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Introduction

These notes are based on the course “Quadratic Mathematics” which was lectured by
Prof. J. H. Coates in Cambridge in the Micheaelmas Term 1997. These typeset notes are
totally unconnected with Prof. Coates.

Other sets of notes are available for different courses. At the time of typing these
courses were:

Probability Discrete Mathematics
Analysis Further Analysis
Methods Quantum Mechanics
Fluid Dynamics 1 Quadratic Mathematics
Geometry Dynamics of D.E.’s

Foundations of QM Electrodynamics
Methods of Math. Phys Fluid Dynamics 2

Waves (etc.) Statistical Physics
General Relativity Dynamical Systems
Combinatorics Bifurcations in Nonlinear Convection

They may be downloaded from

http://www.istari.ucam.org/maths/


http://www.istari.ucam.org/maths/
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Chapter 1

Introduction to Bilinear Forms

This course is divided into two parts. The first part is about 2/3 of the course, and
covers quadratic phenomena using the tools of linear algebra. The orthogonal, unitary
and symplectic groups are introduced. The second part of the course looks at quadratic
phenomena in number theory.

1.1 Definition of a field

A field K is a set with two binary operations writtenandx satisfying these axioms :-

1. Kis an Abelian group under. The zero element of this group is writtén
2. K\ {0} is Abelian undek. The identity element is writteh.

.ax(b+c)=axb+axcforalla,b,cekK.

Example. Examples of fields includ®, C, Z/pZ (wherep is prime).

1.2 The characteristic of a field

LetK be a field. Then :-
Definition 1.1. Forn € Z, let

n times

——TN— .
14---+1 if n > 0;
£1 = |n| times
—(14+---+1) ifn<0

0 ifn=0.

Definition 1.2. We say thaK has characteristi® if nx1 = 0 impliesn = 0. Otherwise
we say thalK has characteristia: if n is the least (strictly) positive such that 1 =
0.

Example. Z/pZ has characteristig.
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1.3 Some definitions

Definition 1.3. A bilinear forme is a mapU x V — K satisfying :-
1. Ify = yo is fixed, therw — ¢ (x, yo) is linear inx.
2. Ifz = xy is fixed, thery — ¢ (zo,y) is linear iny.

Example. If U =V = RN, (X, Y) = Y| xLyZ is bilinear
If V= Cla,b], takey : V x V = Rasy(f,g) ff

If U, V are finite-dimensional then a bilinear form has an attached matrix . Fix
basedds,...,dn}, {e1,...,e,} of U andV respectively.

Definition 1.4. The matrix ofy relative to the base&dy, ..., d}, {e1,..., e} isthe
m x nmatrix A = (¢¥(d;, e;)).

Soifx € U,y € V theny(x,y) = x7 Ay.

1.4 Change Of Basis

Supposé/, V are finite dimensional vector spaces over a fi€ldrhen given a bilinear
form«y : U x V — K, and base$d;, . ..,dn}, {e1,...,e,} of U andV respectively

there is an associated mattk = (¢ (d;, e;)). If we take other base§d!, ..., d,,},
{et, ..., e}, then the matrix of) with respect to this basis i8' = (y/(d;, ¢})).

Lemma 1.5. There exist invertible matrice$ét (m x m) and A (n x n) such that :-
A= MTAN

Proof. Since thel;’s ande;’s form bases for their respective vector spaces

m n
/ /
h = E M,’hdi andel = E ./V'jlej
Jj=1

i=1

Now,

apy = (dy, €)) (ZM nds, ZNI@J)
= ZMHH/J (di,Z/\/jzej)
~ =
= ZZ lh/\/}laij
1i=1

= (MTAN)

hl

Both M and\ are clearly invertible, since thé’s ande}’s form bases for their re-
spective vector spaces. O
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Corollary 1.6. A’ = R™1AN

Definition 1.7. The rank ofy is the rank of its associated matrix for any choice of
bases. This is well defined due(fiof) and linear algebra results.

Corollary 1.8. Giveny we can always find bases &f V' such that the matrix of is

of the form :-
I. 0
0 0

If U =V, we choose the two new bases to be the same. We get :-

wherer = rank(v)

A= (P(ei ;)
A= (d(es)))
— MTAM

Definition 1.9. If A and A’ are related byd’ = M” AM thenA and A’ are said to
be congruent.

1.5 Relation between bilinear forms and dual space

Definition 1.10. Given a vector spac¥ over a fieldK, thedual spacd’* is defined
by

V*={a:V — K, alinear}.
Some definitions. For all of these, take U x V' — K to be bilinear.

