PART II

ALGEBRAIC TOPOLOGY

Michaelmas Term 2003

CHAPTER 0 INTRODUCTION

Standard notation

 \mathbb{R}^n is the set of n-tples of real numbers with the usual Euclidean metric.

The *n*-sphere $S^n \subset \mathbb{R}^{n+1}$ is given by $S^n = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}.$

The *n*-ball $B^n \subset \mathbb{R}^n$ is given by $B^n = \{x \in \mathbb{R}^n : ||x|| \le 1\}.$

The unit interval $I \subset \mathbb{R}$ is given by $I = \{x \in \mathbb{R} : 0 \le x \le 1\}.$

The torus is $S^1 \times S^1$, the annulus is $S^1 \times I$.

Recall If (X, d) is a metric space a subset $U \subset X$ is called *open* if for each $x \in U$ there exists $\delta > 0$ such that $d(x, \tilde{x}) < \delta$ implies that $\tilde{x} \in U$.

Recall A topological space is a set X together with a collection of subsets of X called open sets such that

- (i) \emptyset and X are open,
- (ii) any union of open sets is open,
- (iii) if U_1 and U_2 are open then so is $U_1 \cap U_2$.

Definition. If X and Y are topological spaces a function $f: X \to Y$ is *continuous* if for every open $V \subset Y$ the set $f^{-1}(V)$ is open in X. A continuous function will be called a 'map'.

Definition. Topological spaces X and Y are *homeomorphic* (topologically 'the same') if there exist maps $f: X \to Y$ and $g: Y \to X$ such that $gf = 1_X$ and $fg = 1_Y$, where 1_X and 1_Y are the identity maps. Note that functions are 'on the left'. These maps f and g are called homeomorphisms (each is a bijection).

Products. If X and Y are topological spaces, $X \times Y$ is the set of all pairs $\{(x, y)\}$ with the topology given by defining a set to be open if it can be expressed as some union of sets of the form $U \times V$, where U is open in X and V is open in Y.

Quotients. Suppose ~ is an equivalence relation on the points of a topological space X. Let X/\sim be the set of equivalence classes and let $q: X \to X/\sim$ be the quotient map (q(x) = [x]). A set $V \subset X/\sim$ is defined to be open if and only if $q^{-1}V$ is open in X.

Example. On S^n define $x \sim x'$ if and only if $x = \pm x'$. The quotient S^n / \sim is called real projective *n*-space and denoted $\mathbb{R}P^n$.

When the idea of identifying (or 'gluing together') points of a space X is needed, define \sim by $x \sim x'$ if and only if x = x' or x and x' are required to be identified.

CHAPTER 1 HOMOTOPY AND THE FUNDAMENTAL GROUP

Definition. A homotopy between maps $f, g: X \to Y$ is a map $F: X \times I \to Y$ such that F(x, 0) = f(x) and F(x, 1) = g(x) for all $x \in X$. Write $f \cong g$ and let $F_t(x) = F(x, t)$. If $A \subset X$ and F(a, t) = f(a) = g(a) for all $(a, t) \in A \times I$ then the homotopy is *relative* to A.

1.1 Lemma. Homotopy relative to A is an equivalence relation on the class of all maps $X \to Y$.

1.2 Lemma. Suppose that $f_0 \simeq f_1$ and $g_0 \simeq g_1$ where $f_0, f_1: X \to Y$ and $g_0, g_1: Y \to Z$, then $g_0 f_0 \simeq g_1 f_1$.

1.3 Lemma. (Linear homotopy) Suppose $f, g: X \to Y \subset \mathbb{R}^n$ and that for all $x \in X$ the straight line segment joining f(x) to g(x) is contained in Y, then $f \simeq g$. If $f|_A = g|_A$ for some $A \subset X$ then $f \simeq g$ relative to A.

Definition. Spaces X and Y are homotopy equivalent or of the same homotopy type, written $X \simeq Y$, if there exist maps $f: X \to Y$ and $g: Y \to X$ such that $gf \simeq 1_X$ and $fg \simeq 1_Y$. The map f is a homotopy equivalence with g its homotopy inverse (and vice versa).

1.4 Lemma. Homotopy equivalence is an equivalence relation on the class of all topological spaces.

Definition. A space X is *contractible* if it is homotopy equivalent to a single point.

