Optimization

Linear Programming

P: maximize ¢!z s.t. Ar <b, >0

D: minimize ATb s.t. AT\ < c, A>0

The simplex algorithm. Slack variables. The two-phase algorithm — artificial variables.
Shadow prices.

Complementary slackness

P D
variables x constraints \
x; basic (z; #0)
x; non-basic (z; = 0)
constraints

constraint: tight (v; = 0)
constraint: slack (v; # 0)
variables A
A; basic (\; #0)

A; non-basic (A; = 0)

constraint: tight (z; = 0)
constraint: slack (z; # 0)

Lroqnd

Theorem

The feasible set of an LP problem is convex.

Proof

Write the problem as minimize ¢’z s.t. Az =b, x > 0, and let X}, be the feasible set. Suppose
z,y € Xp, so z,y > 0 and Ax = Ay = b. Consider z = Az + (1 — A)y for 0 < A < 1. Then
zi = Az + (1 — N)y; > 0 for each i. So z > 0. Secondly,

Az=AXz+ (1 —-=Ny) =Xz + (1 —-NAy=X o+ (1 —A)b=b.
So z € Xp and hence X}, is convex.

Theorem

Basic feasible solutions = extreme points of the feasible set.

Proof

Suppose z is a b.f.s. Then 3 a basis B and non-basis /N such that the non-basic components of
x satisfy zxy = 0. Suppose x is not extreme. Then Jy, z such that = lies on the line segment
between y and z and hence yny = zy = 0 (proof omitted). Furthermore, y and z are feasible, so
Apyp = Apzp = b and this gives Ag(yp — zp) = 0. But as Ap is non-singular (by assumption)
we have yp = zp and hence y = z. This is a contradiction, and so x must be extreme.

Now suppose z is an extreme point of X;. Since x € X}, we know it is feasible — we just need
to show that it is basic.



Suppose it is not a b.f.s. Then the number of non-zero coordinates, p say, is greater than m. Let
P={i:2z; >0}and Q = {i : z; = 0}. Since z is feasible, Av = Apxp+Agrg =b= Apzrp =b.

But this is m equations in p > m variables, so 3 non-zero yp s.t. Apyp = 0. We put yg = 0

and y = (Zg)

Consider x + ey and = — ey for small €. For € > 0 small enough these two points are both feasible
since A(x +ey) = Ax + €Ay = b, and z + ey > 0 (for small € since y; > 0 implies z; > 0). Hence

z=3(z+ey) +3(x—ey)

and so x is not extreme. This is a contradiction, and hence x must be a b.f.s.

Theorem

If an LP has a finite optimum then there is an optimal basic feasible solution.

Proof

See lecture notes.

Theorem (weak duality)

If z is feasible for P and ) is feasible for D then ¢’z < bT\. In particular, if one problem is
feasible then the other is bounded.

Proof

Let L(z,2z,A\) = ¢’z — AT(Az + z — b) where Az + 2z = b. Now for 2 and ) satisfying the
conditions of the theorem,

o =Lz, 2,)) = (" = XAz — ATz + XTb < \Th.

Theorem (sufficient conditions for optimality)
If z*, z* are feasible for P and \* is feasible for D, and z*, z*, \* satisfy complementary slackness,
then z* is optimal for P and A\* is optimal for D. Furthermore ¢’ z* = \*Tb.
Proof
Let L(z,2,A\) = ¢’z — AT(Az + z — b). Then
cla* = L(z*, 2%, \")

— (CT _ )\*TA)l'* _ /\*TAl'* + /\*Tb

="
by complementary slackness. But for all z feasible for P we have ¢’z < A*Th (by the weak
duality theorem) and this implies that for all feasible z, ¢’z < ¢’'z*. So z* is optimal for P.
Similarly \* is optimal for D, and the problems have the same solutions.
Theorem (strong duality: necessary conditions for optimality)

If both P and D are feasible then 3, A satisfying the conditions above.



Lagrangian Methods

The Lagrangian
For the general optimization problem

P: minimize f(z) st. g(x)=b, z€ X
the Lagrangian is

L(z, ) = f(z) = AT (g(z) — b).

