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Chapter 1

Complex Variables

1.1 Conventions

Various people use different meanings for analytic, regular, etc. We will use these:

Definition. A function isanalyticat a point iff there exists an open neighbourhood of
the point in which the function is complex differentiable. This is true iff the function
has a Taylor expansion about that point.

Definition. A function isanalytic in a domain iff it is analytic at every point in the
domain and single valued in the domain.

Definition. A function issingularat a point iff it is not analytic at the point.

Definition. A function has anisolated singularityat a point iff it is analytic in some
punctured ball about the point, or iff it has a Laurent expansion about the point.

1.2 Cauchy Principal Value

The integral
∫ 2

−1
dx
x does not exist. If we consider

I(η, ξ) =
∫ η

−1

dx
x

+
∫ 2

ξ

dx
x

= log
2η
ξ

then we see thatlimη,ξ→0 I(η, ξ) can be made to do anything we want. The particular
choiceη = ξ gives a limit oflog 2, and this is the Cauchy principal value of the original
integral. More formally:

If f(x) has asimplepole atx = c with a < c < b then the Cauchy principal value
of
∫ b

a
f(x) dx is defined to be

lim
ε→0

[∫ c−ε

a

f(x) dx+
∫ b

c+ε

f(x) dx

]
.

It is writtenP
∫ b

a
f(x) dx. For instance,P

∫ 1

−1
dx
x = 0.

1



2 CHAPTER 1. COMPLEX VARIABLES

Consider the complex contourΓ shown and letI =
∫
Γ
f(z) dz, and letf be ana-

lytic except for a simple pole atc.
By Cauchy’s theorem,

∫
Γ

=
∫
Γ′

. In the limit ε→ 0, we get∫
Γ′
f(z) dz = P

∫ b

a

f(x) dx+ lim
ε→0

∫
Cε

f(z) dz.

OnCε z = c + εeıθ for π < θ < 2π. Sincef has only a simple pole atz = c we
getf(z) = Res

z−c + a0 + . . . . Thenlimε→0

∫
Cε
f(z) dz = πıRes by Cauchy’s theorem.

Thus finally ∫
Γ

f(z) dz = P
∫ b

a

f(x) dx+ πıRes,

where as the name suggests,Res is the residue off atz = c. Similarly, going the other
way round,

∫
Γ

f(z) dz = P
∫ b

a

f(x) dx− πıRes.

We can extend this idea to more general complex contours, such as

to get∫
Γ1

f(z) dz = P
∫

Γ

f(z) dx− πıRes and
∫

Γ2

f(z) dz = P
∫

Γ

f(z) dx+ πıRes.

Example. Find ∫
Γ

cot z dz.

Solution. ∫
Γ

cot z dz = P
∫ ∞

−∞
cotxdx− πı

= 0− πı by symmetry.

Example. Find ∫ ∞

−∞

1− cosx
x2

dx.
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Method 1.As the integrand is analytic we can deform the real axis into the contourΓ,
thus ∫ ∞

−∞

1− cosx
x2

dx =
∫

Γ

1− cos z
z2

dz.

Now we consider
∫
Γ∨CR

1−eız

z2 dz and take the real part. This integral is2πıRes.

Method 2.We consider∫
Γ

1− eız

z2
dz = P

∫ ∞

−∞

1− eıx

x2
dx− ıπRes

= P
∫ ∞

−∞

1− eıx

x2
dx− π = 0.

ThusP
∫∞
−∞

1−cos x
x2 dx = π, but this is the actual integral

∫∞
−∞

1−cos x
x2 dx as this

has no singularity at0.

Singularities at Infinity

If the integral diverges at∞ define

P
∫ ∞

−∞
f(x) dx = lim

R→∞

∫ R

−R

f(x) dx.

For instance,P
∫∞
−∞

dx
x−ı = limR→∞ log R−ı

−R−ı = ıπ on the principal branch.

Theorem. The functionf(z) =
∫ t2

t1
g(z, t) dt is analytic in some domainD ⊂ C if

g(z, t) is analytic inz for eacht ∈ (t1, t2). Furthermoredf
dz =

∫ t2
t1

∂g
∂z (z, t) dt.

Proof. Omitted; see Copson page 108.

If either t1 or t2 is infinite then the convergence of the integral must be uniform for
z ∈ D. This result extends to

f(z) =
∫

Γ

g(z, ζ) dζ

simply by parametrizingΓ.

1.3 Analytic Continuation

Theorem. SupposeD1 andD2 are disjoint simply connected domains which share a
piece of common boundaryΓ, withD = D1 ∪ D2 ∪ Γ simply connected as well. Let
f1(z) be analytic onD1 and continuous onD1 ∪ Γ and similarly letf2(z) be analytic
onD2 and continuous onD2∪Γ. Suppose further thatf1 = f2 onΓ. Then if we define

g(z) =

{
f1(z) z ∈ D1 ∪ Γ
f2(z) z ∈ D2

g is analytic onD. g is called the analytic continuation off1 fromD1 intoD.
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Proof. ConsiderI =
∮

C
g(z) dz for some contourC ⊂ D. Now I = 0 if C ⊂ D1 or

C ⊂ D2, so we just need to consider the sketched case. Then
∮

C
=
∮

C1
+
∮

C2
= 0

and thusg is analytic by Morera’s theorem.

The analytic continuation is unique (if it exists) by the following theorem.

Theorem. If f is analytic inD and has an infinite sequence of zeroes with a limit point
in D thenf ≡ 0 onD.

Proof. Let the limit point be ata; then f(a) = 0 by continuity. Eitherf ≡ 0 or
f(z) = (z−a)mφ(z) with φ analytic andφ(a) 6= 0. Nowφ is continuous and so there
is a neighbourhood ofa on whichφ 6= 0. Thus there exists a neighbourhood ofa on
whichf is nonzero, giving a contradiction.

If g1 andg2 arebothanalytic continuations theng1− g2 = 0 onD1 and sog1 ≡ g2
onD.

Continuation of power series

Suppose (for instance) that by hook or by crook we have obtained the power series
expansion forf(z) =

∑
n z

n. This is analytic in|z| < 1. Then we can form a new
series by Taylor expansion about some other pointz0 such that|z0| < 1. Hopefully this
new power series has a convergent circle part of which is outside the original domain.
We can continue this process to try to coverC, but we may run into singularities or
branch cuts.

Functions defined by integrals

Suppose we have

f(z) =
∫ ∞

−∞

e−t2

z − t
dt

defined for=z 6= 0. Can we find an analytic continuation off1(z) = f(z) for =z > 0

into C? Defineg(z) =
∫
Γ

e−ζ2

z−ζ dζ, with Γ chosen to lie belowζ = z. Theng(z) is
analytic.

1. If =z > 0 we can deformΓ into R to getg(z) = f1(z).

2. If =z = 0 we getg(z) = P
∫∞
−∞

e−t2

z−t dt+ πıRes.

3. If =z < 0 we use theΓ sketched to getg(z) = f(z) + 2πıRes.

There are functions defined by integrals which we cannot continue, for example

f(z) =
∫ ∞

−∞

e−t2

z2 + t2
dt

cannot be continued from=z > 0 into C — there are two “pinching” singularities
which prevent deformation of the contour as above.
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1.4 Multivalued functions

The usual example is:f(z) = z
1
2 . If we takez = reıθ thenf(z) =

√
re

ıθ
2 . If we

tracef(z) asz moves around a closed curve not encircling the origin we find thatθ
returns to its original value andf is continuous. If the curve encircles the origin then
θ increases to2π andf(z) → −

√
reıθ. f is singular atz = 0 — it is not analytic

because it is not single valued in any neighbourhood of0. f(z) has neither a Laurent
expansion nor a residue at0. 0 is called a branch point.

f has a Taylor expansion aboutz = 1 (for example) with circle of convergence
|z − 1| < 1. We can extend the Taylor expansion by analytic continuation.

The continued function is discontinuous across a curve (or ray) from the origin to
infinity. This curve is called abranch cut, andf is continued analytically to a simply-
connected domain which excludes the branch cut.

Another favourite example isf(x) = log z = log r + ıθ. Now=f increases by2π
on any trip around the origin and soz = 0 is a branch point.

A slightly more complicated example isf(z) =
(
z2 − 1

) 1
2 which has branch points

at z = ±1. A useful way of doing it if we wantf in the neighbourhood of the origin
is:

but if we want to consider|z| � 1 we may prefer to send both cuts away on the
negative real axis as shown on the left.

It is easy to see that this is equivalent to the branch cut from−1 to +1 shown on
the right (which is why it is useful for|z| large).
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1.4.1 Branch cut integrals

These can be considered simplest by example. We thus look at

I =
∮

C

(
z2 − 1

) 1
2 dz,

whereC is any closed curve encircling the origin outside|z| = 1.
We introduce a branch cut on the real axis between±1, and as the integrand is

analytic in the cut plane we can deform the contour onto the cut. It is easy to see that∫
Γε1

→ 0 and
∫
Γε2

→ 0. By fiddling some more we get thatf(x) = (1− x2)
1
2 e

ıπ
2 on

Γ1 andf(x) = (1− x2)
1
2 e−

ıπ
2 onΓ2. Thus

I =
(
e−

ıπ
2 − e

ıπ
2
) ∫ 1

−1

(
1− x2

) 1
2 dx = −πı.