Definition. Suppose $r: X \to X$, $r(X) \subset A \subset X$ and $r|A = 1_A$. Then r is a retraction of X onto A and A is a retract of X. If $r \simeq 1_X$ relative to A then r is a (strong) deformation retraction of X to A. This implies that $X \simeq A$ and formalises the idea of X being squeezable to the subspace A.

Definition. A path in X from x_0 to x_1 is a map $u: I \to X$ such that $u(0) = x_0$ and $u(1) = x_1$. If $x_0 = x_1$ the path u is a loop based at x_0 . The space X is path connected if, for any $x_0, x_1 \in X$, there exists a path from x_0 to x_1 .

Definition. Suppose, for i = 1, 2, ..., n, that u_i is a path in X from x_{i-1} to x_i . Define the product path $u_1 \cdot u_2 \cdot ... \cdot u_n$ to be the path given by

$$(u_1 \cdot u_2 \cdot \ldots \cdot u_n)(s) = u_i(ns - i + 1)$$
 whenever $\frac{i-1}{n} \le s \le \frac{i}{n}$.

Definition. The *inverse* u^{-1} of a path u is defined by $u^{-1}(s) = u(1-s)$. Note that $(u_1 \cdot u_2)^{-1} = u_2^{-1} \cdot u_1^{-1}$.

1.5 Lemma. (i) Suppose that $u_i \underset{F_i}{\simeq} v_i$ relative to $\{0,1\}$ where u_i and v_i are, for i = 1, 2, ..., n, paths in X from x_{i-1} to x_i , then $u_1 \cdot u_2 \cdot ... \cdot u_n \simeq v_1 \cdot v_2 \cdot ... \cdot v_n$ relative to $\{0,1\}$. (ii) If $u \simeq v$ relative to $\{0,1\}$ then $u^{-1} \simeq v^{-1}$ relative to $\{0,1\}$.

1.6 Lemma. (i) If u_i is, for i = 1, 2, ..., n, a path in X from x_{i-1} to x_i then $(u_1 \cdot u_2 \cdot ... \cdot u_r) \cdot (u_{r+1} \cdot u_{r+2} \cdot ... \cdot u_n) \simeq u_1 \cdot u_2 \cdot ... \cdot u_n$ relative to $\{0, 1\}$.

(ii) If u is a path from x_0 to x_1 and e_0 and e_1 are the constant paths at x_0 to x_1 respectively, then $e_0 \cdot u \simeq u$ relative to $\{0, 1\}$ and $u \cdot e_1 \simeq u$ relative to $\{0, 1\}$.

(iii) $u \cdot u^{-1} \simeq e_0$ relative to $\{0,1\}$ and $u^{-1} \cdot u \simeq e_1$ relative to $\{0,1\}$.

1.7 Theorem. The set of homotopy classes relative to $\{0,1\}$ of loops based at $x_0 \in X$, together with a product defined by $[u][v] = [u \cdot v]$ (where [u] is the homotopy class relative to $\{0,1\}$ of loop u in X based at x_0), forms a group called the fundamental group of X with base point x_0 and denoted $\pi_1(X, x_0)$.

1.8 Theorem. A map $f: X, x_0 \to Y, y_0$ induces a group homomorphism $f_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$ such that

- (i) if $f \simeq f'$ relative to x_0 then $f_{\star} \simeq f'_{\star}$,
- (ii) $(1_X)_{\star}$ is the identity homomorphism,
- (iii) if $g: Y, y_0 \to Z, z_0$, then $(gf)_{\star} = g_{\star}f_{\star}: \pi_1(X, x_0) \to \pi_1(Z, z_0)$.
- **1.9 Theorem.** A path u in X from x_0 to x_1 induces an isomorphism $u_{\#} : \pi_1(X, x_0) \to \pi_1(X, x_1)$ such that (i) $u \simeq \hat{u}$ relative to $\{0, 1\}$ implies $u_{\#} = \hat{u}_{\#}$,
 - (ii) $(e_0)_{\#}$ is the identity homomorphism,
 - (iii) if v is a path from x_1 to x_2 then $(u \cdot v)_{\#} = v_{\#}u_{\#}$,
 - (iv) if $f: X, x_0, x_1 \to Y, y_0, y_1$, then $(fu)_{\#} f_{\star} = f_{\star} u_{\#} : \pi_1(X, x_0) \to \pi_1(Y, y_1)$.

