
Statistical Physics

Dr. A. J. Macfarlane

Lent 1998

These notes are maintained by Paul Metcalfe.
Comments and corrections topdm23@cam.ac.uk .



Revision: 2.1
Date: 2004/08/23 07:30:03

The following people have maintained these notes.

– date Paul Metcalfe



Contents

Introduction v

1 Quantum Statistical Mechanics 1
1.1 Introduction to Quantum Statistical Mechanics . . . . . . . . . . . . 1
1.2 Canonical ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Towards thermodynamic variables . . . . . . . . . . . . . . . . . . . 5
1.5 Towards applications . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5.1 N particle partition function . . . . . . . . . . . . . . . . . . 7
1.5.2 Extensive and intensive variables . . . . . . . . . . . . . . . 7
1.5.3 Density of states . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.4 Gas of spinless particles . . . . . . . . . . . . . . . . . . . . 9
1.5.5 Entropy and the Gibbs paradox . . . . . . . . . . . . . . . . . 9

1.6 Harmonic oscillator model . . . . . . . . . . . . . . . . . . . . . . . 9

2 Thermodynamics 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Applications ofdE = TdS − PdV . . . . . . . . . . . . . . . . . . 12

2.2.1 Integrability conditions . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Specific heats . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Adiabatic changes . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Entropy ofn moles of ideal gas . . . . . . . . . . . . . . . . 14
2.2.5 van der Waal’s equation . . . . . . . . . . . . . . . . . . . . 15
2.2.6 The Joule effect . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Some thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 The second law . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Heat flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Grand ensemble methods 19
3.1 The formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Systems of non-interacting identical particles . . . . . . . . . . . . . 21

3.2.1 A little quantum mechanics . . . . . . . . . . . . . . . . . . 21
3.2.2 The partition functions . . . . . . . . . . . . . . . . . . . . . 22
3.2.3 Classical limit . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Black body radiation . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Degenerate Fermi gas . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.1 Heat capacity at low temperature . . . . . . . . . . . . . . . . 27
3.5 Bose-Einstein condensation . . . . . . . . . . . . . . . . . . . . . . . 28

iii



iv CONTENTS

3.6 White dwarf stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Classical statistical mechanics 31
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Diatomic gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Paramagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Specific heats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5 Weak interparticle forces . . . . . . . . . . . . . . . . . . . . . . . . 33
4.6 The Maxwell distribution . . . . . . . . . . . . . . . . . . . . . . . . 35

Approximations 37



Introduction

These notes are based on the course “Statistical Physics” given by Dr. A. J. Macfarlane
in Cambridge in the Lent Term 1998. These typeset notes are totally unconnected
with Dr. Macfarlane. The recommended books for this course are discussed in the
bibliography.

Other sets of notes are available for different courses. At the time of typing these
courses were:

Probability Discrete Mathematics
Analysis Further Analysis
Methods Quantum Mechanics
Fluid Dynamics 1 Quadratic Mathematics
Geometry Dynamics of D.E.’s
Foundations of QM Electrodynamics
Methods of Math. Phys Fluid Dynamics 2
Waves (etc.) Statistical Physics
General Relativity Dynamical Systems
Combinatorics Bifurcations in Nonlinear Convection

They may be downloaded from

http://www.istari.ucam.org/maths/ .

v

http://www.istari.ucam.org/maths/


vi INTRODUCTION



Chapter 1

Quantum Statistical Mechanics

1.1 Introduction to Quantum Statistical Mechanics

Statistical mechanics deals with macroscopic systems of many particles. Consider an
isolated systemS of gas in a vessel whose walls neither let heat in or out and is subject
to no mechanical action. No matter how it is prepared, it is an experimental fact that
S reaches a steady state (a state of thermodynamic equilibrium) in which a setΣ of
(rather few) thermodynamic variables are constant.Σ includes the pressureP , volume
V , temperatureT , total energyE and entropyS.

Any state ofS (before or after thermodynamic equilibrium is reached) contains
particles with positions and momenta changing in time. We cannot possibly analyse
this in detail — even if we knew the forces and initial conditions, and could solve the
resulting system there is no hope that we could organise usefully the vast amount of
data.

At best, we aim to treat the possible states of motion ofS by some averaging
or statistical procedure that allows us to predict values of the variables inΣ that are
constant in states of thermodynamic equilibrium ofS.

We use quantum mechanical ideas to approach the subject. Consider

• microstatesof S, the stationary quantum states|i〉.

• macrostates, which correspond to states of thermodynamic equilibrium.

The latter are not states in the quantum mechanical sense, but do involve the vast
numbers of microstates.

The ergodic hypothesis(which is provable for some systems) is thatS passes in
time through all its possible states compatible with its state of thermodynamic equilib-
rium. This allows us to replace time averages for a single systemS with averages at a
fixed time over a suitable ensembleE of systems, each identical toS in its macroscopic
properties. The most probable state ofE reveals which microstates ofS contribute to its
macroscopic states of thermodynamic equilibrium and yield excellent approximations
to the values of its thermodynamic variables.

Let E, N be the total energy and total number of particles ofS respectively. One
meets three types of ensemble.

• microcanonical: each member ofE has the same values ofE andN .

1



2 CHAPTER 1. QUANTUM STATISTICAL MECHANICS

• canonical: each member ofE hasN particles butE is not fixed, although the
average total energy is time independent.

• grand : neitherE norN is fixed, although the averages are.

For the latter two, fluctuations about the average values are found to be very small
and all three types of ensemble give the same thermal physics. This course studies
mainly canonical ensembles. We will do systems with identical bosons/fermions via
the grand ensemble for technical simplicity.

The fact that averaging procedures give reliable estimates of values of physical
variables and apparently different procedures yield equivalent results is due to the effect
of the very large number of particles involved. For instance, consider the probability
pm of obtainingN/2 +m heads fromN coin tosses.

pm = 2−N

(
N

N
2 +m

)
∼
√

2
πN

e−
2m2

N ,

using Stirling’s formula1 for N � m � 0. If N = 1023 andm = 1017 then the
exponential terme−1011

is effectively zero.

1.2 Canonical ensemble

We study a systemS ofN particles in a volumeV withN andV fixed. The microstates
of S are the (complete orthogonal) set|i〉 with energy eigenvaluesEi. We assume the
spectrum is discrete but with possible degeneracy.

We associate withS a canonical ensembleE . This is a very large numberA of
distinguishable replicas ofS, S1, . . . ,SA. Suppose that in a possible state ofE there
areai members ofE in the microstate|i〉. Then∑

i

ai = A and
∑

i

aiEi = AE. (1.1)

The average energy of the members ofE is thus the fixed valueE.
Given a set{ai} (a configurationof E) there areW (a) = A!Q

i ai!
ways of realising

it.

Proof. We can distributea1 systems in the microstate|1〉 overE in
(

A
a1

)
ways. Then

we can distribute thea2 states in|2〉 in
(
A−a1

a2

)
ways (and so on). Thus

W (a) =
(
A

a1

)(
A− a1

a2

)
· · · = A!∏

i ai!
.

We assign equala priori probability to each way of realising each possible con-
figuration ofE and thus there is a probability proportional toW (a) of realising the
configuration{ai}.

We will associate the state of thermodynamic equilibrium ofS (for the fixed values
N , V , E) with the configuration ofE that is most probable in the presence of the
constraints (1.1).

1log n! ∼ n log n− n + 1
2

log 2πn



1.2. CANONICAL ENSEMBLE 3

To compute this supposeA � 0 such thatai � 0 (negligible probability attaches
to configurations where this fails). For largen, Stirling’s formula allowslog n! ∼
n (log n− 1) and so

logW ∼ A logA−A−
∑

i

ai (log ai − 1) = A logA−
∑

i

ai log ai.

