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Chapter 1

Review of inviscid fluids

1.1 Continuum hypothesis

We assume that at each pointx of the fluid we can define, by averaging over a small
volume, properties like densityρ(x, t), velocity u(x, t) and pressurep(x, t) and that
these vary smoothly over the fluid. We do not deal with the dynamics of individual
molecules.

1.2 Time derivatives

A fluid particle, sometimes called amaterial elementor Lagrangian point, is one that
moves with the fluid, so that its positionx(t) satisfiesẋ = u(x, t).

The rate of change of some quantity moving with the fluid is writtenD
Dt ; the chain

rule gives
D
Dt

=
∂

∂t
+ u · ∇. (1.1)

In particular, the acceleration of a fluid particle isDu
Dt = ∂u

∂t + u · ∇u.

1.3 Mass conservation

Since mass is conserved the mass densityρ satisfies∂ρ∂t +∇ · (ρu) = 0. The quantity
ρu is called themass flux.

For anincompressiblefluid the density of each material element is constant, and so
Dρ
Dt = 0. Thus∇ · u = 0.

In this course we will restrict to fluids which are incompressible and have uniform
density so thatρ is independent of bothx andt.

For planar flows, the condition∇ · u = 0 is automatically satisfied if we haveu =
∇× (0, 0, ψ(x, y)), so thatu = (ψy,−ψx, 0). ψ(x, y) is called the streamfunction.

1.4 Kinematic boundary condition

Applying mass conservation to a region close to a boundaryS we getn · u+ = n · u−
atS.

1



2 CHAPTER 1. REVIEW OF INVISCID FLUIDS

This states that the normal component of velocity is continuous acrossS. In par-
ticular, if S is fixed we haven.u = 0 atS.

The kinematic boundary condition can be written a different way. Suppose the
boundary of a fluid is given byF (x, t) = 0. Then since the surface consists of material
points DF

Dt = 0. This is sometimes more convenient for free surface problems.

1.5 Momentum conservation

Assumingthat the only force acting across a material surfacendS is given via a pres-
surep(x, t) as−pndS then we obtain Euler’s equation:

ρ
Du
Dt

= −∇p+ ρF(x, t), (1.2)

whereF(x, t) is the body force per unit mass (for instance gravity) that acts on the
fluid.

1.6 Dynamic boundary condition

On the same assumption, applying momentum conservation to a region close to a
boundaryS gives−p−n = −p+n in the absence of surface tension.

In this course we will abandon the assumptions of§1.5 and§1.6 and include tan-
gential frictional forces across material surfaces.

1.7 Steady flow past a circular cylinder

The steady Euler equation withF = 0 is satisfied ifu = ∇φ andp+ 1
2ρ |u|

2 = const.
The incompressibility condition∇ · u = 0 becomes∇2φ = 0.

A solution withφ ∼ Ur cos θ asr → ∞ (uniform stream with velocityU ) and
u.n = 0 on r = L is

φ = U

(
r +

L2

r

)
cos θ, (1.3)

with streamfunction

ψ = U

(
r − L2

r

)
sin θ. (1.4)

The tangential velocity onr = L is 2U sin θ.



Chapter 2

The governing equations for a
Newtonian fluid

2.1 Viscosity

Suppose we have two parallel plates a distanceh apart, and we put fluid between them.

What force per unit area on the top plate is needed to keep it moving at a velocity
U? Experiments show that it is proportional toUh , and measuring the flow profile shows
that Uh = ∂u

∂y .

The coefficient of proportionality is theviscosity, µ. It has dimensionsML−1T−1.

2.2 Rate of strain tensor

Consider the fluid motion near a point0. Then

ui(x) = ui(0) + xj
∂ui
∂xj

∣∣∣∣
0

+
1
2
xjxk

∂2ui
∂xjxk

∣∣∣∣
0

+ . . . .

Thus

ui(x)− ui(0) ≈ xj
∂ui
∂xj

∣∣∣∣
0

.

∂ui

∂xj
is called the velocity gradient, and is sometimes written(∇u)ji.

The symmetric part of the velocity gradient is the rate of strain tensor,

eij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.1)

and the antisymmetric part is the vorticity tensor

Ωij =
1
2

(
∂ui
∂xj

− ∂uj
∂xi

)
= −1

2
εijkωk, (2.2)

3



4 CHAPTER 2. THE GOVERNING EQUATIONS

where the vectorω is the vorticity,ω = ∇× u.
Thus

ui(x)− ui(0) ≈ xjeij +
1
2

(ω × x)i .

Theω × x part of this is a solid body rotation, which we hope causes no stress.
eij is symmetric and so can be diagonalised. Its eigenvaluesα, β andγ are the

principal rates of strain. Note thatα+ β + γ = eii = ∇ · u = 0.

2.3 The stress tensor

The forces acting on a fluid are of two kinds.

1. Volume or body forces. These have a long range and are proportional to the
volumeof a fluid element. (gravity)

2. Surface tractions. These have a short range and are proportional to the surface
area of a fluid element.

Let ndS be an arbitrary element of area drawn in the fluid at(x, t). We write the
force exerted by the fluid on the+ side ofdS on the fluid on the− side asτdS. Here
we establish our convention: normals point out of the fluid.

τ is called the surface traction and depends onx, t andn.

Theorem. We claim thatτ is linearly related ton, that is

τi = σijnj .

σij(x, t) is a second rank tensor called the Cauchy stress tensor.

Proof. Let V (t) be an arbitrary material volume with surfaceS(t). The momentum of
the fluid inV (t) is thus ∫

V (t)

ρudV,

and so the equation of motion for the fluid inV (t) is

d
dt

∫
V (t)

ρudV =
∫
V (t)

ρFdV +
∫
S(t)

τdS. (2.3)

Now suppose thatV (t) is small, with linear dimensionε. As volume integrals are
O(ε3) and surface integrals areO(ε2), and in the limitε → 0 the equation of motion
must balance at leading order, we have

lim
ε→0

∫
S(t)

τdS = 0.

Now letV be instantaneously a small tetrahedron (as sketched), with a sloping face
having areadS and normaln. The areas of the other faces are thereforedSi ·n, dSj ·n
anddSk · n, wherei, j andk are the usual unit vectors.
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Since the surface forces on the this tetrahedron must balance,

τ (n)dS + τ (−i)i · ndS + τ (−j)j · ndS + τ (−k)k · ndS = 0.

EliminatingdS we obtain a linear relationship betweenτ andn.

With this expression for the surface tractions, the equation of motion (2.3) is

d
dt

∫
V (t)

ρuidV =
∫
V (t)

ρFidV +
∫
S(t)

σijnjdS.

Using the divergence theorem and the fact thatV (t) is a material volume,∫
V (t)

ρ
Dui
Dt

dV =
∫
V (t)

ρFidV +
∫
V (t)

∂σij
∂xj

dV.

SinceV is arbitrary, we obtain the Cauchy momentum equation

ρ
Dui
Dt

= ρFi +
∂σij
∂xj

. (2.4)

If F = 0 then momentum must be conserved. We can rewrite the Cauchy momen-
tum equation in the form

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj − σij) = 0.

This is the the form of a conservation equation for the momentumρu, and we
identify themomentum flux tensorasρuiuj − σij .

Theorem. Provided no body couples act on the fluid,σij = σji.

Proof. Taking the origin to lie instantaneously withinV (t), the angular momentum of
the fluid inV is ∫

V (t)

ρx× udV,

which isO(ε4). Conservation of angular momentum implies that in the absence of
body couples1

d
dt

∫
V (t)

ρx× udV =
∫
V (t)

ρx× FdV +
∫
S(t)

x× τdS.

The last term here isO(ε3) and is therefore of lower order than the other two terms.
Therefore at leading order it must vanish:

lim
ε→0

∫
S(t)

x× τdS = 0.

Using our result forτ , theith component of this can be written∫
S(t)

εijkxjσkmnm dS =
∫
V (t)

εijk
∂

∂xm
(xjσkm) dV

=
∫
V (t)

εijkxj
∂σkm
∂xm

dV +
∫
V (t)

εijkσkj dV.

The integrals here areO(ε4) andO(ε3) respectively, so lettingε → 0 we obtain
εijkσkj = 0 and so the stress tensor is symmetric.

1As would arise for a suspension of orientable magnetic particles in an external magnetic field.
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2.4 The constitutive equation for a Newtonian fluid

We define the pressurep = − 1
3σii, and so

σij = −pδij + σ′ij ,

whereσ′ij , thedeviatoric stress, is tracefree.
Weassumethatσ′ is linearly relatedto theinstantaneousvalue of∇u and that the

fluid is isotropic. Thus we have

σ′ij = Aijkl
∂uk
∂xl

,

with A a property of the fluid, and so isotropic. Therefore

Aijkl = λδijδkl + µδikδjk + µ′δilδjk

and so

σ′ij = λδij∇ · u + µ
∂ui
∂xj

+ µ′
∂uj
∂xi

.

As the stress tensor is symmetric,µ = µ′. µ is the (shear) viscosity. Thus
σ′ij = 2µeij and we obtain the constitutive equation for a Newtonian fluid,

σij = −pδij + 2µeij . (2.5)

As we hinted on on page 4, this does not depend on vorticity. In generalµ depends
on temperature and so can depend on position.

We can now substitute (2.5) into (2.4) to obtain the Navier-Stokes equations

ρ
Dui
Dt

= − ∂p

∂xi
+ ρFi + µ∇2ui or in vector notation

ρ
Du
Dt

= −∇p+ ρF + µ∇2u.
(2.6)

2.5 Boundary conditions

We can keep the kinematic boundary condition (that only depended on mass conserva-
tion) and so the normal component ofu is continuous at a boundary.

At a boundaryS no net force can be applied to a pillbox; therefore the surface
tractions must balance. Thus[σ · n]S = 0. More generally, if surface tension acts at
S, a net force parallel ton and proportional to the curvature

(
R−1

1 +R−1
2

)
(whereR1

andR2 are the principal radii of curvature) appears and we have

[σ · n]S = γ

(
1
R1

+
1
R2

)
n.