Definition 1.11. Supposed C U. Then define
Az ={v eV :¢(u,v) = 0,Yu € A}
Now takeB C V and define
Bt ={ucU :(u,v) =0,Yv € B}

Definition 1.12. If we takeA = U or B =V, we get

Uz = theright kernelof ¢
={veV:yY(u,v)=0,YueU}

and

Vit = theleft kernelof ¢
={ueU:¢Y(u,v) =0,Yv eV}
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Givent, we get two canonical linear maps :-

VU= V7 (u) = (0= (u,0)

and R N
YRV = U Yr(v) = (u— P(u,v))

Lemma 1.13. ker o, = V- andker g = U
Proof. If u € kemZL thenzZL(u) = (0andsou € VLL. Same for other three cased.]

Example. LetU = R?andV =R3,¢ : U x V + R, ¥(z,y) = z1ys.

1 0
The left kernel is< <2)> and the right kernel i< 0,0 >
0 1

Definition 1.14. If V- = {0} andUz = {0} we say that) is non-degenerate

Theorem 1.15. Assumd/, V are finite dimensional vector spaces olerlnd thaty
is non-degenerate. Then

1. dimU = dim V.
2. JL is an isomorphism.
3. zZR is an isomorphism.

Proof. From Linear Mathsdim U = dim U* anddim V' = dim V*. Sincey is non-
degenerate, both; andiy g are injective. Nowy)y, injective implies

dim U = dim ¢ (U)
< dimV* =dimV

And @R injective implies

dim V = dim ¢, (V)
<dimU* =dimU

ThereforedimU = dimV. Now dim¢x(V) = dimU and hencejr(V) =
U. O

Theorem 1.16. Assumelim U = dim V' < oo. Then the following assertions about
1) are equivalent.

1. ¢ is non-degenerate.
2. The left kernel of is {0}.
3. The right kernel of) is {0}.

4. The matrixA representing) is non-singular relative to any basesif V.

A lemma would be helpful. First of all, some notation.
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Notation. Let{ds,...,d,,} be abasis foUU and{ey,...,e,} be a basis fol’. Then
the dual bases aréds, ..., d: }, {e7,..., e} for U* and V* respectively, wheré;
is defined byizk(dj) = 6ij andeg‘(ej) = (5”

Lemma 1.17. The matrix ofp : V — U* is A = (1(d;, e;)) relative to the bases
{e1,.. . en}, {di,...,d5,}. The matrix oy, : U — V* is AT relative to the bases
{ef,...,es b {di,...,dn}.

Proof. I'll only prove for @L. Let R be the matrix fonZL.

br(d;)(en) = ¥(dj,en)

= ajh

n
~

br(d;)(en) =Y rize; (en)

i=1
n
= rijlin
i=1

pry 7“hj
Soa;, = rpj giving R = AT O

Corollary 1.18. AssumelimU = dimV' < oo. ThemZR is an isomorphism if and
only if ¢z, is an isomorphism.

Proof of Theorerp 1.16lmmediate from Lemma 1.17. O

1.6 The adjoint map

Definition 1.19. GivenV a finite-dimensional vector space ov€ry : V x V — K
a non-degerate bilinear form and: V — V, a linear map, we define tredjoint map
0 of « with respect ta) by

Y(a(r),y) = Y(z, B(y))Vo,y €V

(3 is written asag.
Theorem 1.20. Such a5 always exists, and is unique.

Proof. First prove uniqueness.

Y(a(z),y) = Yz, bi(y)) = ¥ (=, B2(y))
= Pz, (f1— B2)(y)) =0
= Bi(y) — Ba(y) € Viz
= B1(y) = Ba(y)
= 01 = B
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And for existence, look at the map: = — ¥(x, z). Firstly,» € V*. Now, | claim
that every element df * is of formz — ¢ (z, z) for somez. Proof, either be subtle or
blat it out in co-ordinates. Then pigksuch that3(y) = z. Now 3 : V — V, and itis
easy to see that is linear. O
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Special Bilinear Forms

In this section, we look at bilinear forms with some sort of additional structure.

2.1 Symmetric Bilinear Forms

Notation. In this subsection} is a vector space oveK andy : V x V — K is
always bilinear.

Definition 2.1. ¢ is symmetric if and only if»(z, y) = ¥ (y, z)Vx,y € V.

If V is finite dimensional, it is clear that the matrikrepresenting) is symmetric,
ie. A= AT,

Definition 2.2. A quadratic form onV is a functiong : V +— K of the formg(z) =
Y(x, z), wherey is symmetric.

