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18. Lévy processes 43
Exercises 46
Index 54

These notes are intended for use by students of the Mathematical Tripos at the Uni-

versity of Cambridge. Copyright remains with the author. Please send corrections to

j.r.norris@statslab.cam.ac.uk.

1



2 J. R. NORRIS

Schedule

This course aims to cover the advanced topics at the core of research in probability.
There is an emphasis on techniques needed for the rigorous analysis of stochastic
processes such as Brownian motion. The course finishes with two key structural
results – Donsker’s invariance principle and the Lévy–Khinchin theorem.

It will be assumed that students have some familiarity with the measure-theoretic
formulation of probability – at the level of the Part II(B) course Probability and
Measure, or Part A of Williams’ book.

Review of the basics of measure and integration theory, as covered for example in the
Part II(B) course Probability and Measure.

Conditional expectation: discrete case, Gaussian case, conditional density functions;
existence and uniqueness; basic properties.

Discrete parameter martingales, submartingales and supermartingales; optional stop-
ping; Doob’s inequalities, upcrossings, convergence theorems, backwards martingales.

Applications of martingales: sums of independent random variables, strong law of
large numbers, Wald’s identity; non-negative martingales and change of measure,
Radon–Nikodym theorem, Kakutani’s product martingale theorem, consistency of
likelihood-ratio tests; Markov chains; stochastic optimal control.

Continuous-time random processes: Kolmogorov’s criterion, path regularization the-
orem for martingales, continuous-time martingales.

Weak convergence in Rn: convergence of distribution functions, convergence with
respect to continuous bounded functions, Skorokhod embedding, Helly’s theorem.
Characteristic functions, Lévy’s continuity theorem.

Brownian motion: Wiener’s theorem, Scaling and symmetry properties. Martingales
associated to Brownian motion, strong Markov property, reflection principle, hitting
times. Sample path properties, recurrence and transience. Brownian motion and the
Dirichlet problem. Donsker’s invariance principle.

Lévy processes: construction of pure jump Lévy processes by integrals with respect
to a Poisson random measure. Infinitely divisible laws, Lévy–Khinchin theorem.

Appropriate books

R. Durrett, Probability: Theory and Examples. Wadsworth 1991
O. Kallenberg, Foundations of Morern Probability. Springer 1997
L.C.G. Rogers and D. Williams, Diffusions, Markov processes, and Martingales Vol.
I (2nd edition). Chapters I & II. Wiley 1994
D.W. Stroock, Probability Theory – An analytic view. Chapters I–V. Cambridge
University Press 1993
D. Williams, Probability with Martingales. Cambridge University Press 1991
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11. Conditional expectation

11.1. Discrete case. Let (Gi : i ∈ I) denote a countable family of disjoint events,
whose union is the whole probability space. Set G = σ(Gi : i ∈ I). For any integrable
random variable X, we can define

Y =
∑

i

E(X|Gi)1Gi

where we set E(X|Gi) = E(X1Gi
)/P(Gi) when P(Gi) > 0 and define E(X|Gi) in

some arbitrary way when P(Gi) = 0. Then it is easy to see that Y has the following
two properties:

(a) Y is G-measurable,
(b) Y is integrable and E(X1A) = E(Y 1A) for all A ∈ G.

11.2. Gaussian case. Let (W,X) be a Gaussian random variable in R2. Set G =
σ(W ) and Y = aW + b, where a, b ∈ R are chosen to satisfy

aE(W ) + b = E(X), a varW = cov(W,X).

Then E(X − Y ) = 0 and

cov(W,X − Y ) = cov(W,X) − cov(W,Y ) = 0

so W and X − Y are independent. Hence Y satisfies:

(a) Y is G-measurable,
(b) Y is integrable and E(X1A) = E(Y 1A) for all A ∈ G.

11.3. Conditional density functions. Suppose that U and V are random variables
having a joint density function fU,V (u, v) in R2. Then U has a density function fU ,
given by

fU(u) =

∫

R

fU,V (u, v) dv.

The conditional density function fV |U(v|u) of V given U is defined by

fV |U(v|u) = fU,V (u, v)/fU(u)

where we agree, say, that 0/0 = 0. Let h : R → R be a Borel function and suppose
that X = h(V ) is integrable. Let

g(u) =

∫

R

h(v)fV |U(v|u) dv.

Set G = σ(U) and Y = g(U). Then Y satisfies:

(a) Y is G-measurable,
(b) Y is integrable and E(X1A) = E(Y 1A) for all A ∈ G.
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To see (b), note that every A ∈ G takes the form A = {U ∈ B}, for some Borel set
B. Then, by Fubini’s theorem,

E(X1A) =

∫

R2

h(v)1B(u)fU,V (u, v) d(u, v)

=

∫

R

(
∫

R

h(v)fV |U(v|u) dv
)

fU(u)1B(u) du = E(Y 1A).

11.4. Existence and uniqueness.

Theorem 11.4.1. Let X be an integrable random variable and let G ⊆ F be a σ-
algebra. Then there exists a random variable Y such that:

(a) Y is G-measurable;
(b) Y is integrable and E(X1A) = E(Y 1A) for all A ∈ G.

Moreover, if Y ′ also satisfies (a) and (b), then Y = Y ′ a.s..

We call Y (a version of ) the conditional expectation of X given G and write Y =
E(X|G) a.s.. In the case G = σ(G) for some random variable G, we also write
Y = E(X|G) a.s.. The preceding three examples show how to construct explicit
versions of the conditional expectation in certain simple cases. In general, we have
to live with the indirect approach provided by the theorem.

Proof. (Uniqueness.) Suppose that Y satisfies (a) and (b) and that Y ′ satisfies (a)
and (b) for another integrable random variable X ′, with X ≤ X ′ a.s.. Consider the
non-negative random variable Z = (Y − Y ′)1A, where A = {Y ≥ Y ′} ∈ G. Then

E(Z) = E(Y 1A) − E(Y ′1A) = E(X1A) − E(X ′1A) ≤ 0

so Z = 0 a.s., which implies Y ≤ Y ′ a.s.. In the case X = X ′, we deduce that Y = Y ′

a.s..

(Existence.) Assume to begin that X ∈ L2(F). Since V = L2(G) is a closed subspace
of L2(F), we have X = Y +W for some Y ∈ V and W ∈ V ⊥. Then, for any A ∈ G,
we have 1A ∈ V , so

E(X1A) − E(Y 1A) = E(W1A) = 0.

Hence Y satisfies (a) and (b).
Assume now that X is any non-negative random variable. Then Xn = X ∧ n ∈

L2(F) and 0 ≤ Xn ↑ X as n → ∞. We have shown, for each n, that there exists
Yn ∈ L2(G) such that, for all A ∈ G,

E(Xn1A) = E(Yn1A)

and moreover that 0 ≤ Yn ≤ Yn+1 a.s.. Set Y = limn→∞ Yn, then Y is G-measurable
and, by monotone convergence, for all A ∈ G,

E(X1A) = E(Y 1A).
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In particular, if E(X) is finite then so is E(Y ).
Finally, for a general integrable random variable X, we can apply the preceding

construction to X− and X+ to obtain Y − and Y +. Then Y = Y + − Y − satisfies (a)
and (b). �

11.5. Properties of conditional expectation. Let X be an integrable random
variable and let G ⊆ F be a σ-algebra. The following properties follow directly from
Theorem 11.4.1:

(i) E(E(X|G)) = E(X),
(ii) if X is G-measurable, then E(X|G) = X a.s.,
(iii) if X is independent of G, then E(X|G) = E(X) a.s..

In the proof of Theorem 11.4.1, we showed also

(iv) if X ≥ 0 a.s., then E(X|G) ≥ 0 a.s..

Next, for α, β ∈ R and any integrable random variable Y , we have

(v) E(αX + βY |G) = αE(X|G) + βE(Y |G) a.s..

To see this, one checks that the right hand side has the defining properties(a) and
(b) of the left hand side.

The basic convergence theorems for expectation have counterparts for conditional
expectation. Let us consider a sequence of random variables Xn in the limit n→ ∞.
If 0 ≤ Xn ↑ X a.s., then E(Xn|G) ↑ Y a.s., for some G-measurable random variable
Y ; so, by monotone convergence, for all A ∈ G,

E(X1A) = lim E(Xn1A) = lim E(E(Xn|G)1A) = E(Y 1A),

which implies Y = E(X|G) a.s.. We have proved the conditional monotone conver-
gence theorem:

(vi) if 0 ≤ Xn ↑ X a.s., then E(Xn|G) ↑ E(X|G) a.s..

Next, by essentially the same arguments used for the original results, we can deduce
conditional forms of Fatou’s lemma and the dominated convergence theorem

(vii) if Xn ≥ 0 for all n, then E(lim inf Xn|G) ≤ lim inf E(Xn|G) a.s.,
(viii) if Xn → X and |Xn| ≤ Y for all n, a.s., for some integrable random variable

Y , then E(Xn|G) → E(X|G) a.s..

There is a conditional form of Jensen’s inequality. Let c : R → (−∞,∞] be a
convex function. Then c is the supremum of countably many affine functions:

c(x) = sup
i

(aix + bi), x ∈ R.

Hence, E(c(X)|G) is well defined and, almost surely, for all i,

E(c(X)|G) ≥ aiE(X|G) + bi.

So we obtain

(ix) if c : R → (−∞,∞] is convex, then E(c(X)|G) ≥ c(E(X|G)) a.s..
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In particular, for 1 ≤ p <∞,

‖E(X|G)‖pp = E(|E(X|G)|p) ≤ E(E(|X|p|G)) = E(|X|p) = ‖X‖pp.
So we have

(x) ‖E(X|G)‖p ≤ ‖X‖p for all 1 ≤ p <∞.

For any σ-algebra H ⊆ G, the random variable Y = E(E(X|G)|H) is H-measurable
and satisfies, for all A ∈ H

E(Y 1A) = E(E(X|G)1A) = E(X1A)

so we have the tower property :

(xi) if H ⊆ G, then E(E(X|G)|H) = E(X|H) a.s..

We can always take out what is known:

(xii) if Y is bounded and G-measurable, then E(Y X|G) = Y E(X|G) a.s..

To see this, consider first the case where Y = 1B for some B ∈ G. Then, for A ∈ G,

E(Y E(X|G)1A) = E(E(X|G)1A∩B) = E(X1A∩B) = E(Y X1A),

which implies E(Y X|G) = Y E(X|G) a.s.. The result extends to simple G-measurable
random variables Y by linearity, then to the case X ≥ 0 and any non-negative G-
measurable random variable Y by monotone convergence. The general case follows
by writing X = X+ −X− and Y = Y + − Y −.

Finally,

(xiii) if σ(X,G) is independent of H, then E(X|σ(G,H)) = E(X|G) a.s..

For, suppose A ∈ G and B ∈ H, then

E(E(X|σ(G,H))1A∩B) = E(X1A∩B)

= E(E(X|G)1A)P(B) = E(E(X|G)1A∩B).

The set of such intersections A ∩ B is a π-system generating σ(G,H), so the desired
formula follows from Proposition 3.1.4.

Lemma 11.5.1. Let X ∈ L1. Then the set of random variables Y of the form
Y = E(X|G), where G ⊆ F is a σ-algebra, is uniformly integrable.

Proof. By Lemma 6.2.1, given ε > 0, we can find δ > 0 so that E(|X|1A) ≤ ε whenever
P(A) ≤ δ. Then choose λ < ∞ so that E(|X|) ≤ λδ. Suppose Y = E(X|G), then
|Y | ≤ E(|X||G). In particular, E(|Y |) ≤ E(|X|) so

P(|Y | ≥ λ) ≤ λ−1E(|Y |) ≤ δ.

Then

E(|Y |1|Y |≥λ) ≤ E(|X|1|Y |≥λ) ≤ ε.

Since λ was chosen independently of G, we are done. �
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12. Martingales – theory

12.1. Definitions. Let (Ω,F,P) be a probability space, let (E,E) be a measurable
space and let I be a countable subset of R. A process in E is a family X = (Xt)t∈I of
random variables in E. A filtration (Ft)t∈I is an increasing family of sub-σ-algebras
of F: thus Fs ⊆ Ft whenever s ≤ t. We set F−∞ = ∩t∈IFt and F∞ = σ(Ft : t ∈ I).
Every process has a natural filtration (FX

t )t∈I , given by

FX
t = σ(Xs : s ≤ t).

We will always assume some filtration (Ft)t∈I to be given. The σ-algebra Ft is inter-
preted as modelling the state of our knowledge at time t. In particular, FX

t contains
all the events which depend (measurably) only on Xs, s ≤ t, that is, everything we
know about the process X by time t. We say that X is adapted (to (Ft)t∈I) if Xt

is Ft-measurable for all t. Of course every process is adapted to its natural filtration.
Unless otherwise indicated, it is to be understood from now on that E = R. We
say that X is integrable if Xt is integrable for all t. A martingale X is an adapted
integrable process such that, for all s, t ∈ I with s ≤ t,

E(Xt|Fs) = Xs a.s..

On replacing the equality in this condition by ≤ or ≥, we get the notions of su-
permartingale and submartingale, respectively. Note that every process which is a
martingale with respect to the given filtration is also a martingale with respect to its
natural filtration.

12.2. Optional stopping. We say that a random variable T : Ω → I ∪ {∞} is a
stopping time if {T ≤ t} ∈ Ft for all t. For a stopping time T , we set

FT = {A ∈ F : A ∩ {T ≤ t} ∈ Ft for all t}.
It is easy to check that, if T ≡ t, then T is a stopping time and FT = Ft. Given
a process X, we set XT (ω) = XT (ω)(ω) whenever T (ω) < ∞. We also define the
stopped process XT by XT

t = XT∧t.
We assume in the following two results that I = {0, 1, 2, . . .}. In this context, we

will write n,m or k for elements of I, rather than t or s.

Proposition 12.2.1. Let S and T be stopping times and let X = (Xn)n≥0 be an
adapted process. Then

(a) S ∧ T is a stopping time,
(b) if S ≤ T , then FS ⊆ FT ,
(c) XT1T<∞ is an FT -measurable random variable,
(d) XT is adapted,
(e) if X is integrable, then XT is integrable.

Theorem 12.2.2 (Optional stopping theorem). Let X = (Xn)n≥0 be an adapted
integrable process. Then the following are equivalent:
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(a) X is a supermartingale,
(b) for all bounded stopping times T and all stopping times S,

E(XT |FS) ≤ XS∧T a.s.,

(c) for all stopping times T , XT is a supermartingale,
(d) for all bounded stopping times S and T , with S ≤ T,

E(XS) ≥ E(XT ).

Proof. For S ≥ 0 and T ≤ n, we have

(12.1) XT = XS∧T +
∑

S≤k<T

(Xk+1 −Xk) = XS∧T +

n
∑

k=0

(Xk+1 −Xk)1S≤k<T .

Suppose that X is a supermartingale and that S and T are stopping times, with
T ≤ n. Let A ∈ FS. Then A ∩ {S ≤ k}, {T > k} ∈ Fk, so

E((Xk+1 −Xk)1S≤k<T1A) ≤ 0.

Hence, on multiplying (12.1)by 1A and taking expectations, we obtain

E(XT 1A) ≤ E(XS∧T1A).

We have shown that (a) implies (b).
It is obvious that (b) implies (c) and (d) and that (c) implies (a).
Let m ≤ n and A ∈ Fm. Set T = m1A + n1Ac, then T is a stopping time and

T ≤ n. We note that

E(Xn1A) − E(Xm1A) = E(Xn) − E(XT ).

