CHAPTER 0 INTRODUCTION

Standard notation

\mathbb{R}^{n} is the set of n-tples of real numbers with the usual Euclidean metric.
The n-sphere $S^{n} \subset \mathbb{R}^{n+1}$ is given by $S^{n}=\left\{x \in \mathbb{R}^{n+1}:\|x\|=1\right\}$.
The n-ball $B^{n} \subset \mathbb{R}^{n}$ is given by $B^{n}=\left\{x \in \mathbb{R}^{n}:\|x\| \leq 1\right\}$.
The unit interval $I \subset \mathbb{R}$ is given by $I=\{x \in \mathbb{R}: 0 \leq x \leq 1\}$.
The torus is $S^{1} \times S^{1}$, the annulus is $S^{1} \times I$.
Recall If (X, d) is a metric space a subset $U \subset X$ is called open if for each $x \in U$ there exists $\delta>0$ such that $d(x, \tilde{x})<\delta$ implies that $\tilde{x} \in U$.

Recall A topological space is a set X together with a collection of subsets of X called open sets such that
(i) \emptyset and X are open,
(ii) any union of open sets is open,
(iii) if U_{1} and U_{2} are open then so is $U_{1} \cap U_{2}$.

Definition. If X and Y are topological spaces a function $f: X \rightarrow Y$ is continuous if for every open $V \subset Y$ the set $f^{-1}(V)$ is open in X. A continuous function will be called a 'map'.

Definition. Topological spaces X and Y are homeomorphic (topologically 'the same') if there exist maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$ such that $g f=1_{X}$ and $f g=1_{Y}$, where 1_{X} and 1_{Y} are the identity maps. Note that functions are 'on the left'. These maps f and g are called homeomorphisms (each is a bijection).

Products. If X and Y are topological spaces, $X \times Y$ is the set of all pairs $\{(x, y)\}$ with the topology given by defining a set to be open if it can be expressed as some union of sets of the form $U \times V$, where U is open in X and V is open in Y.

Quotients. Suppose \sim is an equivalence relation on the points of a topological space X. Let X / \sim be the set of equivalence classes and let $q: X \rightarrow X / \sim$ be the quotient map $(q(x)=[x])$. A set $V \subset X / \sim$ is defined to be open if and only if $q^{-1} V$ is open in X.

Example. On S^{n} define $x \sim x^{\prime}$ if and only if $x= \pm x^{\prime}$. The quotient S^{n} / \sim is called real projective n-space and denoted $\mathbb{R} P^{n}$.

When the idea of identifying (or 'gluing together') points of a space X is needed, define \sim by $x \sim x^{\prime}$ if and only if $x=x^{\prime}$ or x and x^{\prime} are required to be identified.

Definition. A homotopy between maps $f, g: X \rightarrow Y$ is a map $F: X \times I \rightarrow Y$ such that $F(x, 0)=f(x)$ and $F(x, 1)=g(x)$ for all $x \in X$. Write $f \underset{F}{\widetilde{F}} g$ and let $F_{t}(x)=F(x, t)$.
If $A \subset X$ and $F(a, t)=f(a)=g(a)$ for all $(a, t) \in A \times I$ then the homotopy is relative to A.
1.1 Lemma. Homotopy relative to A is an equivalence relation on the class of all maps $X \rightarrow Y$.
1.2 Lemma. Suppose that $f_{0} \underset{F}{\sim} f_{1}$ and $g_{0} \underset{G}{\widetilde{G}} g_{1}$ where $f_{0}, f_{1}: X \rightarrow Y$ and $g_{0}, g_{1}: Y \rightarrow Z$, then $g_{0} f_{0} \simeq g_{1} f_{1}$.
1.3 Lemma. (Linear homotopy) Suppose $f, g: X \rightarrow Y \subset \mathbb{R}^{n}$ and that for all $x \in X$ the straight line segment joining $f(x)$ to $g(x)$ is contained in Y, then $f \simeq g$. If $f|A=g| A$ for some $A \subset X$ then $f \simeq g$ relative to A.