Lemma2.3.1f 1 +1 # 0in K, theny(z,y) is determined by(x). Specifically,

gz +y) —q(x) —qy)
Y(z,y) = 5 .

Proof. Expand it. O

Now, an important theorem.

Theorem 2.4. If the characteristic oK is not2 andV is finite dimensional, then there
exists a basigv., . .., v, } such thaw)(v;, v;) = 0if ¢ # j.

Proof. This is proved by induction on = dim V. Itis true ifn = 1 without too much
effort. So assume true for ali’ and+)’ : V' x V' — K, dim V' < dim V. Next,
assume that is not equivalentlyd, since otherwise the result is trivial. Sa:,y such
thaty(z, y) # 0 = Jx; such thay(z,) # 0.

LetVi = {z € V : ¢(z,z1) = 0}. V; is clearly a subspace &f, andV; # V
(aszy ¢ V). Defineyn : Vi x Vi — Kby ¢ (z,y) = ¢(z,y). Now by the inductive
hypothesis there exists a basis, . .., e, } of V; such that), (e;,e;) = 0if i # j.

Now, must prove thafzi,eq,...,e.} is a basis oV, as this gives the result im-
mediately. Sinc€xy,eq,...,e.} has at most elements, it suffices to show that it

spansV/. Now takey € V and lety’ = y — %xl Thenvy(y',21) = 0, so

Yy =, aie;. O
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Corollary 2.5. A matrix interpretation of the theorem. If the characteristidois not
2, then for any symmetric matrik, 3 invertible N such thatN™ AN is diagonal.

Proof. Obvious from theorem O

Corollary 2.6. LetK = C, V be a finite dimensional vector space o@and be a
symmetric bilinear forni” x V — C. Then3 a basis{ey,...,e,} of V such that if
r =mrie; + -+ xpe, theny(x, z) = 22 + - - + 22, wherer is the rank ofi.

Proof. Immediate from theorem. O

Corollary 2.7. If A; and A, are two complex symmetric matrices, then they are con-
gruent if and only if rank4d; = rank As,.

Proof. Immediate from matrix interpretation. O

2.2 Real Quadratic Forms

Theorem 2.8 (Sylvester’s Law Of Inertia).

LetV be a finite-dimensional vector space ofeand letq: V' — R be any quadratic
form. Then there exists a badis, . .. e, } of V such that ifx = z1e1 + -+ + zpep,
q(x) =i +---+ 22 — a2, —--- — a2, wherer is the rank ofy, defined as the rank
of ¢». Moreover,p is the same for all such bases.

Definition 2.9. 2p — r = p — (r — p) is called the signature af.

Corollary 2.10 (Matrix interpretation). Let.4 be any real symmetric matrix. Then
there exists an invertibld/ such that

I, 0 0
NAN=|0 -1, 0
0 0 0

Corollary 2.11. LetA,,A4> be real symmetric matrices. Theh and.A, are congru-
ent iff they have the same rank and signature.

Definition 2.12. We say that a quadratic formis positive definite in a subspagg of
Vifgx) >0z #0e W.

Lemma 2.13. p is the maximal dimension of any subspac& ain whichgq is positive
definite.

Proof. Let W be any subspace df on whichq is positive definite. DefindR =
(€pt1,--- €n). Nowg(z) < 0Vz € R, and soR N W = {0}. Now

dmW 4+ R=dmW 4+dimR < dimV,sodimW < p.
O

Proof of Sylvester’s Law of Inertia-irstly, prove existence of basis. General result
implies there exists a bas{$, ... v, } of V such that)(v;,v;) = 0if i # j. Order
basis such thap(v;,v;) > 0fori =1,... p, ¥(v;,v;) <0fori =p+1,... r. Now,
we can finde; € R ste? = |[¢(v;,v;)|. Definee; = wfori=1,...7re = v
otherwise.

The uniqueness qf follows from Lemm4 2.13. O
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Theorem 2.14. Let A be a real symmetric matrix. Then there exists a makfisuch
that :-

1. Nt AN is diagonal.

2. NN =1.

Proof. Proof later. O

2.3 Orthogonal Groups

Let V be a finite dimensional vector space olerwith the characteristic dK not 2.
Giveniy : V x V — K bilinear, symmetric, non-degenerate.

Definition 2.15.
OV, Y)={a: Ve—=V:(afx) =0 z=0),q(z) = glafz)) YV € V}
is the orthogonal group af, with the obvious group laws.

Definition 2.16 (Orthogonal direct sum). If U, W are subspaces df, thenV =
ULWiffV=UasWandy(u,w) =0V (u,w) € U x W.

