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Introduction

Motivation from two perspectives:

1. Probability

Let (Q, P(Q), IP’) be a probability space, whefeis a set,P((2) the set of events (power set in
this case) an® : P(Q2) — [0, 1] is the probability measure.

If ©2is countable then we have for evedye P(2)

P(A) =) P({w}).
w€eA
So calculating probabilities just involves (possibly infinite) sums.
If @ = [0,1] andP is the uniform probability measure df, 1] then for everyw € Q it is
P(w) =0. So

([0,1]) #« Y P({w})

wel0,1]

2. Integration (Analysis)
WhenP can be described by a densjty 2 — [0, c0) we can handle the situation via

P(A) = /A plz) dz = /Q 14(z) pl) de (+)

wherel 4 is the indicator function of the set. In the example above(z) = 1 and this leads
o P([a, b)) = [} Lpy(x)dz = [P de=b—a.

In general this approach only makes sense if the integralexists. Using the theory of
Riemann-integration we are fine as longAss a finite union or intersection of intervals and
p(x) is e.g. continuous. But e.g. fot = [0, 1] N Q, the Riemann- mtegra\\[0 14(z)dx is not
defined, although the probability for this event is intuitively

Moreover, sinceAd is countable, it can be written agd = {an i n € N}. Define
Jn = Lay,.any With f, — 14 for n — oo. For everyn, f, is Riemann-integrable and
fo fn )dz = 0. So it should be the case that

1 1
lim fn( )d:z:zO;/ 1a(z)dx
n—oo 0

but the latter mtegral is not defined. Thus the concept of Riemann-integrals is not satisfac-
tory for two reasons: The set of Riemann-integrable functions is not closed, and there are “too
many” functions which are not Riemann-integrable.

Goals of this course

e Generalisation of Riemann-integration to Lebesgue-integration using measure theory,
involving a precise treatment of setsand functions for which (x) is defined

e Using measure theory as the basis of advanced probability and discussing applications
in that area



Official schedule

Measure spacesi-algebras;r-systems and uniqueness of extension, statement * and proof *
of Caratleodory’s extension theorem. Construction of Lebesgue measuRe orhe Borel
c-algebra ofR. Existence of non-measurable subset®oflLebesgue-Stieltjes measures and
probability distribution functions. Independence of events, independencalgfebras. The
Borel-Cantelli lemmas. Kolmogorov’s zero-one law. [6]
Measurable functions, random variables, independence of random variables. Construction of
the integral, expectation. Convergence in measure and convergence almost everywhere. Fa-
tou’'s lemma, monotone and dominated convergence, differentiation under the integral sign.
Discussion of product measure and statement of Fubini s theorem. [6]
Chebyshev s inequality, tail estimates. Jensen’s inequality. Completengsiofl < p < oo

. The Holder and Minkowski inequalities, uniform integrability. [4]

L? as a Hilbert space. Orthogonal projection, relation with elementary conditional probability.
Variance and covariance. Gaussian random variables, the multivariate normal distribution. [2]
The strong law of large numbers, proof for independent random variables with bounded fourth
moments. Measure preserving transformations, Bernoulli shifts. Statements * and proofs *
of maximal ergodic theorem and Birkhoff s almost everywhere ergodic theorem, proof of the
strong law. [4]

The Fourier transform of a finite measure, characteristic functions, unigueness and inversion.
Weak convergence, statement @Jy’s convergence theorem for characteristic functions. The
central limit theorem. [2]

Appropriate books

P. Billingsley,Probability and MeasureWiley 1995 (hardback).

R.M. Dudley,Real Analysis and ProbabilityCUP 2002 (paperback).
R.L.Schilling,Measures, Integrals and MartingaleSUP 2005 (paperback).

R.T. Durrett,Probability: Theory and Example$Vadsworth a. Brooks/Cole 1991 (hardback).
D. Williams, Probability with Martingales CUP (paperback).

From the point of view of analysis, the first chapters of this book might be interesting:
S. Kantorovitz Introduction to Modern Analysi€Oxford 2003 (hardback).

