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CHAPTER 0 INTRODUCTION

Standard notation

R™ is the set of n-tples of real numbers with the usual Euclidean metric.
The n-sphere S™ C R"*! is given by S = {z € R"*! : ||z| = 1}.

The n-ball B™ C R™ is given by B" = {z € R" : ||z| < 1}.

The unit interval ] CRis given by I = {z ¢ R: 0 <z < 1}.

The torus is S' x S*t, the annulus is S x I.

Recall If (X,d) is a metric space a subset U C X is called open if for each = € U there exists § > 0 such that
d(z,%) < § implies that € U.

Recall A topological space is a set X together with a collection of subsets of X called open sets such that
(i) @ and X are open,
(ii) any union of open sets is open,
(iii) if Uy and Uy are open then so is Uy N Us.

Definition. If X and Y are topological spaces a function f : X — Y is continuous if for every open V' C Y the

set f~1(V) is open in X. A continuous function will be called a ‘map’.

Definition.  Topological spaces X and Y are homeomorphic (topologically ‘the same’) if there exist maps
f: X —>Yand g:Y — X such that gf = 1x and fg = 1y, where 1x and 1y are the identity maps. Note that

functions are ‘on the left’. These maps f and g are called homeomorphisms (each is a bijection).

Products. If X and Y are topological spaces, X x Y is the set of all pairs {(z,y)} with the topology given by
defining a set to be open if it can be expressed as some union of sets of the form U x V| where U is open in X

and V is open in Y.

Quotients. Suppose ~ is an equivalence relation on the points of a topological space X. Let X/ ~ be the set
of equivalence classes and let ¢ : X — X/ ~ be the quotient map (¢(z) = [z]). A set V C X/ ~ is defined to be
open if and only if ¢~V is open in X.

Example. On S™ define z ~ 2’ if and only if x = +2’. The quotient S™/ ~ is called real projective n-space
and denoted RP™.

When the idea of identifying (or ‘gluing together’) points of a space X is needed, define ~ by = ~ 2’ if

and only if z = 2’ or x and 2’ are required to be identified.



CHAPTER 1 HOMOTOPY AND THE FUNDAMENTAL GROUP

Definition. A homotopy between maps f,g: X — Y isamap F : X x [ — Y such that F(z,0) = f(z) and
F(x,1) = g(z) for all z € X. Write f = g and let Fy(z) = F(z,1).
If AC X and F(a,t) = f(a) = g(a) for all (a,t) € A x I then the homotopy is relative to A.

1.1 Lemma. Homotopy relative to A is an equivalence relation on the class of all maps X — Y.
1.2 Lemma. Suppose that fo % fi1andgo Z g1 where fo, f1: X — Y and go, g1 : Y — Z, then gofo ~ g1 1.

1.3 Lemma. (Linear homotopy) Suppose f,g: X — Y C R" and that for all z € X the straight line segment
joining f(z) to g(z) is contained in Y, then f ~ g. If f|A = g|A for some A C X then f ~ g relative to A.

Definition. Spaces X and Y are homotopy equivalent or of the same homotopy type, written X ~ Y if there
exist maps f: X — Y and g : Y — X such that gf ~ 1x and fg ~ 1y. The map f is a homotopy equivalence

with g its homotopy inverse (and vice versa).
1.4 Lemma. Homotopy equivalence is an equivalence relation on the class of all topological spaces.

Definition. A space X is contractible if it is homotopy equivalent to a single point.

Definition. Supposer: X — X, r(X) C AC X and r|A = 14. Then r is a retraction of X onto A and A is
a retract of X. If r ~ 1x relative to A then r is a (strong) deformation retraction of X to A. This implies that

X ~ A and formalises the idea of X being squeezable to the subspace A.

Definition. A path in X from xg to x1 is a map u : I — X such that «(0) = z¢ and u(1) = x1. If 29 = x; the
path u is a loop based at xy. The space X is path connected if, for any xg,x; € X, there exists a path from z

to Iq.

Definition.  Suppose, for ¢ = 1,2,...,n, that uw; is a path in X from z;_1 to z;. Define the product path
Uy - Uz - ... Uy to be the path given by
i—1
n

(ug -ug ... up)(s) =u;(ns —i+1) whenever <s<

3| .

