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1 Complex differentiability is like real differ-

entiability

The complex numbers have algebraic properties which are very similar to
those of the real numbers (formally they are both fields) except that there is
no order on the complex numbers. This similarity means that we can define
differentiability in the complex case in exactly the same way as we did in the
real case.

Definition 1.1. A function f : C→ C is differentiable at z with derivative
f ′(z) if

∣

∣

∣

∣

f(z + h)− f(z)
h

− f ′(z)
∣

∣

∣

∣

→ 0

as |h| → 0.

Exactly the same proofs as in the real case produce exactly the same
elementary properties of differentiation.

Lemma 1.2. (i) The constant function given by f(z) = c for all z ∈ C is
everywhere differentiable with derivative f ′(z) = 0.
(ii) The function given by f(z) = z for all z ∈ C is everywhere differen-

tiable with f ′(z) = 1.
(iii) If f, g : C → C are both differentiable at z, then so is f + g with

(f + g)′(z) = f ′(z) + g′(z).
(iii) If f, g : C→ C are both differentiable at z, then so is their product

f × g with (f × g)′(z) = f ′(z)g(z) + f(z)g′(z).
(iv) If f : C→ C is nowhere zero and f is differentiable at z, then so is

1/f with (1/f)′(z) = −f ′(z)/(f(z))2.
(v) If f : C → C is differentiable at z and g : C → C is differentiable

at f(z) then the composition g ◦ f is differentiable at z with (g ◦ f)′(z) =
f ′(z)g′(f(z)).
(vi) If P (z) =

∑N
n=0 anz

n, then P is everywhere differentiable with deriva-

tive given by P ′(z) =
∑N

n=1 nanz
n−1.

The following extensive generalisation of part (iv) of Lemma 1.2 was
proved in Analysis I (course C5).

Theorem 1.3. Let aj ∈ C [0 ≤ j]. Then, either
∑∞

n=0 anz
n converges for

all z and we write R = ∞, or there exists a real number R ≥ 0 such that
∑∞

n=0 anz
n converges for all |z| < R and diverges for all |z| > R. (R is called

the radius of convergence of
∑∞

n=0 anz
n.)
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If we write f(z) =
∑∞

n=0 anz
n for |z| < R, then f is differentiable at all

z with |z| < R and

f ′(z) =
∞
∑

n=1

nanz
n−1.

We shall see (for example in Theorems 5.4 and 5.5) that the study of
power series and complex differentiable functions are closely linked.

In Analysis I you studied a particular power series of great importance
to us.

Theorem 1.4. (i)
∑∞

n=0 z
n/n! converges for all z. If we write

exp z =
∞
∑

n=0

1

n!
zn,

then exp is everywhere differentiable with exp′ z = exp z.
(ii) exp z expw = exp(z + w) for all z, w ∈ C.
(iii) The equation exp z = 0 has no solution. If w 6= 0 the equation

exp z = w has the solutions

z = log |w|+ iθ + 2nπi

with n ∈ Z, where θ is any particular real solution of
w

|w| = cos θ + i sin θ.

(iv) If we write ez = exp z and

sin z =
eiz − e−iz

2i
, cos z =

eiz + e−iz

2

then, when z is real, we recover the traditional real functions sin : R → R
and cos : R→ R.

Combining the results of this section, we see that we have obtained a
useful library of complex differentiable functions.

2 Complex differentiability is not like real dif-

ferentiability

The first hint that complex differentiability is different from real differentia-
bility is given by the following example.
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Example 2.1. The function F : C → C given by F (z) = z∗ is nowhere
differentiable.

To understand Example 2.1 it is helpful to view matters not algebraicly
(as we did in Section 1) but geometrically. Observe that, if we ignore multi-
plication, C can be considered as the vector space R2. If we have a function
f : C→ C we can write

f(x+ iy) = u(x, y) + iv(x, y)

with x, y, u and v real, obtaining the map from R2 → R2

(

x
y

)

7→
(

u(x, y)
v(x, y)

)

.

Theorem 2.2. If the map T : R2 → R2 given by

(

x
y

)

7→
(

u(x, y)
v(x, y)

)

is differ-

entiable in the sense of the course Analysis II (Course P9), then the following
statements are equivalent.
(i) f is complex differentiable at z0.
(ii) The map h 7→ f(z0+h)−f(z0) is locally the composition of a rotation

and a dilation.
(iii) The Jacobian matrix of the map T satisfies

(∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)

= λ

(

cos θ − sin θ
sin θ cos θ

)

with λ real and λ ≥ 0.
(iv) The map T satisfies the Cauchy-Riemann conditions

∂u

∂x
=
∂v

∂y
,
∂v

∂x
= −∂u

∂y
.

Thus z 7→ z∗ is not complex differentiable because it is a reflection.
Most Cambridge examinees and a worryingly high proportion of Cam-

bridge examiners believe that the Cauchy-Riemann relations are the best
way of testing for complex differentiability. This is not the case in general.
The methods of Section 1 usually furnish a more efficient tool. (One problem
with the use of the Cauchy-Riemann equations is that, as is shown in Anal-
ysis II, the existence of partial derivatives does not imply differentiability.)

In any case it is the act of a lunatic (or a Cambridge examiner) to ask
about complex differentiability at a single point. The subject of complex
differentiability only becomes interesting when applied to functions differen-
tiable on an open set.
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Definition 2.3. A set Ω ⊆ C is said to be open if, given w ∈ Ω, we can find
a δ > 0 such that z ∈ Ω whenever |z − w| < δ.

Thus, wherever we are in an open set, we can move some fixed distance
(depending on the point chosen) in any direction whilst remaining within the
set.

Definition 2.4. Let Ω ⊆ C be an open set. We say that a function f : Ω→
C is analytic on Ω if f is differentiable at every point of Ω.

Since this is a non-rigorous treatment, it operates under the assumption
that everything is well behaved. One of the surprises and one the great ad-
vantages of the rigorous treatment given in course C12 (Further Analysis) is
that it reveals that all analytic functions are well behaved analytic functions.

The rigorous treatment reveals that the next lemma is true for all analytic
functions although our ‘proof’ seems to require extra conditions.

Lemma 2.5. Suppose Ω ⊆ C is open and f : Ω → C is analytic. Then,
defining u and v, as usual we have u harmonic (that is, satisfying Laplace’s
equation O2u = 0) on Ω̃ = {(x, y) ∈ R2 : x + iy ∈ Ω}. The same is true of
v.

Lemma 2.5 has an important converse.

Lemma 2.6. If u is harmonic, then it is locally the real part of an analytic
function.

Formally, we can restate Lemma 2.6 as follows.

Lemma 2.7. Let D = {z ∈ C : |z−a| < r} and D̃ = {(x, y) ∈ R2 : x+iy ∈
D}. If u : D̃ → R2 is harmonic, we can find a v : D̃ → R2 (unique up to the
addition of a constant) such that, if we write f(x + iy) = u(x, y) + iv(x, y),
the function f : D → C is an analytic.

The result can clearly be extended to a result which we state informally
(since we do not yet have the apparatus to state it, let alone prove it).

Lemma 2.8. A harmonic function on a simply connected open set (that is
one which consists of a single piece with no holes) is a real part of an analytic
function.

