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Chapter 1

Introduction to Bilinear Forms

This course is divided into two parts. The first part is about 2/3 of the course, and
covers quadratic phenomena using the tools of linear algebra. The orthogonal, unitary
and symplectic groups are introduced. The second part of the course looks at quadratic
phenomena in number theory.

1.1 Definition of a field

A field K is a set with two binary operations written+ and∗ satisfying these axioms :-

1. K is an Abelian group under+. The zero element of this group is written0.

2. K \ {0} is Abelian under∗. The identity element is written1.

3. a ∗ (b+ c) = a ∗ b+ a ∗ c for all a, b, c ∈ K.

Example. Examples of fields includeQ, C, Z/pZ (wherep is prime).

1.2 The characteristic of a field

Let K be a field. Then :-

Definition 1.1. For n ∈ Z, let

n ∗ 1 =



n times︷ ︸︸ ︷
1 + · · ·+ 1 if n > 0;

−

|n| times︷ ︸︸ ︷
(1 + · · ·+ 1) if n < 0;

0 if n = 0.

Definition 1.2. We say thatK has characteristic0 if n∗1 = 0 impliesn = 0. Otherwise
we say thatK has characteristicn if n is the least (strictly) positiven such thatn∗1 =
0.

Example. Z/pZ has characteristicp.

1



2 CHAPTER 1. INTRODUCTION TO BILINEAR FORMS

1.3 Some definitions

Definition 1.3. A bilinear formψ is a mapU × V 7→ K satisfying :-

1. If y = y0 is fixed, thenx 7→ ψ(x, y0) is linear inx.

2. If x = x0 is fixed, theny 7→ ψ(x0, y) is linear iny.

Example. If U = V = RN , ψ(X,Y ) =
∑N
i=1 xiyi is bilinear.

If V = C[a, b], takeψ : V × V 7→ R asψ(f, g) =
∫ b
a
f(x)g(x)dx.

If U , V are finite-dimensional then a bilinear form has an attached matrix . Fix
bases{d1, . . . , dm}, {e1, . . . , en} of U andV respectively.

Definition 1.4. The matrix ofψ relative to the bases{d1, . . . , dm}, {e1, . . . , en} is the
m× n matrixA = (ψ(di, ej)).

So if x ∈ U , y ∈ V thenψ(x, y) = xTAy.

1.4 Change Of Basis

SupposeU , V are finite dimensional vector spaces over a fieldK. Then given a bilinear
formψ : U × V 7→ K, and bases{d1, . . . , dm}, {e1, . . . , en} of U andV respectively
there is an associated matrixA = (ψ(di, ej)). If we take other bases{d′1, . . . , d′m},
{e′1, . . . , e′n}, then the matrix ofψ with respect to this basis isA′ =

(
ψ(d′i, e

′
j)

)
.

Lemma 1.5. There exist invertible matricesM (m×m) andN (n× n) such that :-

A′ = MTAN

Proof. Since thedj ’s andei’s form bases for their respective vector spaces

d′h =
m∑
i=1

Mihdi ande′l =
n∑
j=1

Njlej

Now,

a′hl = ψ(d′h, e
′
l) = ψ

 m∑
i=1

Mihdi,

n∑
j=1

Njlej


=

m∑
i=1

Mihψ

di, n∑
j=1

Njlej


=

m∑
i=1

n∑
j=1

MihNjlaij

=
(
MTAN

)
hl

BothM andN are clearly invertible, since thed′j ’s ande′i’s form bases for their re-
spective vector spaces.
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Corollary 1.6. A′ = R−1AN

Definition 1.7. The rank ofψ is the rank of its associated matrix for any choice of
bases. This is well defined due to(1.6)and linear algebra results.

Corollary 1.8. Givenψ we can always find bases ofU , V such that the matrix ofψ is
of the form :- (

Ir 0
0 0

)
wherer = rank(ψ)

If U = V , we choose the two new bases to be the same. We get :-

A = (ψ(ei, ej))

A′ =
(
ψ(e′i, e

′
j)

)
= MTAM

Definition 1.9. If A andA′ are related byA′ = MTAM thenA andA′ are said to
be congruent.

1.5 Relation between bilinear forms and dual space

Definition 1.10. Given a vector spaceV over a fieldK, thedual spaceV ∗ is defined
by

V ∗ = {α : V 7→ K, α linear}.

Some definitions. For all of these, takeψ : U × V 7→ K to be bilinear.

Definition 1.11. SupposeA ⊆ U . Then define

A⊥
R = {v ∈ V : ψ(u, v) = 0,∀u ∈ A}

Now takeB ⊆ V and define

B⊥
L = {u ∈ U : ψ(u, v) = 0,∀v ∈ B}

Definition 1.12. If we takeA = U or B = V , we get

U⊥
R = theright kernelofψ

= {v ∈ V : ψ(u, v) = 0,∀u ∈ U}

and

V ⊥
L = the left kernelofψ

= {u ∈ U : ψ(u, v) = 0,∀v ∈ V }
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Givenψ, we get two canonical linear maps :-

ψ̂L : U 7→ V ∗, ψ̂L(u) = (v 7→ ψ(u, v))

and
ψ̂R : V 7→ U∗, ψ̂R(v) = (u 7→ ψ(u, v))

Lemma 1.13. ker ψ̂L = V ⊥
L andker ψ̂R = U⊥

R .

