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Introduction

These notes are based on the course “Statistical Physics” given by Dr. A. J. Macfarlane
in Cambridge in the Lent Term 1998. These typeset notes are totally unconnected
with Dr. Macfarlane. The recommended books for this course are discussed in the
bibliography.

Other sets of notes are available for different courses. At the time of typing these
courses were:

Probability Discrete Mathematics

Analysis Further Analysis

Methods Quantum Mechanics

Fluid Dynamics 1 Quadratic Mathematics

Geometry Dynamics of D.E.’s

Foundations of QM Electrodynamics

Methods of Math. Phys Fluid Dynamics 2

Waves (etc.) Statistical Physics

General Relativity Dynamical Systems

Combinatorics Bifurcations in Nonlinear Convection

They may be downloaded from

http://www.istari.ucam.org/maths/


http://www.istari.ucam.org/maths/
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Chapter 1

Quantum Statistical Mechanics

1.1 Introduction to Quantum Statistical Mechanics

Statistical mechanics deals with macroscopic systems of many particles. Consider an
isolated systens of gas in a vessel whose walls neither let heat in or out and is subject
to no mechanical action. No matter how it is prepared, it is an experimental fact that
S reaches a steady state (a state of thermodynamic equilibrium) in which>aafet
(rather few) thermodynamic variables are constanncludes the pressui®, volume

V', temperaturd’, total energyE and entropys.

Any state ofS (before or after thermodynamic equilibrium is reached) contains
particles with positions and momenta changing in time. We cannot possibly analyse
this in detail — even if we knew the forces and initial conditions, and could solve the
resulting system there is no hope that we could organise usefully the vast amount of
data.

At best, we aim to treat the possible states of motior5dfy some averaging
or statistical procedure that allows us to predict values of the variablEstirat are
constant in states of thermodynamic equilibriunsof

We use quantum mechanical ideas to approach the subject. Consider

e microstatef S, the stationary quantum statés

e macrostateswhich correspond to states of thermodynamic equilibrium.

The latter are not states in the quantum mechanical sense, but do involve the vast
numbers of microstates.

The ergodic hypothesigwhich is provable for some systems) is tifapasses in
time through all its possible states compatible with its state of thermodynamic equilib-
rium. This allows us to replace time averages for a single sy$tevith averages at a
fixed time over a suitable ensemBl®f systems, each identical ®in its macroscopic
properties. The most probable stat€atveals which microstates Sfcontribute to its
macroscopic states of thermodynamic equilibrium and yield excellent approximations
to the values of its thermodynamic variables.

Let £, N be the total energy and total number of particlesSakspectively. One
meets three types of ensemble.

e microcanonical each member of has the same values 8fand V.
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e canonical: each member of hasN particles butF is not fixed, although the
average total energy is time independent.

e grand: neitherE nor N is fixed, although the averages are.

For the latter two, fluctuations about the average values are found to be very small
and all three types of ensemble give the same thermal physics. This course studies
mainly canonical ensembles. We will do systems with identical bosons/fermions via
the grand ensemble for technical simplicity.

The fact that averaging procedures give reliable estimates of values of physical
variables and apparently different procedures yield equivalent results is due to the effect
of the very large number of particles involved. For instance, consider the probability
pm Of ObtainingN/2 + m heads fromV coin tosses.

N /2 2m?
oy = 27N ~ ——e N
P (g’ + m) 7TN€ ’

using Stirling’s formulf for N > m > 0. If N = 10%* andm = 10'7 then the
exponential terne 10"’ is effectively zero.

1.2 Canonical ensemble

We study a systers of NV particles in a volum& with N andV fixed. The microstates
of S are the (complete orthogonal) §étwith energy eigenvalueg;. We assume the
spectrum is discrete but with possible degeneracy.

We associate witls a canonical ensembl€. This is a very large numbet of
distinguishable replicas &, Si,...,S4. Suppose that in a possible statefothere
area; members of in the microstaté:). Then

a;=A and a;BE; = AE. (11)
2 2

The average energy of the memberga$ thus the fixed valué’.

Given a sefa;} (aconfigurationof £) there ard¥ (a) = Hf‘('“! ways of realising

it.
Proof. We can distributer; systems in the microstaté) over € in (;‘i) ways. Then
we can distribute the, states in2) in (A‘L“) ways (and so on). Thus

- () e

We assign equad priori probability to each way of realising each possible con-
figuration of £ and thus there is a probability proportional1i6(a) of realising the
configuration{a, }.

We will associate the state of thermodynamic equilibriung ¢for the fixed values
N, V, E) with the configuration of that is most probable in the presence of the
constraints[(1]1).

O

logn! ~nlogn —n+ %log?ﬂ'n
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To compute this supposé > 0 such that; > 0 (negligible probability attaches
to configurations where this fails). For large Stirling’s formula allowslogn! ~
n (logn — 1) and so

logW ~ AlogA—A—Zai (loga; — 1) = AlogA—Zailogai.

We seek to maximise this subject to the constrajnig (1.1). We use two Lagrange
multipliers« and and solve

0
0= Ba (logWa;aiﬁ;aiEZ)
and sdoga; + 1+ o+ BE; = 0. Thus

a; = e~ lma—BE; (1.2

We eliminatex via A = Y, a; = e~17Z, defining the canonical partition func-
tion

Z =Y e =3 "QE)e ", (1.3)
i E;

whereQ)(E;) is the degeneracy of the energy levsgl.
The fraction of members & in the microstatéi) in the macrostate of thermody-
namic equilibrium is

a; 1
= — = —e PBi, 1.4
pi= o = e 1.4)
This is theBoltzmann distributionand may be thought of as the probability of
finding |¢) in the state of thermodynamic equilibrium.
We define the averageX) of a physical variableéX taking the valueX; in the state

i) by

Forinstancd E) = % > a;E; = E (reassuringly).
Z is very important. It leads directly from quantum mechanical data to calculation
of the thermodynamic variables férin thermodynamic equilibrium. For instance,

_OlogZ
B

Here, holdingV fixed corresponds to keeping all ti fixed.

For A large (as in all cases of interest) the most probable state is overwhelmingly
so. It gives in effect the average over all possible states of the ensemble. The idea
of associating average values with actual physical predictions depends on the possible
variances being negligible.

We can calculate the variance in the energy in a similar way. Notdithat—% g—g
and so

E =

(1.6)
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O _ 19z 1 (0Z
o3 zZop  z2\0pB
For typical large system& « N, and asEt' depends smoothly of we expect

g—g « N as well. Thus

) =@+ (2 - @),

|AE| /N _
Pl XL N
E XN :

which is very small for very largév.

