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CHAPTER 0 INTRODUCTION

Standard notation

Rn is the set of n-tples of real numbers with the usual Euclidean metric.

The n-sphere Sn ⊂ Rn+1 is given by Sn = {x ∈ Rn+1 : ‖x‖ = 1}.

The n-ball Bn ⊂ Rn is given by Bn = {x ∈ Rn : ‖x‖ ≤ 1}.

The unit interval I ⊂ R is given by I = {x ∈ R : 0 ≤ x ≤ 1}.

The torus is S1 × S1, the annulus is S1 × I.

Recall If (X, d) is a metric space a subset U ⊂ X is called open if for each x ∈ U there exists δ > 0 such that

d(x, x̃) < δ implies that x̃ ∈ U .

Recall A topological space is a set X together with a collection of subsets of X called open sets such that

(i) ∅ and X are open,

(ii) any union of open sets is open,

(iii) if U1 and U2 are open then so is U1 ∩ U2.

Definition. If X and Y are topological spaces a function f : X → Y is continuous if for every open V ⊂ Y the

set f−1(V ) is open in X. A continuous function will be called a ‘map’.

Definition. Topological spaces X and Y are homeomorphic (topologically ‘the same’) if there exist maps

f : X → Y and g : Y → X such that gf = 1X and fg = 1Y , where 1X and 1Y are the identity maps. Note that

functions are ‘on the left’. These maps f and g are called homeomorphisms (each is a bijection).

Products. If X and Y are topological spaces, X × Y is the set of all pairs {(x, y)} with the topology given by

defining a set to be open if it can be expressed as some union of sets of the form U × V , where U is open in X

and V is open in Y .

Quotients. Suppose ∼ is an equivalence relation on the points of a topological space X. Let X/ ∼ be the set

of equivalence classes and let q : X → X/ ∼ be the quotient map (q(x) = [x]). A set V ⊂ X/ ∼ is defined to be

open if and only if q−1V is open in X.

Example. On Sn define x ∼ x′ if and only if x = ±x′. The quotient Sn/ ∼ is called real projective n-space

and denoted RPn.

When the idea of identifying (or ‘gluing together’) points of a space X is needed, define ∼ by x ∼ x′ if

and only if x = x′ or x and x′ are required to be identified.
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CHAPTER 1 HOMOTOPY AND THE FUNDAMENTAL GROUP

Definition. A homotopy between maps f, g : X → Y is a map F : X × I → Y such that F (x, 0) = f(x) and

F (x, 1) = g(x) for all x ∈ X. Write f '
F

g and let Ft(x) = F (x, t).

If A ⊂ X and F (a, t) = f(a) = g(a) for all (a, t) ∈ A× I then the homotopy is relative to A.

1.1 Lemma. Homotopy relative to A is an equivalence relation on the class of all maps X → Y .

1.2 Lemma. Suppose that f0 '
F
f1 and g0 '

G
g1 where f0, f1 : X → Y and g0, g1 : Y → Z, then g0f0 ' g1f1.

1.3 Lemma. (Linear homotopy) Suppose f, g : X → Y ⊂ Rn and that for all x ∈ X the straight line segment

joining f(x) to g(x) is contained in Y , then f ' g. If f |A = g|A for some A ⊂ X then f ' g relative to A.

Definition. Spaces X and Y are homotopy equivalent or of the same homotopy type, written X ' Y , if there

exist maps f : X → Y and g : Y → X such that gf ' 1X and fg ' 1Y . The map f is a homotopy equivalence

with g its homotopy inverse (and vice versa).

1.4 Lemma. Homotopy equivalence is an equivalence relation on the class of all topological spaces.

Definition. A space X is contractible if it is homotopy equivalent to a single point.

Definition. Suppose r : X → X, r(X) ⊂ A ⊂ X and r|A = 1A. Then r is a retraction of X onto A and A is

a retract of X. If r ' 1X relative to A then r is a (strong) deformation retraction of X to A. This implies that

X ' A and formalises the idea of X being squeezable to the subspace A.

