(ξ)y′−(ξ).

Thus

G(x, ξ) =

{
y−(x)y+(ξ)

W (ξ) x < ξ
y+(x)y−(ξ)

W (ξ) x > ξ,

and the solution ofLy = f , y(a) = y(b) = 0 is

y(x) = y+(x)
∫ x

a

f(ξ)y−(ξ)
W (ξ)

dξ + y−(x)
∫ b

x

f(ξ)y+(ξ)
W (ξ)

dξ.

3.4.1 Derivation of jump conditions

First supposeG(x, ξ) is discontinuous atx = ξ, so that nearx = ξ,

G(x, ξ) ∝ H(x− ξ) G′(x, ξ) ∝ δ(x− ξ) G′′(x, ξ) ∝ δ′(x− ξ).

Then the equationLG = δ(x− ξ) becomes

αδ′(x− ξ) + βδ(x− ξ) + γH(x− ξ) = δ(x− ξ),
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which is certainly not possible. SoG(x, ξ) is continuous atx = ξ. The jump
condition inG′ can be derived by integratingLG = δ(x− ξ) acrossx = ξ:

[G′]ξ
+

ξ− + b(ξ) [G]ξ
+

ξ− +
∫ ξ+

ξ−
(c− b′)G dx︸ ︷︷ ︸

→0 asξ−,ξ+→ξ

= 1.

Therefore
[G′]ξ

+

ξ− = 1.

3.4.2 Example

Suppose we wish to solve

y′′ = f(x) y(0) = y(L) = 0.

The homogeneous solutions arey = Ax+B and soG1 = Cx andG2 = D(x−L).
Applying the continuity condition

Cξ = D(ξ − L)

and then the jump condition
D − C = 1

givesD = ξ
L andC = ξ−L

L .

3.5 ConstructingG(x, ξ): initial value problems

Greens’ function methods can also solve initial value problems. Suppose we wish to
solveLy = f , y(0) = y′(0) = 0. SplitG intoG1 andG2 as before.

SinceG1(a) = G′1(a) = 0 andLG1 = 0 thenG1 ≡ 0. ThereforeG2(ξ) = 0 and
G′2(ξ) = 0, so that

G(x, ξ) =

{
0 x < ξ
y(x)
y′(ξ) x > ξ,

whereL(y) = 0 andy(ξ) = 0. The solution is then

y(x) = y(x)
∫ x

a

f(ξ)
y′(ξ)

dξ.

We see that causality is built in to the solution.

3.5.1 Example

Solvey′′ − y = f(x), x > 0, y(0) = y′(0) = 0.
In x < ξ,G(x, ξ) = 0 and inx > ξ we have

G(x, ξ) = Aex +Be−x.

Continuity atx = ξ givesG(x, ξ) = C sinh(x− ξ) in x > ξ. Now y′(ξ) = C and
soC = 1. Hence
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y(x) =
∫ x

0

f(ξ) sinh(x− ξ) dξ.
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Chapter 4

Sturm-Liouville Theory

4.1 Self-adjoint form and boundary values

We wish to solve the general eigenvalue problem

Ly = y′′ + b(x)y′ + c(x)y = −λd(x)y (4.1)

with specified boundary conditions. This often occurs after separation of variables
in a PDE. One classic example is the Schrödinger equation:(

− ~2

2m
∇2 + V (x)

)
ψ = ı~

∂ψ

∂t
.

We try a solutionψ = U(x)e−
ıEt

~ . Substituting into the Schrödinger equation
gives (

− ~2

2m
∇2 + V (x)

)
U = EU.

E is the energy eigenvalue.1

The analysis greatly simplifies isL is in self-adjoint form: that is if (4.1) can be
re-expressed inSturm-Liouville form:

Ly = −(py′)′ + qy = λwy, (4.2)

where theweighting functionw(x) is assumed positive. We can easily put (4.1) in
Sturm-Liouville form: multiply byexp

∫ x
b(ξ) dξ.