Non-examinable material
e proof of Caratodory’s extension theorem on hand-out 1
e part (a) of the proof of Skorohod’s representation theorem on hand-out 2
e connection between Lebesgue and Riemann integration on hand-out 3

e Proof of the maximal ergodic lemma and Birkhoff’s almost everywhere ergodic theorem
on hand-out 4 and in Section 6



1 Setsystems and measures

Let E be an arbitrary set anfl C P(E) a set of subsets. To define a measureS — [0, o)
(see section 1.2) we first need to identify a proper domain of definition.

1.1 Setsystems

Definition 1.1. Say that€ is aring, ifforall A, B € £
(iyoe€& (i) B\Ae¢& (i) AuUBe¢€.
Say that is analgebra(or field), if forall A, B € £
(iyoeé& (i) AA=FE\Ae€¢ (i) AUBe€.
Say that is ac-algebra(or o-field), if for all AandA;, As,... €&
(iyoeé& (i) Ace& (iii) UAneé’.

neN
Properties. (i) A (o-)algebra is closed under (countably) finitely many set operations, since
AanB=(auB)es, (=4
neN neN

A\B=ANB‘c€f, AAB=(A\B)U(B\A)€E.

(i) Thus: fisac-algebra = ¢Eisanalgebra = £isaring
In general the inverse statementss are false, but in special cases they hold:
< (if E is finite) <= (f Fef)

Examples.(i) P(E) and{0, E} are the largest and smallestlgebras orF, respectively
(i) F=R,R= {U;;l(ai,bi] ta;<b,i=1,....,n,n¢€ NO} is the
ring of half-open intervals (0 is given by the empty intersection= 0).
R is an algebra if we allow for infinite intervals and identi®y= (—o0, oo].
(iii) Beware: { U2 (as, b = ai,b; € [—00,00], a; < b, i €N, } is anot ac-algebra.
(see problem 1.9(a))

Lemma 1.1. Let {Ei NS I} be a (possibly uncountable) collection @falgebras. Then
Nicr &i is ac-algebra, whereat ), ; &; in general is not.

Proof. Let& = (N, &. We check (i) to (iii) in the above definition:

(i) Sinced € & foralli e I, € £. (i) Since forallA € £, Ac € & foralli e I, A € £.

(iii) Let Ay, Ao, ... € £. ThenA,, € & forall k € Nandi € I, hence J,, . An € &; for each
i€ Iandsd ], .y A, € €. For the second part see problem 1.1 (c). O

Definition 1.2. Let.4A C P(FE). Then thes-algebra generated by is
o(A) = ﬂ g, the smallest-algebra containingl.

EDA
£ o—alg.

as long as (ii) is fulfilled ©” and “N” are equivalent



Remarks. (i) If £ is ac-algebra, them (&) = £.
(i) LetA;, Ay C P(E)with A; C Ay. Theno(A;) C o(Asg).

Examples. (i) Let() # A C E. Theno ({A}) = {0, E, A, A°}.

(i) If Eisac-algebra,soisAiN& ={ANB : B e &} foreachA € E, called thetrace
o-algebraof A.

The next example is so important, that we spend an extra definition.
Definition 1.3. Let (E, 7) be atopological spacevith topologyr C P(FE) (set of open set$)

Theno(7) is called theBorel o-algebraof E, denoted by3(FE). A € B(E) is called aBorel
set One usually denote§(R) = B.

Lemma 1.2. Let E = R, R the ring of half-open intervals and = {(a,b] : a < b}
the set of all half-open intervals. TheliR) = o(Z) = B.

Proof. () Z C R = o(Z) C o(R). On the other hand, each € R can be written as
A=U" (a;,b] € o(Z). ThusR Co(Z) = o(R) C o(Z).

(i) Each A € T can be written asl = (a,b] = (0%, (a,b+ 1) € B = o(T) C B.