Proof. If u ∈ ker ψ̂L thenψ̂L(u) = 0 and sou ∈ V ⊥
L . Same for other three cases.

Example. LetU = R2 andV = R3, ψ : U × V 7→ R, ψ(x, y) = x1y2.

The left kernel is

〈(
0
1

)〉
and the right kernel is

〈1
0
0

 ,

0
0
1

〉
.

Definition 1.14. If V ⊥
L = {0} andU⊥

R = {0} we say thatψ is non-degenerate.

Theorem 1.15. AssumeU , V are finite dimensional vector spaces overK and thatψ
is non-degenerate. Then

1. dimU = dimV .

2. ψ̂L is an isomorphism.

3. ψ̂R is an isomorphism.

Proof. From Linear Maths,dimU = dimU∗ anddimV = dimV ∗. Sinceψ is non-
degenerate, botĥψL andψ̂R are injective. Now,̂ψL injective implies

dimU = dim ψ̂L(U)
≤ dimV ∗ = dimV

And ψ̂R injective implies

dimV = dim ψ̂L(V )
≤ dimU∗ = dimU

ThereforedimU = dimV . Now dim ψ̂R(V ) = dimU and henceψ̂R(V ) =
U .

Theorem 1.16. AssumedimU = dimV < ∞. Then the following assertions about
ψ are equivalent.

1. ψ is non-degenerate.

2. The left kernel ofψ is {0}.

3. The right kernel ofψ is {0}.

4. The matrixA representingψ is non-singular relative to any bases ofU , V .

A lemma would be helpful. First of all, some notation.
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Notation. Let{d1, . . . , dm} be a basis forU and{e1, . . . , en} be a basis forV . Then
the dual bases are{d∗1, . . . , d∗m}, {e∗1, . . . , e∗n} for U∗ andV ∗ respectively, whered∗i
is defined byd∗i (dj) = δij ande∗i (ej) = δij .

Lemma 1.17. The matrix ofψ̂R : V 7→ U∗ is A = (ψ(di, ej)) relative to the bases
{e1, . . . , en}, {d∗1, . . . , d∗m}. The matrix ofψ̂L : U 7→ V ∗ is AT relative to the bases
{e∗1, . . . , e∗n}, {d1, . . . , dm}.

Proof. I’ll only prove for ψ̂L. LetR be the matrix forψ̂L.

ψ̂L(dj)(eh) = ψ(dj , eh)
= ajh

ψ̂L(dj)(eh) =
n∑
i=1

rije
∗
i (eh)

=
n∑
i=1

rijδih

= rhj

Soajh = rhj givingR = AT .

Corollary 1.18. AssumedimU = dimV < ∞. Thenψ̂R is an isomorphism if and
only if ψ̂L is an isomorphism.

Proof of Theorem 1.16.Immediate from Lemma 1.17.

1.6 The adjoint map

Definition 1.19. GivenV a finite-dimensional vector space overK, ψ : V × V 7→ K
a non-degerate bilinear form andα : V 7→ V , a linear map, we define theadjoint map
β of α with respect toψ by

ψ(α(x), y) = ψ(x, β(y))∀x, y ∈ V

β is written asα∗ψ.

Theorem 1.20. Such aβ always exists, and is unique.

Proof. First prove uniqueness.

ψ(α(x), y) = ψ(x, β1(y)) = ψ(x, β2(y))
⇒ ψ(x, (β1 − β2)(y)) = 0

⇒ β1(y)− β2(y) ∈ V ⊥
R

⇒ β1(y) = β2(y)
⇒ β1 = β2
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And for existence, look at the mapφ : x 7→ ψ(x, z). Firstly,φ ∈ V ∗. Now, I claim
that every element ofV ∗ is of formx 7→ ψ(x, z) for somez. Proof, either be subtle or
blat it out in co-ordinates. Then pickβ such thatβ(y) = z. Nowβ : V 7→ V , and it is
easy to see thatβ is linear.
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Special Bilinear Forms

In this section, we look at bilinear forms with some sort of additional structure.

2.1 Symmetric Bilinear Forms

Notation. In this subsection,V is a vector space overK andψ : V × V 7→ K is
always bilinear.

Definition 2.1. ψ is symmetric if and only ifψ(x, y) = ψ(y, x)∀x, y ∈ V .

If V is finite dimensional, it is clear that the matrixA representingψ is symmetric,
i.e.A = AT .

Definition 2.2. A quadratic form onV is a functionq : V 7→ K of the formq(x) =
ψ(x, x), whereψ is symmetric.

Lemma 2.3. If 1 + 1 6= 0 in K, thenψ(x, y) is determined byq(x). Specifically,

ψ(x, y) =
q(x+ y)− q(x)− q(y)

2
.

Proof. Expand it.

Now, an important theorem.

Theorem 2.4. If the characteristic ofK is not2 andV is finite dimensional, then there
exists a basis{v1, . . . , vn} such thatψ(vi, vj) = 0 if i 6= j.

Proof. This is proved by induction onn = dimV . It is true ifn = 1 without too much
effort. So assume true for allV ′ andψ′ : V ′ × V ′ 7→ K, dimV ′ < dimV . Next,
assume thatψ is not equivalently0, since otherwise the result is trivial. So∃x,y such
thatψ(x, y) 6= 0 ⇒ ∃x1 such thatq(x1) 6= 0.