Definition 4.1. L is self-adjoint on the intervala < x < b iff for all pairs of functions
y1, y2 satisfying appropriate boundary values we have∫ b

a

y1Ly2 dx =
∫ b

a

y2Ly1 dx. (4.3)

If we substitute (4.2) into (4.3) we see that “appropriate boundary values” means

[−y1py′2 + y2py
′
1]

b
a = 0,

which includesy(a) = y(b) = 0, y′(a) = y′(b) = 0, y + ky′ = 0, y(a) = y(b),
p(a) = p(b) = 0 or combinations of the above.

1See the Quantum Mechanics course for more details.

17
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4.2 Eigenfunction expansions

Self-adjoint operators have three important properties.

4.2.1 Real eigenvalues

SupposeLyn = λnyn, and soLy∗n = λ∗ny
∗
n. Then

∫ b

a

y∗nλnwyn dx−
∫ b

a

λ∗nyny
∗
n dx = 0

and soλ∗n = λn, since
∫
w |yn|2 6= 0 for non-trivialw, yn.

4.2.2 Orthogonal eigenfunctions

Supposeλm 6= λn. Then

(λn − λm)
∫ b

a

wymyn dx = 0

and so
∫
wymyn = 0. yn, ym are thus orthogonal on[a, b] wrt the weighting

functionw(x).

4.2.3 Complete eigenfunctions

We can write sufficiently nicef(x) as

f(x) =
∑

n

anyn(x),

with

∫ b

a

f(x)yn(x) dx = an

∫ b

a

wy2
n dx.

The eigenfunctions are sometimes normalised to unit modulus for convenience.
We also have Parseval’s identity, which in this form is

∫ b

a

(
f −

∞∑
n=1

anyn

)2

w dx = 0,

or ∫ b

a

wf2 dx =
∞∑

n=1

∫ b

a

wy2
n dx. (4.4)

The expansions needed converge if the eigenfunctions are complete. If the eigen-
functions are not complete then the LHS of (4.4) is greater than its RHS. This isBessel’s
inequality.
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4.3 Example: Legendre polynomials

Consider Legendre’s equation

(1− x2)y′′ − 2xy′ + λy = 0, (4.5)

which can be rewritten in Sturm-Liouville form as

− d
dx
(
(1− x2)y′

)
= λy.

It is motivated by separation of variables in spherical polars. The boundary condi-
tions are thaty is finite atx = ±1. We try a power series solution aboutx = 0,

y =
∞∑

n=0

cnx
n,

which gives (prove this)

cn+2 =
n(n+ 1)− λ

(n+ 1)(n+ 2)
cn.

Specifyingc0 andc1 yields linearly independent solutions, one of which is odd and
the other even.

As n → ∞, cn+2
cn

→ 1 and so we get a geometric series, which is divergent at
x = ±1. One of the two series must terminate and soλ = m(m+ 1) for m ∈ N.

The eigenfunctions on−1 ≤ x ≤ 1 are theLegendre polynomialsPn. Pn is usually
normalised so thatPn(1) = 1: with this normalisation we have

n λ Pn

0 0 1
1 2 x
2 6 1

2 (3x2 − 1)
3 12 1

2 (5x3 − 3x)

The orthogonality relation is∫ 1

−1

PnPm dx =
2

2n+ 1
δmn.

4.4 Inhomogeneous boundary value problem

(L − µw)y = f(x).

Consider the above inhomogeneous ODE with homogeneous boundary values and
a fixedµ (not an eigenvalue).

Now we can expandf(x) in terms of eigenfunctions ofL:

f(x) = w(x)
∞∑

n=1

anyn,

where

an =
∫ b

a

fyn dx
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and the eigenfunctions are normalised to
∫
y2

n dx = 1. We seek a solution

f =
∑

n

bnyn.

Substituting we findbn(λn − µ) = an (by orthogonality) and so providedµ is not
an eigenvalue,

y =
∑

n

an

λn − µ
yn(x) =

∑
n

yn(x)
λn − µ

∫ b

a

fyn dx′.

If µ is an eigenvalue then this is a resonant frequency: the amplitude grows without
limit and there is no solution consistent with the boundary values.