We seek to maximise this subject to the constraints (1.1). We use two Lagrange
multipliersα andβ and solve

0 =
∂

∂aj

(
logW − α

∑
i

ai − β
∑

i

aiEi

)
and solog aj + 1 + α+ βEj = 0. Thus

aj = e−1−α−βEj . (1.2)

We eliminateα viaA =
∑

i ai = e−1−αZ, defining the canonical partition func-
tion

Z =
∑

i

e−βEi ≡
∑
Ej

Ω(Ej)e−βEj , (1.3)

whereΩ(Ej) is the degeneracy of the energy levelEj .
The fraction of members ofE in the microstate|i〉 in the macrostate of thermody-

namic equilibrium is

ρi =
ai

A
=

1
Z
e−βEi . (1.4)

This is theBoltzmann distribution, and may be thought of as the probability of
finding |i〉 in the state of thermodynamic equilibrium.

We define the average〈X〉 of a physical variableX taking the valueXi in the state
|i〉 by

〈X〉 =
∑

i

ρiXi. (1.5)

For instance〈E〉 = 1
A

∑
i aiEi = E (reassuringly).

Z is very important. It leads directly from quantum mechanical data to calculation
of the thermodynamic variables forS in thermodynamic equilibrium. For instance,

E = −∂ logZ
∂β

. (1.6)

Here, holdingV fixed corresponds to keeping all theEi fixed.
ForA large (as in all cases of interest) the most probable state is overwhelmingly

so. It gives in effect the average over all possible states of the ensemble. The idea
of associating average values with actual physical predictions depends on the possible
variances being negligible.

We can calculate the variance in the energy in a similar way. Note thatE = − 1
Z

∂Z
∂β

and so
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∂E

∂β
= − 1

Z

∂2Z

∂β2
+

1
Z2

(
∂Z

∂β

)2

= −〈E2〉+ 〈E〉2 = − (∆E)2 .

For typical large systemsE ∝ N , and asE depends smoothly onβ we expect
∂E
∂β ∝ N as well. Thus

|∆E|
E

∝
√
N

N
= N− 1

2 ,

which is very small for very largeN .

1.3 Temperature

Given two systemsSa andSb with fixed volumesVa, Vb and numbers of particlesNa,
Nb respectively we place them in contact to form a composite systemSab such that
energy can pass from one to the other and a state of thermodynamic equilibrium is
reached. We make a canonical ensembleEab for Sab by distributingA replicas ofSa

andA replicas ofSb independently across theA members ofEab so that each member
of Eab has a component of typeSab.

Suppose thatSa has microstates|i〉 of energyEai, Sb has microstates|σ〉 of energy
Ebσ andSab has microstates|i, σ〉 of energyEai + Ebσ.2

Suppose the|i〉 occursai times,|σ〉 occursbi times and|i, σ〉 occursciσ times in
Eab. Then we have

∑
i

ai = A
∑

σ

bσ = A (1.7)

ai =
∑

σ

ciσ bσ =
∑

i

ciσ
∑
iσ

ciσ = A (1.8)

We demand that the average energy orEab be fixed at

AE =
∑

i

aiEai +
∑

σ

bσEbσ (1.9)

AE =
∑
iσ

ciσ (Eai + Ebσ) . (1.10)

Now the configuration{ciσ} arises in

W (c) ∝ A!∏
iσ ciσ!

(1.11)

ways and the configuration{ai}{bσ} arises in

W (a)W (b) ∝ A!∏
i ai!

A!∏
σ bσ!

(1.12)

ways. We can calculate the most probable distribution of{ciσ} by maximising
(1.11) subject to (1.8) and (1.10). We get

2If the interaction of particles ofSa with those ofSb is negligible, except insofar as necessary to allow a
state of thermal equilibrium to be reached.
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ciσ = e−1−αab−β(Eai+Ebσ) ρiσ =
ciσ
A
.

We can also maximise (1.12) subject to (1.7) and (1.9) to get

ai = e−1−αa−βEai ρi =
ai

A

bσ = e−1−αb−βEbσ ρσ =
bσ
A
.

Defining

Zab(β) =
∑
iσ

e−β(Eai+Ebσ) Za(β) =
∑

i

e−βEai Zb(β) =
∑

σ

e−βEbσ

we see thatZab(β) = Za(β)Zb(β) and ρiσ = ρiρσ. A common value forβ
characterises the state of thermal equilibrium ofSab and it is natural to assume thatβ
is some function of temperatureT and that the average energy (theenergy) of a system
is a function ofN , V andT .

We defineT by β = 1
kT wherek is a constant.

As this argument applies to any two systems,k should be a universal constant
(Boltzmann’s constant) the same for all systems when a universal definition ofT is
used. We will defineT for a standard system (a thermometer) and for other systems by
putting them into a state of thermal equilibrium with our standard system.

Recall the ideal gas law,PV = NkT for a sample ofN molecules.3 k is the same
because equal volumes of all gases at fixed temperature and pressure are observed to
have the same number of molecules.T is in degrees Kelvin.

1.4 Towards thermodynamic variables

Recall that in quantum mechanics, spinless particles in a cube of sideL have energies
En = ~2

2mL2 |n|2, wheren ∈ N3. Note thatE ∝ V −
2
3 and we generalise this to

Ei = Ei(V ). ConsiderSgas in thermodynamic equilibrium in a container of volumeV
and changeV by a small amount by slowly moving one of its walls.

TheEi will change according toEi 7→ Ei + ∂Ei

∂V δV and changes in which theρi

do not change will be examined first.
The change in energy is supplied by the work done onS by a piston applied to

the right hand wall. For slow motion the system passes through successive positions
of thermal equilibrium and then the applied force just balances the pressure forcePA.

3This applies to all gases at sufficiently low density.
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Thus the work done to the system is−PAδl = −PδV . δE = δW = −PδV . Now
E =

∑
i ρiEi and so

P = −
∑

i

ρi
∂Ei

∂V
=

1
β

∂

∂V
logZ. (1.13)

Consider next changes in which theρi are allowed to vary. ThenδE = −PδV +∑
iEiδρi, and note that

∑
i δρi = 0.

Define the entropy

S =
k

A
logWmax that is,W at thermal equilibrium

=
k

A

(
A logA−

∑
i

ai log ai

)

=
k

A

(
A logA−

∑
i

ai log ρi − logA
∑

i

ai

)
= −k

∑
i

ρi log ρi at thermal equilibrium.

(1.14)

We see that

δS = −k
∑

δρi

(
log ρi + ρi

1
ρi

log ρi

)
= −k

∑
δρi (−βEi − logZ + 1)

=
1
T

∑
i

Eiδρi

and thus
∑

iEiδρi = TδS. We have definedS such that

δE = TδS − PδV or in terms of exact differentials,

dE = TdS − PdV.
(1.15)

We might regard this as arising from the comparison of ensembles with infinitesi-
mally different states of thermal equilibrium. (1.15) states theFirst Law of Thermody-
namics4, written in the form

dE = δQ+ δW, (1.16)

whereδQ is the heat suppliedto S andδW is the work doneonS.
(1.15) also shows thatT = ∂E

∂S andP = − ∂E
∂V .

For a gas of spinless particles,E =
∑

iEiρi ∝ V −
2
3 and soP = 2

3
E
V , giving

PV = 2
3E. Combined with the result for a perfect gas,E = 3

2NkT (see later), we
have Boyle’s lawPV = NkT .

We want to be able to calculateS from the partition function. Now, at thermal
equilibrium,

4You can’t win...
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S = −k
∑

i

ρi log ρi

= −k
∑

i

ρi (−βEi − logZ)

=
1
T
E + k logZ.

Define thefree energyF = E − TS, then

F = − 1
β logZ. (1.17)

Also,

S = − 1
T

∂ logZ
∂β

+ k logZ =
∂

∂T
(kT logZ) = −∂F

∂T
. (1.18)

We have a very tangible definition ofS, as proportional tologWmax, whereWmax

is the number of microstates ofS contributing to the state of thermal equilibrium.
Given the partition function (1.3), we can calculate the thermodynamic variables

in a state of thermal equilibrium,P (by (1.13)),E (by (1.6)),F (by (1.17)) andS (by
(1.18)).

