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. Introduction

These notes are based on the course “Electrodynamics” givenby Dr. M. J. Perry in
Cambridge in the Michælmas Term 1997. These typeset notes have been produced
mainly for my own benefit but seem to be officially supported. The recommended
books for this course are discussed in the bibliography.

A word or two about the philosophy of these notes seem in order. They are based in
content on the lectures given, but I have felt free to expand and contract various details,
as well as to clarify explanations and improve the narrativeflow. Errors in content are
(hopefully) mine and mine alone but I accept no responsibility for your use of these
notes.

Other sets of notes are available for different courses. At the time of typing, these
courses were:

Probability Discrete Mathematics
Analysis Further Analysis
Quantum Mechanics Fluid Dynamics 1
Quadratic Mathematics Geometry
Dynamics of D.E.’s Foundations of QM
Electrodynamics Methods of Math. Phys
Fluid Dynamics 2

They may be downloaded from

http://pdm23.trin.cam.ac.uk/˜pdm23/maths/ or
http://www.damtp.cam.ac.uk/

or you can email me onpdm23@cam.ac.uk to get a copy of the sets you require.
Even if you download them please email me to let me know, so that I can keep you up
to date with the errata and new note sets. The other people whohave contributed time
and effort to these note sets are:

Richard Cameron Analysis Hugh Osborn Proofreading
Claire Gough Proofreading Malcolm Perry Accomodation
Kate Metcalfe Probability

Although these notes are free of charge anyone who wishes to express their thanks
could send a couple of bottles of interesting beer to Y1 Burrell’s Field, Grange Road.

Paul Metcalfe
4th December 1997
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. Chapter 1

Point of departure

This is a review of terminology and results from Special Relativity and Electromag-
netism (possibly rewritten in a more grown-up way).

1.1 Maxwell’s Equations

These are :

div E =
ρ

ǫ0

curlE = −Ḃ

div B = 0

curlB = µ0j + µ0ǫ0Ė.

ρ is the charge density.ǫ0 is called the permittivity of free space. It is not a funda-
mental constant but merely determines units. Similarly,µ0 is the permeability of free
space and merely determines units.µ0 andǫ0 satisfyµ0ǫ0 = c−2, wherec is the speed
of light (and a fundamental constant). In familiar unitsc ≈ 2.997× 108 ms−1, but we
will choose units such thatc = 1.1 Dimensional analysis can replacec in any derived
formulae.

1.2 Electrostatics

This is the case where there is no current and a time independent charge distribution.
Then Maxwell’s equations reduce todiv E = ρ

ǫ0
andcurlE = 0. We will assume

B = 0, but it does not affect the equations for the electric field.
The electric field due to a point chargeq1 is E = q1

4πǫ0

1
r2 r̂. To measure the electric

field we can take a chargeq2 and measure the forceF = q2E on it.

1Despite the fact that the Schedules mandate SI units. Exam questions will be set such thatc = 1.

1
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2 CHAPTER 1. POINT OF DEPARTURE

1.2.1 Coulomb’s Law

The force between two point charges is

F =
q1q2

4πǫ0

1

r2

directed on the line between the centres. It is repulsive fortwo like charges.
A point charge can be regarded as a charge distribution whichis a delta function:

ρ = q1δ(r). To find the electric field due to a distribution of charges we can use linear
superposition to findE everywhere. AscurlE = 0 we can introduce the electrostatic
potentialφ such thatE = −∇φ. Then∇2φ = −ρ

ǫ0
. We can solve this using a Green’s

function, that is a functionG(r, r′) such that∇2
rG(r, r′) = δ(r, r′). We can see that

G(r, r′) = − 1
4π

1
|r−r′| . Then

φ(r) = − 1

ǫ0

∫

d3r′ G(r, r′)ρ(r′).

Proof. Firstly, we see that

∇2
rφ = − 1

ǫ0

∫

d3r′ ∇2
rG(r, r′)ρ(r′)

= − 1

ǫ0

∫

d3r′ δ(r, r′)ρ(r′)

=
−ρ(r)

ǫ0
.

Then we merely note that solutions to Poisson’s equation areunique.

1.2.2 Multipole expansion

Suppose we have a charge distribution in a regionB as shown.

The multipole expansion of the potential is what happens to ageneral expression
for φ if |r| ≫ |r′|. We expand 1

|r−r′| using the binomial expansion.

1

|r − r′| = (r2 − 2rir
′
i + r′2)−

1

2

=
1

r

(

1 − 2riri

r2
+

r′2

r2

)− 1

2

=
1

r

(

1 +
rir

′
i

r2
− 1

2

r′2

r2
+

3

2

(rir
′
i)

2

r4
+ . . .

)

.

We substitute into the general expression forφ to obtain

φ(r) =
1

4πǫ0r

∫

B

d3r′ ρ(r′)

(

1 +
rir

′
i

r2
+

1

2r4

(

3rirjr
′
ir

′
j − r2δijr

′
ir

′
j

)

+ . . .

)

.
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1.3. SPECIAL RELATIVITY 3

This is an expansion ofφ in inverse powers ofr. The term inr−l is referred to as
the2l-pole term.

Whenl = 0 we have a monopole. IfQ =
∫

d3r′ ρ(r′) thenφ = Q
4πǫ0r

, which is
usually called the Coulomb term.

Whenl = 1 we have a dipole. Letdi =
∫

d3r′ ρ(r′)r′i (the dipole moment). Then
φ = 1

4πǫ0r3 ridi.

When l = 2 we have a quadrupole and the contribution toφ is 1
4πǫ0r5 rirjQij ,

whereQij is the quadrupole moment andQij = 1
2

∫

d3r′ ρ(r′)
(

3r′ir
′
j − δijr

′2). Qij

is a symmetric tracefree tensor, as

Qijδij =
1

2

∫

d3r′ ρ(r′)
(

3r′ir
′
jδij − δijδijr

′2) = 0.

It has 5 independent components. In general ther−l term has2l + 1 independent com-
ponents. Whenl = 3 we have the octopole moment and whenl = 4 the hexadecapole
moment, but these become increasingly cumbersome.

1.3 Special Relativity

Special relativity has two postulates:

1. The laws of nature are the same in any inertial frame.

2. The speed of light is independent of the speed of its source.

This leads us to consider Minkowski space, viz.xµ = (t,x) = (t, xi). µ runs from
0 to 3 andi runs from1 to 3. These are inertial co-ordinates. If a particle is at rest at
x = 0 at t = 0 then in remains at rest atx = 0 for all time. t is then the proper time
for that particle — what a clock sitting on the particle wouldmeasure.

We can relate the physics in one inertial frame to another by Lorentz transforma-
tions. Suppose that one has a second frame moving with velocity v in thex direction
relative to the first frame. Then we have new inertial co-ordinates

t′ = γ(v)(t − vx)

x′ = γ(v)(x − vt)

y′ = y

z′ = z,

whereγ(v) = 1√
1−v2

. This can be writtenx′µ = Λµ
νxν , whereΛµ

ν is the matrix
form of the Lorentz transformation, in this case:









γ −γv 0 0
−γv γ 0 0

0 0 1 0
0 0 0 1









To find the Lorentz transformation of arbitrary motion described by a unit vector
n then we considerR−1(n)ΛR(n), whereR(n) is a rotation to moven into thex
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4 CHAPTER 1. POINT OF DEPARTURE

direction.

