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Chapter 1

Sound waves

1.1 Equations of motion of a compressible fluid

Assume the fluid is both homogeneous and non-dissipative. We will denote the pres-
sure, density and fluid velocity at(x, t) by p(x, t), ρ(x, t) andu(x, t) respectively.

The governing equations are derived from conservation of mass, conservation of
momentum and the laws of thermodynamics.

1.1.1 Conservation of mass

Consider an arbitrary fixed volumeV with surfaceS and outward normaln. Then

rate of increase of mass inV = mass flux acrossS

+ rate of creation of mass withinV

d
dt

∫
ρdV = −

∫
ρu · ndS +

∫
QdV

= −
∫

div ρudV +
∫
QdV.

We can makeV arbitrarily small to derive the continuity equation

∂ρ

∂t
+ div ρu = Q. (1.1)

1.1.2 Conservation of momentum

We use the same sort of argument to get

d
dt

∫
ρudV = −

∫
ρu(u · n) + p · ndS +

∫
Qu + ρFdV or in tensor form

d
dt

∫
ρui dV = −

∫
ρuiujnj + pni dS +

∫
Qui + ρFi dV

= −
∫

∂

∂xj
(ρuiuj) +

∂p

∂xi
dV +

∫
Qui + ρFi dV.

1
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MakingV arbitrarily small we get

∂

∂t
ρui +

∂

∂xj
ρuiuj +

∂p

∂xi
= Qui + ρFi (1.2)

and subtractingui × (1.1) from this we derive the Euler equation

ρ
Du
Dt

= −∇p+ ρF. (1.3)

We now have five quantities (ρ, p andu) to solve for and only four equations. The
final equation comes from thermodynamics.

1.1.3 Thermodynamics

A perfect gas with specific volumeV = ρ−1 satisfiesBoyle’s law, PV = RT and ifT
is constant then this gives us the fifth equation. This is not overly realistic and we need
something further.

When a system is in thermodynamic equilibrium we have the functions of state (for
instancep, ρ andT ), any two of which serve to define a simple fluid via an equation of
state (for instancef(p, ρ, T ) = 0).

The first law

Every thermodynamic system has a function of statee,
the internal energy per unit mass.e can be changed
by either adding heatQ and/or doing workW . If e is
changed, then

de = δQ+ δW.

Q andW are not functions of state and they depend on how the system was changed
into its state.

An adiabatic processis one in whichδQ = 0. A reversible process is one which is
very slow, and (ahem) reversible.

For a perfect gas we find thate = CV T . We also have an equation forδW ,
δW = −pdV .

The second law

All thermodynamic systems have a function of state,
the entropy (per unit mass)S such thatδQ = TdS in
any reversible process (thus definingT ). This can also
be stated as “T−1 is an integrating factor forδQ”.

We can solve the equations we have to find

S = CV log
p

ργ
+ const, (1.4)

whereγ = R+CV

CV
is the specific heat ratio.R + CV = CP , the specific heat at

constant pressure, whereasCV is the specific heat at constant volume.
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In an ideal fluid there is no heat transfer between particles (no diffusion of momen-
tum by viscosity, no diffusion of heat by thermal conductivity) and soδQ = 0. Thus
we have the final equation we need,

DS
Dt

= 0. (1.5)

Processes withDSDt = 0 are calledisentropicand processes withS the same con-
stant for all particles are calledhomentropic.

In summary, for a perfect gas:

p = ρRT ρ = CV T
p

ργ
= const× exp

S

CV
. (1.6)

If the system is homentropic then

p

p0
=
(
ρ

ρ0

)γ
and

dp
dρ

=
γp

ρ
. (1.7)

For a monatomic gasγ = 5
3 and for a diatomic gasγ = 7

5 . Air is approximately
diatomic. To fit a curve of this form to water,γ ∼ 7.

1.2 Linear acoustic waves

From ∂
∂t (1.1)+ ∂

∂xi
(1.2) we get

∂2ρ

∂t2
−∇2p =

∂Q

∂t
− ∂

∂xi
(ρFi +Qui) +

∂2

∂xixj
(ρuiuj) . (1.8)

This has an exact solution, the rest stateu = 0, p = p0, ρ = ρ0,Q = 0 andF = 0.
We make small perturbations

ρ = ρ0 + ρ̃ p = p0 + p̃ u = ũ

Q = Q̃ F = F̃

with |ρ̃| � |ρ0|, |p̃| � |p0|, andũ, Q̃ andF̃ all small.
Then to first order,ρFi = ρ0Fi andQui andρuiuj can be neglected.1 The linear

approximation to (1.8) is

∂2ρ̃

∂t2
−∇2p̃ =

∂Q̃

∂t
− ρ0 div F. (1.9)

S is uniform, sop = p(ρ, S0). Thus

p0 + p̃ = p0 + ρ̃
dp
dρ

(ρ0, S0)

and hencẽp = c20ρ̃, with c20 = dp
dρ (ρ0, S0) = γp0

ρ0
.

1About 6 lectures of a Part III course have just vanished with the casual neglect ofρuiuj . If this is
included we get Lighthill’s model of aerodynamic noise.
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1.2.1 The wave equation

(1.9) becomes (
∇2 − 1

c20

∂2

∂t2

)
p̃ = −∂Q̃

∂t
+ ρ0 div F. (1.10)

The operator∇2 − 1
c20

∂2

∂t2 is written�2.

Assuming noQ andF, the governing equations (1.1) and (1.3) linearise to give

∂ρ̃

∂t
+ ρ0 div u = 0 ρ0

∂u
∂t

= −∇p. (1.11)

We find that�2 div ũ = 0 and�2 ∂u
∂t = 0. Thus�2u = α(x) anddivα = 0. If

the motion starts from rest thenα ≡ 0. We conclude that�2(p̃, ρ̃, ũ) = 0.

1.2.2 Potential

We solve these equations by a potential method. Taking the curl of (1.11) we obtain
the vorticity equation,∂ω∂t = 0. Thusu = ∇φ + ũ0(x), and if the motion starts from
rest theñu0 ≡ 0.

Then (1.11) gives

ρ̃ =
p̃

c20
= −ρ0

c20

∂φ

∂t
+ β(t).

By redefiningφ we can takeβ ≡ 0 and so�2φ = 0.
All of φ, ũ, ρ̃ andp̃ satisfy the wave equation with propagation speed

c0 =
(
∂ρ

∂p

) 1
2

S0

=
(
γp0

ρ0

) 1
2

. (1.12)

c0 ≈ 340ms−1 in air at sea level and≈ 1500ms−1 in water.

1.2.3 Energy density, energy flux

We use equations (1.11) to derive an energy equation,

∂

∂t
(Ek + Ep) + div I = 0, (1.13)

where the kinetic energy densityEk = 1
2ρ0 |ũ|2, the potential energy densityEp =

1
2
c20ρ̃

2

ρ0
and the energy flux vector (or acoustic intensity)I = p̃ũ. Integrating (1.13)

over a fixed volumeV we see that the rate of increase of energy inV equals the rate of
working of pressure forces on∂V .

1.2.4 Plane waves

We seek to solve the wave equation�2φ = 0. φ = f(k · x − ωt) is a solution for
any (sufficiently smooth)f if c20k

2 = ω2. This is a dispersion relation, and relates the
space and time parameters of the solution.

By Fourier’s theorem, anyG(x, t) can be expressed as
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G(x, t) =
∫

d3k dω Ĝ(k, ω)e−ı(k·x−ωt) where

Ĝ(k, ω) =
1

(2π)4

∫
d3xdtG(x, t)eı(k·x−ωt).

That is, anyG can be written as a sum of harmonic plane componentse−ı(k·x−ωt)

and plane wave solutions can be added to generate more general solutions.
At any t, φ is constant on planesk · x = const.k is called thepropagation vector.

If we take axes parallel tok with co-ordinateX thenφ = f(kX−ωt) with ω = ±kc0.
Thus

φ = f(kX − kc0t) + g(kX + kc0t). (1.14)

1.2.5 Properties of plane waves

We have
ũ = ∇φ = k (f ′(kX − kc0t) + g′(kX + kc0t)) .

ũ is parallel tok. These are longitudinal waves of compression and rarefaction.
We also have

p̃ = −ρ0φt = ρ0c0k (f ′(kX − kc0t)− g′(kX + kc0t)) .

We see that for a single wave with̃u = k̂u we havep̃ = ρ0c0u if g = 0 and
p̃ = −ρ0c0u if f = 0. ρ0c0 is called thespecific acoustic impedance.

For a single wave with (for example)g = 0, Ek = Ep = 1
2ρ0k

2f ′2. There is thus
instananeous equipartition of energy. The energy flux vector is

I = (Ek + Ep) c0k̂.

Energy is transported at a speedc0 in directionk̂.

Plane harmonic waves

For a plane harmonic wave we have

φ = (< or=)
(
Aeı(k·x−ωt)

)
.

A is called thecomplex amplitude, k·x−ωt is thephase,ω is theangular frequency
andk is thewavevectoror wavenumber. k is also called thewavenumber.

