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Introduction

These notes are based on the course “Fluid Dynamics 2" given by Dr. J.M. Rallison in
Cambridge in the Michaelmas Term 1997. These typeset notes are totally unconnected
with Dr. Rallison. Recommended books will be discussed at the end.

Other sets of notes are available for different courses. At the time of typing these
courses were:

Probability Discrete Mathematics
Analysis Further Analysis
Methods Quantum Mechanics
Fluid Dynamics 1 Quadratic Mathematics
Geometry Dynamics of D.E.’s

Foundations of QM Electrodynamics
Methods of Math. Phys Fluid Dynamics 2

Waves (etc.) Statistical Physics
General Relativity Dynamical Systems
Combinatorics Bifurcations in Nonlinear Convection

They may be downloaded from

http://www.istari.ucam.org/maths/
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Chapter 1

Review of inviscid fluids

1.1 Continuum hypothesis

We assume that at each poinbf the fluid we can define, by averaging over a small
volume, properties like density(x, t), velocity u(x, t) and pressure(x,t) and that
these vary smoothly over the fluid. We do not deal with the dynamics of individual
molecules.

1.2 Time derivatives

A fluid particle sometimes called material elemenbr Lagrangian pointis one that
moves with the fluid, so that its positiot(t) satisfiesk = u(x, t).
The rate of change of some quantity moving with the fluid is Writi%nthe chain

rule gives

D 0
E—E—va. (1.1)

In particular, the acceleration of a fluid particled8 = 2% + u - Vu.

1.3 Mass conservation

Since mass is conserved the mass demsﬁatisfies%f + V- (pu) = 0. The quantity
pu is called themass flux

For anincompressibléluid the density of each material element is constant, and so
B2 = 0. ThusV - u = 0.

In this course we will restrict to fluids which are incompressible and have uniform
density so thap is independent of botk andt.

For planar flows, the conditiok - u = 0 is automatically satisfied if we have=
V % (0,0,%(z,y)), so thatu = (¢, —15,0). ¥(x,y) is called the streamfunction.

1.4 Kinematic boundary condition

Applying mass conservation to a region close to a boundamg getn - u;. = n-u_
ats.
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This states that the normal component of velocity is continuous aétoss par-
ticular, if S is fixed we haven.u = 0 at S.

The kinematic boundary condition can be written a different way. Suppose the
boundary of a fluid is given by’(x, t) = 0. Then since the surface consists of material
points% = 0. This is sometimes more convenient for free surface problems.

1.5 Momentum conservation

Assuminghat the only force acting across a material surfacks is given via a pres-
surep(x,t) as—pn dS then we obtain Euler’s equation:

u
- _ F 1.2
P D Vp + pF(x,1), 1.2)
whereF(x, t) is the body force per unit mass (for instance gravity) that acts on the
fluid.

1.6 Dynamic boundary condition
On the same assumption, applying momentum conservation to a region close to a
boundaryS gives—p_n = —p_ n in the absence of surface tension.
In this course we will abandon the assumptiongbf and{1.g and include tan-
gential frictional forces across material surfaces.
1.7 Steady flow past a circular cylinder
The steady Euler equation with = 0 is satisfied ifu = V¢ andp + 3p lu)® = const.
The incompressibility conditio’ - u = 0 becomes/2¢ = 0.

A solution with¢ ~ Urcos@ asr — oo (uniform stream with velocity/) and
un=0onr=1Lis

o=U (r + I;Q) cos 6, (1.3)

with streamfunction

Yv=U (r - If) sin 6. (1.4)

The tangential velocity on = L is 2U sin 6.



Chapter 2

The governing equations for a
Newtonian fluid

2.1 Viscosity

Suppose we have two parallel plates a distdnapart, and we put fluid between them.

What force per unit area on the top plate is needed to keep it moving at a velocity
U? Experiments show that it is proportional%o and measuring the flow profile shows
that = 5.

The coefficient of proportionality is thescosity 4. It has dimensiond/L—17-!.

2.2 Rate of strain tensor

Consider the fluid motion near a point Then

Ou; 1 RTP
U7(X) = ’U,l(()) + Ij (’)xj . + ixj k 8acjxk .
Thus 5
Usg
u;(x) —u;(0) =~ x; —| .
J 8xj 0

g% is called the velocity gradient, and is sometimes writt®m) ;.
The symmetric part of the velocity gradient is the rate of strain tensor,

1 8ul an
= 2.1
¢ J 2 <8a:] * 8m,> ( )
and the antisymmetric part is the vorticity tensor
1 /0u; Ou; 1
0 — — L) = Zewn 2.2
ij 2 (8% oz, > 261kak,7 ( )

3
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where the vectow is the vorticity,w = V x u.
Thus

1
u;(x) — u; (0) = zje;5 + 3 (wxx),.

Thew x x part of this is a solid body rotation, which we hope causes no stress.
e;; IS symmetric and so can be diagonalised. Its eigenvalygsand~ are the
principal rates of strain. Note that+ 5+ v =¢; =V -u = 0.

2.3 The stress tensor

The forces acting on a fluid are of two kinds.

1. Volume or body forces. These have a long range and are proportional to the
volumeof a fluid element. (gravity)

2. Surface tractions. These have a short range and are proportional to the surface
area of a fluid element.

Let ndS be an arbitrary element of area drawn in the fluidsatt). We write the
force exerted by the fluid on the side ofdS on the fluid on the- side asrdS. Here
we establish our convention: normals point out of the fluid.

7 is called the surface traction and dependsphandn.

Theorem. We claim thatr is linearly related ton, that is
Ti = 04515
0ij(x,t) is a second rank tensor called the Cauchy stress tensor.

Proof. Let V(¢) be an arbitrary material volume with surfagét). The momentum of
the fluid inV (¢) is thus
/ pudV,
V()

and so the equation of motion for the fluidWf(¢) is

4 pudV:/ deV+/ TdS. (2.3)
dt Jyv V(t) S()

Now suppose thal’(t) is small, with linear dimension. As volume integrals are
O(e%) and surface integrals at@(e?), and in the limite — 0 the equation of motion
must balance at leading order, we have

lim 7dS =0.
e—0 S(t)

Now let V' be instantaneously a small tetrahedron (as sketched), with a sloping face
having arealS and normah. The areas of the other faces are thereftfé n, dSj-n
anddSk - n, wherei, j andk are the usual unit vectors.



2.3. THE STRESS TENSOR 5

Since the surface forces on the this tetrahedron must balance,
T7(n)dS + 7(—i)i- ndS + 7(—j)j - ndS + 7(~k)k - ndS = 0.
EliminatingdS we obtain a linear relationship betweerandn. O

With this expression for the surface tractions, the equation of mdfioh (2.3) is

d
—/ pu;dV = pFidV—i—/ o5n;dS.
dt Jy 20) 5(t)

Using the divergence theorem and the fact ét) is a material volume,

/ 0 “dV:/ pFidV—i—/ %ij gy,
vy Dt 0 v 0;

SinceV is arbitrary, we obtain the Cauchy momentum equation

Dui 30',' i
= pk; 1,
Dt pi + G:Uj
If F = 0then momentum must be conserved. We can rewrite the Cauchy momen-
tum equation in the form

P (2.4)

0 0
g (pui) + a9, (puiuj — 0ij) = 0.
This is the the form of a conservation equation for the momentumand we
identify themomentum flux tens@spu;u; — o;;.
Theorem. Provided no body couples act on the fluid; = o;;.

Proof. Taking the origin to lie instantaneously withif(¢), the angular momentum of

the fluid inV is
/ px x udV,
V(t)

which is O(e*). Conservation of angular momentum implies that in the absence of
body couplg§

d

dt V(t)

The last term here i©(e?) and is therefore of lower order than the other two terms.
Therefore at leading order it must vanish:

pxxudV:/ pxdeV+/ x X 7dS.
V(t) 5(t)

lim x x 7dS =0.
e—0 S(t)

Using our result forr, the:™ component of this can be written

0
/ €ijkTjOkmMm dS = EijkT (j0km) AV
S(t) V(t) L,

= / eq;jkxj%dV+/ €ijkOkj dv.
v(t) O, 40!