N

1.3 Temperature

Given two systems, andS, with fixed volumesV,, V4, and numbers of particle¥,,,
N, respectively we place them in contact to form a composite sysighsuch that
energy can pass from one to the other and a state of thermodynamic equilibrium is
reached. We make a canonical ensenghlefor S,;, by distributing A replicas ofS,
and A replicas ofS, independently across thé members of,; so that each member
of £,, has a component of typ®,;.
Suppose tha$, has microstatelg) of energyE,;, S, has microstatelgr) of energy
Ey, andS,;, has microstateg, o) of energyE,; + Eb,,E]
Suppose théi) occursa; times, |o) occursh; times andi, o) occurse;, times in
Eqp- Then we have

Sa=a b =4 an
a; = Zcio ba = Z Cio Z Cioc = A (18)

We demand that the average energy¥grbe fixed at

AE = a;Esi+ Y boEp, (1.9)

AE =Y tio (Bai + Euo) - (1.10)

o

Now the configuratio{c;, } arises in

Al
W(c) x Mo (1.112)
ways and the configuratiofu,; } {b, } arises in
Al Al

ways. We can calculate the most probable distributiod@f} by maximising
(I:13) subject td (1]8) anf (1]10). We get

2|f the interaction of particles af, with those ofS;, is negligible, except insofar as necessary to allow a
state of thermal equilibrium to be reached.
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Cig
T
We can also maximis€ (1.]12) subject[to [1.7) (1.9) to get

Cig = e~ 1= @ab=B(EaitEbs) Pio =

—1l—as—BEa; _
a; =€ A Pi =

—l—ap—PBEps _
b, =e v—BEp P =

SR

Defining

Zap(B) = Y e PEertBol - Z,(B) =Y e PPt Zy(B) =) e PP

i

we see thatZ,,(8) = Z.(8)Z,(8) and p;r = pip,. A common value fors
characterises the state of thermal equilibriun&gf and it is natural to assume that
is some function of temperatuféand that the average enerdlg€energy) of a system
is a function of N, V andT.

We defin€l" by 5 = ,%T wherek is a constant.

As this argument applies to any two systerhsshould be a universal constant
(Boltzmann’s constant) the same for all systems when a universal definitiohisof
used. We will defind” for a standard system (a thermometer) and for other systems by
putting them into a state of thermal equilibrium with our standard system.

Recall the ideal gas lawPV = NkT for a sample ofV molecule§] k is the same
because equal volumes of all gases at fixed temperature and pressure are observed to
have the same number of molecul@sis in degrees Kelvin.

1.4 Towards thermodynamic variables

Recall that in quantum mechanics, spinless particles in a cube oLdidee energies
E, = 272% In|?, wheren € N3. Note thatE « V% and we generalise this to
E;, = E;(V). ConsidetSyasin thermodynamic equilibrium in a container of voluriie
and changé” by a small amount by slowly moving one of its walls.

The E; will change according td&; — FE; + %’{3; 0V and changes in which theg
do not change will be examined first.

The change in energy is supplied by the work doneSoby a piston applied to
the right hand wall. For slow motion the system passes through successive positions
of thermal equilibrium and then the applied force just balances the pressure®drce

3This applies to all gases at sufficiently low density.
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Thus the work done to the system-sPAdl = —PSV. 0E = W = —P§V. Now
E=%",p,E;andso

OE; 10
P= —Zpi o = Gy 1087 (1.13)

Consider next changes in which theare allowed to vary. Thetll = — PV +
>, Eiép;, and note thap_, 6p; = 0.
Define the entropy

S = 1 log Winax that is,IV at thermal equilibrium

k

=4 (AlogAZailogaZ)

= L2 AlogA—Zailogpi —logAZai
A i i

= —kZpi logp;  atthermal equilibrium.

(1.14)

We see that

1
08 = —IchSpi (logpi + pi; logpi>
= kY 6pi(—BE; —log Z +1)

1

and thusy_, E;6p; = T9S. We have defined such that

O0FE =T46S — PSV orin terms of exact differentials,

(1.15)
dE = TdS — PdV.

We might regard this as arising from the comparison of ensembles with infinitesi-
mally different states of thermal equilibriunj. (I]15) statesRhst Law of Thermody-
namicg written in the form

dE = 6Q + 6W, (1.16)

wheredQ is the heat supplieth S andé W is the work donen S.

(L13) also shows th&t = 2% andP = — 4.

For a gas of spinless particleB, = >, E;p; V*% and soP = %% giving
PV = %E Combined with the result for a perfect gds,= %NkT (see later), we
have Boyle'’s lawPV = NkT.

We want to be able to calculate from the partition function. Now, at thermal
equilibrium,

4You can’t win...
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S=-k>» pilogpi
=—k> pi(—BE; —log 2)
= lE—l—klo Z

Define thefree energyf’ = E — T'S, then

F= —%logZ. (1.17)
Also,
1 dlog Z 0 oF
=TT 03 +k10gZ—a—T(leogZ)——a—T. (1.18)

We have a very tangible definition &f, as proportional tdog Wnax, WhereWmax
is the number of microstates Sfcontributing to the state of thermal equilibrium.

Given the partition function (1]3), we can calculate the thermodynamic variables
in a state of thermal equilibriun® (by (1.13)),E (by (1.8)), F (by (I.17)) andS (by
(L.18)).

1.5 Towards applications

1.5.1 N particle partition function

Consider a composite system with Hamiltonidn= H; + H, and H; and H, inde-
pendent (they commute). Léf; |a) = E14|a) and Ha|a) = Eaq|ar). Then ast, and
H, commute,H|a,a) = Euula, ), whereE,, = Ej, + Ea,. Then the 2 particle
partition function is

Z = ZB_EE("’ = Z e_ﬂEl"' Z €_ﬁE2” = Z1Z>.
a,o a

[e3

Let Z = Zy describe the sum over states of a gas\Votery weakly interacting
particles. If these are supposed independent (distinguishable)thenzV, where
z is the “one particle partition function”. This allows easy calculations, but fails for
systems of identical (indistinguishable) bosons or fermions. For the latter it seems best
to use grand ensemble methods.

Later we will consider a gas of diatomic moleculés= Hr + Hot + H.in, Where
Hr describes the centre of mass motidf,: describes rotation about the centre of
mass andd,;, describes vibration along the axis. We see that the one particle partition
function isz = z7zrot2vib -

1.5.2 Extensive and intensive variables

Extensive variables are proportional to the amount of matter in a system at fixed tem-
perature, whereas intensive variables are independent of the amount of matter.
In general,V, V, S and E are extensive and@ and P are intensive.
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Think initially of a system made up of two independent subsystems. Then
V1+ V5. In a state of thermal equilibrium the systems have the sataad hence same
T), and sdl’ is intensive. In a state of equilibrium there is mechanical equilibrium and
so the systems have the same pressure, aftisintensive.