Chapter 5

Applications: Laplace’s
Equation

We seek to solve

∇2φ = 0 (5.1)

by the method of separation of variables.
φ can represent the electrostatic potential, gravitational potential, heat and so on.

(5.1) is the homogeneous version of thePoisson equation∇2φ = ρ.
Boundary values can be given on

• φ : Dirichlet boundary conditions

• n · ∇φ : von Neumann boundary conditions,

specified on a boundary surface in 3D, boundary curve in 2D or endpoints in 1D.

5.1 Cartesians

In Cartesians,∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . We seek a solutionφ = X(x)Y (y)Z(z) and
get

X ′′

X
= −Y

′′

Y
− Z ′′

Z
= λl

Similarly Y ′′

Y = λm and Z′′

Z = λn, whereλl + λm + λn = 0. We can then find
eigenfunction solutions satisfying the given boundary values:φlmn = XlYmZn, so
that then the general solution is

φ =
∑
lmn

clmnXlYmZn.

21
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Example: heat conduction

Solve the system

∇2φ = 0 in z > 0
φ = 0 x = 0, 1 or y = 0, 1
φ = 1 atz = 0
φ→ 0 asz →∞.

This models heat conduction on a semi-infinite square bar.
We separate variables to getXn = sin lπx andYm = sinmπx, with λl = −l2π2

andλm = −m2π2. Then we have

Z ′′

Z
= π2(l2 +m2),

and soZl,m = e−πz
√

l2+m2
(to satisfy the bc at infinity). Therefore

φ =
∑
l,m

Al,m sin lπx sinmπy e−πz
√

l2+m2
.

To findAl,m use the boundary condition atz = 0:

1 =
∑
l,m

Al,m sin lπx sinmπy.

Now ∫ 1

0

sin lπt sinmπtdt =
1
2
δlm

and so ∫ 1

0

∫ 1

0

sin lπx sinmπy dxdy =
Al,m

4
.

Thus

Al,m =

{
16

π2lm l,m odd

0 otherwise.

Note that in this case we havedegenerate eigenvalues: bothX1Y2 andX2Y1 give
the same constant in thez equation. Despite this, we can always choose orthogonal
eigenfunctions.

5.2 Plane polars

In plane polars, Laplace’s equation becomes

1
r

∂

∂r

(
r
∂φ

∂r

)
+

1
r2

∂φ

∂r2
= 0. (5.2)
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We seekφ = R(r)Θ(θ), which gives

r(rR′)′

R
= λ

Θ′′

Θ
= −λ.

Consider a drum surface with a distorted rim, with unit radius. The height of the
surface is given byφ such that∇2φ = 0 andφ(1, θ) = f(θ).

Now theθ equation is

Θ′′ + λΘ = 0
and sinceΘ must be periodic,λ = n2 for n ∈ N.
The solution to this equation is

Θn = an cosnθ + bn sinnθ.
If n = 0 then the solution isΘ0 = a0 + b0θ : b0 = 0 from the periodic boundary

conditions.
Ther equation is

r(rR′)′ − n2R = 0,
which has solutionsR = cnr

n + dnr
−n. Thusdn = 0 to keep the solution finite

in r < 1. Whenn = 0 the solution isc0 + d0 log r and sod0 = 0. Thus

φ(r, θ) =
1
2
a0 +

∞∑
n=1

(an cosnθ + bn sinnθ) rn.

an andbn can be found usingφ(1, θ) = f(θ).

5.3 Spherical polars

The Laplace equation becomes

1
r2

∂

∂r

(
r2
∂Φ
∂r

)
+

1
r2

∂

∂θ

(
sin θ

∂Φ
∂θ

)
+

1
r2 sin2 θ

∂2Φ
∂φ2

= 0. (5.3)

We seek separable solutionR(r)Θ(θ)ψ(φ) and specialise to the axisymmetric case:
ψ = 1. Then we have

(r2R′)′ − λR = 0 (sin θΘ′)′ + λ sin θ = 0.
Puttingx = cos θ in theθ equation gives

d
dx

(
(1− x2)

dΘ
dx

)
+ λΘ = 0.