The integrals here ar®(¢*) and O(e3) respectively, so letting — 0 we obtain
€jk0k; = 0 and so the stress tensor is symmetric. O

1As would arise for a suspension of orientable magnetic particles in an external magnetic field.
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2.4 The constitutive equation for a Newtonian fluid
We define the pressupe= —%a“-, and so
oij = —pdij + 0ij,

whereo;, thedeviatoric stressis tracefree.
We assumehato’ is linearly relatedto theinstantaneousalue of Vu and that the

fluid is isotropic. Thus we have

8uk

!
oh = Ay —
R Omy

Y]
with A a property of the fluid, and so isotropic. Therefore
Aijit = A0k + 1030k + 116310

and so

Ou; ,0u;
a$j 8ar,~ '

As the stress tensor is symmetrie, = p'. p is the (shear) viscosity. Thus
o;j = 2pue;; and we obtain the constitutive equation for a Newtonian fluid,

U;]:A51JVU+M +p

0ij = —Poij + 2pe;;. (2.5)

As we hinted on on pagé 4, this does not depend on vorticity. In gepelgpends
on temperature and so can depend on position.
We can now substitutg (2.5) info (P.4) to obtain the Navier-Stokes equations

Du, 0 . .
P DT; _ _875 + pF; + uV>u; orin vector notation
i (2.6)
Du
Por = —Vp + pF + uV3u.

2.5 Boundary conditions

We can keep the kinematic boundary condition (that only depended on mass conserva-
tion) and so the normal componentwfs continuous at a boundary.

At a boundaryS no net force can be applied to a pillbox; therefore the surface
tractions must balance. This - n], = 0. More generally, if surface tension acts at
S, a net force parallel ta and proportional to the curvatu(@; ' + R, ") (whereR;
and R, are the principal radii of curvature) appears and we have

o-nls =7 (= +=)n
o s=" R s .

~ is the surface tension coefficient. We can see that in the inviscidicasé we
get back the dynamic boundary condition.

We need an extra boundary condition a§aterm has appeared. We assume that
n X u is continuous — this is the no-slip condition.
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2.6 The energy equation

Taking (as before)/(t) to be an arbitrary material volume atit) its surface, the
kinetic energy of the fluid insid® () is

E= 3/ la)? AV
2 Jve

and the rate of change of this energy is given by the Cauchy equation (2.4) as

dE Du; 0o
7:,)/ ui—udV:p/ uiFidV+/ u; .y,
dt vy Dt V(t) v 0z

The final term here may be written

/ u,;agij dV:/ {a(uiaij)aij(m}dv
vy 0z; vy L0z O

= / U O35 M5 ds — 0i5€ij5 dv
S(t) Vi(t)

= / Ui Ty ds — 2/1/ €ij€ij dv.
S(t) Vi(t)

We have therefore shown that

¥ = p/ uiFi dv +/ Ui T ds — Q,U/ €ijCij dv.
dt V() S(t) V()

The first two terms on the right represent the rate of working by body and surface
forces respectively, so the final term must be the rate of energy dissipation due to vis-
cosity. The rate of viscous heating per unit volune= 2.e;;e,;, and the second law
of thermodynamics demands thatand thereforg: must be positive.

This heating can change the temperature in the fluid. If then the density or viscosity
depend on temperature then a further equation involving the convection and diffusion
of heat is needed to determine the temperature. We shall not persue this (interesting)
complication in this course.

Using the momentum flux equation we may alternatively write the energy equation
in the form

9 0
5t (%P |u|2) +uig— (puiuj — 0ij) = puiF.
J

Hence
0 2 a 2
& (%p |ll| ) + % (ujép|u| — uiaij) = p’LLZFZ — &,
J
We can thus identify the energy flux vecigby,
1 2
¢ = zp " u; — oijuy,

and the energy flux equation takes the canonical form

% (energy + V - (energy fluy =

(rate of doing work by body forces- (loss of energy due to viscous heating
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2.7 Scaling estimates

We would like to know when it is appropriate to treat a real fluid as if it were incom-
pressible or inviscid. We can get crude estimates as follows.

Suppose the flow has a typical velocity; lengthscalel, and timescald’. For a
sphere in a uniform steady streafj,is the far-field velocity,L is the radius of the
sphere and’ is infinite.

If we now wobble this sphere with angular frequencyve would keep/ and L
the same, bul’ becomeso—!.

2.7.1 Compressibility

The pressurg depends on the mass densityand it may be shown that for small
variations in density about some ambient levele have

d
®_ e
dp

wherec is the speed of sound in the fluid. Thus

The Navier-Stokes equatiorjs (R.6) give

2
% ~ Vp ~ max {p?;;,pu - Vu, ,uVQU} ~ max {Pj{f’ p(IJ/,,ufmcUQLQ} .
Thus

Ap X{LU U2/LU}

2P max{ o oo B
p m 2T’ L2 p 2L

The fluid is incompressible ifp—" < 1, and in practice the Mach numbéjf. < 1.

2.7.2 \Viscosity

For a steady flov\%2 ~ ‘2—2] and the ratio of inertial forces over viscous forces (the
Reynolds number) is
~ pUL

L

The ratiov = £ appears. This is the kinematic viscosity.

If Re > 1 then the viscosity is negligible and inertia dominatesRdf <« 1 then
inertia is negligible.

If we have rectilinear floim = (U(y, 2),0,0) thenu - Vu = 0 andUT2 is a bad
estimate of this...

For some unsteady flows the inertial tepl%; wins, in this case we get an unsteady

Reynolds numbef%. This is also called the Stokes number.

Re



Chapter 3

Low Reynolds number flows

In this casRe <« 1 and we neglect inertial terms in the Navier-Stokes equatfonk (2.6)
to obtain

pVu=Vp—pF V-u=0. (3.2)

If F = 0 then these are the Stokes equations. Natural boundary conditions are that
at each point of eitheru or o - n is given.
(1) can also be written

60’@'

alﬂj

= —pF; oij = —péij + 2ue;; V-u=0. 3.2)

3.1 Properties of the Stokes equations

3.1.1 Instantaneity

There are no time derivatives |n (B.1). Thusesponds instantaneously to the boundary
motion (and the forc&"). There is thus an infinite propagation speed; this situation is
sometimes called “quasi-static”.

For instance, in a sphere falling in an unbounded fluid then the terminal velocity is
acheived at once. For a sphere falling towards a wall then the change in velocity is due
only to the change in the fluid domain.

3.1.2 Linearity

There is nou - Vu term in [3.1); thereforas, p and o are linearly forced by any
boundary motion (or body force).
For instance; if we have a falling sphere, doubling the velocity will dowbknd
thus double the drag. More generally, forgevelocity (as opposed to acceleration).
Another example; if we have a moving ellipsoid the problem can be solved by
superimposing the solutions when the ellipsoid moves along its principal axes.

3.1.3 Reversibility

If the velocity on the boundary of a Stokes flow is reversed then so is the velocity
everywhere in the fluid. If a prescribed boundary motion is reversed over time then

9
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each material point retraces its history.

Does a sphere falling by a wall migrate towards/away from the wall? No — on
reversal ofg, u must reverse and so if the sphere migrates to the wall undeen it
must migrate away from the wall undesg (and similarly for the other case).

3.1.4 Uniqueness

There exists at mosts one Stokes flow in a volum&or which u is specified on the
boundary.

Proof. Supposer; andu, are two such flows. Lat* = u; —uy, SoV2u* = 0. Also,
leto* = 01 — 09 ande™ = e; — es.

Then [3.2) gives tha% 0and3y 6”1 = 0. Now consider

ou
2 d —d
,ut/ee V= /”ax]V
/8.13 1] 1
:/U;‘ju;‘nj dsS =0.
s

Thus since:j;e;; > 0 we must have;; = 0. Now the most general motion having

ij ij
no rate of strain is a rigid body motion andab = u* + Q* x x for constanta* and
Q*. But sinceu* = 0 on S we haveu* = 0 everywhere. O

A more sophisticated argument proves uniqueneBs “T‘/g

3.1.5 Minimum dissipation

Supposeu(x) is the unique Stokes flow iV satisfyingu = uon S. Letu(x) be
another flow inV such thatV - a = 0 anda = u on S (kinematically admissible).
Then

2/1,/ €ij€ij dv > 2,&/ €ij€ij dv,
v v
with equality only ifu = a.

Proof. Letu* = u — uande* = e — e. Then

2,u/ efjeijdV:/ oijer; AV
v

= g“ oy dV

:/ujaijnj ds =0.
S
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Now consider

/V (€;5€:5 — eijeij) dV = / e; ij (i +eyy) AV

/e /efjeij dv
. %

>0 as required.

O

As an example of this we consider the drag on a rigid particle in unbounded fluid.

F:/a-ndS
s

is the force exerted by the particle on the fluid (the drag$®). We have to solve
the Stokes equations in with the boundary conditions that= u on .S andu — 0 as
X — OQ.

Now the rate of working by the particle on the fluid is

u-Fz/u-a’-ndSzZ,u/ e;jei; dV > 0.
s v '

For a “bar” problem we choose

with u satisfying the Stokes equationsify u — 0 at infinity anda = uon S.
Thenu is kinematically admissable ard= 0 betweenS andS. Therefore

u~f‘=2u/éijéijdV22u/ €ij€ijdV=LI'F,
14 14

whereF is the force exerted by the sphere on the fluid. The magnitude of the drag
in the direction of motion is therefore less than the drag on the circumscribing sphere.