Definition. A path in X from x0 to x1 is a map u : I → X such that u(0) = x0 and u(1) = x1. If x0 = x1 the

path u is a loop based at x0. The space X is path connected if, for any x0, x1 ∈ X, there exists a path from x0

to x1.

Definition. Suppose, for i = 1, 2, . . . , n, that ui is a path in X from xi−1 to xi. Define the product path

u1 · u2 · . . . · un to be the path given by

(u1 · u2 · . . . · un)(s) = ui(ns− i+ 1) whenever
i− 1

n
≤ s ≤

i

n
.

Definition. The inverse u−1 of a path u is defined by u−1(s) = u(1− s). Note that (u1 · u2)
−1 = u−1

2 · u−1
1 .

1.5 Lemma. (i) Suppose that ui '
Fi

vi relative to {0, 1} where ui and vi are, for i = 1, 2, . . . , n, paths in X

from xi−1 to xi, then u1 · u2 · . . . · un ' v1 · v2 · . . . · vn relative to {0, 1} .

(ii) If u ' v relative to {0, 1} then u−1 ' v−1 relative to {0, 1} .

1.6 Lemma. (i) If ui is, for i = 1, 2, . . . , n, a path in X from xi−1 to xi then

(u1 · u2 · . . . · ur) · (ur+1 · ur+2 · . . . · un) ' u1 · u2 · . . . · un relative to {0, 1} .

(ii) If u is a path from x0 to x1 and e0 and e1 are the constant paths at x0 to x1 respectively,

then e0 · u ' u relative to {0, 1} and u · e1 ' u relative to {0, 1} .

(iii) u · u−1 ' e0 relative to {0, 1} and u
−1 · u ' e1 relative to {0, 1} .

1.7 Theorem. The set of homotopy classes relative to {0, 1} of loops based at x0 ∈ X, together with a

product defined by [u][v] = [u · v] (where [u] is the homotopy class relative to {0, 1} of loop u in X based at x0),

forms a group called the fundamental group of X with base point x0 and denoted π1(X,x0) .
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1.8 Theorem. A map f : X,x0 → Y, y0 induces a group homomorphism f? : π1(X,x0)→ π1(Y, y0) such that

(i) if f ' f ′ relative to x0 then f? ' f ′? ,

(ii) (1X)? is the identity homomorphism,

(iii) if g : Y, y0 → Z, z0, then (gf)? = g?f? : π1(X,x0)→ π1(Z, z0) .

1.9 Theorem. A path u in X from x0 to x1 induces an isomorphism u# : π1(X,x0)→ π1(X,x1) such that

(i) u ' û relative to {0, 1} implies u# = û# ,

(ii) (e0)# is the identity homomorphism,

(iii) if v is a path from x1 to x2 then (u · v)# = v#u# ,

(iv) if f : X,x0, x1 → Y, y0, y1 , then (fu)#f? = f?u# : π1(X,x0)→ π1(Y, y1) .

1.10 Theorem. Suppose that f '
F
g : X → Y , that x0 ∈ X and that v is the path in Y from f(x0) to g(x0)

defined by v(t) = F (x0, t). Then

v#f? = g? : π1(X,x0)→ π1(Y, g(x0)).

Corollary Let f : X,x0 → Y, y0 be a homotopy equivalence then f? : π1(X,x0) → π1(Y, y0) is an isomorphism

of groups.

Definition. A space X is simply connected if it is path connected and π1(X,x0) is the trivial group for some

(and hence every) base point x0 ∈ X.

CHAPTER 2 COVERING SPACES

In what follows X is a path connected topological space.

Definition. A covering space of X is a non-empty path connected space X̃ for which there is a (covering) map

p : X̃ → X such that for each x ∈ X there exists an open neighbourhood V of x such that p−1V is a disjoint

union of open sets in X̃ each of which is mapped homeomorphically by p onto V .