γ is the surface tension coefficient. We can see that in the inviscid caseµ = 0 we
get back the dynamic boundary condition.

We need an extra boundary condition as a∇2 term has appeared. We assume that
n× u is continuous — this is the no-slip condition.
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2.6 The energy equation

Taking (as before)V (t) to be an arbitrary material volume andS(t) its surface, the
kinetic energy of the fluid insideV (t) is

E =
ρ

2

∫
V (t)

|u|2 dV

and the rate of change of this energy is given by the Cauchy equation (2.4) as

dE
dt

= ρ

∫
V (t)

ui
Dui
Dt

dV = ρ

∫
V (t)

uiFi dV +
∫
V (t)

ui
∂σij
∂xj

dV.

The final term here may be written∫
V (t)

ui
∂σij
∂xj

dV =
∫
V (t)

{
∂

∂xj
(uiσij)− σij

∂ui
∂xj

}
dV

=
∫
S(t)

uiσijnj dS −
∫
V (t)

σijeij dV

=
∫
S(t)

uiτi dS − 2µ
∫
V (t)

eijeij dV.

We have therefore shown that

dE
dt

= ρ

∫
V (t)

uiFi dV +
∫
S(t)

uiτi dS − 2µ
∫
V (t)

eijeij dV.

The first two terms on the right represent the rate of working by body and surface
forces respectively, so the final term must be the rate of energy dissipation due to vis-
cosity. The rate of viscous heating per unit volumeΦ = 2µeijeij , and the second law
of thermodynamics demands thatΦ and thereforeµ must be positive.

This heating can change the temperature in the fluid. If then the density or viscosity
depend on temperature then a further equation involving the convection and diffusion
of heat is needed to determine the temperature. We shall not persue this (interesting)
complication in this course.

Using the momentum flux equation we may alternatively write the energy equation
in the form

∂

∂t

(
1
2ρ |u|

2
)

+ ui
∂

∂xj
(ρuiuj − σij) = ρuiFi.

Hence

∂

∂t

(
1
2ρ |u|

2
)

+
∂

∂xj

(
uj

1
2ρ |u|

2 − uiσij

)
= ρuiFi − Φ.

We can thus identify the energy flux vectorq by,

qi = 1
2ρ |u|

2
ui − σijuj ,

and the energy flux equation takes the canonical form

∂

∂t
(energy) +∇ · (energy flux) =

(rate of doing work by body forces)− (loss of energy due to viscous heating) .
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2.7 Scaling estimates

We would like to know when it is appropriate to treat a real fluid as if it were incom-
pressible or inviscid. We can get crude estimates as follows.

Suppose the flow has a typical velocityU , lengthscaleL and timescaleT . For a
sphere in a uniform steady stream,U is the far-field velocity,L is the radius of the
sphere andT is infinite.

If we now wobble this sphere with angular frequencyω we would keepU andL
the same, butT becomesω−1.

2.7.1 Compressibility

The pressurep depends on the mass densityρ, and it may be shown that for small
variations in density about some ambient levelρ we have

dp
dρ

= c2,

wherec is the speed of sound in the fluid. Thus

∆ρ
ρ
∼ p

ρc2
.

The Navier-Stokes equations (2.6) give

p

L
∼ ∇p ∼ max

{
ρ
∂u
∂t
, ρu · ∇u, µ∇2u

}
∼ max

{
ρU

T
,
ρU2

L
, µfracU2L2

}
.

Thus
∆ρ
ρ
∼ max

{
LU

c2T
,
U2

L2
,
µ

ρ

U

c2L

}
.

The fluid is incompressible if∆ρρ � 1, and in practice the Mach number,Uc � 1.

2.7.2 Viscosity

For a steady flowρU
2

L ∼ µU
L2 , and the ratio of inertial forces over viscous forces (the

Reynolds number) is

Re =
ρUL

µ
.

The ratioν = µ
ρ appears. This is the kinematic viscosity.

If Re � 1 then the viscosity is negligible and inertia dominates. IfRe � 1 then
inertia is negligible.

If we have rectilinear flow,u = (U(y, z), 0, 0) thenu · ∇u = 0 and U2

L is a bad
estimate of this...

For some unsteady flows the inertial termρ∂u∂t wins, in this case we get an unsteady

Reynolds numberL
2

νT . This is also called the Stokes number.



Chapter 3

Low Reynolds number flows

In this caseRe � 1 and we neglect inertial terms in the Navier-Stokes equations (2.6)
to obtain

µ∇2u = ∇p− ρF ∇ · u = 0. (3.1)

If F ≡ 0 then these are the Stokes equations. Natural boundary conditions are that
at each point ofS eitheru or σ · n is given.

(3.1) can also be written

∂σij
∂xj

= −ρFi σij = −pδij + 2µeij ∇ · u = 0. (3.2)

3.1 Properties of the Stokes equations

3.1.1 Instantaneity

There are no time derivatives in (3.1). Thusu responds instantaneously to the boundary
motion (and the forceF). There is thus an infinite propagation speed; this situation is
sometimes called “quasi-static”.

For instance, in a sphere falling in an unbounded fluid then the terminal velocity is
acheived at once. For a sphere falling towards a wall then the change in velocity is due
only to the change in the fluid domain.

3.1.2 Linearity

There is nou · ∇u term in (3.1); thereforeu, p and σ are linearly forced by any
boundary motion (or body force).

For instance; if we have a falling sphere, doubling the velocity will doubleσ and
thus double the drag. More generally, force∝ velocity (as opposed to acceleration).

Another example; if we have a moving ellipsoid the problem can be solved by
superimposing the solutions when the ellipsoid moves along its principal axes.

3.1.3 Reversibility

If the velocity on the boundary of a Stokes flow is reversed then so is the velocity
everywhere in the fluid. If a prescribed boundary motion is reversed over time then

9



10 CHAPTER 3. LOW REYNOLDS NUMBER FLOWS

each material point retraces its history.

Does a sphere falling by a wall migrate towards/away from the wall? No — on
reversal ofg, u must reverse and so if the sphere migrates to the wall underg then it
must migrate away from the wall under−g (and similarly for the other case).

3.1.4 Uniqueness

There exists at mosts one Stokes flow in a volumeV for which u is specified on the
boundary.

Proof. Supposeu1 andu2 are two such flows. Letu∗ = u1−u2, so∇2u∗ = 0. Also,
let σ∗ = σ1 − σ2 ande∗ = e1 − e2.

Then (3.2) gives that
∂σ∗ij

∂xj
= 0 and ∂u

∗
i

∂xi
= 0. Now consider

2µ
∫
V

e∗ije
∗
ij dV =

∫
V

σ∗ij
∂u∗i
∂xj

dV

=
∫
V

∂

∂xj

(
σ∗iju

∗
i

)
dV

=
∫
S

σ∗iju
∗
inj dS = 0.

Thus sincee∗ije
∗
ij ≥ 0 we must havee∗ij = 0. Now the most general motion having

no rate of strain is a rigid body motion and sou∗ = u∗ + Ω∗ × x for constantu∗ and
Ω∗. But sinceu∗ = 0 onS we haveu∗ = 0 everywhere.

A more sophisticated argument proves uniqueness ifRe < π
√

3
3 .

3.1.5 Minimum dissipation

Supposeu(x) is the unique Stokes flow inV satisfyingu = u on S. Let ū(x) be
another flow inV such that∇ · ū = 0 andū = u on S (kinematically admissible).
Then

2µ
∫
V

ēij ēij dV ≥ 2µ
∫
V

eijeij dV,

with equality only ifu = ū.

Proof. Let u∗ = u− ū ande∗ = e− ē. Then

2µ
∫
V

e∗ijeij dV =
∫
V

σije
∗
ij dV

=
∫
V

∂u∗i
∂xj

σij dV

=
∫
S

u∗i σijnj dS = 0.
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Now consider

∫
V

(ēij ēij − eijeij) dV = −
∫
V

e∗ij (ēij + eij) dV

=
∫
V

e∗ije
∗
ij dV − 2

∫
V

e∗ijeij dV

≥ 0 as required.

As an example of this we consider the drag on a rigid particle in unbounded fluid.

F =
∫
S

σ · ndS

is the force exerted by the particle on the fluid (the drag is−F). We have to solve
the Stokes equations inV with the boundary conditions thatu = u onS andu→ 0 as
x→∞.

Now the rate of working by the particle on the fluid is

u · F =
∫
S

u · σ · ndS = 2µ
∫
V

eijeij dV ≥ 0.

For a “bar” problem we choose

with ū satisfying the Stokes equations in̂V , ū → 0 at infinity andū = u on S.
Thenū is kinematically admissable and̄e = 0 betweenS andŜ. Therefore

u · F̂ = 2µ
∫
V̂

ēij ēij dV ≥ 2µ
∫
V

eijeij dV = u · F,

whereF̂ is the force exerted by the sphere on the fluid. The magnitude of the drag
in the direction of motion is therefore less than the drag on the circumscribing sphere.

3.1.6 Solving the Stokes equations

Taking the divergence of the Stokes equations (3.1) (withF = 0) we see thatp is
harmonic. Taking the curl we see similarly that vorticity is harmonic, and finally taking
the (vector) Laplacian we see that∇4u = 0 — u is biharmonic.
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For a planar flowu = ∇ × (0, 0, ψ) andω = (0, 0,−∇2ψ). Thus∇4ψ = 0.
We can solve∇2

(
∇2ψ

)
= 0 for ∇2ψ = f(x) (Laplace equation) and then solve

∇2ψ = f(x) (Poisson equation).
Alternatively we could use the method of sheet 2, question 11 and write down a

solution. This is OK in nice geometries. The final method is of course numerical
solution.

3.2 Stokes flow due to a translating sphere

We consider the inertialess flow generated by a sphere of radiusa and velocityu im-
mersed in unbounded fluid of viscosityµ which is at rest at infinity. In particular we
want to calculate the forceF exerted by the sphere on the fluid.

3.2.1 Dimensional analysis

The linearity of the Stokes equations requires thatF is proportional to bothU andµ.
Dimensional considerations therefore giveF = αµaU , whereα is a positive dimen-
sionless constant. The isotropy of the sphere shape then implies thatF = αµau.