Let V1 = {x ∈ V : ψ(x, x1) = 0}. V1 is clearly a subspace ofV , andV1 6= V
(asx1 /∈ V ). Defineψ1 : V1 × V1 7→ K by ψ1(x, y) = ψ(x, y). Now by the inductive
hypothesis there exists a basis{e1, . . . , er} of V1 such thatψ1(ei, ej) = 0 if i 6= j.

Now, must prove that{x1, e1, . . . , er} is a basis ofV , as this gives the result im-
mediately. Since{x1, e1, . . . , er} has at mostn elements, it suffices to show that it
spansV . Now takey ∈ V and lety′ = y − ψ(y,x1)

ψ(x1,x1)
x1. Thenψ(y′, x1) = 0, so

y′ =
∑r
i=2 aiei.

7
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Corollary 2.5. A matrix interpretation of the theorem. If the characteristic ofK is not
2, then for any symmetric matrixA, ∃ invertibleN such thatNTAN is diagonal.

Proof. Obvious from theorem

Corollary 2.6. Let K = C, V be a finite dimensional vector space overC andψ be a
symmetric bilinear formV × V 7→ C. Then∃ a basis{e1, . . . , en} of V such that if
x = x1e1 + · · ·+ xnen thenψ(x, x) = x2

1 + · · ·+ x2
r, wherer is the rank ofψ.

Proof. Immediate from theorem.

Corollary 2.7. If A1 andA2 are two complex symmetric matrices, then they are con-
gruent if and only if rankA1 = rankA2.

Proof. Immediate from matrix interpretation.

2.2 Real Quadratic Forms

Theorem 2.8 (Sylvester’s Law Of Inertia).
LetV be a finite-dimensional vector space overR and letq : V 7→ R be any quadratic
form. Then there exists a basis{e1, . . . en} of V such that ifx = x1e1 + · · ·+ xnen,
q(x) = x2

1 + · · ·+ x2
p − x2

p+1 − · · · − x2
r, wherer is the rank ofq, defined as the rank

ofψ. Moreover,p is the same for all such bases.

Definition 2.9. 2p− r = p− (r − p) is called the signature ofq.

Corollary 2.10 (Matrix interpretation). LetA be any real symmetric matrix. Then
there exists an invertibleN such that

N tAN =

Ip 0 0
0 −Ir−p 0
0 0 0


Corollary 2.11. LetA1,A2 be real symmetric matrices. ThenA1 andA2 are congru-
ent iff they have the same rank and signature.

Definition 2.12. We say that a quadratic formq is positive definite in a subspaceW of
V if q(x) > 0∀x 6= 0 ∈W .

Lemma 2.13. p is the maximal dimension of any subspace ofV on whichq is positive
definite.

Proof. Let W be any subspace ofV on which q is positive definite. DefineR =
〈ep+1, . . . en〉. Now q(x) ≤ 0∀x ∈ R, and soR ∩W = {0}. Now

dimW +R = dimW + dimR ≤ dimV , so dimW ≤ p.

Proof of Sylvester’s Law of Inertia.Firstly, prove existence of basis. General result
implies there exists a basis{v1, . . . vn} of V such thatψ(vi, vj) = 0 if i 6= j. Order
basis such thatψ(vi, vi) > 0 for i = 1, . . . p, ψ(vi, vi) < 0 for i = p+ 1, . . . r. Now,
we can findci ∈ R st c2i = |ψ(vi, vi)|. Defineei = vi

ci
for i = 1, . . . r, ei = vi

otherwise.
The uniqueness ofp follows from Lemma 2.13.
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Theorem 2.14. LetA be a real symmetric matrix. Then there exists a matrixN such
that :-

1. N tAN is diagonal.

2. N tN = I.

Proof. Proof later.

2.3 Orthogonal Groups

Let V be a finite dimensional vector space overK, with the characteristic ofK not 2.
Givenψ : V × V 7→ K bilinear, symmetric, non-degenerate.

Definition 2.15.

O(V, ψ) = {α : V 7→ V : (α(x) = 0 ⇔ x = 0), q(x) = q(α(x)) ∀x ∈ V }

is the orthogonal group ofψ, with the obvious group laws.

Definition 2.16 (Orthogonal direct sum). If U , W are subspaces ofV , thenV =
U ⊥W iff V = U ⊕W andψ(u,w) = 0 ∀(u,w) ∈ U ×W .

Definition 2.17. Let V = U ⊥ W . A reflexion with respect to(U,W ) is a map
r : V 7→ V such thatr(u+ w) = u− w ∀(u,w) ∈ U ×W .

Lemma 2.18. Let r ∈ O(V, ψ) such thatr2 = ι. Thenr is a reflexion wrt subspace
U,W of V with V = U ⊥W .

Proof. DefineU,W as

U = {x ∈ V : r(x) = x},W = {x ∈ V : r(x) = −x}.

These work!

Theorem 2.19 (Main Theorem). Every element ofO(V, ψ) can be written as a prod-
uct ofn reflexions, wheren = dimV .

Lemma 2.20. Letx, y be any elements ofV with ψ(x, x) = ψ(y, y) 6= 0. Then there
exists a reflexionr ∈ O(V, ψ) with y = r(x).