However there are genuine topological limitations.
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Example 2.9. (i) Let

Ω = {z = reiθ : r > 0, 2π + θ0 > θ > θ0}

and Ω̃ = {(x, y) : x+iy ∈ Ω}. If u(x, y) = log |x+iy| = log(x2+y2)1/2, then
u is the real part of an analytic function defined by log z = log r+ iθ where r
and θ form the unique solution of z = reiθ with r > 0 and 2π + θ0 > θ > θ0.
(ii) If we define a real valued function u on Γ̃ = R2 \ {0} by u(x, y) =

log |x + iy|, then u is harmonic but we cannot find a real valued function
v on Γ̃ such that, if we write f(x + iy) = u(x, y) + iv(x, y), the function
f : Γ = C \ {0} → C is analytic.

Definition 2.10. Let

Ω = {z = reiθ : r > 0, 2π + θ0 > θ > θ0}.

If we define

log z = log r + iθ,

where r and θ form the unique solution of z = reiθ with r > 0 and 2π+ θ0 >
θ > θ0, then log is called a branch of the logarithm function.

Lemma 2.11. With the notation of Definition 2.10, we have the following
results.
(i) log : Ω→ C is analytic.
(ii) log(Ω) = {w : 2π + θ0 > =w > θ0} = Λ, say.
(iii) exp(log z) = z for all z ∈ Ω.
(iv) If =w /∈ 2πZ + θ0, then log(expw) = w.
(v) log′(z) = z−1 for all z ∈ Ω.
(vi) If z1, z2, z1z2 ∈ Ω, then log z1z2 = log z1 + log z2 + 2nπi for some

n ∈ Z.

Lemma 2.12. There does not exist a continuous function L : C \ {0} → C
such that exp(L(z)) = z.

Exercise 2.13. We use the notation of Definition 2.10. Show that we cannot
choose θ0 so that log z1z2 = log z1 + log z2 for all z1, z2, z1z2 ∈ Ω.

In Analysis I, you saw that the easiest way to define xα when x and α
are real and x > 0 is to write xα = exp(α log x).

Definition 2.14. We use the notation of Definition 2.10. Suppose α ∈ C.
We define the map z 7→ zα on Ω by zα = exp(α log z). We call the resulting
function a branch of zα.
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Lemma 2.15. If we define pα : Ω→ C by pα(z) = zα as in Definition 2.14,
then pα is analytic on Ω. We have

p′α(z) = αpα−1(z).

If α is real, r > 0 and 2π+ θ0 > θ > θ0 then pα(z) = rα exp iαθ where rα

has its traditional meaning.

Except in the simplest circumstances, it is probably best to deal with zα

by rewriting it as exp(α log z).
If 0 > θ0 > −2π, it is traditional to refer to the function defined by

log reiθ = log r + iθ

for r > 0 and 2π+θ0 > θ > θ0 as the principal branch of the logarithm (with
a similar convention for the associated powers). This has the same effect and
utility as my referring to myself as the King of Siam.

3 Conformal mapping

We start with our definition of a conformal map.

Definition 3.1. Let Ω and Γ be open subsets of C. We say that f : Ω→ Γ
is a conformal map if f is bijective and analytic and f ′ never vanishes.

In more advanced work it is shown that, if f is bijective and analytic, then
f ′ never vanishes. The phrase ‘and f ′ never vanishes’ can then be omitted
from the definition.

Lemma 3.2. Let Ω and Γ be open subsets of C. If f : Ω→ Γ is conformal,
then f−1 : Γ→ Ω is analytic. We have

(f−1)′(w) =
1

f ′(f−1(w))
,

so f−1 is also conformal.

Exercise 3.3. We say that open subsets Ω and Γ of C are conformally equiv-
alent if there exists a conformal map f : Ω → Γ. Show that conformal
equivalence is an equivalence relation.

The reader is warned that some mathematicians use definitions of confor-
mal mapping which are not equivalent to ours. (The most common change
is to drop the condition that f is bijective but to continue to insist that f ′ is

7



never zero.) Sometimes people use conformal simply to mean angle preserv-
ing, so you must be prepared to be asked ‘Show that an analytic map with
non-zero derivative is conformal’.

So far as 1B examinations are concerned, we are chiefly interested in the
following conformal maps.

(i) z 7→ z + a. Translation. Takes C to C.
(ii) z 7→ eiθz where θ is real. Rotation. Takes C to C.
(iii) z 7→ λz where λ is real and λ > 0. Dilation (scaling). Takes C to C.
(iv) z 7→ z−1. Inversion in unit circle followed by reflection in real axis.

Takes circles and straight lines ‘not through the origin’ to circles and circles
and lines ‘through the origin’ to straight lines. Takes C \ {0} to C \ {0}.
[Note, in this course we are not interested in the ‘point at infinity’.]

(v) z 7→ zα with α real and α > 0. [N.B. You must specify a branch!]
Takes (appropriate) sectors (of the form {reiθ : r > 0, θ1 > θ > θ2}) to
sectors with base angle multiplied by α.

(vi) z 7→ exp z. Takes (appropriate) planks

{z : θ1 > =z > θ2}

to sectors. The map z 7→ log z [N.B. You must specify a branch!] does the
reverse.

We observe that maps of the type (i) to (iv) are Möbius and together
generate the Möbius group. Möbius maps were extensively discussed in the
first year course ‘Algebra and Geometry’. Observe also that we do not really
need maps of type (v) explicitly, since we can obtain them using maps of the
type (iii) and (vi).

The author strongly recommends constructing conformal maps in a large
number of simple steps, as the composition of the simple maps given above,
rather than trying to do everything at once.

Example 3.4. Find a conformal map taking

Ω = {z : =z > 0, <z > 0, |z| < 1}

to the unit disc D = {z : |z| < 1}.
Explain why the map z 7→ z4 does not work.

It should be noted that conformal mapping problems like Example 3.4 do
not have unique solutions since there are non-trivial conformal maps of the
disc into itself (for example rotation).

In the early days of aviation, conformal mappings (of a very slightly
more complicated kind) were used to find the flow of air past the wings of
aeroplanes. The method depended on the following result.
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Lemma 3.5. Let Ω and Γ be open subsets of C and f : Ω→ Γ a conformal
map. Set

Ω̃ = {(x, y) : x+ iy ∈ Ω}, Γ̃ = {(x, y) : x+ iy ∈ Γ}

and let

(

u
v

)

: Ω̃→ Γ̃ be the mapping given by f(x+ iy) = u(x, y) + iv(x, y).

Then, if φ : Γ̃ → R is harmonic, so is ψ : Ω̃ → R where ψ(x, y) =
φ(u(x, y), v(x, y)).

It must be admitted that the use of Lemma 3.5 and the general practice
of conformal mapping at 1B level and substantially above it depends on the
fact that, for the kind of Ω and Γ considered, the conformal map f : Ω→ Γ
does, indeed, behave well near the boundaries. The reader is warned that,
should she ever attend an advanced pure course on conformal maps or try to
use theorems which merely guarantee the existence of such a map f without
actually giving an explicit construction, this assumption can no longer be
relied on1.

4 Contour integration and Cauchy’s theorem

It is natural to define the integral of a function F : R→ C by

∫ b

a

F (t) dt =

∫ b

a

<F (t) dt+ i

∫ b

a

=F (t) dt.