It follows that (d) implies (a). �

12.3. Doob’s inequalities. Let X be a process and let a, b ∈ R with a < b. For
J ⊆ I, set

U([a, b], J) = sup{n : Xs1 < a,Xt1 > b, . . . , Xsn
< a,Xtn > b

for some s1 < t1 < · · · < sn < tn in J}.
Then U [a, b] = U([a, b], I) is the number of upcrossings of [a, b] by X.

Theorem 12.3.1 (Doob’s upcrossing inequality). Let X be a supermartingale. Then

(b− a)E(U [a, b]) ≤ sup
t∈I

E((Xt − a)−).

Proof. Since U([a, b], I) = limJ↑I,J finite U([a, b], J),it suffices, by monotone conver-
gence, to consider the case where I is finite. Let us assume then that I = {0, 1, . . . , n}.

Write U = U [a, b] and note that U ≤ n. Set T0 = 0 and define inductively for
k ≥ 0:

Sk+1 = inf{m ≥ Tk : Xm < a}, Tk+1 = inf{m ≥ Sk+1 : Xm > b}.
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As usual inf ∅ = ∞. Then U = max{k : Tk < ∞}. For k ≤ U , set Gk = XTk
−XSk

and note that Gk ≥ b− a. Note that TU ≤ n and TU+1 = ∞. Set

R =

{

Xn −XSU+1
if SU+1 <∞,

0 if SU+1 = ∞
and note that R ≥ −(Xn − a)−.

Then we have

(12.2)
n
∑

k=1

(XTk∧n −XSk∧n) =
U
∑

k=1

Gk +R ≥ (b− a)U − (Xn − a)−.

Now X is a supermartingale and Sk ∧n and Tk ∧n are bounded stopping times, with
Sk ∧ n ≤ Tk ∧ n. Hence, by optional stopping, E(XTk∧n) ≤ E(XSk∧n) and the desired
inequality results on taking expectations in (12.2). �

For any process X, for J ⊆ I, we set

X∗(J) = sup
t∈J

|Xt|, X∗ = X∗(I).

Theorem 12.3.2 (Doob’s maximal inequality). Let X be a martingale or a non-
negative submartingale. Then, for all λ ≥ 0,

λP(X∗ ≥ λ) ≤ sup
t∈I

E(|Xt|).

Proof. Note that

λP(X∗ ≥ λ) = lim
ν↑λ

νP(X∗ > ν) ≤ lim
ν↑λ

lim
J↑I,J finite

νP(X∗(J) ≥ ν).

It therefore suffices to consider the case where I is finite. Let us assume then that
I = {0, 1, . . . , n}. If X is a martingale, then |X| is a non-negative submartingale. It
therefore suffices to consider the case where X is non-negative.

Set T = inf{m ≥ 0 : Xm ≥ λ} ∧ n. Then T is a stopping time and T ≤ n so, by
optional stopping,

E(Xn) ≥ E(XT ) = E(XT1X∗≥λ) + E(XT1X∗<λ) ≥ λP(X∗ ≥ λ) + E(Xn1X∗<λ).

Hence

(12.3) λP(X∗ ≥ λ) ≤ E(Xn1X∗≥λ) ≤ E(Xn).

�

Theorem 12.3.3 (Doob’s Lp-inequality). Let X be a martingale or non-negative
submartingale. Then, for all p > 1 and q = p/(p− 1),

‖X∗‖p ≤ q sup
t∈I

‖Xt‖p.
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Proof. If X is a martingale, then |X| is a non-negative submartingale. So it suffices to
consider the case where X is non-negative. Since X∗ = limJ↑I,J finiteX

∗(J), it suffices,
by monotone convergence, to consider the case where I is finite. Let us assume then
that I = {0, 1, . . . , n}.

Fix k <∞. By Fubini’s theorem, equation (12.3) and Hölder’s inequality,

E[(X∗ ∧ k)p] = E

∫ k

0

pλp−11X∗≥λ dλ =

∫ k

0

pλp−1P(X∗ ≥ λ) dλ

≤
∫ k

0

pλp−2E(Xn1X∗≥λ) dλ = qE(Xn(X
∗ ∧ k)p−1) ≤ q‖Xn‖p‖X∗ ∧ k‖p−1

p .

Hence ‖X∗∧k‖p ≤ q‖Xn‖p and the result follows by monotone convergence on letting
k → ∞. �

12.4. Convergence theorems. Recall that, for p ≥ 1, a process X is said to be
bounded in Lp if supt∈I ‖Xt‖p <∞. Also X is uniformly integrable if

sup
t∈I

E(|Xt|1|Xt|>k) → 0 as k → ∞.

Recall from §6 that, if X is bounded in Lp for some p > 1 , then X is uniformly
integrable. Also if X is uniformly integrable then X is bounded in L1.
The next two results are stated for the case sup I = ∞.

Theorem 12.4.1 (Almost sure martingale convergence theorem). Let X be a su-
permartingale which is bounded in L1. Then Xt → X∞ a.s. as t → ∞, for some
X∞ ∈ L1(F∞).

Note that, if inf I ∈ I, then a non-negative supermartingale is automatically bounded
in L1.

Proof. By Doob’s upcrossing inequality, for all a < b,

E(U [a, b]) ≤ (b− a)−1 sup
t∈I

E(|Xt| + |a|) <∞.

Consider for a < b the sets

Ωa,b = {lim inf
t→∞

Xt < a < b < lim sup
t→∞

Xt},

Ω0 = {Xt converges in [−∞,∞] as t→ ∞}.
Since U [a, b] = ∞ on Ωa,b, we must have P(Ωa,b) = 0. But

Ω0 ∪ (∪a,b∈Q,a<bΩa,b) = Ω

so we deduce P(Ω0) = 1. Define

X∞ =

{

limt→∞Xt on Ω0,
0 on Ω \ Ω0
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Then X∞ is F∞-measurable and, by Fatou’s lemma,

E(|X∞|) ≤ lim inf
t→∞

E(|Xt|) <∞.

so X∞ ∈ L1 as required. �

Let us denote by M1 the set of uniformly integrable martingales and, for p > 1, by
Mp the set of martingales bounded in Lp.

Theorem 12.4.2 (Lp martingale convergence theorem). Let p ∈ [1,∞).

(a) Suppose X ∈ Mp. Then Xt → X∞ as t → ∞, a.s. and in Lp, for some
X∞ ∈ Lp(F∞). Moreover, Xt = E(X∞|Ft) a.s. for all t.

(b) Suppose Y ∈ Lp(F∞) and set Xt = E(Y |Ft). Then X = (Xt)t∈I ∈ Mp and
Xt → Y as t→ ∞, a.s. and in Lp.

Thus the map X 7→ X∞ is a one-to-one correspondence between Mp and Lp(F∞).

Proof for p = 1. Let X be a uniformly integrable martingale. Then Xt → X∞ a.s.
by the almost sure martingale convergence theorem. Since X is UI, it follows that
Xt → X∞ in L1, by Theorem 6.2.3. Next, for s ≥ t,

‖Xt − E(X∞|Ft)‖1 = ‖E(Xs −X∞|Ft)‖1 ≤ ‖Xs −X∞‖1.

Let s→ ∞ to deduce Xt = E(X∞|Ft) a.s..
Suppose now that Y ∈ L1(F∞) and set Xt = E(Y |Ft). Then X = (Xt)t∈I is

a martingale by the tower property and is uniformly integrable by Lemma 11.5.1.
Hence Xt converges a.s. and in L1, with limit X∞, say. For all t and all A ∈ Ft we
have

E(X∞1A) = lim
t→∞

E(Xt1A) = E(Y 1A).

Now X∞, Y ∈ L1(F∞) and ∪tFt is a π-system generating F∞. Hence, by Proposition
3.1.4, X∞ = Y a.s.. �

Proof for p > 1. Let X be a martingale bounded in Lp for some p > 1. Then
Xt → X∞ a.s. by the almost sure martingale convergence theorem. By Doob’s
Lp-inequality,

‖X∗‖p ≤ q sup
t∈I

‖Xt‖p <∞.

Since |Xt − X∞|p ≤ (2X∗)p for all t, we can use dominated convergence to deduce
that Xt → X∞ in Lp. It follows that Xt = E(X∞|Ft) a.s., as in the case p = 1.

Suppose now that Y ∈ Lp(F∞) and set Xt = E(Y |Ft). Then X = (Xt)t∈I is a
martingale by the tower property and

‖Xt‖p = ‖E(Y |Ft)‖p ≤ ‖Y ‖p
for all t, so X is bounded in Lp. Hence Xt converges a.s. and in Lp, with limit X∞,
say, and we can show that X∞ = Y a.s., as in the case p = 1. �

In the next result we assume inf I = −∞.
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Theorem 12.4.3 (Backward martingale convergence theorem). Let p ∈ [1,∞) and
let Y ∈ Lp. Set Xt = E(Y |Ft). Then Xt → E(Y |F−∞) as t→ −∞, a.s. and in Lp.

Proof. The argument is a minor modification of that used in Theorems 12.3.1, 12.4.1,
12.4.2. The process X is automatically UI, by Proposition 11.5.1, and is bounded
in Lp because ‖Xt‖p = ‖E(Y |Ft)‖p ≤ ‖Y ‖p for all t. We leave the details to the
reader. �

In the following result we take I = {0, 1, 2, . . .}.

Theorem 12.4.4 (Optional stopping theorem (continued)). Let X be a UI martin-
gale and let S and T be stopping times. Then

E(XT |FS) = XS∧T a.s..

Proof. We have already proved the result when T is bounded. If T is unbounded,
then T ∧ n is a bounded stopping time, so

(12.4) E(XT
n |FS) = E(XT∧n|FS) = XS∧T∧n = XT

S∧n a.s..

Now

(12.5) ‖E(XT
n |FS) − E(XT |FS)‖1 ≤ ‖XT

n −XT
∞‖1.

We have Xn → X∞ in L1. So, in the case T ≡ ∞, we can pass to the limit in (12.4)
to obtain

E(X∞|FS) = XS a.s..

Then, returning to (12.5), for general T , we have

‖XT
n −XT

∞‖1 = ‖E(Xn −X∞|FT )‖1 ≤ ‖Xn −X∞‖1

and the result follows on passing to the limit in (12.4). �

13. Martingales – applications

13.1. Sums of independent random variables. Throughout this section (Xn :
n ∈ N) will denote a sequence of independent random variables. We shall use mar-
tingale arguments to analyse the behaviour of the sums

S0 = 0, Sn = X1 + · · ·+Xn, n ∈ N.

Theorem 13.1.1 (Strong law of large numbers). Let (Xn : n ∈ N) be a sequence of
independent and identically distributed random variables in L1 and set µ = E(X1).
Then Sn/n→ µ a.s. and in L1.
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Proof. Define for n ≥ 1

F−n = σ(Sm : m ≥ n), Tn = σ(Xm : m ≥ n+ 1).

Then F−n = σ(Sn,Tn). Since X1 is independent of Tn, we have E(X1|F−n) =
E(X1|Sn) for all n. Now, for all A ∈ B and k = 1, . . . , n, by symmetry, E(Xk1Sn∈A)
does not depend on k. Hence E(Xk|Sn) does not depend on k. But E(X1|Sn) + · · ·+
E(Xn|Sn) = E(Sn|Sn) = Sn,so we must have E(X1|Sn) = Sn/n a.s..

Set M−n = Sn/n. We have shown that (Mn)n≤0 is an (Fn)n≤0-martingale. So,
by the backward martingale convergence theorem, Sn/n converges a.s. and in L1.
Finally, by Kolmogorov’s zero-one law, the limit, Y say, is a.s. constant. So Y =
E(Y ) = limn E(Sn/n) = µ a.s.. �

Proposition 13.1.2. Let (Xn : n ∈ N) be a sequence of independent random variables
in L2 and set

µn = E(Xn), σ2
n = var(Xn).

Suppose that the series
∑

n µn and
∑

n σ
2
n both converge in R. Then Sn converges

a.s. and in L2.

Proposition 13.1.3 (Wald’s identity). Let (Xn : n ∈ N) be a sequence of indepen-
dent, identically distributed random variables with P(X1 = 0) < 1. Let a, b ∈ R with
a < 0 < b and set

T = inf{n ≥ 0 : Sn < a or Sn > b}.
Then E(T ) <∞.

Set M(λ) = E(exp(λX1)). Then, for any λ ∈ R such that M(λ) < ∞ and
E(M(λ)−T ) <∞, we have

E(M(λ)−T exp(λST )) = 1.

13.2. Non-negative martingales and change of measure.

Proposition 13.2.1. Let (Xn)n≥0 be a non-negative adapted process, with E(Xn) = 1
for all n.

(a) We can define for each n a probability measure P̃n on Fn by

P̃n(A) = E(Xn1A), A ∈ Fn.

These measures are consistent, that is P̃n+1|Fn
= P̃n for all n, if and only if (Xn)n≥0

is a martingale.
(b) Assume that (Xn)n≥0 is a martingale. Then there exists a probability measure

P̃ on F∞ such that P̃|Fn
= P̃n for all n if and only if E(XT ) = 1 for all finite stopping

times T .
(c) Assume that E(XT ) = 1 for all finite stopping times T . Then there exists an

F∞-measurable random variable X such that P̃(A) = E(X1A) for all A ∈ F∞ if and
only if (Xn)n≥0 is uniformly integrable.
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Proof of (b). Since (Xn)n≥0 is a martingale, by (a), we can define a set function P̃ on

∪nFn such that P̃|Fn
= P̃n for all n. Note that ∪nFn is a ring. By Carathéodory’s

extension theorem, P̃ extends to a measure on F∞ if and only if P̃ is countably
additive on ∪nFn. Since each P̃n is countably additive, it is not hard to see that this
condition holds if and only if

∞
∑

n=1

P̃(An) = 1

for all adapted partitions (An : n ≥ 0) of Ω. Hence it suffices to note that adapted
partitions are in one-to-one correspondence with finite stopping times T , by {T =
n} = An, and then

E(XT ) =
∞
∑

n=1

P̃(An).

�

Theorem 13.2.2 (Radon–Nikodym theorem). Let P and P̃ be probability measures
on a measurable space (Ω,F). Assume that F is countably generated, that is, for
some sequence of sets (Fn : n ∈ N),

F = σ(Fn : n ∈ N).

Then the following are equivalent:

(a) P(A) = 0 implies P̃(A) = 0 for all A ∈ F,
(b) there exists a random variable X ≥ 0 such that

P̃(A) = E(X1A), A ∈ F.

The random variable X, which is unique P-a.s., is called (a version of) the Radon-

Nikodym derivative of P̃ with respect to P. We write X = dP̃/dP a.s. The theorem
extends immediately to finite measures by scaling, then to σ-finite measures by break-
ing Ω into pieces where the measures are finite. The assumption that F is countably
generated can also be removed but we do not give the details here.

Proof. It is obvious that (b) implies (a). Assume then that (a) holds. Set Fn = σ(Fk :
k ≤ n). For each n, we can define an Fn-measurable random variable Xn such that

P̃(A) = E(Xn1A) for all A ∈ Fn. For, we can find disjoint sets A1, . . . , Am such that
Fn = σ(A1, . . . , Am) and then

Xn =
m
∑

j=1

P̃(Aj)

P(Aj)
1Aj

has the required property. We agree here to set 0/0 = 0.
The process (Xn)n≥0 is a martingale, which we will show is uniformly integrable.

