Optimization

Linear Programming

$$
\begin{array}{llrl}
\text { P: maximize } c^{T} x & \text { s.t. } & A x \leq b, & x \geq 0 \\
\text { D: minimize } \lambda^{T} b & \text { s.t. } & A^{T} \lambda \leq c, & \lambda \geq 0
\end{array}
$$

The simplex algorithm. Slack variables. The two-phase algorithm - artificial variables. Shadow prices.

Complementary slackness

P		D
variables x		constraints λ x_{i} basic $\left(x_{i} \neq 0\right)$ x_{i} non-basic $\left(x_{i}=0\right)$
constraint: tight $\left(v_{i}=0\right)$		
constraints		constraint: slack $\left(v_{i} \neq 0\right)$
constraint: tight $\left(z_{i}=0\right)$	\Longleftrightarrow	variables λ constraint: slack $\left(z_{i} \neq 0\right)$
λ_{i} basic $\left(\lambda_{i} \neq 0\right)$		
λ_{i} non-basic $\left(\lambda_{i}=0\right)$		

Theorem

The feasible set of an LP problem is convex.

Proof

Write the problem as minimize $c^{T} x$ s.t. $A x=b, x \geq 0$, and let X_{b} be the feasible set. Suppose $x, y \in X_{b}$, so $x, y \geq 0$ and $A x=A y=b$. Consider $z=\lambda x+(1-\lambda) y$ for $0 \leq \lambda \leq 1$. Then $z_{i}=\lambda x_{i}+(1-\lambda) y_{i} \geq 0$ for each i. So $z \geq 0$. Secondly,

$$
A z=A(\lambda x+(1-\lambda) y)=\lambda A x+(1-\lambda) A y=\lambda b+(1-\lambda) b=b .
$$

So $z \in X_{b}$ and hence X_{b} is convex.

Theorem

Basic feasible solutions \equiv extreme points of the feasible set.

Proof

Suppose x is a b.f.s. Then \exists a basis B and non-basis N such that the non-basic components of x satisfy $x_{N}=0$. Suppose x is not extreme. Then $\exists y, z$ such that x lies on the line segment between y and z and hence $y_{N}=z_{N}=0$ (proof omitted). Furthermore, y and z are feasible, so $A_{B} y_{B}=A_{B} z_{B}=b$ and this gives $A_{B}\left(y_{B}-z_{B}\right)=0$. But as A_{B} is non-singular (by assumption) we have $y_{B}=z_{B}$ and hence $y=z$. This is a contradiction, and so x must be extreme.

Now suppose x is an extreme point of X_{b}. Since $x \in X_{b}$ we know it is feasible - we just need to show that it is basic.

Suppose it is not a b.f.s. Then the number of non-zero coordinates, p say, is greater than m. Let $P=\left\{i: x_{i}>0\right\}$ and $Q=\left\{i: x_{i}=0\right\}$. Since x is feasible, $A x=A_{P} x_{P}+A_{Q} x_{Q}=b \Rightarrow A_{P} x_{P}=b$. But this is m equations in $p>m$ variables, so \exists non-zero y_{P} s.t. $A_{P} y_{P}=0$. We put $y_{Q}=0$ and $y=\binom{y_{P}}{y_{Q}}$.

Consider $x+\epsilon y$ and $x-\epsilon y$ for small ϵ. For $\epsilon>0$ small enough these two points are both feasible since $A(x \pm \epsilon y)=A x \pm \epsilon A y=b$, and $x \pm \epsilon y \geq 0$ (for small ϵ since $y_{i}>0$ implies $x_{i}>0$). Hence

$$
x=\frac{1}{2}(x+\epsilon y)+\frac{1}{2}(x-\epsilon y)
$$

and so x is not extreme. This is a contradiction, and hence x must be a b.f.s.

Theorem

If an LP has a finite optimum then there is an optimal basic feasible solution.

Proof

See lecture notes.

Theorem (weak duality)

If x is feasible for P and λ is feasible for D then $c^{T} x \leq b^{T} \lambda$. In particular, if one problem is feasible then the other is bounded.

