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Introduction

These notes are based on the course “Electrodynamics” givddr. M. J. Perry in
Cambridge in the Michaelmas Term 1997. These typeset notesbeen produced
mainly for my own benefit but seem to be officially supporteche fecommended
books for this course are discussed in the bibliography.

A word or two about the philosophy of these notes seem in ofidey are based in
content on the lectures given, but | have felt free to expanabcantract various details,
as well as to clarify explanations and improve the narrdtis. Errors in content are
(hopefully) mine and mine alone but | accept no responsjbitir your use of these
notes.

Other sets of notes are available for different courseshétime of typing, these
courses were:

Probability Discrete Mathematics
Analysis Further Analysis
Quantum Mechanics | Fluid Dynamics 1
Quadratic Mathematics Geometry

Dynamics of D.E.s Foundations of QM
Electrodynamics Methods of Math. Phys
Fluid Dynamics 2

They may be downloaded from

http://pdm23.trin.cam.ac.uk/"‘pdm23/maths/ or
http://www.damtp.cam.ac.uk/

or you can email me opdm23@cam.ac.uk to get a copy of the sets you require.
Even if you download them please email me to let me know, sol tten keep you up
to date with the errata and new note sets. The other peopldadcontributed time
and effort to these note sets are:

Richard Cameron Analysis Hugh Osborn Proofreading
Claire Gough Proofreading| Malcolm Perry Accomodation
Kate Metcalfe Probability

Although these notes are free of charge anyone who wishegptess their thanks
could send a couple of bottles of interesting beer to Y1 Bistieield, Grange Road.

Paul Metcalfe
4% December 1997
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Chapter 1

Point of departure

This is a review of terminology and results from Special Relly and Electromag-
netism (possibly rewritten in a more grown-up way).

1.1 Maxwell's Equations

These are :

dvE ="
€0

cwrlE = —B

divB =0

curl B = /l()j + /L()G()E.

p is the charge density, is called the permittivity of free space. It is not a funda-
mental constant but merely determines units. Similarlyis the permeability of free
space and merely determines unjtg.ande, satisfyugeg = ¢ =2, wherec is the speed
of light (and a fundamental constant). In familiar units: 2.997 x 10® ms~1, but we
will choose units such that= 1.! Dimensional analysis can replacén any derived
formulae.

1.2 Electrostatics

This is the case where there is no current and a time indepectarge distribution.
Then Maxwell's equations reduce tiv E = 2 andcurlE = 0. We will assume
B = 0, but it does not affect the equations for ‘the electric field.

The electric field due to a point charggis E = ;4 T—zr. To measure the electric

4men

field we can take a chargg and measure the for@ = ¢ E on it.

1Despite the fact that the Schedules mandate Sl units. Exastiong will be set such that= 1.

1
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2 CHAPTER 1. POINT OF DEPARTURE

1.2.1 Coulomb’s Law

The force between two point charges is

1
F— q192

4dmeg 12

directed on the line between the centres. It is repulsivéworlike charges.

A point charge can be regarded as a charge distribution whiatdelta function:
p = q16(r). To find the electric field due to a distribution of charges &g aose linear
superposition to find everywhere. Agurl E = 0 we can introduce the electrostatic
potentialg such thatE = —V¢. ThenV?2¢ = %03 We can solve this using a Green’s
function, that is a functio(r, ') such thatV2G(r,r’) = d(r,r’). We can see that
G(r,r') = -1 2. Then

T 4xm Jr—r/|"

1
¢(r) = —— [ &' G(r,r')p(r").
€0
Proof. Firstly, we see that

vig= L / &' V2G(r, ) plr')
€0

S a3 6(r, ") p(r")
€0

—p(r)

Then we merely note that solutions to Poisson’s equationgicgie. O
1.2.2 Multipole expansion

Suppose we have a charge distribution in a redsaas shown.

The multipole expansion of the potential is what happensderseral expression
for ¢ if |r| > |r'|. We expanqr%r,' using the binomial expansion.

1
T

R O S 1T M
r r2 2r2 2 rt

We substitute into the general expressionddo obtain

1 v 1
o(r) = Treor /Bd?’r' p(r") (1 tog o (Brirjrirl — r?0mir) + .. > :
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1.3. SPECIAL RELATIVITY 3

This is an expansion af in inverse powers of. The term inr—! is referred to as
the 2!-pole term.

When! = 0 we have a monopole. ) = [ d3/ p(r’) then¢ = %ior, which is
usually called the Coulomb term.

When! = 1 we have a dipole. Let; = [ @3’ p(r')r} (the dipole moment). Then
¢ = gregsridic

When! = 2 we have a quadrupole and the contributiongtds ﬁrirjcgij,
whereQ);; is the quadrupole moment aidf; = 3 [ d® p(r') (3rjr} — 6;;7'2). Qi;
is a symmetric tracefree tensor, as

1
Qijéij = 5 /dST/p(I‘/> (37“;7";«(517‘ — (Sij(sij’l"lz) =0.
It has 5 independent components. In generatttiderm ha2l + 1 independent com-
ponents. Wheih = 3 we have the octopole moment and whiea 4 the hexadecapole
moment, but these become increasingly cumbersome.
1.3 Special Relativity
Special relativity has two postulates:

1. The laws of nature are the same in any inertial frame.

2. The speed of light is independent of the speed of its source

This leads us to consider Minkowski space, viZ.= (t,x) = (t,z%). u runs from

0 to 3 and: runs from1 to 3. These are inertial co-ordinates. If a particle is at rest at

x = 0 att = 0 then in remains at rest at = 0 for all time. ¢ is then the proper time
for that particle — what a clock sitting on the particle woual@asure.