The wavelengthλ = 2π
k and the period isT = 2π

ω . The dispersion relation for
acoustics is

ω2 − c20k
2 = 0.
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1.3 Finite amplitude soundwaves (Nonlinear acoustics)

We want to see what the effect of nonlinearity is on soundwaves. We work in a one
dimensional homentropic system. We have the governing equations

∂ρ

∂t
+

∂

∂x
ρu = 0 (1.15)

∂u

∂t
+ u

∂u

∂x
= −1

ρ

∂ρ

∂x
(1.16)

∂p

∂x
= c2(ρ)

∂ρ

∂x
, (1.17)

wherec2(ρ) = dp
dρ .

1.3.1 Riemann analysis

We try to arrange (1.15) and (1.16) in a more symmetric form. We tryλ×(1.15)+(1.16)
and get (

∂

∂t
+ (u+ λρ)

∂

∂x

)
u+ λ

(
∂

∂t
+
(
u+

c2

λρ

)
∂

∂x

)
ρ = 0.

Lettingλ = ± c
ρ we get(
∂

∂t
+ (u± c)

∂

∂x

)
u± c

ρ

(
∂

∂t
+ (u± c)

∂

∂x

)
ρ = 0.

Defining

Q(ρ) =
∫ ρ

ρ0

c(ρ′)
ρ′

dρ′, (1.18)

which satisfiesQt = c
ρρt andQx = c

ρρx the governing equations become(
∂

∂t
+ (u± c)

∂

∂x

)
(u±Q) = 0. (1.19)

We define theRiemann invariants,R± = u±Q and make a change of co-ordinates
(x, y) 7→ (ξ, η), where the curvesξ constant are theC+ characteristics defined by
dx
dt = u+c and the curvesη constant are theC− characteristics defined bydxdt = u−c.
On each member of theC+ family,

dR+

dt
=
∂R+

∂t
+
∂R+

∂x

dx
dt

∣∣∣∣
ξ=const

= 0 by (1.19).

ThusR+ is constant on eachC+, soR+ = R+(ξ) only. SimilarlyR− is constant
on eachC− andR− = R−(η) only. We can findu andQ fromR±, as

u =
R+(ξ) +R−(η)

2
Q =

R+(ξ)−R−(η)
2

.

Waves carrying constant values ofR± propagate along theC± curves at speed
u± c, that is at speeds±c relative to the local velocityu.
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1.3.2 Perfect gas

This has pp0 =
(
ρ
ρ0

)γ
, and soc2 = γp

ρ . Thus c
c0

=
(
ρ
ρ0

)γ−1
2 . We can also findQ,

Q =
∫ ρ

ρ0

c(ρ′)
ρ′

dρ′ =
(

2
γ − 1

)
(c− c0)

Thus

R± = u± 2(c−c0)
γ−1 , (1.20)

if R± = 0 whenu = 0 andc = c0.

1.3.3 Cauchy problem — solution by characteristics

Supposeu(x, 0) = U(x), ρ = ρ0 andP = P (x), or equivalentlyc = c0 + C(x).
Assume that the initial disturbance has compact support,u = 0 andC = 0 for x < xB
andx > xF . We want the solution at(X, δt) for δt� 1.

Draw characteristics through(X, δt) back tot = 0. Approximately,C+ is

x = X + [u(X, δt) + c(X, δt)] (t− δt) +O(δt)2

= X − [U(X) + c0 + C(x)] δt+O(δt)2.

R+ is constant onC+ and so

R+ = R+ (X − {U + c0 + C} δt) +O(δt)2 and similarly

R− = R+ (X − {U − c0 − C} δt) +O(δt)2.

Thusu andc are now known at(X, δt) if known at(x, 0).

Numerical recipe

1. At t = 0 we knowu andc.

2. CalculateR± at t = 0 using (1.20).

3. CalculateR± at t = δt using above approximation.

4. Calculateu, c at t = δt using (1.20).

Repeat as necessary.
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1.3.4 General picture

• On characteristics that pass throughx < xB or x > xF at t = 0, u = 0, c = c0
andQ = 0. Hence forξ < ξB andξ > ξF ,R+ = 0 and forη < ηB andη > ηF
R− = 0. Thus in regions 1,2 and 3,R+ = R− = 0, u = 0, c = c0 andQ = 0.
This is undisturbed flow and all characteristics are straight lines.

• In region 4,R− = u−Q = 0 and sou = Q. OnC+, R+ = u+Q is constant
and sou, ρ andc are constant onC+ curves. Also,dxdt = u+ c is constant and so
characteristicsC+ are straight lines. This corresponds to a right-running simple
wave.

A similar analysis applies to region 5, except that we have a left-running simple
wave and theC− are straight.

• Region 6 is the region of compound flow where neitherC+ norC− are straight.
At t = tc this region disintegrates.

1.3.5 Simple waves

A simple waveis one where one ofR± is uniformly constant. WLOG takeR− = 0
and soc = c0 + 1

2 (γ − 1)u, u = Q. ThusR+ = 2u. OnC+ characteristicsdxdt =
u+ c = c0 + 1

2 (γ + 1)u. ThusC+ are straight lines.
The problem we have to solve equivalent to either

du
dt

= 0 on
dx
dt

= c0 + 1
2 (γ + 1)u or (1.21)(

∂

∂t
+
(
c0 + 1

2 (γ + 1)u
) ∂

∂x

)
u = 0. (1.22)

We know thatu(x, t) = f(ξ) where from initial data,f(ξ) = u(ξ, 0).
Hence, from (1.21) and imposingx = ξ at t = 0 we have

x =
(
c0 + 1

2 (γ + 1)f(ξ)
)
t+ ξ. (1.23)

For givenx, t we can in principle solve forξ and then findu = f(ξ, 0). u givesc
andρ, c = c0 + 1

2 (γ − 1)u and

ρ

ρ0
=
(

1 +
(γ − 1)u

c0

) 2
γ−1

.
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1.3.6 Generic form

Equation (1.22) can be written in a more suggestive form. LetX = x − c0t and
introduce theexcess wavespeedv =

(
γ+1

2

)
u = u+ c− c0. Then (1.22) becomes

∂v

∂t
+ v

∂v

∂X
= 0. (1.24)

This is a special case of the kinematic wave equation. (1.24) hasC+ characteristics
X = ξ + v(ξ, 0)t and so

v(X, t) = v(ξ, 0) = v(X − v(ξ, 0)t, 0), (1.25)

andρ(X, t) = ρ(X − v(ξ, 0)t, 0). Thus density propagates at speedv (in a frame
moving with velocityc0).

Each element of the waveform propagates at speedv. Deformation is pure distor-
tion and there are no new values ofv (or ρ).

1.3.7 Wave steepening

We calculate the slope of the wave,∂v∂X = ∂v(ξ,0)
∂ξ

∂ξ
∂X . From (1.25) we have

1 =
∂ξ

∂X

(
1 +

∂v(ξ, 0)
∂ξ

)
and so we have∂v∂X = vξ(ξ,0)

1+vξ(ξ,0)t .

Parts of the profile withvξ(ξ, 0) < 0 and parts of the profile withvξ(ξ, 0) > 0 get
flatter. If vξ(ξ, 0) < 0 somewhere then a triple-valued waveform will form at some
finite time. This is unphysical. The moment at which the slope becomes infinite is
referred to as theshock formation time.

The profile becomes multivalued at the first time thatt = − (vξ(ξ, 0))−1 and so the
shock formation time is

ts = min
ξ
− 1
vξ(ξ, 0)

=
(

2
γ + 1

)
1

maxξ −uξ(ξ, 0)
.

If −uξ(ξ, 0) is maximised atξ = ξs then the position at which the shock forms is
Xs = ξs + v(ξs, 0)ts and theposition of shock formationis xs = Xs + c0ts.
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1.4 Piston problems

At t = 0, u = 0 and c = c0 in x ≥ 0. The piston moves withx = Xp(t) and
Xp(0) = 0.

1.4.1 Piston moving away from gas

Assume all characteristicsC− start inx > 0 at t = 0. ThenR− = 0 everywhere and
we have simple flow. TheC+ are straight lines.

In region 1,C+ meetst = 0 in x > 0 and soR+ = 0. Thusu = 0 andc = c0.

In region 2,C+ meets the piston path att = τ andx = Xp(τ). The boundary
conditions giveu = Ẋp(τ) at this point.C+ has the equation

x−Xp(τ) =
(
c0 + 1

2 (γ − 1)
)
(t− τ). (1.26)

τ plays the same rôle asξ. Givenx, t in region 2 we can solve (1.26) (numerically)
to find τ . Thenu(x, t) = Ẋp(τ). We also find

ρ = ρ0

(
1 +

γ − 1
2

Ẋp(τ)
c0

) 2
γ−1

and henceρ = 0 if Ẋp = − 2c0
γ−1 . 2c0

γ−1 is the maximum speed of the piston for
contact with the gas to be maintained. It is the speed of expansion of a gas into a
vacuum (escape speed).

We also find

c

c0
= 1 +

γ + 1
2

Ẋp(τ)
c0

.
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1.4.2 Piston moves into gas

The equation of theC+ characteristics is,

x = Xp(τ) +
(
c0 +

γ − 1
2

Ẋp(τ)
)

(t− τ).

Characteristics touch when∂x∂τ = 0, that is, when

1
2 (γ + 1) Ẍpt = 1

2 (γ + 1) Ẍpτ + c0 + 1
2 (γ − 1)Ẋp.

If we have uniform acceleration,Xp(τ) = 1
2fτ

2 then characteristics touch when

t = t0 =
2(γfτ + c0)

(γ + 1)f

and the minimum overlap time (shock formation time) is

ts = min
τ≥0

t0 =
2c0

(γ + 1)f
at τ = 0.