Proof

Let $L(x, z, \lambda)=c^{T} x-\lambda^{T}(A x+z-b)$ where $A x+z=b$. Now for x and λ satisfying the conditions of the theorem,

$$
c^{T} x=L(x, z, \lambda)=\left(c^{T}-\lambda^{T} A\right) x-\lambda^{T} z+\lambda^{T} b \leq \lambda^{T} b
$$

Theorem (sufficient conditions for optimality)

If x^{*}, z^{*} are feasible for P and λ^{*} is feasible for D , and $x^{*}, z^{*}, \lambda^{*}$ satisfy complementary slackness, then x^{*} is optimal for P and λ^{*} is optimal for D . Furthermore $c^{T} x^{*}=\lambda^{* T} b$.

Proof

Let $L(x, z, \lambda)=c^{T} x-\lambda^{T}(A x+z-b)$. Then

$$
\begin{aligned}
c^{T} x^{*} & =L\left(x^{*}, z^{*}, \lambda^{*}\right) \\
& =\left(c^{T}-\lambda^{* T} A\right) x^{*}-\lambda^{* T} A x^{*}+\lambda^{* T} b \\
& =\lambda^{* T} b
\end{aligned}
$$

by complementary slackness. But for all x feasible for P we have $c^{T} x \leq \lambda^{* T} b$ (by the weak duality theorem) and this implies that for all feasible $x, c^{T} x \leq c^{T} x^{*}$. So x^{*} is optimal for P . Similarly λ^{*} is optimal for D , and the problems have the same solutions.

Theorem (strong duality: necessary conditions for optimality)

If both P and D are feasible then $\exists x, \lambda$ satisfying the conditions above.

Lagrangian Methods

The Lagrangian

For the general optimization problem

$$
\text { P: minimize } f(x) \quad \text { s.t. } \quad g(x)=b, x \in X
$$

the Lagrangian is

$$
L(x, \lambda)=f(x)-\lambda^{T}(g(x)-b) .
$$

The Lagrangian sufficiency theorem

If x^{*} and λ^{*} exist such that x^{*} is feasible for P and

$$
L\left(x^{*}, \lambda^{*}\right) \leq L\left(x, \lambda^{*}\right) \quad \forall x \in X,
$$

then X^{*} is optimal for P .

Proof

Define

$$
X_{b}=\{x: x \in X \text { and } g(x)=b\} .
$$

Note that $X_{b} \subseteq X$ and that for any $x \in X_{b}$

$$
L(x, \lambda)=f(x)-\lambda^{T}(g(x)-b)=f(x) .
$$

Now

$$
f\left(x^{*}\right)=L\left(x^{*} \lambda^{*}\right) \leq L\left(x, \lambda^{*}\right)=f(x), \quad \forall x \in X_{b} .
$$

Thus x^{*} is optimal for P .
Theorem (weak duality)
For $\lambda \in Y$, let

$$
L(\lambda)=\min _{x \in X} L(\lambda, x)
$$

Then for any $x \in X_{b}, \lambda \in Y$,

$$
L(\lambda) \leq f(x) .
$$

Proof

For $x \in X_{b}, \lambda \in Y$,

$$
f(x)=L(x, \lambda) \geq \min _{x \in X_{b}} L(x, \lambda) \geq \min _{x \in X} L(\lambda, x)=L(\lambda) .
$$

Solution of general optimization problems

1. Find Y, the set of λ such that $L(x, \lambda)$ has a finite minimum.
2. Find $x(\lambda)$, the value of x at which this minimum is obtained, for all $\lambda \in Y$.
3. Find $x^{*}=x\left(\lambda^{*}\right)$, where x^{*} is feasible for P .
4. Then x^{*} is optimal for P.

Applications

Two person zero-sum games

Let A be the pay-off matrix for the game. A pair of strategies p and q with $\sum p_{i}=q_{i}=1$, $p_{i} \geq 0$ and $q_{i} \geq 0$ are optimal if

$$
p^{T} A \geq v, \quad A q \leq v \quad \text { and } \quad p^{T} A q=v
$$

for some $v \in \mathbb{R}$, where v is the value of the game.

The max flow/min cut theorem

The maximal flow value through a network is equal to the minimum cut capacity.