The map p is called the projection of the covering space X̃ to the base space X .

Examples.

(i) p : R −→ S1 ≡ {z ∈ C : |z| = 1} given by p(t) = exp(2πit) .

(ii) p : S1 −→ S1 given by p(z) = zn .

(iii) p : Sn −→ RPn ≡ Sn/(x ∼ ±x) where p is the quotient map.

(iv) p : S3 −→ Lp,q where, for p and q coprime integers , Lp,q is the ‘lens space’ defined as the quotient of S
3 by

a certain action of the cyclic group Cp with generator g . Regarding S
3 as {(z1, z2) ∈ C2 : |z1|

2+|z2|
2 = 1},

the action is defined by g(z1, z2) =
(
z1 exp(2πi/p), z2 exp(−2πiq/p)

)
and p is the quotient map.
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2.1 Lemma (path lifting property). Let p : X̃ → X be a covering map. Suppose that u : I → X is a path

in X and x̃0 ∈ X̃ is such that p(x̃0) = u(0). Then there exists a unique path ũ : I → X̃ such that ũ(0) = x̃0 and

pũ = u.

2.2 Lemma (homotopy lifting property). Let p : X̃ → X be a covering map. Suppose that F : I×I → X

and F̃ : I × {0} → X̃ are such that F (s, 0) = pF̃ (s, 0) for all s ∈ I. Then there exists a unique extension of F̃

over the whole of I × I such that pF̃ = F .

2.3 Theorem. Suppose that a group G acts as a group of homeomorphisms on a simply connected space Y .

Suppose that each y belonging to Y has an open neighbourhood U such that U ∩ gU = ∅ for all g ∈ G − {1}.

Then π1(Y/G) is isomorphic to G.

2.4 Lemma*. Suppose that p : X̃ → X is a covering map and for some x̃0 ∈ X̃, p(x̃0) = x0 ∈ X. The group

homomorphism p? : π1(X̃, x̃0) → π1(X,x0) is injective and there is a bijection between the points of p
−1x0 and

the right cosets of p?π1(X̃, x̃0) in π1(X,x0).

2.5 Proposition*. Let p : X̃ → X be a covering map and p(x̃0) = x0. Suppose Y is a path-connected, locally

path-connected, space and y0 ∈ Y . For any map f : (Y, y0) → (X,x0) there exists a map g : (Y, y0) → (X̃, x̃0)

such that pg = f if and only if

f? π1(Y, y0) ⊂ p? π1(X̃, x̃0) .

When such a g exists it is unique.

2.6 Theorem*. If X is a path connected, locally contractible space, then X has a unique (up to equivalence)

simply connected covering p : X̂ → X and the group π1(X,x0) acts on X̂ with X as quotient.

Definition. The above X̂ is called the universal cover of X.

CHAPTER 3 SIMPLICIAL COMPLEXES

Definition. The points a0, a1, . . . , an in RN are (affinely) independent if {(ai − a0) : i = 1, 2, . . . , n} are inde-

pendent vectors in RN . Thus a0, a1, . . . , an are independent if and only if
∑n

0 λiai = 0 with
∑n

0 λi = 0 implies

that λi = 0 for each i.

Definition. Independent points a0, a1, . . . , an in RN are the vertices of an n-dimensional simplex σ in RN

where

σ = {
n∑

0

λiai : 0 ≤ λi ∈ R,
n∑

0

λi = 1} .

The {λi} are the barycentric coordinates of the point
∑n

0 λiai.

Write σ = (a0a1 . . . an) .

A simplex τ is a face of σ, written τ ≤ σ, if {vertices τ} ⊆ {vertices σ} and τ is a proper face if τ 6= σ.

Note that ∅ ≤ σ for any simplex σ. By definition σ◦, the interior of σ, is the set σ −
⋃
{proper faces ofσ}.