As Z = Z1Z> we see thall = | + E5, S = S; + .53 and so on. A logical ex-
tension of this argument gives thidt £ and.S are proportional taVv and so extensive.
This can fail if volume energies do not swamp surface energies or if intermolecular
forces are neither weak nor short range.

1.5.3 Density of states

Consider a spinless particle in a box of sifle Instead of using solutiong of the
Schibdinger equation such that = 0 on the walls we use periodic boundary condi-
tions, ) (x + Li) = 1 (x) (and so on). Thus we can ugg o e’** with ¢ = h;f

The periodicity gives tha%‘j € Z3. There is one such state per unit volumezin
space and in the continuum limit, there dfe: states witha in the rangen — n+dn.
There are thud?n states withk in the rangek — k + dk and hence(%)3 d3k states
with k in the rangék — k + dk.

We see that

£ (&)
= %/Mkz dk

=o'/ (2:) o

=27V <2;L"> /e% de (1.20)

=/d69(6)~

We insert a factogs = (25 + 1) to cope with massive patrticles of sp# and

gives the density of states. We uge (1.20) in isotropic contextd, but (1.19) is needed
in kinetic theory.

In two dimensions we consider a square of sidend A = L? enters in thedle of
V. We find thatg(¢) = (2%) gs2m A is independent of.

For relativistic particles of rest mass we havee = (m?c* + hk?c?)? and use

(1.19) to get

ar [ L
/d3k — /47rk2 dk = (hw)s/ ede (2 — m2c?)? | (1.22)
C mc?
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We also supply a factajs = 25 + 1 for a particle of spinS with nonzero rest
mass. For photons, = 0, gs = 2 and so

Vo [4m\? [ 8tV [
Z — QW (hc) / 62 d€ = 63 / V2 dl/. (122)
, 0 0

K3

1.5.4 Gas of spinless particles

ConsiderN spinless patrticles in a cube of side length- V5. Thenthe single particle
partition function
z=) e / deg(e)e 7,
i 0

whereg(e¢) = DVez andD = 4x (Qh—";)% Settingy = ¢ we get

3 [ 1 2 T 2
» =DV (kT)? / dyye ¥ =V (”ﬁ) . (1.23)
0

Now z = 2" and sdog Z = N log z. Thus

0
E = fN% (—2log B) = 2NKT.

This isthe classical result: there is an energgT associated with each degree of
freedom of each particle. Combining withl” = £ E we getPV = NkT.

1.5.5 Entropy and the Gibbs paradox
UsingZ = 2%, (1.23) and[(T.118) we have

2 kT
S = NklogV + £ Nklog (”Z;) + 3NF,

which is not extensive, dg « N. This is Gibbs’ paradox.
If instead we useZ = % (1.23), [(1-1B) and Stirling’s formula we have

. 2mrmkT .
S:Nk:log]‘\/,4—§Nklog<m7T ) 3

and we see tha is extensive.

Often an additive constant fidoes not matter anfl (1]23) gives all thermodynamics
otherwise correctly. It reflects a normal classical view of how to treat indistinguishable
particles. TakingZ = % cures this but haso foundation in classical statistical
physics.

1.6 Harmonic oscillator model
Model a crystal by placing one atom at each point of some regular latticeNvitites.

In 1D, simplify by taking a simple harmonic oscillator of frequengyinstead of the
i atom.
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Now Zy = [], z(w,), and usingE,, = hw(n + 3) for the simple harmonic oscil-

lator with frequencyw we get
_ Bhw
e 2
2W) = T e

Even ifw, = w for all r, the “atoms” are distinguishable as there exists one at each

lattice site. This is a one dimensional version of Himstein solid We find that
E Ologz hw

NTep Mt gy

If hw < kT this gives the classical resuff — 2hw = kT, with energy1 kT per
degree of freedom per “atom”.

If hw > KT thenfhw > 1 and £ — Thw ~ hwe=P", which tends to zero as
T — 0.

Quantum statistical mechanics “knows” when to count the full clas%ik:ﬁl value
per degree of freedom: do it only whé&his large on some scale set by the problem. In
this case the critical temperatuifg = %“



Chapter 2

Thermodynamics

2.1 Introduction

Consider a volumé&” of gas with a fixed numbeW of particles. The state of thermal
equilibrium of this gas is characterised ByandV'.

Our work with quantum statistical mechanics has produced some concepts natu-
rally:

e [ the total energy of the system, which arose as the average energy and has
negligible fluctuations.

S: the entropy. This has a clear significance as the number of microstates con-
tributing to the macrostate of thermal equilibrium.

equations of state: for instanéd” = NkT.

dE = TdS — PdV, which is true for any thermodynamic change between two
infinitesimally close states of thermodynamic equilibrium.

All thermodynamic variables for the sample of gas we are talking about can be
regarded as a function of two suitably chosen independent variables. In the case of the
energy.E arises a(S, V).

We also found thal E = 6Q + dW, whered(@ is the heat supplietb the system
anddW is the work donenthe system.

For finite changes from the initial to the final state conservation of energy gives
AE = AQ + AW. This is the first law of thermodynamics, equivalent to the conser-
vation of energy.

Suppose we change from a state wih(S;, 12) to E2(S2, Va). In general, we
expect

Vs
AW > —/ PdV
Vi

because of wasted effort (against friction or in producing convection or turbulence).
This gives us

Sa
AQ < / Tds.
S

1

11
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These inequalities hold as equalities feversiblechanges, that is changes which
arequasi-staticand non-dissipative.

Quasi-static changes are changes which are done so slowly as to pass through states
arbitrarily close to a state of thermodynamic equilibrium, so that all thermodynamic
variables are well-defined throughout the change.

Some (obvious) irreversible processes are fast piston movement, free expansion of
a gas into a vacuum and the mixing of samples of different gases.

In induced/allowed changes in real life wifl) = 0, 65 > 0 and so the entropy
increases.

2.2 Applications ofdE = TdS — PdV

2.2.1 Integrability conditions

The internal energ¥ is seen a€2(.5, V') within

dE =TdS — PdV = 3£ ds + 8£
a5 ), av )
2ThusT = (g—g)v andP = — (3—5)3. dFE is an exact differential, s %i’)Ev =
a5 and

(@), = (@),

This is aMaxwell relation
The free energy’ = E — T'S is a natural function of ' andV’, as

dF =dE —-TdS — SdT = —SdT — PdV.