Then, by the L1-martingale convergence theorem, there exists a random variable
X ≥ 0 such that E(X1A) = E(Xn1A) for all A ∈ Fn. Define Q(A) = E(X1A) for
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A ∈ F. Then Q is a probability measure and Q = P̃ on ∪nFn, which is a π-system
generating F. Hence Q = P̃ on F, which implies (b).

It remains to show that (Xn)n≥0 is uniformly integrable. Given ε > 0 we can find

δ > 0 such that P̃(B) < ε whenever P(B) < δ,B ∈ F. For, if not, there would

be a sequence of sets Bn ∈ F with P(Bn) < 2−n and P̃(Bn) ≥ ε for all n; then

P(Bn i.o.) = 0 and P̃(Bn i.o.) ≥ ε, contradicting (a). Set λ = 1/δ, then, for all n, we
have P(Xn > λ) ≤ E(Xn)/λ = 1/λ = δ, so

E(Xn1Xn>λ) = P̃(Xn > λ) < ε.

Hence (Xn)n≥0 is uniformly integrable. �

Theorem 13.2.3 (Kakutani’s product martingale theorem). Let (Xn : n ∈ N) be a
sequence of independent non-negative random variables of mean 1. Set

M0 = 1, Mn = X1X2 . . .Xn, n ∈ N.

Then (Mn)n≥0 is a non-negative martingale and Mn → M∞ a.s. for some random
variable M∞. Set an = E(

√
Xn), then an ∈ (0, 1]. Moreover,

(a) if
∏

n an > 0, then Mn →M∞ in L1 and E(M∞) = 1,
(b) if

∏

n an = 0, then M∞ = 0 a.s..

Proof. We have, for all n and a.s.,

E(Mn+1|Fn) = E(MnXn+1|Fn) = MnE(Xn+1|Fn) = MnE(Xn+1) = Mn.

So (Mn)n≥0 is a martingale. Since Mn ≥ 0, (Mn)n≥0 is bounded in L1, so converges
a.s. by the a.s. martingale convergence theorem.

Set Yn =
√
Xn/an and Nn = Y1Y2 . . . Yn, then (Nn)n≥0 is a martingale just as

(Mn)n≥0 is. Note that Mn ≤ N2
n for all n.

Suppose that
∏

n an > 0 then

E(N2
n) = (a1a2 . . . an)

−2 ≤ (
∏

n

an)
−2 <∞.

so (Nn)n≥0 is bounded in L2. Hence by Doob’s L2-inequality,

E

(

sup
n
Mn

)

≤ E

(

sup
n
N2
n

)

≤ 4 sup
n

E(N2
n) <∞.

Hence Mn →M∞ in L1, by dominated convergence.
On the other hand, we know that Nn converges a.s. by the a.s. martingale con-

vergence theorem. So if
∏

n an = 0 we must have also M∞ = 0 a.s.. �
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Corollary 13.2.4. Let P and P̃ be probability measures on a measurable space (Ω,F).
Let (Xn : n ∈ N) be a sequence of random variables. Assume that, under P (respec-

tively P̃), the random variables Xn are independent and Xn has law µn (respectively
µ̃n) for all n. Suppose that µ̃n = fnµn for all n. Define the likelihood ratio

Ln =
n
∏

i=1

fi(Xi).

Then, under P,

(a) if
∏

n

∫

R

√
fndµn > 0, then Ln converges a.s. and in L1,

(b) if
∏

n

∫

R

√
fndµn = 0, then Ln → 0 a.s..

In particular, if µn = µ and µ̃n = µ̃ for all n, with µ 6= µ̃, then

P(Ln → 0) = 1, P̃(Ln → ∞) = 1.

13.3. Markov chains. Let E be a countable set. We identify each probability mea-
sure λ on E with the row vector (λi : i ∈ E), where λi = λ({i}). We identify each
function f on E with the column vector (fi : i ∈ E), where fi = f(i). A matrix
P = (pij : i, j ∈ E) is called stochastic if each row (pij : j ∈ E) is a probability
measure.

We suppose given a filtration (Fn)n≥0. Let (Xn)n≥0 be an adapted process in E.
We say that (Xn)n≥0 is a Markov chain with transition matrix P if, for all n ≥ 0, all
i, j ∈ E and all A ∈ Fn with A ⊆ {Xn = i},

P(Xn+1 = j|A) = pij.

Our notion of Markov chain depends on a choice of filtration. When it is necessary to
make this explicit, we shall refer to an (Fn)n≥0-Markov chain. The following result
shows that our definition agrees with the usual one for the most obvious choice of
filtration.

Proposition 13.3.1. Let (Xn)n≥0 be a process in E and take Fn = σ(Xk : k ≤ n).
The following are equivalent:

(a) (Xn)n≥0 is a Markov chain with initial distribution λ and transition matrix
P ,

(b) for all n and all i0, i1, . . . , in ∈ E,

P(X0 = i0, X1 = i1, . . . , Xn = in) = λi0pi0i1 . . . pin−1in .

We introduce some notation. Let E∗ denote the set of sequences x = (xn : n ≥ 0)
in E and define Xn : E∗ → E by Xn(x) = xn. Set E∗ = σ(Xk : k ≥ 0).

Proposition 13.3.2. Let P be a stochastic matrix. Then, for each i ∈ E, there is a
unique probability measure Pi on (E∗,E∗) such that (Xn)n≥0 is a Markov chain with
transition matrix P and starting from i.
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Proposition 13.3.3. Let (Xn)n≥0 be an adapted process in E. Then the following
are equivalent:

(a) (Xn)n≥0 is a Markov chain with transition matrix P ,
(b) for all bounded functions f on E the following process is a martingale

Mf
n = f(Xn) − f(X0) −

n−1
∑

k=0

(P − I)f(Xk).

Proposition 13.3.4 (Strong Markov property). Let (Xn)n≥0 be an (Fn)n≥0-Markov

chain with transition matrix P and let T be a bounded stopping time. Set X̃n = XT+n

and F̃n = FT+n. Then (X̃n)n≥0 is a (F̃n)n≥0-Markov chain with transition matrix P .

Suitably reformulated, a version of the strong Markov property holds for all stop-
ping times T , finite or infinite. Let us partition E into two disjoint sets D and ∂D.
Set T = inf{n ≥ 0 : Xn ∈ ∂D}. Suppose we are given non-negative functions g on D
and f on ∂D and define φ on E by

φi = Ei

(

∑

0≤n<T

g(Xn) + f(XT )1T<∞

)

One can interpret φ as the expected cost incurred by (Xn)n≥0, where cost gi is incurred
on each visit to i before T and cost fi is incurred on arrival at i ∈ ∂D. In particular,
if f ≡ 0 and g = 1A with A ⊆ D, then φi is the expected time spent in A, starting
from i, before hitting ∂D. On the other hand, if g ≡ 0 and f = 1B with B ⊆ ∂D,
then φi is the probability, starting from i, of entering ∂D through B.

Proposition 13.3.5. We have

(a)

(13.1)

{

φ = Pφ+ g in D
φ = f in ∂D,

(b) if ψ = (ψi : i ∈ E) satisfies

(13.2)

{

ψ ≥ Pψ + g in D
ψ ≥ f in ∂D

and ψi ≥ 0 for all i, then ψi ≥ φi for all i,
(c) if Pi(T <∞) = 1 for all i, then (13.1) has at most one bounded solution.

13.4. Stochastic optimal control. We consider here in a simple context an idea
of much wider applicability. Let E be a countable set and let B ⊆ E. Suppose we
are given an adapted process (Xn)n≥0 in E, a pay-off function f : B → [0,∞) and
a family of probability measures (Pu : u ∈ U). Each u ∈ U is called a control. Set
T = inf{n ≥ 0 : Xn ∈ B}. Assume that Pu(T < ∞) = 1 for all u ∈ U and that
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the distribution of X0 is the same for all u ∈ U . Consider the following optimization
problem:

maximize Eu(f(XT )).

Proposition 13.4.1 (Bellman’s optimality principle). Suppose we can find a bounded
function V : E → [0,∞) and a control u∗ such that

(i) V = f on B,
(ii) Mn = V (XT

n ) is a Pu∗-martingale,
(iii) Mn is a Pu-supermartingale for all u ∈ U .

Then u∗ is optimal and Eu∗(f(XT )) = E(V (X0)).

An important case of the set-up we have just considered arises when we are given a
family of stochastic matrices (P (a) : a ∈ A). Let U = {u : E → A} and define P̃ (u)
by p̃ij(u) = pij(u(i)). By Proposition 13.3.2, we can construct on the canonical space
(E∗,E∗), for each i ∈ E and each u ∈ U , a probability measure Piu making (Xn)n≥0 a

Markov chain with transition matrix P̃ (u) and starting from i. In this case, in order
to check conditions (ii) and (iii) of Bellman’s optimality principle, it suffices to show
that

Vi ≥
∑

j∈E

pij(u(i))Vj, i ∈ E \B

for all u ∈ U , with equality when u = u∗.

14. Continuous-time random processes

14.1. Definitions. We may apply to an any subset I of R all of the definitions made
in §12.1. However, when I is uncountable, a process (Xt)t∈I can be rather a flaky
object, unless we impose some additional regularity condition on the dependence of
Xt on t. For statements which depend on the values of Xt for uncountably many t
are not in general measurable – for example the statement ‘X does not enter the set
A.’ In the following definitions we take I = [0, T ], for some T > 0, or I = [0,∞),
and take E to be a topological space. We say that a process X in E is continuous
(respectively right-continuous) if t 7→ Xt(ω) : I → E is continuous (respectively
right-continuous) for all ω. We say that X has left limits if lims↑t,s∈I Xs(ω) exists in
E, for all t ∈ I, for all ω. A right continuous process with left limits is called cadlag
(continu à droite, limité à gauche). For cadlag processes, the whole process can be
determined by its restriction to a countable dense set of times, so the measurability
problems raised above go away. Except in the next section, all the continuous-time
processes we consider will be at least cadlag.

A continuous process X can be considered as a single random variable

ω 7→ (Xt(ω))t∈I : Ω → C(I, E),
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where C(I, E) is the space of continuous functions x : I → E, with the σ-algebra
generated by its coordinate functions xt : C(I, E) → E, t ∈ I, where xt(x) = x(t).
The same remark applies to any cadlag process, provided we replace C(I, E) by
D(I, E), the space of cadlag functions x : I → E, with the corresponding σ-algebra.
Thus, each continuous (respectively cadlag) process X has a law which is a probability
measure µX on C(I, E) (respectively D(I, E)).

Given a probability measure µ on D(I, E), to each finite set J ⊆ I, there corre-
sponds a probability measure µJ on EJ , which is the law of (xt : t ∈ J) under µ. The
probability measures µJ are called the finite-dimensional distributions of µ. When
µ = µX , they are called the finite-dimensional distributions of X. By a π-system
uniqueness argument, µ is uniquely determined by its finite-dimensional distribu-
tions. So, when we want to specify the law of a cadlag process, it suffices to describe
its finite-dimensional distributions. Of course we have no a priori reason to believe
there exists a cadlag process whose finite-dimensional distributions coincide with a
given family of measures (µJ : J ⊆ I, J finite).

LetX be a process in Rn. We say thatX is Gaussian if each of its finite-dimensional
distributions is Gaussian. Since any Gaussian distribution is determined by its mean
and covariance, it follows that the law of a continuous Gaussian process is determined
once we specify E(Xt) and cov(Xs, Xt) for all s, t ∈ I.

14.2. Path regularization. Given two processes X and X̃, we say that X̃ is a
version of X if X̃t = Xt a.s., for all t ∈ I. In this section we present two results
which provide criteria for a process X to possess a version X̃ which is continuous or
cadlag. Recall that D denotes the set of dyadic rationals.

Theorem 14.2.1 (Kolmogorov’s criterion). Let p ≥ 1 and β > 1/p. Let I = D∩[0, 1].
Suppose X = (Xt)t∈I is a process such that

‖Xs −Xt‖p ≤ C|s− t|β, for all s, t ∈ I

for some constant C < ∞. Then, for all α ∈ [0, β − (1/p)), there exists a random
variable Kα ∈ Lp such that

|Xs −Xt| ≤ Kα|s− t|α, for all s, t ∈ I.

Proof. Let Dn denote the set of integer multiples of 2−n in [0, 1). Set

Kn = sup
t∈Dn

|Xt+2−n −Xt|.

Then

E(Kp
n) ≤ E

∑

t∈Dn

|Xt+2−n −Xt|p ≤ 2nCp(2−n)βp.

For s, t ∈ I with s < t, choose m ≥ 0 so that 2−(m+1) < t− s ≤ 2−m. The interval
[s, t) can be expressed as the finite disjoint union of intervals of the form [r, r+ 2−n),
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where r ∈ Dn and n ≥ m + 1 and where no three intervals have the same length.
Hence

|Xt −Xs| ≤ 2
∑

n≥m+1

Kn

and so

|Xt −Xs|/(t− s)α ≤ 2
∑

n≥m+1

Kn2
(m+1)α ≤ Kα

where Kα = 2
∑

n≥0 2nαKn. But

‖Kα‖p ≤ 2
∑

n≥0

2nα‖Kn‖p ≤ 2C
∑

n≥0

2(α−β+1/p)n <∞.

�

Theorem 14.2.2 (Path regularization). Let X = (Xt)t≥0 be an (Ft)t≥0-martingale.

Set F̃t = σ(Ft+,N), where Ft+ = ∩s>tFs and N = {A ∈ F : P(A) = 0}. Then there

exists a cadlag (F̃t)t≥0-martingale X̃ such that

E(X̃t|Ft) = Xt a.s.

In particular, if Ft = Ft+ for all t, then X̃ is a version of X.

Proof. Since completion of filtrations preserves the martingale property, we may as-
sume that N ⊆ F0 from the outset. Set IN = Q ∩ [0, N ] and let a < b. By Doob’s
upcrossing and maximal inequalities, U([a, b], IN ) and X∗(IN) are a.s. finite for all
N ∈ N. Hence P(Ω0) = 1, where

Ω0 = ∩N∈N ∩a,b∈Q,a<b {U([a, b], IN ) <∞}∩ {X∗(IN) <∞}.
For ω ∈ Ω0 the following limits exist in R:

Xt+(ω) = lim
s↓t,s∈Q

Xs(ω), t ≥ 0

Xt−(ω) = lim
s↑t,s∈Q

Xs(ω), t > 0.

Define, for t ≥ 0,

X̃t =
{

Xt+ on Ω0,
0 otherwise.

Then X̃ is cadlag and (F̃t)t≥0-adapted. By the backward martingale convergence
theorem, for any s > t,

X̃t = E(Xs|F̃t), a.s.

The remaining conclusions follow easily. �

The σ-algebra (F̃t)t≥0 satisfies the usual conditions of right continuity and com-
pleteness:

F̃t+ = F̃t, N ⊆ F̃t, for all t.
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The path regularization theorem shows that, when I = [0,∞), we do not lose much
in restricting our attention to cadlag martingales and filtrations satisfying the usual
conditions.

14.3. Martingales in continuous time. The following four results for a cadlag
process (Xt)t≥0 are immediate consequences of the corresponding results for the pro-
cess (Xt)t∈I obtained by restricting (Xt)t≥0 to the countable index set I = Q∩ [0,∞).