Another example, where we deliberately introduce a branch cut, isI =
∫∞
0
f(x) dx

with f not even. We consider
∫∞
0
f(x) log xdx as follows:

If f is sufficiently nice then
∫

CR
→ 0 asR→∞. We have∫

Γ1

=
∫ ∞

0

f(x) log xdx and
∫

Γ2

= −
∫ ∞

0

f(x)(log x+ 2πı) dx.

Adding these two gives∫ ∞

0

f(x) dx = −
∑

Res (f(z) log z) .

1.4.2 Riemann surfaces

We considerf1(z) = z
1
2 with f1(x) =

√
x for x ∈ R positive andf2(z) = z

1
2 with

f1(x) = −
√
x for x ∈ R positive. We continuef1 around the origin from the positive

real axis. Atz = reıπ we can continuef1 onto a copy of the complex plane where
it becomesf2. If we follow f2 around again until its branch cut on the copy of the
negative real axis we find that we can jump back onto our original complex plane. We
have a function which is analytic everywhere in an enlarged space with two “Riemann
sheets”. Closed curves in this space encircle the origin an even number of times.

Another example isf(z) = log z which has Riemann sheets in the form of an
infinite spiral ramp.



Chapter 2

Special Functions

This chapter deals mainly with the gamma function and its relatives. Other special
functions are encountered in the next chapter.

2.1 The Gamma Function

This is an analytic continuation of the factorial function from the positive integers into
C. We define

Γ(z) =
∫ ∞

0

tz−1e−t dt. (2.1)

This integral is well defined for<z > 0. For<z > 1 we integrate by parts to get the
recurrenceΓ(z) = (z − 1)Γ(z − 1) which we use to continueΓ into <z ≤ 0. This
continuation is analytic except for simple poles at the negative integers.

By straight integration we see thatΓ(1) = 1 and so by iteration,Γ(n+ 1) = n! for
n a positive integer.

Note that (by change of variable in (2.1)).

Γ(m) = 2
∫ ∞

0

x2m−1e−x2
dx. (2.2)

7
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2.2 The Beta function

We define

B(m,n) =
∫ 1

0

tm−1(1− t)n−1 dt. (2.3)

This is well-defined for<m, <n > 0. We now derive a formula for the beta
function in terms of the gamma function, using equation (2.2).

Γ(m)Γ(n) = 4
∫ ∞

0

∫ ∞

0

x2m−1y2n−1e−x2+y2
dxdy

Changing to polar co-ordinates we obtain

Γ(m)Γ(n) = 4
∫ ∞

0

r2(m+n)−1e−r2
dr
∫ π

2

0

cos2m−1 θ sin2n−1 θ dθ

= Γ(m+ n)
∫ π

2

0

2 cos2m−1 θ sin2n−1 θ dθ.

Puttingτ = cos2 θ gives

Γ(m)Γ(n) = Γ(m+ n)
∫ 1

0

τm−1(1− τ)n−1dτ

= Γ(m+ n)B(m,n).

Thus we have the required formula,

B(m,n) =
Γ(m)Γ(n)
Γ(m+ n)

(2.4)

and another integral representation of the beta function

B(m,n) =
∫ π

2

0

2 cos2m−1 θ sin2n−1 θ dθ. (2.5)

Special cases

Puttingm = n = 1
2 into (2.4) and (2.5) we getπ = Γ( 1

2 )2, which ought to be familiar,
although perhaps not in quite this form.

If m = z andn = 1 − z we require0 < <z < 1 for convergence of (2.3). With
this restriction we evaluateB(z, 1− z) = Γ(z)Γ(1− z).

Γ(z)Γ(1− z) =
∫ 1

0

tz−1(1− t)−z dt = I say.

Puttingt = 1
1+s we get

I =
∫ ∞

0

s−z

1 + s
ds.
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Evaluating this as a branch cut integral gives

I(1− e−2πız) = 2πıe−πız

and hence

I =
π

sinπz
.

ThusB(z, 1 − z) = π
sin πz for 0 < <z < 1. But this formula is analytic onC \ Z

and so by analytic continuation

Γ(z)Γ(1− z) =
π

sinπz
(2.6)

onC \ Z. In fact it is true on the integers as well — if interpreted correctly!
We now wantB(z, z) with <z > 0. (2.3) gives

B(z, z) =
∫ 1

0

(
t− t2

)z−1
dt

= 2
∫ 1

1
2

(
t− t2

)z−1
dt,

to avoid a branch cut on puttings = (2t− 1)2

= 21−2z

∫ 1

0

s−
1
2 (1− s)z−1 ds

= 21−2zB( 1
2 , z).

We relate this to the gamma function using (2.4) to getLegendre’s duplication
formula

Γ(z)Γ(z + 1
2 ) = π

1
2 21−2zΓ(2z). (2.7)

Now we do

B(z, n+ 1) =
Γ(z)Γ(n+ 1)
Γ(z + n+ 1)

=
∫ 1

0

tz−1(1− t)n dt

= n−z

∫ n

0

τn−1
(
1− τ

n

)n

dτ.

We take the limit asn→∞ to get

lim
n→∞

Γ(z)Γ(n+ 1)nz

Γ(z + n+ 1)
=
∫ ∞

0

τz−1e−τ dτ = Γ(z). (2.8)

We can rearrange this to getEuler’s limit for the gamma function:

Γ(z) = lim
n→∞

nzn!
z(z + 1) . . . (z + n)

, (2.9)

which can be thought of as showing the poles at{0,−1,−2, . . . }. We can use (2.8)
to get

lim
n→∞

n!nz

(n+ z)!
= 1. (2.10)



10 CHAPTER 2. SPECIAL FUNCTIONS

We introduce the Hankel contour shown here.

ConsiderI(z) =
∫

C
ett−z dt, which is also written

∫ (0+)

−∞ .

∫
Γ1

=
∫ 0

∞
e−rr−zeıπze−ıπ dr

= eıπz

∫ ∞

0

e−rr−z dr∫
Γ2

= −eıπz

∫ ∞

0

e−rr−z dr.

∫
Γε
∼ ε1−z which tends to zero if<z < 1. Thus

1
Γ(z)

=
1

2πı

∫ (0+)

−∞
ett−z dt. (2.11)

We proved this for<z < 1, but in fact the derivative of (2.11) exists for allz and
so 1

Γ(z) is analytic and (2.11) holds for allz.

2.3 The Riemann zeta function

The Riemann zeta function is defined for<z > 1 by

ζ(z) =
∞∑

n=1

n−z. (2.12)

Some “famous” results areζ(2) = π2

6 andζ(4) = π4

90 . We use the Hankel repre-
sentation of the gamma function (2.11) to get

2πın−z

Γ(1− z)
=
∫ (0+)

−∞
enττz−1 dτ and so

ζ(z) =
Γ(1− z)

2πı

∫ (0+)

−∞

τz−1

e−τ − 1
dτ.

Thusζ(z) can only be singular atz = 1, 2, . . . , thus the only singularity is atz = 1.
We therefore have the analytic continuation ofζ:

ζ(z) =
Γ(1− z)

2πı

∫ (0+)

−∞

τz−1

e−τ − 1
dτ. (2.13)
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Something which we do not prove is the reflection formula

ζ(1− z) = 21−zπ−z cos
(

1
2πz

)
ζ(z)Γ(z), (2.14)

which shows us thatζ(z) = 0 atz = 2n+ 1 for n = 1, 2, . . . .
By noting that2−zζ(z) = 1

2z + 1
4z +. . . we see that(1−2−z)ζ(z) = 1

1z + 1
3z +. . . .

Continuing this process with the rest of the primes we obtain the Euler product forζ:

ζ(z) =
∞∏

i=1

(
1− p−z

m

)−1
, (2.15)

wherepm is themth prime. This is the reasoning behind the following (starred) section.

2.3.1 Applications to number theory

Let π(x) be the number of primes less than or equal to the real numberx. Then from
the Euler product (2.15) we have

log ζ(z) = −
∞∑

m=1

log
(
1− p−z

m

)
= −

∞∑
m=2

(π(m)− π(m− 1)) log
(
1−m−z

)
= −

∞∑
m=2

π(m)
[
log
(
1−m−z

)
− log

(
1− (m+ 1)−z

)]
=

∞∑
m=2

π(m)
∫ m+1

m

z

x (xz − 1)
dx and so

z−1 log ζ(z) =
∫ ∞

2

zπ(x)
x (xz − 1)

dx.

This looks like some kind of transform ofπ(x). We will see later that we can find
approximations ofπ(x) from the locations of the singularities oflog ζ(z) (or zeroes of
ζ(z)).