Proof. Defineu = x+y
2 andv = x−y

2 . Firstly, ψ(u, v) = 0. Secondlyψ(u, u) +
ψ(v, v) = ψ(x, x) 6= 0 and so one ofψ(u, u) andψ(v, v) is non-zero, sayψ(u, u) 6= 0.

DefineU = {λu : λ ∈ K} andW = {w ∈ V : ψ(u,w) = 0}. Claim :
V = U ⊕W . U ∩W = {0} trivially, and givenv ∈ V , definev1 = b − ψ(v,u)

ψ(u,u)u.
Now ψ(u, v1) = 0 and soV = U ⊥ W . Let r be the reflexion wrt(U,W ). r(x) =
r(u+ v) = y.

Proof of theorem.Induction ondimV = n. Trivial whenn = 1. Now assumen > 1
and the theorem is true for allV ′, ψ′ st dimV < n andψ′ : V ′ × V ′ 7→ K non-
degenerate, symmetric and bilinear. InV , and givenα ∈ O(V, ψ), choose a basis
{e1, . . . en} of V such thatψ(ei, ej) = 0 if i 6= j. Note thatψ(ei, ei) 6= 0 ∀i sinceψ
is non-degenerate.
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DefineU = 〈e1〉 andW = 〈e2, . . . en〉. Note thatV = U ⊥ W andW = U⊥.
Defineψ′ : W ×W 7→ K by ψ′(x, y) = ψ(x, y) ∀x, y ∈ W . ψ′ is a non-degenerate,
symmetric bilinear form.

Return toα. By lemma, there exists a reflexionr1 ∈ O(V, ψ) with r(α(e1)) = e1.
Now considerβ = r1α ∈ O(V, ψ). By constructionβ(e1) = e1. Givenw ∈ W ,
ψ(β(w), e1) = ψ(β(w), β(e1)) = ψ(w, e1) = 0 and soβ(W ) ⊆ W . Let β′ be
the restriction ofβ to W . Now β′ ∈ O(W,ψ′) and soβ′ = s2 . . . sn, where the
si are reflexions. Extendsi to V by si(e1) = e1, let ri be this extension. Soα =
r1 . . . rn.



Chapter 3

Hermitian Forms

3.1 Introduction

Let V be a vector space overC.

Definition 3.1. A Hermitian form onV is a functionψ : V × V 7→ C such that :-

1. ψ(x, y) is linear inx if y fixed.

2. ψ(x, y) = ψ(y, x).

If ψ : V × V 7→ C is Hermitian, then defineq(x) = ψ(x, x). q(x) ∈ R∀x ∈ V .
Possibly useful (?) to know

ψ(x, y) =
q(x+ y)− q(x− y) + iq(x+ iy)− iq(x− iy)

4

3.2 Hermitian Matrices and Change of Basis

GivenA ∈Mn(C) ...

Definition 3.2. Ah = A
t
.

Definition 3.3. A is Hermitian ifAh = A.

If V is finite dimensional, we can define the matrix ofψ relative to some basis
{v1, . . . , vn} of V byA = (ψ(vi, vj)). A is Hermitian iffψ is Hermitian.

Theorem 3.4 (Change of Basis).Take bases{v1, . . . , vn}, {v′1, . . . , v′n} of V such
thatv′j =

∑n
i=1Mijvi, then

A′ = Mh
AM

Proof. DIY!

11
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3.3 Sylvester’s Law?

Theorem 3.5 (Analogue of Sylvester’s Law of Inertia).Assume thatV is a finite
dimensional vector space overC and thatψ : V × V 7→ C is Hermitian. Then there
exists a basis{e1, . . . , en} of V such that ifx = x1e1 + · · ·+ xnen, then

ψ(x, x) = |x1|2 + · · ·+ |xp|2 − |xp+1|2 − · · · − |xr|2

wherer is the rank ofψ and p is the same for all such bases.

Proof. See previous.

3.4 The Unitary Group

Definition 3.6 (The Unitary Group). Define the unitary groupU(V, ψ) just like the
orthogonal group.



Chapter 4

Inner Product Spaces

4.1 Euclidean Space

Let V be a vector space overR. An inner product onV is a symmetric bilinear formψ
such thatψ(x, x) > 0 if x 6= 0. We thus get the Euclidean space(V, ψ).

Definition 4.1. 1. ||x|| =
√
ψ(x, x),

2. x is orthogonal toy if ψ(x, y) = 0.

We also get Cauchy-Schwarz (a transplantable proof will be given for unitary
space) and thus the triangle inequality.

4.2 Unitary Space

Definition 4.2. An inner product on V is a Hermitian formψ is ψ(x, x) > 0 ∀x 6= 0.
This gives rise to unitary space(V, ψ).

Theorem 4.3 (Cauchy-Schwarz).

|ψ(x, y)| ≤ ||x|| ||y||

Proof. Givenλ ∈ C,
ψ(x− λy, x− λy) ≥ 0

ψ(x, x)− λψ(y, x)− λψ(y, x) + |λ|2 ψ(y, y) ≥ 0

Assumey 6= 0 and put

λ =
ψ(x, y)
ψ(y, y)

.

This gives result.

4.3 Orthogonal Projection

(V, ψ) is either orthogonal or unitary space. LetW 6= V be a subspace ofV , and let
α ∈ V . How do we define the “foot of the perpendicular” fromα toW?