Theorem 14.3.1 (Doob’s maximal inequality). Let (Xt)t≥0 be a cadlag martingale
or non-negative submartingale. Then, for all λ ≥ 0,

λP(X∗ ≥ λ) ≤ sup
t≥0

E(|Xt|).

Theorem 14.3.2 (Doob’s Lp-inequality). Let (Xt)t≥0 be a cadlag martingale or non-
negative submartingale. Then, for all p > 1 and q = p/(p− 1),

‖X∗‖p ≤ q sup
t≥0

‖Xt‖p.

Theorem 14.3.3 (Almost sure martingale convergence theorem). Let (Xt)t≥0 be a
cadlag martingale which is bounded in L1. Then Xt → X∞ a.s. for some X∞ ∈
L1(F∞).

Denote by M1[0,∞) the set of uniformly integrable cadlag martingales (Xt)t≥0 and,
for p > 1, by Mp[0,∞) the set of cadlag martingales which are bounded in Lp.

Theorem 14.3.4 (Lp martingale convergence theorem). Let p ∈ [1,∞).

(a) Suppose (Xt)t≥0 ∈ Mp[0,∞). Then Xt → X∞ as t→ ∞, a.s. and in Lp, for
some X∞ ∈ Lp(F∞). Moreover, Xt = E(X∞|Ft) a.s. for all t.

(b) Assume that (Ft)t≥0 satisfies the usual conditions. Suppose Y ∈ Lp(F∞).
Then there exists (Xt)t≥0 ∈ Mp[0,∞) such that Xt = E(Y |Ft). Moreover
Xt → Y as t→ ∞ a.s. and in Lp.

Thus, when (Ft)t≥0 satisfies the usual conditions, the map (Xt)t≥0 → X∞ is a one-
to-one correspondence between Mp[0,∞) and Lp(F∞).

We recall the following definitions from §12.2. A random variable T : Ω → [0,∞]
is a stopping time if {T ≤ t} ∈ Ft for all t ≥ 0. For a stopping time T , we define

FT = {A ∈ F : A ∩ {T ≤ t} ∈ Ft for all t}.
For a cadlag process X, we set XT (ω) = XT (ω)(ω) whenever T (ω) < ∞. We also
define the stopped process XT by XT

t = XT∧t.

Proposition 14.3.5. Let S and T be stopping times and let X be a cadlag adapted
process. Then

(a) S ∧ T is a stopping time,
(b) if S ≤ T , then FS ⊆ FT ,
(c) XT1T<∞ is an FT -measurable random variable,



22 J. R. NORRIS

(d) XT is adapted.

Theorem 14.3.6 (Optional stopping theorem). Let X be a cadlag adapted process.
Then the following are equivalent:

(a) X is a martingale,
(b) for all bounded stopping times T and all stopping times S, XT is integrable

and
E(XT |FS) = XS∧T a.s.,

(c) for all stopping times T , XT is a martingale,
(d) for all bounded stopping times T , XT is integrable and

E(XT ) = E(X0).

Moreover, if X is UI, then (b) and (d) hold for all stopping times T .

Proof. Suppose (a) holds. Let S and T be stopping times, with T bounded, T ≤ t
say. Let A ∈ FS. For n ≥ 0, set

Sn = 2−nd2nSe, Tn = 2−nd2nT e.
Then Sn and Tn are stopping times and Sn ↓ S and Tn ↓ T as n→ ∞. Since (Xt)t≥0 is
right continuous, XTn

→ XT a.s. as n → ∞. By the discrete-time optional stopping
theorem, XTn

= E(Xt+1|FTn
) so (XTn

: n ≥ 0) is UI and so XTn
→ XT in L1. In

particular, XT is integrable. Similarly XSn∧Tn
→ XS∧T in L1. By the discrete-time

optional stopping theorem again,

E(XTn
1A) = E(XSn∧Tn

1A).

On letting n → ∞, we deduce that (b) holds. For the rest of the proof we argue as
in the discrete-time case. �

15. Weak convergence

15.1. Definitions. Let (µn : n ∈ N) be a sequence of probability measures on a
metric space S. We say that µn converges weakly to µ and write µn ⇒ µ if
µn(f) → µ(f) for all bounded continuous functions f on S.

There are a number of equivalent characterizations of weak convergence:

Theorem 15.1.1. The following are equivalent:

(a) µn ⇒ µ,
(b) lim supn µn(C) ≤ µ(C) for all closed sets C,
(c) lim infn µn(G) ≥ µ(G) for all open sets G,
(d) limn µn(A) = µ(A) for all Borel sets A with µ(∂A) = 0.

Here is a result of the same type for the case S = R.

Theorem 15.1.2. Let µn, n ∈ N, and µ be probability measures on R. Denote by Fn
and F the corresponding distribution functions. The following are equivalent:
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(a) µn ⇒ µ,
(b) Fn(x) → F (x) for all x ∈ R such that F (x−) = F (x),
(c) on some probability space (Ω,F,P), there exist random variables X and

Xn, n ∈ N, with laws µ and µn respectively, such that Xn → X a.s..

Proof. Suppose µn ⇒ µ. Fix x ∈ R with F (x−) = F (x). Given ε > 0, choose δ > 0
so that F (x−δ) ≥ F (x)−ε and F (x+δ) ≤ F (x)+ε. For some continuous functions
f and g,

1(−∞,x−δ] ≤ f ≤ 1(−∞,x] ≤ g ≤ 1(−∞,x+δ].

Then µn(f) ≤ Fn(x) ≤ µn(g) for all n. Also µ(f) ≥ F (x) − ε and µ(g) ≤ F (x) + ε.
Hence lim infn Fn(x) ≥ F (x) − ε and lim supn Fn(x) ≤ F (x) + ε. Since ε > 0 was
arbitrary, this proves (b).

Suppose now that (b) holds. We use the construction of random variables dis-
cussed in §2.3. (It is this which makes the case S = R relatively straightforward.)
Take (Ω,F,P) = ((0, 1],B((0, 1]), dx) and set

Xn(ω) = inf{x : ω ≤ Fn(x)}, X(ω) = inf{x : ω ≤ F (x)}.
Then Xn has law µn and X has law µ. For any a with F (a−) = F (a) and any ω
such that X(ω) > a, we have ω > F (a) so ω > Fn(a) eventually and so Xn(ω) > a
eventually. Since F has at most countably many points of discontinuity, the set of
such a is dense and so lim infnXn(ω) ≥ X(ω) for all ω. Now let F̂ denote the
distribution function of −X and set

X̂(ω) = inf{x : 1 − ω ≤ F̂ (x)} = − sup{y : ω ≥ F (y−)}.
Define similarly X̂n. Then lim infn X̂n(ω) ≥ X̂(ω) for all ω. Note that F (y−) ≤ ω ≤
F (x) for some ω implies y ≤ x. Hence −X̂(ω) ≤ X(ω) for all ω. But X and −X̂
have the same distribution, so we must have −X̂ = X a.s. and similarly −X̂n = Xn

a.s., for all n. Hence lim supnXn(ω) ≤ X(ω) a.s.. We have shown that (b) implies
(c).

Finally, if (c) holds, then (a) follows by bounded convergence. �

15.2. Prohorov’s theorem. A sequence of probability measures (µn : n ∈ N) on a
metric space S is said to be tight if, for all ε > 0, there exists a compact set K such
that µn(K

c) ≤ ε for all n.

Theorem 15.2.1 (Prohorov’s theorem). Let (µn : n ∈ N) be a tight sequence of
probability measures on S. Then there exists a subsequence (nk) and a probability
measure µ on S such that µnk

⇒ µ.

Proof for the case S = R. By a diagonal argument and by passing to a subsequence,
it suffices to consider the case where the corresponding distribution functions Fn con-
verge pointwise on Q, with limit G, say. Then G : Q → [0, 1] must be increasing,
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so must have an increasing extension G to R, with at most countably many discon-
tinuities. It is easy to check that, if G is continuous at x ∈ R, then Fn(x) → G(x).
Set F (x) = G(x+). Then F is increasing and right continuous and Fn(x) → F (x) at
every point of continuity x of F . By tightness, for every ε > 0, there exists N such
that

Fn(−N) ≤ ε, Fn(N) ≥ 1 − ε, for all n.

It follows that

lim
x→−∞

F (x) = 0, lim
x→∞

F (x) = 1

so F is a distribution function. The result now follows from Theorem 15.1.2. �

15.3. Weak convergence and characteristic functions. Recall that, for a prob-
ability measure µ on Rd, we define the characteristic function φ by

φ(u) =

∫

Rd

ei〈u,x〉µ(dx), u ∈ Rd.

Lemma 15.3.1. Let µ be a probability measure on R with characteristic function φ.
Then

µ(|y| ≥ λ) ≤ Cλ

∫ 1/λ

0

(1 − Reφ(u))du

for all λ ∈ (0,∞), where C = (1 − sin 1)−1 <∞.

Proof. It is elementary to check that, for all t ≥ 1,

Ct−1

∫ t

0

(1 − cos v)dv ≥ 1.

By a substitution, we deduce that, for all y ∈ R,

1|y|≥λ ≤ Cλ

∫ 1/λ

0

(1 − cos uy)du.

On integrating this inequality with respect to µ, we obtain our result. �

Theorem 15.3.2. Let µn, n ∈ N, and µ be probability measures on Rd, having char-
acteristic functions φn and φ respectively. Then the following are equivalent:

(a) µn ⇒ µ,
(b) φn(u) → φ(u), for all u ∈ Rd.

Proof for d = 1. It is trivial that (a) implies (b). Assume then that (b) holds. Since
φ is a characteristic function, it is continuous at 0, with φ(0) = 1. So, given ε > 0,
we can find λ <∞ such that

Cλ

∫ 1/λ

0

(1 − Reφ(u))du ≤ ε/2.
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By bounded convergence we have
∫ 1/λ

0

(1 − Reφn(u))du→
∫ 1/λ

0

(1 − Reφ(u))du

as n→ ∞. So, for n sufficiently large,

µn(|y| ≥ λ) ≤ ε.

Hence the sequence (µn : n ∈ N) is tight.
By Prohorov’s theorem, there is at least one weak limit point ν. But if µnk

⇒ ν
then φnk

(u) → ψ(u) for all u, where ψ is the characteristic function of ν. Hence ψ = φ
and so ν = µ, by uniqueness of characteristic functions. It follows that µn ⇒ µ. �

The argument just given in fact establishes the following stronger result (in the
case d = 1).

Theorem 15.3.3 (Lévy’s continuity theorem). Let (µn : n ∈ N) be a sequence of
probability measures on Rd. Let µn have characteristic function φn and suppose that
φn(u) → φ(u), for all u ∈ Rd, for some function φ which is continuous at 0. Then φ
is the characteristic function of a probability measure µ and µn ⇒ µ as n→ ∞.

16. Brownian motion

16.1. Wiener’s theorem. Let B = (Bt)t≥0 be a continuous process in Rn. We say
that B is a Brownian motion in Rn if

(i) Bt −Bs ∼ N(0, (t− s)I), for all s < t,
(ii) B has independent increments, independent of B0.

In the case n = 1, or if is already established that B takes values in Rn for some
n ≥ 2, we say simply that B is a Brownian motion. It is easy to check that B is a
Brownian motion in Rn if and only if the components of (Bt−B0)t≥0 are independent
Brownian motions, starting from 0 and independent of B0.

Let W = C([0,∞),R) and define for t ≥ 0 the coordinate function Xt : W → R

by Xt(x) = x(t). Set W = σ(Xt : t ≥ 0).

Theorem 16.1.1 (Wiener’s theorem). There exists a unique probability measure µ
on (W,W) such that (Xt)t≥0 is a Brownian motion starting from 0.

The measure µ is called Wiener measure.

Proof. Conditions (i) and (ii) determine the finite dimensional distributions of any
such measure µ, so there can be at most one. To show there is exactly one it will
suffice to construct a Brownian motion on some probability space.

For n ≥ 0 denote by Dn the set of integer multiples of 2−n in [0,∞) and denote by
D the union of these sets. Then D is countable so, by an argument given in §2.4, we
know there exists, on some probability space, a family of independent N(0, 1) random
variables (Yt : t ∈ D). Let us say that a process (Bt)t∈Dn

is a Brownian motion if
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conditions (i) and (ii) hold on Dn. For t ∈ D0 = Z+, set Bt = Y1 + · · · + Yt. Then
(Bt)t∈D0 is a Brownian motion.

Suppose, inductively for n ≥ 1, that we have constructed a Brownian motion
(Bt)t∈Dn−1 . For t ∈ Dn \Dn−1, set r = t − 2−n and s = t + 2−n so that r, s ∈ Dn−1

and define

Zt = 2−(n+1)/2Yt, Bt = 1
2
(Br +Bs) + Zt.

We then have two new increments:

Bt −Br = 1
2
(Bs −Br) + Zt, Bs − Bt = 1

2
(Bs − Br) − Zt.

We compute

E[(Bt −Br)
2] = E[(Bs −Bt)

2] = 1
4
2−(n−1) + 2−(n+1) = 2−n,

E[(Bt − Br)(Bs −Bt)] = 1
4
2−(n−1) − 2−(n+1) = 0.

The two new increments, being Gaussian, are therefore independent and have the
required variance. Moreover, being constructed from Bs − Br and Yt, they are inde-
pendent of increments over intervals disjoint from (r, s). Hence (Bt)t∈Dn

is a Brownian
motion. By induction, we obtain a process (Bt)t∈D, having independent increments
and such that, for s < t, we have Bt−Bs ∼ N(0, t− s). In particular, for p ∈ [1,∞),

E(|Bt −Bs|p) ≤ Cp(t− s)p/2

where Cp = E(|B1|p) <∞. Hence, by Kolmogorov’s criterion, there is a continuous

process (B̃t)t≥0 such that B̃t = Bt for all t ∈ D a.s.. (Moreover, since p can be

chosen arbitrarily large, we can choose (B̃t)t≥0 so that t 7→ B̃t is Hölder continuous
of exponent α, for every α < 1/2.)

It remains to show that (B̃t)t≥0 is a Brownian motion. Write p(t, .) for the density
function of a Gaussian of mean 0 and variance t. Given 0 < t1 < · · · < tn, we can
find sequences (tmk )m∈N in D such that 0 < tm1 < · · · < tmn for all m and tmk → tk for
all k. Set t0 = tm0 = 0. Then, for all continuous bounded functions f , by continuity

of (B̃t)t≥0 and bounded convergence,

E(f(B̃t1 − B̃t0 , . . . , B̃tn − B̃tn−1)) = lim
m→∞

E(f(Btm1
− Btm0

, . . . , Btmn − Btmn−1
))

= lim
m→∞

∫

Rn

f(x1, . . . , xn)

n
∏

k=1

p(tmk − tmk−1, xk)dxk

=

∫

Rn

f(x1, . . . , xn)

n
∏

k=1

p(tk − tk−1, xk)dxk

This shows that (B̃t)t≥0 has the required finite-dimensional distributions and so is a
Brownian motion. �
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16.2. Invariance properties.

Proposition 16.2.1. Let B be a continuous process. Then the following are equiva-
lent:

(a) B is a Brownian motion starting from 0,
(b) B is a zero-mean Gaussian process with E(BsBt) = s ∧ t for all s, t ≥ 0.