In 1890 Hadamard proved thatζ has no zeroes on<z = 1, which was enough
to prove thePrime Number Theorem, thatπ(x) ∼ x

log x asx → ∞. The Riemann

Hypothesis of 1860 that the only zeroes ofζ(z) in 0 < <z < 1 are on<z = 1
2 is

enough to prove the stronger result

π(x) =
∫ x

0

dt
log t

+O(x
1
2 log x),

the snag being merely that the Riemann hypothesis is still a hypothesis.
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Chapter 3

Second order linear differential
equations

We shall discuss equations of the general form

w′′ + p(z)w′ + g(z)w = 0. (3.1)

The form of the solutions of this equation can be determined by the location and
nature of the singularities ofp andq in C.

Ordinary points

z0 is an ordinary point (or regular point) of (3.1) ifp andq are both analytic atz0. The
behaviour ofw nearz = z0 is determined by the leading order terms of the Taylor
expansions ofp andq aboutz0. If p =

∑
pn(z − z0)n andq =

∑
qn(z − z0)n, and

eitherp0 6= 0 or q0 6= 0 then we get

w′′ + p0w
′ + q0w ∼ 0. (3.2)

This has solutionsem(z−z0), which is analytic atz = z0. This is enough to show
that the solution of (3.1) is analytic, and carries over to cases whenp0 = q0 = 0, and
shows thatw =

∑
an(z − z0)n. We can determine the coefficientsan by substitution,

and the series converges at least out to the nearest singularity ofp or q in C. We can
see this with Legendre’s equation of order 1

(1− z2)w′′ − 2zw′ + 2w = 0. (3.3)

We see thatp andq both have singularities atz = ±1, but are analytic atz = 0.
We expandw aboutz = 0, and equating coefficients givesan = n−3

n−1an−2. We thus
get two series solutions, one of which terminates:

w = a0

(
1− z2 − 1

3z
4 + . . .

)
and

w = a1z.

The series has (unsurprisingly) a radius of convergence1. p andq are both singular
atz = ±1, but we wish to know if we can analytically continue the series around these
singularities.

13
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Singular points

z = a is a singular point if eitherp or q is singular atz = a. We restrict to isolated
singularities (whenp andq have Laurent expansions).

Let z = a be an isolated singularity and chooseR such thatp andq are analytic in
D = {z ∈ C : 0 < |z − a| < R}. Let C be the circle{z ∈ C : |z − a| = ρ = R

2 }
and takez0 ∈ C. We can construct two independent solutions (by series substitution,
say)w1 andw2 aboutz = z0, which both have radius of convergenceρ. We then
choosez1 ∈ C with |z1 − z0| < ρ. Repeat (about 8 times) until we get back to a circle
containingz0. We have obtained solutionsw∗1 andw∗2 , which are linear combinations
of w1 andw2: (

w∗1
w∗2

)
= (αij)

(
w1

w2

)
. (3.4)

The matrix(αij) is called the continuation matrix, which must be invertible, as we
can continue the solutions backwards. We now examine the eigenvalues of(αij) to see
what happens.

We first consider the distinct eigenvalue case, sayλ1 andλ2. Therefore,w∗1 =
λ1w1 andw∗2 = λ2w2. We writeλi = e2πıσi , and writewk(z) = (z − a)σk vk(z).
Thenw∗k = λk (z − a)σk vk(z). Thusvk is single-valued around the circle, and there-
fore has at worst an isolated singularity ata, and so has a Laurent expansion. If the
Laurent expansion terminates below then we can write

wk(z) = (z − a)σk

∞∑
n=0

cn,k (z − a)n

(redefiningσk if necessary). This is aFrobenius expansionand in this case we call
z = a a regular singular point.

If we have two identical eigenvalues,λ1 = λ2 = λ (say), there are two distinct
cases. If we can diagonalise(αij) then the results above hold. If we can’t diagonalise
(αij) then we can put(αij) in a Jordan Normal Form

(αij) =
(
λ 0
1 λ

)
.

Then the analysis forw1 is as before, and we look forw2(z) = u(z)w1(z). Then
u∗w∗1 = (1 + λu)w1. So we writeu = λ−1

2πı log (z − a)+s(z), sos(z) is single-valued
and has a Laurent expansion. Putting all this together we get

w2 =
λ−1

2πı
(z − a)σ1 (v1 log (z − a) + v2(z)) ,

wherev1 andv2 both have Laurent expansions.

3.1 Method of Frobenius

Theorem. If z = 0 is a singular point of(3.1) then it is a regular singular point
(Laurent expansions terminate below) iffzp(z) andz2q(z) are both analytic atz = 0.
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The method of Frobenius is to propose an infinite seriesw(z) =
∑

n anz
σ+n. We

substitute this into (3.1) and take the coefficient of the lowest power ofz. This is the
indicial equation which determines two values ofσ, σ1 andσ2 say.

If σ1 − σ2 /∈ Z then we have two Frobenius series forw.
If σ1 = σ2 then we must insert a logarithm,

w(z) = zσ

(
(A+B log z)

∞∑
n=0

anz
n +B

∞∑
n=0

bnz
n

)
.

If we haveσ1 − σ2 a positive integer then there is always a Frobenius series
zσ1
∑∞

n=0 anz
n. Either (by some miracle),zσ2

∑∞
n=0 bnz

n is also a solution, or we
need to insert a logarithm to get

w2(z) = zσ1 (A+B log z)
∞∑

n=0

anz
n + zσ2

∞∑
n=0

bnz
n.

The point at infinity

We setζ = 1
z and examine what happens asζ → 0. (3.1) becomes

d2w

dζ2
+
(

2
ζ
− p

ζ2

)
dw
dζ

+
1
ζ4
qw = 0. (3.5)

We then apply all our previous results to equation (3.5). We find that the point at
infinity is a regular singular point if2− zp(z) andz2q(z) are regular at infinity.

3.1.1 Bessel’s Equation

We apply our theory to Bessel’s equation

w′′ +
1
z
w′ +

(
1− ν2

z2

)
w = 0. (3.6)

This arises frequently in cylindrical geometries.ν is a constant parameter. (3.6)
has a regular singular point atz = 0 and an irregular singular point at infinity. The
indicial equation (atz = 0) is σ2 = ν2. We look for Frobenius series solutions of the
form

w = zσ
∞∑

n=0

anz
n, a0 6= 0.

We get a recurrence foran, ann(n+ 2σ) = −an−2. We thus split our study of the
form of the solutions of (3.6) according toν.

Case 1.2ν /∈ N. Thenσ1 − σ2 = 2ν /∈ N and we get two series solutions. The
coefficients of the equation can be determined by the recurrence and, on choosinga0

appropriately, we get the standard Bessel functionJν(z).

Jν(z) =
(

1
2z
)ν ∞∑

k=0

(
− 1

4z
2
)k

k!Γ(k + ν + 1)
(3.7)

The series is clearly entire, the only finite singularity being the branch point at
z = 0 from thezν factor. We get the linearly independent solutionJ−ν by replacingν
with −ν in (3.7).



16 CHAPTER 3. SECOND ORDER LINEAR ODEs

Case 2.ν = 0. Thenσ1 = σ2 = 0. We get the solutionJ0(z) (ν = 0 in (3.7)) and
a second solution with a logarithmic singularity atz = 0,

w2(z) = J0(z) log z +
∞∑

n=0

bnz
n.

Case 3. 2ν ∈ N. This has two subcases:Case 3a.ν ∈ N. Then we getJn as
before and a second logarithmic solution.Case 3b.2ν is odd. This is one of the “black
magic” cases referred to earlier. The first solution withσ = ν > 0 works to giveJν

(it always works). The recurrence withσ = −ν could potentially go wrong, but it
just jumps over the trouble and we getJ−ν . If you wish to persuade yourself of this
just take a specific case (sayν = 3

2 ) and play with it. The integer plus a half Bessel
functionsJn+ 1

2
(z) are all expressible in terms of elementary functions, for instance

J 1
2
(z) = 2√

πz
sin z andJ− 1

2
(z) = 2√

πz
cos z.

3.2 Classification of equations by singularities

We will only consider second order equations with at most three regular singular points
(including at infinity). This class, although it seems restrictive, in fact covers most of
the differential equations of mathematical physics.

It will be convenient to ensure that our singularities are in nice places. The Möbius
transform is useful, and we write it as

z 7→ (z − α)(β − γ)
(β − α)(z − γ)

. (3.8)

This mapsα 7→ 0, β 7→ 1 andγ 7→ ∞, and this seems a good place to point out
that our discussion will be on the complex sphereC∞ (or the complex plane with the
point at infinity attached).

3.2.1 Equations with no regular singular points

This will be a rather brief discussion.

Proposition. There are no second order linear differential equations with no regular
singular points.

Proof. Since there are no finite singularitiesp andq are entire. We must havep ∼ 2
z

asz →∞, sop is bounded and thus constant. We now have a contradiction.