1.5 Towards applications

1.5.1 N particle partition function

Consider a composite system with HamiltonianH = H1 +H2 andH1 andH2 inde-
pendent (they commute). LetH1|a〉 = E1a|a〉 andH2|α〉 = E2α|α〉. Then asH1 and
H2 commute,H|a, α〉 = Eaα|a, α〉, whereEaα = E1a + E2α. Then the 2 particle
partition function is

Z =
∑
a,α

e−βEaα =
∑

a

e−βE1a

∑
α

e−βE2α = Z1Z2.

Let Z ≡ ZN describe the sum over states of a gas ofN very weakly interacting
particles. If these are supposed independent (distinguishable) thenZ = zN , where
z is the “one particle partition function”. This allows easy calculations, but fails for
systems of identical (indistinguishable) bosons or fermions. For the latter it seems best
to use grand ensemble methods.

Later we will consider a gas of diatomic molecules,H = HT +Hrot +Hvib, where
HT describes the centre of mass motion,Hrot describes rotation about the centre of
mass andHvib describes vibration along the axis. We see that the one particle partition
function isz = zT zrotzvib.

1.5.2 Extensive and intensive variables

Extensive variables are proportional to the amount of matter in a system at fixed tem-
perature, whereas intensive variables are independent of the amount of matter.

In general,N , V , S andE are extensive andT andP are intensive.
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Think initially of a system made up of two independent subsystems. ThenV =
V1+V2. In a state of thermal equilibrium the systems have the sameβ (and hence same
T ), and soT is intensive. In a state of equilibrium there is mechanical equilibrium and
so the systems have the same pressure, and soP is intensive.

As Z = Z1Z2 we see thatE = E1 + E2, S = S1 + S2 and so on. A logical ex-
tension of this argument gives thatV ,E andS are proportional toN and so extensive.
This can fail if volume energies do not swamp surface energies or if intermolecular
forces are neither weak nor short range.

1.5.3 Density of states

Consider a spinless particle in a box of sideL. Instead of using solutionsψ of the
Schr̈odinger equation such thatψ = 0 on the walls we use periodic boundary condi-
tions,ψ(x + Li) = ψ(x) (and so on). Thus we can useψk ∝ eık·x with ε = ~2k2

2m .

The periodicity gives thatLk
2π ∈ Z3. There is one such state per unit volume inn-

space and in the continuum limit, there ared3n states withn in the rangen → n+dn.
There are thusd3n states withk in the rangek → k + dk and hence

(
L
2π

)3
d3k states

with k in the rangek → k + dk.
We see that

∑
i

→
∫ (

L

2π

)3

d3k (1.19)

=
V

(2π)3

∫
4πk2 dk

=
V

(2π)3
4π
∫ (

2mε
~2

) 1
2 2mdε

2~2

= 2πV
(

2m
h

) 3
2
∫
ε

1
2 dε (1.20)

=
∫

dεg(ε).

We insert a factorgS = (2S + 1) to cope with massive particles of spinS, and

g(ε) = gS2πV
(

2m
h2

) 3
2

ε
1
2

gives the density of states. We use (1.20) in isotropic contexts, but (1.19) is needed
in kinetic theory.

In two dimensions we consider a square of sideL andA = L2 enters in the r̂ole of
V . We find thatg(ε) =

(
2m
h2

)
gS2πA is independent ofε.

For relativistic particles of rest massm we haveε =
(
m2c4 + ~k2c2

) 1
2 and use

(1.19) to get ∫
d3k =

∫
4πk2 dk =

4π
(~c)3

∫ ∞

mc2
εdε
(
ε2 −m2c4

) 1
2 . (1.21)
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We also supply a factorgS = 2S + 1 for a particle of spinS with nonzero rest
mass. For photons,m = 0, gS = 2 and so

∑
i

→ 2
V

(2π)3

(
4π
~c

)3 ∫ ∞

0

ε2 dε =
8πV
c3

∫ ∞

0

ν2 dν. (1.22)

1.5.4 Gas of spinless particles

ConsiderN spinless particles in a cube of side lengthL = V
1
3 . Then the single particle

partition function

z =
∑

i

e−βεi →
∫ ∞

0

dε g(ε)e−βε,

whereg(ε) = DV ε
1
2 andD = 4π

(
2m
h2

) 3
2 . Settingy = βε we get

z = DV (kT )
3
2

∫ ∞

0

dy y
1
2 e−y = V

(
2mπkT
h2

) 3
2

. (1.23)

Now z = zN and sologZ = N log z. Thus

E = −N ∂

∂β

(
− 3

2 log β
)

= 3
2NkT.

This is theclassical result: there is an energy1
2kT associated with each degree of

freedom of each particle. Combining withPV = 2
3E we getPV = NkT .

1.5.5 Entropy and the Gibbs paradox

UsingZ = zN , (1.23) and (1.18) we have

S = Nk log V + 3
2Nk log

(
2mπkT
h2

)
+ 3

2Nk,

which is not extensive, asV ∝ N . This is Gibbs’ paradox.
If instead we useZ = zN

N ! , (1.23), (1.18) and Stirling’s formula we have

S = Nk log V
N + 3

2Nk log
(

2mπkT
h2

)
+ 3

2Nk

and we see thatS is extensive.
Often an additive constant inS does not matter and (1.23) gives all thermodynamics

otherwise correctly. It reflects a normal classical view of how to treat indistinguishable
particles. TakingZ = zN

N ! cures this but hasno foundation in classical statistical
physics.

1.6 Harmonic oscillator model

Model a crystal by placing one atom at each point of some regular lattice withN sites.
In 1D, simplify by taking a simple harmonic oscillator of frequencyωr instead of the
rth atom.
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NowZN =
∏

r z(ωr), and usingEn = ~ω(n+ 1
2 ) for the simple harmonic oscil-

lator with frequencyω we get

z(ω) =
e−

β~ω
2

1− e−β~ω
.

Even ifωr = ω for all r, the “atoms” are distinguishable as there exists one at each
lattice site. This is a one dimensional version of theEinstein solid. We find that

E

N
= −∂ log z

∂β
= 1

2~ω +
~ω

eβ~ω − 1
.

If ~ω � kT this gives the classical resultE
N − 1

2~ω = kT , with energy1
2kT per

degree of freedom per “atom”.
If ~ω � kT thenβ~ω � 1 and E

N − 1
2~ω ≈ ~ωe−β~ω, which tends to zero as

T → 0.
Quantum statistical mechanics “knows” when to count the full classical1

2kT value
per degree of freedom: do it only whenT is large on some scale set by the problem. In
this case the critical temperatureTc = ~ω

k .



Chapter 2

Thermodynamics

2.1 Introduction

Consider a volumeV of gas with a fixed numberN of particles. The state of thermal
equilibrium of this gas is characterised byT andV .

Our work with quantum statistical mechanics has produced some concepts natu-
rally:

• E: the total energy of the system, which arose as the average energy and has
negligible fluctuations.

• S: the entropy. This has a clear significance as the number of microstates con-
tributing to the macrostate of thermal equilibrium.

• equations of state: for instancePV = NkT .

• dE = TdS − PdV , which is true for any thermodynamic change between two
infinitesimally close states of thermodynamic equilibrium.

All thermodynamic variables for the sample of gas we are talking about can be
regarded as a function of two suitably chosen independent variables. In the case of the
energy,E arises asE(S, V ).

We also found thatdE = δQ + δW , whereδQ is the heat suppliedto the system
andδW is the work doneon the system.

For finite changes from the initial to the final state conservation of energy gives
∆E = ∆Q+ ∆W . This is the first law of thermodynamics, equivalent to the conser-
vation of energy.

Suppose we change from a state withE1(S1, V2) to E2(S2, V2). In general, we
expect

∆W ≥ −
∫ V2

V1

PdV

because of wasted effort (against friction or in producing convection or turbulence).
This gives us

∆Q ≤
∫ S2

S1

TdS.

11
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These inequalities hold as equalities forreversiblechanges, that is changes which
arequasi-staticand non-dissipative.

Quasi-static changes are changes which are done so slowly as to pass through states
arbitrarily close to a state of thermodynamic equilibrium, so that all thermodynamic
variables are well-defined throughout the change.