We can relate the physics in one inertial frame to anotherdrgihtz transforma-
tions. Suppose that one has a second frame moving with Weloan the = direction
relative to the first frame. Then we have new inertial co-oatks

"=7(v)(t - v)

N
V() (2 - vt)
Y

t
z
y/
o

wherey(v) = 11_U2. This can be written’# = A*, a2, whereA*, is the matrix

form of the Lorentz transformation, in this case:

¥ —yv 0 0
—yv v 0 0
0 0 1 0
0 0 01

To find the Lorentz transformation of arbitrary motion désed by a unit vector
n then we consideR?~!(n)AR(n), where R(n) is a rotation to moven into the z
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direction.
1
0
0 Rs
0

with R3 an ordinary spatial rotation. We can make Lorentz transépions look like
rotations — if we puty(v) = cosh ¢, thenvyv = sinh ¢, which implies thatv =
tanh ¢. This is sometimes called a hyperbolic rotation.

We define a distanagés? = —dt? 4+ dz? + dy? + dz? between two infinitesimally
separated points. This can be shown to be invariant undentotransforms. Ifit = 0
then it reduces to the ordinary Euclidean metrid®n

If ds?> > 0 we say the two points are spacelike separatedsif < 0 they are
timelike separated and ifs> = 0 they are null, or lightlike separated. The interior of
the light cone hads? < 0 and the exteriods? > 0.

Proper distance is defined for spacelike separated evehtsdoand proper time
dr for timelike separated events dy? = —ds2. The invariance ofl means that the
time seen by a clock sitting on some object can be computeayimnartial frame.

It is easier to writels? = Nudatdz”, wheren,, is called the metric tensor and is

-1 0 0 O
0 1 .0 0
0 010
0 0 01

We also have the inverse metrj¢” defined byy“n,,, = é5. The matrix form of
n*¥ is (obviously?)

1 0 0 0
0 -1 0 0
0 0 -1 0

0o 0 0 -1

Given two vectorse” and y* we want a scalar product that should be invariant
under Lorentz transformations, add= 7,,, 2"y will do the trick. This gives us the
idea of defining covectors by, = n,,2* and thenS = z,y”. Then there is the
inverse operation*”z, = n*"n,,x" = .

We ask ourselves how a covector transforms, and we obtair z;, = A, "z,
whereA, " = n,,A?,n7*, or in matrix form

v v 0 0
yv v 0 0
0 0 1 0
0 0 01

for the transform we looked at earlier. We see thét,)~! = A, * and

zu Yt =yt = AL, A Gy
=ASA G y”
=60x,y°

g
=ZoY ,
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which is, on the whole, a good thing. This is analogous totiana in R? preserv-
ing the metric, the rotations being classified By R = 1 and R;;0;, Ry = 65 ex-
cluding reflections. A Lorentz transform preserves the Mimkki space metric and
At ArYn, = ner. TO see the equivalence multiply both sidesi3y to get (eventu-
ally) 52 = 6).

The Lorentz transforms are defined By " A, "7, = 71, (the groupSO(3, 1))
with no spatial reflections and preservation of time, givimg Lorentz group.
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Chapter 2

The relativistic theory of
electromagnetism

We start with the Lorentz force lavE = e¢E + ev A B and seek to generalise it.
Non-relativistically we have

d2i .
md—;:e(E—&—v/\B)Z,

and we already know the equation of motion for a free relstiiviparticle,

d?zH
T
dr?

We also recall the non-relativistic velocity 4-vector,

dxt

P ut = (1,u),

and we know thatl7? is Lorentz invariant and hencel = uun,,,. We guess aforce
law

We see immediately that by the quotient theordfi,, must be a tensor. We also
know that this equation must be true in any inertial framej sm is always true. We
take the non-relativistic case, whefe = -{. to find whatF*, must be.

dt dz dy dz
eE, +e(vyB, —v,By) = eFlog + eFllg + eFlgg + eFlgg

We thus identifyF} = E,, F'; = 0, F'3 = B, andF'; = —B,. We repeat this

process withy andz, and lower the index, giving us

E 0 B -B

A — T z Y

77/.L)\F v — F;LV - Ey _Bz 0 BJL
E. B, -B, 0
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In the relativistic

case,f = 4L.

8 CHAPTER 2. RELATIVISTIC ELECTROMAGNETISM

We note that the spatial part of this is antisymmetric, andesive treat space and time
equivalently, we can finally define

0 -E, —-E, —E.
s _ |8 o B -B,
w=|E, -B. 0 B,

E. B, -B, 0

This is the electromagnetic field (strength) tensor, or Maktensor. The only puzzle
is what the time component of the relativistic Lorentz equratepresents. It img—jg =

eFOi‘{d'—f. We note thau* = ~(1, v) and thaty is a kind of relativistic energy, giving

% (m~y) = ev.E, which we know as “the rate of change of energy equals theofate

doing work by the electric field”.

2.0.1 Relativistic motion in constant electric field

We consider a constant electric field in thelirection. We have a particle with charge
e which starts at rest at the origin. The non-relativisticecasni = eE, which gives
z = 2212 andi = <£¢, which eventually exceeds

Relativisticallymiy = mZ = 0, which are trivial. We also have the equations
mi = eF*yt = eEt andmt = eFi.

We integrate these once and use the initial conditions terget eFx + C, and
ma = eE't. (Note that we set = 0 att = 0.) Integrating again we get

E E
x(T) = Asinh =~ + Beosh — — mCy
m m el
E E ~
t(1) = Acosh T 4 Bsinh =L 4 €.

m m

We have the boundary conditiors= & = 0 atT = 0 andt = 0 at7 = 0. There
is a temptation to put = 0 at 7 = 0 — but this is inconsistent, as1 = utu, =
(—t2 + i%). Thus we put = 1 at7 = 0 — which we could have guessed, we know
that at rest, co-ordinate time is the same as proper timallfzimve get

To find the velocity we can write(¢) by eliminatingr

m 2242\ 2

We can now find the velocity

dx el t

E B m / 2242 ’
1+ < m

For smallt we have the reassurirf = <Z, but in the large case we find only
thatv — 1 from below, and is always less than
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2.1 Transformation of F,,

We Lorentz transform (in the direction with velocityv) the tensoiF,,, to see how the
electric and magnetic fields change under Lorentz transftoms.
We know thatF,, — Fj, = A,’A,7 F,,, and we just perform these sums to get:
E. =E,
E, =~(E, —vB:)
E, =~(E, +vBy)
B, =B,
B; =v(By +vE,)
B, =~y(B, —vE,).