σ◦ = {
n∑

0

λiai : 0 < λi ∈ R,
n∑

0

λi = 1} .
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The barycentre σ̂ of σ is 1
n+1 (a0 + a1 + . . .+ an) ∈ σ

◦ .

Definition. A (finite) simplicial complex K is a finite collection of simplexes in some RN such that

(i) if σ ∈ K and τ ≤ σ then τ ∈ K,

(ii) if σ ∈ K and τ ∈ K then σ ∩ τ ≤ σ.

A subcomplex of K is a subcollection of the simplexes of K that satisfies (i) (and hence also (ii)).

A simplex σ together with all of its faces is an obvious example of a simplicial complex; this will often also be

denoted by σ.

The underlying polyhedron |K| of K is the union of all simplexes in K.

The dimension dimK of K is the maximal dimension of a simplex in K.

Definition. LetK and L be simplicial complexes. A simplicial map f : K → L is a function f : {vertices of K} →

{vertices of L} such that for every simplex (a0a1 . . . an) ∈ K, the points {f(a0), f(a1), . . . , f(an)} are the vertices

of some simplex in L (though maybe f(ai) = f(aj)).

Extending f by defining f
∑
λiai =

∑
λifai gives a continuous function f : |K| → |L| .

Of course, this f : |K| → |L| might be an injection (whereupon it is often called an embedding), a surjection, or

a bijection which is often referred to as a simplicial isomorphism.

3.1 Lemma. |K| is the disjoint union
⊔

σ∈K σ◦.

Definition. If a is a vertex (that is a 0-simplex) in K then star (a,K) =
⋃

a≤σ∈K σ◦.

3.2 Lemma. The sets
{
star (a,K) : a a vertex of K

}
form an open cover of |K|.

Definition. A simplicial map f : K → L is a simplicial approximation to a (continuous) map φ : |K| → |L| if,

for every vertex a ∈ K,

φ(star (a,K)) ⊂ star (f(a), L).

Note that the composition of approximations is an approximation to the composition of maps.

3.3 Lemma. Suppose that f : K → L is a simplicial approximation to a map φ : |K| → |L|. Let A = {x ∈

|K| : f(x) = φ(x)}. The φ ' f relative to A.

3.4 Lemma. Suppose that φ : |K| → |L| and for each vertex ai ∈ K there exists a vertex bi ∈ L such that

φ(star (ai,K)) ⊂ star (bi, L) then there is a simplicial approximation f to φ such that f(ai) = bi.

Definition. The first derived subdivision K(1) of a simplicial complex K is defined by

K(1) =
{
(σ̂0σ̂1 . . . σ̂r) : σ0 < σ1 < . . . < σr ∈ K

}

where barycentre σ̂i is the barycentre of σi. The r
th derived subdivision K(r) is defined inductively by K(r) =

(K(r−1))(1).

Definition. The mesh of a simplicial complex K is defined to be the maximum of the diameters of all the

star (a,K)) where a is a vertex of K.

3.5 Lemma. Let K be a simplicial complex. Given ε > 0 there exists an r such that mesh K (r) < ε.
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3.6 Theorem. Let K and L be simplicial complexes and φ : |K| → |L| be a (continuous) map. For any r

sufficiently large, there exists a simplicial approximation f : K (r) → L to φ : |K(r)| → |L|.

Definition. Two simplicial maps f, g : K → L are contiguous if for every σ ∈ K there exists a τ ∈ L such that

both fσ ≤ τ and gσ ≤ τ . (This implies that f ' g.)

3.7 Lemma. If f, g : |K(r)| → |L| are both simplicial approximations to φ : |K(r)| → |L| then f and g are

contiguous.

3.8 Lemma. Let K and L be simplicial complexes. There exists δ > 0 such that, if two maps φ, ψ : |K| → |L|

are such that d(φ(x), ψ(x)) < δ for all x ∈ |K|, then for some r there is a simplicial map f : K (r) → L that is an

approximation to both φ and ψ.