3.2.2 Brute force

As you may have guessed from the title of this section this is an algebraically unpleas-
ant calculation. It’s probably good for your soul though...

We take spherical polars(r, θ, φ) with θ = 0 parallel tou. The flow is then ax-
isymmetric with noφ dependence and so admits a streamfunctionψ(r, θ) such that the
components ofu are

ur =
1

r2 sin θ
∂ψ

∂θ
uθ = − 1

r sin θ
∂ψ

∂r
.

It follows from the Stokes equations thatD2
(
D2ψ

)
= 0, where

D2 ≡ ∂2

∂r2
+

sin θ
r2

∂

∂θ

(
1

sin θ
∂

∂θ

)
.

The no-slip condition on the sphere surface gives:

ψ =
1
2
Ua2 sin2 θ and

∂ψ

∂r
= Ua sin2 θ on r = a.

Finally, for r →∞, ψ = o(r2). We look for a solutionψ = f(r) sin2 θ where

f(a) =
1
2
Ua2, f ′(a) = Ua, f = o(r2) asr →∞.

We then obtainD2ψ = F (r) sin2 θ whereF (r) = f ′′ − 2f
r2 so that

D4ψ = 0 ⇔ F ′′ − 2F
r2

= 0.

Integrating these equations we havef = Ar4 +Br2 +Cr+ D
r , and the boundary

conditions giveA = B = 0, C = 3
4Ua andD = − 1

4Ua
3.
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Substituting back we obtain

ur = 2
(
C

r
+
D

r3

)
cos θ and uθ =

(
−C
r

+
D

r3

)
sin θ.

The vorticityω is necessarily in theφ direction with magnitude2Cr2 sin θ. We can
also obtain the pressure (to within an arbitrary constant) as

p− p∞ =
2Cµ cos θ

r2
.

The stress can now be determined from

σ = −pI + µ
(
∇u + (∇u)T

)
,

although care must be taken in evaluating∇u in this curvilinear co-ordinate system.
Recalling thatn is the normal out of the fluid the force exerted by the sphere on the
fluid is finally given as

F =
∫
r=a

σ · ndS = 6πµau, (3.3)

a result known as Stokes’ law.

3.2.3 Comments

Note the fore and aft symmetry in the streamline pattern, unlike higherRe.

u ∼ 1
r asr → ∞, so far field effects are important and distant boundaries and

other particles affect the flow.
We can calculateF more easily by moving the integral to a sphere at infinity using

the divergence theorem;

F = −
∫
S∞

σ · ndS.

SinceF is parallel tou we only need to calculate

F = −
∫
r=∞

σrr cos θ − σrθ sin θ dS.

Only terms of order 1
r2 in σ (r−1 in u or r in ψ) matter here. In the far field

ψ ∼ Cr sin2 θ andp− p∞ ∼ 2µC cos θ
r2 . Thus

σrr ∼ −p+ 2µ
∂ur
∂r

= −p∞ − 6Cµ
cos θ
r2

and

σrθ ∼ ν

{
r
∂

∂r

(uθ
r

)
+

1
r

∂ur
∂θ

}
= 0.

This simplifies the calculation ofF .
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Corollary

For general shapes of particle in unbounded fluid exerting a forceF on the fluid, mea-
suringθ = 0 from the direction ofF, then at large distances

ψ ∼ Fr

8πµ
sin2 θ p− p∞ ∼ F

4πr2
cos θ u ∼ F

8πµr
(2 cos θ er − sin θ eθ) ,

whereer andeθ are the usual unit vectors.
This solution foru andp satisfies the Stokes equations everywhere except atr = 0

and corresponds to a point forceF acting atr = 0. It is called aStokeslet velocity field.

Failure of neglect of inertia

Near infinity, ∣∣∣∣ρ∂u∂t
∣∣∣∣ ∼ |ρu · ∇u| ∼ ρU2

r2
and

∣∣µ∇2u
∣∣ ∼ µU

r3
.

Thus the Reynolds number (near infinity) isρUaµ
r
a and even ifRe = ρUa

µ � 1
inertial effects still matter at infinity. This is the Stokes-Oseen paradox. We need to
use the technique of matched asymptotic expansions, but at leading order the result is
unaffected.

More elegant techniques

There are more elegant (and algebraically less complicated) techniques for solving
Stokes’ equations. The Papkovich-Neuber method (as covered in Part III Slow Viscous
Flow) is probably the easiest.

3.3 Reciprocal Theorem

If (u,σ) and(u′,σ′) are two Stokes flows inV (with different boundary conditions)
then ∫

S

uiσ
′
ijnj dS =

∫
S

u′iσijnj dS.

Proof. ∫
S

(
uiσ

′
ij − ujσ

′
ij

)
nj dS =

∫
V

∂

∂xj

(
uiσ

′
ij − ujσ

′
ij

)
dV

=
∫
V

σ′ij
∂ui
∂xj

− σij
∂u′i
∂xj

dV

=
∫
V

eij2µe′ij − 2µe′ijeij dV = 0.
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3.4 Movement of rigid particles in viscous fluids

Many useful fluids are suspensions (for instance paints, inks, abrasive cleaners, settling
tanks for removal of pollutants). We want to know how fast particles sediment under
gravity.

Consider a rigid particle of arbitrary shape in an unbounded viscous fluid.

Let ρp(x) be the particle density, so that the mass of the particle isM =
∫
Vp
ρp dV .

Take the origin to be at the centre of buoyancy, that is such that∫
Vp

xdV = 0.

The Archimidean upthrust−ρVpg acts at the origin (ρ is the fluid density). Letxg
be the centre of mass:

xg =
1
M

∫
Vp

ρpxdV.

Then the total external force acting on the particle isF = (M−ρVp)g and the total
external couple isG = Mxg × g.

What velocityu and angular velocityΩ are generated? It is easier in practice to
solve the inverse problem. First, though:

Suppose thatρUaµ � 1 and ρΩa
2

µ � 1 so that the fluid inertia is negligible. Unless
ρp � ρ the particle inertia is also negligible and therefore the external force/couple
applied to the particle equals the external force/couple applied to the fluid.

We want to solve the problemu = u + Ω × x on S, u → 0 at infinity andu
satisfies the Stokes equations inV . The force and couple exerted by the body on the
fluid are

F =
∫
S

σ · ndS G =
∫
S

x× σ · ndS.

This has a unique solution. By linearity,u is linear inu andΩ, soσ is linear isu
andΩ, and also proportional toµ. ThusF andG are linear inu andΩ and proportional
to µ. Therefore

Fi = µ
(
aAijUj + a2BijΩj

)
Gi = µ

(
a2CijUj + a3DijΩj

)
,
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whereA, B, C andD are dimensionless second rank “resistance” tensors that
depend on the particle shape. (In fact,B andC are pseudotensors.)

Now ∫
S

u(1) · σ(2) · ndS =
∫
S

u(2) · σ(1) · ndS

and sou(1) · F(2) = u(2) · F(1). ThusU (1)
i AijU

(2)
j = U

(2)
i AijU

(1)
j for all U (1)

andU (2), soA is symmetric.
The rate of working by external forces isF · u = µu ·A · u > 0 if u 6= 0. Thus

A has positive eigenvalues and so is invertible. It can be proved (see example sheet 2)
that the matrix (

aA a2B
a2C a3D

)
is symmetric and positive definite.

3.4.1 Special cases

Sphere

Takea to be the radius of the sphere.A, B, C andD are all isotropic. There exists
no force on a rotating sphere (by reflection symmetry) and soB = C = 0. Thus
Aij = αδij andDij = βδij .

α andβ are6π and8π respectively. Thus

u =
2
9
a2

µ
(ρp − ρ)g.

is the sedimentation rate under gravity.

Cube

Takea as half the side length. The principal axes ofA, B, C andD must coincide
with the axes of the cube and the eigenvalues of each of these matrices must be equal
(by symmetry). ThusA, B, C andD are isotropic.B = C = 0 still, andα andβ are
unknown.

Thus a falling cube does not rotate whatever its orientation and also falls straight
down.

Ellipsoid

The best choice fora is the semi-major axis. The principal axes ofA andD must
coincide with those of the ellipsoid.

A andD are known and are not isotropic.B = C = 0 still.
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Helix

B andC are nonzero. Note that the helix is asymmetric on reflection of axes.

3.5 Stokes flow in a corner

We try a local solutionψ(r, θ) = rλf(θ) whereλ andf are to be determined.λ > 1
for u→ 0 asr → 0.

We look for solutions even inθ of∇4ψ = 0 in 0 < θ < α, f = f ′ = 0 onθ = ±α
(no slip condition) andf ′ = f ′′′ = 0 atθ = 0 (even function).

Now ∇2ψ = rλ−2F (θ), whereF = f ′′ + λ2f and∇4ψ = 0 implies F ′′ +
(λ− 2)2 F = 0.

Thusf = B cosλθ + A cos (λ− 2) θ (restricting to the even solution and taking
λ 6= 1). Applying the conditions atθ = α we getsin 2 (λ− 1)α = (1− λ) sin 2α.

If the angle of the wedge is too small there are no real solutions. However, there
arecomplexsolutions. We need<λ > 1 to getu→ 0 asr → 0. If λ− 1 = p+ ıq and
2α = π

6 then a numerical solution is2αp = 4.2 and2αq = 2.2.
We can evaluateuθ|θ=0 = −<

(
λrλ−1f(θ)

)
= Crp cos (q log r + ε) with C and

ε real. We see an infinite sequence of counter-rotating Moffatt eddies.

The eddies are geometrically similar and decrease in intensity by a factore
πp
q (here

about400) asr → 0.
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Chapter 4

Flow in a thin layer

For a rectilinear flowu · ∇u = 0. What if the flow is nearly rectilinear?

4.1 Lubrication theory

Suppose fluid is confined in a gap0 ≤ y ≤ h(x).

The gap is thin, soHL � 1. We know thatDy−hDt = 0 asy = h(x) is a material
surface. Thus we can either specify(u, v) or

(
u, ∂h∂t

)
ony = h.