3.2.2 Equations with one regular singular point

Without loss of generality we can assume that this point is atz = 0. Thusp = A(z)
z

andq = B(z)
z2 , withA(z) andB(z) entire functions. As the equation is regular at∞we

must haveA = 2 andB = 0. Thus the only second order linear differential equation
with one regular singular point is

w′′ + 2
zw

′ = 0. (3.9)

This has a general solutionw(z) = α
z + β.
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3.2.3 Equations with two regular singular points

WLOG we can put these singular points at0 and∞, so we must havep = A(z)
z and

q = B(z)
z2 with A andB entire. Asz → ∞ we must havezp(z) andz2q(z) bounded

and thusA andB are bounded entire functions and therefore constant.
Thus the most general equation with two regular singular points at0 and∞ is

z2w′′ +Azw′ +Bw = 0. (3.10)

This is a homogenous equation and so

w(z) =

{
αzσ1 + βzσ2 σ1 6= σ2

zσ (α+ β log z) σ1 = σ2 = σ.

We can work backwards to findA andB in terms ofσ1 andσ2; we findA =
1− σ1 − σ2 andB = σ1σ2.

Confluence of singularities

We mapz 7→ z + α and letα→∞ and defineλi = ασi. Then we get the equation

w′′ + (λ1 + λ2)w′ + λ1λ2w = 0, (3.11)

which has the general solutionw(z) = αeλ1z + βeλ2z. (3.11) has an irregular
singular point at infinity and the solution has an essential singularity there.

3.2.4 Equations with three regular singular points

Or, a User’s Guide to the hypergeometric equation. This section is only vaguely on the
edge of the Schedules. We can assume that the singular points are at0, 1 and∞, and
let the indices at0 be0, 1 − c, at1 be0, c − a − b and at infinity bea, b respectively.
We get the hypergeometric equation

z(z − 1)w′′ + [(a+ b− 1) z + c]w′ + abw = 0. (3.12)

There is one solution which is regular at the origin. It is writtenF (a, b, c; z) and

F (a, b, c; z) = 1 +
ab

c
z +

a(a+ 1)b(b+ 1)
c(c+ 1)

z2

2!
+ . . . . (3.13)

This series is convergent for|z| < 1. The other solution isz1−cF (1 + a − c, 1 +
b− c, 2− c; z) if c /∈ Z. If c ∈ Z the second solution is logarithmic.

Transformations to hypergeometric form

Suppose we have a second order linear differential equation of the formw′′ + pw′ +
qw = 0 with three regular singular points atz = A, z = B andz = C. We transform
this into hypergeometric form by applying a Möbius transform on the independent
variable taking(A,B,C) 7→ (0, 1,∞) to put the singularities in the right place and
applying a transform of the formwold = (z − A)ξ(z − B)η(z − C)ζwnew on the
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dependent variable to give the correct indices at the singularities. We illustrate this
with an example, Legendre’s equation:

(1− z2)w′′ − 2zw′ +
(
n(n+ 1)− m2

1− z2

)
= 0, (3.14)

which has regular singularities at±1 and∞. The indices at±1 are±m
2 and the

indices at infinity are−n andn+ 1. The transform

w(z) = (1− z)
m
2 (1 + z)

m
2 f(z)

givesf indices of0,−m atz = ±1 andm− n,m+ n+ 1 atz = ∞. and we also put
ζ = 1−z

2 to move the singularities at±1 to 0 and1 respectively. The coefficientsa, b
andc of the hypergeometric equation are thereforea = m − n, b = m + n + 1 and
c = m+ 1 and so

w(z) =
(
1− z2

)m
2 F (m− n,m+ n+ 1,m+ 1; 1−z

2 )

is a solution of (3.14).

Integral representation

The point of departure is the series forF (a, b, c; z), (3.13). We have

F (a, b, c; z) =
∞∑

k=0

Γ(k + a)
Γ(a)

Γ(k + b)
Γ(b)

Γ(c)
Γ(k + c)

zk

k!

=
Γ(c)

Γ(b)Γ(c− b)

∞∑
k=0

Γ(k + a)
Γ(a)

Γ(k + b)Γ(c− b)
Γ(k + c)

zk

k!

=
Γ(c)

Γ(b)Γ(c− b)

∞∑
k=0

Γ(k + a)
Γ(a)

B(b+ k, c− b)

=
Γ(c)

Γ(b)Γ(c− b)

∞∑
k=0

zk

k!
Γ(k + a)

Γ(a)

∫ 1

0

tb+k−1(1− t)c−b−1 dt

=
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−a dt.

We thus get the final result

F (a, b, c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−a dt. (3.15)

Confluent hypergeometric equation

We move the singularity atz = 1 to z = b usingz 7→ bz and then letb → ∞. We get
the confluent hypergeometric equation

zw′′ + (c− z)w′ − aw = 0. (3.16)
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This has a regular singular point atz = 0 with indices0 and1− c and an irregular
singular point at infinity. The regular solution is

Φ(a, c; z) = 1 +
a

c
z +

a(a+ 1)
c(c+ 1)

z2

2!
+ . . . (3.17)

and the other solution isz1−cΦ(1+a−c, 2−c; z) if c /∈ Z. The series representation
(3.17) is entire.

If a = c we getΦ(a, a; z) = ez. If −a ∈ N the series terminates to give the
Laguerre polynomials. Hermite’s equation

w′′ − 2zw′ + 2nw = 0 (3.18)

has solutionsΦ(− 1
2n,−

1
2 ; z2) andz

1
2 Φ( 1−n

2 ,− 3
2 ; z2). After some work we can

get the Bessel functions

Jν(z) ∝ zνe−ızΦ(ν + 1
2 , 2ν + 1; 2ız). (3.19)

Triple confluence

This can be done in a symmetric way by placing the singularities atK, Ke
2πı
3 and

Ke
4πı
3 with indices1

6 ±
1
3K

3
2 and lettingK →∞. This results in Airy’s equation

w′′ − zw = 0, (3.20)

which has no singularities in the finite complex plane but a really evil singularity at
infinity.

If we let ζ = 2
3z

3
2 and defineW (ζ) = z−

1
2w(z) we get

W ′′ +
1
3
W ′ +

(
1− 1

9ζ2

)
W = 0.

This is Bessel’s equation (3.6) forW (ıζ), so we getw(z) = z
1
2 J± 1

3
( 2ı

3 z
3
2 ) as a

solution of (3.20).

3.3 Integral representation of solutions

In general, look for a solution of the form

w(z) =
∫

Γ

K(z, t)f(t) dt, (3.21)

where we have freedom to chooseK, f andΓ so as to satisfy the differential equa-
tions.K(z, t) is known as thekernel. Some (famous?) kernels are:

1. Laplace kernel:K(z, t) = ezt. This is used in Laplace transforms in the form
e−zt with Γ = R+.

2. Fourier kernel:K(z, t) = eızt. This is used in Fourier transforms withΓ = R.

3. Euler kernel:(t− z)µ.

4. Mellin kernel:t−z.
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The Laplace kernel and Fourier kernel amount to the same thing, the choice be-
tween them just influencesΓ. We will only examine this kernel. Use is best illustrated
by example.

Consider Airy’s equation (3.20), and look for a solution of the form

w(z) =
∫

Γ

eztf(t) dt,

whereΓ andf are to be determined. We substitute into (3.20) to get

0 =
∫

Γ

(t2 − z)eztf(t) dt

=
∫

Γ

(
t2f(t) + f ′(t)

)
ezt dt−

[
eztf(t)

]
Γ

integrating by parts.

So if by hook or by crook we can findf such that the integrand is zero and
[eztf(t)]Γ = 0 we have found a solution to (3.20). We choosef such thatf ′+t2f = 0,

which givesf(t) = Ae−
t3
3 and

w(z) =
∫

Γ

ezte−
t3
3 dt. (3.22)

We now have to chooseΓ such that
[
ezte−

t3
3

]
Γ

= 0. As we are dealing with an

analytic function this is true on any closedΓ, but in this case (3.22) gives the true but
not-very-useful solutionw(z) ≡ 0 (by Cauchy’s theorem).

We can get this if we integrate over an infinite range and the integrand tends to zero
at infinity. This happens iff−π

2 < arg t3 < π
2 , which is in the shaded regions of the

t-plane.

Contours starting and ending in the same sector givew ≡ 0, so we have three
choices of contour,Γ1, Γ2 andΓ3. We note that∫

Γ3

=
∫

Γ1

−
∫

Γ2

and so we only have two linearly independent solutions. One choice is

w1,2 =
∫

Γ1,2

ezte−
t3
3 dt.

Although this seems on the face of it to not be overly helpful we will see later that
this can be approximately evaluated when|z| � 1, which is usually the physical case
we are interested in.
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For another example we try the confluent hypergeometric equation (3.16). We try
as before

w(z) =
∫

Γ

eztf(t) dt

and find that this works if[
ezt(t2 − t)f(t)

]
Γ
−
∫

Γ

(
d
dt
{
(t2 − t)f

}
− ctf + af

)
ezt dt = 0.