Some (obvious) irreversible processes are fast piston movement, free expansion of
a gas into a vacuum and the mixing of samples of different gases.

In induced/allowed changes in real life withδQ = 0, δS > 0 and so the entropy
increases.

2.2 Applications ofdE = TdS − PdV

2.2.1 Integrability conditions

The internal energyE is seen asE(S, V ) within

dE = TdS − PdV =
(
∂E

∂S

)
V

dS +
(
∂E

∂V

)
S

ThusT =
(

∂E
∂S

)
V

andP = −
(

∂E
∂V

)
S

. dE is an exact differential, so∂2E
∂S∂V =

∂2E
∂V ∂S and

−
(
∂P

∂S

)
V

=
(
∂T

∂V

)
S

This is aMaxwell relation.
The free energyF = E − TS is a natural function ofT andV , as

dF = dE − TdS − SdT = −SdT − PdV.

ThusS = −
(

∂F
∂T

)
V

andP = −
(

∂F
∂V

)
T

. This gives the Maxwell relation(
∂S

∂V

)
T

=
(
∂P

∂T

)
V

.

H = E + PV defines theenthalpyH(S, P ) andG = E − TS + PV defines the
Gibbs functionG(T, P ).

These give four Maxwell relations, but they are interdependent.
E, F , H andG are all extensive. If (exceptionally)G = 0 (true for a gas of

photons) thenG = Nµ and so the chemical potentialµ can vanish for arbitrary finite
N .

We need some rules for shunting partial derivatives around. Considerz = z(x, y).
Then

δz =
(
∂z

∂x

)
y

δx+
(
∂z

∂y

)
x

δy and hence

1 =
(
∂x

∂z

)
y

(
∂z

∂x

)
y

and

0 =
(
∂x

∂y

)
z

(
∂z

∂x

)
y

+
(
∂z

∂y

)
x

.
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This can be rewritten in a slightly different form:(
∂x

∂z

)
y

(
∂z

∂x

)
y

= 1(
∂x

∂y

)
z

(
∂y

∂x

)
z

(
∂x

∂z

)
y

= −1.
(2.1)

When we wrote downE,F ,H andGwe wrote them in terms of the mathematically
natural independent variables in each case. In practice, we would likeE as a function
of T andV . RecallTdS = dE + PdV , so that

TdS =
(
∂E

∂T

)
V

dT +
(
∂E

∂V

)
T

dV + PdV and so

T

(
∂S

∂T

)
V

=
(
∂E

∂T

)
V

and

T

(
∂S

∂V

)
T

=
(
∂E

∂V

)
T

+ P.

Also, we know that ∂2S
∂T∂V = ∂2S

∂V ∂T and so(
∂E

∂V

)
T

= T

(
∂P

∂T

)
V

− P.

For a perfect gas,PV = NkT and so
(

∂E
∂V

)
T

= 0. ThusE is a function ofT only.
Given the laws of thermodynamics we need two inputs from experiment to specify

all thermodynamic variables completely. For instance, for a perfect gas we need the
equation of state andE = CT .

2.2.2 Specific heats

An amount of gas withNA (Avogadro’s number) of molecules is called amole. The
ideal gas law tells us that at fixed temperature and pressure, a mole ofany ideal gas
occupies the same volume. Written in terms of moles, the ideal gas law forn moles of
gas is

PV = nNAkT = nRT. (2.2)

R is called thegas constantand is the same for all ideal gases. In fact, all gases are
essentially ideal at sufficiently low density.

For a sample of1 mole of ideal gas we define thespecific heat(or heat capacity per
mole) usingδQ = TdS under suitable conditions.

DefineCV = T
(

∂S
∂T

)
V

, thespecific heat at constant volumeandCP = T
(

∂S
∂T

)
P

,
thespecific heat at constant pressure. Now

TdS = dE + PdV = dH − V dP

and so

CV = T

(
∂S

∂T

)
V

=
(
∂E

∂T

)
V

CP =
(
∂H

∂T

)
P

.

(2.3)



14 CHAPTER 2. THERMODYNAMICS

For one mole of ideal gas we know thatE = CT and soC = CV . To findCP we
need to useP andT as the independent variables.

Now

dS =
(
∂S

∂T

)
V

dT +
(
∂S

∂V

)
T

dV

=
(
∂S

∂T

)
V

dT +
(
∂S

∂V

)
T

((
∂V

∂T

)
P

dT +
(
∂V

∂P

)
T

dP
)
.

Thus
(

∂S
∂T

)
P

=
(

∂S
∂T

)
V

+
(

∂S
∂V

)
T

(
∂V
∂T

)
P

and so

CP = CV + T

(
∂S

∂V

)
T

(
∂V

∂T

)
P

= CV + T

(
∂V

∂T

)
P

(
∂P

∂T

)
V

. (2.4)

This allows the calculation ofCP −CV from the equation of state: for an ideal gas
CP − CV = R. Define the ratio of specific heatsγ = CP

CV
. Note thatγ = CV +R

CV
> 1

for an ideal gas.
Statistical mechanics givesCV = 3

2R,
5
2R, . . . (for monatomic, diatomic (etc)

gases). Thusγ = 5
3 ,

7
5 , . . . .

2.2.3 Adiabatic changes

These are (defined as) changes which are reversible and satisfyδQ = 0. We refer ton
moles of ideal gas usingE = nCV T andPV = nRT . Now

0 = RdE +RPdV
= RnCV dT +RPdV
= CV (PdV + V dP ) +RPdV
= CPPdV + CV V dP.

Thus0 = γ dV
V + dP

P and soPV γ is constant on adiabatics.
Note that adiabaticsPV γ constant are steeper than isothermalsPV constant.

2.2.4 Entropy ofn moles of ideal gas

We start (as usual) from

TdS = dE + PdV

= nCV dT + nRT
dV
V
.

ThusdS = nCV
dT
T

+ nR
dV
V
,

and soS = nCV log T + nR log V + c1. Thermodynamics cannot determine the
constantc1, and does not care thatS is not explicitly extensive.S = nCV logPV γ +c′

and so (as expected),S is constant on adiabatics (isentropics).
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2.2.5 van der Waal’s equation

We get a better agreement with experiment by replacing the perfect gas law with(
P +

n2A

V 2

)
(V − nB) = nRT, (2.5)

whereA,B andR are strictly positive constants.

• Molecules are not treated as point particles, and asP →∞ at constantT , V →
nB, which is the residual volume of all the molecules.

• P + n2A
V 2 reduces the real gas pressure by an amountn2A

V 2 , due to intermolecular
attractive forces. If these are short range then the smallerV is the more important
these become.

2.2.6 The Joule effect

Consider the apparatus shown, with adiathermal walls and containingnmoles of gas at
volumeV1, pressureP1 and temperatureT1. Pull back the partition and allow the gas
to expand (irreversibly) into the total volumeV2, and then to reach a state of thermal
equilibrium specified byP2, V2 andT2.

As δQ = 0 (adiathermal) andδW = 0 (no work is done),dE = 0 and so for a
perfect gas

T2 = T1 and S2 − S1 = nR log V2
V1
> 0 for V2 > V1.

For a van der Waal’s gas we still havedE = 0 (which is true in general) and soE
stays constant. Now

(
∂T

∂V

)
E

= −
(

∂E
∂V

)
T(

∂E
∂T

)
V

=
P − T

(
∂P
∂T

)
V

nCV

= −n
2A

V 2

1
nCV

for van der Waal’s gas

< 0.

We can show thatCV is independent ofV for a van der Waal’s gas and we suppose
thatCV is also approximately independent ofT . We can now integrate this equation to
get

T2 − T1 =
nA

CV

(
1
V2

− 1
V1

)
< 0.

T decreases because some of the molecular kinetic energy is lost in the expansion
against attractive intermolecular forces.
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2.3 Some thermodynamics

Suppose a sampleS of nmoles of perfect gas is put in thermal contact with a heat bath
B and compressed reversibly from volumeV1 to volumeV2. If the gas is perfect then
E = E(T ) = nCV T and soE stays the same. Now

∆Q+ ∆W = 0 ⇒ ∆Q = −∆W =
∫ V2

V1

PdV = nRT log V2
V1
.