ThusS = — (%%),, andP = — () .. This gives the Maxwell relation

95\ _ (0P
ov ), \oT )’

H = E + PV defines theenthalpyH (S, P) andG = E — T'S + PV defines the
Gibbs functionG(T, P).

These give four Maxwell relations, but they are interdependent.

E, F, H andG are all extensive. If (exceptionally) = 0 (true for a gas of
photons) therG = Ny and so the chemical potentialcan vanish for arbitrary finite
N.

We need some rules for shunting partial derivatives around. Consiget(z, y).
Then



2.2. APPLICATIONS OFDE =TDS — PDV 13
This can be rewritten in a slightly different form:
) (02 _,
0z y ox Y B
dr\ (Oy) (2 __,
dy).\0x ), \0z/, -
When we wrote dowtk, F', H andG we wrote them in terms of the mathematically

natural independent variables in each case. In practice, we would& ldea function
of T"andV. RecallT'dS = dE + PdV, so that

2.1)

OF OF
TdS = (=) dT'+ (= | dV +PdV
ds (GT)Vd +(a )Td + Pd and so

) oF
T(m)v‘(m9v and

0S5 oOF
T(mJT‘(mJT+P

825 _  9°%s
Also, we know thatW = 5voT and so

oF oOP
(mJT—T(m9V‘R

For a perfect gas?’V = NkT and so( ), = 0. ThusE is a function ofI" only.

Given the laws of thermodynamics we need two inputs from experiment to specify
all thermodynamic variables completely. For instance, for a perfect gas we need the
equation of state ant = CT.

2.2.2 Specific heats

An amount of gas withV, (Avogadro’s number) of molecules is calledrele The
ideal gas law tells us that at fixed temperature and pressure, a maigy afeal gas
occupies the same volume. Written in terms of moles, the ideal gas lawnfmies of
gasis

PV = nNakT = nRT. (2.2)

R is called thegas constanand is the same for all ideal gases. In fact, all gases are
essentially ideal at sufficiently low density.

For a sample of mole of ideal gas we define tispecific heafor heat capacity per
mole) usingd@ = 7'dS under suitable conditions.

DefineCy =T (g%)v’ thespecific heat at constant voluraedCp = T (%)P’
the specific heat at constant pressuiow

TdS =dE+ PdV =dH — VdP

and so

(2.3)
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For one mole of ideal gas we know that= CT and soC = Cy,. To findCp we
need to usé” andT as the independent variables.
Now

08 oS
ds = (8T)VdT+ (W)Td\/
0S 0S5 oV ov
- (w)ﬁ” (av)T ((mv)pd” (ap)TdP) '

Thus(%)P = (g%)v + (Tb;):r (%)P and so

a8 oV oV oP
Cp=Cv+T (av)T (aT)P —CvaT (aT)P (aT>V' @4

This allows the calculation af'» — Cy from the equation of state: for an ideal gas
Cp — Cy = R. Define the ratio of specific heats— 2. Note thaty = <42 > 1
for an ideal gas.

Statistical mechanics givesy, = %R, %R7... (for monatomic, diatomic (etc)

gases). Thug = 2,1, ....

Q

Q|

2.2.3 Adiabatic changes

These are (defined as) changes which are reversible and gadisfy0. We refer ton
moles of ideal gas using = nCyT andPV = nRT. Now

0 = RAE + RPAV
= RnCydT + RPAV
— Cy (PAV + VdAP) + RPAV
= CpPdV + CyVdP.

Thus0 = 7% + % and soPV7 is constant on adiabatics.
Note that adiabatic®1V ¥ constant are steeper than isothernfals constant.

2.2.4 Entropy ofn moles of ideal gas

We start (as usual) from

TdS = dE + PdV
= nCydT + nRT%.

dT dv
ThUSdS = nCV? + nR77

and soS = nCy logT + nRlogV + ¢;. Thermodynamics cannot determine the
constant;, and does not care thétis not explicitly extensiveS = nCy log PV +¢/
and so (as expectedy,is constant on adiabatics (isentropics).
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2.2.5 van der Waal's equation

We get a better agreement with experiment by replacing the perfect gas law with
n?A
(P + V2) (V. —nB) =nRT, (2.5)
whereA, B andR are strictly positive constants.

e Molecules are not treated as point particles, ané’ as oo at constanf’, V' —
nB, which is the residual volume of all the molecules.

o P+ ”;;4 reduces the real gas pressure by an améf;@t due to intermolecular
attractive forces. If these are short range then the simaliethe more important

these become.

2.2.6 The Joule effect

Consider the apparatus shown, with adiathermal walls and containingles of gas at
volumeV;, pressureP; and temperatur@;. Pull back the partition and allow the gas
to expand (irreversibly) into the total volum&, and then to reach a state of thermal
equilibrium specified by, V5 andTb.

As 6Q) = 0 (adiathermal) andW = 0 (no work is done)dFE = 0 and so for a
perfect gas

T, =T: and S, — S, =nRlog? > 0forVs > Vi.

For a van der Waal’s gas we still haité’ = 0 (which is true in general) and 96
stays constant. Now

= ————— forvan der Waal's gas

< 0.

We can show that'y, is independent of for a van der Waal's gas and we suppose
thatC'y is also approximately independent®f We can now integrate this equation to

get
nA 1 1
T-T = (——-—)<o.
2mh Cv<VQ v1><

T decreases because some of the molecular kinetic energy is lost in the expansion
against attractive intermolecular forces.
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2.3 Some thermodynamics

Suppose a samplg of n moles of perfect gas is put in thermal contact with a heat bath
B and compressed reversibly from voluiigto volumeVs;. If the gas is perfect then
E = E(T) = nCyT and soE stays the same. Now

Va
AQ+AW =0 = AQ=-AW = [ PdV =nRTlog {*.
Vi

ThusAW > 0 for compression¥; < V;) andAQ < 0. Heat is given out t&3
by S. Now AS = nRlog % and so the entropy & decreases. However, because the
isolated universe af and5 hasAS = 0 the entropy of3 must increase.

2.3.1 The second law

(Kelvin) No process can continuously (by going round a cycle) extract heat from a heat
bath and perform an equal amount of work.
(Clausiug No process can continuously transfer heat from a colder to a hotteEbody.

Take a samplé of perfect gas around a closed Carnot cycle by means of adiabatics
and isothermalsi; > 77). On AB the heat bath df; supplies heaf\@- > 0to S at
temperaturd,. OnC'D the heat bath af; supplies heafA@Q; < 0to S at temperature
Ty.