Definition 2.17. LetV = U L W. A reflexion with respect t¢U, W) is a map
r:V — Vsuchthat(u+ w) =u —wV(u,w) € U x W.

Lemma 2.18. Letr € O(V, %) such that-?> = .. Thenr is a reflexion wrt subspace
UWofVwithV =U LW.

Proof. DefineU, W as
U={zeV:ir(z)=z},W={zxeV:r(z)=—-x}.
These work! 0

Theorem 2.19 (Main Theorem). Every element a®(V, ¢) can be written as a prod-
uct ofn reflexions, where = dim V.

Lemma 2.20. Letz, y be any elements &f with ¥ (z, z) = ¥(y,y) # 0. Then there
exists a reflexiom € O(V, ¢) withy = r(x).

Proof. Defineu = £ andv = 3%, Firstly, ¢ (u,v) = 0. Secondlyy(u,u) +
¥(v,v) = P(z,z) # 0and so one of (u, ) andy (v, v) is non-zero, say (u, u) # 0.

DefineU = {Au : A € K} andW = {w € V : ¢(u,w) = 0}. Claim :
V=UaW.UnNnW = {0} trivially, and givenv € V, definev; = b — :ﬁgzz;u
Now ¢ (u,v1) = 0and soV = U L W. Letr be the reflexion wr{U, W). r(x) =
r(u+wv) =y. O

Proof of theorem.Induction ondim V' = n. Trivial whenn = 1. Now assume: > 1
and the theorem is true for ali’, )’ stdimV < n and%’ : V' x V/ — K non-
degenerate, symmetric and bilinear. W and givenae € O(V, ), choose a basis
{e1,... ep} Oof V such that)(e;,e;) = 0if ¢ # j. Note thaty(e;, e;) # 0 Vi sincey
is non-degenerate.
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DefineU = (e;) andW = (ea,... e,). Note thatV = U L W andW = U->L.
Definey’ : W x W — Kby ¢/(z,y) = ¥(z,y) Vz,y € W. ¢’ is a non-degenerate,
symmetric bilinear form.

Return toa. By lemma, there exists a reflexion € O(V, ¢) with r(a(e1)) = e3.
Now considers = ra € O(V,v). By construction(e;) = e;. Givenw € W,
V(B(w),e1) = Y(B(w),B(e1)) = ¢(w,er) = 0 and sos(W) C W. Let s be
the restriction ofs to W. Now 3’ € O(W,v’) and so3’ = s,... s,, where the
s; are reflexions. Extend; to V by s;(e;) = ey, letr; be this extension. Sa =
1. Tpe O]



Chapter 3

Hermitian Forms

3.1 Introduction

Let V' be a vector space ovér.

Definition 3.1. A Hermitian form onV is a functiomy) : V' x V' — C such that :-
1. ¢(z,y) is linear inz if y fixed.

2. Y(z,y) = ¥(y, ).

If ¢ : V xV — Cis Hermitian, then defing(z) = ¥ (x,z). g(x) € RVz € V.
Possibly useful (?) to know

q(x +y) — q(x —y) +iq(x +iy) —ig(x — iy)
4

¢($ay) =

3.2 Hermitian Matrices and Change of Basis
GivenA € M, (C) ...

Definition 3.2. A" = A",

Definition 3.3. A is Hermitian if A = A.

If V is finite dimensional, we can define the matrixfrelative to some basis
{v1,...,v,} of V by A = (¢(v;,v;)). Ais Hermitian iffy» is Hermitian.

Theorem 3.4 (Change of Basis)Take baseqvy,...,v,}, {v},...,v,} of V such
thatv; = Z?:l /\/lijvi, then

A =M AM
Proof. DIY! O

11
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3.3 Sylvester's Law?

Theorem 3.5 (Analogue of Sylvester's Law of Inertia). Assume that’ is a finite
dimensional vector space ov€rand thaty : V' x V +— C is Hermitian. Then there
exists a basigey, ..., e, } of V suchthatifr = z1e; + - - - 4+ x,e,, then

2 2 2 2
Pz, 2) = |za]" + -+ fap|” = feppa|” = = |2
wherer is the rank ofiy and p is the same for all such bases.

Proof. See previous. O

3.4 The Unitary Group

Definition 3.6 (The Unitary Group). Define the unitary group/(V, ¢) just like the
orthogonal group.



Chapter 4

Inner Product Spaces

4.1 Euclidean Space

Let V' be a vector space ov®. An inner product ori/ is a symmetric bilinear forny
such that)(z, ) > 0 if = # 0. We thus get the Euclidean spa@dé ).