R =









1 0 0 0
0
0 R3

0









with R3 an ordinary spatial rotation. We can make Lorentz transformations look like
rotations — if we putγ(v) = cosh φ, thenvγv = sinhφ, which implies thatv =
tanhφ. This is sometimes called a hyperbolic rotation.

We define a distanceds2 = −dt2 + dx2 + dy2 + dz2 between two infinitesimally
separated points. This can be shown to be invariant under Lorentz transforms. Ifdt = 0
then it reduces to the ordinary Euclidean metric onR

3.
If ds2 > 0 we say the two points are spacelike separated, ifds2 < 0 they are

timelike separated and ifds2 = 0 they are null, or lightlike separated. The interior of
the light cone hasds2 < 0 and the exteriords2 > 0.

Proper distance is defined for spacelike separated events tobeds and proper time
dτ for timelike separated events bydτ2 = −ds2. The invariance ofdτ means that the
time seen by a clock sitting on some object can be computed in any inertial frame.

It is easier to writeds2 = ηµνdxµdxν , whereηµν is called the metric tensor and is









−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









.

We also have the inverse metricηµν defined byηµνηνρ = δµ
ρ . The matrix form of

ηµν is (obviously?)








1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









.

Given two vectorsxµ andyµ we want a scalar product that should be invariant
under Lorentz transformations, andS = ηµνxµyν will do the trick. This gives us the
idea of defining covectors byxν = ηνµxµ and thenS = xνyν . Then there is the
inverse operationηµνxν = ηµνηνρx

ρ = xµ.
We ask ourselves how a covector transforms, and we obtainxν 7→ x′

ν = Λν
µxµ,

whereΛν
µ = ηνρΛ

ρ
σησµ, or in matrix form









γ γv 0 0
γv γ 0 0
0 0 1 0
0 0 0 1









for the transform we looked at earlier. We see that(Λµ
ν)−1 = Λν

µ and

xµyµ 7→ x′
µy′µ = Λµ

ρxρΛ
µ

σyσ

= Λµ
ρΛµ

σxρy
σ

= δρ
σxρy

σ

= xσyσ,
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1.3. SPECIAL RELATIVITY 5

which is, on the whole, a good thing. This is analogous to rotations in R
3 preserv-

ing the metric, the rotations being classified byRT R = 1 andRijδjkRkl = δil ex-
cluding reflections. A Lorentz transform preserves the Minkowski space metric and
Λσ

µΛτ
νηµν = ηστ . To see the equivalence multiply both sides byητλ to get (eventu-

ally) δλ
σ = δλ

σ .
The Lorentz transforms are defined byΛµ

νΛσ
τηντ = ηµσ (the groupSO(3, 1))

with no spatial reflections and preservation of time, givingthe Lorentz group.
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. Chapter 2

The relativistic theory of
electromagnetism

We start with the Lorentz force law,F = eE + ev ∧ B and seek to generalise it.
Non-relativistically we have

m
d2xi

dt2
= e (E + v ∧ B)

i
,

and we already know the equation of motion for a free relativistic particle,

m
d2xµ

dτ2
= 0.

We also recall the non-relativistic velocity 4-vector,

dxµ

dt
= uµ = (1,u),

and we know thatdτ2 is Lorentz invariant and hence−1 = uµuνηµν . We guess a force
law

m
d2xµ

dτ2
= eFµ

ν

dxν

dτ
.

We see immediately that by the quotient theorem,Fµ
ν must be a tensor. We also

know that this equation must be true in any inertial frame, and so is always true. We
take the non-relativistic case, whereddτ

= d
dt

to find whatFµ
ν must be.

eEx + e(vyBz − vzBy) = eF 1
0
dt

dτ
+ eF 1

1
dx

dτ
+ eF 1

2
dy

dτ
+ eF 1

3
dz

dτ

We thus identifyF 1
0 = Ex, F 1

1 = 0, F 1
2 = Bz andF 1

3 = −By. We repeat this
process withy andz, and lower the index, giving us

ηµλFλ
ν = Fµν =









Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0









.

7
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8 CHAPTER 2. RELATIVISTIC ELECTROMAGNETISM

We note that the spatial part of this is antisymmetric, and since we treat space and time
equivalently, we can finally define

Fµν =









0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0









.

This is the electromagnetic field (strength) tensor, or Maxwell tensor. The only puzzle
is what the time component of the relativistic Lorentz equation represents. It ism d2t

dτ2 =

eF 0
i
dxi

dτ
. We note thatuµ = γ(1,v) and thatγ is a kind of relativistic energy, giving

d
dτ

(mγ) = ev.E, which we know as “the rate of change of energy equals the rateof
doing work by the electric field”.

2.0.1 Relativistic motion in constant electric field

We consider a constant electric field in thex direction. We have a particle with charge
e which starts at rest at the origin. The non-relativistic case ismẍ = eE, which gives
x = eE

2m
t2 andẋ = eE

m
t, which eventually exceeds1!

Relativistically mÿ = mz̈ = 0, which are trivial. We also have the equations
mẍ = eF x

0ṫ = eEṫ andmẗ = eEẋ.
In the relativistic
case,ḟ ≡ df

dτ
.

We integrate these once and use the initial conditions to getmṫ = eEx + C! and
mẋ = eEt. (Note that we setτ = 0 at t = 0.) Integrating again we get

x(τ) = A sinh
eEτ

m
+ B cosh

eEτ

m
− mC1

eE

t(τ) = A cosh
eEτ

m
+ B sinh

eEτ

m
+ C̃.

We have the boundary conditionsx = ẋ = 0 at τ = 0 andt = 0 at τ = 0. There
is a temptation to puṫt = 0 at τ = 0 — but this is inconsistent, as−1 = uµuµ =
(−ṫ2 + ẋ2). Thus we puṫt = 1 at τ = 0 — which we could have guessed, we know
that at rest, co-ordinate time is the same as proper time. Finally, we get

x(τ) =
m

eE

(

cosh
eEτ

m
− 1

)

t(τ) =
m

eE
sinh

eEτ

m
.

To find the velocity we can writex(t) by eliminatingτ

x(t) =
m

eE

(

(

1 +
e2E2t2

m2

)
1

2

− 1

)

.

We can now find the velocity

dx

dt
=

eE

m

t
√

1 + e2E2t2

m

.

For smallt we have the reassuringdx
dt

= eEt
m

, but in the larget case we find only
thatv → 1 from below, and is always less than1.
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2.1. TRANSFORMATION OFFµν 9

2.1 Transformation of Fµν

We Lorentz transform (in thex direction with velocityv) the tensorFµν to see how the
electric and magnetic fields change under Lorentz transformations.

We know thatFµν 7→ F ′
µν = Λµ

ρΛν
σFρσ, and we just perform these sums to get:

E′
x = Ex

E′
y = γ(Ey − vBz)

E′
z = γ(Ez + vBy)

B′
x = Bx

B′
y = γ(By + vEz)

B′
z = γ(Bz − vEy).