This is Legendre’s equation (4.5), and so from the earlier analysis we knowλn =
n(n+ 1). The radial equation becomes

(r2R′)′ − n(n+ 1)R = 0,
Trying a solutionrm givenm = n orm = −n−1, so the eigenfunction expansion

of Φ is

Φ =
∑

n

(
Anr

n +Bnr
−n−1

)
Pn(cos θ).

An andBn can be determined from boundary conditions on a spherical surface.
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5.3.1 ** The full glory of spherical polars **

If we drop the assumption of axisymmetry things become more complicated. The az-
imuthal eigenfunctions areψm = eımφ and the polar eigenfunctionsPm

l (cos θ) satisfy
theassociated Legendre equation

d
dx

(
(1− x2)

dΘ
dx

)
+
(
l(l + 1)− m2

1− x2

)
Θ = 0.

We combine the azimuthal and polar eigenfunctions to get thespherical harmonics:

Ylm(θ, φ) =

√
(2l + 1)!(l −m)!

4π(l +m)!
Pm

l (cos θ)eımφ,

for −l ≤ m ≤ l. The radial equation is the same as before, giving

Rlm = almr
l + blmr

−l−1.



Chapter 6

Calculus of Variations

6.1 The problem

Suppose we wish to minimise

J [y] =
∫ x2

x1

F (x, y, y′) dx (6.1)

over all functionsy such thaty(x1) = y1 andy(x2) = y2. This is clearly not just
an ordinary calculus minimization, but something slightly harder...

6.2 Euler-Lagrange equations

We will do this, as in ordinary minimization problems, by finding a function such that
the first order variation ofJ is zero. So, supposey(x) is the answer and perturb it
slightly toy(x) + δy(x), whereδy(x1) = δy(x2) = 0. Then

δF =
∂F

∂y
δy +

∂F

∂y′
δy′ + higher order.

Hence

δJ =
∫ x2

x1

δy
∂F

∂y
+ δy′

∂F

∂y′
dx

=
∫ x2

x1

δy

(
∂F

∂y
− d

dx
∂F

∂y′

)
dx+

[
δy
∂F

∂y′

]x2

x1︸ ︷︷ ︸
=0

.

Thus for the first order variation to be zero we require

∂F

∂y
=

d
dx

∂F

∂y′
, (6.2)

sinceδy is arbitrary. This is anEuler-Lagrange equation.
One variant on this that is sometimes useful: (6.2) is equivalent to

d
dx

(
F − y′

∂F

∂y′

)
=
∂F

∂x
. (6.3)

25
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To prove this note thatddx = ∂
∂x + y′ ∂

∂y + y′′ ∂
∂y′ .

There are three special cases:

• y′ absent gives∂F
∂y = 0, which can be solved fory.

• y absent gives∂F
∂y′ = const.

• x absent givesF − y′ ∂F
∂y′ = const (use (6.3)).

6.3 Examples

Geodesics

In EuclideanR2 we have a metricds2 = dx2 + dy2 and we seek to minimise∫ x2

x1

ds =
∫ x2

x1

√
1 + y′2 dx.

We can immediately apply the Euler-Lagrange equations, noting thaty is absent
and so

y′√
1 + y′2

= const,

which reduces toy′ = const and so the geodesics inR2 are straight lines (which is
reassuring, if nothing else).

You can do something similar on the sphere, with

ds2 = dθ2 + sin2 θdφ2

and show that the geodesics are great circles.

Brachistochrone

Consider a frictionless bead on a wire pathy(x) connecting two pointsA andB. What
path gives the shortest travel time fromA toB?

AssumeA is aty = 0. The time of travel is then

T [y] =
∫ B

A

ds
V

=
∫ B

A

ds√
2gy

=
1√
2g

∫ x2

x1

√
1 + y′2

y
dx.

x is absent and the Euler-Lagrange equations eventually give

y(1 + y′2) = const,

or

x = ±
∫ (

y

c− y

) 1
2

dy.