Definition. Spaces X and Y are homotopy equivalent or of the same homotopy type, written $X \simeq Y$, if there exist maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$ such that $g f \simeq 1_{X}$ and $f g \simeq 1_{Y}$. The map f is a homotopy equivalence with g its homotopy inverse (and vice versa).
1.4 Lemma. Homotopy equivalence is an equivalence relation on the class of all topological spaces.

Definition. A space X is contractible if it is homotopy equivalent to a single point.
Definition. Suppose $r: X \rightarrow X, r(X) \subset A \subset X$ and $r \mid A=1_{A}$. Then r is a retraction of X onto A and A is a retract of X. If $r \simeq 1_{X}$ relative to A then r is a (strong) deformation retraction of X to A. This implies that $X \simeq A$ and formalises the idea of X being squeezable to the subspace A.

Definition. A path in X from x_{0} to x_{1} is a map $u: I \rightarrow X$ such that $u(0)=x_{0}$ and $u(1)=x_{1}$. If $x_{0}=x_{1}$ the path u is a loop based at x_{0}. The space X is path connected if, for any $x_{0}, x_{1} \in X$, there exists a path from x_{0} to x_{1}.

Definition. Suppose, for $i=1,2, \ldots, n$, that u_{i} is a path in X from x_{i-1} to x_{i}. Define the product path $u_{1} \cdot u_{2} \cdot \ldots \cdot u_{n}$ to be the path given by

$$
\left(u_{1} \cdot u_{2} \cdot \ldots \cdot u_{n}\right)(s)=u_{i}(n s-i+1) \quad \text { whenever } \quad \frac{i-1}{n} \leq s \leq \frac{i}{n}
$$

Definition. The inverse u^{-1} of a path u is defined by $u^{-1}(s)=u(1-s)$. Note that $\left(u_{1} \cdot u_{2}\right)^{-1}=u_{2}^{-1} \cdot u_{1}^{-1}$.
1.5 Lemma. (i) Suppose that $u_{i} \underset{F}{\widetilde{F_{i}}} v_{i}$ relative to $\{0,1\}$ where u_{i} and v_{i} are, for $i=1,2, \ldots, n$, paths in X from x_{i-1} to x_{i}, then $u_{1} \cdot u_{2} \cdot \ldots \cdot u_{n} \simeq v_{1} \cdot v_{2} \cdot \ldots \cdot v_{n}$ relative to $\{0,1\}$.
(ii) If $u \simeq v$ relative to $\{0,1\}$ then $u^{-1} \simeq v^{-1}$ relative to $\{0,1\}$.
1.6 Lemma. (i) If u_{i} is, for $i=1,2, \ldots, n$, a path in X from x_{i-1} to x_{i} then $\left(u_{1} \cdot u_{2} \cdot \ldots \cdot u_{r}\right) \cdot\left(u_{r+1} \cdot u_{r+2} \cdot \ldots \cdot u_{n}\right) \simeq u_{1} \cdot u_{2} \cdot \ldots \cdot u_{n}$ relative to $\{0,1\}$.
(ii) If u is a path from x_{0} to x_{1} and e_{0} and e_{1} are the constant paths at x_{0} to x_{1} respectively, then $e_{0} \cdot u \simeq u$ relative to $\{0,1\}$ and $u \cdot e_{1} \simeq u$ relative to $\{0,1\}$.
(iii) $u \cdot u^{-1} \simeq e_{0}$ relative to $\{0,1\}$ and $u^{-1} \cdot u \simeq e_{1}$ relative to $\{0,1\}$.
1.7 Theorem. The set of homotopy classes relative to $\{0,1\}$ of loops based at $x_{0} \in X$, together with a product defined by $[u][v]=[u \cdot v]$ (where $[u]$ is the homotopy class relative to $\{0,1\}$ of loop u in X based at x_{0}), forms a group called the fundamental group of X with base point x_{0} and denoted $\pi_{1}\left(X, x_{0}\right)$.
1.8 Theorem. A map $f: X, x_{0} \rightarrow Y, y_{0}$ induces a group homomorphism $f_{\star}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)$ such that
(i) if $f \simeq f^{\prime}$ relative to x_{0} then $f_{\star} \simeq f_{\star}^{\prime}$,
(ii) $\left(1_{X}\right)_{\star}$ is the identity homomorphism,
(iii) if $g: Y, y_{0} \rightarrow Z, z_{0}$, then $(g f)_{\star}=g_{\star} f_{\star}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Z, z_{0}\right)$.
1.9 Theorem. A path u in X from x_{0} to x_{1} induces an isomorphism $u_{\#}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{1}\right)$ such that
(i) $u \simeq \hat{u}$ relative to $\{0,1\}$ implies $u_{\#}=\hat{u}_{\#}$,
(ii) $\left(e_{0}\right)_{\#}$ is the identity homomorphism,
(iii) if v is a path from x_{1} to x_{2} then $(u \cdot v)_{\#}=v_{\#} u_{\#}$,
(iv) if $f: X, x_{0}, x_{1} \rightarrow Y, y_{0}, y_{1}$, then $(f u)_{\#} f_{\star}=f_{\star} u_{\#}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{1}\right)$.
1.10 Theorem. Suppose that $f \underset{F}{\widetilde{F}} g: X \rightarrow Y$, that $x_{0} \in X$ and that v is the path in Y from $f\left(x_{0}\right)$ to $g\left(x_{0}\right)$ defined by $v(t)=F\left(x_{0}, t\right)$. Then