We wantµ ∈W such thatψ(α−µ,w) = 0∀w ∈W . Or alternatively,α−µ ∈W⊥.
If such anα − µ exists for allα, we can writeV = W + W⊥. This is not always
possible, but...

13
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Theorem 4.4. AssumeV is finite dimensional. Then for any subspaceW of V , we
haveV = W ⊕W⊥.

Proof in Euclidean case.Defineθ : V 7→W ∗ asθ(v)(w) = ψ(w, v). Now

dimV = dim(ker θ) + dim(im θ)

= dimW⊥ + dim(im θ)

Now dimW ∗ = dimW , and soθ surjective gives theorem.
Sinceψ is non-degenerate, every element ofV ∗ is of the formx 7→ ψ(x, v) for

somev ∈ V . So givenφ ∈W ∗, extendφ toρ : V 7→ R. Thenρ(x) = ψ(x, v)∀x ∈ V ,
the restriction of which givesφ.

Now, assume V finite-dimensional overC or R andW any subspace ofV ⇒ V =
W ⊕W⊥. Define the orthogonal projectionΠW : V 7→W by ΠW (w+ v) = w ∀w ∈
W, v ∈W⊥.

AssumeW = 〈η〉, η 6= 0. Now ΠW (v) = λvη.

Lemma 4.5.

λv =
ψ(v, η)
ψ(η, η)

Proof. v − λvη ∈W⊥ gives result.

Definition 4.6. Given a subsetS = {e1, e2, . . . } ⊂ V , we sayS is orthonormal iff
ψ(ei, ej) = δij .

4.4 Gram-Schmidt Process

Let V be an Euclidean or unitary space, withψ the inner product.

Theorem 4.7. Let {v1, v2, . . . } be a linearly independent set inV . Then there exists
an orthonormal set{e1, e2, . . . } such that∀n ≥ 1

〈e1, . . . , en〉 = 〈v1, . . . , vn〉.

Proof. By induction onn. Forn = 1, pute1 = v1
||v1|| .

Now assumen > 1 and have already constructed{e1, . . . , en−1} as required. Put

e′n = vn −
n−1∑
i=1

ψ(vn, ei)ei.

Now 〈e1, . . . , e′n〉 = 〈v1, . . . , vn〉 soe′n 6= 0. Puten = e′n
||e′n||

.

4.5 Spectral Theory forC
Let V be a finite dimensional vector space overC. A linear mapα : V 7→ V is called
Hermitian or self-adjoint ifα = α∗ wrt a Hermitian inner productψ.

Lemma 4.8. The eigenvalues ofα are real andψ(ξ1, ξ2) = 0 if ξ1 andξ2 are eigen-
vectors belonging to different eigenvalues.
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Proof.
λψ(ξ, ξ) = ψ(α(ξ), ξ) = λψ(ξ, ξ)

Now
ψ(α(ξ1), ξ2) = ψ(ξ1, α(ξ2))

and so
λ1ψ(ξ1, ξ2)− λ2ψ(ξ1, ξ2) = 0

Sinceλ1 6= λ2, result follows.

Theorem 4.9 (Self-Adjoint Case).LetV be a finite dimensional vector space overC
endowed with an inner productψ. Letα : V 7→ V be a linear map such thatα = α∗.
Then there exists an orthonormal basis ofV consisting of eigenvectors ofα.

Proof. By induction ondimV . Trivial whendimV = 1. So assumedimV > 1, and
the theorem true for all subspaces ofV .

α has one eigenvalueλ1, with corresponding eigenvectorξ1 6= 0. Let V1 = 〈ξ1〉,
andW = V ⊥

1 . NowV = V1 ⊕W , sodimW = dimV − 1. LetψW be the restriction
of ψ. Now, doesα takeW toW? But ifw ∈W , then

ψ(α(w), ξ1) = ψ(w,α(ξ1)) = λ1ψ(w, ξ1) = 0

Now defineβ : W 7→ W by β(w) = α(w) ∀w ∈ W . Now β = β∗ψW
and so by

inductive hypothesis W has an orthonormal basis{e2, . . . , en} of eigenvectors ofβ.
Pute1 = ξ1

||ξ1|| to get{e1, e2, . . . , en}, the desired orthonormal basis ofV .

Theorem 4.10 (Unitary Case).Let V be a finite dimensional vector space overC
endowed with an inner productψ. Letα : V 7→ V be a linear map such thatα∗ = α−1.
Then there exists an orthonormal basis ofV consisting of eigenvectors ofα.

Proof. There exists one eigenvalueλ1 6= 0 with eigenvectorξ1. Let V1 = 〈ξ1〉 and
W = V ⊥

1 . Givenw ∈W ,

ψ(α(w), ξ1) = ψ(x, α−1(ξ1) = ψ(x,
ξ1
λ1

) = 0

and soα(w) ∈W . Fill in the blanks.

4.6 Spectral Theory forR
So V is a finite dimensional vector space overR, with ψ : V × V 7→ R an inner
product.α is self-adjoint wrtψ if α = α∗.

Lemma 4.11. Let α be self-adjoint. Then all the eigenvalues ofα are real and ifξ1
andξ2 are eigenvectors belonging to distinct eigenvalues, then they are automatically
orthogonal.