The substitutiony = c sin2 θ
2 = c

2 (1− cos θ) makes this integral doable and gives

x = ± c
2
(θ − sin θ)2.
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6.4 Principle of Least Action

The action of a system is given by

S =
∫
Ldt,

whereL = KE − PE. Trajectories minimize the action. Now suppose that KE=
1
2mẋ

2 and PE= V (x). Then

L =
1
2
mẋ2 − V (x)

and the Euler-Lagrange equations give

d
dt

(mẋ) = V ′,

which ought to be familiar...
Sincet is absent, we know thatL− ẋ∂L

∂ẋ is constant — in fact it is the total energy.
Something similar is Fermat’s principle, that light follows the path of minimum

time.
Least action principles are important all over physics — see the General Relativity

and Electrodynamics courses for more examples.

6.5 Generalisations

The trick with all of these is just to make the variation and see what happens, integrating
by parts where necessary.

The generalisation to several dependent variables is easiest: extremise

J [y] =
∫ x2

x1

F (x,y,y′) dx.

Performing the variation gives

∂F

∂yi
=

d
dx

∂F

∂y′i
.

Generalisations to several dependent variables exist: but it’s easiest just to do the
variation explicitly.

The same is true of generalisations to more derivatives inF — just do the variation
and integrate by parts.

6.6 Integral constraints

Suppose we wish to extremiseJ =
∫
F (x, y, y′) dx subject to the constraintK =∫

G(x, y, y′) dx constant. This is done by using Lagrange multipliers: extremising

I =
∫
F (x, y, y′) + λG(x, y, y′) dx.

Examples are on the problem sheet.
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Chapter 7

Cartesian Tensors inR3

Summation convention is used throughout this chapter unless explicitly stated other-
wise.

7.1 Tensors?

A tensor is an object represented in a particular co-ordinate system by a set of functions
called components such that the components in a new co-ordinate system are related to
the components in the old co-ordinates in a prescribed way.

We will consider only orthogonal co-ordinate systems, and restrict the transforma-
tions to rotations and reflexions. More general transformations and co-ordinate systems
are possible — see the General Relativity course for details.

Consider a vectorx with componentsxi in a given orthogonal basis:

x = xiei.

Now consider new co-ordinatese′i, such that

e′i = (e′i · ej) ej ,

and denotee′i · ej ≡ lij . Now

δij = e′i · e′j = (likek) · (ljmem) = likljmδkm = likljk.

Also,

ei = (ei · e′p)e′p = lpie′p,

and so
x = xiei = xilpie′p.

Hencex′p = xilpi.

7.2 Transformation laws

• Scalarsremain invariant under a co-ordinate transformation.Scalarsare zero-
rank tensors.

29
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• A vectorA is a set of three functionsAi given in a particular co-ordinate system
with the transformation property

A′p = lpiAi,

so thatA′j is a vector in a co-ordinate system rotated byL. A vector is a1st rank
tensor.

• A second rank tensor comprises 9 functionsAij in a given co-ordinate system
such that

A′pq = lipljqAij .

• An nth rank tensor comprises3n functions of position such that

A′pq...r = lpilqj . . . lrkAij...k.

We can see that0 ↔ 0, which means that tensor equations are preserved by change
of co-ordinate system. To see this, supposeA andB are tensors withAij...k = Bij...k

in one co-ordinate system. ThenA−B is a tensor — it’s zero, and soA′pq...r−B′pq...r =
0 and henceA′pq...r = B′pq...r. This is why tensors are so useful.

7.3 Tensor algebra

Proof of all of these is obvious — just show that they obey the transformation law.

• If A is anth rank tensor then so isλA for scalarλ.

• If A andB arenth rank tensors then so isC = A+B.

• If A is annth rank tensor andB is anmth rank tensor then the outer product
defined by

Cij...kab...c = Aij...kBab...c

is an(n+m)th rank tensor.

• If Aijk...l is annth rank tensor then the contractionAiik...l is an(n − 2)th rank
tensor.