We putu = ψy andv = −ψx. Then uv ∼
L
H � 1 andv is negligible compared

with u.
If we can neglect inertia then∣∣∣∣∂p∂x

∣∣∣∣ ∼ µ
∣∣∇2u

∣∣ ∼ µ

∣∣∣∣∂2u

∂y2

∣∣∣∣∣∣∣∣∂p∂y
∣∣∣∣ ∼ µ

∣∣∣∣∂2v

∂y2

∣∣∣∣ .
There are therefore large pressure gradients in thex direction, so

∣∣∣ ∂p∂x ∣∣∣� ∣∣∣ ∂p∂y ∣∣∣ and

at leading orderp is a function ofx only. Put ∂p∂x = G(x, t). Then

∂2u

∂y2
= −G

µ
⇒ u = − G

2µ
y (y − h) +

Uy

h
.

Takingψ = 0 aty = 0 we obtain

ψ = − G

2µ

(
y3

3
− hy2

2

)
+
Uy2

2h
.

The total flux in the layer is

ψ|y=h =
Uh

2
+
Gh3

12µ
= Q(x).

19
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Using mass conservation (directly),∂Q∂x = −∂h
∂t . This gives the Reynolds lubrica-

tion equation:

∂

∂x

(
h3 ∂G

∂x

)
= 6µ

(
h
∂u

∂x
+ u

∂h

∂x
+ 2

∂h

∂t

)
. (4.1)

With two boundary conditions we can find the pressure. For flow in a sheet0 ≤
z ≤ h(x, y, t) we haveu, v � w, p = p(x, y, t) andu andv are parabolic inz. The
equation is

∇ ·
(
h3∇p

)
= 6µ

(
h∇ · u + u · ∇h+ 2

∂h

∂t

)
, (4.2)

whereu = (u, v) and∇ =
(
∂
∂x ,

∂
∂y

)
.

We must now see if we were justified in neglecting inertia:

|ρu · ∇u| ∼ ρU2

L∣∣µ∇2u
∣∣ ∼ µU

H2
.

The ratio of inertial forces to viscous forces is thusUH
ν

H
L and we need this effective

Reynolds number to be small.

4.2 Thrust bearing

Assume that the flow is axisymmetric. We can immediately apply (4.2) to get

∇2p =
1
r

∂

∂r
r
∂p

∂r
=

12µ
h3

∂h

∂t
.

Thus

p =
3µr2

h3

∂h

∂t
+ C log r +D.

We know thatC = 0 (to avoid a singularity at the origin), and we putp = p∞ at
r = a. We obtain

p− p∞ =
3µ
h3

∂h

∂t

(
r2 − a2

)
.

To obtain the force on the hammer we needσzz = −p + 2µ∂w∂z . The ∂w
∂z term is

O(H
2

L2 ) and is smaller thanp so we neglect this. Thus, allowing forp∞,
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F =
∫ a

0

(p− p∞) 2πr dr

= 2π
3µ
h3

∂h

∂t

∫ a

0

r
(
r2 − a2

)
dr

= −3
2
πµ

h3

∂h

∂t
a4.

For fixedV0 = πa2h, and if the force applied to the hammer is fixed, then

F =
3µV 2

0

8π
∂

∂t

1
h4

⇒ h(t) =
(

3µV 2
0

8πF

) 1
4

(t+ t0)
− 1

4

Thusa(t) ∝ (t+ t0)
1
8 and ast → ∞, h ∼ t−

1
4 whena is less than the radius of

the hammer.h′′ ∼ t−
9
4 and so the inertia of the hammer is negligible.

Lubrication forces are in general big — hence Sellotape.

4.3 Flow in a Hele-Shaw cell

Suppose we have a flow confined between two accurately parallel sheets atz = 0 and
z = h. Then the Reynolds equation (4.2) gives∇2p = 0 (∇ is two dimensional) and

(u, v) =
1
2µ
z (z − h)∇p

and the depth averaged velocityū is

ū = ∇
(
−h

2p

12µ

)
.

Thus the velocity field is the gradient of a harmonic potential —ū is an inviscid,
irrotational velocity field.

The no-slip condition is accomodated in a small region of sizeh near the cylinder
surface. We can’t get a circulation asp (and thereforeφ) is single-valued.

4.4 Saffman-Taylor instability for a planar interface

We attempt to analyse the fingering instability observed when a less viscous fluid ad-
vances under a pressure gradient into a more viscous fluid. For simplicity suppose that
one of the fluids is inviscid and consider a planar interface in a Hele-Shaw cell. The
velocityu(x, y) is therefore

u = ∇φ and φ = −h
2p

12µ
,

wherep is the fluid pressure.
Suppose first that the interface atx = V t is planar. Then the basic state is

Water Air
φ0 = V x+ const

p0 = − 12µV (x−V t)
h2 + p∞ p = p∞.
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Now imagine that the interface suffers an infinitesimal perturbation with wavenum-
berk and amplitudeε. We anticipate that this perturbation will grow or decay exponen-
tially in time and check this assumption later. The position of the interface becomes

x = V t+ εeıky+σt,

whereε is arbitrarily small. At leading order inε all the perturbation quantities inherit
this dependence ony andt, so that the velocity potential in the water becomes

φ = φ0 + εf(x)eıky+σt.

As φ is harmonic we can findf(x) (picking the solution decaying asx→ −∞

φ = V x+ const+ εAeıky+σt+|k|(x−V t),

for some constantA. The corresponding pressure is

p = p0 + p1 where p1 = −12µε
h2

Aeıky+σt+|k|(x−V t).

We therefore have

Water Air
φ = φ0 + φ1

p = p0 + p1 p = p∞.

Our aim is to findσ. If a surface tensionγ acts between the fluids then the interface
curvature is just∂

2x
∂y2 at leading order, so that

[p] = γ
∂2x

∂y2
= −k2γεeıky+σt,

where the jump is across the position of the perturbed interface. At leading order
in ε this gives

p∞ −
[
−12µV

h2
εeıky+σt + p∞ − 12µε

h2
Aeıky+σt

]
= −k2γεeıky+σt.

The first term is the pressure in the air and the second is the pressure in the water.
Simplifying we find

A = −V − γh2k2

12µ
.

We can now determine the velocity of the interface as∂φ
∂x , which may again be

evaluated (at leading order) atx = V t. This must correspond to∂x∂t = V + εσeıky+σt.
This gives

σ = A |k| = −V |k|
[
1 +

γh2k2

12µV

]
.

The time dependence cancels out, which justifies our initial assumption. In the
absence of surface tension we see thatσ > 0 wheneverV < 0, thus the interface
perturbation grows (according to linear theory) if the air moves into the water. On the
other handσ < 0 whenV > 0 and the water moves into the air. In the unstable case,
the fastest growing modes are those short waves for whichk →∞.

If γ > 0 surface tension is predicted to stabilise the shortest waves. The interface
is still unstable, but the fastest growing mode has a finite value fork andσ.
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Physical mechanism

Where the interface lags the pressure gradient is bigger, and the disturbance reduces.
The other way is unstable.

4.5 Gravitational spreading on a horizontal surface

Assume axisymmetry and∂h∂r � 1. We will neglect surface tension (and the contact
line).

As this is a free surface problem we can’t use the Reynolds equation directly.
In the layer there is a hydrostatic pressurep = p∞ + ρg (h− z). The radial mo-

mentum equation is

µ
∂2u

∂z2
=
∂p

∂r
= ρg

∂h

∂r
.

As u = 0 atz = 0 and ∂u∂z = 0 atz = h we have

u =
ρg

2µ
∂h

∂r
z (z − 2h) .

The flux out of a cylinder of radiusr is

Q(r) = 2πr
∫ h

0

u dz = −2πρgrh3

3µ
∂h

∂r
.

Mass conservation gives

2πr
∂h

∂t
= −∂Q

∂r
and so

∂h

∂t
=

g

3ν
1
r

∂

∂r

(
rh3 ∂h

∂r

)
.

The volume of the drop is fixed, so∫ a(t)

0

2πrhdr = V.

We now rescale the variables. The natural lengthscale isV
1
3 so rescaleh, r anda

by V
1
3 and the natural timescale isν

gV
1
3

, so we rescalet by this. Lettingr∗ = rV − 1
3
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and so on, we get
∂h∗

∂t∗
=

1
3

1
r∗

∂

∂r∗

(
r∗h∗3

∂h∗

∂r∗

)
and ∫ a∗(t∗)

0

2πh∗r∗dr∗ = 1.

We now drop the∗’s. We needh(r, 0) to get a unique solution.
We look for a similarity solution

1. To aid computer programs,

2. For physical insight,

3. Often the long-time solution, independent of initial conditions.

Try h = t−αH(η) whereη = r
tβ

and soa = Atβ . We get

1 =
∫ A

0

2πηH(η) dηt2β−α,

and soα = 2β. Substituting in the differential equation

(−αH + βηH ′) t−α−1 =
1
3η
t−4α−2β d

dη
(
ηH3H ′) .

So−α − 1 = −4α − 2β. We can solve forα andβ to obtainα = 1
4 , β = 1

8 . The
ODE forH is

d
dη
(
ηH3H ′)+

3
8
η (ηH ′ + 2H) = 0.

This can be integrated to give

ηH3H ′ +
3
8
η2H = 0,

We can integrate this equation to give

H =
(

9
16

) 1
3 (
A2 − η2

) 1
3 .

The constant volume condition gives

3π
4

(
9
16

) 1
3

A
8
3 = 1.

Putting all the dimensions back in, we get

a(t) =
(

210

35π3

) 1
8

V
1
3

(
gV

1
3 t

ν

) 1
8

.

If surface tension is included then we must consider the curvature. We get

p = p∞ + ρg (h− z)− γ
∂2h

∂r2
.
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The governing equation is

∂h

∂t
=

g

3ν
1
r

∂

∂r

{
rh3

(
∂h

∂r
− γ

ρg

∂3h

∂r3

)}
.