In the course C9 (Analysis) it is shown that this definition produces an
integral with all the properties we want. In addition, the following useful
lemma is proved.

Lemma 4.1. If F : [a, b]→ C is continuous then
∣

∣

∣

∣

∫ b

a

F (t) dt

∣

∣

∣

∣

≤ (b− a) sup
t∈[a,b]

|F (t)|.

We summarise this result in a slogan

1

In the midst of the word he was trying to say,
In the midst of his laughter and glee,
He had softly and silently vanished away –
For the Snark was a Boojum, you see.
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modulus integral ≤ length × supremum.

Next we wish to define the contour integral.
∫

C

f(z) dz

where C is a path in C. Roughly speaking

∫

C

f(z) dz ≈
N
∑

j=1

f(zj)(zj − zj−1)

where the polygonal path joining z0, z1, . . . zN is a ‘good approximation to
C’. We formalise this idea as follows. (A function g : R → C is said to be
differentiable if <g and =g are. We write g′(t) = (<g)′(t) + i(=g)′(t).)

Definition 4.2. If γ : [a, b]→ C is a sufficiently smooth2 function describing
the path C and f : C→ C is continuous, we define

∫

C

f(z) dz =

∫ b

a

f(γ(t)) γ ′(t)dt.

If a path C is made up of a path C1 followed by a path C2 followed by a
path C3 . . . followed by a path Cn with each path satisfying the conditions
of our definition, then we take

∫

C

f(z) dz =
n
∑

r=1

∫

Cr

f(z) dz.

It is, more or less, clear that our definitions are unambiguous but a rigorous
development would need to prove this. If a contour begins and ends at the
same point we call it at closed contour. In this case, some older texts use the
pleasant notation

∮

C

f(z) dz =

∫

C

f(z) dz.

Lemma 4.1 now takes the following form.

Lemma 4.3. Under the conditions above,
∣

∣

∣

∣

∫

C

f(z) dz

∣

∣

∣

∣

≤ length C × sup
z∈C
|f(z)|.

2Continuously differentiable will certainly do.
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The next result is very important.

Lemma 4.4. Suppose a, w ∈ C and r ∈ R with r > 0. Let C be the path
w+ r exp iθ described as θ runs from 0 to 2π (less formally, the circle radius
r and centre w described once anticlockwise). Then

∫

C

1

z − a dz = 2πi if |a− w| < r,
∫

C

1

z − a dz = 0 if |a− w| > r.

Note that this illustrates an important point

Change of contour is not change of variable.

The next result has very little to do with the course but I could not resist
including it.

Lemma 4.5. If C is a closed contour which does not cross over itself and is
described once anticlockwise then

∫

C

z∗ dz = 2i× Area enclosed by C.

We now come to our master theorem.

Theorem 4.6 (Cauchy’s theorem). Let Ω be an open, simply connected
(that is all in a single piece and with no holes) set in C and f : Ω → C be
an analytic function. Then

∫

C

f(z) dz = 0

Note Observe that Lemma 4.4 shows that the ‘no holes’ condition can not
be dropped. Given a particular Ω it is usually trivial to check that it has
no holes but a rigorous development of complex analysis for general Ω is
somewhat delicate. With our sturdy English common sense we have banished
the study of holes3 to the higher reaches of pure mathematics but, in the US,
some textbooks of mathematical methods for engineers devote quite a lot of
time to it.

To save ink in future, we shall call Ω a simply connected domain if it is
an open simply connected (that is one piece without holes) subset of C. You
should note that this notation is not universal.

Here is a nice application of Cauchy’s theorem which foreshadows much
of the course.

3Called homology by its practitioners.
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Lemma 4.7. If λ is real, then
∫ ∞

−∞

e−iλxe−x2/2 dx = (2π)1/2e−λ2/2.

In particular,
∫ ∞

−∞

cos(λx)e−x2/2 dx = (2π)1/2e−λ2/2.

We remind the reader that ‘Change of contour is not change of variable’.

5 Applications of Cauchy’s theorem

Cauchy’s theorem has far reaching implications. Our first result depends on
the introduction of a well understood singularity.

Theorem 5.1 (Cauchy’s formula). Let Ω be a simply connected domain
and f : Ω → C be analytic. If C is a closed contour in Ω which does not
cross over itself and is described once anticlockwise, and a lies inside C, then

∫

C

f(z)

z − a dz = 2πif(a).

Given a particular C and a particular a, it is usually trivial to check that
C does not cross over itself and is described once anticlockwise, and that a
lies inside C. However a rigorous development of these notions is somewhat
delicate (to repeat the refrain of our song). We shall say that a C which does
not cross over itself and is described once anticlockwise is a simple closed
contour.

Differentiating under the integral (not hard to justify with the ideas of
Analysis II) with respect to a we get the following result.

Theorem 5.2 (Cauchy’s formula, extended version). Let Ω be a sim-
ply connected domain and f : Ω → C be analytic. If C is a simple closed
contour in Ω, and a lies inside C then f is n times differentiable with

n!

∫

C

f(z)

(z − a)n+1 dz = 2πif (n)(a).

It is worth emphasising part of the result just given.

Theorem 5.3. Let Ω be a open subset of C. If f : Ω → C is once complex
differentiable then it is infinitely complex differentiable.
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This is a truly remarkable result, it is surely worth going to course C12
simply to see it proved rigorously!

Another remarkable result is the following.

Theorem 5.4 (Taylor’s theorem). Let Ω be a open subset of C and f :
Ω→ C be an analytic function. Suppose the disc

D(b, ρ) = {z : |z − b| < ρ}

(with ρ > 0) is a subset of Ω. Then we can find an such that

f(z) =
∞
∑

n=0

an(z − b)n

for all z ∈ D(b, ρ). If 0 < r < ρ then

an =
1

2πi

∫

C(r)

f(z)

(z − b)n+1 dz,

where C(r) is the circular contour centre b and radius r described once anti-
clockwise.

Note (as is shown in Exercise 10.20, also due to Cauchy) that there exist
infinitely differentiable functions E : R→ R which have no Taylor expansion.
Taylor’s theorem has the following important corollary.

Theorem 5.5. Let Ω be a open subset of C. A function f : Ω → C is
analytic if and only if it can be expanded locally as a power series. (That is,
given w ∈ Ω, we can find a ρ > 0 such that D(w, ρ) ⊆ Ω and an ∈ C such
that f(z) =

∑∞
n=0 an(z − w)n for all z ∈ D(w, ρ).)

Exercise 5.6. Deduce Theorem 5.2, in the case that C is a circle, from
Theorem 5.4 and results on power series.

Taylor’s theorem for analytic functions has a striking and useful general-
isation.

Theorem 5.7 (Laurent’s expansion). Let Ω be a open subset of C and
let b ∈ Ω. Suppose that f : Ω \ {b} → C is an analytic function and the disc

D(w, ρ) = {z : |z − b| < ρ}

(with ρ > 0) is a subset of Ω. Then we can find an such that

f(z) =
∞
∑

n=−∞

an(z − b)n
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for all z ∈ D(b, ρ). If 0 < r < ρ and C(r) is the circular contour centre b
and radius r described once anticlockwise, then

an =
1

2πi

∫

C(r)

f(z)

(z − b)n+1 dz

for all n ∈ Z.