$$
v_{\#} f_{\star}=g_{\star}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, g\left(x_{0}\right)\right) .
$$

Corollary Let $f: X, x_{0} \rightarrow Y, y_{0}$ be a homotopy equivalence then $f_{\star}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)$ is an isomorphism of groups.

Definition. A space X is simply connected if it is path connected and $\pi_{1}\left(X, x_{0}\right)$ is the trivial group for some (and hence every) base point $x_{0} \in X$.

CHAPTER 2 COVERING SPACES

In what follows X is a path connected topological space.
Definition. A covering space of X is a non-empty path connected space \tilde{X} for which there is a (covering) map $p: \tilde{X} \rightarrow X$ such that for each $x \in X$ there exists an open neighbourhood V of x such that $p^{-1} V$ is a disjoint union of open sets in \tilde{X} each of which is mapped homeomorphically by p onto V.
The map p is called the projection of the covering space \tilde{X} to the base space X.

Examples.

(i) $p: \mathbb{R} \longrightarrow S^{1} \equiv\{z \in \mathbb{C}:|z|=1\}$ given by $p(t)=\exp (2 \pi i t)$.
(ii) $p: S^{1} \longrightarrow S^{1}$ given by $p(z)=z^{n}$.
(iii) $p: S^{n} \longrightarrow \mathbb{R} P^{n} \equiv S^{n} /(x \sim \pm x)$ where p is the quotient map.
(iv) $\bar{p}: S^{3} \longrightarrow L_{p, q}$ where, for p and q coprime integers, $L_{p, q}$ is the 'lens space' defined as the quotient of S^{3} by a certain action of the cyclic group C_{p} with generator g. Regarding S^{3} as $\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1\right\}$, the action is defined by $g\left(z_{1}, z_{2}\right)=\left(z_{1} \exp (2 \pi i / p), z_{2} \exp (-2 \pi i q / p)\right)$ and \bar{p} is the quotient map.
2.1 Lemma (path lifting property). Let $p: \tilde{X} \rightarrow X$ be a covering map. Suppose that $u: I \rightarrow X$ is a path in X and $\tilde{x}_{0} \in \tilde{X}$ is such that $p\left(\tilde{x}_{0}\right)=u(0)$. Then there exists a unique path $\tilde{u}: I \rightarrow \tilde{X}$ such that $\tilde{u}(0)=\tilde{x}_{0}$ and $p \tilde{u}=u$.
2.2 Lemma (homotopy lifting property). Let $p: \tilde{X} \rightarrow X$ be a covering map. Suppose that $F: I \times I \rightarrow X$ and $\tilde{F}: I \times\{0\} \rightarrow \tilde{X}$ are such that $F(s, 0)=p \tilde{F}(s, 0)$ for all $s \in I$. Then there exists a unique extension of \tilde{F} over the whole of $I \times I$ such that $p \tilde{F}=F$.
2.3 Theorem. Suppose that a group G acts as a group of homeomorphisms on a simply connected space Y. Suppose that each y belonging to Y has an open neighbourhood U such that $U \cap g U=\emptyset$ for all $g \in G-\{1\}$. Then $\pi_{1}(Y / G)$ is isomorphic to G.
2.4 Lemma*. Suppose that $p: \tilde{X} \rightarrow X$ is a covering map and for some $\tilde{x}_{0} \in \tilde{X}, p\left(\tilde{x}_{0}\right)=x_{0} \in X$. The group homomorphism $p_{\star}: \pi_{1}\left(\tilde{X}, \tilde{x}_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$ is injective and there is a bijection between the points of $p^{-1} x_{0}$ and the right cosets of $p_{\star} \pi_{1}\left(\tilde{X}, \tilde{x}_{0}\right)$ in $\pi_{1}\left(X, x_{0}\right)$.
2.5 Proposition*. Let $p: \tilde{X} \rightarrow X$ be a covering map and $p\left(\tilde{x}_{0}\right)=x_{0}$. Suppose Y is a path-connected, locally path-connected, space and $y_{0} \in Y$. For any map $f:\left(Y, y_{0}\right) \rightarrow\left(X, x_{0}\right)$ there exists a map $g:\left(Y, y_{0}\right) \rightarrow\left(\tilde{X}, \tilde{x}_{0}\right)$ such that $p g=f$ if and only if