Thus∆W > 0 for compression (V2 < V1) and∆Q < 0. Heat is given out toB
by S. Now ∆S = nR log V2

V1
and so the entropy ofS decreases. However, because the

isolated universe ofS andB has∆S = 0 the entropy ofB must increase.

2.3.1 The second law

(Kelvin) No process can continuously (by going round a cycle) extract heat from a heat
bath and perform an equal amount of work.
(Clausius) No process can continuously transfer heat from a colder to a hotter body.1

Take a sampleS of perfect gas around a closed Carnot cycle by means of adiabatics
and isothermals (T2 > T1). OnAB the heat bath atT2 supplies heat∆Q2 > 0 to S at
temperatureT2. OnCD the heat bath atT1 supplies heat∆Q1 < 0 toS at temperature
T1.

E = E(T ) is unchanged over one complete cycle so that the work done in a cycle
byS is−W = ∆Q1 + ∆Q2 by the first law (asδQ = 0 on adiabatics).

This agrees with the Kelvin statement of the second law,(−∆Q1) > 0 of heat is
wasted at the low temperature heat bath. The efficiencyη is defined

η =
−W
∆Q2

= 1 +
∆Q1

∆Q2
< 1.

On adiabaticsTV γ−1 is constant and so

T2V
γ−1
A = T1V

γ−1
D and T2V

γ−1
B = T1V

γ−1
C .

Thus VA

VB
= VD

VC
. We know that

∆Q2 = nRT2 log VB

VA
> 0 and∆Q1 = nRT1 log VD

VC
= −nRT1 log VB

VA
.

Thusη = T2−T1
T2

, and clearly0 < η < 1. This can be generalised to other cycles.

1You can’t break even either... (see footnote on page 6)
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2.4 Heat flow

Let S1 be a sample ofn1 moles of ideal gas at temperatureT1 in a fixed volumeV1.
ThenE1(T1) = n1CV1T1 = x1T1. Similarly forS2. PutS1 andS2 in thermal contact
allowing no change inV1 + V2. Suppose the state of thermal equilibrium is reached at
a temperatureT . Then (by conservation of energy),

x1(T1 − T ) + x2(T2 − T ) = 0

and we can solve forT . As for the entropy,∆S1,2 = x1,2 log T
T1,2

and∆S1+∆S2 ≥ 0.
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Chapter 3

Grand ensemble methods

3.1 The formalism

Our approach is a direct extension of the approach we adopted earlier for the canonical
ensemble. Given a systemS of fixed volume we construct a grand (canonical) ensem-
ble G with a large numberA of distinguishable replicas ofS in microstates|i〉 of S
with Ni particles and energiesEi. Suppose thatai members ofG are in the microstate
|i〉 so that ∑

i

ai = A
∑

i

aiEi = AE
∑

i

aiNi = AN.

We have thus fixed the average energy and number of particles of members of the
ensemble. Each configuration{ai} of G defines a state of the ensemble and we assign to
each configuration equala priori probability. We associate the state of thermodynamic
equilibrium of S with the most probable configuration ofG in the presence of our
constraints. We find this by maximising the samelogW as before to get

0 =
∂

∂ai

(
logW − α

∑
i

ai − β
∑

i

aiEi − γ
∑

i

aiNi

)
.

This gives us that

ai = e−(1+α)e−β(Ei−µNi),

where we have defined thechemical potentialµ by βµ = −γ. We now define the
grand partition function

Z =
∑

i

e−β(Ei−µNi). (3.1)

The fraction of members ofG in the microstate|i〉 is

ρi =
ai

A
=
e−β(Ei−µNi)

Z
.

The grand ensemble average is

Ō =
∑

i

ρiOi

19
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andĒ = E andN̄ = N (which is, on the whole, a good thing). As before we can
useZ to calculate thermodynamic variables:

N =
1
β

(
∂ logZ
∂µ

)
β,V

, (3.2)

E − µN = −
(
∂ logZ
∂β

)
µ,V

. (3.3)

As before, from consideration of changes at constantρi we find thatδE = −PδV
and

P = −
∑

i

ρi
∂Ei

∂V
=

1
β

(
∂ logZ
∂V

)
β,µ

. (3.4)

More general changes in whichδρi 6= 0 obey∑
i

δρi = 0
∑

i

Niδρi = δN δE = −PδV +
∑

i

Eiδρi.

Defining the entropy

S = − k

A
logWmax = −k

∑
i

ρi log ρi

gives that

δS = −k
∑

i

δρi log ρi −
∑

i

ρi
1
ρi
δρi

= −k
∑

i

δρi (−β(Ei − µNi)− logZ) .

This gives the fundamental thermodynamic relation

TδS = δE + PδV − µδN, (3.5)

yielding the first lawdE = δQ+ δWmech+ δWchem, whereδWchem = µδN is the
work done in addingδN particles to the systemS. The chemical potential is therefore
given by

µ =
(
∂E

∂N

)
S,V

. (3.6)

Returning to the entropyS we see that

S = kβ(E − µN) + k logZ (3.7)

which can be put in the same form as (1.18), namely

S =
(
∂kT logZ

∂T

)
µ,V

. (3.8)
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A similar argument to that used to define temperature in 1.3 gives that two systems
placed in thermal and “diffusive” contact will reach a thermodynamic equilibrium char-
acterised by common values ofβ = 1

kT andµ.
We keep the idea that at fixedNA, NB energy flows from the system with the

higher temperature to that with the lower temperature until thermodynamic equilibrium
is reached. We add that if the contact allows the diffusion of particles then in the state
of thermodynamic equilibrium with constantµ there is (on average) no diffusion.

We return to the first law,dE = TdS−PdV +µdN . We can viewE as a function
of S, V andN , and when (as for many large systems),E, S andV are extensive we
get

E(λS, λV, λN) = λE(S, V,N)

and so

E = S

(
∂E

∂S

)
V,N

+ V

(
∂E

∂V

)
S,N

+N

(
∂E

∂N

)
S,V

= TS − PV + µN.

We define thegrand potentialΩ for a state of thermodynamic equilibrium by

Ω = E − TS − µN

= E − µN − (E − µN + kT logZ)
= −kT logZ.

ThusZ = e−βΩ. Now Ω also equals−PV and so

PV = kT logZ (3.9)

allows the calculation of the equation of state from the grand partition function.
The state of thermodynamic equilibrium corresponds to the most probable state

in G. Some thermodynamic variables arise from averages over microstates weighted
by the probability of finding them in the state of thermodynamic equilibrium. The
averages are effectively averages over all possible states of the ensemble because the
macrostate of thermodynamic equilibrium dominates overwhelmingly. They are also
very sharp (for the same reason).

3.2 Systems of non-interacting identical particles

3.2.1 A little quantum mechanics

We will treat such systems with only one type of particle. When interactions are ne-
glected then the wavefunction of each stationary state of the systemΨ(x1,x2, . . . ) is
obtained by either symmetrization (for bosons) or antisymmetrization (fermions) of the
productφ1(x1)φ2(x2) . . . of one particle wavefunctions.

Consider spin0 bosons in a cube of sideL. Then the one particle wavefunctions
are

ψn(x) =
(

2
L

) 3
2

sin n1πx
L sin n2πx

L sin n3πz
L

with corresponding energies

En =
~2

2mL2
|n|2 .
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For identical bosons we cannot use wavefunctionsφ1(x1)φ1(x2)φ2(x3) which cor-
respond to particles1 and2 in state1 ≡ n1 and particle3 in state2 ≡ n2, but we must
use instead the symmetrized wavefunction

Ψ =

√
1
3!

(φ1(x1)φ1(x2)φ2(x3) + φ1(x1)φ2(x2)φ1(x3) + φ2(x1)φ1(x2)φ1(x3)) .

All we can say about this is that there are two particles in state|1〉 and one particle
in state|2〉. Ψ is fully determined by the fact thatφ1 is used twice andφ2 used once.