Definition 4.1. 1. ||z|| = V¢ (z, ),
2. z is orthogonal toy if ¥ (z,y) = 0.

We also get Cauchy-Schwarz (a transplantable proof will be given for unitary
space) and thus the triangle inequality.

4.2 Unitary Space
Definition 4.2. An inner product on V is a Hermitian form is ¢(z, z) > 0 Vz # 0.
This gives rise to unitary spac#’, ¢).
Theorem 4.3 (Cauchy-Schwarz).
(@, y) < [l=ll |yl

Proof. Given\ € C,
Y — Ay, —Ay) >0

V(@) = XNp(y. x) = Moy, 2) + Ay, y) = 0
Assumey # 0 and put

This gives result. O

4.3 Orthogonal Projection

(V,4) is either orthogonal or unitary space. 1&t # V be a subspace df, and let
a € V. How do we define the “foot of the perpendicular” framo W?

We wanti, € W such that)(a—pu, w) = OvVw € W. Or alternativelyp—u € W+,
If such ana — p exists for alla, we can writeV = W + W+, This is not always
possible, but...

13
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Theorem 4.4. AssuméV is finite dimensional. Then for any subspdgeof V, we
haveV = W @ W+,

Proof in Euclidean caseDefined : V — W* asf(v)(w) = ¢(w, v). Now

dim V' = dim(ker 8) + dim(im 6)
= dim W+ + dim(im 6)

Now dim W* = dim W, and sd surjective gives theorem.

Since is non-degenerate, every elementldf is of the forma — ¢ (z,v) for
somev € V. So givenp € W*, extendptop : V — R. Thenp(x) = ¢(z,v)Vz € V,
the restriction of which gives. O

Now, assume V finite-dimensional ov€ror R andW any subspace df = V =
W @ W+, Define the orthogonal projectidity : V +— W by Iy (w + v) = wVw €
W,v e W+,

AssumeW = (n),n # 0. Now Iy (v) = Ayn.

Lemma 4.5.

Proof. v — \,n € W+ gives result. O

Definition 4.6. Given a subsef = {ej,es,...} C V, we sayS is orthonormal iff
V(e ej) = by

4.4 Gram-Schmidt Process

Let V' be an Euclidean or unitary space, witithe inner product.

Theorem 4.7. Let {vy,vs,... } be alinearly independent set In. Then there exists
an orthonormal sefeq, es, ... } such thatvn > 1

(€1, yen) = (V1,...,Un).

Proof. By induction onn. Forn = 1, pute; = II%H
Now assume: > 1 and have already constructéeh, ..., e,_;} as required. Put

n—1
e = Uy — Z Y(vn, €)e;.
i=1

’

Now (ey,...,el) = (v1,...,v,) SOe,, # 0. Pute,, = e“H. O

Iz,

4.5 Spectral Theory forC

Let V be a finite dimensional vector space o¢erA linear mapa : V — V is called
Hermitian or self-adjoint itv = o* wrt a Hermitian inner produap.

Lemma 4.8. The eigenvalues af are real andy(£1,&2) = 0 if & and¢&, are eigen-
vectors belonging to different eigenvalues.
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Proof.
(€, €) = P(a(€),€) = M(&,€)
Now
Y(a(61),§2) = ¥(&, alé2))
and so
M€, 62) — Ap(61,62) =0
Since\; # Ao, result follows. O

Theorem 4.9 (Self-Adjoint Case).Let V' be a finite dimensional vector space o¢er
endowed with an inner produgt. Leta : V +— V be a linear map such that = «o*.
Then there exists an orthonormal basisiotonsisting of eigenvectors af

Proof. By induction ondim V. Trivial whendim V' = 1. So assumdim V' > 1, and
the theorem true for all subspacesiof

« has one eigenvalug,, with corresponding eigenvectér # 0. LetV; = (&),
andW = V5. NowV = V; @ W, sodim W = dim V' — 1. Lety, be the restriction
of ¢». Now, doesy takeW to W? But ifw € W, then

Y(a(w), &) = Y(w, a(éyr)) = 717/1(10,51) =0

Now defined : W +— W by B(w) = a(w) Vw € W. Now g = 3~ and so by
inductive hypothesis W has an orthonormal bdsis, . . ., e, } of eigenvectors of5.
Pute; = Hg—ill to get{e;, e, ..., e,}, the desired orthonormal basis6f O

Theorem 4.10 (Unitary Case).Let V' be a finite dimensional vector space over
endowed with an inner produgt Leta : V — V be alinear map such that* = a~!.
Then there exists an orthonormal basisiotonsisting of eigenvectors af

Proof. There exists one eigenvaldg # 0 with eigenvectol;. LetV; = () and
W = Vit Givenw € W,

1/J(a(w),§1) = w(lbail(gl) = QZJ(I 7) =0

and sox(w) € W. Fill in the blanks. O

4.6 Spectral Theory forR

So V is a finite dimensional vector space oM with ¢ : V x V +— R an inner
product.« is self-adjoint wrty if o = o*.