Let A C Rbeopen,ievVzcAIe, >0 : (x — €y, x+¢,) C A. Thus

VeeA Jazy,b, €Q : {z} C(az,bs] CA.
ThenA = J,c 4(az, b;] which is a countable union, sineg, b, € Q.
ThusA € o(Z) = BCo(2). O
Remarks. (i) The Borelo-algebra ord C Ris B(A) = AN B (tracec-algebra ofA).
d
(i) Analogously,B(R%) is generated byf? = H(az, il cas < b, 1=1,.. .,d} and
(

1) =

this is consistent witld = 1 in the sense thdf

Definition 1.4. Let £ C P(FE) be ac-algebra. The paifFE, £) is ameasurable spacand
elements of aremeasurable sets

If E is finite or countably infinite, one usually takés= P(FE) as relevant-algebra.

1.2 Measures
Definition 1.5. Let £ be aring onE. A set functionis anyp : £ — [0, oo] with p(0) = 0.
e . is calledadditiveif forall A, B € Ewith AN B =0: pu(AUB) = u(A)+ u(B).

e 4 is called countably additive(or o-additive) if for all sequences(A;),cn With

AinA;=0fori#jandls) Ay e & ([ An) =D lAn)

neN neN neN

2Having a direct definition of open sets fAr= R¢, there is also an axiomatic definition of a topology, namely
()PerandE €1 (i)ZVA,BeT: AnBer (i) Usey Ai € 7, 0ivenA; e Tforalli e T



Note. 1 countably additive= 1 additive [Al =A, A =B A3 =A,=...= @]

Definition 1.6. Let (E,£) be a measurable space. A countably additive set function
u: & — [0, 00] is called ameasurethe triple( E, £, 1) is calledmeasure space

If uw(E) < oo, uis calledfinite. If u(E) = 1, u is aprobability measureand (E, &, 1) is a
probability spacelf E is a topological space arftl= B(FE), theny is calledBorel measure

Basic properties.Let (E, £, 1) be a measure space.

(i) pisnon-decreasingForallA,B e £, AC Bitisu(B)=u(B\A)+ u(A) > u(A).
(Note: The versionu(B \ A) = u(B) — u(A) only makes sense jf(A) < o0).

(i) wissubadditiveForallA,B €&, pu(AUB) < u(A)+ u(B) since
u(A) + pu(B) =p(A\ B) + (AN B) + p(B\ A) +u(AN B) =

=u(AUB)
=pu(AUB)+u(ANB) > u(AUB).

(Again: u(AU B) = u(A) + u(B) — (AN B)only if u(ANB) < c0.)
(iii) w is alsocountably subadditivésee problem 1.6 (b)).
(iv) Let& C & beo-algebras. i, is a measure ofip, then it is also org; .

(v) ForA e & therestrictionp|4 = (. N A) is a measure o, &).

Remark. These properties also hold for countably additive set functions (catedheasures
on aring, (i) and (ii) also for additive set functions on a ring.

1,z€A

Examples. (i) For everyz € E, theDirac measurds given by §,(A) = {0 s A

(i) Discrete measure theory:
Let E be countable. Every measugeon (E,P(E)) can be characterized byraass
functionm : E — [0, oo,

w= Z m(x)d, orequivalently VACE : u(A) = Z p({z}) = Z m(x) .

zelR €A €A
If m(z) = 1forallx € E, puis calledcounting measure

(i) Let E =R andR be the ring of half-open intervals. Fdre R write A = ()", (@i, bi]
with disjoint intervals,n € Ny. We call this astandard representatioaf A. Although
it is not unique, the set functiop : R — [0,00] with u(A) = >0 (b — ;) is
independent of the particular representation and thus well defined.

Further,y is additive andranslation invarianfi.e.VzeR : u(A + x) = u(A), where
A+z:={x+y : ye€ A}. The key question is:

’ Cany be extended to a measure Br= a(R)?‘




In order to attack this question in the next subsection, it is useful to introduce the following
property of set functions.