For spin1
2 fermions we have

φ(x) → ψn(x)α orψn(x)β,

whereα is “spin up”↑ andβ is spin down↓ with H andEn independent ofα and
β. We can use determinants to build the antisymmetric wavefunctions.

For instance, givenψ1(x, µ) andψ2(x, µ) (where1 ≡ n1, 2 ≡ n2 andµ = α or
β) we get the antisymmetrized version

Ψ(x1, µ2,x2, µ2) =

√
1
2!

∣∣∣∣ψ1(x1, µ1) ψ1(x2, µ2)
ψ2(x1, µ1) ψ2(x2, µ2)

∣∣∣∣ .
Similarly for three particles,

Ψ =

√
1
3!

∣∣∣∣∣∣
ψ1(x1, µ1) ψ1(x2, µ2) ψ1(x3, µ3)
ψ2(x1, µ1) ψ2(x2, µ2) ψ2(x3, µ3)
ψ3(x1, µ1) ψ3(x2, µ2) ψ3(x3, µ3)

∣∣∣∣∣∣ .
Ψ reflects thePauli exclusion principlewhich forbids any two of theψi or any two

sets(x, µ) from being the same.
EachΨ is determined fully by the number of times each one particle wavefunction

is used in the product term that we (anti)symmetrize.

3.2.2 The partition functions

Let the one particle wavefunctions of the particles ofS beψr(x) with energyεr. Sup-
pose that in the microstate|i〉, nr of the particles have wavefunctionφr(x).

Then
Ni =

∑
r

nr and Ei =
∑

r

εrnr.

We see that the microstate|i〉 of S is fully determined byi ≡ {nr}. We obtain the
full set of microstates ofS by letting thenr vary without restriction over their allowed
range of values. (ThusNi andEi cannot themselves be restricted — this is why we
use the grand ensemble method.)

We can now write down the grand partition function

Z =
∑

i

e−β(Ei−µNi)

=
∑

n1,n2,...

e−β(n1ε1+n2ε2+···−µn1−µn2−... )

=
∏
r

∑
nr

e−βnr(εr−µ).
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For fermions we have thatnr can only be zero or one, so that

Z =
∏
r

(
1 + e−β(εr−µ)

)
. (3.10)

We use this to find

N =
1
β

(
∂ logZ
∂µ

)
β,V

=
∑

r

1
eβ(εr−µ) + 1

.

Now

n̄r =
∑

n1,n2,...

nre
−β(εr−µ)

Z

= − 1
β

(
∂ logZ
∂εr

)
β,µ,εs

s 6= r

=
1

eβ(εr−µ) + 1
.

We see thatN =
∑

r n̄r. n̄r is the average occupation numberof the rth one
particle state at thermal equilibrium. This is theFermi-Diracdistribution.

For bosons,0 ≤ nr <∞ and

Z =
∏
r

1
1− e−β(εr−µ)

.

This gives that

n̄r =
1

eβ(εr−µ) − 1
. (3.11)

This is the Bose-Einstein distribution.
If there aregr one particle states of energyεr we can write the average number of

particles with energyεr as

n̄(εr) =
gr

eβ(εr−µ) ∓ 1
.

for N large we pass to the continuum limit,∑
r

→
∫

dεg(ε),

whereg(ε) is the density of states factor,DV ε
1
2 as in section 1.5.3, whereD =

2π
(

2m
h2

) 3
2 gS andgS = 2S + 1 is the spin degeneracy.

The average number of particles with energy in the rangeε→ ε+ dε is

n(ε)dε =
g(ε)dε

eβ(ε−µ) ∓ 1
.

Thus in the continuum limit, the grand partition functionZ is given by

logZ = ∓
∫ ∞

0

g(ε) log(1∓ e−β(ε−µ)) dε.
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We can now use the results of section 3.1 to find things likeN andE,

N =
∫ ∞

0

g(ε) dε
eβ(ε−µ) ∓ 1

E =
∫ ∞

0

εg(ε) dε
eβ(ε−µ) ∓ 1

.

In three dimensions,g(ε) = DV ε
1
2 and so (integrating by parts) we see that

logZ = DV

∫ ∞

0

2
3

ε
3
2

eβ(ε−µ) ∓ 1

=
2
3
βε.

Combining this with (3.9) we find thatPV = 2
3E. The 2

3 comes from theε
1
2 factor

in g(ε).

3.2.3 Classical limit

For a volumeV of N particles with energyE, we useg(ε) = DV ε
1
2 and so

N = DV

∫ ∞

0

ε
1
2 dε

eβ(ε−µ) ∓ 1
and E = DV

∫ ∞

0

ε
3
2 dε

eβ(ε−µ) ∓ 1
.

Puttingz = βε we findN = DV (kT )
3
2 I 1

2
(−βµ) andE = DV (kT )

5
2 I 3

2
(−βµ),

with

In(y) =
∫ ∞

0

zn dz
ez+y ∓ 1

.

If ey � 1 we can neglect the1 in the denominator and find thatn(ε) ∝ e−βεg(ε).
We can approximate the integrals (expand the integrand) to get

E ∼ 3
2NkT

(
1∓ eβµ

4
√

2
+ . . .

)
.

In the lowest approximationE = 3
2NkT andN = DV (kT )

3
2

√
π

2 .
The conditione−βµ � 1 is thus(

2mπkT
h2

) 3
2 V

N
� 1 if gS = 1.

This is a classical limit — it holds whenh is very small on a scale defined bym
and the mean energy per particle3

2kT . This condition is satisfied at low densityVN and
at high temperature.

It is true for all real gases except helium at very low temperature and very high
density. Most real gases liquefy before quantum mechanical effects set in.

It fails to holds for electrons in solids due to the fact that their effective mass inside
the solid is much less than the free electron mass.

We can use our formulae forE andN to get the lowest order quantum correction
to the equation of state — recall thatPV = 2

3E, so

PV = NkT ∓ NP

(kT )
3
2

1
D
√

8π
.
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3.3 Black body radiation

Consider a cubic cavity of sideL = V
1
3 inside a perfectly black body, the walls of

which are maintained at a fixed temperatureT . The atoms of the perfectly black body
absorb all photons incident on them and independently emit photons such that even
in thermodynamic equilibrium the number of photons varies significantly. Thus the
total number of photons is not conserved and so no constraint can be applied to them.
Thereforeµ = 0.

The number of photons depends on the temperature. We must consider a gas of
photons in a volumeV at a temperatureT . These quanta of the electromagnetic field
are relativistic bosons of rest mass0.

Our previous work applies, settingµ = 0. Thus

n̄r =
1

eβεr − 1
and E =

∑
r

εr
eβεr − 1

.

We pass to the continuum limit using (1.22) to get

N =
8πV
c3

∫ ∞

0

ν2 dν
eβhν − 1

and E =
8πV
c3

∫ ∞

0

hν3 dν
eβhν − 1

,

whereε = hν. This is Planck’s law. We expect classical behaviour at highT or
low ν, wheree

hν
kT − 1 ≈ hν

kT and

dE =
8πV
c3

ν2 dνkT = kTg(ν) dV,

which agrees with the classical result of energykT per normal mode of radiation.
This is the classical equipartition of energy. Using this result,dE

dν ∝ ν2 gives a diver-
gent energy, which is called theultraviolet catastrophe.

Using the full formula for the energy we find that

e =
E

V
=

8π
(hc)3

(kT )4
∫ ∞

0

z3 dz
ez − 1

= σT 4.

This isStefan’s law, andσ = 8π5k4

15h3c3 is Stefan’s constant. We see that the energy
density is a function ofT only.

Using (3.7) withµ = 0 we see that

S = k logZ +
E

T

and we can evaluatek logZ = 4E
3T . The entropy densitySV = 4

3σT
3 → 0 as

T → 0. The energy

E = V σT 4 =
(

3S
4

) 4
3 1

(V σ)
1
3
∝ V −

1
3 at constant entropy.

The pressureP can now be calculated fromP = −
(

∂E
∂V

)
S

= 1
3

E
V = 1

3σT
4.