As before we choosef(t) to make the integrand zero, which givesf(t) = (t −
1)c−a−1ta−1 and then chooseΓ to make[eztta(1− t)c−a]Γ = 0. ChoosingΓ depends
on the particular ranges ofa, c anda − c, and given a range ofa, c anda − c it is not
difficult to find Γ such that[eztta(1− t)c−a]Γ = 0 and the integral forw(z) does not
give the trivial zero solution.
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Chapter 4

Asymptotic Expansions

4.1 Motivation

We will motivate this discussion with an example. Suppose we wish to evaluate the
error function

erf z =
2√
π

∫ z

0

e−s2
ds. (4.1)

This occurs throughout statistics and mathematical physics, for instance as a solu-
tion to the diffusion equation∂T

∂t = κ∂2T
∂x2 (putz = x

2
√

κt
to get an ODE forT (z)). One

naive approach is to expande−s2
as an infinite sum and integrate termwise, which is

certainly analytically permissible. Ase−s2
is entire then the series we obtain forerf z

will have an infinite radius of convergence. The series is

erf z = 2√
π
z
(
1− 1

3z
2 + 1

10z
4 − 1

42z
6 + . . .

)
. (4.2)

If we evaluate this atz = 1 we need eight terms to get an accuracy of10−5. If
we evaluate atz = 2 we need 16 terms and if we evaluate atz = 5 we need 75
terms. Although the seriesis convergent, the terms of the series get quite large before
eventually tending to zero. Atz = 5 the largest term is approximately7 × 108, so
although a computer (say) can perform the sum of 75 terms in no time at all it will
converge to something which is incorrect even in the first significant digit.

For large|z| a better approach is to obtain an asymptotic expansion forerf z. We
know thaterf z → 1 asz →∞ and so we write

erf z = 1− 2√
π

∫ ∞

z

e−s2
ds

= 1− 2√
π

∫ ∞

z

se−s2 1
s

ds

= 1− 1√
π

e−z2

z
+

1√
π

∫ ∞

z

e−s2

s2
ds integrating by parts.

We can continue this to get the asymptotic series forerf z

erf z = 1− e−z2

z
√
π

(
1− 1

2z2
+

1× 3
(2z2)2

− 1× 3× 5
(2z2)3

+R
)
. (4.3)

23
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If we apply the ratio test we see that this series is convergent nowhere. However, if
we consider the remainder termR we see that

R =
∫ ∞

z

105
16

te−t2

t9
dt

≤ 105
32

e−z2

z9

and so the remainder term tends to zero very rapidly asz → ∞. At z = 2.5 only
three terms of the series are needed for an accuracy of10−5 and atz = 3 two terms
will do. The truncated series is an asymptotic expansion oferf z asz →∞. Note that
the Taylor expansion is an asymptotic expansion oferf z asz → 0.

4.2 Definitions and examples

Definition. The sum
∑N

n=1 fn(z) is an asymptotic expansion off(z) in the limitz →
∞ if ∀M ≤ N we have

f(z)−
∑M

n=1 fn(z)
fM (z)

→ 0 asz →∞.

We can state this informally as “the remainder is smaller than the last included
term” and a similiar definition holds in any limitz → c. The property of asymptotic-
ness may depend onarg(z − c).

Definition. A sequence of function{φn(z)}∞n=0 is an asymptotic sequence asz → c

in some sector if∀n, φn+1(z)
φn(z) → 0 asz → c in that sector.

For instanceφn(z) = z−n is asymptotic asz → ∞ with any argument.φn(z) =
e−nz is asymptotic asz → ∞ for −π

2 < arg z < π
2 . φn(z) = (sin z)n is asymptotic

asz → 0 for any argument.

Definition. If for a given asymptotic sequence{φn(z)} there exist constants{an}
such that for alln, f(z) =

∑N
0 anφn(z) = o(φN (z)) asz → c in some sector then

we write

f(z) ∼
∞∑
0

anφn(z) asz → c.

These infinite asymptotic expansions go against the spirit of their use, but they are
conceptually useful as they allow us to show

f(z) =
N∑

n=0

anφn(z) + aN+1φN+1(z) + o(φN+1) =
N∑

n=0

anφn(z) +O(φN+1).

For a given asymptotic sequence{φn} the coefficientsan are unique and can be
found recursively from

aN = lim
z→c

f(z)−
∑N−1

0 anφn

φN
,
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remembering that possiblyz → c in some sector. A given function can have different
asymptotic expansions in terms of different asymptotic sequences:

tan z ∼ z + 1
3z

3 + 2
15z

5

∼ sin z + 1
2 (sin z)3 + 3

8 (sin z)5 ,

both asz → 0 for anyarg z.

4.2.1 Manipulations

Asymptotic expansions can be naively added, subtracted, multiplied and divided to
form new asymptotic expansions, but perhaps in terms of a new asymptotic series. The
size of terms must be checked. Obviously, if we have an asymptotic expansion off1
aboutc confined to a sectorS1 and an asymptotic expansion off2 aboutc confined to
a sectorS2 then the asymptotic expansion obtained by multiplication is only valid in
the sectorS1 ∩ S2.

Asymptotic expansions can be integrated termwise but cannot in general be dif-
ferentiated. However iff(z) is analytic in a sector and differentiable in the sector at
c (some kind of one-sided limit) then the asymptotic expansion can be differentiated
termwise in that sector.

4.3 Stokes Phenomenon

Supposef(z) ∼
∑∞

N anz
−n asz →∞ for all arg z. Let f be analytic in a punctured

neighbourhood of infinity. Thenf has a (convergent) Laurent expansion
∑∞
−∞ bnz

−n.
This is asymptotic so by uniquenessbn = 0 for n < N andan = bn for n ≥ N and
the asymptotic expansion is convergent.

Conversely if the asymptotic expansion is divergent then it cannot be valid for all
arg z. Divergent asymptotic expansions are associated with essential singularities off .

For instance we have seen that for real positivez we haveerf z ∼ 1− e−z2

z
√

π
asz →∞.

In deriving this we considered
∫∞

z
e−s2

ds, and for more generalarg z this integral can

be shifted onto the original contour provided we’re in the sector such thate−s2 → 0 as
s → ∞; thus the asymptotic expansion is valid for−π

4 < arg z < π
4 . Noting thaterf

is an odd function ofz we see thaterf z ∼ −1− e−z2

z
√

π
asz →∞ for 3π

4 < arg z < 5π
4 .

An alternative method gives thaterf z ∼ − e−z2

z
√

π
asz → ∞ for π

4 < arg z < 3π
4

and 5π
4 < arg z < 7π

4 . The lines separating these sectors are called Stokes lines;
asymptotic expansions have jump discontinuities across Stokes lines.

4.4 Asymptotic Approximation of Integrals

4.4.1 Integration by parts

This is used if the independent variable is in a limit of the integral.
For instance, consider the exponential integral (withz real and positive at first)
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E1(z) =
∫ ∞

z

e−s

s
ds

=
[
−e

−s

s

]∞
z

−
∫ ∞

z

e−s

s2
ds

=
e−z

z

(
1− 1

z

)
+ 2

∫ ∞

z

e−s

s3
ds

We can bound the remainder term with2z3 e
−z = o

(
e−z

z2

)
and so

E1(z) ∼
e−z

z

(
1− 1

z

)
asz →∞ for positive realz.

For complexz we can see that the above method works ife−z → 0 asz → ∞,
that is for<z > 0. The result is in fact true for all arguments ofz, but we need another
method to cope with that.

As another example we will find asymptotic expansions asz →∞ for the Fresnel
integrals (at first for positive realz)

c(z) =
∫ z

0

cos t2 dt s(z) =
∫ z

0

sin t2 dt.

We will consider

f(z) =
∫ z

0

eıt2 dt

=
∫ ∞

0

eıt2 dt−
∫ ∞

z

eıt2 dt.

The first of these integrals can be done as a standard contour integral to give
√

π
2 eı π

4 .
As for the second:

∫ ∞

z

eıt2 dt =
∫ ∞

z

2ıteıt2

2ıt
dt

=

[
eıt2

2ıt

]∞
z

+O(z−2)

= −e
ız2

2ız
+O(z−2).

The evaluation of this second integral carries over to negative realz. We need to
change the first integral and we get

f(z) ∼ ±
√
π

2
eı π

4 +
eız2

2ız
asz → ±∞ ∈ R.

We ask if we can extend these results into more ofC. The key point is theeız2
term,

which must decay asz → ∞. This restricts the series to the regions0 ≤ arg z ≤ π
2

andπ ≤ arg z ≤ 3π
2 respectively.
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In the quadrants with exponential growth the exponential term of the series dom-

inates and we getf(z) ∼ eız2

2ız asz → ∞. The real and imaginary axes are clearly
Stokes lines.

4.4.2 Watson’s Lemma

This applies to integrals of the form∫ A

0

e−ztg(t) dt (4.4)

and relies on the fact that (in this case),e−zt decays rapidly as|z| → ∞ with <z > 0.
The integral is dominated by a neighbourhood oft = 0.

Lemma (Watson’s Lemma). Supposeg(t) has an asymptotic expansion in a sector
S,

g(t) ∼ a0t
α0 + · · ·+ ant

αn ast→ 0

with α0 > −1. Then the integral(4.4)can be evaluated termwise and∫ A

0

e−ztg(t) dt ∼
∫ “∞”

0

e−zt (a0t
α0 + · · ·+ ant

αn) dt

∼
n∑
0

akz
−αk−1Γ(αk + 1)

asz →∞ with z−1 andA in S.