E = E(T) is unchanged over one complete cycle so that the work done in a cycle
bySis —W = AQ; + AQ- by the first law (a®9@ = 0 on adiabatics).

This agrees with the Kelvin statement of the second [aw)\@;) > 0 of heat is
wasted at the low temperature heat bath. The efficierisydefined

-W AQq
LYox

<1
AQ:

On adiabaticg’ V7! is constant and so
LV =Tvy and TVl =TV
Thusy4 = {2. We know that
AQz =nRTylog £ > 0andAQ, = nRT, log y2 = —nRT log 2.

Thusn = TQT;QTl and clearly0 < n < 1. This can be generalised to other cycles.

1You can't break even either... (see footnote on @ge 6)
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2.4 Heat flow

Let S; be a sample ofi; moles of ideal gas at temperatufe in a fixed volumeV;.
ThenE;(Ty) = n1Cy, Ty = x1Ty. Similarly for S,. PutS; andS, in thermal contact
allowing no change iv; + V5. Suppose the state of thermal equilibrium is reached at
a temperatur&. Then (by conservation of energy),

,CL‘]_(T]_ —T) +£I)2(T2 —T) =0

and we can solve fdF'. As for the entropyAS; » = 1 5 log 71— andAS; +AS; > 0.
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Chapter 3

Grand ensemble methods

3.1 The formalism

Our approach is a direct extension of the approach we adopted earlier for the canonical
ensemble. Given a systefof fixed volume we construct a grand (canonical) ensem-
ble G with a large number of distinguishable replicas & in microstategi) of S

with N; particles and energids;. Suppose that; members ofj are in the microstate

i) so that

We have thus fixed the average energy and number of particles of members of the
ensemble. Each configuratién, } of G defines a state of the ensemble and we assign to
each configuration equalpriori probability. We associate the state of thermodynamic

equilibrium of S with the most probable configuration ¢f in the presence of our
constraints. We find this by maximising the salmeW as before to get

0= 8(21' <logWa2i:a,;ﬁzi:a,;Eiyzi:aiNi>_

This gives us that

a; = e~ (F0) o= B(B—uN:)

where we have defined tlelhemical potential by 5 = —v. We now define the
grand partition function

Z=) e PEmmN, (3.1)

The fraction of members @ in the microstatéi) is

a; e~ B(Ei—uN:)
PR=A= "z

The grand ensemble average is
0= Z piO;

19
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andE = E andN = N (which is, on the whole, a good thing). As before we can
useZ to calculate thermodynamic variables:

1 810gZ)
N=-— , 3.2
ﬁ( op 8.V (3-2)
310gZ)
E — uN = — . 3.3
I ( 5 ),y (3.3)

)

As before, from consideration of changes at constamte find thatd £ = — PV
and

B OE; 1 (OlogZ
Pff;plav ﬁ< i >m. (3.4)

More general changes in whiély; # 0 obey

Defining the entropy

k

§ =~ log Winax = —kZm log p;

gives that

1
EZ_ pilog p E pi-op
=—k g 0pi (—B(E; — uN;) —log Z).

This gives the fundamental thermodynamic relation

T8S = 6E + PSV — udN, (3.5)

yielding the first lawd E = 6Q + 6 Wmech+ 6 Wenem WheredWepem = pd N is the
work done in adding IV particles to the systeii. The chemical potential is therefore

given by
OF
= (5v) oo

Returning to the entrop§ we see that
S =kB(E — uN)+ klog Z (3.7)

which can be put in the same form s (3.18), namely

8/<;TlogZ>
5= ( . (3.8)
oT wV
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A similar argument to that used to define temperatufe ih 1.3 gives that two systems
placed in thermal and “diffusive” contact will reach a thermodynamic equilibrium char-
acterised by common values 6f= ﬁ andg.

We keep the idea that at fixed 4, Np energy flows from the system with the
higher temperature to that with the lower temperature until thermodynamic equilibrium
is reached. We add that if the contact allows the diffusion of particles then in the state
of thermodynamic equilibrium with constantthere is (on average) no diffusion.

We return to the first lawJE = T'dS — PdV + udN. We can viewFE as a function
of S, V and N, and when (as for many large systems),S andV are extensive we
get

E(AS,A\V,AN) = \E(S,V,N)

oOF oF oF
B=5 (as)V,N v (av)w N (aw)s,v

=TS — PV + uN.

and so

We define thgyrand potentiak? for a state of thermodynamic equilibrium by

Q=FE-TS—uN
=F —uN — (E— uN + kTlog 2)
= —kTlog Z.

ThusZ = e~ 7. Now also equals- PV and so
PV = kT log Z (3.9

allows the calculation of the equation of state from the grand partition function.

The state of thermodynamic equilibrium corresponds to the most probable state
in G. Some thermodynamic variables arise from averages over microstates weighted
by the probability of finding them in the state of thermodynamic equilibrium. The
averages are effectively averages over all possible states of the ensemble because the
macrostate of thermodynamic equilibrium dominates overwhelmingly. They are also
very sharp (for the same reason).

3.2 Systems of non-interacting identical particles

3.2.1 Alittle quantum mechanics

We will treat such systems with only one type of particle. When interactions are ne-
glected then the wavefunction of each stationary state of the syBtem x»,...) is
obtained by either symmetrization (for bosons) or antisymmetrization (fermions) of the
producte; (x1)¢2(x2) ... of one particle wavefunctions.

Consider spir) bosons in a cube of sidk. Then the one particle wavefunctions
are

N

2 . . .
Pn(x) = <L sin ML gin 2L gjp NME

with corresponding energies
h2
n T omI2

n*.
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For identical bosons we cannot use wavefunctidrs; ) ¢1 (x2) @2 (x3) which cor-
respond to particles and2 in statel = n; and particle3 in state2 = n,, but we must
use instead the symmetrized wavefunction

U= \/g(%()ﬁ)(bl (x2)¢2(x3) + ¢1(x1)P2(x2)P1(X3) + Pa(x1)P1(X2)P1(x3)) -

All we can say about this is that there are two particles in $1atand one particle
in state|2). ¥ is fully determined by the fact that; is used twice and, used once.
For spin% fermions we have

¢(x) = Yn(x)er Or ihn(x),

whereq is “spin up” T andg is spin down| with H and E,, independent ofv and
8. We can use determinants to build the antisymmetric wavefunctions.