Finally the density of photons,n = N
V ∝ T 3 (see example sheet 3).
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3.4 Degenerate Fermi gas

This is the extreme quantum limit. It occurs for

• electrons in solids,

• electrons in white dwarf stars,

• neutrons in neutron stars and

• nucleons in nuclear matter.

ForN electrons in a volumeV at a temperatureT we have

N =
∫ ∞

0

g(ε)F (ε) dε and E =
∫ ∞

0

g(ε)εF (ε) dε,

whereg(ε) = DV
√
ε,D = 4π

(
2m
h3

) 3
2 and

F (ε) =
1

eβ(ε−µ) + 1
.

The range0 ≤ e−βµ <∞ is allowed without blowup ofF . The regione−βµ � 1
is the classical realm and we expect that quantum mechanical effects will be most
pronounced at low temperature,eβµ � 1.

We assume thatµ is finite and positive andµ = EF = kTF is constant atT = 0.
We further assume thatµ = EF + O(kT ) for small T . It can be shown thatµ =
EF +O(kT )2.

Now

lim
T→0

eβ(ε−µ) =

{
0 ε < EF

∞ ε > EF ,

so that

lim
T→0

F (ε) =

{
1 ε < EF

0 ε > EF .

Thus atT = 0 F (ε) = θ(ε−EF ). At T = 0 it is energetically most favourable for
electrons to fill up the one particle energy eigenstates (two electrons at a time, one spin
up and one spin down) with increasing energy according to the Pauli principle, until
the Fermi energy is reached.EF is the highest energy occupied atT = 0.

We can now perform the integrals forN andE to get

N = DV 2
3E

3
2
F (3.12)

E = DV 2
3E

5
2
F = 3

5NEF . (3.13)

We can solve (3.12) forEF to get

EF =
(

3N
2DV

) 2
3

∝ V −
2
3 .
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The equation of statePV = 2
3E becomesPV

5
3 = const. Classical kinetic theory

givesP → 0 asT → 0. The Pauli principle requires particles to have non-zero
momentum and so there is pressure even atT = 0.

In fact

P =
2
3
3

2
3

(
N

V

) 5
3 h2

2m
∝ m−1

and so atT = 0 the pressure is much bigger for lighter particles.

3.4.1 Heat capacity at low temperature

We have

N =
∫ ∞

0

g(ε)F (ε) dε and

E =
∫ ∞

0

εg(ε)F (ε) dε.

We want to findC =
(

∂E
∂T

)
V

(which is proportional to the usualCV ). We take∂
∂T

of both of the above to find

C =
∫ ∞

0

g(ε)
∂F

∂T
(ε− EF ) dε.

At low temperature∂F
∂T is very like a delta function and so the regionε ≈ EF

dominates the integral.
We approximateg(ε) ≈ g(EF ) andµ ≈ EF . This gives us

C ∼ g(EF )
kT 2

∫ ∞

0

dε(ε− EF )
eβ(ε−EF )(

eβ(ε−EF ) + 1
)2 (ε− EF )2

= g(EF )k2T

∫ ∞

−βEF

z2ez dz
(ez + 1)2

.

We know thatEF is finite and positive, so that−βEF → −∞ asT → 0. We therefore
approximate the lower limit of the integral by−∞.

C ∼ g(EF )k2T

∫ ∞

−∞

z2ez dz
(ez + 1)2

.

This leaves a convergent integral whose value isπ2

3 , so that

C ∼ π2

2
Nk

T

TF
,

whereTF (theFermi temperature) is defined byEF = kTF . This approximation
is expected to be good forT � TF .
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3.5 Bose-Einstein condensation

Recall the result

N = DV

∫ ∞

0

ε
1
2 dε

eβ(ε−µ) − 1
= DV (kT )

3
2

∫ ∞

0

z
1
2 dz

ez−βµ − 1
= DV (kT )

3
2

√
π

2
f(−βµ),

where

f(−βµ) =
∞∑

n=1

enβµ

n
3
2
.

f(−βµ) is convergent iffβµ ≤ 0. Assuming this, the Bose-Einstein denominator
does not vanish for any point in the range of integration.

It is easy to see thatf has a maximum value (of2.612) at βµ = 0 and decreases
monotonically asβµ decreases through negative values fromβµ = 0.

Now suppose thatNV is fixed. Our equation forN is OK asT decreases since
f(−βµ) can increase byβµ getting less negative. Whenβµ reaches0 problems occur
asf cannot increase any more. This will be atT = TB , given by

N

V
= D̂(kTB)

3
2 D̂ =

D
√
πf(0)
2

.

Our equation forN appears to fail beyond this. Why?
More care is called for in the passage to the continuum limit. Theε

1
2 factor ing(ε)

assigns0 weight to the particles in theε = 0 state. This would be no problem for
fermions (which have the Pauli principle), but no law stops bosons fromcondensing
into theε = 0 state if need be. We writeN = N0 + NC , whereN0 is the number of
particles in theε = 0 state andNC is the number of particles inε > 0 states. Then for
T > TB

N

V
= D

√
π

2 f(−βµ).

ForT = TB , N
V = D̂(kTB)

3
2 , definingTB . ForT < TB then

NC

V
= D̂(kT )

3
2 , giving

NC

N
=
(
T

TB

) 3
2

.

3.6 White dwarf stars

White dwarfs are abnormally faint: they are stars in which the hydrogen supply has run
out so that they are composed mainly of helium.

Typically,

T ≈ Tsun = 107K
M ≈Msun, and

ρ ≈ 107ρsun.

We regard them as being a mass of helium atT ≈ 107K and under extreme com-
pression. ForT ≈ 107K, kT ≈ 103eV is much greater than the binding energy of
electrons to helium, so that thermal collisions completely ionize all the atoms, produc-
ing an electron gas.
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To a good approximation this may be viewed as a Fermi gas in the degenerate
(negligibleT ) limit. This may be seen by computingTF , the natural temperature scale
of the problem (the Fermi temperature). Now

kTF = EF =
h2

2m

(
3N
8πV

) 2
3

≈ 2× 106eV.

SinceN
V is so largeTF ≈ 1011K � T .

The helium nuclei neutralise the charge of the star and produce the gravitational
attraction which counteracts the extreme zero-point pressure of the electron gas (which
dominates the zero-point pressure from the nuclei).

We can calculate the total energyE = Eelec(R) + Egrav(R) and find the radiusR0

of the star by minimising this.
Treating the electrons relativistically we have

N

V
=

8π
~3c3

∫ EF

mc2
εdε(ε2 −m2c4)

1
2 .

Let
√
ε2 −m2c4 = mc2x, so that the integral forNV can be done to get

N

V
=

8π
~3c3

(mc2)3
x3

F

3
.

The integral for the energy density is

E

V
=

8π
~3c3

(mc2)4
∫ xF

0

x2 dx
√

1 + x2

and soE
N = 3

4mc
2
(
xF + 1

xF
+O(x−2

F )
)

. We know thatV ∝ R3 and soxF ∝
R−1. Hence

E =
a

R
+ bR− γ

R
,

wherea, b andγ are positive constants. This only has a minimum ifγ ≥ a, which
leads to the Chandrasekhar upper limit on the mass of a white dwarf.



30 CHAPTER 3. GRAND ENSEMBLE METHODS



Chapter 4

Classical statistical mechanics

4.1 Introduction

Recall the resultZ = zN for a system of distinguishable non-interacting particles. It
can be shown that in the classical limit

z =
∑

r

e−βεr =
∑

r

〈r|e−βĤ |r〉

gives

z = h−3

∫
d3pd3q e−βH(p,q), (4.1)

whereĤ(p̂, q̂) is the quantum mechanical Hamiltonian andH(p, q) is the classical
Hamiltonian as a function of classical variablesp andq.

The average for the system of a physical variablef(p,q) is

〈f(p,q)〉 =
∫

d3pd3q f(p,q)e−βH(p,q)∫
d3pd3q e−βH(p,q)

.

We can see that〈H(p,q)〉 = −
(

∂ log z
∂β

)
V

agrees with the result

E = −
(
∂ logZ
∂β

)
V

= −N
(
∂ log z
∂β

)
V

.