Definition. The inverse u~! of a path u is defined by u~'(s) = u(1 — s). Note that (u; - uz)™* = uy ' -uj’.

1.5 Lemma. (i) Suppose that u; v relative to {0, 1} where u; and v; are, for i = 1,2,... n, paths in X
from x;_q to x;, then uy -ug - ... Uy = vy -V - ... v, relative to {0,1} .
(ii) If u ~ v relative to {0,1} then u=! ~ v~ relative to {0,1} .

1.6 Lemma. (i) Ifu;is, fori=1,2,...,n, a path in X from x;_1 to x; then
(up -~ ug oo U)o (Upgp1 * Upg2 e s Up) 2 UL - Ug - ... - Uy Trelative to {0,1} .

(ii) If u is a path from xg to x1 and ey and ey are the constant paths at xg to xy respectively,
then eg - u ~ u relative to {0,1} and u - e; ~ u relative to {0,1} .

L'~ ¢q relative to {0,1} and u™! - u ~ e; relative to {0,1} .

(iii) w - u™
1.7 Theorem. The set of homotopy classes relative to {0,1} of loops based at xoy € X, together with a
product defined by [u][v] = [u - v] (where [u] is the homotopy class relative to {0,1} of loop u in X based at x),

forms a group called the fundamental group of X with base point z¢ and denoted w1 (X, xo) .



1.8 Theorem. A map f:X,zq— Y, yo induces a group homomorphism f, : m (X, xq) — 71 (Y, yo) such that

(i) if f ~ f’ relative to xo then f, ~ f. |
(ii)) (1x)s is the identity homomorphism,

(iii) if g:Y,yo — Z, z0, then (gf)s = gufu : m1(X,20) — m1(Z, 20) .
1.9 Theorem. A pathuin X from ¢ to 1 induces an isomorphism u : m1 (X, o) — m (X, x1) such that
(i) w4 relative to {0,1} implies uy = Gy ,
(ii)  (eo)s is the identity homomorphism,
(iii) if v is a path from x1 to x5 then (u-v)y = vpuy ,
(iv) if f:X,z0,21 — Y,y0,y1 , then (fu)pfe = feug : m (X, z0) = m(Y,91) -

1.10 Theorem. Suppose that f = g: X — Y , that xo € X and that v is the path in Y from f(xo) to g(wo)
defined by v(t) = F(x,t). Then

vufe = go + m(X,20) = m (Y, g9(20)).

Corollary Let f: X, z9 — Y,yo be a homotopy equivalence then f, : m1 (X, z¢) — 71(Y,yo) is an isomorphism

of groups.

Definition. A space X is simply connected if it is path connected and 71(X, zg) is the trivial group for some

(and hence every) base point z¢ € X.

CHAPTER 2 COVERING SPACES

In what follows X is a path connected topological space.

Definition. A covering space of X is a non-empty path connected space X for which there is a (covering) map
P X — X such that for each 2 € X there exists an open neighbourhood V of z such that p~'V is a disjoint
union of open sets in X each of which is mapped homeomorphically by p onto V.
The map p is called the projection of the covering space X to the base space X .

Examples.
(i) p:R— St ={z€C:|z| =1} given by p(t) = exp(2mit) .
(i) p:S* — S given by p(z) = 2"

(iii) p:8™ — RP™ = S"/(x ~ £x) where p is the quotient map.

(iv) p:S83 — L, , where, for p and q coprime integers , L, , is the ‘lens space’ defined as the quotient of S3 by
a certain action of the cyclic group C), with generator g . Regarding 53 as {(z1, 22) € C? : |21 +|22|? = 1},
the action is defined by g(z1, 22) = (zl exp(2mi/p), z2 exp(f27riq/p)) and p is the quotient map.



2.1 Lemma (path lifting property). Letp: X - X bea covering map. Suppose that u : I — X is a path
in X and &y € X is such that p(Zo) = u(0). Then there exists a unique path @ : I — X such that @(0) = &y and

PU = U.

2.2 Lemma (homotopy lifting property). Letp: X - X bea covering map. Suppose that F : [ xI — X
and F : I x {0} — X are such that F(s,0) = pF(s,0) for all s € I. Then there exists a unique extension of F
over the whole of I x I such that pF = F.