Definition 5.8. In Theorem 5.7, we call b an isolated singularity.
We call a−1 the residue at w.
If an = 0 for all n ≤ −1, we say that w is a removable singularity.
If there exists an N ≥ 1 such that a−N 6= 0 but a−n = 0 for all n > N ,

we say that w is a pole or more specifically that w is a pole of order N .
Sometimes a pole of order 1 is called a simple pole4.
If there does not exist an N with a−n = 0 for all n ≥ N , we call w an

essential singularity.

The next lemma is really just a commentary on Definition 5.8

Lemma 5.9. We continue with the notation of Theorem 5.7 and Defini-
tion 5.8.
(i) The point b is a removable singularity if and only if we can find an

analytic function f̃ : Ω→ C such that f(z) = f̃(z) for all z ∈ Ω \ {b}.
(ii) The point b is a pole of order exactly N if and only if we can find an

analytic function h : Ω → C with h(b) 6= 0 such that f(z) = (z − b)−Nh(z)
for all z ∈ Ω \ {b}.

Thus the behaviour of an analytic function in the neighbourhood of a
removable singularity or a pole is no more difficult to understand than the
behaviour of an analytic function away from singularities.

We shall see in the next section that there are particular reasons for
wishing to calculate the residue.

Lemma 5.10. (i) If f(z) = g(z)(z − a)−1 with g analytic in a disc centre
a and, then, if g(a) 6= 0, f has simple pole at a with residue g(a) and, if
g(a) = 0, f has a removable singularity at a.
(i) If f(z) = g(z)/h(z) with g and h analytic in a disc centre a and

h(a) = 0, h′(a) 6= 0 then, if g(a) 6= 0, f has simple pole at a with residue
g(a)/h′(a) and, if g(a) = 0, f has a removable singularity at a.

If the pole is not simple, then power series expansion is often, though not
always, the simplest way of proceeding.

4Complex analysts are much attached to the word ‘simple’. Comment is unnecessary.
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Example 5.11. (The short question on paper I, 1998.) Find the residues of
the following functions at z = 0, using the principle branch of log in (iii).

(i) cot z, (ii)
sin z − z

z4
, (iii)

log(cos z)

z(1− cos z)
,

(iv)
cos z

z2
and (v) z3 exp

(

1

z

)

.

6 Calculus of residues

The reason for devoting special attention to the coefficient of (z − w)−1 in
the Laurent expansion (recall that we called it the ‘residue’) is revealed in
the next theorem5.

Theorem 6.1 (Cauchy’s residue theorem). Let Ω be a simply connected
domain and w1, w2, . . . , wn distinct points in Ω. Let

f : Ω \ {w1, w2, . . . , wn} → C

be analytic and let the residue at wj be τj [1 ≤ j ≤ n]. If C is a simple closed
contour enclosing a region which contains {w1, w2, . . . , wn} [N.B. we do
not allow the wj to lie on C], then

∫

C

f(z) dz = 2πi
n
∑

j=1

τj.

Exercise 6.2. Show that Theorem 5.2 is a special case of Theorem 6.1.
In the same spirit, deduce Theorem 5.2 from Theorem 6.1 and the state-

ment that every analytic function satisfies Taylor’s theorem

f(w + h) =
∞
∑

j=0

f (j)(w)

j!
hj

for |h| sufficiently small.
Here are some typical applications of Cauchy’s residue theorem. I have

tried to place them in increasing order of complexity.

Example 6.3. Show that
∫ ∞

−∞

1

1 + x4
dx =

π

21/2
.

Deduce the value of
∫∞

0
1

1+x4 dx.
5If you invent a new and useful branch of mathematics, then you too can have all the

theorems named after you.
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Example 6.4. Show that, if λ is real,

∫ ∞

−∞

eiλx

1 + x2
dx = πe−|λ|.

Our next integral requires a preliminary lemma.

Lemma 6.5 (Jordan’s lemma). Suppose f : C→ C is continuous on the
region |z| > R0 and satisfies the inequality |f(z)| < K/|z| for |z| > R0. If
C(r) is the contour consisting of the semicircle reiθ described as θ runs from
0 to π then, provided λ is real and strictly positive,

∫

C(r)

f(z)eiλz dz → 0

as r →∞.

In the opinion of the writer, it is slightly unsporting to use Jordan’s lemma
when simpler estimates will do. It should also be noted that, if we genuinely
need to use Jordan’s lemma in the evaluation of a real integral, then that
integral may only exist for certain definitions of the integral.

Example 6.6. Show that

∫ ∞

0

sin x

x
dx =

π

2
.

Exercise 6.7. If t ∈ R, let us write

F (t) =

∫ ∞

0

sin tx

x
dx.

Show, using the result of Example 6.6 and change of variable, that

F (t) =
π

2
for t > 0,

F (0) = 0,

F (t) = −π
2

for t < 0.

Example 6.8. Show that, if α is real and −1 < α < 1, then

∫ ∞

0

xα

1 + x2
dx =

π

2 cos(απ/2)
.

What happens if α lies outside the range (−1, 1)?
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Our final example uses a slightly different idea.

Example 6.9. Show that, if a is real and a > 0,

∫ π

0

a

a2 + sin2 θ
dθ =

π

(1 + a2)1/2
.

There is a mixture of good and bad news about contour integration.
(1) Most examples (particularly at 1B level) are based on combining a

limited number of tricks. If you are stuck, try to identify parts of the problem
which you have met before.

(2) The only way, for most people, to become fluent in contour integration
is to do lots of examples yourself.

(3) Almost every book on complex analysis in your college library6 will
contain a chapter with a large collection of worked examples for you to take
as model.

7 Fourier transforms

Many systems in nature, engineering and mathematics are linear and allow us
to build complex solutions as linear combinations of simpler solutions. Thus,
for example, light and sound may be considered as a mixture of simple, single
frequency waves.

Mathematically we start by considering a single frequency wave

eiωt,

we then consider a sum of a finite number of such simple waves

n
∑

j=1

aje
iωjt

with aj ∈ C and are then driven to consider the integral analogue

∫ ∞

−∞

F (ω)eiωt dω.

To emphasise the connection with Fourier series (see the course Mathe-
matical Methods, C10) we use the following definition.

6Often an architectural gem and well worth visiting for its own sake.
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Definition 7.1. If f : R→ C is reasonably well behaved, we define

f̂(λ) =

∫ ∞

−∞

f(t)e−iλt dt,

and call the function f̂ : R→ C the Fourier transform.

This is a methods course, so we shall not go into what is meant by good
behaviour. However, the condition that f , f ′ and f ′′ are continuous and
t2f(t), t2f ′(t), t2f ′′(t) → 0 as |t| → ∞ are amply sufficient for our purpose
(much less is required, but there always has to be some control over behaviour
towards infinity).

The following results form part of the grammar of Fourier transforms.

Lemma 7.2. (i) If a ∈ R, let us write fa(t) = f(t− a). Then

f̂a(λ) = e−iaλf̂(λ).

(Translation on one side gives phase change on other.)
(ii) If K ∈ R and K > 0, let us write fK(t) = f(Kt). Then

f̂K(λ) = K−1f̂(λ/K).

(Narrowing on one side gives broadening on the other.)
(iii) f̂(λ)∗ = (f ∗)̂ (−λ).
(iv) (f̂)′(λ) = −iF̂ (λ) where F (t) = tf(t).
(v) (f ′)̂ (λ) = iλf̂(λ).