Lemma 4.11. Let o be self-adjoint. Then all the eigenvaluescofire real and if¢;
and &, are eigenvectors belonging to distinct eigenvalues, then they are automatically
orthogonal.

Proof. For the first part, choose a basisiof thena corresponds to a matrig = A°.
The mapX — AX,C" — C" is Hermitian, so has real eigenvalues.

P(a(ér),&2) = (&, a(62))
and so
MY(€1,62) — Aap(&1,62) =0

Since\; # Ao, result follows. O
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Theorem 4.12 (Real, self-adjoint case)Let V' be a finite dimensional vector space
overR endowed with an inner produgt. Leta : V — V be a linear map such that
a* = a. Then there exists an orthonormal basigotonsisting of eigenvectors of

Proof. As before, noting that: has real eigenvalues. O



Chapter 5

Alternating Forms

Let V' be a vector space over any fididandy : V' x V — K bilinear.

Definition 5.1. ¢ is alternating if¢(x,2) = 0Vz € V. ¢ is anti-symmetric if

1#(% y) = _'(/)(y> .%‘)

Alternating implies anti-symmetric (considé(x + y, x + y)), and if the charac-
teristic of K is not 2, anti-symmetric implies alternating.

5.1 Nice matrices

Theorem 5.2. Assumé/ is finite dimensional ang is alternating. Then) has even
rank2m and there exists a basigs, . .., e, } such that the matrixy(e;, e;)) is of the

form
0 I, 0
-I, 0 O
0 0 0

Proof. By induction ondim V. Obvious wherdim V' = 1, theny) = 0. Assume
dimV > 1 and result proven for allV’, ¢’) wherey’ : V! x V' — Kis alternating
anddim V' < dim V.

We want a basi§uy, ..., um, V1, .., Um, w1,...,ws} Where2m + s = n such
thaty(u,;, v;) = —9(v;, u;) = 1 andy(anything elsg = 0. If ¢ = 0, there is nothing
to prove, so assumer, y such that)(x,y) # 0. Putu; = m andv; = y. Then

¥(ug,v1) = 0. LetVy = (uy,v;). Note thatdim V; = 2. LetW = V;-. Claim that
V=VieWw.

Firstly note that’; NW = {0} (by putting¢ = Au; + pv; € Vi NW). Now, given
z € V, definez; = ¢(z,v1)us + ¢ (u1, z)v; andz — z; € W. SoV =V; L W. Now
given (W, 1y ) apply inductive hypothesis. O

5.2 Symplectic Group

Let V' be a finite dimensional vector space o¥ervy : V x V — K be bilinear,
alternating and non-degenerate (impligs, V' = 2m).

17
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Definition 5.3. The symplectic grousp(V, ) is the set of linear maps : V +— V
satisfying

1. «is an isomorphism of vector spaces

2. (o), aly)) = (2, y).

Or alternatively, for matrix definition, choose a basis of \{)dtas a matrix

0 I,
JQm N <_I7n O )

ThenSps,, (K) = {P € Ms,,(K) |P is invertible andP* .J,,,, P = Ja,, }.



Chapter 6

Number Theory

6.1 Introduction

Lemma 6.1. Letp be any prime. Thefi, = Z/pZ is a field withp elements and ;
the set of non-zero elements is a multiplicative group of orderl.

Proof. DIY! O

Corollary 6.2. Leta be any integer witlja, p) = 1. Thena?~! =1 (mod p).
Proof. a + pZ € F, so(a + pZ)P~" =1+ pZ. O

Definition 6.3. Letp > 2 and takea with (a,p) = 1. We sayu is a quadratic residue
modulo p ifa + pZ is a square ir¥,’. Or equivalently, the congruence

z2=a modp

is soluble.