1.10 Theorem. Suppose that $f \cong g: X \to Y$, that $x_0 \in X$ and that v is the path in Y from $f(x_0)$ to $g(x_0)$ defined by $v(t) = F(x_0, t)$. Then

$$v_{\#}f_{\star} = g_{\star} : \pi_1(X, x_0) \to \pi_1(Y, g(x_0)).$$

Corollary Let $f: X, x_0 \to Y, y_0$ be a homotopy equivalence then $f_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$ is an isomorphism of groups.

Definition. A space X is simply connected if it is path connected and $\pi_1(X, x_0)$ is the trivial group for some (and hence every) base point $x_0 \in X$.

CHAPTER 2 COVERING SPACES

In what follows X is a path connected topological space.

Definition. A covering space of X is a non-empty path connected space \tilde{X} for which there is a (covering) map $p: \tilde{X} \to X$ such that for each $x \in X$ there exists an open neighbourhood V of x such that $p^{-1}V$ is a disjoint union of open sets in \tilde{X} each of which is mapped homeomorphically by p onto V.

The map p is called the projection of the covering space \tilde{X} to the base space X .

Examples.

- (i) $p: \mathbb{R} \longrightarrow S^1 \equiv \{z \in \mathbb{C} : |z| = 1\}$ given by $p(t) = \exp(2\pi i t)$.
- (ii) $p: S^1 \longrightarrow S^1$ given by $p(z) = z^n$.
- (iii) $p: S^n \longrightarrow \mathbb{R}P^n \equiv S^n/(x \sim \pm x)$ where p is the quotient map.
- (iv) $\overline{p}: S^3 \longrightarrow L_{p,q}$ where, for p and q coprime integers, $L_{p,q}$ is the 'lens space' defined as the quotient of S^3 by a certain action of the cyclic group C_p with generator g. Regarding S^3 as $\{(z_1, z_2) \in \mathbb{C}^2 : |z_1|^2 + |z_2|^2 = 1\}$, the action is defined by $g(z_1, z_2) = (z_1 \exp(2\pi i/p), z_2 \exp(-2\pi iq/p))$ and \overline{p} is the quotient map.

2.1 Lemma (path lifting property). Let $p: \tilde{X} \to X$ be a covering map. Suppose that $u: I \to X$ is a path in X and $\tilde{x}_0 \in \tilde{X}$ is such that $p(\tilde{x}_0) = u(0)$. Then there exists a unique path $\tilde{u}: I \to \tilde{X}$ such that $\tilde{u}(0) = \tilde{x}_0$ and $p\tilde{u} = u$.

2.2 Lemma (homotopy lifting property). Let $p: \tilde{X} \to X$ be a covering map. Suppose that $F: I \times I \to X$ and $\tilde{F}: I \times \{0\} \to \tilde{X}$ are such that $F(s, 0) = p\tilde{F}(s, 0)$ for all $s \in I$. Then there exists a unique extension of \tilde{F} over the whole of $I \times I$ such that $p\tilde{F} = F$.

2.3 Theorem. Suppose that a group G acts as a group of homeomorphisms on a simply connected space Y. Suppose that each y belonging to Y has an open neighbourhood U such that $U \cap gU = \emptyset$ for all $g \in G - \{1\}$. Then $\pi_1(Y/G)$ is isomorphic to G.

2.4 Lemma*. Suppose that $p: \tilde{X} \to X$ is a covering map and for some $\tilde{x}_0 \in \tilde{X}$, $p(\tilde{x}_0) = x_0 \in X$. The group homomorphism $p_*: \pi_1(\tilde{X}, \tilde{x}_0) \to \pi_1(X, x_0)$ is injective and there is a bijection between the points of $p^{-1}x_0$ and the right cosets of $p_*\pi_1(\tilde{X}, \tilde{x}_0)$ in $\pi_1(X, x_0)$.

2.5 Proposition*. Let $p: \tilde{X} \to X$ be a covering map and $p(\tilde{x}_0) = x_0$. Suppose Y is a path-connected, locally path-connected, space and $y_0 \in Y$. For any map $f: (Y, y_0) \to (X, x_0)$ there exists a map $g: (Y, y_0) \to (\tilde{X}, \tilde{x}_0)$ such that pg = f if and only if

$$f_{\star} \pi_1(Y, y_0) \subset p_{\star} \pi_1(\tilde{X}, \tilde{x}_0) .$$

When such a g exists it is unique.