Proposition 16.2.2. Let B be a Brownian motion starting from 0. Then so are the
following processes:

(a) (−Bt : t ≥ 0),
(b) (Bs+t − Bs : t ≥ 0), for any s ≥ 0,
(c) (cBc−2t : t ≥ 0), for any c > 0,
(d) (tB1/t : t ≥ 0),

where in (d) the process is defined to take the value 0 when t = 0.

Part (c) is called the scaling property of Brownian motion. Part (a) generalizes to
the following rotational invariance property of Brownian motion in Rn.

Proposition 16.2.3. Let U ∈ O(n). If (Bt)t≥0 is a Brownian motion in Rn, then
so is (UBt)t≥0.

16.3. Martingales. There are many martingales associated with Brownian motion
and these provide a useful tool for its study. For example, if B is a Brownian motion
starting from 0, then you can easily check that both (Bt)t≥0 and (B2

t − t)t≥0 are
martingales starting from 0. This fact is useful for the proof of Proposition 16.5.1.
We begin this section with a discussion of the relationship between filtrations and
Brownian motion. Then we will give a characterization of Brownian motion by means
of exponential martingales, which will lead to the strong Markov property. Finally
we shall give a general theorem for constructing martingales from Brownian motion,
which will be used in our discussion of the relationship between Brownian motion
and the Dirichlet problem.

For any process X, we set

FX
t = σ(Xs : s ≤ t), FX

t∞ = σ(Xs −Xt : s > t).

Let B be a Brownian motion in Rn and let (Ft)t≥0 be a filtration. We say that B
and (Ft)t≥0 are compatible or that B is an (Ft)t≥0-Brownian motion if

(i) FB
t ⊆ Ft for all t (B is adapted),

(ii) FB
t∞ and Ft are independent for all t.

Obviously, these two properties are satisfied if Ft = FB
t for all t. More generally, if

B is a process in Rn defined on Ω0 ∈ F0, then we say that B is an (Ft)t≥0-Brownian

motion defined on Ω0 if B is an (F̃t)t≥0-Brownian motion under P̃, where

F̃ = {A ∈ F : A ⊆ Ω0}, F̃t = {A ∈ Ft : A ⊆ Ω0}
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and
P̃(A) = P(A)/P(Ω0), A ∈ F̃.

Proposition 16.3.1. Let B be a continuous process in Rn. Define for u ∈ Rn

Zu
t = exp(i〈u,Bt〉 + |u|2t/2).

Then the following are equivalent:

(a) B is an (Ft)t≥0-Brownian motion,
(b) Zu is an (Ft)t≥0-martingale for all u ∈ Rn.

Proposition 16.3.2. Let Ω0 = ∪n≥1Ωn with Ωn ∈ F0 for all n and let B be a process
in Rn, defined on Ω0. Then B is an (Ft)t≥0-Brownian motion defined on Ω0 if and
only if B|Ωn

is an (Ft)t≥0-Brownian motion defined on Ωn for all n.

Proof. Note that B is an (Ft)t≥0-Brownian motion if and only if

E(eiu(Bt−Bs)1A) = e−u
2(t−s)/2P(A)

for all A ∈ Fs, for all s ≤ t. Similarly, B is an (Ft)t≥0-Brownian motion defined on
Ω0 if and only if

E(eiu(Bt−Bs)1A) = e−u
2(t−s)/2P(A)

for all A ∈ Fs with A ⊆ Ω0, for all s ≤ t. So, if B is an (Ft)t≥0-Brownian motion
defined on Ωn for all n, we have

E(eiu(Bt−Bs)1A) = e−u
2(t−s)/2P(A)

for all A ∈ Fs with A ⊆ Ωn for some n, for all s ≤ t. If ∪nΩn = Ω0, a simple dominated
convergence argument extends the identity to all A ⊆ Ω0, as required. �

Theorem 16.3.3. Let B be an (Ft)t≥0-Brownian motion in Rn and let f ∈ C1,2([0,∞)×
Rn) with all derivatives having no more than exponential growth on Rn, uniformly on
compacts in [0,∞). Set

Mf
t = f(t, Bt) − f(0, B0) −

∫ t

0

(

∂

∂s
+

1

2
∆

)

f(s, Bs)ds.

Then M f is an (Ft)t≥0-martingale.

Proof. Write M = M f . Let s, t ≥ 0. Our assumptions on f allow us to show that
Ms+t −Ms is integrable, with E|ms+t −Ms| → 0 as t ↓ 0. We have to show that
E(Ms+t −Ms|Fs) = 0 a.s.. Now

Ms+t −Ms = f(s+ t, Bs+t) − f(s, Bs) −
∫ s+t

s

(

∂

∂r
+

1

2
∆

)

f(r, Br)dr

= f̃(t, B̃t) − f̃(0, B̃0) −
∫ t

0

(

∂

∂r
+

1

2
∆

)

f̃(r, B̃r)dr
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where f̃(t, x) = f(s+t, x) and B̃t = Bs+t. Note that B̃ is an (F̃t)t≥0-Brownian motion

starting from Bs, where F̃t = Fs+t. Hence it will suffice to show that E(Mt|F0) = 0,
a.s.. Now E(Mt|F0) = m(B0) a.s., where m(x) = Ex(Mt) and the superscript x
specifies the case B0 = x. So we just have to show that m(x) = 0 for all x ∈ Rn.

As we noted above, E(Ms) → 0 as s ↓ 0. Hence it will suffice to show that
Ex(Mt −Ms) = 0 for all x ∈ Rn and all 0 < s < t. We compute

Ex(Mt −Ms) = Ex

(

f(t, Bt) − f(s, Bs) −
∫ t

s

(

∂

∂r
+

1

2
∆

)

f(r, Br)dr

)

= Exf(t, Bt) − Exf(s, Bs) −
∫ t

s

Ex

(

∂

∂r
+

1

2
∆

)

f(r, Br)dr

=

∫

Rn

p(t, x, y)f(t, y)dy−
∫

Rn

p(s, x, y)f(s, y)dy

−
∫ t

s

∫

Rn

p(r, x, y)

(

∂

∂r
+

1

2
∆

)

f(r, y)dydr.

Now p satifies the heat equation
(

∂

∂t
− 1

2
∆y

)

p(t, x, y) = 0.

We integrate by parts twice in Rn to obtain
∫ t

s

∫

Rn

p(r, x, y)

(

∂

∂r
+

1

2
∆

)

f(r, y)dydr =

∫ t

s

∫

Rn

∂

∂r
(p(r, x, y)f(r, y))dydr

=

∫

Rn

p(t, x, y)f(t, y)dy−
∫

Rn

p(s, x, y)f(s, y)dy.

Hence Ex(Mt −Ms) = 0 as required. �

16.4. Strong Markov property.

Theorem 16.4.1 (Strong Markov property). Let B be an (Ft)t≥0-Brownian motion

in Rn and let T be a stopping time. Set F̃t = FT+t and define B̃t = BT+t on {T <∞}.
Then B̃ is an (F̃t)t≥0-Brownian motion defined on {T <∞}.

Proof. By Proposition 16.3.2, it suffices to show that B̃ is an (F̃t)t≥0-Brownian motion
defined on {T ≤ n} for all n ∈ N. For each n, this property of B is unaltered if we
replace T by T ∧ n. So we may assume without loss that T is bounded.

Define for u ∈ Rn

Z̃u
t = exp(i〈u, B̃t〉 + |u|2t/2).

Then Z̃u is integrable, (F̃t)t≥0-adapted and Z̃u
t = Zu

T+t exp(−|u|2T/2), where Zu is

the exponential martingale from Proposition 16.3.1. Hence, for A ∈ F̃s and s < t, by
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optional stopping,

E(Z̃u
t 1A) = E(Zu

T+t exp(−|u|2T/2)1A) = E(Zu
T+s exp(−|u|2T/2)1A) = E(Z̃u

s 1A).

Hence Z̃u is a martingale for all u, so B̃ is an (F̃t)t≥0-Brownian motion by Proposition
16.3.1. �

Corollary 16.4.2 (Reflection principle). Let B be a Brownian motion starting from
0 and let a > 0. Set T = inf{t : Bt > a} and define

Xt =

{

2a− Bt, if T ≤ t
Bt, otherwise.

Then X is also a Brownian motion starting from 0.

Proof. Note that T is a stopping time and that XT = a on {T < ∞}. We will show
more generally that, for any stopping time T , Y is a Brownian motion, where

Yt =

{

2BT − Bt, if T ≤ t
Bt, otherwise.

It suffices to check that (Yt)t≤n is a Brownian motion for each n ∈ N, so we may replace
T by the bounded stopping time T ∧n as this leaves (Yt)t≤n unchanged. Assume then
that T is bounded. By the strong Markov property, (BT+t − BT )t≥0 is a Brownian
motion starting from 0 and independent of FT . Hence so is (−(BT+t − BT ))t≥0. It
follows that Y has the same distribution as B. �

16.5. Hitting times. Let B be a Brownian motion starting from 0. For a ∈ R we
define the hitting time

Ha = inf{t ≥ 0 : Bt = a}.
Then Ha is a stopping time.

Proposition 16.5.1. For a, b > 0, we have

P(H−a < Hb) = b/(a+ b), E(H−a ∧Hb) = ab.

Proposition 16.5.2. The hitting time Ha has a density function, given by

f(t) = (a/
√

2πt3)e−a
2/2t, t ≥ 0.

16.6. Sample path properties.

Proposition 16.6.1. Let B be a Brownian motion starting form 0. Then, almost
surely,

(a) Bt/t→ 0 as t→ ∞,
(b) suptBt = − inftBt = ∞,
(c) for all s ≥ 0, there exist t, u ≥ s with Bt < 0 < Bu,
(d) for all s > 0, there exist t, u ≤ s with Bt < 0 < Bu.

Theorem 16.6.2. Let B be a Brownian motion. Then, almost surely,
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(a) t 7→ Bt is Hölder continuous of exponent α for all α < 1/2,
(b) there is no interval (r, s) on which t 7→ Bt is Hölder continuous of exponent

α for any α > 1/2.

Proof. For (a) we refer to the proof of Wiener’s theorem 16.1.1. We turn to (b). We
use the notation D and Dn from the proof of Wiener’s theorem. Let r, s ∈ DN with
r < s and let n ≥ N . Then, for n ≥ N ,

E





(

∑

t∈Dn,r≤t<s

(Bt+2−n − Bt)
2 − (s− r)

)2




= var

(

∑

t∈Dn,r≤t<s

(Bt+2−n −Bt)
2

)

=
∑

t∈Dn,r≤t<s

var
(

(Bt+2−n − Bt)
2
)

= 2n(s− r)2−2n var(B2
1).

Now var(B2
1) = 2 <∞ so

∑

t∈Dn,r≤t<s

(Bt+2−n −Bt)
2 → (s− r)

in L2 as n→ ∞.

On the other hand, if B is Hölder continuous of exponent α and constant K on
[r, s], then

∑

t∈Dn,r≤t<s

(Bt+2−n −Bt)
2 ≤ sup

t∈Dn,r≤t<s
|Bt+2−n − Bt|2−1/α

∑

t∈Dn,r≤t<s

K1/α2−n → 0

almost surely, since
∑

t∈Dn,r≤t<s
2−n = (s−r) and B is uniformly continuous on [r, s].

Hence, almost surely there is no such interval [r, s]. �

The preceding result shows in particular that almost surely there is no interval on
which B is differentiable. In fact an even stronger result holds.

Theorem 16.6.3. Almost all Brownian paths are nowhere differentiable.

Proof. Let B be a Brownian motion. For 1 ≤ k ≤ n+ 2, set ∆k,n = |B(k−1)/n −Bk/n|
and consider, for K > 0, the event

An = AKn = {max{∆k,n,∆k+1,n,∆k+2,n} ≤ K/n for some k = 1, . . . , n}.
The density of B1/n is bounded by

√

n/2π so

P(∆k,n ≤ K/n) ≤ C(K)/
√
n.

Hence, by independence of increments,

P(An) ≤ nP(∆k,n ≤ K/n)3 ≤ C(K)/
√
n.
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Consider now the event

GK
N = {for some s ∈ [0, 1], |Bs −Bt| ≤ K|s− t|

for all t ∈ [0, 1 +
1

N
] with |s− t| ≤ 1

N
}.

It is an elementary exercise to show that GK
N ⊆ A5K

n for all n ≥ 3N . Hence P(GK
N ) = 0

for all N and K. But

{for some t ∈ [0, 1), s 7→ Bs is differentiable at t} ⊆ ∪N∈N,K∈NG
K
N .

�

Proposition 16.6.4 (Blumenthal’s zero-one law). Let B be a Brownian motion in
Rn starting from 0. If A ∈ FB

0+ then P(A) ∈ {0, 1}.
Proposition 16.6.5. Let A be a non-empty open subset of the unit sphere in Rn and
let ε > 0. Consider the cone

C = {x ∈ Rn : x = ty for some 0 < t < ε, y ∈ A}.
Let B be a Brownian motion in Rn starting from 0 and let

TC = inf{t ≥ 0 : Bt ∈ C}.
Then TC = 0 a.s..

16.7. Recurrence and transience.

Theorem 16.7.1. Let B be a Brownian motion in Rn.

(a) If n = 1, then

P({t ≥ 0 : Bt = 0} is unbounded) = 1.

(b) If n = 2, then

P(Bt = 0 for some t > 0) = 0

but, for any ε > 0,

P({t ≥ 0 : |Bt| < ε} is unbounded) = 1.

(c) If n ≥ 3, then

P(|Bt| → ∞ as t→ ∞) = 1.

The conclusions of this theorem are sometimes expressed by saying that Brownian
motion in R is point recurrent , that Brownian motion in R2 is neighbourhood recurrent
but does not hit points and that Brownian motion in Rn, n ≥ 3, is transient.

Proof. For (a) we refer to Proposition 16.6.1(c). To prove (b) we fix 0 < a < 1 < b
and consider the process Xt = f(Bt), where f ∈ C2

b (R
2) is such that

f(x) = log |x|, for a ≤ |x| ≤ b.
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Note that ∆f(x) = 0 for a ≤ x ≤ b. Consider the stopping time

T = inf{t ≥ 0 : |Bt| < a or |Bt| > b}.
By Theorem 16.3.3, M f is a martingale. Hence, by optional stopping, E(M f

T ) =

E(Mf
0 ) = 0. Assume for now that |B0| = 1. Then M f

T = log |BT |, so p = p(a, b) =
P(|BT | = a) satisfies

p log a+ (1 − p) log b = 0.

Consider first the limit a ↓ 0 with b fixed. Then log a→ −∞ so p(a, b) → 0. Hence
Px(Bt = 0 for some t > 0) = 0 whenever |x| = 1. A scaling argument extends this to
the case |x| > 0. For x = 0 we have for all ε > 0, by the Markov property,

P0(Bt = 0 for some t > ε) =

∫

Rn

p(ε, 0, y)Py(Bt = 0 for some t > 0)dy = 0.

Since ε > 0 is arbitrary, we deduce that P0(Bt = 0 for some t > 0) = 0.
Consider now the limit b ↑ ∞ with a = ε > 0 fixed. Then log b → ∞, so

p(a, b) → 1. Hence Px(|Bt| < ε for some t > 0) = 1 whenever |x| = 1. A scaling
argument extends this to the case |x| > 0 and it is obvious by continuity for x = 0.
It follows by the Markov property that, for all n, P(|Bt| < ε for some t > n) = 1 and
hence that P({t ≥ 0 : |Bt| < ε} is unbounded) = 1.