This has no similarity solutions. We need extra boundary conditions onh(r) as it
is now a fourth order equation. This is an open problem.
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Chapter 5

Vorticity generation and
confinement

5.1 Vorticity equation

Our point of departure is the Navier-Stokes equations with no force term

ρ

(
∂u
∂t

+∇
(

1
2 |u|

2
)
− u× ω

)
= ρ

Du
Dt

= −∇p+ µ∇2u.

We take the curl of this to get

ρ
∂ω

∂t
= ρ∇× (u× ω) + µ∇2ω.

Re-arranged, this gives the vorticity equation

Dω

Dt
= ω · ∇u + ν∇2ω. (5.1)

Physical meaning: vorticity moves with fluid particles, is diffused by viscosity and
stretched by∇u.

There are no source terms, soω originates on boundaries.
For an inviscid fluid (ν = 0) we haveDω

Dt = ω · ∇u. Recall that for a material
line elementDdl

Dt = dl ·∇u. Therefore vortex lines stretch and rotate like material line
elements.

We can give an integral form for (5.1) in the caseν = 0. Define the circulation
aroundC(t) as

κ =
∮
C(t)

u · dl.

Then
dκ
dt

=
∮
C(t)

Du
Dt

· dl + u · Ddl
Dt

=
∮
C(t)

dl · ∇
(
−p
ρ

+ 1
2 |u|

2

)
= 0 asp andu are single valued.

Thus (in the inviscid case),κ is constant. This is Kelvin’s circulation theorem.
If κ = 0 at t = 0 for all contoursC thenκ = 0 for all time. In this caseu = ∇φ

and we have an irrotational inviscid problem.

27
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5.1.1 Planar flows

In theν 6= 0 case, if we have a planar flow we can writeu = (ψy,−ψx, 0) and then
ω = (0, 0,−∇2ψ).

Thusω · ∇u = 0 and the vorticity equation becomes

∂

∂t
∇2ψ − ∂(ψ,∇2ψ)

∂(x, y)
= ν∇4ψ. (5.2)

This is the two dimensional vorticity equation.

5.2 Vorticity generation

Suppose that we have the flowu = (u, v) with

u|y=0 =

{
U t > 0
0 t < 0.

What isu(y, t) for t > 0? We try a solutionu = (u(y, t), 0) andp = p(y, t).
They momentum equation gives∂p∂y = 0 and thex momentum equation gives

∂u

∂t
= µ

∂2u

∂y2
.

This is a diffusion equation foru (or ω, sinceω = −∂u
∂y ). We have the boundary

conditionsu→ 0 asy →∞ andu = 0 for all y at t = 0. Now u ∝ U by linearity, so
u = Uf(y, t, ν) for dimensionlessf .

Asf is dimensionless it depends only ony
2
√
tν

= η— we have a similarity solution.
The chain rule gives

f ′′ + 2ηf ′ = 0,

which has the solution

f = A

∫ η

0

e−ξ
2
dξ +B.

Now f(0) = 1 andf → 0 asη →∞, soA = 2√
π

andB = 1. Thus

u(y, t) = U

(
1− erf

y

2
√
νt

)
.

The vorticityω = U
2
√
πνt

e−
y2

4νt . As t → 0, ω(y) → Uδ(y), and ast increases

ω spreads into aboundary layerof thicknessδ ∝ (νt)
1
2 . This is characteristic of a

diffusion process.
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Note that
∫∞
0
ω dy = U ∀t.

5.3 Vorticity confinement on a flat plate

Consider a steady flow past a flat plate with suction.

u = (0,−V ) at y = 0, u → (U,−V ) as y → ∞. We try a solutionu =
(u(y), v(y)). Incompressibility givesv = −V ∀y. Thex component of the momentum
equation is

−V ∂u
∂y

= ν
∂2u

∂y2
.

Thus the general solution isu = A+Be−
V y
ν . If V > 0 we can apply the boundary

conditions to getu(y) = U
(
1− e−

V y
ν

)
andω = −UV

ν e−
V y
ν .

The vorticity is confined in a boundary layer near the wall of thicknessν
V . Outside

the boundary layer the flow is irrotational.
If V < 0 we cannot apply the boundary conditions consistently.

5.4 Stagnation point flow

The irrotational flowu = α(x,−y) with streamfunctionψ = αxy has a stagnation
point at the origin. What does the flow become if a rigid wall is placed aty = 0? (We
look at theα > 0 case first.)

We look for a streamfunctionψ such thatψ ∼ αxy asy → ∞, and propose the
solutionψ = αxf(y) with f(y) ∼ y asy →∞.

We nondimensionalisex andy by δ =
√

ν
α , and put

ψ = αδ2
x

δ
f(yδ ).

Lettingη = y
δ , for a steady flow we haveu · ∇ω = ν∇2ω, ω = −∇2ψ we get

f ′f ′′ − ff ′′′ = f (iv)

with boundary conditionsf ′ → 1 asη →∞, f = f ′ = 0 atη = 0.
We can integrate this equation once to get

f ′2 − ff ′′ = f ′′′ + 1.
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This equation must be solved numerically; it appears there is a unique solution.

Far from the plateψ ∼ αx (y − 0.65) — so the flow is irrotational, with a per-
turbation as if the stagnation streamline was aty = 0.65δ (this is the displacement
thickness).

The vorticity is confined to a layer of thickness proportional toδ.
If α < 0 the above analysis carries through, provided we letδ =

√
ν
|α| andψ =

|α| δxf(yδ ). The ODE is unchanged but the boundary condition at infinity becomes
f ′ → −1 asη →∞. No solution to this equation exists.

5.5 The bathtub vortex

The axisymmetric flowu = v(r, t)eθ has vorticityω = 1
r
∂
∂r (rv) ez. The vorticity

diffuses according to the equation

∂ω

∂t
= ν∇2ω,

and the local vorticity intensity falls. To maintain the vorticity distribution add in a flow
u = (−αr, 0, 2αz). This will advect and stretchω (for α > 0). What is the steady
vorticity?

u · ∇ω − ω · ∇u = ν∇2ω

−αr∂ω
∂r

− 2αω =
ν

r

∂

∂t
r
∂ω

∂r

⇒ −αr2ω = νr
∂ω

∂r
+ C.

If ω → 0 asr →∞ thenC = 0 and

ω = ω0e
−αr2

2ν ⇒ v =
νω0

αr

(
1− e−

αr2
2ν

)
.

The vorticity is confined tor .
√

ν
α .

Now dp
dr = ρν2

r − 2α2r andp has a minimum nearr = 0 — so if we have a free
surface a dip will appear.



Chapter 6

Boundary layer theory at high
Reynolds number

6.1 Introduction

Suppose we have a steady flow past a circular cylinder.

Suppose also that the Reynolds number,Re = UL
ν � 1. Near the front stagna-

tion point we expectψ ∝ xyUL which implies a boundary layer of thickness
√

νL
U =

L√
Re
� 1 where the viscosity is important. Outside the layer the flow remains irrota-

tional, although it is slightly modified by a displacement effect of sizeRe−
1
2 , which we

ignore. Note thatx = Lθ andy = (r − L) are co-ordinates parallel and perpendicular
to the surface.

We expect the boundary layer to continue around the cylinder, and would like to
know what happens in this layer and at therear stagnation point.

6.2 Steady boundary layer theory at rigid surface

Recall the steady planar vorticity equation (5.2),

−∂(ψ,∇2ψ)
∂(x, y)

= ν∇4ψ.

In the Euler limit we suppose thatx andy have the same scaleL and letRe →∞.
Letψ = ULψ̃, x = Lx̃ andy = Lỹ. Then the steady vorticity equation becomes

−∂(ψ̃, ∇̃2ψ̃)
∂(x̃, ỹ)

=
1

Re
∇̃4ψ̃

31
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and asRe →∞ viscosity disappears and we recover the Euler equationρu ·∇u =
−∇p.

In the Euler limit we lose the no-slip boundary condition; settingµ = 0 in the
Navier-Stokes equations reduces the order and in general fewer boundary conditions
can be satisfied.

We expect that in the boundary layer viscosity is always important. In the Prandtl
limit we supposex = Lx̄ buty = δȳ whereδ = L√

Re
andψ = Uδψ̄. Thusu is scaled

byU butv is scaled by U√
Re

.
For any fixedx, limRe→∞ u(x) = u|inviscid (x). This convergence isnot uniform;

for any fixedRe, however big, we can always findx at whichu(x) 6= u|inviscid (x).
Now ω̄ = −∇̄2ψ̄ = −∂2ψ̄

∂ȳ2 which implies that

−
∂(ψ̄, ∂

2ψ̄
∂ȳ2 )

∂(x̄, ȳ)
= −∂

4ψ̄

∂ȳ4

to get a balance between inertia and viscosity in the boundary layer. We can inte-
grate this once with respect tōy to get

ψ̄ȳψ̄x̄ȳ − ψ̄x̄ψ̄ȳȳ = ψ̄ȳȳȳ +G(x̄)

which may be alternatively written

ūūx̄ + v̄ūȳ = ūȳȳ +G(x̄).

G is a pressure gradient which does not depend onȳ in the layer.
On the wall at̄y = 0 we haveψ̄ = ψ̄ȳ = 0 which gives the no-slip condition.

Matching

As ȳ → ∞ (many distancesδ, but for largeRe still near the boundary) the inner
solution must match the outer solution. Nowν = 0 already matches. We also need

lim
ȳ→∞

ψ̄ȳ = lim
ỹ→0

ψ̃ỹ.

The pressure must also match. Iflimȳ→∞ ψ̄ȳ = U(x̄) then by Bernoulli’s equation,
p+ 1

2ρ |u|
2 = const and soG(x̄) = U ∂U

∂x̄ .
Putting this back into dimensional form we obtain the boundary layer equation:

uux + vuy = UU ′ + νuyy (6.1)

with boundary conditionsu = v = 0 aty = 0 andu→ U asy →∞.

Notes

1. This is a parabolic equation. We need upstream conditions onu, for instance the
value atx = 0.

2. The boundary layer equation is thex momentum equation with∇2 = ∂2

∂y2 and
∂p
∂x a function ofx only.