7.4 Quotient Laws

Theorem 7.1 (Quotient Theorem). If the inner product of some quantityA with an
arbitrary vectorK is annth rank tensor thenA is an(n+ 1)th rank tensor.

Proof. We know
Aij...kKi = Bj...k

In a new co-ordinate system

B′q...r = A′pq...rK
′
p

= lqj . . . lrkBj...k

= lqj . . . lrkAij...kKi

= lqj . . . lrkAij...klpiK
′
p,

and so, sinceK is arbitrary,A′pq...r = lpilqj . . . lrkAij...k.
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This theorem generalises to any type of product — inner, outer or a mixture thereof.
The proof is as above.

This can be used to identify the transformation properties of physical quantities, for
instance inOhm’s law

Ji = σijEj ,

whereJ is the current vector andE the electric field vector, then the conductivityσ
must be a tensor.

7.5 Isotropic tensors

Isotropic tensors are invariant under all co-ordinate transformations:

A′pq...r = lpilqj . . . lrkAij...k = Apq...r.

Scalars are clearly isotropic. As for vectors, supposeA′p = lpiAi = Ap. Then

(lpi − δpi)Ai = 0

for all lpi, soAi = 0.

Theorem 7.2. The most general isotropic second rank tensor inR3 is λδij .

Proof. λδij is clearly isotropic, so we must prove that it the the most general isotropic
second rank tensor inR3.

LetAij be isotropic, so that

A′pq = lpilqjAij = Apq.

Rotate by90◦ around thez-axis — i.e. take

L =

 0 1 0
−1 0 0
0 0 1


and then compare components. Do the same thing with they axis.

Theorem 7.3. The only isotropic third rank tensor is the alternatorεijk (or the product
of a scalar with the alternator).

Proof. The same as before, more or less.

Theorem 7.4. The most general isotropic fourth rank tensor is

Aijkl = λδijδkl + µδikδjl + νδilδjk.

7.5.1 Spherically symmetric integrals

Consider

Aij =
∫

r<a

xixj dV.

It is clearly isotropic, soAij = λδij . Now contract overi andj to get
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3λ =
∫

r<a

r2 dV =
4πa5

5
.

Therefore ∫
r<a

xixj dV =
4πa5

15
δij .

This is a surprisingly easy way of doing the above integral!

7.6 Symmetric and antisymmetric tensors

If Aij...k = Aji...k thenA is said to besymmetricin i andj. If Aij...k = −Aji...k then
A is antisymmetricor skew symmetricin i andj.

If this is true in one co-ordinate system then it is true in all co-ordinate systems
(exercise).

Any second rank tensor can be decomposed into the sum of an symmetric tensor
and an antisymmetric tensor:

Tij =
1
2
(Tij + Tji) +

1
2
(Tij − Tji). (7.1)

Symmetric second rank tensors can be diagonalised.
Antisymmetric second rank tensors inR3 have only three independent components:

Aij =

 0 a b
−a 0 c
−b −c 0

 = εijkvk,

wherevk = (c,−b, a). We can therefore continue the decomposition in (7.1) into

Tij =
1
3
Tkkδij + εijkvk + S̃ij ,

the sum of a scalar part, a vector part and an irreducible tensor part.

7.7 Physical Applications

Tensors have a very wide range of physical applications. The relevant courses are:

• Dynamics, Principles of Dynamics: angular momentum tensor, moment of iner-
tia tensor.

• Fluid Dynamics 2, Waves in Fluid and Solid Media, Theoretical Geophysics:
stress tensor, strain tensor.

• General Relativity: metric tensor, Riemann tensor, Ricci tensor.

• Electrodynamics: Electromagnetic field tensor, stress-energy tensor.
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Quite a lot of people sing Arfken’s praises; I am not one of them. Although it is useful
I think it tries to do too much. If nothing else though it could be used to kill small
mammals and it does have everything in this course in it. A good book to buy if you
only want to buy one book in the next two years. Or if you have a problem with mice.

Related courses

Most of the applied courses over the next two years use this course to some extent. You
have been warned!
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