The next result is both elegant and important.

Lemma 7.3. We have
∫ ∞

−∞

f(t)ĝ(t) dt =

∫ ∞

−∞

f̂(λ)g(λ) dλ.

Taking g(λ) = exp(−(K−1λ)2/2) and allowing K → ∞, we obtain the
key inversion formula.

Theorem 7.4 (Inversion formula). We have fˆ̂ (t) = 2πf(−t).
In other words,

f(t) =
1

2π

∫ ∞

−∞

f̂(ω)eiωt dω.

Thus we can break down any (well behaved) function into its constituent
frequencies and then reconstruct it.

The inversion formula gives a uniqueness result which is often more useful
than the inversion formula itself.
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Theorem 7.5 (Uniqueness). If f̂ = ĝ then f = g.

Combining the inversion formula with Lemma 7.3, we get the following
formula which is much loved by 1B examiners and of considerable theoretical
importance.

Lemma 7.6 (Parseval’s formula). 7 We have

∫ ∞

−∞

|f(t)|2 dt = 1

2π

∫ ∞

−∞

|f̂(λ)|2 dλ.

Fourier transforms are closely linked with the important operation of
convolution.

Definition 7.7. If f, g : R→ C are well behaved, we define their convolu-
tion f ∗ g : iR→ C by

f ∗ g(t) =
∫ ∞

−∞

f(t− s)g(s) ds.

Lemma 7.8. We have f̂ ∗ g(λ) = f̂(λ)ĝ(λ).

For many mathematicians and engineers, Fourier transforms are impor-
tant because they convert convolution into multiplication and convolution is
important because it is transformed by Fourier transforms into multiplica-
tion. We shall see that convolutions occur naturally in the study of differ-
ential equations. It also occurs in probability theory where the sum X + Y
of two independent random variables X and Y with probability densities fX
and fY is fX+Y = fX ∗ fY . In the next section we outline the connection of
convolution with signal processing.

8 Signals and such like

Suppose we have a black box K. If we feed in a signal f : R → C we will
get out a transformed signal Kf : R→ C. Simple black boxes will have the
following properties

(1) Time invariance If Taf(t) = f(t− a), then K(Taf)(t) = (Kf)(t− a).
In other words, KTa = TaK.

(2) Causality If f(t) = 0 for t < 0, then (Kf)(t) = 0 for t < 0. (The
response to a signal cannot precede the signal.)

7The opera has an ‘f’ and goes on for longer.
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(3) Stability Roughly speaking, the black box should consume rather than
produce energy. Roughly speaking, again, if there exists a R such that f(t) =
0 for |t| ≥ R, then we should have (Kf)(t)→ 0 as t→∞. If conditions like
this do not apply, both our mathematics and our black box have a tendency
to explode. (Unstable systems may be investigated using a close relative of
the Fourier transform called the Laplace transform.)

(4) Linearity In order for the methods of this course to work, our black
box must be linear, that is

K(af + bg) = aK(f) + bK(g).
(Engineers sometimes spend a lot of effort converting non-linear systems to
linear for precisely this reason.)

As our first example of such a system, let us consider the differential
equation

F ′′(t) + (a+ b)F ′(t) + abF (t) = f(t) F

(where a, b > 0), subject to the boundary condition F (t), F ′(t) → 0 as
t→ −∞. We take Kf = F .

Before we can solve the system using Fourier transforms we need a pre-
liminary definition and lemma.

Definition 8.1. The Heaviside function H : R→ R is given by

H(t) = 0 for t < 0,

H(t) = 1 for t ≥ 0.

Lemma 8.2. Suppose that <α < 0. Then, if we set eα(t) = eαtH(t), we
obtain

êα(λ) =
1

iλ− α.

(Some applied mathematicians would leave out the condition <α < 0
in the lemma just given and most would write Ĥ(λ) = 1/(iλ). The study
of Laplace transforms reveals why this reckless behaviour does not lead to
disaster.)

Lemma 8.3. The solution F = Kf of
F ′′(t) + (a+ b)F ′(t) + abF (t) = f(t) F

(where a, b > 0), subject to the boundary condition F (t), F ′(t) → 0 as
t→ −∞, is given by

Kf = K ? f where K(t) =
e−bt − e−at

a− b H(t).
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Observe that K(t) = 0 for t ≤ 0 and so, if f(t) = 0 for t ≤ 0, we have

Kf(t) = K ? f(t) = 0 for t ≤ 0,

Kf(t) = K ? f(t) =

∫ t

0

f(s)K(t− s) ds for t > 0.

Thus K is indeed causal.
There is another way of analysising black boxes. Let gn be a sequence of

functions such that
(i) gn(t) ≥ 0 for all t,

(ii)

∫ ∞

−∞

gn(t) dt = 1,

(iii) gn(t) = 0 for |t| > 1/n.
In some sense, the gn ‘converge’ towards the ‘idealised impulse function’ δ
whose defining property runs as follows.

Definition 8.4. If f : R→ R is a well behaved function then
∫ ∞

−∞

f(t)δ(t) dt = f(0).

If the black box is well behaved we expect Kfn to converge to some
function E. We write

Kδ = E

and say that the response of the black box to the delta function is the ele-
mentary solution E. Note that, since our black box is causal, K(t) = 0 for
t < 0.

If f is a ordinary function, we define its translate by some real number a
to be fa where fa(t) = f(t− a). In the same way, we define the translate by
a of the delta function by a to be δa where δa(t) = δ(t−a) or, more formally,
by

∫ ∞

−∞

f(t)δa(t) dt =

∫ ∞

−∞

f(t)δ(t− a) dt = f(a).

Since our black box is time invariant, we have

Kδa = Ea

and, since it is linear,

K
n
∑

j=1

λjδaj
(t) =

n
∑

j=1

λjEaj
(t).
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In particular, if F is a well behaved function,

K
MN
∑

j=−MN

N−1F (j/N)δj/N(t) =
MN
∑

j=−MN

N−1F (j/N)Ej/N(t)

=
MN
∑

j=−MN

N−1F (j/N)E(t− j/N).

Crossing our fingers and allowing M and N to tend to infinity, we obtain

KF (t) =
∫ ∞

−∞

F (s)E(t− s) ds,

so

KF = F ∗ E.

Thus the response of the black box to a signal F is obtained by convolving
F with the response of the black box to the delta function. (This is why the
acoustics of concert halls are tested by letting off starting pistols.) We now
understand the importance of convolution, delta functions and elementary
solutions in signal processing and the study of partial differential equations.

To see what happens in our specific example, we use Fourier transform
methods find the elementary solution of equation F.

Lemma 8.5. The solution E = Kδ of

E ′′(t) + (a+ b)E ′(t) + abE(t) = δ(t) F

(where, a, b > 0), subject to the boundary condition E(t), E ′(t) → 0 as
t→ −∞, is given by

E(t) =
e−bt − e−at

a− b H(t).

Observe that Lemma 8.5 implies Lemma 8.3 and vice versa.

9 Miscellany

The previous sections form a complete course and I shall be happy simply to
cover it. If there is more time I will talk about some secondary topics.
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Example 9.1. (Question 7, Paper II, 1996.)
(i) Find the poles of cot z, and the residues at them. Show that the first

three terms of the Laurent expansion of cot z in 0 < |z| < π are

1

z
− z

3
− z3

45
.