These are radically different from what we would expect if there were two electric
and magnetic 4-vectors.

2.2 Lorentz invariant scalars

We know thatFµν andηµν are Lorentz invariant, and we can derive some Lorentz
scalars from them. The most obvious one isFµνηµν , but asF is antisymmetric
andη symmetric this evaluates to zero. A more useful Lorentz scalar is FµνFµν =
2
(

B2 − E2
)

.
We can get another Lorentz scalar by introducing thealternating tensor, which is

defined as

εµνρσ =











1 if µνρσ is an even permutation of0123

−1 if µνρσ is an odd permutation of0123

0 otherwise.

We can now define the dual field strength tensor,Gµν = 1
2εµνρσFρσ. We can

evaluate this

Gµν =









0 −Bx −By −Bz

Bx 0 −Ez Ey

By Ez 0 −Ex

Bz −Ey Ex 0









.

The dual tensorG can be found fromF by E 7→ B and B 7→ −E, which
is sometimes called a duality rotation. We can now define a further Lorentz scalar
FµνGµν = −4E.B.

2.3 Tensorial form of Maxwell’s equations
∂i ≡ ∂

∂xi and∂µ ≡ ∂
∂xµ

We start from Maxwell’s equations to see what they turn into in tensor notation. We
take them in an slightly unusual order,div E = µ0ρ andcurlB = µ0j + Ė and seek
to write them as tensor equations.
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10 CHAPTER 2. RELATIVISTIC ELECTROMAGNETISM

We note thatEi = Fi0 = −F 0i andBi = 1
2ǫijkF jk. The divergence equation

becomes∂iFi0 = µ0ρ. The curl equation is

1

2
ǫijk∂jǫklmF lm =

1

2
(∂jFij − ∂jFji)

= ∂jFij = µ0ji + ∂0Fi0.

We hope that this is consistent with a tensor equation∂µFµν = Xν . If we study
this we see that this works ifXµ = −µ0(ρ, j). Thus two of the Maxwell equations
become

∂µFµν = −µ0j
ν .

wherejµ = (ρ, j) is the 4-vector (electric) current. This illustrates that amoving
charge and a current are just the same thing asjν is a four-vector and so is consistent
with Lorentz transforms.

Incidentally, we have not lost conservation of charge as0 ≡ ∂ν∂µFµν = −µ0∂νjν .
We now go after the next two Maxwell equations,div B = 0 andcurlE = −Ḃ.

The first is easy; it gives∂iǫijkFjk = 0. We guess that this is a component of
εµνρσ∂νFρσ = 0, and indeed if we evaluate the spatial components we reproduce
the last Maxwell equation.

We can rewrite this in terms of the dual field-strength tensorto get∂µGµν = 0 —
this says that there is no magnetic current. It turns out to bemore useful to explicitly
antisymmetrize our equation to get

∂νFρσ + ∂ρFσν + ∂σFνρ = 0.

2.3.1 Potentials

In the non-relativistic case we know thatE andB can be derived from potentials:

E = − gradφ − Ȧ

B = curlA.

It turns out that we can come up with an electromagnetic 4-vector potential,Aµ =
(φ,A) such thatFµν = ∂µAν − ∂νAµ (simply expand this to see).

We know thatA is not unique in non-relativistic electromagnetism; we canadd
on the gradient of any scalar function — called a gauge transformation. Similarly, we
see that the 4-vector potentialAµ is unique up to∂µΛ for any scalar functionΛ. This
means we can try to impose extra conditions onAµ which (partially) prevents gauge
transformations (called gauge fixing). The point is to ensure that a givenFµν is the
product of a moderately uniqueAµ.1

A useful covariant gauge is to impose∂µAµ = 0. Thus if we haveAµ such that
Fµν = ∂µAν − ∂νAµ and we setA′µ = Aµ + ∂µΛ, then we can have0 = ∂µA′µ =
∂µAµ + ∂µ∂µΛ. In principle we can solve∂µ∂µΛ = −∂µAµ, so this gauge condition
is possible.

If we consider this a little more, we see thatAµ is still non-unique, but only up
to a solution of the wave equation,∂µ∂µΛ = 0. Solutions of the wave equation are a
combination of plane waves,eıkµxµ

, wherekµ = (ω,k) andω = |k|. kµ is the wave
4-vector or the momentum 4-vector.

1What “moderately unique” means has yet to be defined.
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2.4. LEAST ACTION PRINCIPLES 11

If we wish to findFµν given a collection of charges and currents we solve the
equation∂µ∂µAν − ∂µ∂νAµ = −µ0j

ν . This is where our gauge condition comes in
useful, we get∂µ∂µAν = −µ0j

ν , or 2Aν = −µ0j
ν , where∂µ∂µ ≡ 2 (pronounced

“box”). We can now see that∂νAν = 0 is sensible — it is compatible with current
conservation.

2.4 Least action principles

2.4.1 Particle motion

For a single free particle in special relativity we have the action

I =

∫

dτ m
√

−ẋµẋνηµν .

The usual Euler-Lagrange equationsd
dτ

(

∂L
∂ẋµ

)

− ∂L
∂xµ = 0 give−mẍµ = 0.

For a particle with chargee in a potentialAµ we can generalise this to

I =

∫

dτ m
√

−ẋµẋνηµν − eAµẋµ.

But can this possibly be gauge invariant — the quantityAµ appears explicitly? But
we see a current resulting from the motion ofjµ = eẋµ. So suppose we make a small
gauge transformation such thatδAµ = ∂µΛ. Then

δ

∫

dτ jµAµ =

∫

dτ jµ∂µΛ and integrating by parts we get

= −
∫

dτ ∂µjµΛ = 0 by conservation of charge.

This is all somewhat academic if varyingxµ does not give us the Lorentz force law.
Using the Euler-Lagrange equations we get

0 =
d

dτ

(

−mẋνηµν
√

−ẋµẋνηµν

)

− d

dτ
(eAµ) + eẋν∂µAν

τ is the proper time sȯxµẋνηµν = −1 on the worldline

=
d

dτ
(−mẋµ) − eẋν∂νAµ + eẋν∂µAν

= −mẍν + eẋνFµν .

This is the Lorentz force law. One can use the action as a quickway of finding the
motion of a particle. For a constant electric field in thex direction we getAx = −Et

and all other components ofAµ are zero. To get the motion of the particle we vary the
action

I =

∫

dτ m
√

ṫ2 − ẋ2 + eEtẋ.

The Euler-Lagrange equations give the same differential equations for the motion
of the particle as before, but more easily.
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12 CHAPTER 2. RELATIVISTIC ELECTROMAGNETISM

2.4.2 Field action

We also want to find a LagrangianL that reproduces Maxwell’s equations, that is if we
take

I =

∫

d4xL,

δI = 0 under variations of something or other must reproduce Maxwell’s equations.
L must be a Lorentz scalar, built out ofFµν (or Aµ) and it must be gauge invariant.