3.1.6 Solving the Stokes equations

Taking the divergence of the Stokes equatigns| (3.1) (Witk= 0) we see thap is
harmonic. Taking the curl we see similarly that vorticity is harmonic, and finally taking
the (vector) Laplacian we see ti@tu = 0 — u is biharmonic
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For a planar flomu = V x (0,0,¢) andw = (0,0, —V?3¢). ThusV*yp = 0.
We can solveV? (V2y) = 0 for V*y = f(x) (Laplace equation) and then solve
V2y = f(x) (Poisson equation).

Alternatively we could use the method of sheet 2, question 11 and write down a
solution. This is OK in nice geometries. The final method is of course numerical
solution.

3.2 Stokes flow due to a translating sphere

We consider the inertialess flow generated by a sphere of radinsl velocityu im-
mersed in unbounded fluid of viscositywhich is at rest at infinity. In particular we
want to calculate the forcE exerted by the sphere on the fluid.

3.2.1 Dimensional analysis

The linearity of the Stokes equations requires thas proportional to botiV and .
Dimensional considerations therefore give= aual, wherea is a positive dimen-
sionless constant. The isotropy of the sphere shape then implids thatu.au.

3.2.2 Brute force

As you may have guessed from the title of this section this is an algebraically unpleas-
ant calculation. It's probably good for your soul though...

We take spherical polarg-, 6, ¢) with § = 0 parallel tou. The flow is then ax-
isymmetric with nop dependence and so admits a streamfunatignd) such that the
components ofi are

1 o 1 oy

uT:ﬁsinf)% ug:_rsiHQE'

It follows from the Stokes equations that (D?y) = 0, where

o @ 00 (1 0
T or2? r2 00 \sinf 06 )"

The no-slip condition on the sphere surface gives:

1
= =-Ua’sin?0 and %:Uasirf@ onr = a.
2 or

Finally, forr — oo, ¥ = o(r?). We look for a solution) = f(r) sin? § where
1
fla)=5Ud®  f'(a)=Ua, f=o(r*)asr— oo,

We then obtairD?y = F(r)sin® § whereF(r) = f" — 2 so that

2F
4. _
DY =0 F' - = =0.
Integrating these equations we have- Ar* + Br? + Cr + £, and the boundary
conditions gived = B =0, C = 3Ua andD = —1Ua®.
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Substituting back we obtain
D D
U, = 2 (O + 3> cosf and wug = (—O + 3> sin 6.
T T T T

The vorticity w is necessarily in the direction with magnitude?g sinf. We can
also obtain the pressure (to within an arbitrary constant) as

2Cucosf

P—Po = 2

r
The stress can now be determined from
o=-pl+u (Vu + (Vu)T) ,

although care must be taken in evaluafing in this curvilinear co-ordinate system.
Recalling thatn is the normal out of the fluid the force exerted by the sphere on the
fluid is finally given as

F= / o -ndS = 6ruau, (3.3)

a result known as Stokes’ law.

3.2.3 Comments

Note the fore and aft symmetry in the streamline pattern, unlike higher

u ~ } asr — oo, so far field effects are important and distant boundaries and
other particles affect the flow.
We can calculat®& more easily by moving the integral to a sphere at infinity using
the divergence theorem;
F = —/ o -ndS.
S

oo

SinceF is parallel tou we only need to calculate
F:f/ OprCOSO — orgsinf dS.

Only terms of order%2 in o (r~!in u or r in ¢) matter here. In the far field
¥ ~ Crsin? 0 andp — pe ~ 2“2%” Thus

and

This simplifies the calculation of'.
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Corollary
For general shapes of particle in unbounded fluid exerting a Broe the fluid, mea-
suringé = 0 from the direction off", then at large distances

Fr 4
~ ——sin“ 6 — ~ ——cosfl u~
v 8mp P=Poo ™y Smur

(2cosfe, —sinfey),

wheree, andey are the usual unit vectors.
This solution foru andp satisfies the Stokes equations everywhere exceptaf
and corresponds to a point forBeacting at = 0. Itis called aStokeslet velocity field

Failure of neglect of inertia

Near infinity,

pU?

U
2 and |MV2u’ ~ 'L:T

ou
'Pat ~ |pu- Vu| ~

Thus the Reynolds number (near infinity)ﬁ@% and even ifRe = @ <1
inertial effects still matter at infinity. This is the Stokes-Oseen paradox. We need to
use the technique of matched asymptotic expansions, but at leading order the result is
unaffected.
More elegant techniques

There are more elegant (and algebraically less complicated) techniques for solving
Stokes’ equations. The Papkovich-Neuber method (as covered in Part Il Slow Viscous
Flow) is probably the easiest.

3.3 Reciprocal Theorem

If (u,o) and(u’,o’) are two Stokes flows iy’ (with different boundary conditions)
then
/ uiogn; dS = / wjoiin; dS.
s s

Proof.

[ oty = sty myas = [ S (ot~ usely) av
]

: ’
:/ , Ou; o ou; qv
v :

o i
Y O, 0z,

= / eij2ue;; — 2pe;iei; dV = 0.
v
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3.4 Movement of rigid particles in viscous fluids

Many useful fluids are suspensions (for instance paints, inks, abrasive cleaners, settling
tanks for removal of pollutants). We want to know how fast particles sediment under
gravity.

Consider a rigid particle of arbitrary shape in an unbounded viscous fluid.

Let p,(x) be the particle density, so that the mass of the particlé is fvp ppdV.
Take the origin to be at the centre of buoyancy, that is such that

/ xdV = 0.
v

P

The Archimidean upthrust pV,g acts at the origindis the fluid density). Lek,
be the centre of mass:
7,
Xy = — ppxdV.
g M Vp D

Then the total external force acting on the particlE'is- (M — pV,)g and the total
external couple i§&x = Mx, x g.

What velocityu and angular velocitf2 are generated? It is easier in practice to
solve the inverse problem. First, though:

Suppose thaf% <1 and&;2 < 1 so that the fluid inertia is negligible. Unless
pp > p the particle inertia is also negligible and therefore the external force/couple
applied to the particle equals the external force/couple applied to the fluid.

We want to solve the problem = u+ Q x x on S, u — 0 at infinity andu
satisfies the Stokes equationslin The force and couple exerted by the body on the
fluid are

F:/U-ndS G:/xxo-~ndS.
S S

This has a unique solution. By linearity,is linear inu and?, soo is linear isu
andQ, and also proportional to. ThusF andG are linear inu and€2 and proportional
to u. Therefore

Fi = p(adi;Us + a® Byj<;)
Gi = p (a’Ci;U; + a®DijQy)
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where A, B, C andD are dimensionless second rank “resistance” tensors that
depend on the particle shape. (In faBtandC are pseudotensors.)

Now
/uu) .0(2>.nd5:/u(2) oM . ndsS
S S

and sou - F® = u® . FO. ThusuV 4,0 = U 4,0 for all UM
andU®), soA is symmetric.

The rate of working by external forces¥s-u = pu- A -u > 0if u # 0. Thus
A has positive eigenvalues and so is invertible. It can be proved (see example sheet 2)

that the matrix
aA o’B
a’C a°D
is symmetric and positive definite.

3.4.1 Special cases
Sphere

Takea to be the radius of the spherd, B, C andD are all isotropic. There exists
no force on a rotating sphere (by reflection symmetry) an@se- C = 0. Thus
Aij = CV(SZ'j andDij = 55”

« andg are6r and8r respectively. Thus

is the sedimentation rate under gravity.

Cube

Takea as half the side length. The principal axes&f B, C andD must coincide
with the axes of the cube and the eigenvalues of each of these matrices must be equal
(by symmetry). Thus\, B, C andD are isotropicB = C = 0 still, anda and are
unknown.

Thus a falling cube does not rotate whatever its orientation and also falls straight
down.

Ellipsoid

The best choice fou is the semi-major axis. The principal axes &fand D must
coincide with those of the ellipsoid.
A andD are known and are not isotropiB. = C = 0 still.
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Helix

B andC are nonzero. Note that the helix is asymmetric on reflection of axes.

3.5 Stokes flow in a corner

We try a local solution(r,) = r* f(6) where) and f are to be determined\ > 1
foru — 0 asr — 0.

We look for solutions eveniiof V4 =0in0 <0 < o, f = f' =00nf = +a
(no slip condition) and” = f"/ = 0 atd = 0 (even function).

Now V3¢ = r*~2F(f), where FF = f"” + \2f and V%) = 0 implies F"" +
(A—2)*F =0.