$$
f_{\star} \pi_{1}\left(Y, y_{0}\right) \subset p_{\star} \pi_{1}\left(\tilde{X}, \tilde{x}_{0}\right) .
$$

When such a g exists it is unique.
2.6 Theorem*. If X is a path connected, locally contractible space, then X has a unique (up to equivalence) simply connected covering $p: \widehat{X} \rightarrow X$ and the group $\pi_{1}\left(X, x_{0}\right)$ acts on \hat{X} with X as quotient.

Definition. The above \widehat{X} is called the universal cover of X.

CHAPTER 3 SIMPLICIAL COMPLEXES

Definition. The points $a_{0}, a_{1}, \ldots, a_{n}$ in \mathbb{R}^{N} are (affinely) independent if $\left\{\left(a_{i}-a_{0}\right): i=1,2, \ldots, n\right\}$ are independent vectors in \mathbb{R}^{N}. Thus $a_{0}, a_{1}, \ldots, a_{n}$ are independent if and only if $\sum_{0}^{n} \lambda_{i} a_{i}=0$ with $\sum_{0}^{n} \lambda_{i}=0$ implies that $\lambda_{i}=0$ for each i.

Definition. Independent points $a_{0}, a_{1}, \ldots, a_{n}$ in \mathbb{R}^{N} are the vertices of an n-dimensional simplex σ in \mathbb{R}^{N} where

$$
\sigma=\left\{\sum_{0}^{n} \lambda_{i} a_{i}: 0 \leq \lambda_{i} \in \mathbb{R}, \sum_{0}^{n} \lambda_{i}=1\right\}
$$

The $\left\{\lambda_{i}\right\}$ are the barycentric coordinates of the point $\sum_{0}^{n} \lambda_{i} a_{i}$.
Write $\sigma=\left(a_{0} a_{1} \ldots a_{n}\right)$.
A simplex τ is a face of σ, written $\tau \leq \sigma$, if $\{$ vertices $\tau\} \subseteq\{$ vertices $\sigma\}$ and τ is a proper face if $\tau \neq \sigma$. Note that $\emptyset \leq \sigma$ for any simplex σ. By definition σ°, the interior of σ, is the set $\sigma-\bigcup\{$ proper faces of $\sigma\}$.

$$
\sigma^{\circ}=\left\{\sum_{0}^{n} \lambda_{i} a_{i}: 0<\lambda_{i} \in \mathbb{R}, \sum_{0}^{n} \lambda_{i}=1\right\}
$$

The barycentre $\hat{\sigma}$ of σ is $\frac{1}{n+1}\left(a_{0}+a_{1}+\ldots+a_{n}\right) \in \sigma^{\circ}$.
Definition. A (finite) simplicial complex K is a finite collection of simplexes in some \mathbb{R}^{N} such that
(i) if $\sigma \in K$ and $\tau \leq \sigma$ then $\tau \in K$,
(ii) if $\sigma \in K$ and $\tau \in K$ then $\sigma \cap \tau \leq \sigma$.