Proof. For the first part, choose a basis ofV , thenα corresponds to a matrixA = At.
The mapX 7→ AX,Cn 7→ Cn is Hermitian, so has real eigenvalues.

ψ(α(ξ1), ξ2) = ψ(ξ1, α(ξ2))

and so
λ1ψ(ξ1, ξ2)− λ2ψ(ξ1, ξ2) = 0

Sinceλ1 6= λ2, result follows.
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Theorem 4.12 (Real, self-adjoint case).Let V be a finite dimensional vector space
overR endowed with an inner productψ. Letα : V 7→ V be a linear map such that
α∗ = α. Then there exists an orthonormal basis ofV consisting of eigenvectors ofα.

Proof. As before, noting thatα has real eigenvalues.



Chapter 5

Alternating Forms

Let V be a vector space over any fieldK andψ : V × V 7→ K bilinear.

Definition 5.1. ψ is alternating ifψ(x, x) = 0 ∀x ∈ V . ψ is anti-symmetric if
ψ(x, y) = −ψ(y, x).

Alternating implies anti-symmetric (considerψ(x + y, x + y)), and if the charac-
teristic ofK is not 2, anti-symmetric implies alternating.

5.1 Nice matrices

Theorem 5.2. AssumeV is finite dimensional andψ is alternating. Thenψ has even
rank2m and there exists a basis{e1, . . . , en} such that the matrix(ψ(ei, ej)) is of the
form  0 Im 0

−Im 0 0
0 0 0


Proof. By induction ondimV . Obvious whendimV = 1, thenψ ≡ 0. Assume
dimV > 1 and result proven for all(V ′, ψ′) whereψ′ : V ′ × V ′ 7→ K is alternating
anddimV ′ < dimV .

We want a basis{u1, . . . , um, v1, . . . , vm, w1, . . . , ws} where2m + s = n such
thatψ(ui, vi) = −ψ(vi, ui) = 1 andψ(anything else) = 0. If ψ ≡ 0, there is nothing
to prove, so assume∃x, y such thatψ(x, y) 6= 0. Putu1 = x

ψ(x,y) andv1 = y. Then

ψ(u1, v1) = 0. Let V1 = 〈u1, v1〉. Note thatdimV1 = 2. LetW = V ⊥
1 . Claim that

V = V1 ⊕W .
Firstly note thatV1∩W = {0} (by puttingζ = λu1 +µv1 ∈ V1∩W ). Now, given

z ∈ V , definez1 = ψ(z, v1)u1 +ψ(u1, z)v1 andz− z1 ∈W . SoV = V1 ⊥W . Now
given(W,ψW ) apply inductive hypothesis.

5.2 Symplectic Group

Let V be a finite dimensional vector space overK, ψ : V × V 7→ K be bilinear,
alternating and non-degenerate (impliesdimV = 2m).

17
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Definition 5.3. The symplectic groupSp(V, ψ) is the set of linear mapsα : V 7→ V
satisfying

1. α is an isomorphism of vector spaces

2. ψ(α(x), α(y)) = ψ(x, y).

Or alternatively, for matrix definition, choose a basis of V stψ has a matrix

J2m =
(

0 Im
−Im 0

)
ThenSp2m(K) = {P ∈M2m(K) |P is invertible andP tJ2mP = J2m}.



Chapter 6

Number Theory

6.1 Introduction

Lemma 6.1. Let p be any prime. ThenFp = Z/pZ is a field withp elements andF×p
the set of non-zero elements is a multiplicative group of orderp− 1.

Proof. DIY!

Corollary 6.2. Leta be any integer with(a, p) = 1. Thenap−1 ≡ 1 (mod p).

Proof. a+ pZ ∈ F×p , so(a+ pZ)p−1 = 1 + pZ.

Definition 6.3. Let p > 2 and takea with (a, p) = 1. We saya is a quadratic residue
modulo p ifa+ pZ is a square inF×p . Or equivalently, the congruence

x2 ≡ a mod p

is soluble.

Lemma 6.4. Leta ∈ Z have(a, p) = 1, p > 2. Then the congruencex2 ≡ a (mod p)
has either no solutions or two solutions modulop.

Proof. If x0 is a solution then−x0 is a solution.x0 6≡ −x0 (mod p) sincep 6= 2.
Now supposex0 andx1 are both solns ofx2 ≡ a (mod p). Thenx2

0 ≡ x2
1 (mod p),

and sop|x2
0 − x2

1 = (x0 − x1)(x0 + x1). So eitherx0 ≡ x1 (mod p) or x0 ≡ −x1

(mod p).

Lemma 6.5. Let p be an odd prime. Then there are preciselyp−1
2 quadratic residues

modulop.

Proof. Defineθ : {1, . . . , p−1} 7→ {1, . . . , p−1} by θ(x) is the least positive residue
of x2 modulop. Now by above,θ is 2 to 1, so#Im(θ) = p−1

2 .

6.2 Quadratic Reciprocity

Definition 6.6. For p odd,(a, p) = 1, we define the Legendre symbol
(
a
p

)
by(

a

p

)
=

{
1 if a is a quadratic residue modulop;

−1 otherwise.

19
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Lemma 6.7. (
ab

p

)
=

(
a

p

) (
b

p

)
Proof. Follows from Euler’s Criterion.