For instance, given (x, 1) andyq(x, 1) (wherel = n;, 2 = np andpy = a or
5) we get the antisymmetrized version

1

U (X1, po, X2, fl2) = B

Y1(x1, 1) Y1(xa, p2)
Yo(x1, 1) Y2(Xa, p2)|’

Similarly for three particles,

1 Yr(x1, 1) Y1(xe, p2)  P1(xs, ps)
U= \/; Yo(x1, 1) Y2(Xo, p2)  a(xXs, p3)|.
Cls(x1, 1) Ys(xo,pe)  Us(xs,ps)

¥ reflects thePauli exclusion principlevhich forbids any two of the); or any two
sets(x, p) from being the same.

Each¥ is determined fully by the number of times each one particle wavefunction
is used in the product term that we (anti)symmetrize.

3.2.2 The patrtition functions

Let the one particle wavefunctions of the particlesSdfe .. (x) with energye,.. Sup-
pose that in the microstaié, n,. of the particles have wavefunctiah (x).

Then
N; = Z Ny and E;, = Z €Ny,

We see that the microstaf@ of S is fully determined by = {n,.}. We obtain the
full set of microstates of by letting then,. vary without restriction over their allowed
range of values. (Thud/; and E; cannot themselves be restricted — this is why we
use the grand ensemble method.)

We can now write down the grand partition function

Z = Z e~ B(Ei—uN;)

- E e~ Bnieitnaest—pni—pna—...)

ni,na,...

— H Z 6_5”7‘(57"_H) .

T za
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For fermions we have that. can only be zero or one, so that
z=1] (1 n 6_6(5’“_“)) : (3.10)

We use this to find

1 (0log Z 1
N: — = _—
ﬁ ( 6# )ﬂ v Z eﬁ(fr*l»‘f) —+ 1

) I

Now

nre_ﬂ(ev‘ _IL)

- Z E

ni,na,...
1 (Olog Z)
SFET
( e, Bis€s ?
_ 1

- eﬁ(fr_ﬂ) + 1 ’

B

We see thatV = ) n,. 7, is theaverage occupation numberf the ri one
particle state at thermal equilibrium. This is thermi-Dirac distribution.
For bosons) < n, < oo and

1
Z = H 1 — e*ﬁ(fr*#) ’

This gives that

1

= ST (3.11)

ny

This is the Bose-Einstein distribution.
If there areg, one particle states of energy we can write the average number of

particles with energy,. as
9r

fL(ET) - eﬁ(er*l‘) F 1

for V large we pass to the continuum limit,

Z E /deg(é),

whereg(e) is the density of states factaRVez as in secti03, wher® =

3
21 (244)? gs andgs = 25 + 1 is the spin degeneracy.
The average number of particles with energy in the rangee + de is

g(€e)de

n(ﬁ)d€ = m

Thus in the continuum limit, the grand partition functignis given by

oo
log Z = q:/ g(e) log(1 F e Pl de,
0
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We can now use the results of section 3.1 to find thingsNkend E,

N = B > egle) de '
65(6 H) F1 o eble=m) 1

In three dimensionsg(e) = DVez and so (integrating by parts) we see that

3
* 2 €2

log Z2 =DV R Tose e
08 /0 3 eﬁ(e_ﬂ) F 1

= gﬁe
Combining this with[{3:0) we find tha?V’ = 2E. The 2 comes from the? factor
ing(e).
3.2.3 Classical limit
For a volumel” of N particles with energy, we usey(e) = DVez and so

® e de ® 3 (e
N:DV/ ———— and E:DV/ _
o ePle=m 1 o ePlem 1

Puttingz = Be we find N = DV (kT)2 I (—fp) andE = DV(kT)gI%( Bu),

with

I:
2

© 2ndz
L(y) = /O

ety 1’

If e¥ >> 1 we can neglect the in the denominator and find thate) o e=#<g(e).
We can approximate the integrals (expand the integrand) to get

Eesnir (15 2
~ = — 4+ ... ).
2 <$4ﬁ )

In the lowest approximatiol = %NkT andN = DV(kT)g @
The conditione=%* >> 1 is thus

3
2mrkT\ 2 V .
(}LQ) N >1 if gs = 1.

Thisis a classical limit — it holds whe is very small on a scale defined by
and the mean energy per partigle7". This condition is satisfied at low densi}& and
at high temperature.

It is true for all real gases except helium at very low temperature and very high
density. Most real gases liquefy before quantum mechanical effects set in.

It fails to holds for electrons in solids due to the fact that their effective mass inside
the solid is much less than the free electron mass.

We can use our formulae fdr and N to get the lowest order quantum correction
to the equation of state — recall thBl = %E S{o]

NP

1
PV=NKT ¥ —————.
T 1) DVar
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3.3 Black body radiation

Consider a cubic cavity of sidé = V3 inside a perfectly black body, the walls of
which are maintained at a fixed temperatiliteThe atoms of the perfectly black body
absorb all photons incident on them and independently emit photons such that even
in thermodynamic equilibrium the number of photons varies significantly. Thus the
total number of photons is not conserved and so no constraint can be applied to them.
Thereforeu = 0.

The number of photons depends on the temperature. We must consider a gas of
photons in a volumé” at a temperatur@’. These quanta of the electromagnetic field
are relativistic bosons of rest mass

Our previous work applies, setting= 0. Thus

€r

_ 1
iy = —5— and E:qufl'

T

We pass to the continuum limit usirfg (1} 22) to get

N:87T3V & V;dl/ and E:87rV & hu?’du’
c Jy e —1 3y efhv—1

wheree = hv. This is Planck’s law. We expect classical behaviour at Higbr
hv
low v, wheree*® — 1 ~ 2 and

dE = 82-—3‘/1/2 dvkT = kTg(v)dV,

which agrees with the classical result of enekgyper normal mode of radiation.
This is the classical equipartition of energy. Using this re%ﬁt,oc v? gives a diver-
gent energy, which is called thadtraviolet catastrophe

Using the full formula for the energy we find that

E KL * 23dz
=—= kT)*
¢ Vv ( )/0 e —1

8okt
15h3¢3

This is Stefan’s lawando =
density is a function of” only.
Using [3.T) withu = 0 we see that

is Stefan’s constantWe see that the energy

E
=klogZ+ =
S og +T

and we can evaluatelog Z = 3Z. The entropy densitys = 2067° — 0 as
T — 0. The energy

ol

E=VoT*= <3S> % « V™3 at constant entropy.
4 (Vo)s
1

The pressureP can now be calculated fro®? = — (58) = 3£ = $oT%

Finally the density of photons, = % x T3 (see example sheet 3).
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3.4 Degenerate Fermi gas
This is the extreme quantum limit. It occurs for

e electrons in solids,
e electrons in white dwarf stars,
e neutrons in neutron stars and

e nucleons in nuclear matter.