Thusf = BcosAf + Acos (A — 2) 6 (restricting to the even solution and taking

A # 1). Applying the conditions & = o we getsin2 (A — 1) @ = (1 — A) sin 2a.

If the angle of the wedge is too small there are no real solutions. However, there

arecomplexsolutions. We neett)\ > 1togetu — 0asr — 0. If A\— 1 =p+ g and
2a = & then a numerical solution Bnp = 4.2 and2aq = 2.2.

We can evaluatey|,_, = —R (A\r* "1 f(6)) = Cr? cos (qlogr + €) with C and
e real. We see an infinite sequence of counter-rotating Moffatt eddies.

The eddies are geometrically similar and decrease in intensity by a éa%ttﬁhere
about400) asr — 0.
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Chapter 4

Flow In a thin layer

For a rectilinear floma - Vu = 0. What if the flow is nearly rectilinear?

4.1 Lubrication theory

Suppose fluid is confined in a gap< y < h(x).

The gap is thin, sdX < 1. We know that?.-" = 0 asy = h(z) is a material
surface. Thus we can either spedify v) or (u, 2%) ony = h.
We putu = ¢, andv = —),. Then? ~ % > 1 andwv is negligible compared
with .
If we can neglect inertia then
&%u

Ip 2
e~ 3

Op %
|~ a -
oy oy
9p

ZE1and

op
ox Yy

>

There are therefore large pressure gradients in: tilieection, so

at leading ordep is a function ofz only. Put% = G(x,t). Then

0%u G G Uy
Takingy = 0 aty = 0 we obtain

G (Pt

21\ 3 2 2h
The total flux in the layer is
Uh GhA?
Ylyop = -5t 2 Q(z).
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. Using mass conservation (directly%% = —%. This gives the Reynolds lubrica-
tion equation:

9 (,0G\ ([, 0u  Oh  _0h

With two boundary conditions we can find the pressure. For flow in a sheet
z < h(z,y,t) we haveu,v > w, p = p(z,y,t) andu andwv are parabolic irz. The
equation is

V- (h3vp) =6u (hv -u+u- Vh+2g]tl> , (4.2)

whereu = (u,v) andV = (a%’ a%)-

We must now see if we were justified in neglecting inertia:

pU?
jpu-Vul ~ 2

U
‘MV2u| ~ %

The ratio of inertial forces to viscous forces is nﬁg@ % and we need this effective
Reynolds number to be small.

4.2 Thrust bearing

Assume that the flow is axisymmetric. We can immediately afply (4.2) to get

g2, L0, 00 12u0h

Tror or W ot
Thus
3ur? Oh
=3 a—ﬁ-C’logr—i—D.

We know thatC' = 0 (to avoid a singularity at the origin), and we put= p., at
r = a. We obtain

3uoh , o 4
P — P = ﬁa (’I" —a ) .
To obtain the force on the hammer we need = —p + 2u2%. The 22 term is

O(IZ—E) and is smaller thap so we neglect this. Thus, allowing fp.,
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F:/ (p — Poo) 2w dr
0

:QW%% A 7"(7"27a2) dr

For fixedVy = wa2h, and if the force applied to the hammer is fixed, then

2 2\ i
P G = h(t)= (3“‘/0> (t+to) 1

8T Ot ht 8TF

Thusa(t) o« (t+ to)% and ast — oo, h ~ t~% whena is less than the radius of
the hammerh” ~ t~1 and so the inertia of the hammer is negligible.
Lubrication forces are in general big — hence Sellotape.

4.3 Flow in a Hele-Shaw cell

Suppose we have a flow confined between two accurately parallel sheets@and
z = h. Then the Reynolds equatidn (4.2) givé$p = 0 (V is two dimensional) and

(u,v) = iz(z —h)Vp

and the depth averaged velociiyis

_ h?p
"= ()

Thus the velocity field is the gradient of a harmonic potentiaix-is an inviscid,
irrotational velocity field.

The no-slip condition is accomodated in a small region of sirear the cylinder
surface. We can't get a circulation agand therefore) is single-valued.

4.4 Saffman-Taylor instability for a planar interface

We attempt to analyse the fingering instability observed when a less viscous fluid ad-
vances under a pressure gradient into a more viscous fluid. For simplicity suppose that
one of the fluids is inviscid and consider a planar interface in a Hele-Shaw cell. The
velocity u(z, y) is therefore
h2p
=V¢ and ¢=——,
u=Vo =13
wherep is the fluid pressure.
Suppose first that the interfaceaat= V't is planar. Then the basic state is

Water Air

¢o = Vx + const

po =2V L p p=pe
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Now imagine that the interface suffers an infinitesimal perturbation with wavenum-
berk and amplitude. We anticipate that this perturbation will grow or decay exponen-
tially in time and check this assumption later. The position of the interface becomes

_ 1ky+ot
r=Vt+ eI,

wheree is arbitrarily small. At leading order inall the perturbation quantities inherit
this dependence apandt, so that the velocity potential in the water becomes

¢ = do + ef (x)e’ L.
As ¢ is harmonic we can find(z) (picking the solution decaying as— —oo
¢ =V + const4 eAetrvtottlkl@=Vt)
for some constantl. The corresponding pressure is

12 o N
p=po+p1 where p; = _%Aetky-‘rﬂ-ﬂklu—Vﬂ.

We therefore have

Water Air
¢ =g+ ¢1
P=po+P1 P =DPoo-

Our aimisto finds. If a surface tensioty acts between the fluids then the interface
I 2. .
curvature is jus% at leading order, so that

82
[p] = ’VTZ = —k’yeetvter,
Y

where the jump is across the position of the perturbed interface. At leading order
in ¢ this gives

12p€

1ky+ot| __
—ngAe

120V
_ T:lée _ —k27€61ky+gt .

Poo — ezkera't +p:>o _
The first term is the pressure in the air and the second is the pressure in the water.
Simplifying we find
7h2k2

A=-v-To-

We can now determine the velocity of the interfaceggs which may again be

evaluated (at leading order)at= Vt. This must correspond t%t& =V +egethvtor,
This gives

h2k?
o:AW:—VWP+7 }

12pV

The time dependence cancels out, which justifies our initial assumption. In the
absence of surface tension we see that 0 wheneverl/ < 0, thus the interface
perturbation grows (according to linear theory) if the air moves into the water. On the
other hands < 0 whenV > 0 and the water moves into the air. In the unstable case,
the fastest growing modes are those short waves for whiehoo.

If v > 0 surface tension is predicted to stabilise the shortest waves. The interface
is still unstable, but the fastest growing mode has a finite valug &ordo.
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Physical mechanism

Where the interface lags the pressure gradient is bigger, and the disturbance reduces.
The other way is unstable.

4.5 Gravitational spreading on a horizontal surface

Assume axisymmetry an@% < 1. We will neglect surface tension (and the contact
line).

As this is a free surface problem we can’t use the Reynolds equation directly.

In the layer there is a hydrostatic pressgre- p, + pg (h — z). The radial mo-
mentum equation is

Fu_op _ oh
Fo.2 = or ~ PMoar

Asu=0atz =0and2% =0 atz = h we have

_ pgon

ufﬂarz(zth).

The flux out of a cylinder of radiusis

h 2mpgrh3 Oh
=2 de = ———F—.
Q(r) 777“/0 udz 3. o
Mass conservation gives
Oh oQ
2777«5 =% and so
o _ 919 (300
ot 3vror or

The volume of the drop is fixed, so
a(t)
/ 2rrhdr = V.
0

We now rescale the variables. The natural Iengthscd@iso rescalé, » anda
by V3 and the natural timescale%, S0 we rescale by this. Lettingr* = V-3
g 3
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24
and so on, we get
oh* 11 0 vy w3 OR*
=-— r*h
ot* 3r* Or* or*
and o

a*(t")
/ 2rh*r*dr* = 1.
0

We now drop the’s. We needh(r, 0) to get a unique solution.
We look for a similarity solution

1. To aid computer programs,
2. For physical insight,

3. Often the long-time solution, independent of initial conditions.

Try h = t~*H(n) wheren = /; and sou = At’. We get

A
1= / 27 H () dnt*? =,
0
and son = 23. Substituting in the differential equation

1 d .
o H H/ tfafl _ 7t74a72ﬁ7 HSHI .
(—aH + nH') 3 a (n )

So—a — 1 = —4a — 26. We can solve forv and/3 to obtaina = §, 8 = 4. The
ODEforH is d 5
— (nH3H") + =n(nH' +2H) = 0.
& (n )+ g’ +2H)

This can be integrated to give

3
nH3H' + §n2H =0,

We can integrate this equation to give

The constant volume condition gives

1

3
3n (9 A
4 \ 16

Putting all the dimensions back in, we get

1 1
210 8 1 gv%t 8
a(t) = (357r3> Vs ( 1/ .