We turn to the proof of (c). Since the first three components of a Brownian motion
in Rn, n ≥ 3, form a Brownian motion in R3, it suffices to consider the case n = 3.
We have to show that, almost surely, for all N ∈ N, |Bt| > N for all sufficiently large
t. Fix N ∈ N. Define a sequence of stopping times (Tk : k ≥ 0) by setting S0 = 0
and, for k ≥ 0,

Tk = inf{t ≥ Sk : |Bt| = N}, Sk+1 = inf{t ≥ Tk : |Bt| = N + 1}.
Set p = Px(|Bt| = N for some t), where |x| = N + 1. We can use an argument
similar to that used in (b), replacing the function log |x| by 1/|x|, to see that p =
N/(N + 1) < 1. By the strong Markov property, P(T1 <∞) ≤ PN(T1 <∞) = p and
for k ≥ 2, P(Tk <∞) = P(T1 <∞)PN(Tk−1 <∞). Hence P(Tk <∞) ≤ pk and

P({t ≥ 0 : |Bt| = N} is unbounded ) = P(Tk <∞ for all k) = 0

as required. �

16.8. Brownian motion and the Dirichlet problem. Let D be a connected open
set in Rn with smooth boundary ∂D and let f : ∂D → [0,∞) and g : D → [0,∞) be
measurable functions. By a solution to the Dirichlet problem (in D with data f and
g), we shall mean any function ψ ∈ C2(D) ∩ C(D̄) satisfying

−1
2
∆ψ = g, in D

ψ = f, in ∂D.

When = is replaced by ≥ (twice) in this definition we say that ψ is a supersolution.
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We shall need the following characterization of harmonic functions in terms of
averages. Denote by µx,ρ the uniform distribution on the sphere S(x, ρ) of radius ρ
and centre x.

Proposition 16.8.1. Let φ be a non-negative measurable function on D. Suppose
that

φ(x) =

∫

S(x,ρ)

φ(y)µx,ρ(dy)

whenever S(x, ρ) ⊆ D. Then, either φ ≡ ∞, or φ ∈ C∞(D) with ∆φ = 0.

Let B be a Brownian motion in Rn. For a measurable function g and t ≥ 0, we
define functions Ptg and Gg by

Ptg(x) = Exg(Bt), Gg(x) = Ex

∫ ∞

0

g(Bt)dt,

whenever the defining integrals exist.

Proposition 16.8.2. We have
(a)

‖Ptg‖∞ ≤ (1 ∧ (2πt)n/2 vol(supp g))‖g‖∞,
(b) for n ≥ 3,

‖Gg‖∞ ≤ (1 + vol(supp g))‖g‖∞,
(c) for n ≥ 3 and for g ∈ C2(Rn) of compact support, Gg ∈ C2

b (R
n) and

−1
2
∆Gg = g.

Proof of (c). Note that

Gg(x) = E0

∫ ∞

0

g(x+Bt)dt.

By differentiating this formula under the integral, using the estimate in (b), we see
that Gg ∈ C2

b (R
n).

To show that − 1
2
∆Gg = g, we fix 0 < s < t and write

Gg(x) = E0

∫ s

0

g(x+Br)dr +

∫ t

s

∫

Rn

p(r, x, y)g(y)dydr+ E0

∫ ∞

t

g(x+Br)dr.

By differentiating under the integral we obtain

1
2
∆Gg(x) = 1

2

∫ s

0

E0∆g(x+Br)dr+
1
2

∫ t

s

∫

Rn

∆xp(r, x, y)g(y)dydr+
1
2

∫ ∞

t

E0∆g(x+Br)dr.

By the estimate in (a), the first and third terms on the right tend to 0 as s ↓ 0 and
t ↑ ∞. Since ∂p/∂t = 1

2
∆p, the second term equals

∫

Rn

∫ t

s

(∂/∂r)p(r, x, y)g(y)drdy =

∫

Rn

p(t, x, y)g(y)dy−
∫

Rn

p(s, x, y)g(y)dy

= Ptg(x) − Exg(Bs) → −g(x)
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as s ↓ 0 and t ↑ ∞. �

Theorem 16.8.3. For x ∈ D̄, set

φ(x) = Ex

(
∫ T

0

g(Bt)dt+ f(BT )1T<∞

)

where T = inf{t ≥ 0 : Bt ∈ ∂D}.
(a) Let ψ be a supersolution of the Dirichlet problem. If ψ ≥ 0 then ψ ≥ φ.
(b) Let ψ be a solution of the Dirichlet problem. If ψ is bounded and Px(T <

∞) = 1 for all x ∈ D, then ψ = φ.
(c) Assume that f ∈ C(∂D) and g ∈ C2(Rn). If φ is locally bounded then it is a

solution of the Dirichlet problem.

Proof of (a). Let ψ be a supersolution of the Dirichlet problem. Fix N ∈ N and set

DN = {x ∈ D : |x| ≤ N and |x− ∂D| ≥ 1/N}.
We can find θ ∈ C2

b (R
n) with θ = ψ on DN . Then

M θ
t = θ(Bt) − θ(B0) −

∫ t

0

1
2
∆θ(Bs)ds

is a martingale, by Theorem 16.3.3. Denote by TN the hitting time of ∂DN . Then,
by optional stopping, for x ∈ DN ,

ψ(x) = Exψ(BTN
) + Ex

∫ TN

0

(−1
2
∆)ψ(Bt)dt.

We now let N → ∞. Since ψ is a supersolution,

Ex

∫ TN

0

(−1
2
∆)ψ(Bt)dt ≥ Ex

∫ TN

0

g(Bt)dt ↑ Ex

∫ T

0

g(Bt)dt

and ψ(BTN
) → ψ(BT ) ≥ f(BT ) on {T <∞}. Hence, if ψ ≥ 0,

lim inf
N

ψ(BTN
) ≥ f(BT )1T<∞

and so, by Fatou’s lemma,

lim inf
N

Exψ(BTN
) ≥ Ex(f(BT )1T<∞).

Hence ψ(x) ≥ φ(x). �

Proof of (b). In the case where ψ is a bounded solution of the Dirichlet problem and
Px(T <∞) = 1 for all x ∈ D, we have

Ex

∫ TN

0

(−1
2
∆)ψ(Bt)dt ↑ Ex

∫ T

0

g(Bt)dt

and ψ(BTN
) → f(BT ) a.s.. So, by bounded convergence,

lim
N

Exψ(BTN
) = Ex(f(BT )).
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Hence ψ(x) = φ(x). �

Proof of (c). Let D0 be a bounded open subset of D and set T0 = inf{t ≥ 0 : Bt 6∈
D0}. Then T0 is a stopping time and T0 < ∞ a.s.. Set B̃t = BT0+t, F̃t = FT0+t and
T̃ = inf{t ≥ 0 : B̃t 6∈ D}. Note that T̃ <∞ if and only if T <∞ and then BT = B̃T̃ .

By the strong Markov property, B̃ is an (F̃t)t≥0-Brownian motion, so

(16.1)

φ(x) = Ex

(

∫ T0

0

g(Bt)dt+

∫ T̃

0

g(B̃t)dt+ f(B̃T̃ )1T̃<∞

)

= Ex

(
∫ T0

0

g(Bt)dt

)

+ Ex

(

E

(

f(B̃T̃ )1T̃<∞ +

∫ T̃

0

g(B̃t)dt

∣

∣

∣

∣

∣

F̃0

))

= Ex

(
∫ T0

0

g(Bt)dt+ φ(BT0)

)

.

It is trivial that φ = f on ∂D. We can now prove that, for y ∈ ∂D we have
φ(x) → f(y) as x → y, x ∈ D. Choose D0 = U ∩ D, where U is a bounded open
set in Rn containing y. Consider, under P0, for each x ∈ D̄, the stopping time
T0(x) = inf{t ≥ 0 : x +Bt ∈ ∂D0}. Then

φ(x) = E0

(

∫ T0(x)

0

g(x+Bt)dt+ φ(x+BT0(x))

)

.

Since ∂D is smooth, there is an open cone C such that y + C ⊆ Dc. By Proposition
16.6.5, P0(TC = 0) = 1, where TC is the hitting time of C. Note that TC = 0 implies
that x+BT0(x) ∈ ∂D for x sufficiently close to y and x+BT0(x) → y as x→ y. Since f
is continuous on ∂D, this further implies that φ(x+BT0(x)) → f(y) as x → y. We have
assumed that φ is locally bounded. Hence, by bounded convergence, φ(x) → f(y) as
x→ y, as required.

Consider now the case where g ≡ 0. Fix x ∈ D and take D0 = B(x, ρ) with
B(x, ρ) ⊆ D. By rotational invariance, under Px, BT0 has the uniform distribution
µx,ρ on S(x, ρ). Hence

φ(x) = Ex(φ(BT0)) =

∫

S(x,ρ)

φ(y)µx,ρ(dy).

Since φ is finite, it follows by Proposition 16.8.1 that φ is harmonic in D.
By linearity, it now suffices to treat the case where f ≡ 0. Moreover, it also suffices

to treat the case where n ≥ 3. For, if n < 3 we can simply apply the result for n = 3
to cylindrical regions D and to functions g which depend only on the first and second
coordinates. Assume then that f ≡ 0 and n ≥ 3. Assume also, for now, that D is
bounded. Set

φ0(x) = Ex

∫ ∞

0

g̃(Bt)dt
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where g̃ is a compactly supported function agreeing with g on D. By Proposition
16.8.2, φ0 ∈ C2

b (R
n) with −1

2
∆φ0 = g̃. On taking φ = φ0 and D = Rn, D0 = D in

(16.1), we obtain

φ0(x) = φ(x) + φ1(x)

where

φ1(x) = Ex(φ0(BT )).

We showed above that this implies φ1 is harmonic in D so − 1
2
∆φ = g in D as required.

Finally, if D is unbounded, we can go back to (16.1) to see that − 1
2
∆φ = g in D0,

for all bounded open sets D0 ⊆ D, and hence in D. �

16.9. Donsker’s invariance principle. In this section we shall show that Brownian
motion provides a universal scaling limit for random walks having steps of zero mean
and finite variance. This can be considered as a generalization to processes of the
central limit theorem.

Theorem 16.9.1 (Skorohod embedding for random walks). Let µ be a probability
measure on R of mean 0 and variance σ2 <∞. Then there exists a probability space
(Ω,F,P) with filtration (Ft)t≥0, on which is defined a Brownian motion (Bt)t≥0 and
a sequence of stopping times

0 = T0 ≤ T1 ≤ T2 ≤ . . .

such that, setting Sn = BTn
,

(i) (Tn)n≥0 is a random walk with step mean σ2,
(ii) (Sn)n≥0 is a random walk with step distribution µ.

Proof. Define Borel measures µ± on [0,∞) by

µ±(A) = µ(±A), A ∈ B([0,∞)).

There exists a probability space on which are defined a Brownian motion (Bt)t≥0 and
a sequence ((Xn, Yn) : n ∈ N) of independent random variables in R2 with law ν
given by

ν(dx, dy) = C(x+ y)µ−(dx)µ+(dy)

where C is a suitable normalizing constant. Set F0 = σ(Xn, Yn : n ∈ N) and
Ft = σ(F0,F

B
t ). Set T0 = 0 and define inductively for n ≥ 0

Tn+1 = inf{t ≥ Tn : BTn+t − BTn
= −Xn+1 or Yn+1}.

Then Tn is a stopping time for all n. Note that, since µ has mean 0, we must have

C

∫ 0

−∞

(−x)µ(dx) = C

∫ ∞

0

yµ(dy) = 1.

Write T = T1,X = X1 and Y = Y1.
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By Proposition 16.5.1, conditional on X = x and Y = y, we have T <∞ a.s. and

P(BT = y|X = x and Y = y) = x/(x + y),

E(T |X = x and Y = y) = xy.

So, for A ∈ B([0,∞)),

P(BT ∈ A) =

∫

A

∫ ∞

0

x

x+ y
C(x + y)µ−(dx)µ+(dy)

so P(BT ∈ A) = µ(A). A similar argument shows this identity holds also for A ∈
B((−∞, 0]). Next

E(T ) =

∫ ∞

0

∫ ∞

0

xyC(x+ y)µ−(dx)µ−(dy)

=

∫ 0

−∞

(−x)2µ(dx) +

∫ ∞

0

y2µ(dy) = σ2.

Now by the strong Markov property for each n ≥ 0 the process (BTn+t − BTn
)t≥0

is a Brownian motion, independent of FTn
. So by the above argument BTn+1 − BTn

has law µ, Tn+1 − Tn has mean σ2, and both are independent of FTn
. The result

follows. �

For x ∈ C([0, 1],R) we set ‖x‖ = supt |xt|. This uniform norm makes C([0, 1],R)
into a metric space so we can consider weak convergence of probability measures. The
associated Borel σ-algebra coincides with the σ-algebra generated by the coordinate
functions.

Theorem 16.9.2 (Donsker’s invariance principle). Let (Sn)n≥0 be a random walk
with steps of mean 0 and variance 1. Write (St)t≥0 for the linear interpolation

Sn+t = (1 − t)Sn + tSn+1, t ∈ [0, 1]

and set S
[N ]
t = N−1/2SNt. Then the law of (S

[N ]
t )0≤t≤1 converges weakly to Wiener

measure on C([0, 1],R).

Proof. Take (Bt)t≥0 and ((Xn, Yn) : n ∈ N) as in the proof of Theorem 16.9.1. For

each N ≥ 1, set B
(N)
t = N1/2BN−1t. Then (B

(N)
t )t≥0 is a Brownian motion. Perform

the Skorohod embedding construction, with (Bt)t≥0 replaced by (B
(N)
t )t≥0, to obtain

stopping times T
(N)
n . Then set S

(N)
n = B(N)(T

(N)
n ) and interpolate linearly to form

(S
(N)
t )t≥0. For all N , we have

(

(

T (N)
n

)

n≥0
,
(

S
(N)
t

)

t≥0

)

∼
(

(Tn)n≥0, (St)t≥0

)

.

Next set T̃
(N)
n = N−1T

(N)
n and S̃

(N)
t = N−1/2S

(N)
Nt . Then

(

S̃
(N)
t

)

t≥0
∼
(

S
[N ]
t

)

t≥0
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and S̃
(N)
n/N = B

T̃
(N)
n

for all n. We have to show, for all bounded continuous functions

F : C([0, 1],R) → R, that, as N → ∞,

E(F (S [N ])) → E(F (B)).

In fact we shall show, for all ε > 0,

P
(

sup
0≤t≤1

|S̃(N)
t − Bt| > ε

)

→ 0.

Since F is continuous, this implies that F (S̃(N)) → F (B) in probability, which by
bounded convergence is enough.

By the strong law of large numbers Tn/n→ 1 a.s. as n→ ∞. So, as N → ∞,

N−1 sup
n≤N

|Tn − n| → 0 a.s..

Hence, for all δ > 0,

P
(

sup
n≤N

|T̃ (N)
n − n/N | > δ

)

→ 0.

By the intermediate value theorem, for n/N ≤ t ≤ (n + 1)/N we have S̃
(N)
t = Bu

for some T̃
(N)
n ≤ u ≤ T̃

(N)
n+1. Hence

{

|S̃(N)
t −Bt| > ε for some t ∈ [0, 1]

}

⊆
{

|T̃ (N)
n − n/N | > δ for some n ≤ N

}

∪{|Bu −Bt| > ε for some t ∈ [0, 1] and |u− t| ≤ δ + 1/N}
= A1 ∪ A2.