2.6 Theorem*. If X is a path connected, locally contractible space, then X has a unique (up to equivalence) simply connected covering $p: \hat{X} \to X$ and the group $\pi_1(X, x_0)$ acts on \hat{X} with X as quotient.

Definition. The above \widehat{X} is called the *universal cover* of X.

CHAPTER 3 SIMPLICIAL COMPLEXES

Definition. The points a_0, a_1, \ldots, a_n in \mathbb{R}^N are (affinely) *independent* if $\{(a_i - a_0) : i = 1, 2, \ldots, n\}$ are independent vectors in \mathbb{R}^N . Thus a_0, a_1, \ldots, a_n are independent if and only if $\sum_{i=1}^{n} \lambda_i a_i = 0$ with $\sum_{i=1}^{n} \lambda_i = 0$ implies that $\lambda_i = 0$ for each i.

Definition. Independent points a_0, a_1, \ldots, a_n in \mathbb{R}^N are the vertices of an *n*-dimensional simplex σ in \mathbb{R}^N where

$$\sigma = \{\sum_{0}^{n} \lambda_{i} a_{i} : 0 \le \lambda_{i} \in \mathbb{R}, \sum_{0}^{n} \lambda_{i} = 1\}.$$

The $\{\lambda_i\}$ are the *barycentric coordinates* of the point $\sum_{i=1}^{n} \lambda_i a_i$.

Write $\sigma = (a_0 a_1 \dots a_n)$.

A simplex τ is a *face* of σ , written $\tau \leq \sigma$, if {vertices τ } \subseteq {vertices σ } and τ is a proper face if $\tau \neq \sigma$. Note that $\emptyset \leq \sigma$ for any simplex σ . By definition σ° , the *interior* of σ , is the set $\sigma - \bigcup$ {proper faces of σ }.

$$\sigma^{\circ} = \{\sum_{0}^{n} \lambda_{i} a_{i} : 0 < \lambda_{i} \in \mathbb{R}, \sum_{0}^{n} \lambda_{i} = 1\}.$$

The barycentre $\hat{\sigma}$ of σ is $\frac{1}{n+1}(a_0 + a_1 + \ldots + a_n) \in \sigma^{\circ}$.

Definition. A (finite) simplicial complex K is a finite collection of simplexes in some \mathbb{R}^N such that

- (i) if $\sigma \in K$ and $\tau \leq \sigma$ then $\tau \in K$,
- (ii) if $\sigma \in K$ and $\tau \in K$ then $\sigma \cap \tau \leq \sigma$.

A subcomplex of K is a subcollection of the simplexes of K that satisfies (i) (and hence also (ii)).

A simplex σ together with all of its faces is an obvious example of a simplicial complex; this will often also be denoted by σ .

The underlying polyhedron |K| of K is the union of all simplexes in K.

The dimension $\dim K$ of K is the maximal dimension of a simplex in K.

Definition. Let K and L be simplicial complexes. A simplicial map $f : K \to L$ is a function $f : \{$ vertices of $K \} \to \{$ vertices of $L \}$ such that for every simplex $(a_0a_1 \dots a_n) \in K$, the points $\{f(a_0), f(a_1), \dots, f(a_n)\}$ are the vertices of some simplex in L (though maybe $f(a_i) = f(a_j)$).

Extending f by defining $f \sum \lambda_i a_i = \sum \lambda_i f a_i$ gives a continuous function $f: |K| \to |L|$.

Of course, this $f : |K| \to |L|$ might be an injection (whereupon it is often called an embedding), a surjection, or a bijection which is often referred to as a simplicial isomorphism.

3.1 Lemma. |K| is the disjoint union $\bigsqcup_{\sigma \in K} \sigma^{\circ}$.

Definition. If a is a vertex (that is a 0-simplex) in K then star $(a, K) = \bigcup_{a \le \sigma \in K} \sigma^{\circ}$.