The Maxwell equations involve first derivatives ofFµν (or second derivatives ofAµ).
So the only real possibilities are varyingAµ andL must be quadratic inFµν . εµνρσFρσ

gives nothing. The usual choice is

L = − 1

4µ0
FµνFµν + jµAµ.

This is gauge invariant. IfδAµ = ∂µΛ, then if we assumeFµν = ∂µAν − ∂νAµ

we getδFµν = ∂µ∂νΛ − ∂ν∂µΛ = 0. The
∫

jνAν part gives0 as before.

I = −
∫

d4x

(

1

4µ0
FµνFµν − jµAµ

)

and

δI = −
∫

d4x

(

1

4µ0
(δFµνFµν + FµνδFµν) − jµδAµ

)

= −
∫

d4x

(

1

2µ0
δFµνFµν − jνδAν

)

= −
∫

d4x

(

1

2µ0
(∂µδAν − ∂νδAµ) Fµν − jνδAν

)

= −
∫

d4x

(

1

µ0
(∂µδAν) Fµν − δAνjν

)

=

∫

d4x δAν

(

1
µ0

∂µFµν + jν
)

.

We perform the last line by integrating by parts and assumingthat boundary condi-
tions are all zero. As we can arbitrarily varyAµ we must have1

µ0
∂µFµν = −jν . The

other Maxwell equation is automatic as we have assumed thatFµν is derived from a
potentialAµ. This least action principle requires that there is no magnetic current.
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. Chapter 3

Energy - Momentum Tensor

3.1 Definition

We seek a relativistic form of the field energy. We define the (stress-)energy tensor

Tµν =
1

µ0

(

FµσF ν
σ − 1

4ηµνF ρσFρσ

)

.

We note in passing that this is a symmetric tensor. Note that theT 00 component is
1

2µ0

(

E2 + B2
)

, which reproduces the non-relativistic energy density. Tointerpret the
rest of the components ofTµν we recall Poynting’s theorem.

Poynting’s Theorem. Let D be a region in space. Then the rate of change of
energy inD is

1

2µ0

∂

∂t

∫

D

E2 + B2 dV =
1

µ0

∫

D

E.Ė + B.ḂdV

=
1

µ0

∫

D

E. (curlB − µ0j) − B. curlEdV

= −
∫

D

j.EdV +
1

µ0

∫

D

E. curlB − B. curlEdV

= −
∫

D

j.EdV −
∫

∂D

N.dS,

where we have introduced the Poynting vectorN = 1
µ0

E ∧ B. The Poynting vector is
the energy flux.

By performing the sum we find thatT 0k = Nk. We find that

Tµν =











Energy Energy flux
density
Energy

flux “Stress”











.

We want to evaluate the “stress” part of this tensor.

13
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14 CHAPTER 3. ENERGY - MOMENTUM TENSOR

Tij = 1
µ0

(

FiµFj
µ − 1

4ηijF
ρσFρσ

)

= 1
µ0

(

Fi0Fj
0 + FikFj

k − 1
4δij

(

−2E2 + 2B2
))

= 1
µ0

(

−EiEj + ǫiklBlǫjkmBm + 1
2δijE

2 − 1
2δijB

2
)

= 1
µ0

(

−EiEj + 1
2δijE

2 − BiBj + 1
2δijB

2
)

.

This is the Maxwell stress tensor, and can be thought of as thepressure of the
electromagnetic field.

3.1.1 Conservation of energy-momentum

We compute the divergence ofTµν .

∂νTµν = 1
µ0

∂ν

(

FµσF ν
σ − 1

4ηµνF ρσFρσ

)

= 1
µ0

(

(∂νFµσ) F ν
σ + Fµσ (∂νF ν

σ) − 1
2 (∂µF ρσ) Fρσ

)

= −Fµσjσ + 1
µ0

Fρσ

(

− 1
2∂µF ρσ + ∂ρF

µσ
)

= −Fµσjσ − 1
2µ0

Fρσ (∂µF ρσ + ∂σFµρ + ∂ρF σµ)

= −Fµσjσ by Maxwell’s equations.

Thus in the absence of charges/currents, the energy-momentum tensor is conserved.
We can evaluate the right hand side of this equation to get

∂νTµν = (−j.E, ρE + j ∧ B) .

The time component of this is the work done by the electromagnetic field and the
spatial components give the electric force on a currentj due toB and on a charge
densityρ due toE.

3.2 Plane waves

This has the equation2Aµ = 0 in the gauge∂µAµ = 0, which has solutions

Aµ = Aǫµ exp (ıkσxσ) ,

Note that this is a complex solution, so when we work withE andB we must take
the real part of thefield, which corresponds to the imaginary part ofAµ.

ǫµ is the polarisation vector, andkσ = (−ω,k) is the wave 4-vector.ω is the
angular frequency,k is the wave vector and|k| = ω. A is the amplitude. Imposing the
gauge condition requiresǫµkµ = 0, so we have the transversality of the wave.

This does not completely specify the gauge. If we letδAµ = ∂µΛ with Λ =
−ıCeık.x thenǫµ 7→ ǫµ + Ckµ. Sincekµkµ = 0 this preserves the gauge condition.
This freedom is usually exploited to putA0 = 0. In this case,

Aµ = (0, Aǫeık.x) = (0, Aǫeı(k.x−ωt)),

whereǫ is a spatial vector. The gauge condition givesk.ǫ = 0.
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3.3. RADIATION PRESSURE 15

FindingE andB from Aµ is easy:

Ei = −F0i = −∂0Ai + ∂iA0 = ıωAi.

and
Bi = 1

2ǫijkFjk = ǫijk∂jAk = −ık ∧ A.

The physical fields correspond to the real parts of these quantities.

3.3 Radiation pressure

Suppose that we have a situation as drawn above, with a plane wave propagating in
the z direction. Then the electric and magnetic fields are in they andx directions
respectively, withEy = ωA sin ω(t − z) andBx = ωA cos ω(t − z).

The rate of flow of momentum per unit area is|N|, whereN is the Poynting vector
and this has a time average12µ0

ω2A2. This is coincidentally the same as the energy
density. We also evaluate the stress-energy tensor

Tij = 1
µ0

(

1
2δij

(

E2 + B2
)

− EiEj − BiBj

)

.

This is clearly diagonal, and evaluating the diagonal components we get〈Txx〉 = 0,
〈Tyy〉 = 0 and〈Tzz〉 = 1

2µ0
ω2A2. There is a pressure due to the wave, but importantly

it is not isotropic.
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. Chapter 4

Solving Maxwell’s Equations

4.1 A Green’s Function

We hope to find a general expression forAµ given a time dependent distribution of
charges and currents. We will work in the∂µAµ = 0 gauge, and so we have to solve
the equation2Aµ = −µ0j

µ. We proceed naively and see what happens.
We hope to find a Green’s functionG(x, x′) such that2G = δ(4)(x, x′) and so

Aµ(x) = −µ0

∫

d4x′ G(x, x′)jµ(x′)

is a solution of2Aµ = −µ0j
µ. One problem is that2 is a hyperbolic operator so there

exist non-trivial solutions to2φ = 0 with φ → 0 at infinity.
The four dimension Fourier transform is defined by

f̂(k) =

∫

d4x f(x)e−ık.x.