Definition 1.7. Let £ be aring onE andyu : £ — [0,00] an additive set function is
continuous atA € &, if

(i) p iscontinuous from below
givenanyA; C A, C A3 C...in & with U A, =Ae& (A, 7 A),

neN
then lim u(A,) = u(A)

(i) p iscontinuous from above
given anyA; D Ay, D A3 D ...inEwith (A4, = A € £ (4, \, 4) and
neN
p(Ay,) < oo forsomen € N, then lim p(A,) = p(A)
Lemma 1.3. Let€ be aring onE andy : £ — [0, oo] an additive set function. Then:
(i) wiscountably additive = pis continuous atalld € £

(i) pis continuous from below atal € £ =  p is countably additive

(i) pis cont. from above déandu(A) < coforall A€ £ = pis countably additive

Remark. The conditionu(A,,) < oo for somen € N in (ii) of the definition is necessary for
measures to be continuous. Consider &g= N, A, = {k,k + 1,...} andu the counting
measure. Thep(A4y) = oo for all k € N, butpu(A) = u(0) = 0.

Proof. (i) GivenA4,, /" Ain &, thenA = (A1 \ Ag) U (A2\ A1) U (A3 \ A2)U... (A =10)

oo m—1
= pu(A) = ZM(AM-I \An) = n}g%(}ﬂ( U (Ans1\ An)) = nlgnoo 1(Am) -
n=0 n=0

GivenA, \, Ain £ andu(A,,) < oo forsomem € N. Let B,, := A, \ A, forn > m. Then
B, /' (An \ A) for n — oo and thus, following the above,

1(Am) — p(An) = p(By) = 1(Am \ A) = p(Am) — p(A) .

Sinceu(A,,) < oo this implies lim u(A,) = p(A).
(i) see problem 1.6 (a)
(iii) analogous to (i) and (ii) O

1.3 Extension and uniqueness

Theorem 1.4. Caratheodory’s extension theorem
Let& be aringonE andy : £ — [0, 00| be a countably additive set function. Then there
exists a measurg’ on (E,0(€)) suchthat /(A) = pu(A) forall A€ €.



Proof. The proof is not examinable and is given on Hand-out 1 in the appendix.
To formulate a result on uniqueness two further notions are useful.

Definition 1.8. Let E be aset€ C P(F) is called ar-systemf VA Be A: AnNBe A.
£ is called ad-systenif

() EcE, (i) VA Be& ACB: B\Ac&,

(i) VAL Ay .. €8 A CAC. .. = |]Act.
neN

Remarks.

(i) The setZ U {0} = {(a,b] : a < b} U {0} is aw-system orR and we have shown in
Lemma 1.2 that(Z) = B.

(i) £isac-algebra< & isan-and ad-system (see problem 1.8 (a)).

Lemma 1.5. Dynkin's 7-system lemma
Let& be ar-system. Then for angrsystenD O £ itis D D o(€E).

Proof. The intersectiom\(£) = (- D of all d-systems containing is itself ad-system.
We shall show thaf\(€) is also ar-system. Then it is also @algebra and for ang-system
D D & we haveD D A(€) 2 o(€), thus proving the lemma. Consider

D' ={BeAE): BnAcA(f)forall Ac £} CA(E).

Then& C D’ becaus€ is ar-system. We check thd' is ad-system, and hen® = A(E).
() clearly £ € D';
(i) supposeB;, By € D' with B; C By, then forA € £ we have

(BQ\Bl)ﬂA:(BgﬂA)\(BlmA)EA(S),

because\ (&) is ad-system, sdBs \ By € D';
(ii) finally, if B, € D' andB,, / B, thenforA € £

B,NA/BnNnAecA) = BeD.
Now consider

D'={BecA(): BnAcA(&)forallAc A(£)} CD".
Then& C D" becaus®’ = A(E). We can check thab” is ad-system, just as we did fdp'.
HenceD” = A(€) which shows that\ (&) is ar-system. O

Theorem 1.6. Uniqueness of extension

Let £ C P(F) be a w-system. Suppose that;, uo are measures orv(€) with
w(E) = p2(F) < co. If ug = pz oné thenuy = pg ono(€).

Equivalently, ifu(E) < oo the measurg. ono(€) is uniquely determined by its values on the
m-systent.



Proof. ConsiderD = {4 € o(&) : w(A) = ua(A)} C o(€). By hypothesisE € D.
For A, B € Dwith A C B we have

p1(B\ A) = p1(B) — p1(A) = p2(B) — p2(A) = p2(B\ A) < oo,
thus alsoB \ A € D. If A, € D, n € N, with A,, /" A, then
pi(A) = lim i (An) = lim po(An) = pa(A) = A€D.
ThusD C o(€) is ad-system containing the-system&, soD = ¢ (&) by Dynkin’s lemmal

These theorems provide general tools for the construction and characterisation of measures
and will be applied in a specific context in the next subsection.