Lemma 6.8 (Euler’s Criterion).(
a

p

)
≡ a

p−1
2 mod p

Proof. Trivial if
(
a
p

)
= 1. So take

(
a
p

)
= −1. Now takey ∈ {1, . . . , p − 1}, then

there exists uniquez ∈ {1, . . . , p− 1} such thatzy ≡ a (mod p), with z 6= y. So can
break up{1, . . . , p− 1} into p−1

2 distinct pairs whose product≡ a (mod p). So

(p− 1)! ≡ a
p−1
2 mod p

≡ −1 by Wilson’s Theorem

Theorem 6.9 (The Law of Quadratic Reciprocity). If p andq are odd primes then

(
p

q

) (
q

p

)
= (−1)

p−1
2

q−1
2 =

{
1 one ofp or q ≡ 1 (mod 4);
−1 p, q ≡ −1 (mod 4).

Lemma 6.10. If p an odd prime, then

(
2
p

)
= (−1)

p2−1
8 =

{
1 p ≡ ±1 (mod 8);
−1 p ≡ ±3 (mod 8).

Proof. None given - take it on trust...

Example. Compute
(

34
97

)
.(
34
97

)
=

(
2
97

) (
17
97

)
= +1

(
17
97

)
=

(
97
17

)
=

(
12
17

)
=

(
3
17

) (
4
17

)
=

(
3
17

)
=

(
17
3

)
=

(
2
3

)
= −1
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Example. Is x2 ≡ 20964 (mod 1987) soluble?1987 is known to be prime.(
20964
1987

)
=

(
1094
1987

)
=

(
2

1987

) (
547
1987

)
= −

(
547
1987

)
=

(
1987
547

)
=

(
346
547

)
=

(
2

547

) (
173
547

)
= −

(
173
547

)
= −

(
547
173

)
= −

(
28
173

)
= −

(
7

173

)
= −

(
173
7

)
= −

(
5
7

)
= −

(
2
5

)
= 1

So the congruence is soluble.

Example. Compute
(

5
p

)
, p 6= 5. Letp = 5a+ r, r = 1, 2, 3, 4.

(
5
p

)
=

(p
5

)
=

(r
5

)
=

{
+1 if r = 1, 4;

−1 if r = 2, 3.

Example. Compute
(

3
p

)
, p 6= 3.

(
3
p

)
=

(p
3

)
(−1)

p−1
2

Letp = 12a+ r, r = 1, 5, 7, 11

=
(r

3

)
=

{
+1 r = 1, 11;

−1 r = 5, 7.

6.3 Introduction to Binary Quadratic Forms

Something of the form

f(x, y) = ax2 + bxy + cy2 a, b, c ∈ Z

is called a binary quadratic form. We want to look at the problem of representation,
i.e., given a fixedf(x, y) andm ∈ Z, findx0, y0 ∈ Z such thatf(x0, y0) = m.
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Definition 6.11.

SL2(Z) = {
(
p q
r s

)
| p, q, r, s ∈ Z, ps− rq = 1}

Definition 6.12.

B = {f(x, y) = ax2 + bxy + cy2 | a, b, c ∈ Z}

For the action ofSL2(Z) onB, takeσ ∈ SL2(Z) andf ∈ B. Define

σ ◦ f = f(px+ qy, rx+ sy)

= a′x2 + b′xy + c′y2

where

a′ = f(p, r)
b′ = 2apq + 2crs+ b(ps+ qr)
c′ = f(q, s).

You can check (if sufficiently bored), thatσ1 ◦ (σ2 ◦ f) = (σ1σ2) ◦ f .

Definition 6.13. Two binary quadratic formsf1, f2 ∈ B are said to be equivalent if
there existsσ ∈ SL2(Z) such thatf2 = σ ◦ f1.

Definition 6.14. The discriminant∆(f) = b2 − 4ac.

Lemma 6.15. ∆(σ ◦ f) = ∆(f)

Proof. DIY!

Note that inequivalent forms can have the same discriminant, for instance,x2+6y2

and2x2 + 3y2 both have discriminant−24, but are not equivalent.
∆(f) = b2 − 4ac, so∆(f) ≡ 0, 1 (mod 4).

Lemma 6.16. For eachd ∈ Z with d ≡ 0, 1 (mod 4), there exists a binary quadratic
form withd as discriminant.

Proof. Givend, seeka, b, c ∈ Z with b2−4ac = d. Takea = 1 andb = 0, 1 according
asd ≡ 0, 1 (mod 4). Takec = −d

4 if d ≡ 0 (mod 4) andc = 1−d
4 otherwise. These

work!

4af(x, y) = (2ax+ by)2 −∆(f)y2

if a 6= 0, thenf is positive definite when

a > 0 and∆(f) < 0

negative definite when

a < 0 and∆(f) < 0

and indeterminate when

a 6= 0 and∆(f) > 0
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6.4 Problem of Representation

Definition 6.17. Letm ∈ Z. We saym is properly represented byf ∈ B if ∃p, r ∈ Z
with (p, r) = 1 such thatf(p, r) = m.

Lemma 6.18. m ∈ Z is properly represented byf ∈ B ⇔ ∃f ′ equivalent tof such
thatm is the coefficient ofx2 in f ′.

Proof. If f ′ = f(px + qy, rx + sy) with ps − qr = 1, andf ′ = mx2 + . . . , then
f ′ = f(p, r)x2 + . . . , som = f(p, r) and(p, r) = 1.