The minus sign in the exponential is not arbitrary. Iff is a plane wavef(x) ∼ eıp.x

thenf̂(k) = (2π)4δ(4)(p − k), which is what we want.
We will solve 2G(x, x′) = δ(4)(x, x′) using the Fourier transform.̂G(k, x′) =

−k−2e−ık.x and so definingzµ = xµ − x′
µ = (z0, z) we find

G(x, x′) =
1

(2π)4

∫

d3kdk0 eık.ze−ık0z0

k02 − k2

and note that if we perform thek0 integral we see that the integrand is singular at
k0 = ± |k|. We thus need to choose on which contour to perform the integral.

If we consider the retarded Green’s functionGret, which we get by integrating along
Γ1, we see that forz0 < 0, G(x, x′) = 0 as we can close the contour in the upper half
plane and apply Cauchy’s theorem. Forz0 > 0 we have to close the contour in the

17
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18 CHAPTER 4. SOLVING MAXWELL’S EQUATIONS

lower half plane. In doing this we pick up two poles at± |k| and can apply the residue
theorem.

The advanced Green’s functionGadv is obtained by integrating alongΓ2. In this
caseG is only non-zero forz0 > 0.

The retarded Green’s function agrees with intuitive ideas of causality so we use
that. All we have to do now is evaluate it.

Gret(x, x′) = θ(z0)
1

(2π)4

∫

d3kdk0 eık.ze−ık0z0

k02 − k2

We close the contour clockwise so we get{−2πı
∑

residues} for thek0 integral, thus

Gret(x, x′) = −2πıθ(z0)

(2π)4

∫

d3k eık.z

(

e−ı|k|z0 − eı|k|z0

2 |k|

)

.

We convert this into spherical polars ink-space:kx = k sin θ cos φ, ky = k sin θ sin φ

andkz = k cos θ and so

Gret(x, x′) = − ıθ(z0)

16π3

∫

k2dk sin θdθ dφ
eıkz cos θ

k

(

e−ıkz0 − eıkz0
)

= − ıθ(z0)

8π2

∫

kdk sin θdθ
eıkz cos θ

k

(

e−ıkz0 − eıkz0
)

=
θ(z0)

8π2z

∫ ∞

0

dk
[

eıkz cos θ
]θ=π

θ=0

(

e−ıkz0 − eıkz0
)

.

The integrand is even ink, so

Gret(x, x′) =
θ(z0)

16π2z

∫ ∞

−∞
dk

(

e−ıkz − eıkz
)

(

e−ıkz0 − eıkz0
)

.

Recall that
∫ ∞
−∞ dkeıkx = 2πδ(x). Thus the integral is a combination of four delta

functions, but the step functionθ kills two of them off and we get

Gret(x, x′) = −θ(z0)

4πz
δ(z − z0).

For the record,Gadv = θ(−z0)
4πz

δ(z+z0). We can make our result forGret look more
covariant by recalling that

δ(f(x)) =
∑

i

δ(x − ai)

|f ′(ai)|

wheref(ai) = 0. Then asδ(3)(z2) = δ(|z|2 − z02

) (z is a four-vector) we have

δ(3)(z2) =
1

2 |z|
(

δ(3)(|z| − z0) + δ(3)(|z| + z0)
)

and as the step function removes one of these delta functionswe get

Gret(x, x′) = − 1

2π
θ(z0)δ(3)(z2), zµ = xµ − x′µ.
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4.2. THE FIELD OF A MOVING CHARGE 19

Now suppose we wish to evaluateAµ(x) for some current distributionjµ as shown.
We get

Aµ(x) =
µ0

2π

∫

d4x′jµ(x′)δ(3)
(

(x − x′)2
)

θ(x0 − x′0).

This comes about because we choseGret. The advanced Green’s function gives the
reverse. ThusGret is consistent with our ideas of causality. Other choices ofG are
not. This choice goes beyond local physics. It is presumablysolved by appealing to
cosmology or quantum theory.

We also note that the only contributions toAµ(x) come from pointsx′ such that
(x − x′)2 = 0 — that is only whenx andx′ can be joined by a light ray pointing
towards the future ofx′.

4.2 The field of a moving charge

Suppose we have a moving charge, with (non-relativistically) ρ = eδ3(x − (t)) and
thereforej = edy

dt
δ3(x − (t)). In the relativistic case we replacey(t) with yµ(τ) and

getjµ = euµδ3(xi − yi(t)). We can use a trick to make this look more covariant,

jµ = e

∫

dτ uµδ4(xν − yν(τ)).

Then

Aµ =
eµ0

2π

∫

d4x′ dτ δ
(

(x − x′)2
)

θ(x0 − x′0)
dyµ

dτ
δ4(xν − yν(τ)),

which has the effect of integrating over the backward light cone. This can be evaluated
by carrying out thex′ integral first. Note that

δ
(

(x − y)2
)

=
δ
(

|x − y| − (x0 − y0)
)

+ δ
(

|x − y| + (x0 − y0)
)

−2(x − y)ν
dyν

dτ

The second delta function does not contribute (because we are using the retarded
Green’s function) and so

Aµ =
eµ0

2π

∫

dτ
dyµ

dτ

δ
(

|x − y| − (x0 − y0)
)

−2(x − y)ν dyν

dτ

=
eµ0

4π

dyµ

dτ
dyν

dτ
(x − y)ν

∣

∣

∣

∣

∣

τ=τ0
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20 CHAPTER 4. SOLVING MAXWELL’S EQUATIONS

whereτ0 is the value ofτ on the world-line where the past light cone ofx intersects
the world line of the particle. This is usually referred to asevaluating at some instant
of retarded time. These are the Lienard-Wiechert potentials, and are painful to use in
arbitrary relativistic motion.

The result

Aµ =
eµ0

2π

∫

dτ δ
(

(x − y)2
)

θ(x0 − y0)
dyµ

dτ

is useful for relativistic motion. To evaluate the fields we need to calculate terms of the
form

∂νAµ =
eµ0

2π

∫

dτ θ(x0 − y0)
dyµ

dτ
∂νδ

(

(x − y)2
)

=
eµ0

2π

∫

dτ θ(x0 − y0(τ))
dyµ

dτ

xν − yν(τ)
dyρ

dτ
(x − y)ρ

d

dτ
δ
(

(x − y)2
)

To evaluate this we integrate by parts. We takex0 6= y0 and thus remove points on
the world-line of the particle from consideration. The fieldis not well defined there.
Thus

Fµν = −eµ0

2π

d

dτ

[

(x − y)µ dyν

dτ
− (x − y)ν dyµ

dτ
dyρ

dτ
(x − y)ρ

]

τ=τ0

.

We write (x − y)µ = (+R,Rn) whereR is the spatial distance|x − y| andn is
a unit vector. The plus sign onR comes from the retarded Green’s function. We also
need the velocityv = (γ, γv) wherev = dy

dt
. After evaluating this we get

E =
eµ0

2π

[

n − v

γ2(1 − n.v)3R2
+

n ∧ {(n − v) ∧ v̇}
(1 − n.v)3R

]

retarded time

B = n ∧ E.