A subcomplex of K is a subcollection of the simplexes of K that satisfies (i) (and hence also (ii)).
A simplex σ together with all of its faces is an obvious example of a simplicial complex; this will often also be denoted by σ.

The underlying polyhedron $|K|$ of K is the union of all simplexes in K.
The dimension $\operatorname{dim} K$ of K is the maximal dimension of a simplex in K.
Definition. Let K and L be simplicial complexes. A simplicial map $f: K \rightarrow L$ is a function $f:\{$ vertices of $K\} \rightarrow$ $\{$ vertices of $L\}$ such that for every simplex $\left(a_{0} a_{1} \ldots a_{n}\right) \in K$, the points $\left\{f\left(a_{0}\right), f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right\}$ are the vertices of some simplex in L (though maybe $f\left(a_{i}\right)=f\left(a_{j}\right)$).
Extending f by defining $f \sum \lambda_{i} a_{i}=\sum \lambda_{i} f a_{i}$ gives a continuous function $f:|K| \rightarrow|L|$.
Of course, this $f:|K| \rightarrow|L|$ might be an injection (whereupon it is often called an embedding), a surjection, or a bijection which is often referred to as a simplicial isomorphism.
3.1 Lemma. $|K|$ is the disjoint union $\bigsqcup_{\sigma \in K} \sigma^{\circ}$.

Definition. If a is a vertex (that is a 0 -simplex) in K then $\operatorname{star}(a, K)=\bigcup_{a \leq \sigma \in K} \sigma^{\circ}$.
3.2 Lemma. The sets $\{\operatorname{star}(a, K): a$ a vertex of $K\}$ form an open cover of $|K|$.

Definition. A simplicial map $f: K \rightarrow L$ is a simplicial approximation to a (continuous) map $\phi:|K| \rightarrow|L|$ if, for every vertex $a \in K$,

$$
\phi(\operatorname{star}(a, K)) \subset \operatorname{star}(f(a), L)
$$

Note that the composition of approximations is an approximation to the composition of maps.
3.3 Lemma. Suppose that $f: K \rightarrow L$ is a simplicial approximation to a map $\phi:|K| \rightarrow|L|$. Let $A=\{x \in$ $|K|: f(x)=\phi(x)\}$. The $\phi \simeq f$ relative to A.
3.4 Lemma. Suppose that $\phi:|K| \rightarrow|L|$ and for each vertex $a_{i} \in K$ there exists a vertex $b_{i} \in L$ such that $\phi\left(\operatorname{star}\left(a_{i}, K\right)\right) \subset \operatorname{star}\left(b_{i}, L\right)$ then there is a simplicial approximation f to ϕ such that $f\left(a_{i}\right)=b_{i}$.

Definition. The first derived subdivision $K^{(1)}$ of a simplicial complex K is defined by

$$
K^{(1)}=\left\{\left(\hat{\sigma}_{0} \hat{\sigma}_{1} \ldots \hat{\sigma}_{r}\right): \sigma_{0}<\sigma_{1}<\ldots<\sigma_{r} \in K\right\}
$$

where barycentre $\hat{\sigma}_{i}$ is the barycentre of σ_{i}. The $r^{\text {th }}$ derived subdivision $K^{(r)}$ is defined inductively by $K^{(r)}=$ $\left(K^{(r-1)}\right)^{(1)}$.

Definition. The mesh of a simplicial complex K is defined to be the maximum of the diameters of all the $\operatorname{star}(a, K))$ where a is a vertex of K.
3.5 Lemma. Let K be a simplicial complex. Given $\epsilon>0$ there exists an r such that mesh $K^{(r)}<\epsilon$.
3.6 Theorem. Let K and L be simplicial complexes and $\phi:|K| \rightarrow|L|$ be a (continuous) map. For any r sufficiently large, there exists a simplicial approximation $f: K^{(r)} \rightarrow L$ to $\phi:\left|K^{(r)}\right| \rightarrow|L|$.