2.3 Theorem. Suppose that a group G acts as a group of homeomorphisms on a simply connected space Y .
Suppose that each y belonging to Y has an open neighbourhood U such that U NgU = () for all g € G — {1}.
Then 1 (Y/QG) is isomorphic to G.

2.4 Lemma*. Suppose that p: X — X is a covering map and for some &y € X, p(Z9) = xo € X. The group

1

homomorphism p, : 71 (X, %) — 71 (X, 20) is injective and there is a bijection between the points of p~'zq and

the right cosets of p,m1 (X, Zo) in 71 (X, x).

2.5 Proposition*. Letp: X — X be a covering map and p(Zo) = xo. SupposeY is a path-connected, locally
path-connected, space and yo € Y. For any map f : (Y,y0) — (X, z¢) there exists a map g : (Y,yo) — (X, o)
such that pg = f if and only if

Jem(Y,yo) C pemi(X,Z0) .

When such a g exists it is unique.

2.6 Theorem®*. IfX isa path connected, locally contractible space, then X has a unique (up to equivalence)

simply connected covering p : X — X and the group m1 (X, zq) acts on X with X as quotient.

Definition. The above X is called the universal cover of X.

CHAPTER 3 SIMPLICIAL COMPLEXES

Definition. The points ag,a1,...,a, in RY are (affinely) independent if {(a; —ag) : i =1,2,...,n} are inde-
pendent vectors in RY. Thus ag, a1, ... ,a, are independent if and only if > 5 A\;ja; = 0 with Y A; = 0 implies
that \; = 0 for each 3.

Definition. Independent points ag,a1,...,a, in RY are the vertices of an n-dimensional simplez o in RY

where N .
U:{ZAZG@OS)\ZER,Z)\ZZ]}
0 0
The {\;} are the barycentric coordinates of the point Y \;a;.
Write o = (agay ... ay) -

A simplex 7 is a face of o, written T < o, if {vertices 7} C {vertices o} and 7 is a proper face if 7 # o.

Note that () < o for any simplex o. By definition ¢°, the interior of o, is the set o — | J{proper faces ofo}.

O'O:{i)\iai:0<>\i€R, i)\lzl}
0 0



The barycentre 6 of o is ﬁ(ao +a1+...+a,) €0°
Definition. A (finite) simplicial compler K is a finite collection of simplexes in some RY such that

(i) f o € K and 7 <o then 7 € K,

(ii) f o € K and 7 € K then o N7 < 0.
A subcomplex of K is a subcollection of the simplexes of K that satisfies (i) (and hence also (ii)).

A simplex o together with all of its faces is an obvious example of a simplicial complex; this will often also be

denoted by o.
The underlying polyhedron | K| of K is the union of all simplexes in K.
The dimension dim K of K is the maximal dimension of a simplex in K.

Definition. Let K and L be simplicial complexes. A simplicial map f : K — Lis afunction f : {vertices of K} —
{vertices of L} such that for every simplex (aga; . ..a,) € K, the points {f(ao), f(a1), ..., f(an)} are the vertices
of some simplex in L (though maybe f(a;) = f(a;)).

Extending f by defining f > A\ja; = > A;fa; gives a continuous function f : |K| — |L]| .

Of course, this f : |K| — |L| might be an injection (whereupon it is often called an embedding), a surjection, or

a bijection which is often referred to as a simplicial isomorphism.

3.1 Lemma. |K| is the disjoint union | |, o°.

Definition. If a is a vertex (that is a O-simplex) in K then star (a, K) = U, <,ex 0°-
3.2 Lemma. The sets {star (a,K) : a a vertex of K} form an open cover of |K]|.

Definition. A simplicial map f: K — L is a simplicial approximation to a (continuous) map ¢ : |K| — |L] if,
for every vertex a € K,
o(star (a, K)) C star (f(a),L).

Note that the composition of approximations is an approximation to the composition of maps.

3.3 Lemma. Suppose that f: K — L is a simplicial approximation to a map ¢ : |K| — |L|. Let A= {z €
|K|: f(x) = ¢(x)}. The ¢ ~ f relative to A.