The first term in the expression forE is just the Coulomb field (putv = 0 to
see this). The second term only appears ifv̇ 6= 0 — it depends on the acceleration.
ThenE ∼ accelerationR andB ∼ accelerationR and are perpendicular. Thus the
Poynting vector isN ∼ acceleration2

R2 . Thus the energy flux out of a large radius sphere
∼ acceleration2 — accelerating particles radiate energy.

For a non-relativistic particle it is somewhat easier. We use the Lienard-Wiechert
potentials

Aµ =
eµ0

4π

dyµ

dτ
dyν

dτ
(x − y)ν

∣

∣

∣

∣

∣

retarded time

and putxµ = (t,x), yµ = (t′,y) with x − y = Rn wheren is a unit vector. For
non-relativistic motiondyµ

dτ
= (1,v) and

Aµ =
eµ0

4π

(1,v)

|x − y|

∣

∣

∣

∣

at t′ = t − R

.

It is straightforward to calculateE andB from B = curlA andE = − grad A0 −
Ȧ. We first evaluateB, and note that we are only interested in theO(R−1) terms —
to get the radiation at infinity. Thus

B ∼ − eµ0

4πR
n ∧ v̇ and E ∼ − eµ0

4πR
n ∧ [nv̇] .
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4.3. OSCILLATING FIELDS 21

The Poynting vectorN = 1
µ0

E ∧ B evaluates asN = e2µ0

16π2R2 (ÿ)
2
sin2θ n.

The radiation is mainly perpendicular to the direction of the acceleration and is
axisymmetric about that axis.̇v determines the time dependence of the radiation and
thus the frequency can be found by Fourier transformingv̇.

The power radiated (or the total flux of radiation) is
∫

N.dS over a sphere at in-
finity which we assume is at a large distance from the particle(the celestial sphere).
Converting to polars we get

flux of radiation=
e2µ0

16π2
(ÿ)

2
∫

sin3θ dθdφ =
e2µ0

6π
(ÿ)

2
.

This is Larmor’s formula.

4.2.1 Radiation reaction

We consider a particle with massm and chargee moving under an external forceFext.
Assume (naively) Newton’s Lawmÿ = Fext and dot this withẏ and integrate to get
that the change in kinetic energy equals the work done by the applied force. But we
know that this is not true — there are radiative losses at infinity. We therefore guess
another forceFR and proposemÿ = Fext + FR. Dotting this withẏ and integrating
we see thatFR.ẏ is the radiative energy loss. Using Larmor’s formula and assuming
that there is no acceleration at the endpoints of the motion we getFR = e2µ0

6π

...
y and

derive the Abraham-Lorentz equation

m

(

ÿ − e2µ0

6πm

...
y

)

= Fext.

This is very odd and leads to embarrassing difficulties. To solve such an equation
three initial conditions are needed, position, velocity and acceleration. But if we take
Fext = 0 we see that the solutions areA + Bt + Ce

t
τ , whereτ is the timescalee

2µ0

6πµ
.

This exponential runaway solution is presumed to be unphysical.
If Fext is a delta function and we assume the initial conditionsx = ẋ = 0 we

have to adjusẗx to suppress the runaway solution. We see that the particle (if charged)
must start acceleratingbeforethe force is applied. This acausal behaviour is called pre-
acceleration and is governed by the timescaleτ , which for an electron is approximately
6 × 10−24s, into the realm of quantum mechanical effects.

4.3 Oscillating Fields

Assume thatjµ(x, t) = jµ(x)eıωt with jµ non-zero only in some domainD.
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22 CHAPTER 4. SOLVING MAXWELL’S EQUATIONS

Using our result forAµ we get

Aµ(x, t) =
µ0

4π
eıωt

∫

d3x′ jµ(x′)
1

|x − x′|e
−ıω|x−x′|.

If R ≫ d we can expand 1
|x−x′| in the usual way as

1

|x − x′| =
1

R

(

1 − 2x.x′

R2
+

|x′|2
R2

)− 1

2

=
1

R

(

1 +
x.x′

R2
− 1

2

|x′|2
R2

+
3

2

(x.x′)2

R4
. . .

)

.

TheO(R−2) and lower terms do not contribute to the radiation and will beomitted.
We get

Aµ(x, t) =
µ0

4πR
eıωt

∫

d3x′jµ(x′)e−ıω|x−x′|.

We can perform a similar expansion one−ıω|x−x′| and finally get

Aµ(x, t) =
µ0

4πR
eıω(t−R)

∫

d3x′jµ(x′)eıω x.x′

R

providedR ≫ λ, the wavelength. Thus the expansion we have derived is validwhen
R ≫ d, λ. This is called the radiation zone.

Thus at large distances the system appears to be a source of spherical waves. To
proceed further we can expand out the phase factor in powers of ω. We get

Aµ(x, t) =
µ0

4πR
eıω(t−R)

∫

d3x′ jµ(x′)

[

1 + ıω
x.x′

R
− ω2 (x.x′)2

2R2
+ . . .

]

.

In the radiation zone whenωd ≫ 1 these terms are successively smaller.
Recall thatjµ = (ρ, j). Then

A0(x, t) =
µ0

4πR
eıω(t−R)

[

Q +
ıω

R
x.p + . . .

]

wherep is the electric dipole moment of the system. Note thatQ = 0 as the total
charge cannot depend on time. For the vector potential,

Ai(x, t) =
µ0

4πR
eıω(t−R)

[∫

d3x′ ji(x
′) +

ıω

R
xj

∫

d3x′ x′
jji(x

′) + . . .

]

We can simplify this by noting (integrate by parts) that
∫

d3x′ ji(x
′) = −

∫

d3x′ x′
i∂jjj(x

′)

and applying the continuity equation, which in this case isıωρ + div j = 0. Thus
∫

d3x′ ji(x
′) = ıωp
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4.3. OSCILLATING FIELDS 23

and we get

A0 =
ıωµ0

4πR2
eıω(t−R) p.x

R
and A =

ıωµ0

4πR
eıω(t−R)p.

We can now calculateE andB as

E =
ω2µ0

4πR3
eıω(t−R)

(

R2p − (x.p)x
)

=
ω2µ0

4πR3
eıω(t−R)x ∧ (x ∧ p) and

B =
ω2µ0

4πR2
eıω(t−R)x ∧ p.

The time averaged Poynting vector thus points radially outwards and has magnitude

N = µ0ω4|p|2
32π2R2 sin2 θ and the average power radiated is thereforeµ0ω4|p|2

12π
.