Definition. Two simplicial maps $f, g: K \rightarrow L$ are contiguous if for every $\sigma \in K$ there exists a $\tau \in L$ such that both $f \sigma \leq \tau$ and $g \sigma \leq \tau$. (This implies that $f \simeq g$.)
3.7 Lemma. If $f, g:\left|K^{(r)}\right| \rightarrow|L|$ are both simplicial approximations to $\phi:\left|K^{(r)}\right| \rightarrow|L|$ then f and g are contiguous.
3.8 Lemma. Let K and L be simplicial complexes. There exists $\delta>0$ such that, if two maps $\phi, \psi:|K| \rightarrow|L|$ are such that $d(\phi(x), \psi(x))<\delta$ for all $x \in|K|$, then for some r there is a simplicial map $f: K^{(r)} \rightarrow L$ that is an approximation to both ϕ and ψ.

CHAPTER 4 HOMOLOGY GROUPS OF SIMPLICIAL COMPLEXES

Definition. An ordered simplex is a simplex together with an ordering assigned to its vertices. Write an ordered simplex σ as $\sigma=\left(a_{0} a_{1} \ldots a_{n}\right)$ when the ordering is $a_{0}<a_{1}<\ldots a_{n}$.

Definition. The $n^{\text {th }}$ chain group $C_{n}(K)$ of a finite simplicial complex K is, for $n \geq 0$, the free abelian group generated by (symbols in one to one correspondence with) all ordered n-simplexes in K with all possible orderings quotiented by the group generated by

$$
\left\{\left(a_{0} a_{1} \ldots a_{n}\right)-\epsilon_{\pi}\left(a_{\pi 0} a_{\pi 1} \ldots a_{\pi n}\right): \pi \in \Sigma_{n+1},\left(a_{0} a_{1} \ldots a_{n}\right) \in K\right\}
$$

Here Σ_{n+1} is the permutation group of $\{0,1, \ldots, n\}$. By convention $C_{n}(K)=0$ if $n<0$ or $n>\operatorname{dim} K$.
Definition. The boundary homomorphism $d_{n}: C_{n}(K) \rightarrow C_{n-1}(K)$ is the homomorphism defined on generators by

$$
d_{n}\left(a_{0} a_{1} \ldots a_{n}\right)=\sum_{i=0}^{n}(-1)^{i}\left(a_{0} a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n}\right) .
$$

Notation: $\left(a_{0} a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n}\right)=\left(a_{0} a_{1} \ldots{ }_{\uparrow}^{i} \ldots a_{n}\right)$.
4.1 Lemma. The boundary homomorphism $d_{n}: C_{n}(K) \rightarrow C_{n-1}(K)$ is well defined.
4.2 Lemma. $d^{2}=0$, that is, $C_{n}(K) \xrightarrow{d_{n}} C_{n-1}(K) \xrightarrow{d_{n-1}} C_{n-2}(K)$ is the zero homomorphism.

Note. A collection of groups and homomorphisms $\left\{C_{n}, d_{n}\right\}$ such that $d_{n-1} d_{n}=0$ is called a chain complex.
Definition. In $C_{n}(K)$, the n-boundary chains $B_{n}(K)$ are the image of $d_{n+1}: C_{n+1}(K) \rightarrow C_{n}(K)$, the n cycles $Z_{n}(K)$ are the kernel of $d_{n}: C_{n}(K) \rightarrow C_{n-1}(K)$ and the $n^{\text {th }}$-homology group $H_{n}(K)$ is the quotient $Z_{n}(K) / B_{n}(K)$.

Definition. Suppose that $f: K \rightarrow L$ is a simplicial map. Define the induced chain homomorphism f_{n} : $C_{n}(K) \rightarrow C_{n}(L)$ by $f_{n}\left(a_{0} a_{1} \ldots a_{n}\right)=\left(f a_{0} f a_{1} \ldots f a_{n}\right)$ if $\left\{f a_{0}, f a_{1}, \ldots, f a_{n}\right\}$ are all distinct and $f_{n}\left(a_{0} a_{1} \ldots a_{n}\right)=$ 0 otherwise.
4.3 Lemma. If $f: K \rightarrow L$ is a simplicial map then
(i) $f_{n-1} d_{n}^{K}=d_{n}^{L} f_{n}$
(ii) if f is the identity so is f_{n},
(iii) $(g f)_{n}=g_{n} f_{n}$.