If surface tension is included then we must consider the curvature. We get

0%h
p:PooJrPg(h*Z)*’Yﬁ-

Wl

wloo
I
—
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The governing equation is
Oh _g10f 5(0h 5 &h
ot 3vror or pgord )|’

This has no similarity solutions. We need extra boundary conditioris(ohas it
is now a fourth order equation. This is an open problem.
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Chapter 5

Vorticity generation and
confinement

5.1 \Vorticity equation

Our point of departure is the Navier-Stokes equations with no force term
p (aaltl +V (% |u|2) —ux w) = p% = —Vp+ uViu.
We take the curl of this to get
Jw
P ot
Re-arranged, this gives the vorticity equation

= pV x (u X w) + uV3w.

Dw 9

Physical meaning: vorticity moves with fluid particles, is diffused by viscosity and
stretched by u.

There are no source terms,®wmriginates on boundaries.

For an inviscid fluid ¢ = 0) we have% = w - Vu. Recall that for a material
line element% = dl- Vu. Therefore vortex lines stretch and rotate like material line
elements.

We can give an integral form fof (3.1) in the case= 0. Define the circulation

aroundC'(t) as
K= 74 u-dL
C(t)
Then

b Du gy, D
dt — Jou Dt Dt

= 7{ dl-v (—p +1 |u|2> =0 asp andu are single valued.
C(t) p
Thus (in the inviscid case), is constant. This is Kelvin’s circulation theorem.

If Kk = 0att = 0 for all contoursC thenx = 0 for all time. In this caser = V¢
and we have an irrotational inviscid problem.

27
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5.1.1 Planar flows

In thev # 0 case, if we have a planar flow we can write= (¢, —,,0) and then
w = (0,0,-V?).
Thusw - Vu = 0 and the vorticity equation becomes

9 A, V)
av%p " o) - AVAZTN (5.2)

This is the two dimensional vorticity equation.

5.2 Vorticity generation

Suppose that we have the flaw= (u, v) with

_ U t>0
“y=0=910 ¢<o0.

What isu(y, t) for ¢ > 0? We try a solutioru = (u(y, t),0) andp = p(y, t).
They momentum equation giv% = 0 and thex momentum equation gives

u_ o
ot~ Moy
This is a diffusion equation for (or w, sincew = —2—;). We have the boundary

conditionsu — 0 asy — oo andu = 0 for all y att = 0. Now u o< U by linearity, so
u=Uf(y,t,v) for dimensionlesg.
As f is dimensionless it depends only % = n— we have a similarity solution.
The chain rule gives
" +2mf" =0,

which has the solution

n 2
f:A/ e~¢ d¢ + B.
0

Now f(0) = 1andf — 0 asny — oo, SOA = -~ andB = 1. Thus

v
u(y,t) =U <1 —erf Y > .
2v/vt
7/2 .
The vorticityw = —Z—e~#r. Ast — 0, w(y) — Ud(y), and ast increases

2/mut
w spreads into d@oundary layerof thicknesss (z/t)%. This is characteristic of a
diffusion process.
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Note that;~ wdy = U Vt.

5.3 \Vorticity confinement on a flat plate

Consider a steady flow past a flat plate with suction.

u=(0,-V)aty =0, u — (U,—-V) asy — oco. We try a solutionu =
(u(y),v(y)). Incompressibility gives = —V Vy. Thex component of the momentum
equation is
ou 0%u

Vo T o

Vy

Thus the general solutionis= A+ Be~ = . If V > 0 we can apply the boundary
conditions to geti(y) = U (1 — e_¥) andw = —%e—¥.
The vorticity is confined in a boundary layer near the wall of thicknes©utside

the boundary layer the flow is irrotational.
If V' < 0 we cannot apply the boundary conditions consistently.

5.4 Stagnation point flow

The irrotational flowu = «(z, —y) with streamfunction) = axy has a stagnation
point at the origin. What does the flow become if a rigid wall is placegat0? (We
look at thea > 0 case first.)

We look for a streamfunctiogp such that) ~ azy asy — oo, and propose the
solutiony = ax f(y) with f(y) ~ y asy — oc.

We nondimensionalise andy by § = /%, and put

¥ = a5/ (}).

Lettingn = £, for a steady flow we have - Vw = vV2w, w = —V?1) we get
f/f// _ ff/// — f(iv)

with boundary conditiong’ — 1 asn — oo, f = f' = 0 atn = 0.
We can integrate this equation once to get

f’2_ffw:fm+1~
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This equation must be solved numerically; it appears there is a unique solution.

Far from the plate) ~ az (y — 0.65) — so the flow is irrotational, with a per-
turbation as if the stagnation streamline wagjat 0.654 (this is the displacement
thickness).

The vorticity is confined to a layer of thickness proportionad to

If « < 0 the above analysis carries through, provided we let /WVI andy =

laf dxf(%). The ODE is unchanged but the boundary condition at infinity becomes
f' — —1asn — oo. No solution to this equation exists.

5.5 The bathtub vortex

The axisymmetric flowa = v(r, t)ey has vorticityw = 12 (rv)e.. The vorticity
diffuses according to the equation

88—‘: =1Vw,
and the local vorticity intensity falls. To maintain the vorticity distribution add in a flow
u = (—ar,0,2az). This will advect and stretcly (for o > 0). What is the steady
vorticity?

u-Vw —w-Vu=rvVuw

Oow 5 v o Ow
—ar— — 20w = ——r—
or r ot Or
0
= —artw=uvres +C.
or
If w— 0asr — oothenC = 0and
ar? ar?
w = wpe 2 = v:@(l—e_ﬁ).
ar

The vorticity is confined to < /Z.

2 . . .
Now % =2 — 2a2r andp has a minimum near = 0 — so if we have a free
surface a dip will appear.
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Boundary layer theory at high
Reynolds number

6.1 Introduction

Suppose we have a steady flow past a circular cylinder.

Suppose also that the Reynolds numbier, = % > 1. Near the front stagna-
tion point we expect) a:y% which implies a boundary layer of thickne % =
\/% < 1 where the viscosity is important. Outside the layer the flow remains irrota-

tional, although it is slightly modified by a displacement effect of ize > , which we
ignore. Note that = L6 andy = (r — L) are co-ordinates parallel and perpendicular
to the surface.

We expect the boundary layer to continue around the cylinder, and would like to
know what happens in this layer and at thar stagnation point.

6.2 Steady boundary layer theory at rigid surface
Recall the steady planar vorticity equatipn {5.2),

_a(wa V2¢) _ Vvélw.

A(z,y)

In the Euler limit we suppose thatandy have the same scaleand letRe — co.
Lety = ULy, x = LT andy = Lg. Then the steady vorticity equation becomes
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and asRe — oo viscosity disappears and we recover the Euler equatiorvu =
—Vp.

In the Euler limit we lose the no-slip boundary condition; setting= 0 in the
Navier-Stokes equations reduces the order and in general fewer boundary conditions
can be satisfied.

We expect that in the boundary layer viscosity is always important. In the Prandtl
limit we supposer = Lz buty = §y whered = % andy = Uév. Thusu is scaled

v
by U butwv is scaled by\/—%e.

For any fixedx, limpe—.oo U(X) = uljsiq (X)- This convergence isot uniform;
for any fixedRe, however big, we can always findat whichu(x) # u;isciq (X)-

o 02, 0% bk il
Noww = —V=y = 072 which implies that

— 2 T _
W) 0%
o(z,y) oy*
to get a balance between inertia and viscosity in the boundary layer. We can inte-
grate this once with respect fato get

Vytzy — Yatbyy = Vygy + G(7)
which may be alternatively written
Wiz + vy = gy + G(T).
G is a pressure gradient which does not depeng iorthe layer.
On the wall aty = 0 we havey = v; = 0 which gives the no-slip condition.
Matching

As § — oo (many distance$, but for largeRe still near the boundary) the inner
solution must match the outer solution. Now= 0 already matches. We also need

glgr;o 1/)5 = %li% 1/137

The pressure must also matchlitfiy_ o 1/37; = U(z) then by Bernoulli’s equation,
p+ iplu® = constand s@(z) = U,
Putting this back into dimensional form we obtain the boundary layer equation:
Uty + vuy = UU + vy, (6.1)
with boundary conditions = v = 0 aty = 0 andu — U asy — oo.

Notes

1. Thisis a parabolic equation. We need upstream conditions for instance the
value atx = 0.

2. The boundary layer equation is themomentum equation witk/? = 30722 and
9 a function ofz only.

3. Itis a nonlinear equation. Very few analytic solutions are known, and those that
are known are similarity solutions.
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6.3 Flow past a flat plate: Blasius boundary layer

The Euler problem is = (U, 0), and the boundary layer equation becomes

%%y - %ww = waiﬂl

with ¢ = ¢, = 0 aty = 0 andv,, — U asy — oo.
This is like a spatial version of vorticity diffusion. Vorticity spreads a distayice
wheret = £ is the time taken for fluid to reachstarting fromz = 0.