3. It is a nonlinear equation. Very few analytic solutions are known, and those that
are known are similarity solutions.
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6.3 Flow past a flat plate: Blasius boundary layer

The Euler problem isu = (U, 0), and the boundary layer equation becomes

ψyψxy − ψxψyy = νψyyy

with ψ = ψy = 0 aty = 0 andψy → U asy →∞.
This is like a spatial version of vorticity diffusion. Vorticity spreads a distance

√
νt

wheret = x
U is the time taken for fluid to reachx starting fromx = 0.

We try δ(x) =
(
νx
U

) 1
2 and a similarity solutionη = y

δ(x) , ψ = Uδ(x)f(η). Substi-
tuting into the boundary layer equation we get

f ′′′ + 1
2ff

′′ = 0,

with f = f ′ = 0 atη = 0 andf ′ → 1 asη →∞. This must be solved numerically, to
give a flow profile:

The traction on the platey = 0+ is µ ∂u
∂y

∣∣∣
y=0

= µU
δ f

′′(0), numerical solution

gives0.3ρU2
√

ν
Ux .

Notes

1. The displacement thickness is the lateral displacement of streamlines outside the
boundary layer:

δ1 =
∫ ∞

0

(
1− u

U

)
dy = 1.7

√
νx

U
.

2. We could get an improved result by modifying the outer Euler flow to account for
the displacement effect (flow past a parabola). This is anO(Re−

1
2 ) correction.

3. What is the Reynolds number? The only available lengthscale isx, so the effec-

tive Reynolds number isUδ1ν ∝
√

Ux
ν . There is therefore a small nose region

nearx = 0 of size ν
U where the theory breaks down.

4. It is found experimentally that if the Reynolds number is big enough (far enough
downstream) the flow becomes unstable. (AtRe ≈ 1000.) Disturbance to the
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boundary layer grow, flow becomes unsteady and ultimately turbulent. The drag
on the plate increases. In practice, this Blasius boundary layer agrees with ex-
periment for1 � Re . 1000.

6.4 Similarity solutions of the boundary layer equation

For geometries with no intrinsic lengthscale it is sensible to try a solutionψ(x, y) =
U(x)δ(x)f(η), whereη = y

δ(x) , U ∝ xp andδ ∝ xq.

Thenu = ψy = Uf ′(η) and sof ′ → 1 asη → ∞. To get a balance between
inertia and viscosity in the boundary layer we must have|uux| ∼ ν |uyy| (in practice
|uux| ∼ |vuy|). Thus

UUx ∼
νU

δ2

andp+ 2q = 1. To fix p andq we need extra information.

In the Blasius layer we hadu → U independently ofx and sop = 0. In the
stagnation point flow we hadu→ αx and sop = 1.

Dimensional arguments give the rest.

6.5 High Reynolds number flow past a wedge

6.5.1 Outer problem

Symmetric flow

In the outer inviscid, irrotational region we haveu = ∇φ and∇2φ = 0 with boundary
conditions∂φ∂θ = 0 on θ = 0 andθ = 2π − πβ

2 . The last condition is a symmetry
requirement.

The trial solutionsφ = Crλ cosλθ will work if λ = 2
2−β . The outer flow velocity

for the anticipated boundary layer onθ = 0 then has magnitudeU(x) = Axm, where
m = λ− 1 = β

2−β ≥ 0.

The caseβ = 0 (m = 0) gives the Blasius boundary layer and the caseβ = 1
(m = 1) gives stagnation point flow.
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Antisymmetric flow

This is the same problem as above, but with the symmetry condition replaced by∂φ
∂r =

0 onθ = π
2 + πβ

2 .
The same trial solution works, but now withλ = 1

1+β and soU(x) = Axm, with

m = − β
1+β ≤ 0.

6.5.2 The boundary layer

The boundary layer equation alongx > 0 (leaving the apex of the wedge) becomes

ψyψxy − ψxψyy = mA2x2m−1 + νψyyy.

The only lengthscale for growth of the boundary layer thickness is then provided
by x, and sinceU(x) = Axm we try a similarity solution withp = m andq = 1−m

2 .
Dimensional considerations dictate a structure of the form

ψ =
√
νAxm+1f(η) η =

y

δ(x)
with δ(x) =

√
νx1−m

A
.

If m < 0 the boundary layer thickness increases faster than the
√
x behaviour that

would arise from diffusion alone.
Substituting in the boundary layer equation we obtain the Falkner-Skan equation

f ′′′ +
m+ 1

2
ff ′′ +m

(
1− f ′2

)
= 0, (6.2)

with boundary conditionsf = f ′ = 0 on η = 0 (no slip) andf ′ → 1 asη → ∞
(to match the outer Euler flow).

6.5.3 Numerical solution

The ordinary differential equation may be solved numerically using a shooting tech-
nique. We find that form > 0 there is a unique forf qualitatively similar to the
Blasius profile havingf ′ > 0 for all η. Thus symmetric flows that accelerate away
from the apex of the wedge pose no difficulties for the boundary layer equation.

For antisymmetric flows withm < 0 the position is more complicated.

Form < −0.904 there is again a unique solution forf , but nowf ′′(0) < 0. There
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is flow reversal near the wall and the flow must separate at the apex of the wedge on the
downstream side. This is unacceptable — “upstream infinity” in the parabolic bound-
ary layer equation foru is now atx = ∞. Furthermore, for largeη, f ′ approaches its
asymptotic value of unity from above, so the presence of the boundary layer apparently
speeds up the outer flow over its inviscid value — this is unphysical.

For−0.904 < m < 0 there are two solutions forf , one having reversed flow and
the other not. The solution without reversed flow is acceptable.

6.5.4 Separation of the boundary layer

High Reynolds number steady boundary layers on rigid surfaces are commonly found
in experiments, but are not normally observed to contain regions of reversed flow.1

The wedge example above suggests that non-reversed boundary layers will arise on the
rigid boundaryx > 0 provided the “imposed” pressure gradientUU ′ is positive — that
is if the external stream accelerates.

If U ′ > 0 then∂V∂y < 0 by mass conservation and sinceV = 0 at the boundary,V <
0 in the interior of the fluid. In this case convection tends to confine the vorticity near
the boundary. IfU ′ < 0 vorticity confinement to a thin boundary may be impossible.

If UU ′ is sufficiently (in fact only slightly) negative, called an adverse pressure gra-
dient, then the boundary layer thickness grows more rapidly and flow reversal occurs.
This phenomenon is called boundary layer separation. Separation brings into question
our entire method of solution, in particular the imposition of upstream boundary data
onu at or nearx = 0.

Sometimes, worse still, it implies that the outer irrotational Euler solution is it-
self incorrect becausegross separationoccurs. The classic example here is flow past
a circular cylinder, for which we noted that the outse inviscid irrotational flow has
UU ′ = 2 sin 2x, wherexmeasures distance from the front stagnation point. This pres-
sure gradient becomes adverse atx = 90◦, and the boundary layer equation shows a
singularity atx = 104.5◦. Experimentally, the boundary layer is observed to separate
and to introduce vorticity into the wake of the cylinder, changing the leading order
outer flow as sketched below (this happens atRe ≈ 20). At higher flow rates still the
flow becomes unsteady.2

This gross separation is characteristic of high Reynolds number flow past any bluff
body and the only way to prevent the separation is to reduce the adverse pressure gra-
dient by streamlining the body into an aerofoil shape.

Without separation the magnitude of the “skin friction” boundary layer drag on
the body scales asLµ∂u∂y = µU

√
Re and the contribution from the pressureρU2 in

the outer inviscid flow is zero. With separation the modified external pressure gives a
“form drag” of magnitudeρU2L, which is a (large) factor of

√
Re bigger than the skin

friction.

1For an exception, see Van Dyke page 26.
2See Van Dyke pages 28 – 31.
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From a mathematical perspective, note that the limitRe →∞ is in general singular.
The steady flow field forRe → ∞, if it exists, may be completely different from that
for an inviscid fluid withRe = ∞.

6.6 Converging and diverging flow in a wedge

We will do the source problem first; consider a source with strengthQ. The outer
problem has a solutionur = Q

πβr and soU(x) = A
x ,A = Q

πβ > 0.
We seek a similarity solution withp = −1 andq = 1. Thus

ψ =
√
νAf(η) η =

y

δ
with δ =

√
ν

A
.

Substituting into the boundary layer equations we get

f ′′′ + f ′2 − 1 = 0, Falkner-Skan withm = −1.

The boundary conditions aref = f ′ = 0 atη = 0 andf ′ → 1 asη →∞. We can
integrate this once to get

1
2f

′′2 + 1
3f

′3 − f ′ = const= −2
3

using∞.

At η = 0, f ′ = 0 and sof ′′2 = − 4
3 — giving a contradiction. There is no steady

boundary layer. Thus the pressure gradientUU ′ = −A2

x3 is too adverse and vorticity
must diffuse into the interior.

In fact there is an exact solution of the full Navier-Stokes equations (Jeffrey-Hamel
flow). We get rapid oscillations and so viscosity matters everywhere. In practice this is
very unstable.

We can do the sink problem by sendingQ 7→ −Q in the above. We obtain the same
differential equation, but the boundary condition at infinity isf ′ → −1 asη →∞. We
integrate the differential equation once to get

1
2f

′′2 + 1
3f

′3 − f ′ =
2
3
,

which impliesf ′ = 2−3 tanh2
(
η√
2

+ C
)

, wheretanhC = ±
√

2
3 , one of which has

reversed flow and is no good. The other is OK.
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Chapter 7

Aerodynamics

We are interested in flows that do not separate.

We hope (require!) that boundary layers do not separate, are passive and are dic-
tated by the external inviscid flow,u = (ψy,−ψx, 0) = ∇φ.

7.1 Complex potential

For an inviscid irrotational flow we have both a streamfunctionψ and a velocity poten-
tial φ, such that

(ψy,−ψx, 0) = u = (φx, φy, 0).

Thusψy = φx and−ψx = φy and if we set the complex variablez = x + ıy, the
functionw(z) = φ+ ıψ is analytic except at singularities.1

We can find the velocity from the complex potentialw asdw
dz = φx+ ıψx = u− ıv.