Corollary. $\quad f$ induces $\left\{f_{n}\right\}$ which induces $f_{*}: H_{n}(K) \rightarrow H_{n}(L)$ such that $1_{*}=1$ and $(f g)_{*}=f_{*} g_{*}$.
Definition. A collection of homomorphisms $\left\{f_{n}: C_{n}(K) \rightarrow C_{n}(L)\right\}$ between the groups of two chain complexes is a chain map if $f_{n-1} d_{n}^{K}=d_{n}^{L} f_{n}$. A chain homotopy between chain maps $\left\{f_{n}: C_{n}(K) \rightarrow C_{n}(L)\right\}$ and $\left\{g_{n}\right.$: $\left.C_{n}(K) \rightarrow C_{n}(L)\right\}$ is a collection of homomorphisms $\left\{h_{n}: C_{n}(K) \rightarrow C_{n+1}(L)\right\}$ such that

$$
f_{n}-g_{n}=d_{n+1}^{L} h_{n}+h_{n-1} d_{n}^{K}
$$

4.4 Lemma. If $\left\{f_{n}: C_{n}(K) \rightarrow C_{n}(L)\right\}$ and $\left\{g_{n}: C_{n}(K) \rightarrow C_{n}(L)\right\}$ are chain homotopic then $f_{*}=g_{*}$: $H_{n}(K) \rightarrow H_{n}(L)$ for all n.

Definition. Suppose that K is a simplicial complex in \mathbb{R}^{N} and $v \in \mathbb{R}^{N+1}-\mathbb{R}^{N}$, then the cone $v K$ with vertex v and base K is the simplicial complex $\{v\} \cup K \cup\left\{\left(v a_{0} a_{1} \ldots a_{n}\right):\left(a_{0} a_{1} \ldots a_{n}\right) \in K\right\}$.
4.5 Lemma. $\quad H_{n}(v K) \cong H_{n}(v) \cong \begin{cases}\mathbb{Z} & \text { if } n=0, \\ 0 & \text { otherwise } .\end{cases}$

Corollary. Let σ be the simplicial complex consisting of just one ($n+1$)-simplex and all its faces and let $\partial \sigma$ be the subcomplex consisting of its proper faces only. Then

$$
H_{r}(\sigma) \cong\left\{\begin{array}{ll}
\mathbb{Z} & \text { if } \mathrm{r}=0, \\
0 & \text { otherwise },
\end{array} \quad \text { and, if } n \geq 1, \quad H_{r}(\partial \sigma) \cong \begin{cases}\mathbb{Z} & \text { if } \mathrm{r}=0 \text { or } \mathrm{n} \\
0 & \text { otherwise }\end{cases}\right.
$$

Definition. A sequence $\ldots \longrightarrow G_{n} \xrightarrow{f_{n}} G_{n-1} \xrightarrow{f_{n-1}} G_{n-2} \longrightarrow \ldots$ of groups and homomorphisms is called exact if, for all n, kernel $f_{n-1}=\operatorname{image} f_{n}$.
4.6 Theorem (Mayer Vietoris). Let L and M be subcomplexes of a simplicial complex K such that $K=L \cup M$. Then there is an exact sequence

$$
\ldots \longrightarrow H_{n}(L \cap M) \xrightarrow{\alpha_{*}} H_{n}(L) \oplus H_{n}(M) \xrightarrow{\beta_{*}} H_{n}(K) \xrightarrow{\Delta_{n}} H_{n-1}(L \cap M) \xrightarrow{\alpha_{*}} \ldots
$$

in which $\alpha_{*}(x)=\left(i_{*}^{1}(x), i_{*}^{2}(x)\right)$ and $\beta_{*}(y, z)=j_{*}^{1}(y)-j_{*}^{2}(z)$, where i^{1} and i^{2} are the inclusion maps of $L \cap M$ into L and M respectively and j^{1} and j^{2} are the inclusion maps of L and M respectively into K.