We try () = (%)% and a similarity solutiom = 525, v = Ud(x) f(n). Substi-
tuting into the boundary layer equation we get

f”/+ %ff// :O7

with f = f’ =0atnp =0andf’ — 1 asn — oo. This must be solved numerically, to
give a flow profile:

The traction on the platg = 04 is p %Z = %f”(o), numerical solution
y=0
gives0.3pU? /7.

Notes

1. The displacement thickness is the lateral displacement of streamlines outside the

boundary layer:
*° U [vx

2. We could get an improved result by modifying the outer Euler flow to account for
the displacement effect (flow past a parabola). This ié)aﬁe‘%) correction.

3. What is the Reynolds number? The only available lengthscalesis the effec-

tive Reynolds number ié’% x ,/%. There is therefore a small nose region
nearr = 0 of size ; where the theory breaks down.

4. Itis found experimentally that if the Reynolds number is big enough (far enough
downstream) the flow becomes unstable. Rat= 1000.) Disturbance to the
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boundary layer grow, flow becomes unsteady and ultimately turbulent. The drag
on the plate increases. In practice, this Blasius boundary layer agrees with ex-
periment forl < Re < 1000.

6.4 Similarity solutions of the boundary layer equation

For geometries with no intrinsic lengthscale it is sensible to try a solutiany) =
U(x)dé(x)f(n), wheren = %, U x 2P andd o 21.
Thenu = ¢, = Uf'(n) and sof’ — 1 asn — oo. To get a balance between

inertia and viscosity in the boundary layer we must hiaxe,| ~ v |u,,| (in practice
|utg| ~ |vuyl). Thus

vU

andp + 2¢q = 1. To fix p andq we need extra information.

In the Blasius layer we had — U independently ofr and sop = 0. In the
stagnation point flow we had — a2 and sop = 1.

Dimensional arguments give the rest.

6.5 High Reynolds number flow past a wedge

6.5.1 Outer problem

Symmetric flow

In the outer inviscid, irrotational region we haue= V¢ andV2¢ = 0 with boundary
conditions% =0onf =0andf = 27 — % The last condition is a symmetry

requirement.

The trial solutionsp = Cr* cos A8 will work if X\ = 525. The outer flow velocity
for the anticipated boundary layer én= 0 then has magnitud€(x) = Axz™, where
m=\A-1=3%>0

The cases = 0 (m = 0) gives the Blasius boundary layer and the c8se 1
(m = 1) gives stagnation point flow.
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Antisymmetric flow

This is the same problem as above, but with the symmetry condition replac%ﬁdby
oonf =72+ 78
The same trial solution works, but now with= 5 and soU(z) = Az™, with
— B

6.5.2 The boundary layer

The boundary layer equation alomg> 0 (leaving the apex of the wedge) becomes

%%y - '(/Jx'(/)m/ =mA*z*" ! + leyyy-

The only lengthscale for growth of the boundary layer thickness is then provided
by z, and sincd/ (z) = Az™ we try a similarity solution withp = m andg = 5™,
Dimensional considerations dictate a structure of the form

Y = VvAz™tLf(n) n= (5(%) with  §(z) = Vﬁzm.

If m < 0 the boundary layer thickness increases faster thag/thbehaviour that
would arise from diffusion alone.
Substituting in the boundary layer equation we obtain the Falkner-Skan equation

f//l + mT—Hff// +m (1 _ f/2) — O7 (62)

with boundary conditiong = f’ = 0 onn = 0 (no slip) andf’ — 1 asp —
(to match the outer Euler flow).

6.5.3 Numerical solution

The ordinary differential equation may be solved numerically using a shooting tech-
nigue. We find that forn > 0 there is a unique foyf qualitatively similar to the
Blasius profile havingf’ > 0 for all . Thus symmetric flows that accelerate away
from the apex of the wedge pose no difficulties for the boundary layer equation.

For antisymmetric flows withn < 0 the position is more complicated.

Form < —0.904 there is again a unique solution fér but nowf”(0) < 0. There
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is flow reversal near the wall and the flow must separate at the apex of the wedge on the
downstream side. This is unacceptable — “upstream infinity” in the parabolic bound-
ary layer equation for is now atz = co. Furthermore, for large, f’ approaches its
asymptotic value of unity from above, so the presence of the boundary layer apparently
speeds up the outer flow over its inviscid value — this is unphysical.

For —0.904 < m < 0 there are two solutions fof, one having reversed flow and
the other not. The solution without reversed flow is acceptable.

6.5.4 Separation of the boundary layer

High Reynolds number steady boundary layers on rigid surfaces are commonly found
in experiments, but are not normally observed to contain regions of reverse[ﬂ flow.
The wedge example above suggests that non-reversed boundary layers will arise on the
rigid boundaryr > 0 provided the “imposed” pressure gradiéflt/’ is positive — that

is if the external stream accelerates.

IfU' >0 then%—v < 0 by mass conservation and sirice= 0 at the boundaryy” <
0 in the interior of t%e fluid. In this case convection tends to confine the vorticity near
the boundary. V" < 0 vorticity confinement to a thin boundary may be impossible.

If UU' is sufficiently (in fact only slightly) negative, called an adverse pressure gra-
dient, then the boundary layer thickness grows more rapidly and flow reversal occurs.
This phenomenon is called boundary layer separation. Separation brings into question
our entire method of solution, in particular the imposition of upstream boundary data
onu at or nearr = 0.

Sometimes, worse still, it implies that the outer irrotational Euler solution is it-
self incorrect becausgross separatioccurs. The classic example here is flow past
a circular cylinder, for which we noted that the outse inviscid irrotational flow has
UU’ = 2sin 2z, wherex measures distance from the front stagnation point. This pres-
sure gradient becomes adverserat 90°, and the boundary layer equation shows a
singularity atx = 104.5°. Experimentally, the boundary layer is observed to separate
and to introduce vorticity into the wake of the cylinder, changing the leading order
outer flow as sketched below (this happenRat~ 20). At higher flow rates still the
flow becomes unsteafly.

This gross separation is characteristic of high Reynolds number flow past any bluff
body and the only way to prevent the separation is to reduce the adverse pressure gra-
dient by streamlining the body into an aerofoil shape.

Without separation the magnitude of the “skin friction” boundary layer drag on
the body scales abu 2% = pU+/Re and the contribution from the pressy&? in
the outer inviscid flow Is zero. With separation the modified external pressure gives a
“form drag” of magnitudepU2L, which is a (large) factor of/Re bigger than the skin
friction.

1For an exception, see Van Dyke page 26.
2See Van Dyke pages 28 — 31.
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From a mathematical perspective, note that the [init— oo is in general singular.
The steady flow field foRe — oo, if it exists, may be completely different from that
for an inviscid fluid withRe = oo.

6.6 Converging and diverging flow in a wedge

We will do the source problem first; consider a source with stredgthThe outer
problem has a solution, = -~ and sal/(z) = 4, A = % > 0.

x

We seek a similarity solution with= —1 andg = 1. Thus

with 6= /2.

Substituting into the boundary layer equations we get

v =VvAf(n) 0=

SRS
By

"7 -1=0, Falkner-Skan withn = —1.

The boundary conditions afe= f’ = 0 atnp = 0 andf’ — 1 asn — co. We can
integrate this once to get

2 .
177+ Lf"% — f/ = const= -3 usingoo.

Atn =0, f' = 0and sof"? = —% — giving a contradiction. There is no steady

boundary layer. Thus the pressure gradigébt’ = —;‘—5 is too adverse and vorticity
must diffuse into the interior.

In fact there is an exact solution of the full Navier-Stokes equations (Jeffrey-Hamel
flow). We get rapid oscillations and so viscosity matters everywhere. In practice this is
very unstable.

We can do the sink problem by sendiffg— —Q in the above. We obtain the same
differential equation, but the boundary condition at infinity'is— —1 asn — oco. We
integrate the differential equation once to get

2
%f//2+%f/3*f/:§,

which impliesf’ = 2 — 3 tanh? (% + C), wheretanh C' = i\/g, one of which has
reversed flow and is no good. The other is OK.
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Chapter 7

Aerodynamics

We are interested in flows that do not separate.

We hope (require!) that boundary layers do not separate, are passive and are dic-
tated by the external inviscid flom, = (¢, —9,0) = V¢.