1.5 Shock waves

A triple-valued region is unphysical. In practice it is prevented by mechanisms so far
neglected, like dissipation. When the waveform is steep, viscous and heat conduction
terms which were small become large.

The simple wave equation (1.22) can be modified to

ut +
(
c0 + 1

2 (γ + 1)u
)
ux = νuxx. (1.27)

The extra term is proportional to viscosity. Analytic solutions to this equation are
known (see Part 3 course). The triple valued region is avoided by a region of rapid
change, the thickness of which is proportional toν.

Outside the so-called “shock” region we can use the characteristic solution of the
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simple wave equation. For real problems we cannot find exact solutions to (1.27) and
we try to treat the shock as a discontinuity whenν is small.

1.5.1 Rankine-Hugoniot relations

Assume we have a steady discontinuity separating 2 uniform flows. Take co-ordinates
moving with the shock.

Apply mass conservation across the shock to get

ρ1u1 = ρ2u2. (1.28)

Momentum conservation gives

p1 + ρ1u
2
1 = p2 + ρ2u

2
2. (1.29)

Finally, we apply energy conservation to get(
1
2ρ1u

2
1 + ρ1e1

)
u1 + p1u1 =

(
1
2ρ2u

2
2 + ρ2e2

)
u2 + p2u2, (1.30)

wheree(ρ, S) is the internal energy per unit mass. (1.30) simplifies using (1.28) to
give

1
2u

2
1 + e1 +

p1

ρ1
= 1

2u
2
2 + e2 +

p2

ρ2
. (1.31)

These are theRankine-Hugoniot relations.

1.5.2 Hugoniot adiabatic

From (1.28) and (1.29) we get

u2
1 =

p2 − p1

ρ1
+

(ρ2u2)
2

ρ1ρ2
=
p2 − p1

ρ1
+
ρ1u

2
1

ρ2
.

Solving this, we get

u2
1 =

ρ2(p2 − p1)
ρ1(ρ2 − ρ1)

(1.32)

and so ifp2 > p1, ρ2 > ρ1. Similarly if p2 < p1 thenρ2 < ρ1.
Substituting foru2

1 andu2
2 into (1.31) we get

e2 − e1 = 1
2 (p1 + p2)

(
1
ρ1
− 1
ρ2

)
. (1.33)

This is theHugoniot adiabat(ic)and relates the thermodynamic properties across
the shock.
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1.5.3 Entropy jump

For a given mass of gas, plotp againstV (= ρ−1, thespecific volume) at constantS.
Assume that∂

2p
∂V 2 > 0, which is true for most normal fluids.

Suppose thatρ2 > ρ1 andp2 > p1 and soV1 > V2. If entropy is constant then
p1 andp2 are given byA andB. Writing down the first law,de = TdS − pdV and
puttingdS = 0 we see that

e2 − e1 = −
∫ V2

V1

pdV = area under curveAB.

But e2 − e1 is the area under thechordAB (using (1.33)), and sodS 6= 0 andA
andB must have different values ofS. If additionally ∂e

∂p > 0 then (1.33) can only be

satisfied ifp2 > p1. Now ∂e
∂p = T ∂S

∂p > 0 and so the entropy atp2 is greater than the
entropy atp1. As entropy increases with time,p2 must be the downstream pressure.
For such a fluid shocks are compressive — the downstreamp2, ρ2 are greater than the
upstreamp1, ρ1.

Some strange hydrocarbons (for instance Freon-13) have∂2p
∂V 2 < 0 and have rar-

efaction shocks, but entropyalwaysincreases downstream.
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1.5.4 Upstream/downstream speeds

Usingρ2 > ρ1 and (1.32) we have

u2
1 =

ρ2(p2 − p1)
ρ1(ρ2 − ρ1)

>
p2 − p1

ρ2 − ρ1

= gradient ofCD

> gradient of tangent atD = c21.

Thus the upstream flow is supersonic.M1, the upstream Mach number, is greater
than1. It is harder to show thatM2 (the downstream Mach number) is less than1 (see
Landau and Lifschitz).

1.5.5 Perfect gas

This has

c2 =
γp

ρ
p = ρRT e = CV T =

1
γ − 1

p

ρ
. (1.34)

We define the shock strengthβ = p2−p1
p1

. From (1.33) and (1.34) we have

ρ2

ρ1
=

2γ + (γ + 1)β
2γ + (γ − 1)β

. (1.35)

We can also get

M2
1 =

(
u1

c1

)2

= 1 +
γ + 1
2γ

β > 1

M2
2 =

(
u2

c2

)2

=
1

1 + β

(
1 +

γ − 1
2γ

β

)
< 1.

(1.36)

1.5.6 Strong shocks

In the limit asβ →∞
ρ2

ρ1
↗ γ + 1

γ − 1
.

For air, withγ = 1.4, the maximum compression by a shock is by a factor of6. We
also find

M2
1 ∼

(
γ + 1
2γ

)
β and M2

2 →
γ − 1
2γ

.
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1.5.7 Weak shocks

As β → 0, we find

ρ2

ρ1
= 1 +

β

γ
+O(β2)

M2
1 = 1 +

(
γ + 1
2γ

)
β +O(β2)

M2
2 = 1−

(
γ + 1
2γ

)
β +O(β2).

The variations are allO(β). However, the variation in the entropy,S = CV log p
ργ

is

S2 − S1

CV
= log (1 + β)− γ log

(
2γ + (γ + 1)β
2γ + (γ − 1)β

)
=
(
γ2 − 1
12γ2

)
β3 +O(β4).

This ismuchsmaller than the jumps ine, ρ, p,M (etc.)

1.5.8 Moving shocks

u1 = v1 − U andu2 = v2 − U . If U > v2 thenp2, ρ2 andu2 become the “upstream”
variables. We need to take care with the square roots in (1.36).

1.5.9 Weak shocks in right running simple waves

In general the entropy is different behind and in front of a shock and we thus expect
jumps in the Riemann invariants. However, in weak shocks the jumps inρ, p andu are
all O(β) and the jump inS isO(β3). It can be shown that ifU > v2 (in the notation
of the last section),

[R−]21 = O(β3) also.

Thus in weakly nonlinear right running simple waves we can still takeS = S0 and
R− ≡ 0 everywhere, even if shocks are formed.

We work with the excess wavespeedv = u+ c− c0 = γ+1
2 u and letX = x− c0t.

Then (as before) we must solve

∂v

∂t
+ v

∂v

∂X
= 0.

After the shock forms att = ts, we want to know where it is located on the graph
of v againstX.
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Mass conservation gives
∫∞
−∞ ρdx constant, and so the shock cuts off lobes of

equal area on the graph ofρ. However,

ρ

ρ0
=
(
c

c0

) 2
γ−1

=
(

1 +
γ − 1

2
u

c0

)
= 1 +

2
γ + 1

v

c0
+O( vc0 )2.

If v
c0
� 1, then

∫∞
−∞ v dX is constant, which also gives conservation of momentum

and the “equal areas rule” also applies to the graph ofv againstX.

1.5.10 Long time limit

Supposev(X, 0) is a single pulse of any shape with areaA.

At large times the wave is approximately triangular, so we tryv = Xf(t) as a
solution, which givesV ∼ X

t ast→∞.
If the shock is atX = Xs(t) then the area of the triangleA = 1

2Xsv(Xs) and so
Xs =

√
2At.

Regardless of initial conditions we have the long-time solution

v =

{
X
t 0 < X < Xs(t)
0 otherwise.

We can also write down a differential equation governingXs(t). The kinematic
wave equation (1.24) gives

d
dt

∫ X2

X1

v dX +
[
1
2v

2
]X2

X1
= 0.

If there is a shock atXs(t),X1 < Xs < X2 then

d
dt

{∫ X−s

X1

+
∫ X2

X+
s

v dX

}
=

{∫ X−s

X1

+
∫ X2

X+
s

∂v

∂t
dX

}
︸ ︷︷ ︸

→0 if ∂v
∂t bounded

+ Ẋs

(
v(X−

s )− v(X+
s )
)
.

LetX2 → X+
s andX1 → X−

s , so if v(X+
s ) 6= v(X−

s ) we get

Ẋs =
v(X+

s ) + v(X−
s )

2
.
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For instance consider a sinusoidal initial wavev = v0 sin kx.

There are fixed shocks atx = ±π
k ,±

3π
k , . . . .

In −π
k < X < π

k we have the solutionv = X
t , whose odd periodic continuation

gives the full solution.
Now v(X+

s ) = − π
2kt and v(X−

s ) = π
2kt and soẊs = 0 and theshock jump

∆v = − π
kt → 0 ast→∞. The whole wave decays to0.
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Chapter 2

Linear elastic waves in solids

2.1 The governing equations

As before we make thecontinuum hypothesis.

2.1.1 Stress

Consider a small (plane) element of surfacedS = ndS within some material. Assume
that the material on the side ofdS to whichn points acts on the material on the other
side ofdS with a force proportional todS and zero moment.