These are radically different from what we would expect érthwere two electric
and magnetic 4-vectors.

2.2 Lorentz invariant scalars

We know thatF,,,, andn,, are Lorentz invariant, and we can derive some Lorentz
scalars from them. The most obvious oneFig,n*”, but asF is antisymmetric
andn symmetric this evaluates to zero. A more useful LorentzesdalF,,, F'*" =
2 (B2 — E2).

We can get another Lorentz scalar by introducingdhernating tensorwhich is
defined as

1 if uvpo is an even permutation 6fi 23
ehP? = ¢ —1 if yvpo is an odd permutation @f123
0  otherwise.

We can now define the dual field strength tenget! = %ENVP”FM. We can
evaluate this
0 -B, -B, -B,
B, 0 -E. E,
B, FE, 0 —-FE,
B, -E, E, 0

G,ul/ =

The dual tensolG can be found from# by E — B andB — —E, which
is sometimes called a duality rotation. We can now define théurLorentz scalar
F, G' = —-4E.B.

2.3 Tensorial form of Maxwell’'s equations

We start from Maxwell’'s equations to see what they turn imtéeinsor notation. W
take them in an slightly unusual ordéiy E = pgp andcurl B = poj + E and seek
to write them as tensor equations.
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10 CHAPTER 2. RELATIVISTIC ELECTROMAGNETISM

We note thatE; = F;y = —F% andB; = ¢;;.F7*. The divergence equation
become®); F;y = pop- The curl equation is

1 o
§6ijkaj6kszl "= 3 (0;Fij — 0;Fy;)

= 0;Fij = poji + 0o Fio.

We hope that this is consistent with a tensor equatipA*” = X*. If we study
this we see that this works X* = —pg(p,j). Thus two of the Maxwell equations
become

O FH = —poj”.

where j#* = (p,j) is the 4-vector (electric) current. This illustrates thataving
charge and a current are just the same thing/’ds a four-vector and so is consistent
with Lorentz transforms.

Incidentally, we have not lost conservation of charge &s0, 0, F " = —1100,7".
We now go after the next two Maxwell equationsy B = 0 andcurl E = —B.
The first is easy; it give®;e;;,Fj, = 0. We guess that this is a component of
eP?9,F,, = 0, and indeed if we evaluate the spatial components we repeodu

the last Maxwell equation.

We can rewrite this in terms of the dual field-strength tetts@etd,G* = 0 —
this says that there is no magnetic current. It turns out tmbee useful to explicitly
antisymmetrize our equation to get

0y Fpy + 0pFy + 05 Fyyp = 0.

2.3.1 Potentials

In the non-relativistic case we know tHEtandB can be derived from potentials:

E= —gradqb—A
B = curl A.

It turns out that we can come up with an electromagnetic 4eveitential A* =
(¢, A) such thatF},, = 9, A, — 0,4, (simply expand this to see).

We know thatA is not unique in non-relativistic electromagnetism; we ealal
on the gradient of any scalar function — called a gauge teansdtion. Similarly, we
see that the 4-vector potentid), is unique up ta),, A for any scalar functiom. This
means we can try to impose extra conditionsAgnwhich (partially) prevents gauge
transformations (called gauge fixing). The point is to eaghat a givent),, is the
product of a moderately uniqué, .

A useful covariant gauge is to imposg A* = 0. Thus if we haved” such that
Fu = 0,A, — 0, A, and we sed’* = A* 4 9 A, then we can have = 0, A" =
O A" + 0,0 A. In principle we can solvé,, 0 A = —0,, A", so this gauge condition
is possible.

If we consider this a little more, we see that is still non-unique, but only up
to a solution of the wave equatiofl, 0*A = 0. Solutions of the wave equation are a
combination of plane waves?*»*", wherek* = (w,k) andw = |k|. k* is the wave
4-vector or the momentum 4-vector.

1what “moderately unique” means has yet to be defined.
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If we wish to find F'#¥ given a collection of charges and currents we solve the
equationd, 0* A* — 0,,0" A* = —pj”. This is where our gauge condition comes in
useful, we get, 0" A” = —puoj¥, or DAY = —puej¥, whered,,0* = O (pronounced
“box”). We can now see thai, A” = 0 is sensible — it is compatible with current
conservation.

2.4 Least action principles

2.4.1 Particle motion

For a single free particle in special relativity we have thtam

1= /dTm\/—i‘“i‘l”/],“,.

The usual Euler-Lagrange equatiofls (2% ) — 2% = 0 give —mi,, = 0.

air )~ dxk

For a particle with charge in a potentialA* we can generalise this to

I = [ drmy/—&rivn,, —eA, ",

But can this possibly be gauge invariant — the quaityappears explicitly? But
we see a current resulting from the motionjéf= ei*. So suppose we make a small
gauge transformation such thigd,, = 9, A. Then

5/d¢j“A# = /deﬂauA and integrating by parts we get
=— / dr9,j*A =0 by conservation of charge.

This is all somewhat academic if varying does not give us the Lorentz force law.
Using the Euler-Lagrange equations we get

d ( —ME Nuy ) _ i (BAM) —|—eij8MAy
dr

Todr \ mEra,,
7 is the proper time s@*i"n,,, = —1 on the worldline

d
= — (—m&,) —ex"0,A, + ei"0,A,

dr

=-—mi” +ex"F,,.