The paths of (Bt)t≥0 are uniformly continuous on [0, 1]. So given ε > 0 we can find
δ > 0 so that P(A2) ≤ ε/2 whenever N ≥ 1/δ. Then, by choosing N even larger if

necessary, we can ensure P(A1) ≤ ε/2 also. Hence S̃(N) → B, uniformly on [0, 1] in
probability, as required. �

17. Poisson random measures

17.1. Construction and basic properties. For λ ∈ (0,∞) we say that a random
variable X in Z+ is Poisson of parameter λ and write X ∼ P (λ) if

P(X = n) = e−λλn/n!

We also write X ∼ P (0) to mean X ≡ 0 and write X ∼ P (∞) to mean X ≡ ∞.

Proposition 17.1.1 (Addition property). Let Nk, k ∈ N, be independent random
variables, with Nk ∼ P (λk) for all k. Then

∑

k

Nk ∼ P (
∑

k

λk).
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Proposition 17.1.2 (Splitting property). Let N, Yn, n ∈ N, be independent random
variables, with N ∼ P (λ), λ <∞ and P(Yn = j) = pj, for j = 1, . . . , k and all n. Set

Nj =
N
∑

n=1

1Yn=j.

Then N1, . . . , Nk are independent random variables with Nj ∼ P (λpj) for all j.

Let (E,E, µ) be a σ-finite measure space. A Poisson random measure with intensity
µ is a map

M : Ω × E → Z+ ∪ {∞}
satisfying, for all sequences (Ak : k ∈ N) of disjoint sets in E,

(i) M(∪kAk) =
∑

kM(Ak),
(ii) M(Ak), k ∈ N, are independent random variables,
(iii) M(Ak) ∼ P (µ(Ak)) for all k.

Denote by E∗ the set of Z+ ∪ {∞}-valued measures on E and define, for A ∈ E,

X : E∗ × E → Z+ ∪ {∞}, XA : E∗ → Z+ ∪ {∞}
by

X(m,A) = XA(m) = m(A).

Set E∗ = σ(XA : A ∈ E).

Theorem 17.1.3. There exists a unique probability measure µ∗ on (E∗,E∗) such that
X is a Poisson random measure with intensity µ.

Proof. (Uniqueness.) For disjoint sets A1, . . . , Ak ∈ E and n1, . . . , nk ∈ Z+, set

A∗ = {m ∈ E∗ : m(A1) = n1, . . . , m(Ak) = nk}.
Then, for any measure µ∗ making X a Poisson random measure with intensity µ,

µ∗(A∗) =
k
∏

j=1

e−µ(Aj )µ(Aj)
nj/nj!

Since the set of such sets A∗ is a π-system generating E∗, this implies that µ∗ is
uniquely determined on E∗.

(Existence.) Consider first the case where λ = µ(E) <∞. There exists a probability
space (Ω,F,P) on which are defined independent random variables N and Yn, n ∈ N,
with N ∼ P (λ) and Yn ∼ µ/λ for all n. Set

(17.1) M(A) =

N
∑

n=1

1Yn∈A, A ∈ E.

It is easy to check, by the Poisson splitting property, that M is a Poisson random
measure with intensity µ.
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More generally, if (E,E, µ) is σ-finite, then there exist disjoint sets Ek ∈ E, k ∈ N,
such that ∪kEk = E and µ(Ek) <∞ for all k. We can construct, on some probability
space, independent Poisson random measures Mk, k ∈ N, with Mk having intensity
µ|Ek

. Set

M(A) =
∑

k∈N

Mk(A ∩ Ek), A ∈ E.

It is easy to check, by the Poisson addition property, that M is a Poisson random
measure with intensity µ. The law µ∗ of M on E∗ is then a measure with the required
properties. �

17.2. Integrals with respect to a Poisson random measure.

Theorem 17.2.1. Let M be a Poisson random measure on E with intensity µ and
let g be a measurable function on E. If µ(E) is finite or g is integrable, then

X =

∫

E

g(y)M(dy)

is a well-defined random variable with

E(eiuX) = exp{
∫

E

(eiug(y) − 1)µ(dy)}.

Moreover, if g is integrable, then so is X and

E(X) =

∫

E

g(y)µ(dy), var(X) =

∫

E

g(y)2µ(dy).

Proof. Assume for now that µ(E) <∞. Then M(E) is finite a.s. so X is well defined.
If g = 1A for some A ∈ E, then X = M(A), so X is a random variable. This extends
by linearity and by taking limits to all measurable functions g.

Since the value of E(eiuX) depends only on the law µ∗ of M on E∗, we can assume
that M is given as in (17.1). Then

E(eiuX |N = n) = E(eiug(Y1))n =

(
∫

E

eiug(y)
µ(dy)

λ

)n

so

E(eiuX) =

∞
∑

n=0

E(eiuX |N = n)P(N = n)

=

∞
∑

n=0

(
∫

E

eiug(y)
µ(dy)

λ

)n

e−λλn/n! = exp{
∫

E

(eiug(y) − 1)µ(dy)}.

If g is integrable, then formulae for E(X) and var(X) may be obtained by a similar
argument.
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It remains to deal with the case where g is integrable and µ(E) = ∞. Assume
for now that g ≥ 0, then X is obviously well defined. We can find 0 ≤ gn ↑ g with
µ(|gn| > 0) < ∞ for all n. The conclusions of the theorem are then valid for the
corresponding integrals Xn. Note that Xn ↑ X and E(Xn) ≤ µ(g) < ∞ for all n.
It follows that X is a random variable and, by monotone convergence, Xn → X in
L1(P). Note the estimate |eiux − 1| ≤ |ux|. We can then obtain the desired formulae
for X by passing to the limit. Finally, for a general integrable function g, we have

E

∫

E

|g(y)|M(dy) =

∫

E

|g(y)|µ(dy)

so X is well defined. Also X = X+ −X−, where

X± =

∫

{±g>0}

g(y)M(dy)

and X+ and X− are independent. Hence the formulae for X follow from those for
X±. �

We now fix a σ-finite measure space (E,E, K) and denote by µ the product measure
on (0,∞) × E determined by

µ((0, t] × A) = tK(A), t ≥ 0, A ∈ E.

Let M be a Poisson random measure with intensity µ and set M̃ = M − µ. Then M̃
is a compensated Poisson random measure with intensity µ.

Proposition 17.2.2. Let g be an integrable function on E. Set

Xt =

∫

(0,t]×E

g(y)M̃(ds, dy).

Then (Xt)t≥0 is a cadlag martingale with stationary independent increments. More-
over

E(eiuXt) = exp{t
∫

E

(eiug(y) − 1 − iug(y))K(dy)}

E(X2
t ) = t

∫

E

g(y)2K(dy).

Theorem 17.2.3. Let g ∈ L2(K) and let (gn : n ∈ N) be a sequence of integrable
functions such that gn → g in L2(K). Set

Xn
t =

∫

(0,t]×E

gn(y)M̃(ds, dy).

Then there exists a cadlag martingale (Xt)t≥0 such that

E

(

sup
s≤t

|Xn
s −Xs|2

)

→ 0
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for all t ≥ 0. Moreover (Xt)t≥0 has stationary independent increments and

E(eiuXt) = exp{t
∫

E

(eiug(y) − 1 − iug(y))K(dy)}.

The notation
∫

(0,t]×E
g(y)M̃(ds, dy) is used for Xt, even when g is not integrable with

respect to K. Of course (Xt)t≥0 does not depend on the choice of approximating
sequence (gn). This is a simple example of a stochastic integral.

Proof. Fix t > 0. By Doob’s L2-inequality and Proposition 17.2.2,

E

(

sup
s≤t

|Xn
s −Xm

s |2
)

≤ 4E((Xn
t −Xm

t )2) = 4t

∫

E

(gn − gm)2dK → 0

as n,m → ∞. Hence Xn
s converges in L2 for all s ≤ t. For some subsequence we

have
sup
s≤t

|Xnk
s −Xnj

s | → 0 a.s.

as j, k → ∞. The uniform limit of cadlag functions is cadlag, so there is a cadlag
process (Xs)s≤t such that

sup
s≤t

|Xnk
s −Xs| → 0 a.s..

Since Xn
s converges in L2 for all s ≤ t, (Xs)s≤t is a martingale and so by Doob’s

L2-inequality

E

(

sup
s≤t

|Xn
s −Xs|2

)

≤ 4E((Xn
t −Xt)

2) → 0.

Note that |eiug − 1 − iug| ≤ u2g2/2. Hence, for s < t we have

E(eiu(Xt−Xs)|FM
s ) = lim

n
E(eiu(Xn

t −Xn
s )|FM

s )

= lim
n

exp{(t− s)

∫

E

(eiugn(y) − 1 − iugn(y))K(dy)}

= exp{(t− s)

∫

E

(eiug(y) − 1 − iug(y))K(dy)}

which shows that (Xt)t≥0 has independent increments with the claimed characteristic
function. �

18. Lévy processes

18.1. Definition and examples. A Lévy process is a cadlag process starting from
0 with stationary independent increments. A Lévy system is a triple (a, b,K), where
a = σ2 ∈ [0,∞) is the diffusivity , b ∈ R is the drift and K, the Lévy measure, is a
Borel measure on R with K({0}) = 0 and

∫

R

(1 ∧ |y|2)K(dy) <∞.



44 J. R. NORRIS

Let B be a Brownian motion and let M be a Poisson random measure with intensity
µ on (0,∞) × R, where µ(dt, dy) = dtK(dy), as in the preceding section. Set

Xt = σBt + bt +

∫

(0,t]×{|y|≤1}

yM̃(ds, dy) +

∫

(0,t]×{|y|>1}

yM(ds, dy).

Then (Xt)t≥0 is a Lévy process and, for all t ≥ 0,

E(eiuXt) = etψ(u)

where

ψ(u) = ibu− 1
2
au2 +

∫

R

(eiuy − 1 − iuy1|y|≤1)K(dy).

Thus, to every Lévy system there corresponds a Lévy process. Moreover, given
(Xt)t≥0, we can recover M by

M((0, t] × A) = #{s ≤ t : Xs −Xs− ∈ A}
and so we can also recover b and σB. Hence the law of the Lévy process (Xt)t≥0

determines the Lévy system (a, b,K).

18.2. Lévy–Khinchin theorem.

Theorem 18.2.1 (Lévy–Khinchin theorem). Let X be a Lévy process. Then there
exists a unique Lévy system (a, b,K) such that, for all t ≥ 0,

(18.1) E(eiuXt) = etψ(u)

where

(18.2) ψ(u) = ibu− 1
2
au2 +

∫

R

(eiuy − 1 − iuy1|y|≤1)K(dy).

Proof. First we shall show that there is a continuous function ψ : R → C with
ψ(0) = 0 such that (18.1) holds for all u ∈ R and for t = 1/n for all n ∈ N. Let νn
denote the law, and φn the characteristic function, ofX1/n. Note that φn is continuous
and φn(0) = 1. Let In denote the largest open interval containing 0 where |φn| > 0.
There is a unique continuous function ψn : In → C such that ψn(0) = 0 and

φn(u) = eψn(u)/n, u ∈ In.

Since X is a Lévy process, we have (φn)
n = φ1, so we must have In = I1 and ψn = ψ1

for all n. Write I = I1 and ψ = ψ1. Then φn → 1 on I as n → ∞ and φn = 0 on
∂I for all n. By the argument used in Theorem 15.3.2, (νn : n ∈ N) is then tight, so
for some subsequence φnk

→ φ on R, for some characteristic function φ. This forces
∂I = ∅, so I = R.

We have shown that (18.1) holds for all t ∈ Q+. Since X is cadlag, this extends to
all t ∈ R+ using

Xt = lim
n→∞

X2−nd2nte.
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It remains to show that ψ can be written in the form (18.2). We note that it suffices
to find a similar representation where 1|y|≤1 is replaced by χ(y) for some continuous
function χ with

1|y|≤1 ≤ χ(y) ≤ 1|y|≤2.

We have
∫

R

(eiuy − 1)nνn(dy) = n(φn(u) − 1) → ψ(u)

as n→ ∞, uniformly on compacts in u. Hence

∫

R

(1 − cos uy)nνn(dy) → −Reψ(u).

Now there is a constant C <∞ such that

y21|y|≤1 ≤ C(1 − cos y)

1|y|≥λ ≤ Cλ

∫ 1/λ

0

(1 − cos uy)du, λ ∈ (0,∞).

Set ηn(dy) = n(1 ∧ y2)νn(dy). Then, as n→ ∞,

ηn(|y| ≤ 1) =

∫

R

y21|y|≤1nνn(dy)

≤ C

∫

R

(1 − cos y)nνn(dy) → −C Reψ(1)

and, for λ ≥ 1,

ηn(|y| ≥ λ) =

∫

R

1|y|≥λnνn(dy)

≤ Cλ

∫ 1/λ

0

∫

R

(1 − cos uy)nνn(dy)du

→ −Cλ
∫ 1/λ

0

Reψ(u)du.

We note that, since ψ(0) = 0, the final limit can be made arbitrarily small by
choosing λ sufficiently large. Hence the sequence (ηn : n ∈ N) is bounded in total
mass and tight. By Prohorov’s theorem, there is a subsequence (nk) and a finite
measure η on R such that ηnk

(θ) → η(θ) for all bounded continuous functions θ on
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R. Now
∫

R

(eiuy − 1)nνn(dy) =

∫

R

(eiuy − 1)
ηn(dy)

1 ∧ y2

=

∫

R

(eiuy − 1 − iuyχ(y))

1 ∧ y2
ηn(dy) +

∫

R

iuyχ(y)

1 ∧ y2
ηn(dy)

=

∫

R

θ(u, y)ηn(dy) + iubn

where

θ(u, y) =

{

(eiuy − 1 − iuyχ(y))/(1 ∧ y2), if y 6= 0,
−u2/2, if y = 0.

and

bn =

∫

R

yχ(y)

1 ∧ y2
ηn(dy).

Now, for each u, θ(u, .) is a bounded continuous function. So, on letting k → ∞,
∫

R

θ(u, y)ηnk
(dy) →

∫

R

θ(u, y)η(dy)

=

∫

R

(eiuy − 1 − iuyχ(y))K(dy)− 1
2
au2

where
K(dy) = (1 ∧ y2)−11y 6=0η(dy), a = η({0}).

Then bnk
must also converge, say to b, and we obtain the desired formula

ψ(u) = ibu− 1
2
au2 +

∫

R

(eiuy − 1 − iuyχ(y))K(dy).

�

Exercises

Students should attempt Exercises 11.1–13.4 for their first supervision, then 13.5–
14.3, 15.1–16.8 and 16.9–18.4 for later supervisions.

11.1 Let X and Y be integrable random variables and suppose that

E(X|Y ) = Y, E(Y |X) = X a.s.

Show that X = Y a.s.

11.2 Prove the conditional forms of Fatou’s lemma and the dominated convergence
theorem, stated in §11.5.

12.1 Let (Xn : n ∈ N) be a sequence of independent integrable random variables.
Set S0 = 0, P0 = 1 and Sn = X1 + · · · +Xn, Pn = X1 . . .Xn, n ∈ N. Show that

(i) if E(Xn) = 0 for all n, then (Sn)n≥0 is a martingale,
(ii) if E(Xn) = 1 for all n, then (Pn)n≥0 is a martingale.
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12.2 Let X = (Xn)n≥0 be an integrable process, taking values in a countable set
E ⊆ R. Show that X is a martingale if and only if, for all n and for all i0, . . . , in ∈ E,
we have

E(Xn+1 | X0 = i0, . . . , Xn = in) = in.