This force ist(x, t;n)dS, andt is called thetraction vector. We write

σij = tj(x, t; ei), (2.1)

whereei is the unit vector in thei direction. We apply conservation of momentum
to an arbitrary material volumeV to get∫

V

ρ(x, t) [a(x, t)− F(x, t)] dV =
∫
S

t(x, t;n) dS. (2.2)

Conservation of angular momentum gives∫
V

ρ(x, t)x ∧ (a− F) dV =
∫
S

x ∧ t dS. (2.3)

We apply the momentum balance (2.2) to a tetrahedron as drawn. Suppose that the
area of the slant face of the tetrahedron isε2. Then the area of the face perpendicular
to ei is niε2.

Now the left hand side of (2.2) isO(ε3) (if a andF are bounded) and the right hand
side is

ε2 (−n1t(x, t; e1)− n2t(x, t; e2)− n3t(x, t; e3) + t(x, t;n)) +O(ε3).

Since the left hand side and right hand side must balance at leading order we have

tj(n) = σijni. (2.4)

19
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The quotient theorem implies thatσij is a tensor (asn is arbitrary). It is called the
Cauchy stress tensor. (2.2) can now be converted into a differential equation:

∂σij
∂xi

= ρ(aj − Fj). (2.5)

We take theith component of (2.3) and apply (2.4) and (2.5) to get

∫
V

εijkxj
∂σlk
∂xl

dV =
∫
S

εijkxjσlknl dS

=
∫
V

εijk
∂

∂xl
(xjσlk) dV

=
∫
V

εijkxj
∂σlk
∂xl

dV +
∫
V

εilkσlk dV.

As V is arbitrary,εilkσlk = 0 and soσij is a symmetric tensor.

2.1.2 Strain

When a solid is deformed the particle atξ goes tox (say), withdisplacementu = x−ξ.
Under a deformation two nearby particles suffer a relative displacement

dS = dx− dξ = u(x + dx, t)− u(x, t).

Taking theith component,dSi = ∂ui

∂xj
dxj +O(dx2). If we let

eij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
and ωij =

1
2

(
∂ui
∂xj

− ∂uj
∂xi

)
, (2.6)

then we can writedSi = eijdxj + ωijdxj (neglecting higher order terms). As
ωij = − 1

2εijkΩk, whereΩ = ∇∧ u,

ωijdxj =
(

1
2Ω ∧ dx

)
i
.

This is what we get from a rigid rotation at rate12Ω and so cannot be connected
with local states of stress. The stress must therefore be associated with the symmetric
parteij of the local deformation tensor∂ui

∂xj
. The dimensionless tensoreij is called the

Cauchy stress tensor.

2.1.3 The constitutive relation

For an elastic body we takeσ = σ(e) only (not depending on the history ofe). For
smalleij we can expand this in Taylor series to get

σij = Cijklekl

for some fourth rank tensorCijkl. A general fourth rank tensor has 81 components,
but we can use the symmetriesσij = σji andekl = elk to get

Cijkl = Cjikl = Cijlk.
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This reduces the number of independent components to 36 for a general anisotropic
medium. We now assume isotropy, which means thatCijkl is an isotropic tensor,

Cijkl = λδijδkl + µδikδjl + νδilδjk.

The symmetries ofC mean thatµ = ν, and so

σij = λδijekk + 2µeij (2.7)

λ andµ are theLamé constants.

2.1.4 Shear and dilatation

Consider a shear

x1 = ξ1 + δξ2

x2 = ξ2

x3 = ξ3.

Thenu = x− ξ = (δξ2, 0, 0). eij is constant, withe12 = e21 = 1
2δ and the other

eij are zero. Nowσ12 = σ21 = µδ = S, with the otherσij zero. The angle of the
shear,γ, is given bytan γ = δ. Usuallyγ � 1 soγ ≈ δ, and

µ ≈ S

γ
=

shear force
angle of shear

is theshear modulusor modulus of rigidity. Whenµ = 0 we have a perfect fluid,
butµ > 0 otherwise.

As for dilatation,

∆V =
∫

n · udS

=
∫

div udV.

We call div u = ekk = θ the dilatation, which is the change in volume per unit
volume.

A special state of stress is that of hydrostatic pressure, withσij = −pδij (p is the
pressure). This givest(n) = −pn and so

p = − 1
3σkk = −

(
λ+

2µ
3

)
ekk = −Kθ.
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K = λ+ 2
3µ > 0 is the modulus of compressibility, and is the ratio of pressure to

the change of volume.
We apply the constitutive relation (2.7) to the Cauchy equation (2.5) to get

ρaj = ρFj +
∂

∂xj

(
λ
∂uk
∂xk

)
+

∂

∂xi

(
µ

(
∂ui
∂xj

+
∂uj
∂xi

))
. (2.8)

In linear theory, the accelerationaj = ∂2uj

∂t2 andρ(x, t) = ρ(ξ, 0) (the density in
the undeformed state). We takeλ andµ independent of position (ahomogeneousbody)
to get

ρ
∂2u
∂t2

= ρF + (λ+ µ) grad div u + µ∇2u

= ρF + (λ+ 2µ) grad div u− µ curl curlu.
(2.9)

2.2 Compressional and shear waves

Taking the divergence of (2.9) we get

∂2θ

∂t2
= c2P∇2θ, (2.10)

whereθ = div u andc2P = λ+2µ
ρ .

cP is the dilatational or compression wave speed.
Taking the curl of (2.9) we get

∂2ω

∂t2
= c2S∇2ω, (2.11)

whereω = curlu andc2S = µ
ρ < c2P .

For steel,cP ≈ 6× 103ms−1 andcS ≈ 3× 103ms−1.1

2.2.1 Dilatational and shear potentials

We can always writeu = ∇φ+ curlψ with divψ = 0.

Proof. Defineψ by∇2ψ = − curlu, so that

ψ =
1
4π

∫
curlu(y)
|x− y|

d3y.

(This also givesdivψ = 0.) Now letw = u − curlψ, so thatcurlw = curlu −(
grad divψ −∇2ψ

)
. Thus∃φ such thatw = ∇φ andu = ∇φ+ curlψ.

φ andψ are theelastodynamic potentials. We find that (2.9) is satisfied if

φtt − c2P∇2φ = 0 (2.12a)

ψtt − c2S∇2ψ = 0. (2.12b)

These are the equations of seismology.

1P stands forprimary - these are the waves which arrive first in an earthquake. S stands for secondary.
Guess when these arrive!
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2.2.2 Plane waves

The plane wave solution to (2.12a) is

φ = φ(t− k̂·x
cP

),

with k̂ a constant vector. Thusu = − k̂
cP
φ′ andu is parallel tok̂ — these are

longitudinal waves.
(2.12b) also has plane wave solutions,

ψ = ψ(t− k̂·x
cS

),

and in this caseu = − k̂∧ψ′
cS

. This is perpendicular tok — these are transverse waves.
We can also evaluate the stress tensor

σij =
(
λδij + 2µk̂ik̂j

) φ′′
c2P

for P waves

σij = µ
(
εilmk̂lk̂j + εjlmk̂lk̂i

) ψ′′m
c2S

for S waves.

The energy fluxI is given byIi = −σij u̇j , which equalsρcP u̇2k̂ for P waves and
ρcS u̇

2k̂ for S waves.
The energy density

Ek + Ep = 1
2ρu̇

2 + 1
2σijeij

= ρu̇2 for both types of waves separately.

For either type of wave (separately), the energy flux vectorI = (Ek+Ep)c. Energy
propagates at velocityc in the direction of the waves (k).

2.2.3 Energy equation

Consider the rate of change of internal energy (assuming isentropy),

d
dt

∫
V

ρE dV =
∫
V

ρF · v dV +
∫
S

t · v dS − d
dt

∫
V

1
2ρv

2 dV,

whereV is a material volume. Hence

d
dt

∫
ρ
(

1
2v

2 + E
)

dV =
∫ (

ρF · v +
∂

∂xi
(σijvj)

)
dV,

or

ρv · a + ρĖ = ρF · v + vj
∂σij
∂xi

+ σij
∂vj
∂xi

. (2.13)

The momentum equation thus gives

ρĖ = σij
∂vj
∂xi

. (2.14)
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For small displacements and an isotropic material,

∂

∂t
1
2σijeij = 1

2Cijkl (eklėij + ėkleij)

= Cijkleklėij

= 1
2σij

(
∂vi
∂xj

+
∂vj
∂xi

)
= σij

∂vi
∂xj

.

Assuming there is no strain energy when undeformed, then

E = 1
2ρσijeij (2.15)

is the strain energy density per unit mass. Now

ρE = 1
2 (λekkejj + 2µeijeij)

= 1
2

(
λ+

2µ
3

)
(ekkejj) + µ

(
eij − 1

3ekkδij
) (
eij − 1

3ellδij
)
.

HenceE is positive definite iffλ + 2
3µ > 0 andµ > 0. These are the same

restrictions as obtained earlier by physical reasoning.
The linearised version of (2.13) can be written

∂

∂t
(Ek + Ep) +

∂Ij
∂xj

= ρF · u̇, (2.16)

whereEk = 1
2ρu̇ · u̇, Ep = 1

2σijeij andIi = −σij u̇j .
We can interpret this physically by considering a small disk with surfacendS. The

rate of working by the material on the+ side on the material on the− side is

t · v dS = niσij
∂uj
∂t

dS,

and so the flux of energy in directionn is I = −σ · ∂u∂t .