3.2 Lemma. The sets $\{\text{star}(a, K) : a \text{ a vertex of } K\}$ form an open cover of |K|.

Definition. A simplicial map $f: K \to L$ is a simplicial approximation to a (continuous) map $\phi: |K| \to |L|$ if, for every vertex $a \in K$,

 $\phi(\text{star}(a, K)) \subset \text{star}(f(a), L).$

Note that the composition of approximations is an approximation to the composition of maps.

3.3 Lemma. Suppose that $f: K \to L$ is a simplicial approximation to a map $\phi: |K| \to |L|$. Let $A = \{x \in |K|: f(x) = \phi(x)\}$. The $\phi \simeq f$ relative to A.

3.4 Lemma. Suppose that $\phi : |K| \to |L|$ and for each vertex $a_i \in K$ there exists a vertex $b_i \in L$ such that $\phi(\text{star } (a_i, K)) \subset \text{star } (b_i, L)$ then there is a simplicial approximation f to ϕ such that $f(a_i) = b_i$.

Definition. The first derived subdivision $K^{(1)}$ of a simplicial complex K is defined by

$$K^{(1)} = \left\{ \left(\hat{\sigma}_0 \hat{\sigma}_1 \dots \hat{\sigma}_r \right) : \sigma_0 < \sigma_1 < \dots < \sigma_r \in K \right\}$$

where barycentre $\hat{\sigma}_i$ is the barycentre of σ_i . The r^{th} derived subdivision $K^{(r)}$ is defined inductively by $K^{(r)} = (K^{(r-1)})^{(1)}$.

Definition. The *mesh* of a simplicial complex K is defined to be the maximum of the diameters of all the star (a, K) where a is a vertex of K.

3.5 Lemma. Let K be a simplicial complex. Given $\epsilon > 0$ there exists an r such that mesh $K^{(r)} < \epsilon$.

3.6 Theorem. Let K and L be simplicial complexes and $\phi : |K| \to |L|$ be a (continuous) map. For any r sufficiently large, there exists a simplicial approximation $f : K^{(r)} \to L$ to $\phi : |K^{(r)}| \to |L|$.

Definition. Two simplicial maps $f, g: K \to L$ are *contiguous* if for every $\sigma \in K$ there exists a $\tau \in L$ such that both $f\sigma \leq \tau$ and $g\sigma \leq \tau$. (This implies that $f \simeq g$.)

3.7 Lemma. If $f, g : |K^{(r)}| \to |L|$ are both simplicial approximations to $\phi : |K^{(r)}| \to |L|$ then f and g are contiguous.

3.8 Lemma. Let K and L be simplicial complexes. There exists $\delta > 0$ such that, if two maps $\phi, \psi : |K| \to |L|$ are such that $d(\phi(x), \psi(x)) < \delta$ for all $x \in |K|$, then for some r there is a simplicial map $f : K^{(r)} \to L$ that is an approximation to both ϕ and ψ .

CHAPTER 4 HOMOLOGY GROUPS OF SIMPLICIAL COMPLEXES

Definition. An ordered simplex is a simplex together with an ordering assigned to its vertices. Write an ordered simplex σ as $\sigma = (a_0 a_1 \dots a_n)$ when the ordering is $a_0 < a_1 < \dots a_n$.

Definition. The n^{th} chain group $C_n(K)$ of a finite simplicial complex K is , for $n \ge 0$, the free abelian group generated by (symbols in one to one correspondence with) all ordered n-simplexes in K with all possible orderings quotiented by the group generated by

$$\{(a_0a_1...a_n) - \epsilon_{\pi}(a_{\pi 0}a_{\pi 1}...a_{\pi n}) : \pi \in \Sigma_{n+1}, \ (a_0a_1...a_n) \in K\}.$$

Here Σ_{n+1} is the permutation group of $\{0, 1, \ldots, n\}$. By convention $C_n(K) = 0$ if n < 0 or $n > \dim K$.

Definition. The boundary homomorphism $d_n : C_n(K) \to C_{n-1}(K)$ is the homomorphism defined on generators by

$$d_n(a_0a_1...a_n) = \sum_{i=0}^n (-1)^i (a_0a_1...a_{i-1}a_{i+1}...a_n).$$

Notation: $(a_0a_1\ldots a_{i-1}a_{i+1}\ldots a_n) = (a_0a_1\ldots \overset{i}{\uparrow}\ldots a_n).$

4.1 Lemma. The boundary homomorphism $d_n : C_n(K) \to C_{n-1}(K)$ is well defined.

4.2 Lemma. $d^2 = 0$, that is, $C_n(K) \xrightarrow{d_n} C_{n-1}(K) \xrightarrow{d_{n-1}} C_{n-2}(K)$ is the zero homomorphism.