We do not prove this but give examples of its use. Consider (again) the exponential
integral

∫ ∞

z

e−s

s
ds = e−z

∫ ∞

0

e−zt

t+ 1
dt

∼ e−z

∫ ∞

0

e−zt
(
1− t+ t2 + . . .

)
dt

∼ e−z

(
1− 1

z

)
asz → ∞, and as the Taylor series for(1 + t)−1 we used is asymptotic ast → 0 for
any argument the end result we get forE1 is valid for any argument. Using similar
artifice we can do the same sort of thing for the error function, although it is easier to
work with the complementary error functionerfc z = 1− erf z.

4.4.3 Laplace’s Method

This applies to integrals of the form

I(x) =
∫ β

α

g(t)exh(t) dt (4.5)

in the asymptotic limitx → ∞ (which is understood to meanx � 1). The inte-
grand is largest whereh has its maximum. If the maximum is at an endpoint (say at



28 CHAPTER 4. ASYMPTOTIC EXPANSIONS

α) with h′(α) < 0 then by expandingh(t) = h(α) + (t − α)h′(α) + O(t − α)2 and
expandingg(t) = g(α) +O(t− α) we get

I(x) ∼ −e
xh(α)g(α)
xh′(α)

.

The remainder term isO(x−2) and so this an asymptotic expansion. We get the leading
order term easily but the higher order terms are unpleasant.

If there is an interior maximum (att0) then only the highest maximum contributes
to the leading order term. Thenh(t) = h0 + 1

2h2(t− t0)2 +O(t− t0)3 with h2 < 0.
Now

I = exh0

∫ β

α

ex( 1
2 h2(t−t0)

2+O(t−t0)
3)g(t) dt

∼
∫ “∞”

−“∞”
e

x
2 h2u2 (

1 +O(u4x)
) (
g0 +O(u2)

)
du

∼ g0e
h0x

{
2π
−h2x

} 1
2

+ g0e
h0xO(x−

3
2 ).

Note that theO(u3x) andO(ux) terms are lost (integrating an odd function).
This gives us an easy way to derive Stirling’s formula forx!. Recall thatx! =∫∞

0
txe−t dt. Putt = xτ to get

x! =
∫ ∞

0

ex(log x+log τ)e−xτxdτ

= xxx

∫ ∞

0

ex(log τ−τ) dτ.

The maximum oflog τ − τ is atτ = 1 and we apply the formula developed above
to getx! ∼

√
2πxxxe−x asx→∞.

A harder example (which comes from scattering cross-sections in fusion reactions)
is

I(a, b) =
∫ ∞

0

exp
{
−
(a
t

) 1
2 − t

b

}
dt.

The integrand is peaked at
(

ab2

4

) 1
3
. The integral is locally dominated by this re-

gion. We pick up the major contribution by rescalingt =
(
ab2
) 1

3 τ . We putx =
(

a
b

) 1
3

and let this tend to infinity. This gives

I(a, b) = a
1
3 b

2
3

∫ ∞

0

e
−x

“
τ−

1
2 +τ

”
dτ

and is now in a suitable form for the application of Laplace’s method. Applying
this gives (eventually)

I(a, b) ∼
(

16π3ab5

27

) 1
6

exp−
(

27a
4b

) 1
3

.



4.4. ASYMPTOTIC APPROXIMATION OF INTEGRALS 29

4.4.4 The method of stationary phase

We will need the Riemann-Lebesgue lemma, which is stated but not proved.

Lemma (Riemann-Lebesgue).If f(t) is continuous in[a, b] then∫ b

a

f(t)eıxt dt→ 0 asx→∞.

We can see intuitively that whenx becomes large the exponential term is oscillating
faster and faster and getting more and more cancellation.

The method of stationary phase applies to integrals of the form

f(x) =
∫ b

a

eıxh(t)g(t) dt x� 1,

wherex, g andh are all real.
First we note that ifh is strictly monotonic in some subinterval[α, β] then∫ β

α

eıxh(t)g(t) dt =
∫ β

α

eıxh g(t(h))
h′(t(h))

dh

which tends to0 as x → ∞ (by the Riemann-Lebesgue lemma). This change of
variables also suggests that the dominant contributions tof are whenh′(t) = 0. Near
a stationary pointt0 of h we expandh(t) = h0 + 1

2 (t− t0)2h2 +O(t− t0)3 and then

f(x) ∼
∫ “∞”

−“∞”
eıh0xg(t0)eıxτ2h2 dτ

∼ g(t0)eıh0x

∫ “∞”

−“∞”
exp

(
1
2
ıh2xτ

2

)
dτ

∼
[

2π
xh′′(t0)

] 1
2

g(t0)eıxh(t0)+ı π
4 .

As an example we will consider the Airy function for large negativex.

Ai(−x) =
1
π

∫ ∞

0

cos
(

1
3
ω3 − xω

)
dω.

This is most easily approached with

I(x) =
∫ ∞

0

e
ı
“

ω3
3 −xω

”
dω.

Let ω =
√
xt andλ = x

3
2 . We get

I(x) =
√
x

∫ ∞

0

e
ıλ

“
t3
3 −t

”
dt,

which is now in the correct form for the method of stationary phase. Applying the
theory gives

Ai(−x) ∼
(
πx

3
2

)− 1
2

cos
(

2
3
x

3
2 − π

4

)
asx→∞.
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Another (more physical) example is that of group velocity. Many waves are disper-
sive — different wavelengths travel at different speeds. If the waves are linear they can
be superposed and Fourier analysis used to obtain

f(x, t) =
∫ ∞

−∞
F (k)eı(kx−ω(k)t) dk (4.6)

given an initial disturbance

f(x, 0) =
∫ ∞

−∞
F (k)eıkx dk.

Suppose the initial disturbance is compact to|x| < a. What does one see at large
distances from the initial disturbance? We also needt to be large, else no waves reach
x. The method of stationary phase gives the asymptotic behaviour of (4.6) as dominated
by the point where∂

∂k (kx− ω(k)t) = 0, or in other wordsxt = ∂ω
∂k . For a given large

x, t findk0 such that∂ω
∂k

∣∣
k0

= x
t . Then the dominant waveform isF (k0)eı(k0x−ω(k0)t).

Conversely, givenk0 then an observer moving with speed∂ω
∂k

∣∣
k0

asymptotically

sees waves of wavenumberk0. This speed∂ω
∂k

∣∣
k0

is called the group velocity and is the
physical quantity: the speed at which energy is transferred.

For water wavesω =
√
gk and along a rayxt = cg = 1

2

√
g
k . The method of

stationary phase gives

f(x, t) ∼ 2
√

2πk−
3
4

0 t−
1
2 g−

1
4F (k0)eı(k0x−ω(k0)t+

π
4 ).

4.4.5 Method of Steepest Descents

In this section we generalise the method of stationary phase (or equivalently Laplace’s
method) into the complex plane. We consider integrals of the form

f(z) =
∫

γ

g(ζ)ezh(ζ) dζ

with h andg analytic onγ. To begin with we considerz real and positive and split
h into real and imaginary parts,h = u + ıv. We cannot naively apply the previous
methods as if the maximum ofu(z) on γ is not a saddle point ofh thenv is varying
monotonically and in the limit a large amount of cancellation occurs.

We can deformγ into γ′ to pass through a saddle point ofh along a contour of
v. In this caseu has its maximum onγ′ at the saddle point, so the integral is locally
dominatedandv is stationary so no rapid cancellation occurs.

By letting γ′ be tangent to a contour ofv at the saddle point we getu decreas-
ing most rapidly either side of the saddle andezh is most strongly peaked. This is
the method of steepest descents. If only the leading order term is required then any
descending path through the saddle point will do — this is the saddle point method.

As an example we consider the Airy function

Ai(z) =
1

2πı

∫
C1

ezt− 1
3 t3 dt

with z real and positive. We writet = z
1
2 τ and then

Ai(z) =
z

1
2

2πı

∫
C1

e
z

3
2

“
τ− τ3

3

”
dτ.
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We now consider the integral

f(x) =
∫

C1

e
x

“
τ− τ3

3

”
dτ

for x = z
3
2 � 1 andh(τ) = τ − τ3

3 , which has saddles atτ = ±1. Althoughτ = 1
is the higher saddle we will go throughτ = −1 so that<h(τ) < 0 on the path of
integration andAi(z) remains bounded asz →∞.

Putτ = −1 + η with η = ξ + ıζ. h(τ) = − 2
3 + η2 + . . . . The steepest descent

path atτ = −1 is parallel to the imaginary axis, so we haveξ = 0. Then

f(x) ∼
∫ ∞

−∞
ex(− 2

3−ζ2)ıdζ

∼ ıe−
2
3 x

∫ ∞

−∞
e−xζ2

dζ

∼ ı

√
π

x
e−

2
3 x.

Putting all this togetherAi(z) ∼ z−
1
4

2
√

π
e−

2
3 z

3
2 .

We also want to know how far we can generalise this result for different values
of arg z. Supposearg z = α; this causes rotation of the steepest descent paths of
< (zh(τ)) byα. For smallα this doesn’t matter — we get the same asymptotic expan-
sion. For largerα other saddles come into view. As the steepest descent path jumps
from one saddle to another we get Stokes’ phenomenon. For the Airy function the
asymptotic expansion we found is valid for|arg z| < π.