Proof

Define $f(X, Y)=\sum_{i \in X, j \in Y} x_{i j}$, the flow from X to Y. Let the set of nodes of the network be represented by $N=\{1,2, \ldots, n\}$. Let (S, \bar{S}) be a cut and $\left(x_{i j}\right)$ be a feasible flow with value v. Note that $f(X, N)=f(X, S)+f(X, \bar{S})$. Since $\left(x_{i j}\right)$ is feasible, we have

$$
\sum_{j} x_{i j}-\sum_{j} x_{j i}= \begin{cases}v & i=1 \\ 0 & i \neq 1, n \\ -v & i=n\end{cases}
$$

Summing this equality over $i \in S$ we obtain

$$
\begin{aligned}
v & =\sum_{i \in S} \sum_{j}\left(x_{i j}-x j i\right) \\
& =\sum_{i \in S} \sum_{j} x_{i j}-\sum_{i \in S} \sum_{j} x_{j i} \\
& =f(S, N)-f(N, S) \\
& =f(S, S)+f(S, \bar{S})-f(\bar{S}, S)-f(S, S) \\
& =f(S, \bar{S})-f(\bar{S}, S) \\
& \leq f(S, \bar{S}) \\
& \leq C(S, \bar{S})
\end{aligned}
$$

where $C(S, \bar{S})$ is the capacity of the cut (S, \bar{S}). So any flow is \leq any cut capacity, and in particular the maximal flow is \leq the minimal cut capacity.

Now let f be a maximal flow, and define $S \subseteq N$ recursively by:

1. $1 \in S$
2. $i \in S$ and $x_{i j}<c_{i j} \Longrightarrow j \in S$
3. $i \in S$ and $x_{j i}>0 \Longrightarrow j \in S$

So S is the set of nodes to which we can increase the flow. Now if $n \in S$ then we can increase the flow along some path to n and so the flow is not maximal. Hence $n \in \bar{S}=N \backslash S$ and so
(S, \bar{S}) is a cut. From the definition of S we know that for $i \in S$ and $j \in \bar{S}$ we have $x_{i j}=c_{i j}$ and $x_{j i}=0$, so in the formula above we get

$$
v=f(S, \bar{S})-f(\bar{S}, S)=f(S, \bar{S})=C(S, \bar{S})
$$

Therefore the maximal flow is equal to the minimal cut capacity.

Sufficient conditions for a minimum cost circulation

If $\left(x_{i j}\right)$ is a feasible circulation and there exists λ such that

$$
\begin{gathered}
x_{i j}=\left\{\begin{array}{ccc}
c_{i j}^{-} & \text {if } & d_{i j}-\lambda_{i}+\lambda_{j}>0 \\
c_{i j}^{+} & \text {if } & d_{i j}-\lambda_{i}+\lambda_{j}<0
\end{array}\right. \\
c_{i j}^{-} \leq x_{i j} \leq c_{i j}^{+} \quad \text { if } \quad d_{i j}-\lambda_{i}+\lambda_{j}=0
\end{gathered}
$$

then $\left(x_{i j}\right)$ is a minimal cost circulation. The λ_{i} are known as node numbers or potentials. In particular, if $c_{i j}^{-}=0$ and $c_{i j}^{+}=\infty$ then the conditions are

$$
\begin{aligned}
d_{i j}-\lambda_{i}+\lambda_{j} & \geq 0 \\
\left(d_{i j}-\lambda_{i}+\lambda_{j}\right) x_{i j} & =0
\end{aligned}
$$

Proof

Apply the Lagrangian sufficiency theorem.

The transportation algorithm

1. Pick an initial feasible solution with $m+n-1$ non-zero flows (NW corner rule).
2. Set $\lambda_{1}=0$ and compute λ_{i}, μ_{i} using $d_{i j}-\lambda_{i}+\mu_{j}=0$ on arcs with non-zero flows.
3. If $d_{i j}-\lambda_{i}+\mu_{j} \geq 0$ for all (i, j) then the flow is optimal.
4. If not, pick (i, j) for which $d_{i j}-\lambda_{i}+\mu_{j}<0$.
5. Increase flow in arc (i, j) by as much as possible without making the flow in any arc negative. Return to 2 .