(ii) Let ΓN be the rectangular contour with vertices at ±(N + 1
2
) ± iN ,

where N is any positive integer. Show that, on this contour, | cot πz| ≤
cothπN . Hence, show that, for any integer r ≥ 2,

∫

ΓN

cot πz

zr
dz → 0 as N →∞.

Hence, using Part (a), show that

∞
∑

n=1

1

n2
=
π2

6
,

∞
∑

n=1

1

n4
=
π4

90
.

The interested student can push matters a little further.

Exercise 9.2. Show that, if k is a strictly positive integer,

∞
∑

n=1

1

n2k
= Akπ

2k

where Ak is rational.

Over two centuries have passed since Euler obtained the correct formula
for

∑∞
n=1

1
n2k but, apart from a recent result of Apéry to the effect that

∑∞
n=1

1
n3 is irrational, we know nothing about

∑∞
n=1

1
n2k+1 .

The next result is not part of the course but crops up from time to time
as a problem in the examinations. It is also quite useful to have the general
idea of this result before embarking on the more cautious modern treatment
in more advanced courses like C12.

Theorem 9.3. Let Ω be a simply connected domain and f : Ω → C be
analytic. Suppose that C is a simple closed contour in Ω. If f has no zeros
on C and finitely many zeros within C, then the change in argument of f
round C

[arg f ]C = 2πN

where N is the number of zeros of f within C, multiple zeros being counted
multiply.
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Finally, I include a note on the derivative δ′ of the δ function. Personally,
I consider this a bridge too far for this level, but some examiners can not
refrain from introducing it.

Suppose f , g : R→ C are well behaved (in particular f , f ′, g, g′ decrease
rapidly towards infinity). Then integration by parts gives

∫ ∞

−∞

f(t)g′(t) dt = −
∫ ∞

−∞

f ′(t)g(t) dt.

If f and all its derivatives are well behaved (with rapid decrease towards
infinity) we are tempted to relax the conditions on g. If g = H, the Heaviside
function, this leads to the formal manipulations

∫ ∞

−∞

f(t)H ′(t) dt = −
∫ ∞

−∞

f ′(t)H(t) dt

= −
∫ ∞

0

f ′(t) dt

= f(0)

and to the satisfactory conclusion that, in some sense, H ′ = δ.
If g = δ we get

∫ ∞

−∞

f(t)δ′(t) dt = −
∫ ∞

−∞

f ′(t)δ(t) dt = −f ′(0).

The minus sign confuses many students (and, possibly, some of their elders
and betters) but leaving out the minus sign leads to all sorts of inconsisten-
cies.

10 Exercises

These exercises are divided into three groups. I suggest that you work
through the questions in Part A in order, getting as far as you can in your
alloted supervisions. Part B consists of questions for those who get through
Part A quickly. They are not more difficult and will give you further prac-
tice. Part C consists of a few questions which are a bit skew to the course
but which are quite interesting. The notation (Qx, Paper X, 19AB) tells you
that the question is based on question x on Paper X in 19AB, but I have
often made slight changes.
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Part A

Q 10.1. Prove Lemma 1.2.

Q 10.2. Prove Theorem 1.4.

Q 10.3. (This is Exercise 2.13.) We use the notation of Definition 2.10.
Show that we can not choose θ0 so that log z1z2 = log z1 + log z2 for all z1,
z2, z1z2 ∈ Ω.

Q 10.4. (i) Write out the standard properties of powers xα when x and α
are real and x > 0. (For example (xy)α = xαyα.) Investigate the extent to
which they remain true in the complex case.

(ii) Show that z1/3 has three possible branches on C\{x : x real and x ≥ 0}.
Show that the same is true for z2/3.

For each real α determine the number of branches (possibly infinite) of
zα.

Q 10.5. (This is Exercise 3.3.) We say that open subsets Ω and Γ of C are
conformally equivalent if there exists a conformal map f : Ω→ Γ. Show that
conformal equivalence is an equivalence relation.

Q 10.6. Let

Λ = {w | 2π + θ0 > =w > θ0}, Ω = {z = reiθ : r > 0, 2π + θ0 > θ > θ0}.
Let f(z) = exp z for z ∈ Λ. Show that f : Λ → Ω is conformal and use
Lemma 3.2 to establish the existence of a function log with properties given
in Lemma 2.11.

Q 10.7. (Q7(b), Paper I, 1993) For each of the following conformal maps fj
and simply connected domains Dj find the image of the domain under the
map (as usual z = x+ iy).

(i) f1(z) = 1/(1 + z), D1 = {x+ iy : x2 + y2 < 1, y > 0}
(ii) f2(z) = z2, D2 = {x+ iy : x > 0, y < 0}
(iii) f3(z) = log z, D3 = {x+ iy : y > 0}

(You should make it clear which branch of log you choose for f3.)
Hence, or otherwise, show that

g(z) =
1

π
log

(

−1

4

(

1− z
1 + z

)2
)

is a conformal map of {x+ iy : x2 + y2 < 1, y > 0} onto the infinite strip

{x+ iy : 0 < y < 1}.
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Q 10.8. (Q7, Paper I, 2000) Let φ be a function of u(x, y) and v(x, y) which
can also be regarded as a function of x and y. [I repeat the examiner’s
wording without necessarily approving it.] Starting from the formula

∂φ

∂x
=
∂φ

∂u

∂u

∂x
+
∂φ

∂v

∂v

∂x
,

obtain the formula

∂2φ

∂x2
=
∂2φ

∂u2

(

∂u

∂x

)2

+
∂2φ

∂v2

(

∂v

∂x

)2

+
∂φ

∂u

∂2u

∂x2
+
∂φ

∂v

∂2v

∂x2
+ 2

∂2φ

∂u∂v

∂u

∂x

∂v

∂x
.

By using the Cauchy-Riemann equations and associated results, deduce that,
if w = u+ iv is an analytic function of z = x+ iy, then

∂2φ

∂x2
+
∂2φ

∂y2
= |w′(z)|2

(

∂2φ

∂u2
+
∂2φ

∂v2

)

.

Explain briefly the relevance of this result to the solution of Laplace’s
equation via conformal mapping.

Q 10.9. (Q7(b), Paper I, 1994) Find a conformal mapping f that sends the
unit disc D = {z : |z| < 1} onto the strip {z : −π/2 < =(z) < π/2} for
which f(0) = 0 and f ′(0) is real and positive.
[Cambridge exams are often a conspiracy between examiner and examinee. If
you choose the ‘obvious’ conformal maps then you will either get the answer
at once or obtain one which is easily converted into the required one. If you
get a f that sends the unit disc onto the strip {z : −π/2 < =(z) < π/2} but
which you can not bring to the right form do not worry unduly but do not
go on to the rest of the question.]

Find an analytic function h on D with the property that |h(reiθ)| → eπ/2

as r ↗ 1 for 0 < θ < π and |h(reiθ)| → e−π/2 as r ↗ 1 for −π < θ < 0.

Q 10.10. (Q7(a), Paper II, 1993) Suppose f has a pole of order k at z = 0.
Show that the residue of f at 0 is

1

(k − 1)!

dk−1

dzk−1
(zkf(z))

∣

∣

∣

∣

z=0

.