12.3 Let (Xn)n≥0 be a Markov chain in E with transition matrix P . Let f : E → R

be a bounded function. Find necessary and sufficient conditions on f for (f(Xn))n≥0

to be a martingale.

12.4 Find a simple direct argument to show that for any martingale (Xn)n≥0 and
any bounded stopping time T we have E(XT ) = E(X0).

12.5 Let S1 and S2 be defined as in the proof of Theorem 12.3.1. Show that S1 and
S2 are stopping times.

12.6 Let (Xt : t ∈ I) be a countable family of non-negative random variables and
suppose that, for all s, t ∈ I, there exists u ∈ I such that Xu ≥ max(Xs, Xt). Show
carefully that

E(sup
t∈I

Xt) = sup
t∈I

E(Xt).

12.7 Let X = (Xn)n≥0 be a martingale in L2. Show that X is bounded in L2 if and
only if

∞
∑

n=0

E
(

(Xn+1 −Xn)
2
)

<∞.

12.8 Let (Fn)n≥0 be a filtration and set F∞ = σ(Fn : n ≥ 0). Let X ∈ L2. Set
Xn = E(X | Fn). Show, by a direct argument, that Xn converges in L2 and that

Xn → X in L2 ⇔ X is F∞-measurable.

12.9 Write out the details of the proof of the backward martingale convergence
theorem, say for p = 1.

13.1 Prove Propositions 13.1.2 and 13.1.3.

Examples 13.2–13.7 are taken from Williams, Probability with Martingales.

13.2(a) Pólya’s urn. At time 0, an urn contains 1 black ball and 1 white ball. At
each time 1, 2, 3, . . . , a ball is chosen at random from the urn and is replaced together
with a new ball of the same colour. Just after time n, there are therefore n+ 2 balls
in the urn, of which Bn + 1 are black, where Bn is the number of black balls chosen
by time n. Let Mn = (Bn + 1)/(n + 2) the proportion of black balls in the urn just
after time n. Prove that, relative to a natural filtration which you should specify, M
is a martingale.

Prove also that P(Bn = k) = (n+ 1)−1 for 0 ≤ k ≤ n.
What is the distribution of Θ, where Θ := limMn?
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Prove that for 0 < θ < 1, (N θ
n)n≥0 is a martingale, where

N θ
n :=

(n + 1)!

Bn!(n−Bn)!
θBn(1 − θ)n−Bn .

13.2(b) Bayes’ urn. A random number Θ is chosen uniformly between 0 and 1, and
a coin with probability Θ of heads is minted. The coin is tossed repeatedly. Let Bn be
the number of heads in n tosses. Prove that (Bn) has exactly the same probabilistic
structure as the (Bn) sequence in 13.2(a). Prove that N θ

n is a conditional density
function of Θ given B1, B2, . . . , Bn.

13.3 Your winnings per unit stake on game n are εn, where the εn are independent
random variables with

P(εn = 1) = p, P(εn = −1) = q,

where p ∈ (1
2
, 1) and q = 1−p. Your stake Cn on game n must lie between 0 and Zn−1,

where Zn−1 is your fortune at time n− 1. Your object is to maximize the expected
‘interest rate’ E log(ZN/Z0), where N is a given integer representing the length of the
game, and Z0, your fortune at time 0, is a given constant. Let Fn = σ(ε1, . . . , εn).
Show that if C is any previsible strategy, that is Cn is Fn−1-measurable for all n, then
logZn − nα is a supermartingale, where α denotes the entropy

α = p log p+ q log q + log 2,

so that E log(Zn/Z0) ≤ Nα, but that, for a certain strategy, logZn− nα is a martin-
gale. What is the best strategy?

13.4 ABRACADABRA. At each of times 1, 2, 3, . . . , a monkey types a capital letter
at random, the sequence of letters typed forming a sequence of independent random
variables, each chosen uniformly from amongst the 26 possible capital letters.

Just before each time n = 1, 2, . . . , a new gambler arrives on the scene. He bets
$1 that

the nth letter will be A.

If he loses, he leaves. If he wins, he receives $26 all of which he bets on the event
that

the (n + 1)th letter will be B.

If he loses, he leaves. If he wins, he bets his whole current fortune $262 that

the (n+ 2)th letter will be R

and so on through the ABRACADABRA sequence. Let T be the first time by which
the monkey has produced the consecutive sequence ABRACADABRA. Prove, by a
martingale argument, that

E(T ) = 2611 + 264 + 26.
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13.5 ‘What always stands a reasonable chance of happening will (almost surely)
happen—sooner rather than later.’ Suppose that T is a stopping time such that
for some N ∈ N and some ε > 0, we have, for every n:

P(T ≤ n+N | Fn) > ε, a.s.

Prove by induction using P(T > kN) = P(T > kN ;T > (k − 1)N) that for k =
1, 2, 3, . . .

P(T > kN) ≤ (1 − ε)k.

Show that E(T ) <∞.

13.6 Gambler’s Ruin. Suppose that X1, X2, . . . are independent random variables
with

P(X = +1) = p, P(X = −1) = q,

where p ∈ (0, 1), q = 1 − p and p 6= q. Suppose that a and b are integers with
0 < a < b. Define

Sn := a+X1 + · · ·+Xn, T := inf{n : Sn = 0 or Sn = b}.
Let Fn = σ(X1, . . . , Xn). Explain why T satisfies the conditions in 13.5 Prove that

Mn :=

(

q

p

)Sn

and Nn = Sn − n(p− q)

define martingales M and N . Deduce the values of P(ST = 0) and E(T ).

13.7 Azuma–Hoeffding Inequality.
(a) Show that if Y is a random variable with values in [−c, c] and with E(Y ) = 0,
then, for θ ∈ R,

E(eθY ) ≤ cosh θc ≤ exp

(

1

2
θ2c2

)

.

(b) Prove that if M is a martingale, with M0 = 0 and such that for some sequence
(cn : n ∈ N) of positive constants, |Mn −Mn−1| ≤ cn for all n, then, for x > 0,

P

(

sup
k≤n

Mk ≥ x
)

≤ exp
(

−1

2
x2

/ n
∑

k=1

c2k

)

.

Hint for (a). Let f(z) := exp(θz), z ∈ [−c, c]. Then, since f is convex,

f(y) ≤ c− y

2c
f(−c) +

c+ y

2c
f(c).

Hint for (b). Optimize over θ.

13.8 Let (Ω,F) denote the set of real sequences ω = (ωn : n ≥ 0) such that

lim sup
n→∞

ωn = − lim inf
n→∞

ωn = ∞,
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with the σ-algebra generated by the coordinate functions Xn(ω) = ωn. Show that,
for p = 1/2 and for no other p ∈ (0, 1), there exists a probability measure Pp on
(Ω,F) making (Xn)n≥0 into a simple random walk with

P(X1 = 1) = p, P(X1 = −1) = 1 − p.

Let Pp,n denote the unique probability measure on (Ω,Fn) making (Xk)0≤k≤n into
a simple random walk with P(X1 = 1) = p, where Fn = σ(X0, . . . , Xn). Fix p ∈
(0, 1) \ {1/2}. Identify the martingale

Mn = dPp,n/dP1/2,n.

Find a finite stopping T such that

E1/2(MT ) < 1.

13.9 Let f : [0, 1] → R be Lipschitz, that is, suppose that, for some K <∞ and all
x, y ∈ [0, 1]

|f(x) − f(y)| ≤ K|x− y|.
Denote by fn the simplest piecewise linear function agreeing with f on {k2−n : k =
0, 1, . . . , 2n}. Set Mn = f ′

n. Show that Mn converges a.e. and in L1 and deduce that
f is the indefinite integral of a bounded function.

13.10 Let X be a non-negative random variable with E(X) = 1. Show that

E
(
√
X
)

≤ 1

with equality only if X = 1 a.s.

13.11 In an experiment to determine a parameter θ, it is possible to make a series
of independent measurements of declining accuracy, so that the kth measurement
Xk ∼ N(θ, σ2

k). Let Θ̂n denote the maximum likelihood estimate for θ based on the

first n measurements. Determine for which sequences (σk)k∈N we have Θ̂n → θ a.s.
as n→ ∞. Set Fn = σ(X1, . . . , Xn). Show that, for all θ, θ′ and all n, Pθ and Pθ′ are

mutually absolutely continuous on Fn. Is the same true for F∞?

13.12 Prove Propositions 13.3.1 and 13.3.2.

13.13 Let (Xn)n≥0 be a Markov chain and suppose that

Pi(Xn = i for some n ≥ 1) = 1.

Define inductively

Tk+1 = inf{n ≥ 1 : XT1+···+Tk+n = i}.
Show that the random variables T1, T2, . . . are independent and identically distributed.

14.1 Prove Proposition 14.3.5(c).
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14.2 Let T ∼ E(λ). Define

Zt =

{

0 if t < T
1 if t ≥ T

, Ft = σ{Zs : s ≤ t}, Mt =

{

1 − eλt if t < T
1 if t ≥ T .

Prove that E|Mt| < ∞, and that E(Mt; {T > r}) = E(Ms; {T > r}) for r ≤ s ≤ t,
and hence deduce that Mt is a cadlag martingale with respect to the filtration {Ft}.

Is M bounded in L1? Is M uniformly integrable? Is MT− in L1?

14.3 Let T be a random variable with values in (0,∞) and with strictly positive
continuous density f on (0,∞) and distribution function F (t) = P(T ≤ t). Define

At =

∫ t

0

f(s)ds

1 − F (s)
, 0 ≤ t <∞.

By expressing the distribution function of AT , G(t) = P(AT ≤ t), in terms of the
inverse function A−1 of A, or otherwise, deduce that AT has the exponential distri-
bution of mean 1.

Define Zt and Ft as in 14.2 above, and prove that Mt = Zt − At∧T is a cadlag
martingale relative to {Ft}. The function At is called the hazard function for T .

15.1 Assuming Prohorov’s theorem, prove that if (µn : n ∈ N) is a tight sequence
of finite measures on R and if

sup
n
µn(R) <∞

then there is a subsequence (nk) and a finite measure µ on R such that µnk
⇒ µ.

15.2 Let (Xn : n ∈ N) be a sequence of independent, identically distributed, inte-
grable random variables. Set Sn = X1 + · · · + Xn. Use characteristic functions to
show that

Sn/n⇒ E(X1).

15.3 Let (Xn : n ∈ N) be a sequence of random variable and suppose that

Xn ⇒ X.

Show that, if X is a.s. constant, then also Xn converges to X in probability. Is the
condition that X is a.s. constant necessary?

16.1 Let (Bt)t≥0 be a Brownian motion starting from 0. Show that

lim sup
t↓0

Bt/t = − lim inf
t↓0

Bt/t = ∞ a.s.

16.2 Let (Bt)t≥0 be a Brownian motion starting from 0. Set

L = sup{t > 0 : Bt = at}.
Show that L has the same distribution as H−1

a .
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16.3 Let (Bt)t≥0 be a Brownian motion. Find all polynomials f(t, x), of degree 3 in
x, such that (Mt)t≥0 is a martingale, where

Mt = f(t, Bt).

16.4 Let (Bt)t≥0 be a Brownian motion starting from 0. Find the distribution of
(Bt,maxs≤tBs).

16.5 Let (Bt)t≥0 be a Brownian motion starting from 0. Show that (tB1/t)t>0 and
(Bt)t>0 have the same distribution.

Show also that tB1/t → 0 a.s. as t→ 0.

16.6 Let D be a dense subset of [0, 1] and suppose that f : D → R satisfies, for
some K <∞ and α ∈ (0, 1]

(∗) |f(s) − f(t)| ≤ K|t− s|α

for all s, t ∈ D. Show that f has a unique extension f̃ : [0, 1] → R such that (∗)
holds for all s, t ∈ [0, 1].

16.7 Prove Propositions 16.2.1, 16.2.3, 16.3.2, 16.5.1, 16.5.2, 16.6.1, 16.6.4 and
16.6.5.

16.8 Let (Bt)t≥0 be a Brownian motion in R3. Set Rt = 1/|Bt|. Show that

(i) (Rt : t ≥ 1) is bounded in L2,
(ii) E(Rt) → 0 as t→ ∞,
(iii) Rt is a supermartingale.

Deduce that |Bt| → ∞ a.s. as t→ ∞.

16.9 Let µ denote Wiener measure on W = {x ∈ C([0, 1],R) : x0 = 0}. For a ∈ R,
define a new probability measure µa on W by

dµa/dµ(x) = exp(ax1 − a2/2).

Show that under µa the coordinate process remains Gaussian, and identify its distri-
bution.

Deduce that µ(A) > 0 for every non-empty open set A ⊆ W .

16.10 Let B = (Bt)0≤t≤1 be a Brownian motion starting from 0. Denote by µ the
law of B on W = C([0, 1],R). For each y ∈ R, set

Zy
t = yt+ (Bt − tB1)

and denote by µy the law of Zy = (Zy
t )0≤t≤1 on W . Show that, for any bounded

measurable function F : W → R and for f(y) = µy(F ) we have

E(F (B) | B1) = f(B1) a.s..
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16.11 Let D be a bounded open set in Rn and let h : D → R be a bounded
continuous function, harmonic in D. Show that, for all x ∈ D,

inf
y∈∂D

h(y) ≤ h(x) ≤ sup
y∈∂D

h(y).

16.12 (i) Let (Bt)t≥0 be a Brownian motion in R2 starting from (x, y). Compute
the distribution of BT , where

T = inf{t ≥ 0 : Bt 6∈ H}
and where H is the upper half plane {(x, y) : y > 0}.

(ii) Show that, for any bounded continuous function u : H → R, harmonic in H,
with u(x, 0) = f(x) for all x ∈ R, we have

u(x, y) =

∫

R

f(s)
1

π

y

(x− s)2 + y2
ds.

(iii) Let D be any open set in R2 for which there exists a continuous homeomor-
phism g : H → D, which is conformal in H. Show that, if u is harmonic in D, then
u ◦ g is harmonic in H.

(iv) Find an explicit integral representation for bounded continuous functions u :
D → R, harmonic in D, in terms of their values on the boundary of D.

(v) Determine the exit distribution of Brownian motion from D.

18.1 Let (Xt)t≥0 be a Lévy process with characteristic exponent ψ. Show that, for
all u ∈ R, the following process is a martingale:

Mu
t = exp{iuXt − tψ(u)}.

18.2 By generalizing the case of Brownian motion, formulate and prove a strong
Markov property for Lévy processes.

18.3 Say that a Lévy process (Xt)t≥0 satisfies the scaling relation with exponent
α ∈ (0,∞) if

(cXc−αt)t≥0 ∼ (Xt)t≥0, c ∈ (0,∞).

For example Brownian motion satisfies the scaling relation with exponent 2. Find,
for each α ∈ (0, 2), a Lévy process having a scaling relation with exponent α.

18.4 Let (Xt)t≥0 be the Lévy process corresponding to the Lévy triple (a, b,K).
Show that, if K consists of finitely many atoms, then (Xt)t≥0 can be written as a
linear combination of a Brownian motion, a uniform drift and finitely many Poisson
processes.
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point recurrent, 32
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process, 7

adapted, 7
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right-continuous, 18

Prohorov’s theorem, 23
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