The Hankel functions

H(1,2)
ν =

1
πı

∫
C1,2

ez sinh t−νt dt.

The Bessel functionJν(z) = 1
2

(
H

(1)
ν (z) +H

(2)
ν (z)

)
. We will seek an asymptotic

approximation forH(1)
ν (z), and use the method of steepest descent withg(t) = e−νt

andh(t) = sinh t. This has saddles wherecosh t = 0, or t =
(
n+ 1

2

)
ıπ. We deform

C1 to go through the saddle att0 = ıπ
2 .

g(t0) = e−ı πν
2 , h(t0) = ı andh(t0) = ı. Thenh ∼ ı + ı

2 (t− t0)
2 and put

t−t0 = reıθ. Thenh ∼ ı− 1
2r

2eı(2θ−π
2 ). It is clear that the path of steepest descent has

θ = π
4 . However, anyθ such that0 < θ < π

2 , since in this range<
(
eı(2θ−π

2 )
)
> 0. If

we put2α = 2θ − π
2 we have
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H(1)
ν (z) ∼ 1

πı
e−ı πν

2 eız

∫
e−

1
2 zr2e2ıα

eıθ dr

∼ 1
πı
e−ı πν

2 eız

(
2π
z

) 1
2

e−ıαeıθ

∼
(

2
πz

) 1
2

eı(z−πν
2 −

π
4 )

4.5 Liouville-Green Functions

This area has a number of names associated with it; it is usually called WKB theory1.
We return to equations of the formw′′ + p(z)w′ + q(z)w = 0 and by putting

w(z) = W (z)e−
1
2

R z p(s)ds we convert into the standard formw′′ + q(z)w = 0.
If q is a constant then we can write down a solution of this equation;w(z) = Aeıθ

whereθ = q
1
2 z. Whenq > 0 solutions are oscillatory with wavelength proportional to

q−
1
2 .
The WKBJ method can be applied to problems in whichq varies slowly, that is∆q

q

is small when∆z = O(q−
1
2 ), or alternatively “the fractional change inq is small over

one wavelength”.This derivation is starred —
the final result isn’t. Takeε � 1 andq = q(εz) so thatdq

dz = εq′ = O(ε). We expect solutions with a
slowly varying amplitudea = a(εz) and a slowly varying phaseθ = ε−1φ(εz). The
factorε−1 ensures the wavelength isO(1) to leading order. Then

eıθ ∼ eı(ε−1φ(0)+φ′(0)z+ 1
2 εφ′′(0)z2+... )

∼ e
ıφ(0)

ε eıφ′(0)z.

We propose a solutionw(z) = a(εz)e
ıφ(εz)

ε . Substituting into the governing equa-
tion we get

O(1) : −aφ′2 + qa = 0
O(ε) : 2a′φ′ + aφ′′ = 0.

TheO(1) equation givesφ = ±
∫ z
q

1
2 dz and theO(ε) equation givesa = q−

1
4

(integrating and using theO(1) equation). We have the Liouville-Green approximate
solutions to the differential equation:

w ∼ q−
1
4

{
A exp

(
ı

∫ z

q
1
2 dz

)
+B exp

(
−ı
∫ z

q
1
2 dz

)}
. (4.7)

If q < 0 a more convenient form is

w ∼ (−q)−
1
4

{
a exp

(∫ z

(−q)
1
2 dz

)
+ b exp

(∫ z

(−q)
1
2 dz

)}
. (4.8)

1and in Cambridge, WKBJ theory. W, K, B and J are Wentzel, Kramers, Brillouin and Jeffrey respectively.
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These give asymptotic solutions for largez under certain conditions:
Supposeq ∼ zn as z → ∞. Thena ∼ z−

n
4 andφ ∼ z

n
2 +1. Recalling the

derivation we see that we can neglect the term corresponding to theε2 term provided
a′′ � a′φ′ asz → ∞, or substituting in we getn > −2. This is the converse of the
condition for the point at∞ to be a regular singular point. The WKBJ method thus
works when the point at infinity is an irregular singular point.

As an example we consider Airy’s equationw′′ − zw = 0 (again). Thusq = −z
andq

1
2 = ±ız 1

2 .
∫ √

q dz = ±ı 23z
3
2 and so

w(z) ∼ z−
1
4 exp

(
±z 3

2

)
z → +∞

∼ |z|
1
4

cos
sin

(
2
3
|z|

3
2

)
z → −∞.

We do not get the constants from this method.

4.5.1 Connection formulae

These Liouville-Green functions (4.7) and (4.8) work well whereq > 0 or q < 0 but
do not work whereq passes through zero, at which points the frequency is zero (q is
no longer slowly varying on scales of the wavelength, which becomes infinite) and the
amplitude is infinite.

Points at whichq = 0 are called turning points and the equation. WLOG consider
q < 0 for z < 0 andq > 0 for z > 0

In regions 1 and 3 we have the Liouville-Green solutions

w(z) ∼ 1

(−q)
1
4

[
Aeφ +Be−φ

]
φ(z) =

∫ z

(−q)
1
2 dz

w(z) ∼ 1
q

1
4

[a cos θ + b sin θ] θ(z) =
∫ z

q
1
2 dz.

We have four unknown constants. We get two equations from the boundary condi-
tions at±∞ and two others from the connection formulae across region 2.

As z → 0, q(z) ∼ q1z (sinceq(0) = 0) and the above expansions become

w ∼ 1

(−q1z)
1
4

[
Aeφ +Be−φ

]
φ(z) =

2
3
q

1
2
1 (−z)

3
2 (4.9)

w ∼ 1

(q1z)
1
4

[a cos θ + b sin θ] θ(z) =
2
3
q

1
2
1 z

3
2 , (4.10)

valid for z → 0− in region 1 andz → 0+ in region 3 respectively. They need
to be matched across the intermediate region 2. In this region we approximate the

differential equation asw′′ + q1zw ∼ 0 and on lettingτ = − (q1)
1
3 z we get Airy’s
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equationw′′ − τw ∼ 0. This has solutionsw ∼ αAi(τ) + βBi(τ). We can use
steepest descents (for instance) to find asymptotic expressions for this inner solution as
z → ±“∞”. As z → −“∞”, τ → +∞ and we get the asymptotic expression

w ∼ 1
√
πq

1
12
1 (−z)

1
4

{
1
2
αeφ + βe−φ

}
. (4.11)

As z → “∞” we haveτ → −∞ and

w ∼ 1√
2πq

1
12 z

1
4
{(α− β) sin θ + (α+ β) cos θ} . (4.12)

We now need to match coefficients between (4.11) and (4.9); we get

α =
2
√
π

q
1
6
1

A

β =
√
π

q
1
6
1

B.

Doing the same thing with (4.12) and (4.10) we get

a =
q

1
6
1√
2π

(α+ β)

b =
q

1
6
1√
2π

(α− β) .

Eliminatingα andβ we obtain the connection formulae

A =
a+ b

2
√

2

B =
a− b√

2
.

(4.13)

As an example of the use of the connection formulae we seek to find approximate
energy eigenvalues for the non-dimensional Schrödinger equationψ′′+

(
E − z2

)
ψ =

0 with the boundary conditionsψ → 0 asz → ±∞ (quantum harmonic oscillator). In
particular we will considerE � 1. We see that there are oscillations of frequencyE

1
2

(and so the wavelength is proportional toE−
1
2 ). q = E − z2 is varying on a scale of

E
1
2 and so is slowly varying on the scale of the oscillations. We can therefore apply

WKBJ theory and the connection formulae.
There are turning points at±E 1

2 and exponentially decaying solutions in|z| > E
1
2 .

In z < −E 1
2 we haveB = 0 and WLOGA = 1. The connection formulae at

z = −E 1
2 givea = b =

√
2 and so in|z| < E

1
2 we have

ψ ∼ 1

(E − z2)
1
4

(√
2 sin θ +

√
2 cos θ

)
∼ 2

(E − z2)
1
4

sin
(
θ +

π

4

)
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whereθ =
∫ z

−
√

E

(
E − z2

) 1
2 dz (the lower limit puts the origin at0 for the con-

nection formulae). Nearz =
√
E we write

ψ ∼ 2
q

1
4

sin

(∫ √
E

−
√

E

q
1
2 dz −

∫ √
E

z

q
1
2 dz +

π

4

)

∼ 2
q

1
4
{sinα cos θ′ + cosα sin θ′} ,

whereα =
∫√E

−
√

E
q

1
2 dz + π

4 andθ′ =
∫ z√

E
q

1
2 dz. This moves the origin toz =

√
E

and we can now apply the connection formulae (4.13).
In z >

√
E we haveA′ = 0 (for exponential decay) and soψ = B′e−φ. Therefore

we obtain

2 cosα =
B′√

2
2 sinα = − B′√

2
.