Let r and s be analytic functions such that r(0) 6= 0 and s(0) = s′(0) = 0,
s′′(0) 6= 0. Show that the residue of r(z)/s(z) at z = 0 is

6r′(0)s′′(0)− 2r(0)s′′′(0)

3(s′′(0))2
.

[My reason for including this is not to provide a formula for you to learn but
to show that, once we move from simple poles, we can not expect simple ‘one
size fits all’ methods for finding residues.]
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Q 10.11. (Q7, Paper II, 2000) Evaluate the integrals
∮

C
f(z) dz, where C is

the unit circle centred at the origin and f(z) is given by the following

(a)
sin z

z
, (b)

sin z

z2
, (c)

cosh z − 1

z3
,

(d)
1

z2 sin z
, (e)

1

cos 2z
, (f) e1/z.

Q 10.12. Use a result about
∫∞

−∞
eiλx/(1 + x2) dx already obtained in the

course to show that
∫ ∞

0

cosmx

1 + x2
dx =

π

2
e−m

for m > 0.
Hence evaluate

∫ ∞

0

sin2 x

1 + x2
dx.

Q 10.13. (Q8(b), Paper IV, 1994) Consider the integral

I(a) =

∫ 2π

0

dθ

(1 + a cos θ)2

where 0 < |a| < 1. By means of the substitution z = eiθ, express I(a) as an
integral around the contour |z| = 1 and hence show that

I(a) =
2π

(1− a2)3/2 .

[The examiner added that no credit would be given for answers obtained by
real methods.]

Q 10.14. (Q16, Paper II, 1997) By integrating a branch of (log z)/(1 + z4)
about a suitable contour, show that

∫ ∞

0

log x

1 + x4
dx = − π2

8
√
2
,

and evaluate
∫ ∞

0

1

1 + x4
dx.

27



Q 10.15. (A golden oldie, last set as Q16, Paper I, 1998) Let

I(α) =

∫ ∞

0

xα

(x+ 1)3
dx,

where α is real. Use real methods to find the range of α for which the integral
converges. Use real methods to evaluate I(0) and I(1).

Now consider the integral of zα/(z + 1)3 around a contour consisting
of two circles of radius R and ε and straight lines on both sides of a cut
along the positive real axis. What restrictions must be placed on α for the
contributions from the circles to become negligible as r → ∞ and ε → 0?
Under such conditions, show that

I(α) =
πα(1− α)
2 sin πα

.

Show that I is continuous at 0 and 1.

Q 10.16. (Q7(a), Paper II, 1994) The function h(t) vanishes for t < 0. The
integral

P (t) =

∫ t

−∞

h(t− τ)f(τ) dτ

has the property that

df

dt
=

∫ t

−∞

h(t− τ)P (τ) dτ

for all well behaved f . Find ĥ(ω)2.

Q 10.17. (Q7, Paper II, 1998) Suppose that

f̂(ω) =
eiω − e−iω

iω

Find f by the following two methods.
(i) By using formulae for such things as the Fourier transforms of deriva-

tives, translates and Heaviside type functions together with the uniqueness
of Fourier transforms.

(ii) Directly from the inversion formula.
[Hint: You will need to distinguish between, t < −1, −1 < t < 1 and t > 1.]
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Q 10.18. (Q16, Paper II, 1998) Use Fourier transform methods to solve the
following integral equation for f(t),

f(t) +

∫ ∞

0

e−sf(t− s) ds =
{

e−t if t ≥ 0,

0 if t < 0.

Evaluate the convolution integral for your solution and hence confirm that
f(t) solves the integral equation in the form stated above.

Q 10.19. (Q8(a), Paper IV, 1994) The analytic function f(z) has P poles
and Z zeros. All the poles and zeros lie strictly within the smooth, non-self-
intersecting curve C. Using Cauchy’s integral formulas, show that, if all the
poles and zeros are simple,

∫

C

f ′(z)

f(z)
dz = 2π(Z − P ).

Explain how your result must be modified if the poles and zeros are not
simple and prove the modified result.

Restate your result in terms of the argument of f .

Part B

Q 10.20. Cauchy gave the following example of a well behaved real function
with no useful Taylor expansion about 0. It is important that you work
through it at some stage in your mathematical life.

Let E : R→ R be defined by E(t) = exp(−1/t2) for t 6= 0 and E(0). Use
induction to show that E is infinitely differentiable with

E(n)(t) = Qn(1/t)E(t) for t 6= 0,

E(n)(0) = 0.

For which values of t is it true that

E(t) =
∞
∑

n=0

En(0)tn

n!
?

Why does this not contradict Theorem 5.4?

Q 10.21. (Q7, Paper I, 1999) For each of the following five functions, state
the region of the complex plane in which it is complex differentiable. State
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also the region in which it has partial derivatives and the region in which
they satisfy the Cauchy-Riemann conditions.

f1(z) = |z|,
f2(z) = e−z,

f3(z) = z∗,

f4(z) = (z − 1)3,

f5(z) = |z|2

and f6 given by

f6(x+ iy) =

{

xy
(x2+y2)1/2 if x+ iy 6= 0,

0 if x+ iy = 0.

[Note that, in one case, the region of complex differentiability does not coin-
cide with that of the validity of the Cauchy-Riemann equations.]

Q 10.22. (Q17, Paper IV, 1999) Write down the Cauchy-Riemann equations
for the real and imaginary parts of the analytic function w(z) = u(x, y) +
iv(x, y), where z = x + iy. Show that O2u = O2v = 0 (i.e. that u and v
are harmonic functions). Prove also that the curves of constant u in the x, y
plane intersect those of constant v orthogonally.

Find analytic functions w1(z) and w2(z) that are real for real z and for
which the following functions are their respective real parts:

(i) u1(x, y) = ex cos y,

(ii) u2(x, y) =
x(x2 + y2 + 1)

2(x2 + y2)
.

From your answet to (ii) find a non-zero harmonic function that vanishes
on the circle x2 + y2 = 1 and on the line y = 0.

In case (i), find the images in the z-plane of the circles |w1| = ρ, for
constant ρ.

In case (ii), find the images in the w2-plane of the circles |z| = r, for
constant r > 1.

Q 10.23. (Q7(b), Paper I, 1996) In four of the following five cases there
exists a bijective analytic map f : U → V . In one case there is a topological
reason why no such map is possible. Find a suitable f in the four cases and
briefly explain the fifth.
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(i) U = {z ∈ C : =(z) > 0}, V = {z ∈ C : =(z) > 0}
(ii) U = {z ∈ C : |z| < 1}, V = {z ∈ C : <(z) > 0, =(z) > 0}
(iii) U = {z ∈ C : 2 > |z| > 1}, V = {z ∈ C : |z| < 1}
(iv) U = C \ {z ∈ R : z ≥ 0}, V = C \ {z ∈ R : |z| ≥ 1}
(v) U = {z ∈ C : 0 < =(z) < 1}, V = C \ {z ∈ R : z ≥ 0}.

[In case (iv) you may find it useful to consider the effect of a translation
followed by the map z 7→ 1/z.]

Q 10.24. (Q7(a), Paper I, 1995) Find the residue at each of the poles of the
function

f(z) =
1

z2(1 + z4)

in the complex plane.