CHAPTER 4 HOMOLOGY GROUPS OF SIMPLICIAL COMPLEXES

Definition. An ordered simplex is a simplex together with an ordering assigned to its vertices. Write an

ordered simplex σ as σ = (a0a1 . . . an) when the ordering is a0 < a1 < . . . an.

Definition. The nth chain group Cn(K) of a finite simplicial complex K is , for n ≥ 0, the free abelian group

generated by (symbols in one to one correspondence with) all ordered n-simplexes in K with all possible orderings

quotiented by the group generated by

{
(a0a1 . . . an)− επ(aπ0aπ1 . . . aπn) : π ∈ Σn+1, (a0a1 . . . an) ∈ K

}
.

Here Σn+1 is the permutation group of {0, 1, . . . , n}. By convention Cn(K) = 0 if n < 0 or n > dimK.

Definition. The boundary homomorphism dn : Cn(K)→ Cn−1(K) is the homomorphism defined on generators

by

dn(a0a1 . . . an) =

n∑

i=0

(−1)i(a0a1 . . . ai−1ai+1 . . . an).

Notation: (a0a1 . . . ai−1ai+1 . . . an) = (a0a1 . . .
i
↑
. . . an).

4.1 Lemma. The boundary homomorphism dn : Cn(K)→ Cn−1(K) is well defined.

4.2 Lemma. d2 = 0, that is, Cn(K)
dn

−→
Cn−1(K)

dn−1

−→
Cn−2(K) is the zero homomorphism.

Note. A collection of groups and homomorphisms {Cn, dn} such that dn−1dn = 0 is called a chain complex.

Definition. In Cn(K), the n-boundary chains Bn(K) are the image of dn+1 : Cn+1(K) → Cn(K), the n-

cycles Zn(K) are the kernel of dn : Cn(K) → Cn−1(K) and the n
th-homology group Hn(K) is the quotient

Zn(K)/Bn(K).

Definition. Suppose that f : K → L is a simplicial map. Define the induced chain homomorphism fn :

Cn(K)→ Cn(L) by fn(a0a1 . . . an) = (fa0fa1 . . . fan) if {fa0, fa1, . . . , fan} are all distinct and fn(a0a1 . . . an) =

0 otherwise.
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4.3 Lemma. If f : K → L is a simplicial map then

(i) fn−1d
K
n = dLnfn

(ii) if f is the identity so is fn ,

(iii) (gf)n = gnfn .

Corollary. f induces {fn} which induces f∗ : Hn(K)→ Hn(L) such that 1∗ = 1 and (fg)∗ = f∗g∗ .

Definition. A collection of homomorphisms {fn : Cn(K)→ Cn(L)} between the groups of two chain complexes

is a chain map if fn−1d
K
n = dLnfn. A chain homotopy between chain maps {fn : Cn(K) → Cn(L)} and {gn :

Cn(K)→ Cn(L)} is a collection of homomorphisms {hn : Cn(K)→ Cn+1(L)} such that

fn − gn = dLn+1hn + hn−1d
K
n .

4.4 Lemma. If {fn : Cn(K) → Cn(L)} and {gn : Cn(K) → Cn(L)} are chain homotopic then f∗ = g∗ :

Hn(K)→ Hn(L) for all n.

Definition. Suppose that K is a simplicial complex in RN and v ∈ RN+1 −RN , then the cone vK with vertex

v and base K is the simplicial complex {v} ∪K ∪ {(va0a1 . . . an) : (a0a1 . . . an) ∈ K}.

4.5 Lemma. Hn(vK) ∼= Hn(v) ∼=
{ Z if n = 0,

0 otherwise.

Corollary. Let σ be the simplicial complex consisting of just one (n + 1)-simplex and all its faces and let ∂σ

be the subcomplex consisting of its proper faces only. Then

Hr(σ) ∼=

{
Z if r = 0,
0 otherwise,

and, if n ≥ 1, Hr(∂σ) ∼=
{ Z if r = 0 or n,

0 otherwise.