Lemma 6.4. Leta € Z have(a,p) = 1, p > 2. Then the congruenc& = a (mod p)
has either no solutions or two solutions modplo

Proof. If z, is a solution then-z is a solution.zy Z —z¢ (mod p) sincep # 2.
Now supposer, andx; are both solns af? = a (mod p). Thenz? = 27 (mod p),
and sop|z3 — 22 = (z9 — x1)(wo + z1). So eitherry = z; (mod p) or zg = —x;
(mod p). O

Lemma 6.5. Letp be an odd prime. Then there are preciséljyl quadratic residues
modulop.

Proof. Definef : {1,...,p—1} — {1,...,p—1} by §(z) is the least positive residue

of 22 modulop. Now by abovef is2 to 1, so#Im(0) = 25+ O

6.2 Quadratic Reciprocity

Definition 6.6. For p odd, (a, p) = 1, we define the Legendre symt@;l) by

<a) ~J1 if ais aquadratic residue modulg
p) |-1 otherwise.

19
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()=CG)G)

Proof. Follows from Euler’s Criterion. O

Lemma 6.7.

Lemma 6.8 (Euler’s Criterion).

(a) =¢"7 mod P
p

Proof. Trivial if (%) =1. So take(%) = —1. Now takey € {1,...,p — 1}, then
there exists unique € {1,...,p — 1} such thaty = a (mod p), with z # y. So can
break up{1,...,p — 1} into ”;1 distinct pairs whose produet a (mod p). So

(p—l= a"> modp
=-1 by Wilson’s Theorem

O
Theorem 6.9 (The Law of Quadratic Reciprocity). If p andq are odd primes then

(p> (q>(1)p21q21 1 oneofporg =1 (mod 4);
q p) -1 p,g=—1 (mod 4).

Lemma 6.10. If p an odd prime, then

2\ _ 22 J1 p=H1 (mod 8);
(p>( D {—1 p=+3 (mod 8).

Proof. None given - take it on trust... O

Example. Compute(32).
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Example. Is 22 = 20964 (mod 1987) soluble?1987 is known to be prime.

20964 1094
1987 1987

So the congruence is soluble.

Example. Compute(%),p £5. Letp =5a+r,r=1,23 4.

Letp =12a +r,r =1,5,7,11
.
- (3)
1 or=111
S l-1 r=5,7.
6.3 Introduction to Binary Quadratic Forms
Something of the form

flz,y) = ax® + bry + cy? a,b,c€Z

is called a binary quadratic form. We want to look at the problem of representation,
i.e., given a fixedf (z, y) andm € Z, find zg, yo € Z such thatf (zo,yo) = m.
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Definition 6.11.

s1a(2) = 1(7 1) Ipaers e Zops—rg = 1)
Definition 6.12.
B={f(z,y) = ax® + bzy + cy* | a,b,c € Z}
For the action o5 L, (Z) on B, takec € SL2(Z) andf € B. Define

oo f=f(pr+qy,rz+ sy)
=adz? +bxy+y?

where
a = f(pv T)
b = 2apq + 2crs + b(ps + qr)
d = f(q,s).

You can check (if sufficiently bored), that o (o3 0 f) = (61032) o f.

Definition 6.13. Two binary quadratic formgi, fo € B are said to be equivalent if
there existsr € SLo(Z) such thatfo = o o f;.

Definition 6.14. The discriminantA(f) = b% — 4ac.
Lemma 6.15. A(o o f) = A(f)
Proof. DIY! O

Note that inequivalent forms can have the same discriminant, for instaheey?
and2xz? + 3y? both have discriminant 24, but are not equivalent.
A(f) = b? — 4ac, SOA(f) = 0,1 (mod 4).

Lemma 6.16. For eachd € Z withd = 0,1 (mod 4), there exists a binary quadratic
form withd as discriminant.

Proof. Givend, seeka, b, c € Z with b> — 4ac = d. Takea = 1 andb = 0, 1 according
asd = 0,1 (mod 4). Takec = =2 if d = 0 (mod 4) andc = 132 otherwise. These
work! O

daf(x,y) = (2ax +by)* — A(f)y?
if a # 0, thenf is positive definite when
a>0andA(f) <0
negative definite when
a < 0andA(f) <0
and indeterminate when

a# 0andA(f) >0
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6.4 Problem of Representation

Definition 6.17. Letm € Z. We saym is properly represented by € B if 3p,r € Z
with (p, ) = 1 such thatf (p, ) = m.

Lemma 6.18. m € Z is properly represented by € B < 3/’ equivalent tof such
thatm is the coefficient af? in f.