This is the Lorentz force law. One can use the action as a quagkof finding the
motion of a particle. For a constant electric field in thdirection we getd” = —FEt
and all other components df* are zero. To get the motion of the particle we vary the

action
I= /dTm\/iQ — 42 4 eFti.

The Euler-Lagrange equations give the same differentiahons for the motion
of the particle as before, but more easily.
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2.4.2 Field action

We also want to find a Lagrangiahthat reproduces Maxwell's equations, that is if we

take
:/d4xﬁ,

01 = 0 under variations of something or other must reproduce Ms/egjuations.

L must be a Lorentz scalar, built out Bf,,, (or A,,) and it must be gauge invariant.
The Maxwell equations involve first derivatives Bf,, (or second derivatives ol ,).
So the only real possibilities are varyidg, and must be quadratic ift),,,. ¢#**° F,,
gives nothing. The usual choice is

1
L=——F"F,, +j,A".
4po po +

This is gauge invariant. §4,, = d,A, then if we assumé,, = 0,4, — 0, A,
we getdF,, = 9,0,A — 9,0,A = 0. The [ j, A" part gives) as before.

§F,, F — j”(SAl,)

(0,04, — 0,6A,) F* — j”éA,,)

I
|
=~

— (0,0A,) F* — 5A,,j")
Ho

- /d4:v 5A, (ﬁauF“” +j”>.

We perform the last line by integrating by parts and assurﬂriagboundary condi-
tions are all zero. As we can arbitrarily vasy, we must have-9, F* = . The
Ho
other Maxwell equation is automatic as we have assumedF;nats derlved from a
potentialA,,. This least action principle requires that there is no mtigrearrent.
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Chapter 3

Energy - Momentum Tensor

3.1 Definition

We seek a relativistic form of the field energy. We define thieés-)energy tensor

T = i (FROFY, — g FroR,,) .

We note in passing that this is a symmetric tensor. Note hef't° component is

ﬁ (E? + B?), which reproduces the non-relativistic energy densityinferpret the

rest of the components @ we recall Poynting's theorem.

Poynting’s Theorem. Let D be a region in space. Then the rate of change of

energy inD is

1 1 . _
—Q/EMBQdV:—/ EE+B.BdV
2[140(915 D Ho JpD

1
— [ E.(curl B — ppj) — B.curl EdV

Ko Jp

1
:—/ j.EdV+—/ E.curlB - B.curlEdV
D Mo Jp
:—/ JEdV — N.dS,
D aD

where we have introduced the Poynting ve@bre= ﬁE A B. The Poynting vector is
the energy flux.
By performing the sum we find thdt®* = N*. We find that

Energy | Energy flux
density ‘
T = Energy
flux

“Stress”

We want to evaluate the “stress” part of this tensor.

13
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= s (Fi By — i F7 Fyo)

= ( “’F "+ FFyt = 305 (-2B% + 2B%))
,jo( E.E; + €5 Bi€jim B + 16, E* — 16,,B?)

- #10( EiE; + 152JE2 BiBjJr%éisz)'

This is the Maxwell stress tensor, and can be thought of apthssure of the
electromagnetic field.

3.1.1 Conservation of energy-momentum

We compute the divergence 6.

0, TH = ia (FMFY, — in" FP7F,,)
= L ((9,FF'o)F" g + FM' (0,F" ) — L (0" F*?) F,)
—F*jo + o F (—30MFP7 + 0,F")
=—F"j, — 5—F,; (O"FP° + 0°F*F 4 0P F°*)
=—F"j, by Maxwell’s equations.

Thus in the absence of charges/currents, the energy-mameahsor is conserved.
We can evaluate the right hand side of this equation to get

8,T" = (—.E,pE +j A B).

The time component of this is the work done by the electroratigfiield and the
spatial components give the electric force on a curjethie toB and on a charge
densityp due toE.

3.2 Plane waves
This has the equation A* = 0 in the gauge),, A* = 0, which has solutions
A, = Ae, exp (thyz?),

Note that this is a complex solution, so when we work vitandB we must take
the real part of théield, which corresponds to the imaginary part4yf.

€, is the polarisation vector, ankl, = (—w, k) is the wave 4-vectorw is the
angular frequency is the wave vector anik| = w. A is the amplitude. Imposing the
gauge condition requires,k* = 0, so we have the transversality of the wave.

This does not completely specify the gauge. If weddt, = 0,A with A =
—1Ce™* thene, — ¢, + Ck,. Sincek,k* = 0 this preserves the gauge condition.
This freedom is usually exploited to pdf = 0. In this case,

AM — (O’Aeeik.m) — (O,Aeez(k'x_Wt)),

wheree is a spatial vector. The gauge condition gikes = 0.



Copyright © 2004 University of Cambridge. Not to be quoted or reproduced without permission.

3.3. RADIATION PRESSURE 15

FindingE andB from 4, is easy:
E; = —Fy, = —00A; + 0;Ag = wA;.

and
B; = %Q‘ijjk = GijkajAk = —k ANA.

The physical fields correspond to the real parts of thesetiiggn

3.3 Radiation pressure

Suppose that we have a situation as drawn above, with a plane propagating in
the z direction. Then the electric and magnetic fields are inyhend x directions
respectively, withtl, = wAsinw(t — z) andB, = wAcosw(t — z).

The rate of flow of momentum per unit areg$|, whereN is the Poynting vector
and this has a time averag%aﬂA? This is coincidentally the same as the energy
density. We also evaluate the stress-energy tensor

T;; = ﬁ (%51']' (E2 + BQ) - EE; — BiBj> .

This is clearly diagonal, and evaluating the diagonal camepes we getT,.) = 0,
(Tyy) =0and(T,,) = Q%OwQAQ. There is a pressure due to the wave, but importantly
it is not isotropic
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Chapter 4

Solving Maxwell's Equations

4.1 A Green’s Function

We hope to find a general expression #; given a time dependent distribution of
charges and currents. We will work in thg A* = 0 gauge, and so we have to solve
the equatioa A* = —pugj#. We proceed naively and see what happens.