3.4 Lemma. Suppose that ¢ :|K| — |L| and for each vertex a; € K there exists a vertex b; € L such that
o(star (a;, K)) C star (b;, L) then there is a simplicial approximation f to ¢ such that f(a;) = b;.

Definition. The first derived subdivision K of a simplicial complex K is defined by

K(l):{(0001...&T):00<01<...<UT€K}

where barycentre &; is the barycentre of o;. The r*" derived subdivision K" is defined inductively by K" =
(K(rfl))(l).

Definition. The mesh of a simplicial complex K is defined to be the maximum of the diameters of all the

star (a, K)) where a is a vertex of K.

3.5 Lemma. Let K be a simplicial complex. Given ¢ > 0 there exists an r such that mesh K() < e.



3.6 Theorem. Let K and L be simplicial complexes and ¢ : |K| — |L| be a (continuous) map. For any r

sufficiently large, there exists a simplicial approximation f : K") — L to ¢ : |[K(")| — |LJ.

Definition. Two simplicial maps f,g: K — L are contiguous if for every ¢ € K there exists a 7 € L such that
both fo <7 and go < 7. (This implies that f ~ g.)

3.7 Lemma. Iff,g:|K")| — |L| are both simplicial approximations to ¢ : |K")| — |L| then f and g are

contiguous.

3.8 Lemma. Let K and L be simplicial complexes. There exists § > 0 such that, if two maps ¢, : |K| — |L|
are such that d(é(z),(z)) < & for all z € | K|, then for some r there is a simplicial map f : K") — L that is an
approximation to both ¢ and 1.

CHAPTER 4 HOMOLOGY GROUPS OF SIMPLICIAL COMPLEXES

Definition.  An ordered simplex is a simplex together with an ordering assigned to its vertices. Write an

ordered simplex o as o = (agay .. .a,) when the ordering is ag < a3 < ... ay,.

Definition. The n'" chain group C,(K) of a finite simplicial complex K is , for n > 0, the free abelian group
generated by (symbols in one to one correspondence with) all ordered n-simplexes in K with all possible orderings

quotiented by the group generated by
{(a0a1 ceilp) — €x(Anpnl - - Qrp) 1T E i1, (agay...ayn) € K}.

Here X, 11 is the permutation group of {0,1,...,n}. By convention C,(K) =0if n <0 or n > dim K.

Definition. The boundary homomorphism d,, : Cp,(K) — Cp—1(K) is the homomorphism defined on generators
by

n

dn(apay . ..an) = Z(—l)i(aoal 1@ - Q)
i=0

Notation: (agay ...a;—1ai+1 -..a,) = (agay ... ; cellp).
4.1 Lemma. The boundary homomorphism d,, : C,,(K) — Cy,_1(K) is well defined.

4.2 Lemma. d? =0, that is, Cp(K) % C,_1(K)%~'C,_5(K) is the zero homomorphism.

— —

Note. A collection of groups and homomorphisms {C,,, d,} such that d,_1d, = 0 is called a chain complez.

Definition. In C,(K), the n-boundary chains B, (K) are the image of d,,11 : Cphi1(K) — Cr(K), the n-
cycles Z,(K) are the kernel of d,, : Cp,(K) — C,_1(K) and the n*®-homology group H,(K) is the quotient
Zn(K)/B,(K).

Definition.  Suppose that f : K — L is a simplicial map. Define the induced chain homomorphism f,, :
Cn(K) — Cp(L) by frn(agay ...an) = (fagfai ... fay) if {fao, fai,..., fa,} are all distinct and f,,(apay ... a,) =
0 otherwise.



4.3 Lemma. Iff:K — L isa simplicial map then
(i) fn—ldfz( :dﬁfn
(ii) if f is the identity so is f, ,

(111) (gf)n = gnfn .

Corollary. f induces {f,} which induces f. : H,(K) — H,(L) such that 1, =1 and (fg)« = fs«g« -

Definition. A collection of homomorphisms { f,, : C,,(K) — Cy (L)} between the groups of two chain complexes
is a chain map if f,_1d% = dLf,. A chain homotopy between chain maps {f, : C,(K) — C,(L)} and {g, :
Ch(K) — Cp(L)} is a collection of homomorphisms {h,, : Cp,(K) — Cp11(L)} such that

o —9gn= dﬁ+1hn + hnfld{f.