For N electrons in a volum@&” at a temperaturé’ we have
N = / g(e)F(e)de and FE :/ g(e)eF (€) de,
0 0

whereg(e) = DV \/e, D = 4x (2}%1)% and

1
F(e) = P
The range) < e=#* < o is allowed without blowup of”. The regiore=# > 1
is the classical realm and we expect that quantum mechanical effects will be most
pronounced at low temperatue€’’ > 1.
We assume that is finite and positive ang = Er = kTF is constant af’ = 0.
We further assume that = Er + O(kT) for small T. It can be shown thgt =

Er + O(kT)Q
Now
hm eﬂ(ei'u') _ 0 e < EF
T—0 o €> FEp,
so that

1 c<E
lim Fe) =4 S °F
T—0 0 e> Fp.

Thusatl’ =0 F(e) = (e — Er). At T = 0 it is energetically most favourable for
electrons to fill up the one particle energy eigenstates (two electrons at a time, one spin
up and one spin down) with increasing energy according to the Pauli principle, until
the Fermi energy is reachefl;r is the highest energy occupiedfat= 0.

We can now perform the integrals fof and F to get

N =DV2E} (3.12)
E=DV2E} = :NEy. (3.13)

We can solve[(3.32) foE to get

2
3N \3 2
EF_<2DV> x V73,
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The equation of statV = %E becomes”V 5 = const. Classical kinetic theory

givesP — 0 asT — 0. The Pauli principle requires particles to have non-zero
momentum and so there is pressure eveh at 0.

In fact
2 5 (N\? h2
p==233 (2) 2 ot
333(V> om ™

and so afl’ = 0 the pressure is much bigger for lighter particles.

3.4.1 Heat capacity at low temperature

We have

N = /O‘X’ g(€)F(e) de and
E= /OOO eg(e)F(€) de.

We want to findC' = (4%),, (which is proportional to the usuély). We takeS

of both of the above to find
o oF
C—/O g(e)a—T(e—EF)de.

At low temperature?% is very like a delta function and so the regier~ Er
dominates the integral.
We approximate(e) ~ g(EFr) andu = Er. This gives us

C ~ 9(Er) /OOO de(e — Ep)g( S (e — Ep)?

k?TQ eﬁ(e—EF) + 1)2
e <] 2 zd
- g(EF)sz/ =
—pEp (e +1)

We know thatE' is finite and positive, so that SEr — —oo asT — 0. We therefore
approximate the lower limit of the integral byoo.

22 dz
C ~ g(Ep)sz/ = .
oo (€2 4 1)
This leaves a convergent integral whose valuéisso that

72 T
~ —Nk—
¢ 2 Tr’
whereTr (the Fermi temperaturgis defined byEr = kTr. This approximation
is expected to be good far <« Tr.
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3.5 Bose-Einstein condensation

Recall the result

®  eade s [ z2dz 3 /T
N = DV/0 e e e DV (kT)z /0 prm: e DV (kT)? ) f(=Bp),
where 5
[e%S) e
S =2~

f(—=pBu) is convergent iffdu. < 0. Assuming this, the Bose-Einstein denominator
does not vanish for any point in the range of integration.

It is easy to see that has a maximum value (&f.612) at 5 = 0 and decreases
monotonically agip decreases through negative values frem= 0.

Now suppose tha@ is fixed. Our equation forV is OK asT decreases since
f(—Bu) can increase by getting less negative. Whetu reache$) problems occur
as f cannot increase any more. This will belat= Tz, given by

Ao s A DVAL(0)
7 = D(kTp) D= =

Our equation forV appears to fail beyond this. Why?

More care is called for in the passage to the continuum limit. ¢Ehfactor ing(e)
assigns) weight to the particles in the = 0 state. This would be no problem for
fermions (which have the Pauli principle), but no law stops bosons frendensing
into thee = 0 state if need be. We writ&/ = Ny + N¢o, whereN, is the number of
particles in the: = 0 state andV is the number of particles in> 0 states. Then for
T>1Tg

N

N
v =D (=),

ForT = Tp, & = D(kT;)?, definingTs. ForT < T then

jw

No _ pur)d, gving Yo - (L
77D(l’<:T), giving N(TB>

3.6 White dwarf stars

White dwarfs are abnormally faint: they are stars in which the hydrogen supply has run
out so that they are composed mainly of helium.
Typically,

T~ Tsyn= 107K
M =~ Mgy, and
p= 107Psun~

We regard them as being a mass of heliurfiat 107K and under extreme com-
pression. Fofl' ~ 107K, kT = 10%eV is much greater than the binding energy of
electrons to helium, so that thermal collisions completely ionize all the atoms, produc-
ing an electron gas.
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To a good approximation this may be viewed as a Fermi gas in the degenerate
(negligibleT) limit. This may be seen by computirig-, the natural temperature scale
of the problem (the Fermi temperature). Now
h? ([ 3N
KTp =Fp=— | —
FeeE (SWV

2

3

) ~ 2 x 10%V.
2m

Since+ is so largel’y ~ 101K > T.

The helium nuclei neutralise the charge of the star and produce the gravitational
attraction which counteracts the extreme zero-point pressure of the electron gas (which
dominates the zero-point pressure from the nuclei).

We can calculate the total enery= Eeed R) + Egrav(R) and find the radiug,
of the star by minimising this.

Treating the electrons relativistically we have

N  8r [Fr 1
T / . ede(e? —m3ct)z.
mc

Let V€2 — m2c* = mc?x, so that the integral fo@ can be done to get

N 8m 2)3:3%
3

V= ame

The integral for the energy density is

E wr
E_8n (mc?)* / z?dz /1 + 22
0

VB33
and soZ = 3mc? (mF + o=+ O(x;Q)). We know that’ « R3 and sozp o

R~!. Hence

a v
E= ipp-2
rT R

wherea, b and~y are positive constants. This only has a minimum if a, which
leads to the Chandrasekhar upper limit on the mass of a white dwarf.
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Chapter 4

Classical statistical mechanics

4.1 Introduction

Recall the resulZ = 2" for a system of distinguishable non-interacting particles. It
can be shown that in the classical limit

z= Ze‘ﬁsr = Z(r\e‘ﬁﬁm

gives
z=h"3 / dPpdigePHP), (4.1)

whereH (p, §) is the quantum mechanical Hamiltonian afidp, ¢) is the classical
Hamiltonian as a function of classical variabjeandg.
The average for the system of a physical varigh{lp, q) is

pea)) = [ d®pd3q f(p,q)e PHPD
p.d - fd?)p d3q efﬁH(PsQ) ’

We can see thatH (p,q)) = — (alggz)v agrees with the result

dlog Z dlog z
E=- =—-N .
(5557), = (55),

N
d3pd?
2= IS ) e,
=1

wherezf\;1 H(p;, q;) is the Hamiltonian of théV-particle system.
For a monatomic gas withl = % we have

Z_Z /d efgi S—K Lﬂ—m %
3 P “w\ 5 )

This result shows thal = %NkT, which is the common classical result of energy
%kT per degree of freedom per particle.