We hope to find a Green’s functiai(z, ) such thatiG = §(z,2’) and so

A(a) = —po [ @i’ Gl o) ()

is a solution o2 A* = —ppj#. One problem is thal is a hyperbolic operator so there
exist non-trivial solutions t&¢ = 0 with ¢ — 0 at infinity.
The four dimension Fourier transform is defined by

fk) = / d*z f(z)e ",

The minus sign in the exponential is not arbitraryf s a plane wave () ~ e*-*
thenf(k) = (2m)46™ (p — k), which is what we want.

We will solve OG(z,2") = 6™ (x,2’) using the Fourier transformG(k, z') =
—k~2e~"** and so defining,, = z,, — ), = (2°,z) we find

v

'LkAzefzkuzo

1 3 0€

and note that if we perform thi, integral we see that the integrand is singular at
ko = £ |k|. We thus need to choose on which contour to perform the iategr

If we consider the retarded Green'’s functiGp, which we get by integrating along
I';, we see that for® < 0, G(x,2") = 0 as we can close the contour in the upper half
plane and apply Cauchy’s theorem. Edr> 0 we have to close the contour in the

17
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lower half plane. In doing this we pick up two polesiatk| and can apply the residue
theorem.

The advanced Green'’s functi@r,gy is obtained by integrating along,. In this
caseG is only non-zero foe® > 0.

The retarded Green’s function agrees with intuitive idefsamisality so we use
that. All we have to do now is evaluate it.

1k.z,—1k92°

1 e %e
Gret(l‘, x/) = G(ZO)W /dSkdkO W

We close the contour clockwise so we get2m: > residue$ for the k¥ integral, thus

2%10 emtlkl=" _ galkl=®
Gre[(ﬂf, I‘/) /dgk elk “ (T .

We convert this into spherical polarskaspacek, = ksin6 cos ¢, k, = ksinfsin ¢
andk, = kcos§ and so
—1k2° _ 1k2z0
167T3 (6 c )

_ Ze( ) : ezkz cosf —1k2° 1kz?
= — /kdk sin 6d6 3 (e —e )

1kz cos 0

Gret(z,2") = / k*dk sin 0df d¢

82
0('20) > 1kz cos 070=T —1kz" 1k2°
=57, /0 dk [e L):O (e —e )

The integrand is even ik, so

0 )
Gret(z,2') = 196(; )z/ dk (e—zkz _ e'Lk’z) (e_“"zo B e”kzo> -

Recall that[_dke'** = 2r6(z). Thus the integral is a combination of four delta
functions, but the step functighkills two of them off and we get

0(z°)

N — ) _ .0 .

Gret(z, 2") y (z—2")

For the record(G gy = 47; )6(z +2%). We can make our result f@#,e; look more

covariant by recalling that

i) =3

wheref(a;) = 0. Then agh® (22) = §(|z|* — 2°°) (= is a four-vector) we have
(3) (3) (3) 0
) = 51 |(6 (I2] = 2°) + 8 (|2 + 2°) )
and as the step function removes one of these delta funatieryet

1
Grel(z,2') = —ﬁe(zo)é(g’)(zz), 2 =gt — 2
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Now suppose we wish to evaluate (x) for some current distributiojt* as shown.
We get

Ar(z) = 0 /d%’j”(x’)é(g)((m ~2)?) 0 — 2°).

This comes about because we ch6gg. The advanced Green'’s function gives the
reverse. Thug7 is consistent with our ideas of causality. Other choices/adre
not. This choice goes beyond local physics. It is presumablyed by appealing to
cosmology or quantum theory.

We also note that the only contributions #¢'(z) come from pointse’ such that
(r — 2')? = 0 — that is only whenr andz’ can be joined by a light ray pointing
towards the future of’.

4.2 The field of a moving charge

Suppose we have a moving charge, with (non-relativistiall= e53(x — (¢)) and
thereforej = 6%53()( — (¢)). In the relativistic case we replag<t) with y*(7) and
getj* = eurd3(x' — y(t)). We can use a trick to make this look more covariant,

gh = e/dru“(54(m” —y"(7)).

Then

dyH
A = Ho /d4a:' dré((z —2")?) 0(2" — x’o)i54(x" — 3" (7)),
27 dr
which has the effect of integrating over the backward ligines This can be evaluated
by carrying out ther’ integral first. Note that

X — - xo —° X — 3;'0 — 0
5(@ . y)z) _ 5(‘ vl —( _?;(;)_—Fy(;“dyu y| + ( Y ))
JIV dr

The second delta function does not contribute (because evasamng the retarded
Green'’s function) and so

VR Tl (e el Gl ).

2m dr —2(x — y)u%
dy*
_ &

dyv
4 G (r—y)y s
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wherery is the value ofr on the world-line where the past light coneofntersects
the world line of the particle. This is usually referred toeamluating at some instant
of retarded time. These are the Lienard-Wiechert potentaaid are painful to use in
arbitrary relativistic motion.

The result Qo
o 2 0 0\ Y
A = —— [ d7ré((xz — 0z’ —y” )=
20 [ ar (e =) ol - )
is useful for relativistic motion. To evaluate the fields we chém calculate terms of the

form
VAR eHo o_,0 dy” v N2
0"A o /dT@(x y)d785((x y)?)

dy* 2* () d

_ GHo 0_ .0 a
— dr 0(z” — y” (7)) i (%p(x—y)p o

2

§((z —y)?)