2.2.4 Rayleigh waves

Consider the situation shown, with a disturbed interface aty = η(x, z, t). There is no
traction at the interface, soσijnj = 0 aty = η(x, y, t). Now

n̂ =
(−ηx, 1,−ηz)
(1 + η2

x + η2
z)

1
2
≈ (0, 1, 0) in linear theory.



2.2. COMPRESSIONAL AND SHEAR WAVES 25

We also apply the boundary conditions aty = 0 instead ofy = η. We seek a two
dimensional solution withu in the(x, y) plane. The boundary conditions thus become

σxy = σyy = 0 ony = 0.

There are two boundary conditions and so we guess that we need both P and S
wave solutions. Tryφ = f(y)E andψ = g(y)Eẑ, whereE = eı(kx−ωt). The wave
equation gives

f ′′ −
(
k2 − ω2

c2P

)
f = 0

g′′ −
(
k2 − ω2

c2S

)
f = 0.

We assume (and check later) thatk > ω
cS

, and so (imposing boundedness aty =
−∞) we get

f = Aeαy g = Beβy,

whereα =
√
k2 − ω2

c2P
andβ =

√
k2 − ω2

c2S
.

Thusu = (ıkAeαy+βBeβy, αAeαy−ıkBeβy, 0)E. We now impose the boundary
conditions

σxy|y=0 = µ

(
∂u1

∂y
+
∂u2

∂x

)
= µE

(
2ıαA+

(
2k2 − ω2

c2S

))
= 0

σyy|y=0 = λ
∂u1

∂x
+ (λ+ 2µ)

∂u2

∂y

= µE

((
2k2 − ω2

c2S

)
A− 2ıkβB

)
= 0.

These are two homogeneous equations forA andB, which have non-trivial solu-
tions iff (

2k2 − ω2

c2S

)2

= 4k2αβ. (2.17)

If we definecR = ω
k , the phase velocity of Rayleigh waves, then (2.17) becomes(

2− c2R
c2S

)2

− 4
(

1− c2R
c2P

) 1
2
(

1− c2R
c2S

) 1
2

= 0. (2.18)

Equation (2.17) (equivalently (2.18)) is the is the dispersion relation for Rayleigh
waves. From (2.18) we see thatcR is the same for allk and Rayleigh waves are non-
dispersive.

Let ξ = c2R
c2S

, so the dispersion relation can be rewritten

f(ξ) = ξ3 − 8
(
3− 2 c

2
S

c2P

)
ξ − 16

(
1− c2S

c2P

)
= 0.

Now f(0) < 0 andf(1) > 1 so there is at least one real root off in [0, 1] and
0 < c2R < c2S (as was assumed earlier). In fact it can be shown thatf has precisely one
real root.
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This Rayleigh wave is non-dispersive and is atrappedor surfacewave. u1, u2 ∼
eαy, eβy and so the disturbance is confined to a layer on the surface of thicknessy ∼
max{α−1, β−1}.

Rayleigh waves are important in seismology. As they are confined to the surface
they only fall off like r−

1
2 rather than ther−1 of P and S waves. At large distances

from the initial disturbance the Rayleigh wave dominates.2

2.3 Wave reflection and transmission at interfaces

2.3.1 Interface conditions

Let the interface be aty = η(x, z, t). We assume that there is no fracture and the two
materials remain bonded together, so that

[u(x, y = η, z, t)] = 0.

We assume small displacements, and so this linearises to give

[u(x, 0, z, t)] = 0. (2.19)

We also have continuity of traction, so that[σijnj ] = 0 ony = η, or (linearised)

[σiy] = 0 aty = 0. (2.20)

2.3.2 S wave polarisation

Without loss of generality we can take the propagation vector of all waves to lie in the
(x, y) plane.

The incident P wave hasu parallel tok̂I , and so

uI = AI k̂Ieı(kI ·x−ωt).

The incident S wave hasu perpendicular tôkI and so

uI = k̂I ∧BIe
ı(kI ·x−ωt).

We resolvêkI∧BI in a component parallel tôz (a horizontally polarised SH wave)
and a component parallel tôz ∧ kI (a vertically polarised SV wave).

2And knocks your house down. They also have technological uses other than mass demolition — acoustic
microscopy.
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2.3.3 Reflection and refraction of SH waves

The incident SH wave has

uI = (0, 0, 1)eı(kI ·x−ωt) kI =
ω

cS
(sin θ, cos θ, 0). (2.21)

The1 in thez-component ofuI is a free choice and the factorωcS
is fixed by the

wave equation.
The reflected SH wave is

uR = (0, 0, R)eı(kR·x−Ωt) kR =
Ω
cS

(sinΘ,− cos Θ, 0). (2.22)

R is called thereflection coefficient.
Finally, the transmitted SH wave is

uT = (0, 0, T )eı(kT ·x−ω̄t) kT =
ω̄

c̄S
(sin θ̄, cos θ̄, 0). (2.23)

T is thetransmission coefficient.
Now we impose the boundary conditionsuI + uR = uT and(σyz)I + (σyz)R =

(σyz)T .
For these expressions to be the same at all times they must have the same time-

dependence, and soω = Ω = ω̄. They must similarly have the same space dependence,
and so

sin θ
cS

=
sinΘ
cS

=
sin θ̄
c̄S

. (2.24)

This equation captures bothθ = Θ (“angle of incidence equals angle of reflection”)
andSnell’s law. Feeding all of this back into the boundary conditions finally gives

1 +R = T and
µ

cS
(1−R) cos θ =

T µ̄

c̄S
cos θ̄.

We can solve these by putting

R =
z̄ − z

z̄ + z
T =

2z̄
z̄ + z

,

wherez = cS

µ cos θ andz̄ = c̄S

µ̄ cos θ̄
.

We can find the energy fluxI = −σ · u̇, and we see that

〈Iz〉I + 〈Iz〉R = 〈Iz〉T ,

and the incident energy is all either transmitted or reflected. Ifz̄ = z there is total
transmission.
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If c̄S < cS thensin θ̄ < sin θ (θ̄ < θ). As θ increases toπ2 then θ̄ increases to
θ̄max = arcsin c̄S

cS
. No waves propagate intōθ > θ̄max — this is the so-called “quiet

zone”.
If c̄S > cS thenθ̄ > θ and∃θmax = arcsin cS

c̄S
such that the transmitted wave just

grazes the boundary. Ifθ > θmax then we need to seek a solution iny > 0 of the form

uT = (0, 0, T ) exp
(
ı ωc̄S

− βy − ıωt
)
.

We needβ = ω
cS

(
sin2 θ − c2s

c̄2S

) 1
2
, which is real and positive in the regionθ > θmax.

uT is anevanescentwave confined toy / β−1.
We find that〈Iz〉T = 0 and thatR is now a complex quantity with modulus 1 and

whenθ > θmax the incident wave is totally internally reflected.

2.3.4 Reflection of P waves

This has the boundary conditionu = 0 at y = 0. As before, allω are the same and
θ = Θ.

The incident P wave is

uI = (sin θ, cos θ, 0)eı(kI ·x−ωt) kI = (sin θ, cos θ, 0) ωcP
.

The reflected P wave is

uR = R(sinΘ,− cos Θ, 0)eı(kR·x−ωt) kR = (sinΘ,− cos Θ, 0) ωcP

The reflected SV wave is

uR̄ = R̄(cos θ̄, sin θ̄, 0)eı(kR̄·x−ωt) kR̄ = (sin θ̄,− cos θ̄, 0) ωcS
.

We match phases aty = 0, so thatθ = Θ and

θ̄ = arcsin
(
cS

cP
sin θ

)
< θ asθ̄ < θ.

Finally, imposingu = 0 ony = 0 we find

R =
cos(θ + θ̄)
cos(θ − θ̄)

and R̄ = − sin 2θ
cos(θ − θ̄)

.

Note thatR̄ 6= 0 usually and so there is usually at least partial “mode conversion”
— an incident P wave becomes a reflected P wave and a reflected SV wave.

If θ = 0 (normal incidence) then̄R = 0 and there is no SV mode. Ifθ + θ̄ = π
2

thenR = 0 — there is total mode conversion.



Chapter 3

Dispersive waves

In any linear continuous system with no explicit dependence on(x, t) we can look for
a solution

φ = eıkx−ıωt︸ ︷︷ ︸
plane wave inx, t

f(y, z)︸ ︷︷ ︸
shape iny, z

. (3.1)

ω can be found asω = ω(k), a dispersion relation. Usuallyωk = cp (the phase
speed) is not constant. Waves of differentk, ω travel at different speeds and so disperse.

3.1 Geometric dispersion in ducts/tubes

Consider a duct−∞ < x <∞ and hard walls at0 < y < h and0 < z < b. The wave
equation forφ is

�2φ = ∇2φ− 1
c20

∂2

∂t2
φ = 0,

wherec0 is the sound speed. The boundary conditions areφy = 0 ony = 0, y = h
andφz = 0 onz = 0, z = b.

We try a solution of the form (3.1),φ = eıkx−ıωtf(y, z) and so

fyy + fzz +
(
ω2

c20
− k2

)
f = 0,

with fy = 0 ony = 0, y = h andfz = 0 on z = 0, z = b. We try a solution of the
form f = fmn = Amn cos mπyh cos nπzb . This satisfies the boundary conditions, and
satisfies the PDE if

m2π2

h2
+
n2π2

b2
=
ω2

c20
− k2.

29
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We get the dispersion relation

ω2 = k2c20 + ω2
mn, (3.2)

whereω2
mn =

(
m2π2

h2 + n2π2

b2

)
c20.