7.1 Complex potential

For an inviscid irrotational flow we have both a streamfunctioand a velocity poten-
tial ¢, such that

(1:[}3/7 *1/)37; O) =u= (¢:m ¢y7 0)-
Thusy, = ¢, and—y, = ¢, and if we set the complex variabte= z + uy, the
functionw(z) = ¢ + wp is analytic except at singularitiE}s.
We can find the velocity from the complex potenﬁahsi—f = ¢y + 1)y = u—10.

Examples

1. w = Uz — uniform stream.

1

. w = az?, giving ¢ = axy — stagnation point flow.

2
3. w = Az*, giving ¢ = Ar* cos \@, — flow past a wedge.
4

. w= —3~log z for k € R —line vortex.

5. w = U (2% +a*)*. This is multivalued and has branch pointsdat. Put
the branch cut alon—:a,a] and choose the square root such that if> 0
thenvz2 4+ a2 > 0. As |z| — oo, w(z) ~ Uz If z = and|y| < a then

w = Uy/a? —y? € Randy = 0. Nearz = 1a, w ~ (QZCL)% (= fza)%, like

1You know what | mean — meromorphic, or something like that...
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flow past a wedge. This is flow past a plate. We find v = (z;]ﬁ — 00

asz — +ua and infinite velocities are predicted at the tip of the plate. This flow
could be impulsively generated, but viscosity will act to generate vorticity on the
plate and cause the flow to separate.

Theorem (Milne-Thomson circle theorem). If f(z) is a complex potential with no
singularities in|z| < a and a cylinder|z| = a is introduced into the flow then the new
potential is

=, 2

w(z) = f(2) + f(5)

2

Proof. If f is analytic then so ig(
cylinderz = ae* and

]

) (use the Cauchy-Riemann equations). On the

w = f(ae’’) + flae®),

which is real. Thug) = 0 on the surface of the cylinder and so the surface of the
cylinder is a streamline.

Outside the cylindef(“;) introduces no new singularities. O

We can use this result to get flow past a cylinder without circulationu =
(=U, V), then the complex potential for a uniform streamfig) = —(U + 1V)z.
Thus on inserting a cylinder, we get

w(z)=—(U+V)z— a—; (U —=V). (7.1)

Itis easy to bolt a circulation on to this to get

w(z) =—U+1V)z— % (U—=aV)— % log . (7.2)

7.2 Conformal mappings

If w(¢) is analytic in¢ and¢ = f(z) with f analytic thenW (z) = w(f(z)) is an
analytic function ofz.

By judicious choice ofw, f can generate lots of flows. At pointg where f is
analytic andf’(zo) # 0, f is a conformal mapping and a closed cué’én the z plane
that doesn't pass through a singular pointfokill become a closed curv€’ in the(
plane.

For flow past an aerofoil’ in the z plane we choos¢ to makeC’ a circle. If in
additionf(z) ~ z as|z| — oo then the flow ato is the same in both planes.

Note that if we havev(¢) ~ ™5 log (¢ — (o) as¢ — (p then sincel — (o =

J(z) = f(z0) ~ (2 — 20) f"if f' # 0,00 we havelV (z) ~ ™ log (2 — z) + const

— sources and line vortices are the same in both planes.
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7.2.1 Flow past an ellipse with circulation

Consider the inverse map= ¢ + %2 (a Joukowski map). A point o = c is ce*?,
which is mapped to

2 2
a::(c—&—/\)cosqﬁ y:(c—/\)sinqb,
c c

a®—b?

which will be the ellipse provided = %% and\? = ¢

Solving for ¢ we find¢ = #£¥Z =42 We want{ ~ z asz — oo, and so we
choose thet sign. Thus the complex potential for flow past an ellipse with circulation

is (using [[7-R))

w(z):—(U+ZV)C—(U—ZV)£fﬁlogC

Y (7.3)
Z2+Vz22 —4X2
where ( = —

Flow past a flat plate

The special case of a flat plate Has 0, SO\ = ¢ = 3.

k = 0, A and B are stagnation pointd. andT" are the leading and trailing edges
respectively.
As k increasesd and B move to the left until, ak = x., A coincides withT".

7.3 Forces, drag and lift

To avoid a crisis of notation, we let= |u| (vector norm).
Starting from the Euler equation

0
p(aI:Jréquuxw)_Vp
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we can, if the flow is steady and irrotational, derive (a form of) Bernoulli’'s equation,

P =D — 2pg°.

Consider a body in the fluid.

(7.4)

Now dl = (dz,dy) andndl = (—dy, dz). The force exerted by the body on the

fluid is
7{ —pndl = %pjﬁu\?ndl—fpoondz.
C c C

The last term vanishes by the divergence theorem and we see that
Fp —1F, = —%p/ lul? (dy + odz) .
c

On(, the flow is tangential and stz = dl@ anddy + 1dz = zdl@.
Thus

U+ 1

= —%zp% (v —w)? dz
c

Fp —1F, = —%Zp]g q2u—lv ds
C

and we have derived Blasius’ formula:

dw >
F‘/L’ - F = _l I d . -5
Wy QZP]Q( 12') z (7.5)

Note that by Cauchy’s theorem,%g is analytic betwee’ andC’ we may deform
the contourC onto C”. In particular, if there are no singularities in the fluid, we can
deformC to C,, and then use the calculus of residues to evaluate the integral.

Example

If w(z) ~ Uz — 5~ logzasz — oo then

F, —Fy = —%zpjg

v Y .
(U+52)
C

2mz

The residue ié*jr—U and sof, —+F, = 1pUk. If U is real (WLOG) we see that the
dragF, = 0 and the lift on the body;-F, = pUk.
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7.4 The Kutta-Joukowski condition

For an aerofoil with a sharp trailing edge, viscosity will cause the decel-
erating boundary layer to separate at the edge, modifying the external
Euler flow. The outer flow will adjust its circulation so as to streamline
the flow at the edge.

This was proved in 1970 for steady flows.
We wish to find this critical value of the circulatior () for a flat plate (of length

2a).
Recall that
dw  dW d¢ c? 1K 1 z
T A d {‘W“V)*(U‘W)@‘zwg}{amm}'

There is a singularity at = —a and so the first bracket must vanishzat —a to
make the velocity finite. We can solve the resulting equation te.get 2wal” and so

the liftis pv/ U2 + V2K, = 2mpavU? + V2V

Equivalently, the lift is27pa |U|” sin a. This result suggests that for a wing of area
A, the total lift is proportional tpU?2 A sin a.

We have ignored separation at the leading edge. This can be delayed by rounding
it.

Even in this case, if is big enough> 10°, flow will separate at the leading edge
(stall) with a catastrophic decrease in lift and increase in drag.

7.5 Physical mechanism

How is a circulation established from rest? At 0, the picture looks like:

At t = 0T, the flow betweerl” and A decelerates rapidly and there is a severe
adverse pressure gradient 8. The boundary layer therefore separates to give a
small region of reversed flow in the boundary layer. This gives a small eddy with
circulation—«..
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The eddy is then convected away from the plate (“starting vortex left at the air-
port”). As total circulation at infinity is conserved there must be a circulatjoaround
the wing.



Chapter 8

Kelvin-Helmholtz instability

At high Reynolds number many flow profiles are unstable. We will consider the easiest
case, steady inviscid flow with a discontinuity in velocity.

We haveu = (—%Usgn y,0,0) and hencev = (0,0,U4(y)), a vortex sheet. Sup-
pose the vortex sheet is perturbedste- n(z,t) = f(t)e’** and that the disturbance is
small: ’% = |kf| < 1.

Now vorticity moves with the fluid, sg = 7 is a material surface and we have
the kinematic boundary conditiof: (y — )| _ = 0. Fory = n the flow remains
irrotational, so

y=n

_ —%Uez +Vos y>n
%Uez+v¢< y<777

with V2¢2 = 0and¢> — 0 asy — Foo. ¢> must inherit the** dependence
onz as the perturbation is linear; so

¢z = g%(t)ezkyﬂF\kly.

We now apply the kinematic boundary conditigp (y — n)| , = 0toget

y=

0¢ on _,on o0 _

— = —Uu v
dy - ot Or dy
We use Taylor's theorem to evaluate this from informatioy at 0 and neglect
guadratic terms to get the linearised boundary condition
of
5 T 2UkS = F Iklgz.
We still need the pressure to be continuoug at n. To do this we derive the
unsteady form of Bernoulli.

0 aty =n.

45
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For an inviscid irrotational flow we have

(e

and so
0
p=pF() —pC% —3plu’. (8.1)

Therefore

0
e =t 20 (30) — 0 (%2 4 4|yt + V)

—C — %_l% 2
—c-p (%7 - 0%z ) +ou)

We now applyps. = p< aty = 0 to get
g> — %ZkU!b =g<+ %ZkU9<~

We have three linear equations with constant coefficientgjfqrg. and f, so
each is proportational te”*. Plugging this solution in gives? = # and soo =
i%. Thus there exists a growing mode with= %U |k| and the sheet is unstable to
disturbances of all wavelengths.