Now

31
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4.2 Diatomic gases

We will study therigid dumbbell modehs shown.

We want to write down the partition functiai = 2. To apply [4.1) we need the
HamiltonianH . To find the Hamiltonian we first write down the Lagrangian

L= %m;‘é + %I (92 + sin® 0(132) .

(V = 0in this rigid case.) Note that the Lagrangian splits neatly into translational
motion of G and rotational motion about the centre of mass.
We define the generalised momepta= %:

p; = ma;, pg=1I0and py = Isin” 0¢.

Now

p’ | P 1z
I .o P Py Po
;Qapa m+2l+2lsin26"
and 1
5 — ﬁ/dequ dpy dpdpe df e = 22,
where 3
B 5 3 _lmgp? 2mm 2
=93 d’pdige 2mp_v(/@hQ)
and

2
1 — & (p3+2 8m2IkT
Zr:ﬁ/dp¢d¢dp0dge I< ’ :,11129> :T.
We evaluate the above integral by first doing the p, and¢ integrals and then
doing thed integral.

3
Thusz = 22, = V (223EL) 2 8”2# This givesE = gNkT

4.3 Paramagnetism

Each molecule of aiv molecule solid acts as a little magnet fixed at its own lattice
site and free only to rotate about it. Each molecule has a dipole mamemtd gives
a contribution—m - B to the energy when in an applied magnetic fiBld= (0,0, B).
Now

P’ | p} iz

2m 21  2[sin%6

— mBcosf

and so

_ 27TI2 2sinhy
z= 128 m ;

1which ought to be expected!
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wherey = m(GB. We can calculate the magnetisation of the solid:
M = (0,0, M) = N(M).
Only the third componentn cos 6) is hon-zero:

(mcos@) = 7! (ag§2>ﬁ =m (cothy —y™').

For smally (high 7)) we thus have Curie's law/l = 1 Nmy = N5

4.4 Specific heats

The resultfl = %NkT for a diatomic gas is found to be accurate at sufficiently high
temperaturesE is found to be%NkT at lower temperatures. It is as if the rotational
degrees of freedom afzen out This is explained by qguantum mechanics.

We haveZ = 2V andz = z.z. We will look at z,, usingH, = 5;L? (the

guantum mechanical angular momentum operator). Now
I(1+1)Rh?

57 [T m)
form=-1,—-1+1,...,l—1,lforeachofl =0,1,2,.... Thus

H,[lm) =

o0

z=> (2l+1)e

=0

(41T
- T

4.2)

with T, = % T, is typically abouts0K and is experimentally accessible.
For T, < T (most gases at normal temperatures) we can turn this sum into an

integral to get
T 872

as before. Fof,. >> T all of the terms withl # 0 in (4.2) are exponentially small
and we take only thé= 0 term to getz,, = 1 — there is no rotational contribution to
the energy (or heat capacity). The contribution to the energy from rotational motion is
thereforeNkT it T'> T, or0if T < T,.

For high temperatured; rises to%NkT due to vibrational motion along the axis
of the dumbbell. There is an extra term in the Hamiltonian

= Lpzy M@

m

and an extra factor, in the one particle partition function.

4.5 Weak interparticle forces

Consider a classical gas o6f molecules with Hamiltonian

N 2
H=3gm+ D o(Re),
r=1

r<s
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whereR,.s = |q, — qs|. We use

whereZ, = z{¥ andz is the partition function for one molecule of a spinless gas
of N non-interacting molecules and

We suppose that,, = e~ #¢(fir:) _ 1 js small (weak interaction) and we treat our
results to lowest non-trivial order.

Then

K= V_N/HdBQr (1 + Z¢(Rr8)>

r<s

N(N -1 .
(72)/d3qa d3gy Ae» (N0 sSUMmMation).

=1
+ 2V

This integral can be evaluated using the change of variablesan*qb andy =
da — gp, SO that

/ A d*gy Aoy =V / dy (770 —1) = V(T),
definingf(T). ThenK =1+ % (asN —1~ N)and

logZ = NlogV +

N2f(T .
‘f/( ) + stuff which does not depend dn.

; __ (0logZ
UsingGP = (TV )5 we get
pv=ner (1= YN i pr) = / 4my? dy (e*@f’(y) - 1) . (4.3)
2V o
If we take a specifi¢p we can recover the van der Waals’ equation of state (see page

[13).

Consider the) shown.
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Then the contribution tg(T") from region 1 where is infinite is
d
/ 4y dy = —2b.
0

For largeT and weak attractive forces the contribution from region 2 is

/d " dry? dy (—B6(y)) = 28a.

a andb are positive constants. Nof(7') = —2(b — Ba) and [4.B) becomes

NZ2a Nb
P+ — =NET |14+ —|.
(P+ 5 ) v =wer (14 57)
For % small we can (approximately) take+ % to the left hand side of the
equation to get

N2q
(P—i— ‘/2) (V. — Nb) = NkKT

and the correspondence wifh (2.5) is completed by settirg N2a and B = Nb.
Note thatB is the volume of all the molecules.

4.6 The Maxwell distribution

Consider a gas with (one particle) Hamiltonig:@.
The number of molecules in the regipn— p + dp is

Ne—PH Bp?

3y — = T 2m
n(p)dp—m—CG .

Now
. 1
N = /n(p) d’p = m30/4m}2 dve™ 2™ = N/f(v) dv,

which defines thélaxwell distribution of speeds

Bmu?

1
f(v) = constx v?e” 2

f(v) is the probability of finding a particle with speedin— v+ dv. The constant
is (of course) chosen to malfé’o f(v)dv = 1. We can define averages in the obvious
way, that is

(g(v)) = /OOO f()g(v) dw.
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Approximations

Stirling’s formula

We derive the approximation for Stirling’s formula from théunction using Laplace’s
method.
Recall that

andI'(n + 1) = n!l. Then

0o )
nl = / tne—t dt = / el logt—t dt.
0 0

Letv = L, sothat

o0
nl = n"t! / enlogv=2) gy
0

1 n(-1-052)
Now for largen, e*(10sv=?) ~ ¢ , SO

o0
2
— —_nu_ —
n! ~n"tle "/ e 2 du=+v2mne "n".
— 00

This is Stirling’s formula.
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