Q 10.25. (Q7, Paper II, 1999) You are asked to find the Laurent expansion
about z = 0 for each of the following three functions.

f1(z) = e1/z,

f2(z) = z−1/2,

f3(z) =
sinh z

z3
.

In one case, you reply that you can not supply such an expansion. Why?
In the other two cases, where there is a Laurent expansion, state the

nature of the singularity at z = 0 and find its residue.
Show that there is a function f analytic on C except, possibly, at finitely

many points such that

f(z) =
∞
∑

n=1

z−n

for |z| > 1. Find any singularities of f(z) in the region |z| ≤ 1 and find the
residues at those singularities.

Q 10.26. (Q7(a), Paper II, 1995) What are the poles and associated residues
of f(z) = (cosh z)−1 in the complex z-plane?

By considering a rectangular contour, or otherwise, evaluate the Fourier
transform

∫ ∞

−∞

e−ikx

coshx
dx.

31



Q 10.27. Show that, for a > b > 0, we have

I(a, b) =

∫ ∞

0

cos x

(x2 + a2)(x2 + b2)
dx =

π

2(a2 − b2)

(

1

beb
− 1

aea

)

.

Find I(a, a) for a > 0 and check that I(a, b)→ I(a, a) as b→ a.
Find I(a, b) for all real non-zero values of a and b.

Q 10.28. (Q7(b), Paper II, 1993) By integrating around an appropriate
closed curve in the complex plane cut along one half of the real axis, show
that

I(a) =

∫ ∞

0

xa−1

1 + x+ x2
dx =

2π√
3
cos

(

2πa+ π

6

)

csc(πa)

if 0 < a < 2 and a 6= 1.
Evaluate I(1) and show that I(a)→ I(1) as a→ 1.

Q 10.29. (Q8, Paper IV, 1999) By interpreting the angle θ as the argument
of a complex variable z, convert the real integral

I(α) =

∫ 2π

0

(1 + α cos θ)−1 dθ (|α| < 1)

into a contour integral in the z plane and hence evaluate it using the calculus
of residues.

Q 10.30. (Q16, Paper I, 2000) By using a rectangular contour with corners
at ±R, ±R+ i and taking the limit as R→∞, or otherwise, show that if a
is real and |a| < π, then

∫ ∞

0

cosh ax

cosh πx
dx =

1

2
sec
(a

2

)

.

Q 10.31. (Q16, Paper II, 1999) A real function y(t) satisfies the differential
equation

ÿ + 4ẏ + 3y = f(t),

where f(t) vanishes as |t| → ∞ and has Fourier transform F (ω). Assuming
that y(t) and ẏ(t) vanish as |t| → ∞, find the Fourier transform Y (ω) of y(t)
in terms of in terms of F (ω). Hence show that y(t) vanishes for t < 0 if f(t)
vanishes for t < 0. Comment on the significance of this fact.

Find the Fourier transform of the function

f(t) = H(t)e−t,
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where H(t) is the unit step function

H(t) =

{

1 if t > 0,

0 if t < 0.

Hence determine the function y(t).
Check, by direct substitution, that y is, indeed, the required solution.

[The examiner said that you could use the Fourier inversion theorem and
Jordan’s lemma without proof. In spite of this invitation, I suggest you might
be better off using the uniqueness of Fourier transforms.]

Q 10.32. (Q17, Paper IV, 1997) Use Fourier transforms to find g in the
equation

5e−|t| − 8e−2|t| + 3e−3|t| =

∫ ∞

−∞

g(τ)e−|t−τ | dτ.

Q 10.33. (Q17, Paper IV, 2000) Assuming suitable decay of the function
w(x) as x → ±∞, express the Fourier transforms of w′(x) and xw(x) in
terms of the Fourier transform of w(x).

Find the form of the Fourier transform of w(x), if

x(w′′(x)− w(x)) + w′(x) = 0. (∗)

By using the inversion formula and a suitable change of variables, or other-
wise, deduce that

w(x) =
1

π

∫ ∞

0

cos(x sinhu) du

is a solution of (∗).

Part C

Q 10.34. (Q16, Paper II, 2000) [This is not really very hard but is a bit out
of the ordinary and a bit beyond the syllabus.]

The complex plane is cut along the real axis from z = −1 to z = 1, and
the branch of f(z) = (z2 − 1)1/2 is chosen so that f(z) is real and positive
when z is real and z > 1. Obtain expressions for f(z) just above and just
below the cut and also when |z| À 1.

Show that
∫ 1

−1

√
1− x2
1 + x2

dx = π(
√
2− 1),

where the square root gives positive values for −1 < x < 1.
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Q 10.35. (Q8(b), Paper IV, 1996) [This is very much on the hard side,
involves fairly messy calculations and is beyond the syllabus so you may
consider it as starred. Unfortunately the examiner did not.]

In real life, Fourier integral techniques are most useful not for solving dif-
ferential equations but for solving partial differential equations in the manner
shown below. As a warm up, explain why the general solution of the partial
differential equation

∂F

∂x
(x, y) = 0

is F (x, y) = A(y) and the general solution of

∂2F

∂x2
(x, y) + F (x, y) = 0

is F (x, y) = A(y) sinx+B(y) cos x.
A slab of material occupies the region {(x, y) : 0 ≤ y ≤ 1} and moves

with constant velocity U in the x-direction. The temperature T (x, y) in the
slab satisfies the ‘advection diffusion equation’

U
∂T

∂x
=
∂2T

∂x2
+
∂2T

∂y2
,

and the boundary conditions are such that

T (x, 0) = T0e
−x2

,

T (x, 1) = 0.

Let

T̂ (k, y) =

∫ ∞

−∞

T (x, y)e−ikx dx

(i.e. let T̂ be the Fourier transform of T with respect to the first variable).
Explain why

T (x, y) =
1

2π

∫ ∞

−∞

T̂ (k, y)eikx dk.

By using differentiation under the integral and the uniqueness of the Fourier
transform, obtain a partial differential equation for T̂ only involving partial
differentiation with respect to y.

Solve this differential equation, obtaining a result involving two unknown
functions of k, call them A(k) and B(k). By setting y = 0 and y = 1 obtain
A(k) and B(k) in terms of T̂ (k, 0) and T̂ (k, 1). Hence, find the function
T̂ (k, y). By exploiting symmetry, verify that T (x, y) is real.
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Q 10.36. (Q7(b), Paper II, 1995) [The first paragraph is routine. The sec-
ond paragraph is heavily starred.] A linear system is such that that an input
g(t) is related to an output f(t) by

f(t) =

∫ t

−∞

K(t− t′)g(t′) dt′.

Let θ(t) be the step function defined by θ(t) = 0 for t < 0 and θ(t) = 1
for t ≥ 0. Suppose that g(t) = θ(t)e−γt where γ > 0 and that f(t) =
θ(t)e−γt(1 − e−t). Find K(t) for t > 0 assuming that K(t) = 0 for t < 0.
Explain why you can drop the assumption K(t) = 0 for t < 0. Is it possible
to find K(t) for t < 0 from the information given? Why?

When g(t) = δ′(t), use the expression previously found for K(t) to calcu-
late f(t) both (i) by direct evaluation of the integral and (ii) by calculating
the Fourier transform of g in this case and hence finding the Fourier transform
of f .
[Most students obtain different answers for (i) and (ii). If this happens to
you, the object of the game is to discover what has gone wrong.]
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