Examples

1. w = Uz — uniform stream.

2. w = 1
2αz

2, givingψ = αxy — stagnation point flow.

3. w = Azλ, givingφ = Arλ cosλθ, — flow past a wedge.

4. w = − ıκ
2π log z for κ ∈ R — line vortex.

5. w = U
(
z2 + a2

) 1
2 . This is multivalued and has branch points at±ıa. Put

the branch cut along[−ıa, ıa] and choose the square root such that ifx > 0
then

√
x2 + a2 > 0. As |z| → ∞, w(z) ∼ Uz. If z = ıy and |y| < a then

w = U
√
a2 − y2 ∈ R andψ = 0. Nearz = ıa, w ∼ (2ıa)

1
2 (z − ıa)

1
2 , like

1You know what I mean — meromorphic, or something like that...

39
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flow past a wedge. This is flow past a plate. We findu − ıv = Uz
(z2+a2) → ∞

asz → ±ıa and infinite velocities are predicted at the tip of the plate. This flow
could be impulsively generated, but viscosity will act to generate vorticity on the
plate and cause the flow to separate.

Theorem (Milne-Thomson circle theorem). If f(z) is a complex potential with no
singularities in|z| < a and a cylinder|z| = a is introduced into the flow then the new
potential is

w(z) = f(z) + f̄(a
2

z̄ ).

Proof. If f is analytic then so is̄f(a
2

z̄ ) (use the Cauchy-Riemann equations). On the
cylinderz = aeıθ and

w = f(aeıθ) + f̄(aeıθ),

which is real. Thusψ = 0 on the surface of the cylinder and so the surface of the
cylinder is a streamline.

Outside the cylinder̄f(a
2

z̄ ) introduces no new singularities.

We can use this result to get flow past a cylinder without circulation. Ifu =
(−U, V ), then the complex potential for a uniform stream isf(z) = −(U + ıV )z.
Thus on inserting a cylinder, we get

w(z) = − (U + ıV ) z − a2

z
(U − ıV ) . (7.1)

It is easy to bolt a circulation on to this to get

w(z) = − (U + ıV ) z − a2

z
(U − ıV )− ıκ

2π
log z. (7.2)

7.2 Conformal mappings

If w(ζ) is analytic inζ andζ = f(z) with f analytic thenW (z) = w(f(z)) is an
analytic function ofz.

By judicious choice ofw, f can generate lots of flows. At pointsz0 wheref is
analytic andf ′(z0) 6= 0, f is a conformal mapping and a closed curveC in thez plane
that doesn’t pass through a singular point off will become a closed curveC ′ in theζ
plane.

For flow past an aerofoilC in thez plane we choosef to makeC ′ a circle. If in
additionf(z) ∼ z as|z| → ∞ then the flow at∞ is the same in both planes.

Note that if we havew(ζ) ∼ m−ıκ
2π log (ζ − ζ0) asζ → ζ0 then sinceζ − ζ0 =

f(z)− f(z0) ∼ (z − z0)f ′ if f ′ 6= 0,∞ we haveW (z) ∼ m−ıκ
2π log (z − z0) + const

— sources and line vortices are the same in both planes.
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7.2.1 Flow past an ellipse with circulation

Consider the inverse mapz = ζ + λ2

ζ (a Joukowski map). A point onζ = c is ceıφ,
which is mapped to

x =
(
c+

λ2

c

)
cosφ y =

(
c− λ2

c

)
sinφ,

which will be the ellipse providedc = a+b
2 andλ2 = a2−b2

4 .

Solving for ζ we find ζ = z±
√
z2−4λ2

2 . We wantζ ∼ z asz → ∞, and so we
choose the+ sign. Thus the complex potential for flow past an ellipse with circulation
is (using (7.2))

w(z) = − (U + ıV ) ζ − (U − ıV )
c2

ζ
− ıκ

2π
log ζ

where ζ =
z +

√
z2 − 4λ2

2
.

(7.3)

Flow past a flat plate

The special case of a flat plate hasb = 0, soλ = c = a
2 .

κ = 0, A andB are stagnation points.L andT are the leading and trailing edges
respectively.

As κ increases,A andB move to the left until, atκ = κc,A coincides withT .

7.3 Forces, drag and lift

To avoid a crisis of notation, we letq = |u| (vector norm).
Starting from the Euler equation

ρ

(
∂u
∂t

+ 1
2∇q

2 − u× ω

)
= −∇p



42 CHAPTER 7. AERODYNAMICS

we can, if the flow is steady and irrotational, derive (a form of) Bernoulli’s equation,

p = p∞ − 1
2ρq

2. (7.4)

Consider a body in the fluid.

Now dl = (dx,dy) andndl = (−dy,dx). The force exerted by the body on the
fluid is ∮

C

−pndl = 1
2ρ

∮
c

|u|2 ndl −
∮
C

p∞ndl.

The last term vanishes by the divergence theorem and we see that

Fx − ıFy = − 1
2ρ

∫
C

|u|2 (dy + ıdx) .

OnC, the flow is tangential and sodz = dl (u+ıv)
q anddy + ıdx = ıdl (u−ıv)q .

Thus

Fx − ıFy = − 1
2 ıρ

∮
C

q2
u− ıv

u+ ıv
dz

= − 1
2 ıρ

∮
C

(v − ıv)2 dz

= − 1
2 ıρ

∮
C

(
dw
dz

)2

dz,

and we have derived Blasius’ formula:

Fx − ıFy = − 1
2 ıρ

∮
C

(
dw
dz

)2

dz. (7.5)

Note that by Cauchy’s theorem, ifdw
dz is analytic betweenC andC ′ we may deform

the contourC ontoC ′. In particular, if there are no singularities in the fluid, we can
deformC toC∞ and then use the calculus of residues to evaluate the integral.

Example

If w(z) ∼ −Uz − ıκ
2π log z asz →∞ then

Fx − ıFy = − 1
2 ıρ

∮
C

(
U +

ıκ

2πz

)2

dz.

The residue isıκUπ and soFx − ıFy = ıρUκ. If U is real (WLOG) we see that the
dragFx = 0 and the lift on the body,−Fy = ρUκ.
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7.4 The Kutta-Joukowski condition
For an aerofoil with a sharp trailing edge, viscosity will cause the decel-
erating boundary layer to separate at the edge, modifying the external
Euler flow. The outer flow will adjust its circulation so as to streamline
the flow at the edge.

This was proved in 1970 for steady flows.
We wish to find this critical value of the circulation (κc) for a flat plate (of length

2a).
Recall that

dW
dz

=
dW
dζ

dζ
dz

=
{
− (U + ıV ) + (U − ıV )

c2

ζ2
− ıκ

2πζ

}{
1
2

+
z

2
√
z2 − a2

}
.

There is a singularity atz = −a and so the first bracket must vanish atz = −a to
make the velocity finite. We can solve the resulting equation to getκc = 2πaV and so
the lift is ρ

√
U2 + V 2κc = 2πρa

√
U2 + V 2V

Equivalently, the lift is2πρa |U |2 sinα. This result suggests that for a wing of area
A, the total lift is proportional toρU2A sinα.

We have ignored separation at the leading edge. This can be delayed by rounding
it.

Even in this case, ifα is big enough& 10◦, flow will separate at the leading edge
(stall) with a catastrophic decrease in lift and increase in drag.

7.5 Physical mechanism

How is a circulation established from rest? Att = 0, the picture looks like:

At t = 0+, the flow betweenT andA decelerates rapidly and there is a severe
adverse pressure gradient onTA. The boundary layer therefore separates to give a
small region of reversed flow in the boundary layer. This gives a small eddy with
circulation−κc.
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The eddy is then convected away from the plate (“starting vortex left at the air-
port”). As total circulation at infinity is conserved there must be a circulationκc around
the wing.



Chapter 8

Kelvin-Helmholtz instability

At high Reynolds number many flow profiles are unstable. We will consider the easiest
case, steady inviscid flow with a discontinuity in velocity.

We haveu = (− 1
2U sgn y, 0, 0) and henceω = (0, 0, Uδ(y)), a vortex sheet. Sup-

pose the vortex sheet is perturbed toy = η(x, t) = f(t)eıkx and that the disturbance is

small:
∣∣∣ ∂η∂x ∣∣∣ = |kf | � 1.

Now vorticity moves with the fluid, soy = η is a material surface and we have
the kinematic boundary conditionDDt (y − η)

∣∣
y=η

= 0. For y ≷ η the flow remains
irrotational, so

u =

{
− 1

2Uex +∇φ> y > η
1
2Uex +∇φ< y < η,

with ∇2φ≷ = 0 andφ≷ → 0 asy → ±∞. φ≷ must inherit theeıkx dependence
onx as the perturbation is linear; so

φ≷ = g≷(t)eıky∓|k|y.

We now apply the kinematic boundary conditionDDt (y − η)
∣∣
y=η

= 0 to get

∂φ

∂y

∣∣∣∣
y=η

− ∂η

∂t
− u

∂η

∂x
− v

∂η

∂y
= 0 aty = η.

We use Taylor’s theorem to evaluate this from information aty = 0 and neglect
quadratic terms to get the linearised boundary condition

∂f

∂t
∓ 1

2Uıkf = ∓ |k| g≷.

We still need the pressure to be continuous aty = η. To do this we derive the
unsteady form of Bernoulli.
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For an inviscid irrotational flow we have

∂u
∂t

= − 1
ρ∇
(
p+ 1

2ρ |u|
2
)

and so

p = ρF (t)− ρ
∂φ

∂t
− 1

2ρ |u|
2
. (8.1)

Therefore

p> = p∞ + 1
2ρ
(

1
2U
)2 − ρ

(
∂φ>
∂t

+ 1
2

∣∣− 1
2Uex +∇φ>

∣∣2)
= C − ρ

(
∂φ>
∂t

− 1
2U

∂φ>
∂x

)
+O(η2).

We now applyp> = p< aty = 0 to get

ġ> − 1
2 ıkUg> = ġ< + 1

2 ıkUg<.