Note. A collection of groups and homomorphisms $\{C_n, d_n\}$ such that $d_{n-1}d_n = 0$ is called a *chain complex*.

Definition. In $C_n(K)$, the *n*-boundary chains $B_n(K)$ are the image of $d_{n+1} : C_{n+1}(K) \to C_n(K)$, the *n*-cycles $Z_n(K)$ are the kernel of $d_n : C_n(K) \to C_{n-1}(K)$ and the *n*th-homology group $H_n(K)$ is the quotient $Z_n(K)/B_n(K)$.

Definition. Suppose that $f: K \to L$ is a *simplicial map*. Define the induced chain homomorphism $f_n: C_n(K) \to C_n(L)$ by $f_n(a_0a_1...a_n) = (fa_0fa_1...fa_n)$ if $\{fa_0, fa_1, ..., fa_n\}$ are all distinct and $f_n(a_0a_1...a_n) = 0$ otherwise.

4.3 Lemma. If $f: K \to L$ is a simplicial map then

- (i) $f_{n-1}d_n^K = d_n^L f_n$
- (ii) if f is the identity so is f_n ,
- (iii) $(gf)_n = g_n f_n$.

Corollary. f induces $\{f_n\}$ which induces $f_*: H_n(K) \to H_n(L)$ such that $1_* = 1$ and $(fg)_* = f_*g_*$.

Definition. A collection of homomorphisms $\{f_n : C_n(K) \to C_n(L)\}$ between the groups of two chain complexes is a *chain map* if $f_{n-1}d_n^K = d_n^L f_n$. A *chain homotopy* between chain maps $\{f_n : C_n(K) \to C_n(L)\}$ and $\{g_n : C_n(K) \to C_n(L)\}$ is a collection of homomorphisms $\{h_n : C_n(K) \to C_{n+1}(L)\}$ such that

$$f_n - g_n = d_{n+1}^L h_n + h_{n-1} d_n^K$$

4.4 Lemma. If $\{f_n : C_n(K) \to C_n(L)\}$ and $\{g_n : C_n(K) \to C_n(L)\}$ are chain homotopic then $f_* = g_* : H_n(K) \to H_n(L)$ for all n.

Definition. Suppose that K is a simplicial complex in \mathbb{R}^N and $v \in \mathbb{R}^{N+1} - \mathbb{R}^N$, then the cone vK with vertex v and base K is the simplicial complex $\{v\} \cup K \cup \{(va_0a_1 \dots a_n) : (a_0a_1 \dots a_n) \in K\}$.

4.5 Lemma. $H_n(vK) \cong H_n(v) \cong \begin{cases} \mathbb{Z} & \text{if } n = 0, \\ 0 & \text{otherwise.} \end{cases}$

Corollary. Let σ be the simplicial complex consisting of just one (n + 1)-simplex and all its faces and let $\partial \sigma$ be the subcomplex consisting of its *proper* faces only. Then

$$H_r(\sigma) \cong \begin{cases} \mathbb{Z} & \text{if } r = 0, \\ 0 & \text{otherwise,} \end{cases} \quad \text{and, if } n \ge 1, \quad H_r(\partial \sigma) \cong \begin{cases} \mathbb{Z} & \text{if } r = 0 \text{ or } n, \\ 0 & \text{otherwise.} \end{cases}$$

Definition. A sequence $\ldots \longrightarrow G_n \xrightarrow{f_n} G_{n-1} \xrightarrow{f_{n-1}} G_{n-2} \longrightarrow \ldots$ of groups and homomorphisms is called *exact* if, for all n, kernel $f_{n-1} = \text{image } f_n$.