4.4 Lemma. If{f,: Ch(K) — C,(L)} and {gy : Cp(K) — C,(L)} are chain homotopic then f. = g :
H,(K)— Hy,(L) for all n.

Definition. Suppose that K is a simplicial complex in RY and v € RN*! — R then the cone vK with vertex
v and base K is the simplicial complex {v} U KU {(vagpa; ...a,) : (apay ...a,) € K}.

4.5 Lemma. H,(vK) = Hy(v) { Z ifn =0,

0 otherwise.

Corollary. Let o be the simplicial complex consisting of just one (n + 1)-simplex and all its faces and let do

be the subcomplex consisting of its proper faces only. Then

Z ifr=0 . Z ifr=0o0rn
= ’ > =4 ’
H, (o) { 0 otherwise, and, ifn > 1, H(90) { 0 otherwise.
Definition. A sequence ... — G, ELN ne1 JEGn_g — ... of groups and homomorphisms is called ezact

if, for all n, kernel f,_; = image f,.

4.6 Theorem (Mayer Vietoris). Let L and M be subcomplexes of a simplicial complex K such that

K = LUM. Then there is an exact sequence

Oy ﬁ* A, Oy
. — Hn(LﬂM) — Hn(L)@Hn(M) — Hn(K) — n_l(LﬁM) — ...

in which o, (x) = (il(z),42(x)) and B.(y,2) = j1(y) — j2(2), where i' and i? are the inclusion maps of LN M into

L and M respectively and j' and j? are the inclusion maps of L and M respectively into K.

CHAPTER 5 INVARIANCE OF HOMOLOGY GROUPS

5.1 Lemma. Suppose a : {vertices of KV} — {vertices of K} is such that (&) is a vertex of ¢ for every
o € K. Then o is a simplicial map a : K — K that is a simplicial approximation to the identity map
|K(1)| — |K|.

5.2 Lemma. There is a chain map {0, : C,(K) — C,(KM")} so that if ¢ is an n-simplex of K then
On(0) =2 rocqo £T



5.3 Lemma. Suppose that {f, : Cp(K)— Cn(L)} and {gn : Cn(K) — C,(L)}are chain maps such that
(i) fo and go map generators (vertices) to generators,

(ii) for every n-simplex o € K there is a cone A, a subcomplex of L, such that f,o € Cy(A,) and g,o €
Cn(A,) and

(iii) if 7 < o then A, C A,.

Then f, = g« : H.(K) — H,(L) for all r.

Corollary. With notation from 5.1 and 5.2 above, «, : H,(K") — H,(K) and 0, : H,(K) — H,(K®") are

mutually inverse isomorphisms.

5.4 Theorem. A (continuous) map ¢ : |K| — |L| induces for each n a well defined homomorphism ¢, :
H,(K)— Hy,(L) such that 1, = 1 and (¥¢)« = s x.

Corollary. If ¢ is a homeomorphism then ¢, is an isomorphism.
5.5 Theorem. If¢ = ¢ :|K|— |L| then ¢, = 1,.

5.6 Theorem (The Brouwer fixed point theorem). Any (continuous) map ¢ : B™ — B™ has a fixed

point.

CHAPTER 6 CLASSIFICATION OF SURFACES

Definition. An n-manifold without boundary is a (Hausdorff and second countable) topological space M with

the property that for each x € M there is an open set U, with x € U C M, such that U is homeomorphic to R".

Definition. Suppose M; and M, are connected n-manifolds and By and By are n-balls with By C M; and
By C Ms. The manifold (M1 —int Bl) Up (M2 — int Bg), where h is a homeomorphism from the boundary of B,
to the boundary of Bs, is called the connected sum M;#Ms.

6.1 Theorem*. Let M be a compact connected 2-manifold without boundary then M is homeomorphic to

one and only one of
(&) MO = 52
(b) My =T#T# ... #T, where T is the torus S' x S and there are g summands

(c) Ny = RP?#RP?# ... #RP?, where RP? is the real projective plane and there are h summands.

Note. The Mayer-Vietoris Theorem implies that

mM,)= P z, H(N) =22/2 & P z.

2g copies (h—1) copies