There is a set of independent “modes” labelled by(m,n). The (m,n) mode is
dispersive unlessm = n = 0, whenφ = A00e

ıkx−ıωt.

3.1.1 Cut-off frequency

A mode of givenω will propagate only ifk is real — that isω > ωmn. For givenω only
a finite number of modes withωmn < ω can propagate. The others havek imaginary
and are decaying evanescent waves.ωmn is thecut-off frequencyfor the mode(m,n).

The plane wave mode(0, 0) is alwayscut-onand (always) propagates. Ifh andb
are very small then other modes will be cut-off.

3.1.2 Phase and group velocity

The phase velocitycp = ±
(
c20 + ω2

mn

k2

) 1
2
. Note thatcp ≥ c0 (equality only ifm =

n = 0), cp → ±c0 ask →∞ (short waves) andcp → ±∞ ask → 0 (long waves).
We define thegroup velocitycg = dω

dk .

3.1.3 Energy propagation

Consider a single mode withφ = Amn cos mπyh cos nπzb . It has

〈KE〉 =
∫ b

0

dz
∫ h

0

dy 1
2ρ0

1
2<
[
(∇φ) · (∇φ)∗

]
=
ρ0 |Amn|2 bhω2

16c20
.

The time averaged potential energy

〈PE〉 =
∫ b

0

dz
∫ h

0

dy 1
2<
(
c20ρρ

∗

2ρ0

)
= 〈KE〉.

We can also compute

〈Ix〉 =
∫ b

0

dz
∫ h

0

dy 1
2< (pφ∗x) =

ωρ0k |Amn|2 bh
8

.

Define the mean energy propagation velocityU(k) for a wave with wavenumberk
by

〈Ix〉 = U(k)〈KE + PE〉.

We see thatU = kc20
ω , which is the same as the group velocitycg. This is an

example of a general result — “energy travels at the group velocity”.
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3.2 The Cauchy problem

Consider the following PDE1,

φtt + γ2φxxxx = 0.

Suppose thatφ(x, 0) = φ0(x) andφt(x, 0) = v0(x). By Fourier transforming we
see that

φ(x, t) =
∫ ∞

−∞
A(k)eı(kx−γk

2t) dk +
∫ ∞

−∞
B(k)eı(kx+γk

2t) dk, (3.3)

where

φ0(x) =
∫ ∞

−∞
(A+B)eıkx dk and v0(x) = −ı

∫ ∞

−∞
γk2(A−B)eıkx dk.

We can findA andB by Fourier transform. Ifv0 ≡ 0 thenA ≡ B. We need

I(x, t) =
∫ ∞

−∞
A(k)eı(kx±γk

2t) dk.

3.2.1 Exact solution for Gaussian wavepacket

If

φ0(x) = e−
x2

λ2 +ıαx and v0 ≡ 0

we can do all of the calculations exactly. First we find

A(k) =
1
4π

∫ ∞

−∞
e−

x2

λ2 +ıαx−ıkx dx

=
λe−

λ2(k−α)2

4

4
√
π

.

We now use this to findI(x, t) as

I(x, t) =
λ

2 (λ2 + 4ıγt)
1
2

exp

{
ıαx− ıγα2t− (x− 2γαt)2

λ2 + 4ıγt

}
.

The totalφ is I+ a similar thing fromω = −γk2 (or t→ −t). For largeλ

I ∼ 1
2 exp

{
ıα(x− cpt)−

(x− cgt)
2

λ2 + 4ıγt

}
,

wherecp = γα andcg = 2γα. The wavepacket as a whole moves at a speedcg >
cp. Wavecrests and troughs are created at the front of the wavepacket and destroyed at
the back.

It is sometimes convenient to formalise the separation of scales in terms of fast
co-ordinates(x, t) (for the details) and slow co-ordinates(X = x

λ , τ = t
λ ) Then

I ∼ 1
2 eıα(x−cpt)︸ ︷︷ ︸

fast phase oscillation

× e−(X−cgτ)
2︸ ︷︷ ︸

slow scale modulation

.

1which models small deflections of an elastic beam
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3.2.2 Modulated wavetrains

Suppose we have initial data

φ0(x) = eıαxM(xλ ) αλ� 1,

whereeıαx is a carrier wave with short wavelength2πα−1 andM is a modulation
envelope of a large scaleλ.

Now

A(k) =
1
4π

∫ ∞

−∞
M(xλ )e−ı(k−α) dx

=
λ

4π

∫ ∞

−∞
M(X)e−ıβX dX

= A(β),

whereε = λ−1, β = k−α
ε ,X = εx andτ = εt. Now

I =
∫ ∞

−∞
A(β)eıαx+ıεβx−ıω(α+εβ)tεdβ.

If we Taylor expandω aboutε = 0, we get

I ∼ εeıαx−ıω(α)t

∫ ∞

−∞
A(β) exp (ıεβ(x− cgt)) dβ

= εeıα(x−cpt)

∫ ∞

−∞
A(β)eıβ(X−cgτ) dβ

= 1
2e
ıα(x−cpt)M(X − cgτ).

The complete solution is

φ = 1
2e
ıα(x−cpt)M(X − cgτ) right moving wave

+ 1
2e
ıα(x+cpt)M(X + cgτ) left moving wave.

3.2.3 Large time behaviour

We want to find the long time behaviour of∫ ∞

−∞
A(k)eı(kx−ωt) dk.

For fixedx we can integrate this by parts to get

I =
[
A(k)
−ıω′

eı(kx−ωt)

t

]∞
−∞

− 1
t

∫ ∞

−∞
eı(kx−ωt)

d
dk

(
A(k)
−ıω′

)
dk

= O(t−1) +
1
t

∫ ∞

−∞
B(k)eı(kx−ωt) dx.
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ThereforeI = O(t−1) unlessω′ = 0 for somek. Things are more interesting if
we consider instead an observer moving at speedV = x

t . We wish to approximate

I =
∫ ∞

−∞
A(k)eıtψ(k) dk

for larget, whereψ(k) = kV − ω(k). Integration by parts givesI = O(t−1) as
before unlessψ′(α) = 0 for someα. Such pointsα are calledpoints of stationary
phase.

These pointsα satisfyV = cg(α) — the points of stationary phase have group
velocity equal to the observer velocity. Away fromk = α the contributions toI almost
cancel becauseeıtψ oscillates very rapidly whent → ∞. This cancellation is much
reduced whenk = α.

We approximateA(k) ≈ A(α) andψ(k) ≈ ψ(α) + 1
2 (k − α)2ψ′′(α) (if ψ′′(α) 6=

0). Then for each point of stationary phase the contribution toI is asymptotically

A(α)eıtψ(α)

∫
nhd ofα

eıt
(k−α)2

2 ψ′′(α) dk ∼ A(α)eıtψ(α)

∫ ∞

−∞
eıt

(k−α)2

2 ψ′′(α) dk.

Thus for one point of stationary phase,

I ∼
(

2π
|ψ′′(α)| t

) 1
2

A(α)eıtψ(α)+ıσ
π
4 , (3.4)

whereσ = 1 if ψ′′(α) > 0 andσ = −1 if ψ′′(α) < 0. To deal with several isolated
stationary points just add the contributions from each. IfA(α) = 0 then approximate
A(k) as(k − α)A′(α) and similarly forψ.

Thus given(x, t), solve the equationcg(α) = x
t for α and then substitute in (3.4).

The wavenumbers seen by an observer moving at speedV have the same group ve-
locity and amplitude proportional tot−

1
2 . This is consistent with energy conservation.

The length of the wavetrain increases liket and so conservation of energy implies
that the amplitude varies ast−

1
2 .

We also have theradiation condition: energy must flow away from a source and
hence waves will only be found where their group velocity is directed away from the
source.2

3.2.4 Dispersion in waveguides

Recall the dispersion relation (3.2) which we rewrite here as

2This is not entirely true...
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ω = ±
(
ω2

0 + k2c20
) 1

2 = ±Ω(k),

whereω0 = ωmn for some(m,n). The phase isψ±(k) = kV ∓Ω(k) and we have
stationary phase at

V = ±Ω′ = ± kc20

(ω2
0 + k2c20)

1
2
.

For definiteness takeV > 0. There are two points of stationary phase (one on each
branch) at

k = ±k0 = ± ω0V

c0(c20 − V 2)
1
2
.

We see that we needV < c0. From (3.3) (and imposingA(k) = B(k)) we have

φ(x, t) =
∫ ∞

−∞
A(k)

[
eıψ+t + eıψ−t

]
dk

∼
(

2πΩ(k0)3

ω2
0c

2
0t

) 1
2 [
A(k0)eık0x−ıΩ(k0)t−ı

π
4 +A(−k0)e−ık0x+ıΩ(−k0)t+ı

π
4

]
.

Asφ is real we haveA(−k) = A∗(k) and we also knowΩ(−k) = Ω(k). Therefore

φ ∼
(

2πΩ(k0)3

ω2
0c

2
0t

) 1
2

2<
{
A(k0)eık0x−ıΩ(k0)t−ı

π
4

}
.