Now assumef(p, r) = m with p, r ∈ Z such that(p, r) = 1. Chooseq, s ∈ Z
such thatps− qr = 1. Formσ = ( p qr s ), thenσ ◦ f = mx2 + . . . .

Corollary 6.19. Assumem 6= 0 is properly represented byf . Then the congruence

z2 ≡ ∆(f) mod 4 |m|

is soluble.

Proof. f ∼ f ′ = mx2 + b′xy + c′y2 if m is properly represented byf . Now

∆(f) = ∆(f ′)

= b′
2 − 4mc′

So b’ is a solution of the congruence.

Lemma 6.20. Assumef given, and0 6= m ∈ Z. Then if the congruencez2 ≡ ∆(f)
(mod 4 |m|) is soluble m is properly represented by some form with discriminant
∆(f).

Proof. z = b′ is a solution of the congruence. Nowb′2 − ∆(f) = 4mc′, c′ ∈ Z
and definef ′(x, y) = mx2 + b′xy + c′y2, which has discriminant∆(f) and properly
representsm.

Example. The primes represented byx2 + y2 are 2 and all p with p ≡ 1 (mod 4).
Trivial for p=2, so takep > 2′. Now all forms with discriminant−4 are equivalent to
x2 + y2 (proof later), so

p represented byf ⇔ z2 ≡ −4 (mod 4p) is soluble

⇔ z = 2z1 andz2
1 ≡ −1 (mod p) is soluble

⇔ z = 2z1 and

(
−1
p

)
= 1

⇔ z = 2z1 andp ≡ 1 (mod 4)

Example. f(x, y) = x2 + xy + 2y2. The primes represented byf are 2 and all
odd primes congruent to 1,2 or 4 modulo 7. 2 is trivial, so takep > 2. All forms of
discriminant−7 are equivalent tof (proof later). So

p represented byf ⇔ z2 ≡ −7 mod 4p is soluble

⇔ z2
1 ≡ −7 mod 4 andz2

2 ≡ −7 mod p are both soluble

⇔
(
−7
p

)
= 1

p ≡ 1, 2 or 4 mod 7

Step 2 is made using the Chinese remainder theorem.
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6.5 Reduction Theory

Definition 6.21. P = {f ∈ B | a > 0 and∆(f) < 0} is the set of positive definite
binary quadratic forms.

SL2(Z) acts onP.

Notation. Write (a, b, c) for f(x, y) = ax2 + bxy + cy2.

We now produce two members ofSL2(Z) which makea, |b| as small as possible.
If c < a, replace(a, b, c) by (c,−b, a) using

(
0 1
−1 0

)
. If |b| > a, replace(a, b, c) by

the equivalent form(a, b1, c1) whereb1 = b + 2µa, µ chosen such than|b1| < a and
c1 given by∆(f) = b21 − 4ac1, using

(
1 µ
0 1

)
Now start with any form and apply these successively. At each stage eithera or |b|

is reduced, so algorithm must terminate with a form which hasc ≥ a and|b| ≤ a. If
b = −a we can apply the second operation withµ = 1 to changeb to +a. If c = a,
apply operation 1 to getb ≥ 0. We have thus proved the following theorem.

Theorem 6.22. Any element ofP is equivalent to a formf(x, y) = ax2 + bxy + cy2

satisfying eitherc > a and −a < b ≤ a or c = a and0 ≤ b ≤ a. An element of
P satisfying these conditions is said to be reduced. Additionally no two reduced forms
are equivalent.

Corollary 6.23. If ∆ < 0 fixed, there are only finitely many positive definite reduced
forms(a, b, c) of discriminant∆.

Proof. PutD = −∆. Now 4ac − b2 = D. If (a, b, c) reduced thenb2 ≤ a2 ≤ ac ⇒
3ac ≤ D. There are only a finite number of possibilities for(a, c), each with only two
choices ofb.

Definition 6.24. If ∆ < 0, thenh(∆) is the number of equivalence classes of positive
definite(a, b, c) with discriminant∆.

The above proof gives an algorithm to findh(∆).

Example. D = 4 ⇒ |b| ≤
√

4
3 andb even⇒ b = 0. Now factor1! to geta = c = 1.

Thus there is a unique reduced formx2 + y2.

Example. D = 7 ⇒ |b| ≤
√

7
3 andb odd ⇒ b = ±1. b = −1 ruled out, since we

want reduced form, so now factor2 to geta = 1, c = 2. Thus there is a unique reduced
formx2 + xy + 2y2.

And so on. For an example withh(∆) > 1, put∆ = −20 or ∆ = −15.

Example. When∆ = −15, get the two reduced formsx2 + xy+ 4y2 and2x2 + xy+
2y2. Question: which primes are represented by at least one of these?

Getp ≡ 1, 2, 4, or 8 (mod 15) eventually. Now, can we decide which one?
If p = x2 +xy+4y2, then4p = (2x+y)2 +15y2, and4p ≡ (2x+y)2 (mod 15).

This implies thatp is a square modulo 15, sop ≡ 1 or 4 (mod 15). Similarly, by
considering8p, p ≡ 2 or 8 (mod 15) to be represented by2x2 + xy + 2y2.

This is not always possible. No congruence condition onp can decide between
x2 + 55y2 and5x2 + 11y2.
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