
Optimization

Linear Programming

P: maximize cT x s.t. Ax ≤ b, x ≥ 0
D: minimize λT b s.t. AT λ ≤ c, λ ≥ 0

The simplex algorithm. Slack variables. The two-phase algorithm — artificial variables.
Shadow prices.

Complementary slackness

P D
variables x constraints λ

xi basic (xi 6= 0) =⇒ constraint: tight (vi = 0)
xi non-basic (xi = 0) ⇐= constraint: slack (vi 6= 0)

constraints variables λ
constraint: tight (zi = 0) ⇐= λi basic (λi 6= 0)
constraint: slack (zi 6= 0) =⇒ λi non-basic (λi = 0)

Theorem

The feasible set of an LP problem is convex.

Proof

Write the problem as minimize cT x s.t. Ax = b, x ≥ 0, and let Xb be the feasible set. Suppose
x, y ∈ Xb, so x, y ≥ 0 and Ax = Ay = b. Consider z = λx + (1 − λ)y for 0 ≤ λ ≤ 1. Then
zi = λxi + (1− λ)yi ≥ 0 for each i. So z ≥ 0. Secondly,

Az = A(λx + (1− λ)y) = λAx + (1− λ)Ay = λb + (1− λ)b = b.

So z ∈ Xb and hence Xb is convex.

Theorem

Basic feasible solutions ≡ extreme points of the feasible set.

Proof

Suppose x is a b.f.s. Then ∃ a basis B and non-basis N such that the non-basic components of
x satisfy xN = 0. Suppose x is not extreme. Then ∃y, z such that x lies on the line segment
between y and z and hence yN = zN = 0 (proof omitted). Furthermore, y and z are feasible, so
AByB = ABzB = b and this gives AB(yB − zB) = 0. But as AB is non-singular (by assumption)
we have yB = zB and hence y = z. This is a contradiction, and so x must be extreme.

Now suppose x is an extreme point of Xb. Since x ∈ Xb we know it is feasible — we just need
to show that it is basic.
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Suppose it is not a b.f.s. Then the number of non-zero coordinates, p say, is greater than m. Let
P = {i : xi > 0} and Q = {i : xi = 0}. Since x is feasible, Ax = AP xP +AQxQ = b ⇒ AP xP = b.
But this is m equations in p > m variables, so ∃ non-zero yP s.t. AP yP = 0. We put yQ = 0
and y =

( yP
yQ

)

.

Consider x+ εy and x− εy for small ε. For ε > 0 small enough these two points are both feasible
since A(x± εy) = Ax± εAy = b, and x± εy ≥ 0 (for small ε since yi > 0 implies xi > 0). Hence

x = 1
2(x + εy) + 1

2(x− εy)

and so x is not extreme. This is a contradiction, and hence x must be a b.f.s.

Theorem

If an LP has a finite optimum then there is an optimal basic feasible solution.

Proof

See lecture notes.

Theorem (weak duality)

If x is feasible for P and λ is feasible for D then cT x ≤ bT λ. In particular, if one problem is
feasible then the other is bounded.

Proof

Let L(x, z, λ) = cT x − λT (Ax + z − b) where Ax + z = b. Now for x and λ satisfying the
conditions of the theorem,

cT x = L(x, z, λ) = (cT − λT A)x− λT z + λT b ≤ λT b.

Theorem (sufficient conditions for optimality)

If x∗, z∗ are feasible for P and λ∗ is feasible for D, and x∗, z∗, λ∗ satisfy complementary slackness,
then x∗ is optimal for P and λ∗ is optimal for D. Furthermore cT x∗ = λ∗T b.

Proof

Let L(x, z, λ) = cT x− λT (Ax + z − b). Then

cT x∗ = L(x∗, z∗, λ∗)

= (cT − λ∗T A)x∗ − λ∗T Ax∗ + λ∗T b

= λ∗T b

by complementary slackness. But for all x feasible for P we have cT x ≤ λ∗T b (by the weak
duality theorem) and this implies that for all feasible x, cT x ≤ cT x∗. So x∗ is optimal for P.
Similarly λ∗ is optimal for D, and the problems have the same solutions.

Theorem (strong duality: necessary conditions for optimality)

If both P and D are feasible then ∃ x, λ satisfying the conditions above.
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Lagrangian Methods

The Lagrangian

For the general optimization problem

P: minimize f(x) s.t. g(x) = b, x ∈ X

the Lagrangian is
L(x, λ) = f(x)− λT (g(x)− b).