The scattered light hasω4 dependence times the spectrum of the light. Thus blue
light is scattered preferentially to red and the sky appearsblue. This also explains the
red sun at sunset; since there is more scattering when the angle of the sun is low and
the blue light is scattered more.
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. Chapter 5

Quantum mechanical effects

5.1 Minimal coupling

Consider a particle with chargee, worldline xµ(τ) in an electromagnetic field with
potentialAµ. Recall we obtained an action

I = −
∫

dτ
(

m
√

−ẋ2 − eAµẋµ
)

=

∫

dτ L(x, ẋ),

where the minus sign is inessential; it just normalizes things nicely. The momentum
πµ conjugate toxµ is ∂L

∂ẋµ = mẋµ+eAµ, consisting of the mechanical momentum and
a modification due to the electromagnetic field. The Hamiltonian H(x, π) = πµẋµ −
L = (π−eA)2

m
.

The replacement ofp with π = p + eA is usually termed “minimal coupling” and
corresponds to classical electrodynamics.

In quantum mechanics the momentump is replaced with a momentum operatorp̂,
and we assume that the momentum operator for charged particles is modified “like the
classical momentum”, that isp 7→ π = p̂ + eA 7→ −ı~∇ + eA.

The Schr̈odinger equation for a static field(0,A) is p2

2m
ψ = Eψ, which according

to minimal coupling, and turningp into an operator, is(−ı~∇+eA)
2m

ψ = Eψ.
Since gauge transformations are not supposed to have any physical effect solu-

tions of the Schr̈odinger equation in one gauge must be solutions in another gauge. If
we start with the universal combination(−ı~∇ + eA) ψ, on sendingA 7→ A + ∇Λ
the universal combination becomes(−ı~∇ + eA + e∇Λ) ψ′. This must be invariant
(up to a phase factor), and so ifψ′ = ψe−

ıeΛ

~ we get(−ı~∇ + eA + e∇Λ) ψ′ =

e−
ıeΛ

~ (−ı~∇− e∇Λ + eA + e∇Λ) ψ and the universal combination is invariant (up
to a phase factor). Phase should not be too disturbing; the matrix element

∫

d3x ψ∗
1Ôψ2 7→

∫

d3x ψ∗
1e

ıeΛ

~ Ôψ2e
− ıeΛ

~

and under all normal circumstances the phase factors cancel; the matrix element is
invariant.

This minimal coupling means that the vector potential can give rise to observable
physical effects. One which you may have met before is the Aharonov - Bohm effect.

25
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26 CHAPTER 5. QUANTUM MECHANICAL EFFECTS

Consider the long, thin solenoid shown, withB 6= 0 inside andB = 0 outside.
In classical mechanics, charged particles with be unaffected sinceB = 0 outside the
solenoid.

In quantum mechanics; consider eigenstates ofπ; statesψ with (−ı~∇ + eA) ψ =
πψ. If the phases of the waves on the two paths differ then there will be destructive
interference.

Now suppose that a neutral particle has a wavefunctionψ0(x). For a charged par-

ticle the corresponding wavefunction isψ(x) = ψ0(x) exp
(

− ıe
~

∫ x

x0
A.dl

)

. Thus the

phase factor (the difference in phase) between the two pathsis

e−
ıe
~

H

A.dl = e−
ıe
~

R

curlA.dS

= e−
ıe
~

R

B.dS

= e−
ıe
~

(flux).

By appropriate choice of the fluxΦ we can get as much or as little interference as
we want. If e

~
Φ = π then there is completely destructive interference; ife

~
Φ = 2π then

the interference is completely constructive and the solenoid is undetectable. In general
if Φ = 2πn~

e
the solenoid is unobservable. This is an inherently quantummechanical

effect.
One might think thatB = 0 outside the solenoid implies thatA = 0 outside the

solenoid. This is true only if the region is simply connected— which it isn’t. We can
make a gauge transformation to putA = 0 at a point but because the region is not
simply connected we cannot do this everywhere.

This was experimentally verified in the 1960’s.

5.2 Conduction

An ordinary conductor looks something like a regular lattice of atoms, with the valence
electrons forming an electron gas throughout the material.

An appliedE field moves the gas, but electrons collide with atoms and stop. Sup-
pose they move with an average velocityv. Then the current density is the charge on an
electron× the number density×v. The mean free path only depends on the geometry,
so the current density isσE, with σ the conductivity.

Superconductivity is very different. It was first discovered by Kammerlingh-Onnes
in 1905; he noticed that when some metals are cooled to≈ 4K the electric conductivity
became infinite. Nowadays superconductivity is observed incertain materials up to
about liquid nitrogen temperatures,≈ 100K.

The fundamental description of superconductivity is due toBardeen, Cooper and
Schreiffer and is in detail beyond this course. The result isthat the current is an inher-
ently quantum mechanical effect in which bound states of pairs of electrons behave as
bosons rather than as fermions. They have a charge−2e and an effective mass ofm
(say).
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5.2. CONDUCTION 27

We will examine the Landau-Ginzburg theory. Suppose the charge carriers have a
wavefunctionχ = Reıφ. We can then interpret the probability current as the flux of
these particles. We can evaluate

jprob =
~

2ım

(

χ∗∇χ − (∇χ)
∗
χ
)

=
~

m
R2∇φ.

We interpretR2 as a number densityns and so we guess an electric currentj =
q~

m
∇φ. However this is not gauge invariant and as the electric current must stay the

same under gauge transformations we fix up the equation to getthe result (which can
bederivedfrom the BCS theory)

js =
q~ns

m

(

∇φ − q

~
A

)

.

5.2.1 Meissner effect

Sincediv B = 0 lines ofB cannot end. However if one takes a material in a mag-
netic field and cools it to its superconducting temperature one observes a change in the
magnetic field.

We are led to guess thatB = 0 inside a superconductor. The above expression for
js and the Maxwell equations givecurlB = µ0q~ns

m

{

∇φ − q
~
A

}

. Taking the curl of
this we get a differential equation forB:

∇2B =
µ0q

2ns

m
B.

In the region shown this simplifies to∂
2B

∂z2 = µ0q2ns

m
B and so we find thatB =

B0 exp−
√

µ0q2ns

m
z, taking the negative root since the energy must be bounded.

B decays exponentially away from the surface on a distance scale
√

m
nsq2µ0

, which

is of the order of atomic size. Thus in practice we haveB = 0 inside a supercon-
ductor and this is a better definition of a superconductor than saying that it has infinite
conductivity.

A is not necessarily0, but in order to get a superconducting current we must have
ns 6= 0. Landau and Ginzburg tried to construct an analog of the Schrödinger equation
which gave this result.

It is easier (as always) to start from an action:
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28 CHAPTER 5. QUANTUM MECHANICAL EFFECTS

I =

∫

d3x [kinetic energy− potential energy]

=

∫

d3x

[

− ~
2

2m
ψ∗∇2ψ − V ψ∗ψ

]

=

∫

d3x

[

1

2m
(−ı~∇ψ)

∗
(−ı~∇ψ) + V ψ∗ψ

]

incorporating the magnetic field via minimal coupling

=

∫

d3x
[

(−ı~∇ψ − qAψ)
∗
(−ı~∇ψ − qAψ) + V ψ∗ψ

]

.

This is gauge invariant.
It cannot depend on where we are in the superconductor and soV is constant. We

get the familiar Schr̈odinger equation which has the obvious solutionψ = 0 and no
other solution independent ofx.