Notes

1. Ask — oo, 0 — oo and thus short waves grow infinitely fast.

2. The disturbance rapidly grows out of the lineagime. We get roll-up of vor-
tices

3. Physical mechanism when= LU |k|. We get
9> = %U{:Fsgnk—i—z}f

and sofu]” = — LU |k| f — U and ify = g cos kze”* we havelu]” = —U +
noU |k|sin kxe?. Thus the vortex sheet is strongerzat= 3—2 and weaker at

1see van Dyke page 85.
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4. If viscous effects are included then the vorticity diffuses over a distance/vt
in a timet. We expect that it.—! < § the inviscid theory will be wrong (and
viscosity damps short waves), but long waves with' > § should not be
affected by vorticity diffusion. Since the growth tinse * o (Uk;)_1 we must
havek < ¥ for the inviscid theory to work.

If we guess (on dimensional grounds) that short waves are damped at&Fate
theno = U |k| — vk? and there is a most unstable wavelengta -~ .

5. Along-wave inviscid mechanism will also apply to inviscid profiles with inflex-
ion points (eganh y).

. . 2,2 . . ) . )
6. The relationship? = —Uf is called a dispersion relation. In waves= ww is
pure imaginary an¢ = c is a wavespeed; = noe Fr—ct)

In some ways this calculation is artificial; in practice we can't establish a fully-
developed unstable steady state to perturb. (This is temporal instability.) It is
more natural to introduce a perturbatigh’ with w € R atz = 0 and to observe

the growth or decay in. We thus have) = nge™t~*** with k € C. Thisis a
spatial instability problem. We find that= +2: | 4|

Temporal and spatial analyses are identical at or near marginal stability. In gen-
eral, spatial analysis is harder and so temporal analysis is more common.
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Chapter 9

Rising bubbles

9.1 Dimensional analysis

We want to know both the rise velocity and the shape of the bubble.

The natural lengthscale i3 and we seti = (%)%, the radius of a sphere of
volumeV. )

For a steady rise, buoyancy is presumably balanced by viscosity. D&fine®¢
and then the Reynolds number is

Ui 3 inertia
Re= 22 _%9

v v2  viscosity

We need a second dimensionless group to indicate the importance of surface ten-
sion. This is the capillary number

__viscous stresses u% ~ uUo

~ surface tension X v
a
: : __ pga __ hydrostatic pressure : : ;
Note that in this cas&ja = 24 = Surface tension pressurd duantity which is usually

called the Bond number which in this case happens to be equal to the capillary number.
The actual rise speed of the bubblé, = U, f(Re, Ca). The shape must also
depend orRe andCa.
If Ca <« 1then surface tension is very large and the shape remains almost spherical.
This is theoretically tractable, we hat& = Uy f(Re). If Ca ~ 1 other shapes are
possible — this is a hard problem.

9.2 Low Reynolds number, low capillary number

This is theRe, Ca < 1 case. The bubble shape is a near sphetea (1 + O(Ca))
and viscous forces dominate.

49
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We must solve

wW?u=VP r>a
V-u=0

whereP = p — pgz is the modified pressure.

The kinematic boundary conditionis- n = u-n onr = a. We also haver — 0
asr — o0.

The tangential stresses must be continuonisx [o-n] = 0 onr = a. This
simplifies ton x [e - n] = 0 and thuse,.p = 0 onr = a (in spherical polars).

Finally, [c - n] = yxn onr = a, wherex is the surface curvature. Taking the
normal component we gety — p + 2ue,, = yx and therefore

1
k = — (const— (P + pgz) + 2pe,,) ONS.
Y

Thus atCa = 0 the drop is sphericaly = % and surface tension increases the
internal pressure t&?.

If Ca < 1then at leading order the drop is spherical, but the non-zero right hand
side causes af?(Ca) modification tox and we can use this to find &(Ca) modifi-
cation to the shape at the end.

We can either solvé*y) = 0 (see pagEiZ) and apply the boundary conditions to
getC = % andD = 0 or use the method of sheet 2:

u=E -x+2¢p—-V (¢ x)

with V2¢ = 0. We haveE = 0 and the harmonic potentigl must be linear inu,
o)

au 1
¢p=—+4+pu-VV-.
T T
u evaluates to

u u-xx u 3u-xx
u:a<7+ B )+4ﬁ -——=+ 5 .
T r T r

Applying the boundary conditions we get= ¢ andj3 = 0. We also haveP =
—2uV - ¢p = —pau - V%.
Forr > a this is a pure Stokeslet field| « L. Integrating over a sphere gives

s

F = 4mpau, the force of the bubble on the fluid. Thus= % (by equating this to
the Archimidean uplift).
To get the shape change, we have

—p+ pgz + 2ue,, = pg-x — 3 L;( + const= const onr = a.
r a

r=

Thus, surprisingly, a spherical drop at low Reynolds number has no tendency to
deform even ifCa is not small. Our solution works fdRe < 1 andCa arbitrary.
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9.3 High Reynolds number, low capillary number

2

Our first guess iss = V¢ andV2¢ = 0. We havep = ¢-4=, which satisfies the Euler
equationandi-n =u-nonr = a.

The tangential stress on= a iS 0,9 = 2ueqg = —% sinf # 0. Also, the drag
on the sphere is zero.

We expect that the outer flow will be modified (@tRe™')) and a boundary layer
will arise nearr = a, sweeping vorticity into the wake, perhaps modifying the outer
flow at(’)(Re‘%).

Without gross separation (which is not observed in experiments), we know the flow
almost everywhere and can calculate

u-F= 2/1/ €ij€ij dv
r>a

r>a 63018957 axi(’)xj

B o (0o %
- 2” [>a 6:61 {8%81‘L8$J} v

zz,t/ n- v (lu?) ds

As for the shape change, we see that pressure variations everscale a%pU2

P 2
and sQAp = 2.52 P (%) . The drop will remain spherical B2 < 1, or alternatively
Re Ca <« 160.

Free surface boundary layers

Nearr = a there is a boundary layer across which npbut 9wy jumps. There is thus

on
a jump inQ2 across the boundary layer.
The thickness of the boundary layer is still= aRe™ 2 and the boundary layer
equation still applies, but the velocity gradient in the layer scaléaé aad not%.

The energy dissipation in the layer scalegas%%j = % Thus

u-F = 121pal? (1 —l—ﬁRe_%) .
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In fact, 8 = 2.2, but we need the dissipation in the wake of the bubble to find this.
Observation suggests that the boundary layer does not separate unless the curvature
is very high.

9.4 The oblate spheroidal bubble

This is theRe > 1 andCa ~ 1 case. It is tough to make progress.

The first correction will be spheroidal and will modify the rise speed. As the capil-
lary number increases we will eventually get boundary layer separation.

9.5 Spherical cap bubble

This is theRe, Ca > 1 case.

™

V =
3

a’ {2—3cosa+0053a}.

The outer flow is flow past a sphere of radiusp = —U (r + 2 ) cosf. The

2r2

tangential velocity o = a isug = %U sinf. As Ca > 1 we have continuity of
pressure, and sgpu} — pgz = const. Nea# = 0, u} ~ $U%6* andz ~ 1af*. Thus
U? = gga and so the rise velocity = %\/ﬁ independent of.

Note that theRe — oo limit differs from theRe = oo limit.

There are turbulent dissipative processes in the wake that give a rise velocity inde-
pendent ofr asy — 0. Note that this rise velocity agrees with experiment. Experi-
mentally,« is found to be in the rang#)° < o < 60°.

9.6 The skirted bubble

This hasRe andCa “largish”. If we decrease surface tension from the spherical cap
bubble a discontinuity appears near the sharp edge. For suitable parameter values a
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cusped shaped edge appears and forms a skirt around the bubble.

If surface tension is decreased a little from this, Kelvin-Helmholtz instability occurs
near the cusped edge.

This is poorly understood.
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Stress tensor: EJH approach

Unfortunately, the (standard) derivations given earlier for the surface traction and sym-
metry of o do not work (by dimensional arguments). The following can be inserted in
the appropriate places if£.3. Discovering the precise places is left as a challenge to
the reader.

Linearity

Consider the force balance on this small tetrahedron. The volume and acceleration
forces areD(pgL?), whereL is the linear size of the tetrahedron. The surface forces
are O(pL?), with a typical pressurggH, where H is the height of the atmosphere.
Hence for small tetrahedra with < H the surface forces a®@(£) larger than the
volume and acceleration forces and so must balance amongst themselves.

Symmetry

The moment of the surface forces @pL3) and the moments of the volume and
acceleration forces a®(pgL*). So again the surface forces must balance amongst
themselves.
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