3.2.5 Continuity of phase

We make thet → ∞ assumption explicit by introducing a scaling parameterλ, fast
scales(x, t) and slow scales(X = x

λ , τ = t
λ ). Then (3.4) becomes

I ∼ 1
λ

1
2

(
2π

|ψ′′(α)| τ

) 1
2

A(α)eıλ(αX−ω(α)τ)+ıσ
π
4 ,

whereα is such thatcg(α) = X
τ . We have put the equation into the form

I ∼ 1
λ

1
2
A(X, τ)eıλθ(X,τ), (3.5)

where

A =
(

2π
|ψ′′(α)| τ

) 1
2

A(α)e±
ıπ
4

and the phase function

θ(X, τ) = αX − ω(α)τ, (3.6)

whereα is determined bycg(α) = X
τ .

Rapid changes are consigned to the phaseλθ(X, τ) andA,α andθ are all functions
of the slow co-ordinates(X, τ).

Expressions like (3.5) arise in many contexts (for instance in non-uniform media
and nonlinear waves) but then it does not have the specific forms forA andθ.
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In general, when we have expressions like (3.5) we can define alocal wavenumber
k and frequencyω by

k =
∂λθ

∂x
=

∂θ

∂X
and ω = −∂λθ

∂t
= −∂θ

∂τ
. (3.7)

This agrees for the single wave whereθ = kX − ωτ and also agrees for (3.6) (as
X − cg(α)τ = 0). SinceθXτ = θτX we have

∂k

∂t
+
∂ω

∂X
= 0. (3.8)

This is a continuity equation fork. We thus interpretk as a wavenumber density
andω as the flux of wavenumber. Ifω = Ω(k) then (3.8) becomes

∂k

∂t
+ cg(k)

∂k

∂X
= 0

and sok satisfies a nonlinear hyperbolic partial differential equation. We introduce
characteristics defined bydXdτ = cg(k) and have dynamicsdkdτ = 0 on characteristics.
Thusk is constant on characteristics and the situation is the same as nonlinear gas
dynamics.

3.3 Water waves

Consider an incompressible invisicid fluid, so thatu = ∇φ. Incompressibility gives the
Laplace equation∇2φ = 0, which we want to solve subject to the boundary conditions

φy = 0 ony = −h, (3.9)

D
Dt

(y − η(x, z, t)) = 0 ony = η (3.10)

which linearises toφy =
∂η

∂t
ony = 0, (3.11)

p− patm = T (κ1 + κ2) ≈ −T
(
∂2η

∂x2
+
∂2η

∂z2

)
ony = 0. (3.12)

Bernoulli’s equation for the pressure linearises to

p− patm = −ρgη − ρφt ony = 0.

We try a solution of the formφ = f(y)eık1x+ık3x−ıωt. By choice of axes we can
takek3 = 0 andk1 = 0. Laplace’s equation and (3.9) givef(y) = A cosh k(y + h).
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For any hope that the equations balance we must haveη = Aeıkx−ıωt and then
(3.11) gives

A =
ıkA
ω

sinh kh.

Finally the Bernoulli equation and (3.12) give the dispersion relation

ω2 = gk

(
1 +

Tk2

ρg

)
tanh kh. (3.13)

3.3.1 Limiting cases

When there is no surface tension we havegravity waves. The dispersion relation gives

cg =
ω

2k

(
1 +

2kh
sinh 2kh

)
<
ω

k
= cp.

Thus new waves are created at the back of the wavepacket and travel to the front.
In the limit kh� 1 we haveshallow water waves. The dispersion relation is

ω2 = gk2h
(
1 + βk2

)
,

whereβ = T
ρg . The group velocity is

cg =
ω

k

1 + 2βk2

1 + βk2
> cp.

The long wavecase is whenkh→ 0, so thatω2 = ghk2 = c20k
2 and the waves are

non-dispersive.
We getdeep water capillary-gravity waveswhenkh → ∞, so that the dispersion

relation is
ω2 = gk

(
1 + βk2

)
.

Thusω ∼
√
gk ask → 0 andω ∼

√
gβk3 ask →∞. The group velocity is

cg =
ω

k

1 + 3βk2

2(1 + βk2)
→

{
1
2cp k → 0
3
2cp k →∞.

We can draw a graph ofω againstk.

Suppose we have an initial disturbance withA(k) = 0 for k < k0 andk > k3 with
k0 < k1 < k2 < k3 andcg(k0) > cg(k3).
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The changes from0 waves to2 waves atx = cg(k1)t, from 2 waves to1 wave
at x = cg(k3)t and from1 wave to0 waves atx = cg(k0)t are continuous, but the
method of stationary phase does not apply at any of these points (degeneracies).
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Chapter 4

Ray theory

This is a generalisation of the WKB method used for ODEs.1 It applies to slowly
varying wavetrains in uniform and non-uniform media. These variations must be slow
on the scale of the wavelength / period. We will neglect dissipation, nonlinear effects,
rapid variations (boundaries, interfaces, focussing points) and diffraction.

4.1 Ray tracing equations

We seek slowly varying solutions of the partial differential equation

L(∂t, ∂x1 , . . . ;x, t)φ = 0, (4.1)

for instance the equation modelling sound in the atmosphere in whichρ0 andc0
vary withz:

Lp̃ =
∂2p̃

∂t2
− ρ0c

2
0

∂

∂z

(
1
ρ0

∂p̃

∂z

)
− c20

∂2p̃

∂x2
− c20

∂2p̃

∂z2
= 0.

We try a solution of the form

φ = A(x, t; ε)e
ıθ(x,t)

ε , (4.2)

whereε is a small parameter. There is rapid phase fluctuation but only slow change
in A andθ. In fact

φt =
ıθtφ

ε
+
Atφ

A
, and similarly forφx etc.

We substitute in (4.1) and extract the leading order terms to get a dispersion relation

L(−ıω, ık1, ık2, ık3;x, t) = 0, (4.3)

whereω = − θt

ε andkα = θxα

ε . This gives us the local frequency and wavenumber.
Now∇φt = ∂

∂t∇φ and so

∇xω = −∂k
∂t
. (4.4)

1See the Methods of Math. Phys. notes for an introduction to this.

39
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We also know that∂ki

∂xj
= ε−1 ∂

∂xj

∂θ
∂xi

= ∂kj

∂xi
and we can therefore write (4.4) as

∂kj
∂t

+
∂Ω
∂ki

∂kj
∂xi

+
∂Ω
∂xj

= 0,

where the dispersion relation isω = Ω(k;x, t). If we introduce the group velocity
vectorcg = ∇kΩ we can write these equatons as

∂k
∂t

+ cg · ∇xk = −∇xΩ.

This has the characteristic form

dk
dt

= −∇xΩ on characteristics
dx
dt

= cg. (4.5)

A ray is a path along the characteristicsdx
dt = cg traversed at the group velocity

and (4.5) are theray tracing equations.

4.1.1 Special cases

In a homogeneous medium∇xΩ = 0 and thereforek is constant on each ray. If all
rays emanate from the same uniform medium thenk is the same constant everywhere.
If (say)Ω is independent ofxα thenkα is constant on each ray.

The time-independent case is slightly harder. In general

dω
dt

=
∂Ω
∂kj

dkj
dt

+
∂Ω
∂xj

dxj
dt

+
∂Ω
∂t

=
∂Ω
∂kj

(
− ∂Ω
∂xj

)
+
∂Ω
∂xj

(
∂Ω
∂kj

)
+
∂Ω
∂t

(using the ray tracing equations)

=
∂Ω
∂t
.

If the medium is time-independent thenΩ is constant on rays. If both∂Ω
∂t = 0 and

∇xΩ = 0 thenω = Ω(k), cg = cg(k) andk is constant on rays, which are straight.

4.1.2 Hamilton’s equations

The ray tracing equations (4.5) can be written

dkj
dt

= − ∂Ω
∂xj

dxj
dt

=
∂Ω
∂kj

.

These are Hamilton’s equations for a HamiltonianΩ, generalised co-ordinatesxj
and generalised momentakj . Waves travel like particles at the group velocity.

From the dispersion relation we get

∂θ

∂t
+ εΩ(ε−1∇θ;x, t) = 0.

This is the Hamilton-Jacobi equation with the phase function as the action.
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4.1.3 Wave action

The energy densityE is not usually conserved as waves propagate, although the wave
actionI = Eω−1 is. In fact

∂I

∂t
+ divx (cgI) = 0.

This follows from taking the next term ofLφ = 0, which involves the amplitude
A. If ω is constant on rays thenE is conserved.

4.2 Gravity waves approaching a beach

Consider a sloping beach with shoreline atx = 0 and a water depthh(x, z). Assume
thath→∞ andk = (k1, k3) → k∞(cosφ∞, sinφ∞) asx→ −∞.

The dispersion relation for gravity waves isω2 = Ω2(k;x) = gk tanh kh. As Ω
is time independent,ω is constant on rays, and as all rays originate fromx = −∞,
ω2 = gk∞ everywhere.

Thus
tanh kh = k∞

k (4.6)

and measuringk is equivalent to measuringh.
Wave crests are given byθ = const and so

θx dx+ θz dz = 0 ⇒ k1 dx+ k3 dz ⇒ dx
dz

= −k3

k1
.

Water waves are an example ofisotropic dispersion, that isΩ = Ω(k;x). In such
casescg = k̂∂Ω

∂k and the rays are parallel tok. The rays are given by the equation

dx
dz

=
k1

k3
.