The Lagrangian sufficiency theorem

If z* and \* exist such that z* is feasible for P and
L(z*,\*) < L(x,\*) Vzx e X,

then X* is optimal for P.

Proof

Define
Xp={z:x € X and g(x) = b}.

Note that X, C X and that for any x € X}
L(z,)) = f(z) = M (g(z) = b) = f(x).

Now
f(x®) = L(z*\*) < L(z, \*) = f(x), Ve X,

Thus z* is optimal for P.

Theorem (weak duality)

For A e Y, let
L(A) =min L
(A) = min L(A, z)
Then for any « € X, A €Y,
L(A) < f(x)

Proof
Forx e Xp, A€y,

f(x) = L(z,A\) > min L(xz,\) > min L(\, x) = L(\).

:EGXb zeX

Solution of general optimization problems

1. Find Y, the set of X such that L(x,\) has a finite minimum.
2. Find z()\), the value of z at which this minimum is obtained, for all A € Y.
3. Find z* = x(\*), where z* is feasible for P.

4. Then z* is optimal for P.



Applications

Two person zero-summ games

Let A be the pay-off matrix for the game. A pair of strategies p and ¢ with > p; = ¢; = 1,
p; > 0 and ¢g; > 0 are optimal if

pl A >, Ag <w and plAg=v
for some v € R, where v is the value of the game.

The max flow/min cut theorem

The maximal flow value through a network is equal to the minimum cut capacity.

Proof

Define f(X,Y) = ZieX,jeY x5, the flow from X to Y. Let the set of nodes of the network be
represented by N = {1,2,...,n}. Let (S,5) be a cut and (z;;) be a feasible flow with value v.
Note that f(X,N) = f(X,S) + f(X,S). Since (z;;) is feasible, we have

v 1=1
inj—Zxﬁ: 0 i;él,n
Y Y —v 1=n
Summing this equality over i € S we obtain
0= 3 Yo i)
i€S j
DI IIED 9
€S j €S

= f(S,N) = f(N,S)

= f(S,8) + f(S,5) = f(S,8) — (5, 9)
= f(8,8) = f(S,9)

< f(5,9)

<C(S,9)

where C(S,S) is the capacity of the cut (S,5). So any flow is < any cut capacity, and in
particular the maximal flow is < the minimal cut capacity.

Now let f be a maximal flow, and define S C N recursively by:
1.1€S
2. iES&ndIi]’<CU — jES

J.ieSandzj; >0 = j€S5

So S is the set of nodes to which we can increase the flow. Now if n € S then we can increase
the flow along some path to n and so the flow is not maximal. Hence n € S = N \ S and so



(S,S) is a cut. From the definition of S we know that for i € S and j € S we have z;; = ¢;; and
xj; = 0, so in the formula above we get

U:f(S,S)—f(g,S):f(S,S):C(S,S)

Therefore the maximal flow is equal to the minimal cut capacity.

Sufficient conditions for a minimum cost circulation

If (z;) is a feasible circulation and there exists A such that

{Cz‘_j if dij—XNi+X>0
Ty = .
c;.; if dij—>\i+)\j<0
Sz <cy i dij—Ai+ A =0

then (x;;) is a minimal cost circulation. The \; are known as node numbers or potentials. In
particular, if ¢y = 0 and c;-; = oo then the conditions are

dij -\ + )\j >0
(dij = Ai + Aj)aij = 0.

Proof

Apply the Lagrangian sufficiency theorem.

The transportation algorithm
1. Pick an initial feasible solution with m + n — 1 non-zero flows (NW corner rule).
2. Set A1 = 0 and compute \;, ; using d;; — A\; + p; = 0 on arcs with non-zero flows.
3. If dijj — A\i + pj > 0 for all (¢, 7) then the flow is optimal.
4. If not, pick (4, 7) for which d;; — A; + pj < 0.

5. Increase flow in arc (i,7) by as much as possible without making the flow in any arc
negative. Return to 2.