Definition. A sequence . . . −→ Gn
fn
−→Gn−1

fn−1

−→Gn−2 −→ . . . of groups and homomorphisms is called exact

if, for all n, kernel fn−1 = image fn.

4.6 Theorem (Mayer Vietoris). Let L and M be subcomplexes of a simplicial complex K such that

K = L ∪M . Then there is an exact sequence

. . . −→ Hn(L ∩M)
α∗
−→ Hn(L)⊕Hn(M)

β∗
−→ Hn(K)

∆n
−→ Hn−1(L ∩M)

α∗
−→ . . .

in which α∗(x) = (i
1
∗(x), i

2
∗(x)) and β∗(y, z) = j1∗(y)− j

2
∗(z), where i

1 and i2 are the inclusion maps of L∩M into

L and M respectively and j1 and j2 are the inclusion maps of L and M respectively into K.

CHAPTER 5 INVARIANCE OF HOMOLOGY GROUPS

5.1 Lemma. Suppose α : {vertices of K(1)} → {vertices of K} is such that α(σ̂) is a vertex of σ for every

σ ∈ K. Then α is a simplicial map α : K(1) → K that is a simplicial approximation to the identity map

|K(1)| → |K|.

5.2 Lemma. There is a chain map {θn : Cn(K) → Cn(K
(1))} so that if σ is an n-simplex of K then

θn(σ) =
∑

τ◦⊂σ◦ ±τ .
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5.3 Lemma. Suppose that {fn : Cn(K)→ Cn(L)} and {gn : Cn(K)→ Cn(L)}are chain maps such that

(i) f0 and g0 map generators (vertices) to generators,

(ii) for every n-simplex σ ∈ K there is a cone Λσ, a subcomplex of L, such that fnσ ∈ Cn(Λσ) and gnσ ∈

Cn(Λσ) and

(iii) if τ < σ then Λτ ⊂ Λσ.

Then f∗ = g∗ : Hr(K)→ Hr(L) for all r.

Corollary. With notation from 5.1 and 5.2 above, α∗ : Hn(K
(1)) → Hn(K ) and θ∗ : Hn(K) → Hn(K

(1)) are

mutually inverse isomorphisms.

5.4 Theorem. A (continuous) map φ : |K| → |L| induces for each n a well defined homomorphism φ∗ :

Hn(K)→ Hn(L) such that 1∗ = 1 and (ψφ)∗ = ψ∗φ∗.

Corollary. If φ is a homeomorphism then φ∗ is an isomorphism.

5.5 Theorem. If φ '
F

ψ : |K| → |L| then φ∗ = ψ∗.

5.6 Theorem (The Brouwer fixed point theorem). Any (continuous) map φ : Bn → Bn has a fixed

point.

CHAPTER 6 CLASSIFICATION OF SURFACES

Definition. An n-manifold without boundary is a (Hausdorff and second countable) topological space M with

the property that for each x ∈M there is an open set U , with x ∈ U ⊂M , such that U is homeomorphic to Rn.

Definition. Suppose M1 and M2 are connected n-manifolds and B1 and B2 are n-balls with B1 ⊂ M1 and

B2 ⊂M2. The manifold
(
M1 − intB1

)
∪h

(
M2 − intB2

)
, where h is a homeomorphism from the boundary of B1

to the boundary of B2, is called the connected sum M1#M2.

6.1 Theorem*. Let M be a compact connected 2-manifold without boundary then M is homeomorphic to

one and only one of

(a) M0 = S2

(b) Mg = T#T# . . .#T , where T is the torus S1 × S1 and there are g summands

(c) Nh = RP 2#RP 2# . . .#RP 2, where RP 2 is the real projective plane and there are h summands.

Note. The Mayer-Vietoris Theorem implies that

H1(Mg) ∼=
⊕

2g copies

Z , H1(Nh) ∼= Z/2 ⊕
⊕

(h−1) copies

Z .
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