4.6 Theorem (Mayer Vietoris). Let L and M be subcomplexes of a simplicial complex K such that $K = L \cup M$. Then there is an exact sequence

$$\dots \longrightarrow H_n(L \cap M) \xrightarrow{\alpha_*} H_n(L) \oplus H_n(M) \xrightarrow{\beta_*} H_n(K) \xrightarrow{\Delta_n} H_{n-1}(L \cap M) \xrightarrow{\alpha_*} \dots$$

in which $\alpha_*(x) = (i^1_*(x), i^2_*(x))$ and $\beta_*(y, z) = j^1_*(y) - j^2_*(z)$, where i^1 and i^2 are the inclusion maps of $L \cap M$ into L and M respectively and j^1 and j^2 are the inclusion maps of L and M respectively into K.

CHAPTER 5 INVARIANCE OF HOMOLOGY GROUPS

5.1 Lemma. Suppose α : {vertices of $K^{(1)}$ } \rightarrow {vertices of K} is such that $\alpha(\hat{\sigma})$ is a vertex of σ for every $\sigma \in K$. Then α is a simplicial map $\alpha : K^{(1)} \rightarrow K$ that is a simplicial approximation to the identity map $|K^{(1)}| \rightarrow |K|$.

5.2 Lemma. There is a chain map $\{\theta_n : C_n(K) \to C_n(K^{(1)})\}$ so that if σ is an *n*-simplex of K then $\theta_n(\sigma) = \sum_{\tau^\circ \subset \sigma^\circ} \pm \tau$.

- **5.3 Lemma.** Suppose that $\{f_n : C_n(K) \to C_n(L)\}$ and $\{g_n : C_n(K) \to C_n(L)\}$ are chain maps such that
 - (i) f_0 and g_0 map generators (vertices) to generators,
 - (ii) for every n-simplex $\sigma \in K$ there is a cone Λ_{σ} , a subcomplex of L, such that $f_n \sigma \in C_n(\Lambda_{\sigma})$ and $g_n \sigma \in C_n(\Lambda_{\sigma})$ and

(iii) if $\tau < \sigma$ then $\Lambda_{\tau} \subset \Lambda_{\sigma}$. Then $f_* = g_* : H_r(K) \to H_r(L)$ for all r.

Corollary. With notation from 5.1 and 5.2 above, $\alpha_* : H_n(K^{(1)}) \to H_n(K)$ and $\theta_* : H_n(K) \to H_n(K^{(1)})$ are mutually inverse isomorphisms.

5.4 Theorem. A (continuous) map $\phi : |K| \to |L|$ induces for each n a well defined homomorphism $\phi_* : H_n(K) \to H_n(L)$ such that $1_* = 1$ and $(\psi \phi)_* = \psi_* \phi_*$.

Corollary. If ϕ is a homeomorphism then ϕ_* is an isomorphism.

5.5 Theorem. If $\phi \cong \psi : |K| \to |L|$ then $\phi_* = \psi_*$.

5.6 Theorem (The Brouwer fixed point theorem). Any (continuous) map $\phi : B^n \to B^n$ has a fixed point.

CHAPTER 6 CLASSIFICATION OF SURFACES

Definition. An *n*-manifold without boundary is a (Hausdorff and second countable) topological space M with the property that for each $x \in M$ there is an open set U, with $x \in U \subset M$, such that U is homeomorphic to \mathbb{R}^n .

Definition. Suppose M_1 and M_2 are connected *n*-manifolds and B_1 and B_2 are *n*-balls with $B_1 \subset M_1$ and $B_2 \subset M_2$. The manifold $(M_1 - \operatorname{int} B_1) \cup_h (M_2 - \operatorname{int} B_2)$, where *h* is a homeomorphism from the boundary of B_1 to the boundary of B_2 , is called the connected sum $M_1 \# M_2$.

6.1 Theorem*. Let *M* be a compact connected 2-manifold without boundary then *M* is homeomorphic to one and only one of

- (a) $M_0 = S^2$
- (b) $M_q = T \# T \# \dots \# T$, where T is the torus $S^1 \times S^1$ and there are g summands
- (c) $N_h = \mathbb{R}P^2 \# \mathbb{R}P^2 \# \dots \# \mathbb{R}P^2$, where $\mathbb{R}P^2$ is the real projective plane and there are h summands.

Note. The Mayer-Vietoris Theorem implies that

$$H_1(M_g) \cong \bigoplus_{2g \text{ copies}} \mathbb{Z} , \qquad H_1(N_h) \cong \mathbb{Z}/2 \oplus \bigoplus_{(h-1) \text{ copies}} \mathbb{Z}$$