Landau and Ginzburg proposed the addition of a term1
2b |ψ|4 to this action to get

I =

∫

d3x
~

2

4m

∣

∣

∣

(

∇− ıq

~
A

)

ψ
∣

∣

∣

2

+ V |ψ|2 +
1

2
b |ψ|4 .

This action can be derived from BCS theory and gives a nonlinear analog of the
Schr̈odinger equation:

− 1

4m
(−ı~ − qA)

2
ψ + V ψ + b |ψ|2 ψ = 0.

The currentjs = q~

2ım

(

ψ∗∇ψ − ψ (∇ψ)
∗) − 2q2

m
A |ψ|2.

We get a non-vanishing spatially independent solution of this “Schr̈odinger equa-
tion” whenV < 0 andb > 0. This occurs when the temperatureT is less than some
critical temperatureTc; normal matter hasV > 0.

BCS theory givesb > 0 andV = V0 (T − Tc).

5.3 Superconducting flux quantisation

Consider a ring of superconducting material as shown.

In the materialB = 0 andj = 0. Sincej ∝
(

∇ψ − q
~
A

)

we must haveA = ~

q
∇φ

inside the ring.
The magnetic flux through the loop is

∫

shaded surface
B.dS =

∮

boundary loop
A.dl.
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5.4. MAGNETIC MONOPOLES 29

Evaluating this inside the superconductor we get~

q
[φ]. As the wavefunction must

be single valued this must ben 2π~

q
and since the charge carriers are electron pairs then

the flux is quantised in units ofπ~

|e| .
If we make a currentI flow on the surface of the superconductor then as the flux

through the loop is the inductance times the current, and so the flux is quantised we see
that the current is quantised.

5.4 Magnetic monopoles

Suppose that aB field µ0

4π
P r̂

r2 is possible, by analogy with the Coulomb field in elec-
trostatics.

Using Gauss’ Law we have

P =
1

µ0

∫

closed surface
B.dS =

1

µ0

∫

div BdV.

Thus if div B = 0 everywhere thenP = 0 and magnetic charges cannot arise.
Thus Maxwell’s equations must be modified in order to get thisfield.

A suitable vector potentialA is Aφ = µ0P
4π

(1 + cos θ) (in spherical polars). We

have|A| = µ0

4π

(1+cos θ)
r sin θ

. There is a difficulty atθ = 0 for all r.
This singularity on the North axis is called the Dirac string. It can be moved about

by gauge transformations; if we haveA 7→ A + ∇−µ0P
2π

φ we can put the Dirac string
onto the South axis.

Since (by axiom) the observable physics should not depend onthe gauge used the
string singularity should be unobservable.

We showed earlier that the phase difference between two paths going in front of /
behind the string ise

~

∮

A.dl and this must be an integer multiple of2π. Evaluating
the integral gives the Dirac quantisation conditionP = n 2π~

µ0e
.
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. Chapter 6

Born-Infeld Theory

This material is starred and
was included as a fill-in lec-
ture.

Recall that Maxwell’s theory is (in the absence of currents)governed by an action

I =
1

µ0

∫

d4x − 1

4
FµνFµν ,

giving the two Maxwell equations∂µFρσ + ∂ρFσµ∂σFµρ = 0 and∂µFµν = 0.
There is a hidden duality symmetry underFµν 7→ 1

2εµνρσF ρσ of both the action and
the equations of motion.

Recall also that electric charges have a radial componentEr = Q
4πǫ0

1
r2 and that

the energy density in the electric field is12ǫ0 |E|2. We can see that the energy density
blows up at the origin and also that the total energy in the electric field is infinite.

We also propose a similiar magnetic monopole fieldBr = Pµ0

4π
1
r2 ; the energy in

this magnetic field is also infinite.
The Born-Infeld theory emerges from string theory. It depends on a parameterb

with the dimensions of length. We take a new action;

1

µ0b2

∫

d4x

{

1 −
√

|det ηµν + bFµν |
}

and we suppose thatFµν = ∂µAν − ∂νAµ.
Since we have that, up to a Lorentz transform,

Fµν = F̃µν =









0 λ1 0 0
−λ1 0 0 0
0 0 0 λ2

0 0 −λ2 0









we can see thatdet ηµν + bF̃µν = det ηµν + bFµν and so we can evaluate the action as

1

µ0b2

∫

d4x

{

1 −
√

1 − 1

2
b2FµνFµν − 1

16
b4 (εµνρσFµνFρσ)

2

}

.

The limit b → 0 (clearly) gives the Maxwell action. Since we are assuming that
Fµν is derived from a potential we still have the equation∂µFνρ +∂νFρµ +∂ρFµν = 0
and the other equation is∂µGµν = 0, the difference being that the equation forGµν is

31
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32 CHAPTER 6. BORN-INFELD THEORY

a horrible mess:

Gµν =
Fµν − b2

4 FλτεµνλτFαβFγδε
αβγδ

√

1 − b2

2 FξζF ξζ − b4

16 (εξζχ̟F ξζFχ̟)
2

(you have no idea how difficult it was to find that many different Greek letters).
We obtain

Tµν =
1

µ0

{

Gµ
λFνλ +

1

4
ηµνL

}

whereL is the Lagrangian;L = 1
b2

{

1 −
√

|det ηµν + bFµν |
}

.

There is a symmetry in these equations underFµν 7→ 1
2εµνρσGρσ andGµν 7→

− 1
2εµνρσF ρσ: the Lagrangian and equations of motions are invariant. This has the

effect of swappingE andB.
The analog of the electric field of a point charge is anE field which is purely radial,

defined byA0 = φ andEr = −∇rφ. In this case the action reduces to

1

µ0b2

∫

r2dr sin θdθdφ
[

1 −
√

1 − b2φ2
r

]

and variation of this yields

r2φr
√

1 − b2φ2
r

= const= a.

Solving this forφr = −Er yields

Er = − a√
r4 + a2b2

and so asr → ∞, Er ∼ − a
r2 . Thus if we wish to reproduce the Maxwell field for

large distancesa = − Q
4πǫ0

. Thus asr → 0 we see thatEr → 1
b
.

The energy density in the electric field is

1

µ0b2

{

1√
1 − b2E2

− 1

}

=
1

µ0b2







√

1 +
b2Q2

16π2ǫ0r4
− 1







which is singular (but integrably so) atr = 0. Performing the integral to find the
total energy in the electric field we obtain

4π

3
√

b

1

Γ( 3
4 )2

(

Q

4

)
3

2 1

ǫ
1

2

0

,

which is noticably finite.
This theory also has magnetic monopoles; an easy way is to seethat the theory is

invariant under swappingE andB. The energy in a magnetic monopole field is

4π

3
√

b

1

Γ( 3
4 )2

(

P

4

)
3

2 √
µ0

if Br ∼ µ0P
4πr2 asr → ∞.

In factBr = µ0P
4πr2 which although it looks singular is perfectly reasonable.



C
op

yr
ig

ht
 ©

 2
00

4 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

. References
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The sign conventions for the tensorFµν are variable and it is
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There appears to be a gap in the market at about the level of this course. Most books
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course. If you find a good one I haven’t mentioned please send me abrief review and
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