The Lagrangian sufficiency theorem

If x∗ and λ∗ exist such that x∗ is feasible for P and

L(x∗, λ∗) ≤ L(x, λ∗) ∀x ∈ X,

then X∗ is optimal for P.

Proof

Define
Xb = {x : x ∈ X and g(x) = b}.

Note that Xb ⊆ X and that for any x ∈ Xb

L(x, λ) = f(x)− λT (g(x)− b) = f(x).

Now
f(x∗) = L(x∗λ∗) ≤ L(x, λ∗) = f(x), ∀x ∈ Xb.

Thus x∗ is optimal for P.

Theorem (weak duality)

For λ ∈ Y , let
L(λ) = min

x∈X
L(λ, x)

Then for any x ∈ Xb, λ ∈ Y ,
L(λ) ≤ f(x).

Proof

For x ∈ Xb, λ ∈ Y ,

f(x) = L(x, λ) ≥ min
x∈Xb

L(x, λ) ≥ min
x∈X

L(λ, x) = L(λ).

Solution of general optimization problems

1. Find Y , the set of λ such that L(x, λ) has a finite minimum.

2. Find x(λ), the value of x at which this minimum is obtained, for all λ ∈ Y .

3. Find x∗ = x(λ∗), where x∗ is feasible for P.

4. Then x∗ is optimal for P.

3



Applications

Two person zero-sum games

Let A be the pay-off matrix for the game. A pair of strategies p and q with
∑

pi = qi = 1,
pi ≥ 0 and qi ≥ 0 are optimal if

pT A ≥ v, Aq ≤ v and pT Aq = v

for some v ∈ R, where v is the value of the game.

The max flow/min cut theorem

The maximal flow value through a network is equal to the minimum cut capacity.

Proof

Define f(X,Y ) =
∑

i∈X,j∈Y xij , the flow from X to Y . Let the set of nodes of the network be
represented by N = {1, 2, . . . , n}. Let (S, S̄) be a cut and (xij) be a feasible flow with value v.
Note that f(X, N) = f(X, S) + f(X, S̄). Since (xij) is feasible, we have

∑

j

xij −
∑

j

xji =











v i = 1
0 i 6= 1, n
−v i = n

Summing this equality over i ∈ S we obtain

v =
∑

i∈S

∑

j

(xij − xji)

=
∑

i∈S

∑

j

xij −
∑

i∈S

∑

j

xji

= f(S,N)− f(N,S)

= f(S, S) + f(S, S̄)− f(S̄, S)− f(S, S)

= f(S, S̄)− f(S̄, S)

≤ f(S, S̄)

≤ C(S, S̄)

where C(S, S̄) is the capacity of the cut (S, S̄). So any flow is ≤ any cut capacity, and in
particular the maximal flow is ≤ the minimal cut capacity.

Now let f be a maximal flow, and define S ⊆ N recursively by:

1. 1 ∈ S

2. i ∈ S and xij < cij =⇒ j ∈ S

3. i ∈ S and xji > 0 =⇒ j ∈ S

So S is the set of nodes to which we can increase the flow. Now if n ∈ S then we can increase
the flow along some path to n and so the flow is not maximal. Hence n ∈ S̄ = N \ S and so
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(S, S̄) is a cut. From the definition of S we know that for i ∈ S and j ∈ S̄ we have xij = cij and
xji = 0, so in the formula above we get

v = f(S, S̄)− f(S̄, S) = f(S, S̄) = C(S, S̄).

Therefore the maximal flow is equal to the minimal cut capacity.

Sufficient conditions for a minimum cost circulation

If (xij) is a feasible circulation and there exists λ such that

xij =

{

c−ij if dij − λi + λj > 0
c+
ij if dij − λi + λj < 0

c−ij ≤ xij ≤ c+
ij if dij − λi + λj = 0

then (xij) is a minimal cost circulation. The λi are known as node numbers or potentials. In
particular, if c−ij = 0 and c+

ij = ∞ then the conditions are

dij − λi + λj ≥ 0

(dij − λi + λj)xij = 0.

Proof

Apply the Lagrangian sufficiency theorem.

The transportation algorithm

1. Pick an initial feasible solution with m + n− 1 non-zero flows (NW corner rule).

2. Set λ1 = 0 and compute λi, µi using dij − λi + µj = 0 on arcs with non-zero flows.

3. If dij − λi + µj ≥ 0 for all (i, j) then the flow is optimal.

4. If not, pick (i, j) for which dij − λi + µj < 0.

5. Increase flow in arc (i, j) by as much as possible without making the flow in any arc
negative. Return to 2.
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