Now

Z =
∫ N∏

i=1

(
d3pd3q

h3

)
e−β

PN
i=1 H(pi,qi),

where
∑N

i=1H(pi, qi) is the Hamiltonian of theN -particle system.

For a monatomic gas withH = p2

2m we have

z =
V

h3

(∫
dp e−

βp2

2m

)3

=
V

h3

(
2πm
β

) 3
2

.

This result shows thatE = 3
2NkT , which is the common classical result of energy

1
2kT per degree of freedom per particle.

31
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4.2 Diatomic gases

We will study therigid dumbbell modelas shown.

We want to write down the partition functionZ = zN . To apply (4.1) we need the
HamiltonianH. To find the Hamiltonian we first write down the Lagrangian

L = 1
2mẋ2 + 1

2I
(
θ̇2 + sin2 θφ̇2

)
.

(V ≡ 0 in this rigid case.) Note that the Lagrangian splits neatly into translational
motion ofG and rotational motion about the centre of mass.

We define the generalised momentapα = ∂L
∂q̇α

:

pi = mẋi, pθ = Iθ̇ and pφ = I sin2 θφ̇.

Now

H =
∑
α

q̇αpα − L =
p2

2m
+
p2

θ

2I
+

p2
φ

2I sin2 θ
,

and

z =
1
h5

∫
d2pd3q dpφ dφdpθ dθ e−βH = ztzr,

where

zt =
1
h3

∫
d3pd3q e−

1
2 mβp2

= V

(
2mπ
βh2

) 3
2

and

zr =
1
h2

∫
dpφ dφdpθ dθ e

− β
2I

„
p2

θ+
p2

φ

sin2 θ

«
=

8π2IkT

h2
.

We evaluate the above integral by first doing thepθ, pφ andφ integrals and then
doing theθ integral.

Thusz = ztzr = V
(

2mπkT
h2

) 3
2 8π2IkT

h2 . This givesE = 5
2NkT .1

4.3 Paramagnetism

Each molecule of anN molecule solid acts as a little magnet fixed at its own lattice
site and free only to rotate about it. Each molecule has a dipole momentm and gives
a contribution−m ·B to the energy when in an applied magnetic fieldB = (0, 0, B).
Now

H =
p2

2m
+
p2

θ

2I
+

p2
φ

2I sin2 θ
−mB cos θ

and so

z =
2πI
h2β

2π
2 sinh y

y

1Which ought to be expected!
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wherey = mβB. We can calculate the magnetisation of the solid:

M = (0, 0,M) = N〈M〉.

Only the third component〈m cos θ〉 is non-zero:

〈m cos θ〉 = β−1

(
∂ log z
∂B

)
β

= m
(
coth y − y−1

)
.

For smally (highT ) we thus have Curie’s law,M = 1
3Nmy = Nm2B

3kT .

4.4 Specific heats

The resultE = 5
2NkT for a diatomic gas is found to be accurate at sufficiently high

temperatures.E is found to be3
2NkT at lower temperatures. It is as if the rotational

degrees of freedom arefrozen out. This is explained by quantum mechanics.
We haveZ = zN and z = zrzt. We will look at zr, usingHr = 1

2I L
2 (the

quantum mechanical angular momentum operator). Now

Hr|l m〉 =
l(l + 1)~2

2I
|l m〉

for m = −l,−l + 1, . . . , l − 1, l for each ofl = 0, 1, 2, . . . . Thus

zr =
∞∑

l=0

(2l + 1)e−
l(l+1)Tr

T (4.2)

with Tr = ~2

2Ik . Tr is typically about50K and is experimentally accessible.
For Tr � T (most gases at normal temperatures) we can turn this sum into an

integral to get

zr =
T

Tr
=
(

8π2

h2

)
kT

as before. ForTr � T all of the terms withl 6= 0 in (4.2) are exponentially small
and we take only thel = 0 term to getzr ≈ 1 — there is no rotational contribution to
the energy (or heat capacity). The contribution to the energy from rotational motion is
thereforeNkT if T � Tr or 0 if T � Tr.

For high temperatures,E rises to7
2NkT due to vibrational motion along the axis

of the dumbbell. There is an extra term in the Hamiltonian

Hv =
1
m
P 2 +

mω2Q2

4

and an extra factorzv in the one particle partition function.

4.5 Weak interparticle forces

Consider a classical gas ofN molecules with Hamiltonian

H =
N∑

r=1

p2
r

2m
+
∑
r<s

φ(Rrs),
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whereRrs = |qr − qs|. We use

Z =
∫ N∏

r=1

d3pr d3qr
h3

e−βH

=
(

2πmkT
h2

) 3N
2

V NK

= Z0K,

whereZ0 = zN
0 andz0 is the partition function for one molecule of a spinless gas

of N non-interacting molecules and

K = V −N

∫ ∏
r

d3qr e
−β

P
r<s φ(Rrs).

We suppose thatλrs = e−βφ(Rrs) − 1 is small (weak interaction) and we treat our
results to lowest non-trivial order.

Then

K = V −N

∫ ∏
r

d3qr

(
1 +

∑
r<s

φ(Rrs)

)

= 1 +
N(N − 1)

2V 2

∫
d3qa d3qb λab (no summation).

This integral can be evaluated using the change of variablesx = qa+qb

2 andy =
qa − qb, so that∫

d3qa d3qb λab = V

∫
d3y

(
e−βφ(y) − 1

)
≡ V f(T ),

definingf(T ). ThenK = 1 + N2f(T )
2V (asN − 1 ∼ N ) and

logZ = N log V +
N2f(T )

V
+ stuff which does not depend onV .

UsingβP =
(

∂ log Z
∂V

)
β

we get

PV = NkT

(
1− Nf(T )

2V

)
with f(T ) =

∫ ∞

0

4πy2 dy
(
e−βφ(y) − 1

)
. (4.3)

If we take a specificφwe can recover the van der Waals’ equation of state (see page
15).

Consider theφ shown.
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Then the contribution tof(T ) from region 1 whereφ is infinite is∫ d

0

4πy2 dy = −2b.

For largeT and weak attractive forces the contribution from region 2 is∫ ∞

d

4πy2 dy (−βφ(y)) = 2βa.

a andb are positive constants. Nowf(T ) = −2(b− βa) and (4.3) becomes(
P +

N2a

V 2

)
V = NkT

(
1 +

Nb

V

)
.

For Nb
V small we can (approximately) take1 + Nb

V to the left hand side of the
equation to get (

P +
N2a

V 2

)
(V −Nb) = NkT

and the correspondence with (2.5) is completed by settingA = N2a andB = Nb.
Note thatB is the volume of all the molecules.

4.6 The Maxwell distribution

Consider a gas with (one particle) Hamiltonianp2

2m .
The number of molecules in the regionp → p + dp is

n(p) d3p =
Ne−βH∫
e−βHd3p

= Ce−
βp2

2m .

Now

N =
∫
n(p) d3p = m3C

∫
4πv2 dve−

1
2βmv2

= N

∫
f(v) dv,

which defines theMaxwell distribution of speeds,

f(v) = const× v2e−
1
2βmv2

.

f(v) is the probability of finding a particle with speed inv → v+dv. The constant
is (of course) chosen to make

∫∞
0
f(v) dv = 1. We can define averages in the obvious

way, that is

〈g(v)〉 =
∫ ∞

0

f(v)g(v) dv.
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Approximations

Stirling’s formula

We derive the approximation for Stirling’s formula from theΓ function using Laplace’s
method.

Recall that

Γ(z) =
∫ ∞

0

tz−1e−t dt

andΓ(n+ 1) = n!. Then

n! =
∫ ∞

0

tne−t dt =
∫ ∞

0

en log t−t dt.

Let v = t
n , so that

n! = nn+1

∫ ∞

0

en(log v−v) dv.

Now for largen, en(log v−v) ∼ e
n

„
−1− (v−1)2

2

«
, so

n! ∼ nn+1e−n

∫ ∞

−∞
e−

nu2
2 du =

√
2πne−nnn.

This is Stirling’s formula.
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