CHAPTER 5 INVARIANCE OF HOMOLOGY GROUPS

5.1 Lemma. Suppose $\alpha:\left\{\right.$ vertices of $\left.K^{(1)}\right\} \rightarrow\{$ vertices of $K\}$ is such that $\alpha(\hat{\sigma})$ is a vertex of σ for every $\sigma \in K$. Then α is a simplicial map $\alpha: K^{(1)} \rightarrow K$ that is a simplicial approximation to the identity map $\left|K^{(1)}\right| \rightarrow|K|$.
5.2 Lemma. There is a chain map $\left\{\theta_{n}: C_{n}(K) \rightarrow C_{n}\left(K^{(1)}\right)\right\}$ so that if σ is an n-simplex of K then $\theta_{n}(\sigma)=\sum_{\tau^{\circ} \subset \sigma^{\circ}} \pm \tau$.
5.3 Lemma. Suppose that $\left\{f_{n}: C_{n}(K) \rightarrow C_{n}(L)\right\}$ and $\left\{g_{n}: C_{n}(K) \rightarrow C_{n}(L)\right\}$ are chain maps such that
(i) f_{0} and g_{0} map generators (vertices) to generators,
(ii) for every n-simplex $\sigma \in K$ there is a cone Λ_{σ}, a subcomplex of L, such that $f_{n} \sigma \in C_{n}\left(\Lambda_{\sigma}\right)$ and $g_{n} \sigma \in$ $C_{n}\left(\Lambda_{\sigma}\right)$ and
(iii) if $\tau<\sigma$ then $\Lambda_{\tau} \subset \Lambda_{\sigma}$.

Then $f_{*}=g_{*}: H_{r}(K) \rightarrow H_{r}(L)$ for all r.

Corollary. With notation from 5.1 and 5.2 above, $\alpha_{*}: H_{n}\left(K^{(1)}\right) \rightarrow H_{n}(K)$ and $\theta_{*}: H_{n}(K) \rightarrow H_{n}\left(K^{(1)}\right)$ are mutually inverse isomorphisms.
5.4 Theorem. A (continuous) map $\phi:|K| \rightarrow|L|$ induces for each n a well defined homomorphism ϕ_{*} : $H_{n}(K) \rightarrow H_{n}(L)$ such that $1_{*}=1$ and $(\psi \phi)_{*}=\psi_{*} \phi_{*}$.

Corollary. If ϕ is a homeomorphism then ϕ_{*} is an isomorphism.
5.5 Theorem. If $\phi \underset{F}{\widetilde{F}} \psi:|K| \rightarrow|L|$ then $\phi_{*}=\psi_{*}$.
5.6 Theorem (The Brouwer fixed point theorem). Any (continuous) map $\phi: B^{n} \rightarrow B^{n}$ has a fixed point.

CHAPTER 6 CLASSIFICATION OF SURFACES

Definition. An n-manifold without boundary is a (Hausdorff and second countable) topological space M with the property that for each $x \in M$ there is an open set U, with $x \in U \subset M$, such that U is homeomorphic to \mathbb{R}^{n}.

Definition. Suppose M_{1} and M_{2} are connected n-manifolds and B_{1} and B_{2} are n-balls with $B_{1} \subset M_{1}$ and $B_{2} \subset M_{2}$. The manifold $\left(M_{1}-\operatorname{int} B_{1}\right) \cup_{h}\left(M_{2}-\operatorname{int} B_{2}\right)$, where h is a homeomorphism from the boundary of B_{1} to the boundary of B_{2}, is called the connected sum $M_{1} \# M_{2}$.
6.1 Theorem*. Let M be a compact connected 2-manifold without boundary then M is homeomorphic to one and only one of
(a) $M_{0}=S^{2}$
(b) $M_{g}=T \# T \# \ldots \# T$, where T is the torus $S^{1} \times S^{1}$ and there are g summands
(c) $N_{h}=\mathbb{R} P^{2} \# \mathbb{R} P^{2} \# \ldots \# \mathbb{R} P^{2}$, where $\mathbb{R} P^{2}$ is the real projective plane and there are h summands.

Note. The Mayer-Vietoris Theorem implies that

$$
H_{1}\left(M_{g}\right) \cong \bigoplus_{2 g \text { copies }} \mathbb{Z}, \quad H_{1}\left(N_{h}\right) \cong \mathbb{Z} / 2 \quad \oplus \bigoplus_{(h-1) \text { copies }} \mathbb{Z}
$$