Proof. If f' = f(px + qy,rx + sy) with ps — qr = 1, andf’ = maz? + ..., then

f'=f(p,r)x®>+...,som = f(p,r) and(p,r) = 1.
Now assumef(p,r) = m with p,r € Z suchtha{p,r) = 1. Choosey,s € Z
such thaps — ¢r = 1. Formo = (2 %), thenc o f = ma? +.... O

Corollary 6.19. Assumen # 0 is properly represented by. Then the congruence
22 = A(f) mod 4|m|
is soluble.
Proof. f ~ f' = ma? + b'xzy + 'y? if m is properly represented b Now
A(f) = A(f")
= — dmc’
So b’ is a solution of the congruence. O

Lemma 6.20. Assumef given, and) # m € Z. Then if the congruence® = A(f)
(mod 4 |m|) is soluble m is properly represented by some form with discriminant

A(f)-

Proof. = = ¥/ is a solution of the congruence. NoW — A(f) = 4mc.,¢ € Z
and definef’(z,y) = ma? + b'xy + /y?, which has discriminani\(f) and properly
representsn. O

Example. The primes represented hy + y? are 2 and allp withp = 1 (mod 4).
Trivial for p=2, so takep > 2’. Now all forms with discriminant-4 are equivalent to
z% 4 y? (proof later), so

p represented by < 2% = —4 (mod 4p) is soluble
& z=2z andzi = -1 (mod p) is soluble
—1
& 2 =2z and <> =1
p

Sz=2z7andp=1 (mod 4)

Example. f(x,y) = 2% + xy + 2y?. The primes represented kfyare 2 and all
odd primes congruent to 1,2 or 4 modulo 7. 2 is trivial, so take 2. All forms of
discriminant—7 are equivalent tgf (proof later). So

p represented by < 22 = —7 mod 4p is soluble
& 22 =-7 mod4andz2 = -7 mod p are both soluble

-7
p
p=1,20r4 mod 7

Step 2 is made using the Chinese remainder theorem.
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6.5 Reduction Theory

Definition 6.21. P = {f € B|a > 0andA(f) < 0} is the set of positive definite
binary quadratic forms.

SLo(Z) acts onP.
Notation. Write (a, b, c) for f(z,y) = ax? + by + cy?.

We now produce two members 8f.5(Z) which makea, |b| as small as possible.

If ¢ < a, replace(a, b, c) by (¢, —b,a) using( % §). If [b] > a, replace(a, b, c) by
the equivalent fornfa, b1, ¢1) whereb; = b + 2ua, u chosen such thajy; | < a and
c1 given byA(f) = b} — 4acy, using(; 4)

Now start with any form and apply these successively. At each stage eitéb|
is reduced, so algorithm must terminate with a form whichdhasa and|b| < a. If
b = —a we can apply the second operation with= 1 to change to +a. If ¢ = «q,
apply operation 1 to gét > 0. We have thus proved the following theorem.

Theorem 6.22. Any element oP is equivalent to a fornyf (z,y) = ax? + bxy + cy?
satisfying eithetc > a and —a < b < aorc = aand0 < b < a. An element of

‘P satisfying these conditions is said to be reduced. Additionally no two reduced forms
are equivalent.

Corollary 6.23. If A < 0 fixed, there are only finitely many positive definite reduced
forms(a, b, ¢) of discriminantA.

Proof. PutD = —A. Now 4ac — b?> = D. If (a, b, c) reduced then? < a? < ac =
3ac < D. There are only a finite number of possibilities far ¢), each with only two
choices oh. O

Definition 6.24. If A < 0, thenh(A) is the number of equivalence classes of positive
definite(a, b, ¢) with discriminantA.

The above proof gives an algorithm to fihdA).

Example. D =4 = |b| < \/g andb even=- b = 0. Now factorl! to geta = ¢ = 1.
Thus there is a unique reduced forrh + y2.

Example. D =7 = |b| < \/gandb odd = b = £1. b = —1 ruled out, since we

want reduced form, so now factdto geta = 1, ¢ = 2. Thus there is a unique reduced
formz? + zy + 2y°.

And so on. For an example with(A) > 1, putA = —20 or A = —15.

Example. WhenA = —15, get the two reduced forms + zy + 4y* and2z? + zy +
2¢2. Question: which primes are represented by at least one of these?

Getp =1,2,4, or 8 (mod 15) eventually. Now, can we decide which one?

If p = 2%+ zy+4y?, thendp = (2z+y)? + 15y2, anddp = (2z+y)? (mod 15).
This implies thatp is a square modulo 15, sp = 1 or4 (mod 15). Similarly, by
considering®p, p = 2 or 8 (mod 15) to be represented B2 + zy + 2y°.

This is not always possible. No congruence conditiorparan decide between
2?2 + 55y and5x2 + 11y2.
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