This implies thattanα = −1, or thatα = nπ − π
4 . We can easily do the integral

for α, and we obtainEn = n − 1
2 for n ∈ N. We have (coincidentally) obtained

the exact eigenvalues, and it is clear that this method can be used to find approximate
eigenvalues of more complicated potentials.
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Chapter 5

Laplace Transforms

5.1 Definition and simple properties

The Laplace transform of a functionf(t) is defined by

F (p) = L [f(t)] =
∫ ∞

0

e−ptf(t) dt. (5.1)

The variablep may be complex but we must have<(p) > γ whereγ is sufficiently
large to permit convergence. A greater class of functions have Laplace transforms than
have Fourier transforms, due to the exponential attenuation at larget.

Since the integral’s range is[0,∞) we lose all knowledge of the function fort < 0
and the inversion ofL [f(t)] isH(t)f(t).

The following properties are both trivial to prove and very useful in both evaluating
and inverting Laplace transforms.

• L [λf + µg] = λL [f ] + µL [g]

• shifting:L [eatf(t)] = F (p− a)

• L [H(t− a)f(t− a)] = e−apF (p)

• change of scale:L [f(αt)] = 1
αF ( p

α )

• L
[

df
dt

]
= −f(0) + pF (p)

• L
[∫ t

0
f(u) du

]
= F (p)

p

• L [tnf(t)] = (−1)n dn

dpnF (p)

These properties often give the best way to calculate Laplace transforms and to
guess inverses. We can now, starting fromL [1] = 1

p obtain Laplace transforms for a
reasonably useful class of functions.

37
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f L [F ]
H(t− α) e−αp

p

tn n!
pn+1

eαt 1
p−α

cosαt p
p2+α2

sinαt α
p2+α2

coshαt p
p2−α2

sinhαt α
p2−α2

Table 5.1: Simple Laplace transforms

5.1.1 Asymptotic Limits

Using Watson’s Lemma asp→∞ we get

F (p) ∼
∞∑

n=0

1
pn+1

f (n)(0)

and solimp→∞ pF (p) = f(0).
From the properties of the Laplace transform on the preceding page we have that

pF (p) = f(0) +
∫ ∞

0

e−pt df
dt

dt

and so lettingp → 0 we get limp→0 pF (p) = limt→∞ f(t) (if both limits exist).
This begs the obvious question; how do we know that both limits exist? If all the
singularities ofF (p) lie in {z ∈ C : <z < 0} then both the limits exist.

5.1.2 Convolutions

We define

f ∗ g =
∫ ∞

−∞
f(τ)g(t− τ) dτ (5.2)

and sincef(y) = g(y) = 0 for y < 0 we have that

f ∗ g =
∫ t

0

f(τ)g(t− τ).

Now

L [f ∗ g] =
∫ ∞

0

∫ t

0

e−ptf(τ)g(t− τ) dτdt

=
∫ ∞

0

∫ ∞

τ

e−ptf(τ)g(t− τ) dtdτ

=
∫ ∞

0

e−pτf(τ) dτ
∫ ∞

0

e−pug(u) du

= L [f ]L [g] .
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5.2 Inversion

Consider

I =
∫ γ+ı∞

γ−ı∞
eptF (p) dp

where the contour lies to the right of all of the singularities ofF (p).
At this stage you should be scenting waffle; recall that the Laplace transform was

defined only forp with sufficiently large real part. What we mean byF (p) is the
analytic continuation of the Laplace transform into the whole ofC.

We now evaluateI (recall that we insisted thatf(t) = 0 for t < 0).

I =
∫ γ+ı∞

γ−ı∞
ept

∫ ∞

0

f(τ)e−pτ dτdp

=
∫ γ+ı∞

γ−ı∞

∫ ∞

−∞
ep(t−τ)f(τ) dτdp

= ıeγt

∫ ∞

y=−∞

∫ ∞

τ=−∞
eıy(t−τ)f(τ) dτdy

= 2πıeγt

∫ ∞

−∞
δ(t− τ)e−γτf(τ) dτ

= 2πıf(t).

We thus obtain the Bromwich inversion formula:

f(t) =
1

2πı

∫ γ+ı∞

γ−ı∞
F (p)ept dp. (5.3)

Sinceγ is chosen so that the contour of integration lies to the right of all the sin-
gularities we can close the contour in the right half-plane fort < 0 and use Cauchy’s
theorem to getf(t) = 0 for t < 0.

Note that ifF (p) is meromorphic then

f(t) =
∑

residues ofF (p)ept.

It is usuallymucheasier to invert Laplace transforms by knowing the answer than
by using the inversion formula.

5.3 Application to differential equations

5.3.1 Ordinary differential equations

We will illustrate this with an example. Suppose we have

ẍ− 3ẋ+ 2x = 4et x(0) = −3, ẋ(0) = 5. (5.4)

Incidentally, Laplace transforms are overkill for this problem; it can be solved eas-
ily by using the methods learnt at A-level or in Part 1A.

Generally we use Laplace transforms when we have an initial value problem, not a
boundary value problem.
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We writeX(p) for the Laplace transform ofx(t) and on transforming (5.4) we get

X
{
p2 − 3p+ 2

}
+ 3p− 14 =

4
p− 2

which has the solution

X(p) =
4

(p− 2)2(p− 1)
+

14− 3p
(p− 2)(p− 1)

. (5.5)

To invert this we convert to partial fractions:

X(p) =
4

(p− 2)2
+

4
p− 2

− 7
p− 2

which can be inverted (trivially) to getx(t) = 4te2t + 4e2t − 7et.

Asymptotic behaviour ast→∞

Deform the Bromwich contour such that it folds back around the singularity ofF (p)
with largest real part (say atp = p0). Then the integral

∫
Γ
F (p)ept dp is dominated by

the neighbourhood ofp0.
We can approximate this integral by forming an asymptotic expansion ofF (p)

aboutp = p0.
In our example (using (5.5)) we see thatp0 = 2 and on writingp = 2 + η we have

X(p) =
4
η2

(1 + η)−1 +
8− 3η
η

(1 + η)−1 ∼ 4
η2

+
4
η

+ analytic terms.

Thus

f(t) ∼ 1
2πı

e2t

∫ γ+2+ı∞

γ−2−ı∞
F (η)eηt dη

∼ e2t (4t+ 4) .

The−7et term in the exact solution is exponentially smaller than this asymptotic
solution and so doesn’t feature in the asymptotic expansion.

Green’s functions

For our example we wish to solve

g̈ − 3ġ + 2g = δ(t+) g(0) = ġ(0) = 0,

whereδ(t+) is such that
∫∞
0
δ(t+) dt = 1.

Laplace transforming the problem we getG(p) = 1
p−2−

1
p−1 and sog(t) = e2t−et.

For the general problem

ẍ− 3ẋ+ 2x = f(t) x(0) = x0, ẋ(0) = x1

we findX(p) = G(p) {F (p) + px0 + x1 − 3x0} and so

x(t) = g(t) ∗
{
f(t) + x0δ

′(t+)− (x1 − 3x0)δ(t+)
}
.
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5.3.2 Partial differential equations

Consider the problem
∂φ

∂t
= κ

∂2φ

∂x2

subject to the boundary conditionsφ(x, 0) = 0, φ(x, t) → 0 asx → ∞ andφ(0, t) =
φ0. This models (say) the concentration of diffusing salt in a semi-infinite tube.

Laplace transforming the diffusion equation (with respect tot) we get (in obvious
notation)pφ̃ = κφ̃xx.

Using the boundary conditions onφ we get the solutioñφ = φ0
p e

−
√

p
κ x.

We can find a lot out aboutφ without doing the inversion. Suppose we wish to
evaluate

Φ(t) =
∫ ∞

0

φ(x, t) dx

which could be the total amount of salt in the tube. Then

Φ̃ =
∫ ∞

0

φ̃(x, p) dx = φ0

√
κ

p3
.

We can now inverse transform this to get

Φ(t) = 2φ0

√
κt

π
.

For the asymptotic behaviour ofφ ast → ∞ we find an asymptotic expansion for
φ̃ about the largest singularity, which in this case is atp = 0.

φ̃ ∼ φ0

p

(
1−

√
p

κ
x+ . . .

)
thus

φ ∼ φ0

(
1− x√

πκt
+ . . .

)
,

valid whenx�
√
κt. This approximation shows that∂φ

∂x

∣∣∣
x=0

= − φ0√
πκt

.

We now do the full inversion, we see that

φ(x, t) =
φ0

2πı

∫ γ+ı∞

γ−ı∞

1
p
ept−

√
p
κ x dp

=
φ0

2πı

∫ (0+)

−∞

1
p
ept−

√
p
κ x dp

=
φ0

πı

∫ ∞

−∞

1
y
e
−y2t− ıyx√

κ dy.

Thus
∂

∂x
φ(x, t) = − φ0

π
√
κ

∫ ∞

−∞
e
−y2t− ıyx√

κ dy

= − φ0√
πκt

e−
x2
4κt .

Thus

φ(x, t) =
∫ ∞

x

φ0√
πκt

e−
x2
4κt dx =

2φ0√
π

∫ ∞

x
2
√

κt

e−η2
dη = φ0 erfc

x

2
√
κt
.
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