To evaluate this we integrate by parts. We taRe# 3° and thus remove points on
the world-line of the particle from consideration. The figdchot well defined there.
Thus

Ly dub
v _ _Co d (z -y — (@ —y)" G
=3 T
T dr ar (x y)ﬂ r=1o

We write (z — y)* = (+R, Rn) whereR is the spatial distanck — y| andn is
a unit vector. The plus sign oR comes from the retarded Green’s function. We also

need the velocity = (v,yv) wherev = %- After evaluating this we get

_e,uo[ n—v n/\{(n—v)/\\'f}]
21 72(1 - n.V)3R2 (1 - n.V)?’R retarded time
B=nAE.

The first term in the expression f@& is just the Coulomb field (put = 0 to
see this). The second term only appears i 0 — it depends on the acceleration.
ThenE ~ acceleratio® andB ~ acceleratio® and are perpendicular. Thus the
Poynting vector iN ~ acce'lgigaﬂoﬁ. Thus the energy flux out of a large radius sphere
~ acceleratioh — accelerating particles radiate energy.

For a non-relativistic particle it is somewhat easier. We e Lienard-Wiechert

potentials
dy*
w_ EHo dr
d v
4m dy (x - y)u

T

retarded time
and putz* = (¢,x), y* = (¢,y) with x — y = Rn wheren is a unit vector. For
non-relativistic motion% = (1,v) and

an = o (L)
dm |x -yl

att' =t — R

~ Itis straightforward to calculate andB from B = curl A andE = — grad A0 —
A. We first evaluatéB, and note that we are only interested in herR~!) terms —
to get the radiation at infinity. Thus

elo eHo

47ar/\v and 47ar/\[nv]
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The Poynting vectoN = ;—OE A B evaluates alN = 166;% (¥)? sin’6 n.

The radiation is mainly perpendicular to the direction o ticceleration and is
axisymmetric about that axis: determines the time dependence of the radiation and
thus the frequency can be found by Fourier transforniing

The power radiated (or the total flux of radiation) idN.dS over a sphere at in-
finity which we assume is at a large distance from the parfitie celestial sphere).
Converting to polars we get

. ey .2 o ,...2
flux of radiation= y in30 dodg = ——= (¥)°.
ux of radiation= 7~ (¥) /SIH ¢ o (¥)

This is Larmor’s formula.

4.2.1 Radiation reaction

We consider a particle with mass and charge moving under an external forde.y:.
Assume (naively) Newton's Lawny = Fey and dot this withy and integrate to get
that the change in kinetic energy equals the work done by ppéeal force. But we
know that this is not true — there are radiative losses atitgfiwWe therefore guess
another forcé'r and proposeny = Fey + Fr. Dotting this withy and integrating
we see thaF i.y is the radiative energy loss. Using Larmor’s formula andiaseg
that there is no acceleration at the endpoints of the motieg&tF = e;’;o y and
derive the Abraham-Lorentz equation

€210 .-
m (y_ Moy) = Fext.
6mm

This is very odd and leads to embarrassing difficulties. Teessuch an equation
three initial conditions are needed, position, velocitd acceleration. But if we take
Fex = 0 We see that the solutions ade+ Bt + Cer, wherer is the timescalét%f.
This exponential runaway solution is presumed to be unphisi

If Fex is a delta function and we assume the initial conditiens- & = 0 we
have to adjust: to suppress the runaway solution. We see that the particlbgrged)
must start acceleratingeforethe force is applied. This acausal behaviour is called pre-
acceleration and is governed by the timesealehich for an electron is approximately
6 x 10~24s, into the realm of quantum mechanical effects.

4.3 Oscillating Fields

Assume thaj* (x, t) = j*(x)e** with j# non-zero only in some domaiD.
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Using our result fordA* we get

1

—zw|x—x'|
x — x|

A (x,t) = Kot / &2’ (x')

7

If R > dwe can expanq)(j—x,‘ in the usual way as

11 1 o2x.x |x|? =
x—x| R\  R? + R?

7 <1+X'X/ 1P +§(X'X/)2 >

TheO(R~?) and lower terms do not contribute to the radiation and wilbbetted.
We get

A;L(X7 t) — 4Z(‘)Rezwt /de/j#(X/)e—zw‘x_x’|.

. . . — — ’ .
We can perform a similar expansion onl*=*' and finally get

/

AM(X, t) _ 4/~7:-()Rezw(t7R) /dSm/jM(X/)elw"ﬁ
providedR > A, the wavelength. Thus the expansion we have derived is wdiiEh
R > d, \. This is called the radiation zone.

Thus at large distances the system appears to be a sourckesicgp waves. To
proceed further we can expand out the phase factor in poviiers\we get

x (xx)?
1 _ 2
+ w R w SR?

A/L(X7t) — Ho ezw(t—R) /dgac/j“(x’) +...

4T R

In the radiation zone whend >> 1 these terms are successively smaller.
Recall thatj* = (p,j). Then

H 1w (t— w
A%(x,t) = ﬁe (t—F) [Q—i—ﬁx.p—i—...}

wherep is the electric dipole moment of the system. Note #at= 0 as the total
charge cannot depend on time. For the vector potential,

i _ Mo w(t—-R 3,0 ; w 3 i
Al(x,t) = T (t—F) {/d x/ji(x')JrExj/d x/x;]i(x/)+...]

We can simplify this by noting (integrate by parts) that
[ i) = = [ st

and applying the continuity equation, which in this casevis + div j = 0. Thus
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and we get

W _pPX W _
AO — w(t—R) P~ and A = w(t—R) )
iR ” R 4R © P

We can now calculat& andB as

L«)Q,LLQ w(t—
E = WG (t—F) (RQp - (x.p)x)

w?po
_ Y M0 w(t—R)
= me xA(xAp) and

2
W™ o 6zw(t7R)X/\ p.

B=“Ho
4T R?