We have three linear equations with constant coefficients forg>, g< and f , so
each is proportational toeσt. Plugging this solution in givesσ2 = U2k2

4 and soσ =
±Uk

2 . Thus there exists a growing mode withσ = 1
2U |k| and the sheet is unstable to

disturbances of all wavelengths.

Notes

1. Ask →∞, σ →∞ and thus short waves grow infinitely fast.

2. The disturbance rapidly grows out of the linear régime. We get roll-up of vor-
tices.1

3. Physical mechanism whenσ = 1
2U |k|. We get

g≷ = 1
2U {∓ sgn k + ı} f

and so[u]+− = − 1
2 ıU |k| f − U and ifη = η0 cos kxeσt we have[u]+− = −U +

η0U |k| sin kxeσt. Thus the vortex sheet is stronger atx = 3π
2k and weaker at

z = π
2k .

1See van Dyke page 85.
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4. If viscous effects are included then the vorticity diffuses over a distanceδ ∝
√
νt

in a timet. We expect that ifk−1 . δ the inviscid theory will be wrong (and
viscosity damps short waves), but long waves withk−1 � δ should not be
affected by vorticity diffusion. Since the growth timeσ−1 ∝ (Uk)−1 we must
havek � U

ν for the inviscid theory to work.

If we guess (on dimensional grounds) that short waves are damped at a rateνk2

thenσ = 1
2U |k| − νk2 and there is a most unstable wavelengthk = U

4ν .

5. A long-wave inviscid mechanism will also apply to inviscid profiles with inflex-
ion points (egtanh y).

6. The relationshipσ2 = U2k2

4 is called a dispersion relation. In waves,σ = ıω is
pure imaginary andωk = c is a wavespeed;η = η0e

ık(x−ct).

In some ways this calculation is artificial; in practice we can’t establish a fully-
developed unstable steady state to perturb. (This is temporal instability.) It is
more natural to introduce a perturbationeıωt with ω ∈ R atx = 0 and to observe
the growth or decay inx. We thus haveη = η0e

ıωt−ıkx with k ∈ C. This is a
spatial instability problem. We find thatk = ±2ı

∣∣ ω
U

∣∣
Temporal and spatial analyses are identical at or near marginal stability. In gen-
eral, spatial analysis is harder and so temporal analysis is more common.
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Chapter 9

Rising bubbles

9.1 Dimensional analysis

We want to know both the rise velocity and the shape of the bubble.

The natural lengthscale isV
1
3 and we seta =

(
3V
4π

) 1
3 , the radius of a sphere of

volumeV .
For a steady rise, buoyancy is presumably balanced by viscosity. DefineU0 = a2g

ν
and then the Reynolds number is

Re =
U0a

ν
=
a3g

ν2
=

inertia
viscosity

.

We need a second dimensionless group to indicate the importance of surface ten-
sion. This is the capillary number

Ca =
viscous stresses
surface tension

=
µU0
a
γ
a

=
µU0

γ
.

Note that in this case,Ca = ρga
γ
a

= hydrostatic pressure
surface tension pressure, a quantity which is usually

called the Bond number which in this case happens to be equal to the capillary number.
The actual rise speed of the bubble,U = U0f(Re,Ca). The shape must also

depend onRe andCa.
If Ca � 1 then surface tension is very large and the shape remains almost spherical.

This is theoretically tractable, we haveU = U0f̂(Re). If Ca ∼ 1 other shapes are
possible — this is a hard problem.

9.2 Low Reynolds number, low capillary number

This is theRe,Ca � 1 case. The bubble shape is a near spherer = a (1 +O(Ca))
and viscous forces dominate.

49
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We must solve

µ∇2u = ∇P r > a

∇ · u = 0

whereP = p− ρgz is the modified pressure.
The kinematic boundary condition isu · n = u · n on r = a. We also haveu → 0

asr →∞.
The tangential stresses must be continuous:n × [σ · n] = 0 on r = a. This

simplifies ton× [e · n] = 0 and thuserθ = 0 on r = a (in spherical polars).
Finally, [σ · n] = γκn on r = a, whereκ is the surface curvature. Taking the

normal component we getpint − p+ 2µenn = γκ and therefore

κ =
1
γ

(const− (P + ρgz) + 2µenn) onS.

Thus atCa = 0 the drop is spherical,κ = 2
a and surface tension increases the

internal pressure to2γa .
If Ca � 1 then at leading order the drop is spherical, but the non-zero right hand

side causes anO(Ca) modification toκ and we can use this to find anO(Ca) modifi-
cation to the shape at the end.

We can either solveD4ψ = 0 (see page 12) and apply the boundary conditions to
getC = Ua

2 andD = 0 or use the method of sheet 2:

u = E · x + 2φ−∇ (φ · x)

with ∇2φ = 0. We haveE = 0 and the harmonic potentialφ must be linear inu,
so

φ =
αu
r

+ βu · ∇∇1
r
.

u evaluates to

u = α
(u
r

+
u · xx
r3

)
+ 4β

(
− u
r3

+
3u · xx
r5

)
.

Applying the boundary conditions we getα = a
2 andβ = 0. We also haveP =

−2µ∇ · φ = −µau · ∇ 1
r .

For r > a this is a pure Stokeslet field|u| ∝ 1
r . Integrating over a sphere gives

F = 4πµau, the force of the bubble on the fluid. Thusu = a2g
3ν (by equating this to

the Archimidean uplift).
To get the shape change, we have

−p+ ρgz + 2µerr = ρg · x− 3µ
u · x
r3

∣∣∣
r=a

+ const= const onr = a.

Thus, surprisingly, a spherical drop at low Reynolds number has no tendency to
deform even ifCa is not small. Our solution works forRe � 1 andCa arbitrary.
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9.3 High Reynolds number, low capillary number

Our first guess isu = ∇φ and∇2φ = 0. We haveφ = a2u·x
r3 , which satisfies the Euler

equation andu · n = u · n on r = a.
The tangential stress onr = a is σrθ = 2µerθ = − 3µU

a sin θ 6= 0. Also, the drag
on the sphere is zero.

We expect that the outer flow will be modified (atO(Re−1)) and a boundary layer
will arise nearr = a, sweeping vorticity into the wake, perhaps modifying the outer
flow atO(Re−

1
2 ).

Without gross separation (which is not observed in experiments), we know the flow
almost everywhere and can calculate

u · F = 2µ
∫
r>a

eijeij dV

= 2µ
∫
r>a

∂2φ

∂xi∂xj

∂2φ

∂xi∂xj
dV

= 2µ
∫
r>a

∂

∂xi

{
∂φ

∂xj

∂2φ

∂xi∂xj

}
dV

= 2µ
∫
r=a

n · ∇
(

1
2u

2
)

dS

= 12πµaU2.

ThusU = 1
9
a2g
ν = 1

9U0 andf̂(Re) → 1
9 asRe →∞.

As for the shape change, we see that pressure variations overr = a scale as12ρU
2

and so∆p = 1
2·92 ρ

(
a2g
ν

)2

. The drop will remain spherical if∆pγ
a
� 1, or alternatively

Re Ca � 160.

Free surface boundary layers

Nearr = a there is a boundary layer across which notu‖ but
∂u‖
∂n jumps. There is thus

a jump inΩ across the boundary layer.
The thickness of the boundary layer is stillδ = aRe−

1
2 and the boundary layer

equation still applies, but the velocity gradient in the layer scales asU
a and notUδ .

The energy dissipation in the layer scales as4πa2δU
2

a2 = 4πaU2
√

Re
Thus

u · F = 12πµaU2
(
1 + βRe−

1
2

)
.
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In fact,β = 2.2, but we need the dissipation in the wake of the bubble to find this.
Observation suggests that the boundary layer does not separate unless the curvature

is very high.

9.4 The oblate spheroidal bubble

This is theRe � 1 andCa ∼ 1 case. It is tough to make progress.

The first correction will be spheroidal and will modify the rise speed. As the capil-
lary number increases we will eventually get boundary layer separation.

9.5 Spherical cap bubble

This is theRe,Ca � 1 case.

V =
π

3
ā3
{
2− 3 cosα+ cos3 α

}
.

The outer flow is flow past a sphere of radiusā, φ = −U
(
r + ā3

2r2

)
cos θ. The

tangential velocity onr = ā is uθ = 3
2U sin θ. As Ca � 1 we have continuity of

pressure, and so12ρu
2
θ − ρgz = const. Nearθ = 0, u2

θ ≈ 9
4U

2θ2 andz ≈ 1
2 āθ

2. Thus
U2 = 4

9gā and so the rise velocityU = 2
3

√
gā independent ofν.

Note that theRe →∞ limit differs from theRe = ∞ limit.
There are turbulent dissipative processes in the wake that give a rise velocity inde-

pendent ofν asν → 0. Note that this rise velocity agrees with experiment. Experi-
mentally,α is found to be in the range40◦ < α < 60◦.

9.6 The skirted bubble

This hasRe andCa “largish”. If we decrease surface tension from the spherical cap
bubble a discontinuity appears near the sharp edge. For suitable parameter values a
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cusped shaped edge appears and forms a skirt around the bubble.

If surface tension is decreased a little from this, Kelvin-Helmholtz instability occurs
near the cusped edge.

This is poorly understood.
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Stress tensor: EJH approach

Unfortunately, the (standard) derivations given earlier for the surface traction and sym-
metry ofσ do not work (by dimensional arguments). The following can be inserted in
the appropriate places in§2.3. Discovering the precise places is left as a challenge to
the reader.

Linearity

Consider the force balance on this small tetrahedron. The volume and acceleration
forces areO(ρgL3), whereL is the linear size of the tetrahedron. The surface forces
areO(pL2), with a typical pressureρgH, whereH is the height of the atmosphere.
Hence for small tetrahedra withL � H the surface forces areO(HL ) larger than the
volume and acceleration forces and so must balance amongst themselves.

Symmetry

The moment of the surface forces isO(pL3) and the moments of the volume and
acceleration forces areO(ρgL4). So again the surface forces must balance amongst
themselves.
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