If h = h(x) (independent ofz) thenΩ = Ω(k;x) and dk3
dt = 0. Thereforek3 =

k∞ sinφ∞ everywhere.
As h→ 0, tanh kh ∼ kh and so (4.6) becomesk2 ∼ k∞

h →∞ ash→ 0. Nowk3

is fixed, so thatk1 →∞ ash→ 0. We have proved that waves hit the beach normal to
the shoreline.
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4.3 Fermat’s Principle

The ray tracing equations are equivalent to the variational principle

δ

∫ t2

t1

Φ(x, ẋ,k, t) dt = 0, (4.7)

whereΦ = k · ẋ − Ω(k;x, t) andδx andδk vary independently withδx(t1) =
δx(t2) = 0.2

4.3.1 Time independent case

Suppose that∂Ω
∂t = 0 andω = Ω is a uniform constant. We need to use a restricted

class of variationsδx, δk such thatΩ(k + δk;x + δx) = Ω(k;x). Then

δ

∫ t2

t1

Ω dt = 0

automatically and the variational principle (4.7) becomes

δ

∫ t2

t1

k · ẋdt = δ

∫ x2

x1

k · dx.

If we further assume isotropy thenk is parallel to∇kΩ and hence on a rayk is
parallel todx, so that ∫ x2

x1

k · dx =
∫ x2

x1

k ds = ω

∫ x2

x1

ds
c
,

whereds is the element of arc length. Sinceω is a constant,

δ

∫ x2

x1

ds
c

= 0.

This is the principle of least time —Fermat’s principle.

4.3.2 Snell’s Law

Suppose thatΩ = Ω(k;x3) so thatk1, k2 andω are constant on rays.

Then

sinα =

√
k2
1 + k2

2

k
=
c
√
k2
1 + k2

2

ω

and so
sinα
c

=
sinα0

c0
= constant. (4.8)

2Proof is trivial.



4.4. MEDIA WITH FLOW 43

4.3.3 Sound waves in inhomogeneous media

Consider a ray in the(x, z) plane and suppose that∂Ω
∂x = ∂Ω

∂y = 0, so thatω =
Ω(k;x) = kc(z). We want to know if there is a ray between two points on the same
horizontal plane.

Either use the condition

δ

∫ a

−a

ds
c

= 0 ⇒ dz
dx

= ±
(

c20
c(z)2

− 1
) 1

2

by Euler-Lagrange equations,

or use Snell’s Law:

sinα
c

= constant ⇒ dx

(dx2 + dz2)
1
2

=
c(z)
c0

,

which gives the same ODE as before. We take the positive root of our ODE and
note that initiallyc > c0. If c(z) decreases asz increases thendzdx > 0 always and the
ray can’t bend back down. Ifc increases withz then there existsz0 at which dz

dx = 0
and the path curves back down.

For instance we can solve explicitly ifc = c0
(
1 + z

λ

)
and we see that the rays are

given by(x− x0)2 + (z + λ)2 = λ2.

4.4 Media with flow

Consider a source of frequencyωs moving with a uniform velocityU in a medium at
rest. In a frame fixed to the fluid,(x, t) we suppose the dispersion relation isωr =
Ω(k). In a frame(X, t) fixed to the source,X = x −Ut the fluid has velocity−U.
Now

∂

∂xα

∣∣∣∣
t

=
∂

∂Xα

∣∣∣∣
t

and
∂

∂t

∣∣∣∣
x

=
∂

∂t

∣∣∣∣
X

− Uj
∂

∂Xj
,

and so−ıωr = −ıωs − ık ·U, which givesωs = Ωr(k)− k ·U.
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The Doppler effect

Consider a source emitting sound waves at frequencyωr = ck. Now k · U =
kU cos θ = ωr

c U cos θ. Hence

ωr =
ωs

1− U
c cos θ

,

and (if Uc < 1), ωr > ωs if cos θ > 0 (ahead of the source) andωr < ωs if
cos θ < 0 (behind the source).

4.4.1 Stationary capillary-gravity waves

Consider a steady disturbance moving at a velocity(U, 0, 0) generating a steady one
dimensional wave pattern. Nowωs = ωr − kU , where

ωr = ±
(
gk +

Tk3

ρ

) 1
2

(deep water).

Steady waves satisfyωs = 0, so that

kU = ±
(
gk +

Tk3

ρ

) 1
2

.

For simplicity we take units such thatg = T
ρ = 1, so thatkU = ±

(
k + k3

) 1
2 .

If U <
√

2 then there is no solution (barring the trivial one at the origin) and no
steady waves are possible. IfU >

√
2 there are solutions: ifk > k2 thencg > U and

if k < k2, cg < U . Since the group velocity relative to the flow must be positive, short
(capillary) waves are only found ahead of the disturbance and long (gravity) waves are
only found behind it.
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4.4.2 Ship waves

We consider two dimensional steady waves in a mean flow. The approximations we
make are that a ship is a point disturbance, the water is deep and there is no surface
tension. ThenΩr =

√
gk and we have the condition(ωs + k ·U)2 = gk (for steady

waves), giving

ωs = ±g 1
2
(
k2
1 + k2

3

) 1
4 − k1U. (4.9)

This is an anisotropic dispersion relation, so thatcg is not parallel tok. We seek a
steady wave pattern withωs = 0. According ask1 ≷ 0 we need the± signs in (4.9),
so that

k1U = ±g 1
2
(
k2
1 + k2

3

) 1
4

and

∂ω

∂k1
= −U(k2 + k2

3)
2k2

< 0.

This means that the waves are behind the ship. SinceΩt = 0 and∇xΩ = 0 the
rays are straight. Writedzdx = tanψ on such rays.

Now
dz
dx

=
dz
dt
dx
dt

= − k1k3

k2 + k2
3

.

Writing k = k(cosφ, sinφ) gives

k
1
2 = ± g

1
2

U cosφ
and tanψ = − tanφ

1 + 2 tan2 φ
. (4.10)

We need|π − ψ| < π
2 in order to have waves behind the ship. We restrict (WLOG)

to−π
2 < φ < π

2 , and note that there is a maximum value of|π − ψ| whentan2 φ = 1
2

andtanψ = − 1
2
√

2
.

Waves are thus confined to a wedge of semi-angle19 1
2

◦
. The phase can be calcu-

lated by

θ =
∫

any path
∇θ · dx

= k · x choosing the path as the rayψ = const.

= kr cos(ψ − φ)

= kr
cosψ
cosφ

(
1

1 + 2 tan2 φ

)
.

Hence

x = r cosψ =
θ cosφ

(
1 + 2 tan2 φ

)
k

and using (4.10) we obtain a parametric equation for the wave crest shape,

x =
θU2

g
cos3 φ(1 + 2 tan2 φ)

z = −θU
2

g
cos2 φ sinφ.
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4.5 Internal gravity waves in a stratified incompress-
ible medium

Consider a fluid medium in which the mean pressurep0(z) and the densityρ0(z) are
in hydrostatic balance, i.e.

dp0

dz
= −ρ0g

when there is no motion. Assume that the vertical lengthscale forO(1) changes in
ρ0 isL. Since the fluid is incompressible,

Dρ
Dt

= 0 and ∇ · u = 0.

Further, the motion is governed by the momentum equation

ρ
Du
Dt

= −∇p− ρgẑ.

We linearise the motion about the mean state,p = p0 + p̃ andρ = ρ0 + ρ̃, so that
(writing u = (u, v, w)) we have

ρ̃t + wρ′0(z) = 0, (4.11)

ux + vy + wz = 0, (4.12)

ρ0ut = −p̃x, (4.13)

ρ0vt = −p̃y, (4.14)

ρ0wt = −p̃z − ρ̃g. (4.15)

Equations (4.11) and (4.15) give

ρ0wtt = −p̃zt + ρ′0gw,

and equations (4.12), (4.13) and (4.14) give

ρ0wzt = p̃xx + p̃yy.

Hence
(ρ0wzz + ρ′0wz)tt −

(
∂2
x + ∂2

y

) (
ρ′0g − ρ0∂

2
t

)
w = 0,

orL(∂t, ∂x, ∂y, ∂z; z)w = 0. We can make a slowly varying assumption if a plane
harmonic wave has a relatively short vertical lengthscale:2π

k3
� L whereρ0ρ′0

= O(L),
giving ρ′0wz � ρ0wzz. The leading order dispersion relation is

−ω2
(
−ρ0k

2
3

)
+ (k2

1 + k2
2)(ρ

′
0g + ρ0ω

2) = 0,

or equivalently

ω2 = Ω2(k, z) ≡ N2(z)(k2
1 + k2

2)
k2
1 + k2

2 + k2
3

, (4.16)

where

N2(z) = −gρ
′
0

ρ0
> 0.

N is theBrunt-Väisälä frequency.
Note that
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• No solutions to (4.16) are possible ifω2 > N2.

• The group and phase velocities are perpendicular.

• ω, k1 andk2 are always constant on rays, andk3 is only constant ifN ′ = 0, that
is ρ0 = ρ̄e−z/L, whereL = N−2g andρ̄ is a constant.

Consider an experiment where waves are generated by a two-dimensional oscillat-
ing cylinder (ω < N ). Then ifk = k(cosφ, 0, sinφ), cos θ = ± ω

N and

cg =
1
k

(
±N sin2 φ, 0,−ω sinφ

)
.

Assuming thatk is constant (and hence all rays straight) we see that downward
propagating waves imply upward propagating energy.
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