The time averaged Poynting vector thus points radially antls and has magnitude

N = % sin? H_and the average power radiated is theref&%. _
The scattered light has* dependence times the spectrum of the light. Thus blue

light is scattered preferentially to red and the sky appbhrs. This also explains the

red sun at sunset; since there is more scattering when the afidhe sun is low and

the blue light is scattered more.
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Chapter 5

Quantum mechanical effects

5.1 Minimal coupling

Consider a particle with charge worldline z#(7) in an electromagnetic field with
potential A*. Recall we obtained an action

I= —/dT (m —:icz—eA#m'“) :/dTE(x,:'L'),

where the minus sign is inessential; it just normalizesghimcely. The momentum
w# conjugate tac” is a% = ma* +eAH, consisting of the mechanical momentum and
a modification due to the electromagnetic field. The Hamiéo (z, 7) = ©#i, —
L= (mr—eA)? )

m

The replacement qf with m = p + eA is usually termed “minimal coupling” and
corresponds to classical electrodynamics.

In quantum mechanics the momentpris replaced with a momentum operafor
and we assume that the momentum operator for charged pariganodified “like the
classical momentum?”, that js+— 7 = p + eA — —1hV + eA.

The Schodinger equation for a static fiel®, A) is %w = E1, which according
to minimal coupling, and turning into an operator, ié_mQVT*eA)w = E.

Since gauge transformations are not supposed to have amjcphgffect solu-
tions of the Schivdinger equation in one gauge must be solutions in anothegegdf
we start with the universal combinatigr-:iV + eA) ), on sendingA — A + VA
the universal combination becomes:iV + eA + eVA)¢’. This must be invariant
(up to a phase factor), and souf = e "5 we get(—hV + eA +eVA) ¢ =
e """ (—1hV — eV + eA + eVA) 1 and the universal combination is invariant (up
to a phase factor). Phase should not be too disturbing; ttexmetement

e

/d?’ffl/}TOAi% — /dgazwi‘e%ézbge_ K

and under all normal circumstances the phase factors gaheahatrix element is
invariant.

This minimal coupling means that the vector potential cam gise to observable
physical effects. One which you may have met before is thedxiav - Bohm effect.

25
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Consider the long, thin solenoid shown, wih ## 0 inside andB = 0 outside.
In classical mechanics, charged particles with be unaftesinceB = 0 outside the
solenoid.

In quantum mechanics; consider eigenstates states) with (—:AV + eA) ¢ =
mip. If the phases of the waves on the two paths differ then thdtéoevdestructive
interference.

Now suppose that a neutral particle has a wavefunefigiz). For a charged par-

ticle the corresponding wavefunctionigz) = o (x) ex (—% f;ﬁ A.dl). Thus the
phase factor (the difference in phase) between the two maths

e—l—; ¢ A.dl — e—%‘ [ curl A.dS

By appropriate choice of the fluk we can get as much or as little interference as
we want. If3® = 7 then there is completely destructive interference;® = 27 then
the interference is completely constructive and the sadeisaindetectable. In general
if = Q”Tf‘h the solenoid is unobservable. This is an inherently quamgohanical
effect.

One might think thaB = 0 outside the solenoid implies that = 0 outside the
solenoid. This is true only if the region is simply connectedvhich it isn’t. We can
make a gauge transformation to pAit = 0 at a point but because the region is not
simply connected we cannot do this everywhere.

This was experimentally verified in the 1960’s.

5.2 Conduction

An ordinary conductor looks something like a regular l&tté atoms, with the valence
electrons forming an electron gas throughout the material.

An appliedE field moves the gas, but electrons collide with atoms and sSop-
pose they move with an average veloaityThen the current density is the charge on an
electronx the number densitx v. The mean free path only depends on the geometry,
so the current density isE, with o the conductivity.

Superconductivity is very different. It was first discowttey Kammerlingh-Onnes
in 1905; he noticed that when some metals are cooled4& the electric conductivity
became infinite. Nowadays superconductivity is observeceitain materials up to
about liquid nitrogen temperatures,100K.

The fundamental description of superconductivity is duBapdeen, Cooper and
Schreiffer and is in detail beyond this course. The resuhas the current is an inher-
ently quantum mechanical effect in which bound states abpafielectrons behave as
bosons rather than as fermions. They have a chafiyeand an effective mass of

(say).
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We will examine the Landau-Ginzburg theory. Suppose thegehearriers have a
wavefunctiony = Re*?. We can then interpret the probability current as the flux of
these particles. We can evaluate

. _ h * * _ h 2
Jprob = %um (X Vx (VX) X) = mR Vo.

We interpretR? as a number density, and so we guess an electric currgnt
%qu). However this is not gauge invariant and as the electricetinmust stay the
same under gauge transformations we fix up the equation tihgeesult (which can
bederivedfrom the BCS theory)

o = 4 (w . %A) .

m

5.2.1 Meissner effect

Sincediv B = 0 lines of B cannot end. However if one takes a material in a mag-
netic field and cools it to its superconducting temperatmeabserves a change in the
magnetic field.

We are led to guess thB = 0 inside a superconductor. The above expression for
js and the Maxwell equations giverr] B = 04" [y4 — 4 A} Taking the curl of
this we get a differential equation f@3:

2
viB = g
m

In the region shown this simplifies 48 — “2<":B and so we find thaB —
Bgexp —y/ %z taking the negative root since the energy must be bounded.

B decays exponentially away from the surface on a distande sca—%—, which

nsq2 po
is of the order of atomic size. Thus in practice we h#’e= 0 inside a supercon-
ductor and this is a better definition of a superconductan 8#ying that it has infinite
conductivity.

A is not necessarily, but in order to get a superconducting current we must have
ns # 0. Landau and Ginzburg tried to construct an analog of the@lthger equation
which gave this result.

Itis easier (as always) to start from an action:
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I= /d% [kinetic energy— potential energy
) h?
= [ |- g vru-very]
2m
1 *
:/d% [% (—ehV) (—th¢)+V¢*¢]
incorporating the magnetic field via minimal coupling

- / B [(—hVe — gAB)" (—hVe — gAB) + V]

This is gauge invariant.

It cannot depend on where we are in the superconductor ahdiseonstant. We
get the familiar Schirdinger equation which has the obvious solutior= 0 and no
other solution independent af

Landau and Ginzburg proposed the addition of a tétm/)\“ to this action to get

Jz/d%%](V—%A)¢‘2+V|¢|2+%b|¢|4.

This action can be derived from BCS theory and gives a noatia@alog of the
Schibdinger equation:

1 2 2,
—R(—zh—qA) Y+ Vi +b|yp| Y =0.

The curreng, = 2 (y* Vi — o (Vi) ") — 22 A [,

We get a non-vanishing spatially independent solution wf tBchiddinger equa-
tion” whenV < 0 andb > 0. This occurs when the temperatufds less than some
critical temperaturd.; normal matter ha®¥ > 0.

BCS theory give$ > 0 andV =V, (T — T).

5.3 Superconducting flux quantisation

Consider a ring of superconducting material as shown.

In the materiaB = 0 andj = 0. Sincej x (Vzp — %A) we must haveA = %Vqﬁ
inside the ring.
The magnetic flux through the loop is

/ B.dS = jl{ A.dl
shaded surface boundary loop
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Evaluating this inside the superconductor we g@s]. As the wavefunction must
be single valued this must bze?g—ﬁ and since the charge carriers are electron pairs then
the flux is quantised in units e"IL.

If we make a currenf flow on the surface of the superconductor then as the flux

through the loop is the inductance times the current, andestiux is quantised we see
that the current is quantised.

5.4 Magnetic monopoles

Suppose that B field Z—;Pr% is possible, by analogy with the Coulomb field in elec-
trostatics.
Using Gauss’' Law we have

P= ! B.dS = i/dideV.
Ho

Ho Jclosed surface

Thus if divB = 0 everywhere ther® = 0 and magnetic charges cannot arise.
Thus Maxwell’'s equations must be modified in order to getfilisl.
A suitable vector potentiaA is A, = % (1 + cos ) (in spherical polars). We

have|A| = 4o (t<0s0) There s a difficulty a8 = 0 for all 7.

This singularity on the North axis is called the Dirac striftgcan be moved about
by gauge transformations; if we have — A + V#cﬁ we can put the Dirac string
onto the South axis.

Since (by axiom) the observable physics should not deperileogauge used the
string singularity should be unobservable.

We showed earlier that the phase difference between twe pmting in front of /
behind the string is ¢ A.dl and this must be an integer multiple @f. Evaluating

the integral gives the Dirac quantisation conditiBr= nl%z
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Chapter 6

Born-Infeld Theory

This material is starred and
was included as a fill-in lec-
ture.

Recall that Maxwell’s theory is (in the absence of curregtsjerned by an action

=2 [t lFMVF/‘",
Ho 4
giving the two Maxwell equation8, F,, + 0,F,,0,F,, = 0 and9,F"* = 0.
There is a hidden duality symmetry undgy, — %a,w,,,,FP" of both the action and
the equations of motion.
Recall also that electric charges have a radial compohAgnt Q 1 and that

Ameg T
the energy density in the electric fieldgso |E|2. We can see that the energy density
blows up at the origin and also that the total energy in thetetefield is infinite.
We also propose a similiar magnetic monopole fiBld = ’1’;0 riz; the energy in
this magnetic field is also infinite.
The Born-Infeld theory emerges from string theory. It defseeon a parameter
with the dimensions of length. We take a new action;

1
W/d% {1— ,/|detnw+b1ﬂw|}

and we suppose thét,, = 0,4, — 0, A,.
Since we have that, up to a Lorentz transform,

0 A 0 0

= -x 0 0 o0
Fuw=Fw=1 9" 0 0o
0 0 —Xx 0

we can see thatet ), + bFW = det 7, + bF},, and so we can evaluate the action as

1 1 1
f10b? A {1 - \/1 — GV EwFr — ebt (f“wgﬂvo)z} .

The limitb — 0 (clearly) gives the Maxwell action. Since we are assumira th
F,,, is derived from a potential we still have the equatipF, , + 0, F,, +0,F,, =0
and the other equation &,G*" = 0, the difference being that the equation {3t is

31
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a horrible mess:
2
Fr — Y PATe s PPy 5e®P7d

- 2 4 2
\/1 — G Fe P — 35 (econm P FY)

g#

(you have no idea how difficult it was to find that many differ&reek letters).

We obtain ) )
- — g /\Fy + - U»C}
1o { B A 477u

where/ is the Lagrangianf = biQ {1 —/|det nu, + bF,w\}.

There is a symmetry in these equations unéigy — %EWWQW andgG,, —
—%EWWFP": the Lagrangian and equations of motions are invariant.s flas the
effect of swappindE andB.

The analog of the electric field of a point charge iFafield which is purely radial,
defined byAdg = ¢ andE,. = —V,.¢. In this case the action reduces to

L[ 24 sin 0dode {1 /1= b%ﬁ}

pob?

Ty

and variation of this yields

2
r—(ﬁ" = const= a.
N
Solving this forg,, = — E,. yields
Bo___ 9
" /1% 202
and so ag — oo, E, ~ —-5. Thus if we wish to reproduce the Maxwell field for
large distances = —47?60. Thus as" — 0 we see thaty, — %

The energy density In the electric field is

1 1 A1 L
1ob? | /1 — b2E2 - pob? 167m2eqr

which is singular (but integrably so) at= 0. Performing the integral to find the
total energy in the electric field we obtain

Ar 1 (9)
3VHT(3)2 \ 4
which is noticably finite.

This theory also has magnetic monopoles; an easy way is tthatthe theory is
invariant under swapping andB. The energy in a magnetic monopole field is

o

1
-,
2

€

ifBrwi‘w‘)—ﬁaSTHoo.

Infact B, = i‘;fz which although it looks singular is perfectly reasonable.
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