1.4 Lebesgue(-Stieltjes) measure
Theorem 1.7. There exists a unique Borel measuren (R, ) such that
1((a,b]) =b—a, foralla,beRwitha <b.

The measurg is calledLebesgue measumn R.

Proof. (Existence) LetR be the ring of half-open intervals. Consider the set function
u(A) =30 (b — a;), whereAd = |J 7, (a;, b;], n € No. We aim to show that is countably
additive onR, which then proves existence by Cagldory’s extension theorem.

Sinceu(A) < oo for all A € R, by Lemma 1.3 (iii) it suffices to show thatis continuous
from above af). Suppose not. Then there exists 0 and A,, \, () with 1(A,,) > 2¢ for all n.

For eachn we can findC,, € R with C,, C A,, andu(A, \ C,) < 27" (see problem 1.9 (b)).
Then

(AN (€N NC) €A\ Cr) €Y A\ ) < Y e27F =,
k=1 k=1 k=1

and sinceu(A,,) > 2e we haveu(C1N...NCy) > eand in particulac; N...NC,, # 0. Thus
K,=Cin...nC,, n € Nisamonotone sequence of compact non-empty sets. Thus there
exists a sequende, ) ,en With z,, € K, which has at least one accumulation paintsince all

r, € K1 which is compact. Sincé&,, \, * € (e Kn. Thus® # (), oy Kn € Npen An

which is a contradiction tet,, \, 0.

(Uniqueness) For eache Z define

pn(A) = p((n,n+1]NA) forallAcB.

Thenyu, is a probability measure ofR, ), so, by Theorem 1.6, is uniquely determinded
by its values on ther-systemZ generating3. Sinceu(A) = >, ., in(A) it follows that is
also uniquely determined. O

Definition 1.9. A C R is callednull if A € B € B with u(B) = 0. Denote byN the

set of all null sets. Thel = {B UN :beB, N ¢ /\/’} is thecompletionof B and is called
Lebesguer-algebra The sets inC are called_ebesgue-measurable setd_ebesgue sets

10



Remark. The Lebesgue measugecan be extended t6 via (see problem 1.10)
AMBUN) :=u(B) forall BeB, NcN.

In some books onlW is calledLebesgue measuréhis makes sense e.g. in analysis, where
one usually works with a fixed measure spéRe., \).

Theorem 1.8. B C £ C P(R). Moreove?
card(B) = card(R) = ¢ whereas card(L) = card(P(R)) = 2°.

Proof. (i) According to problem 1.45 is separable, i.e. generated by a countable set sys-
tem€&. Thuscard(B) < card(P(£)) = c. On the other hand{z} € B for all z € R

and thuscard(B) = ¢. With problem 1.10 the Cantor sét C R is uncountable and thus
card(C) = c. Since alsou(C) = 0, with Definition 1.9 we haveP(C) C L and thus
card(£) = card(P(R)) = 2° > c.

(i) Using the axiom of choice we construct a subset/of [0, 1] which is not inL:

Define the equivalence relatienonU by x~y if xz—y € Q.

Write {E; : i € I} forthe equivalence classessofandlet R = {¢; : i € I} bea
collection of representatives € F;, chosen by the axiom of choice. Th&rcan be partitioned

U:UEi:U U (ei+q) = L-J U(eﬂrq): U (R+7q),

iel i€l geQn|0,1) qeQNIo,1) i€l qeQNIo,1)
N—_———
=R+q

where+ is to be understood modulo Supposer € £, thenR+q € L andA(R) = A(R+q)
for all ¢ € Q by translation invariance of. But by countable additivity ok this means

Y OAR) =AMU) =1,
geQn[o,1)

which leads to a contradiction for eith&(R) = 0 or A\(R) > 0. ThusR & L. O

Remarks. (i) Every set of positive measure has non-measurable subsets and, moreover:
PACL < MNA=0.

(i) There exists no translation invariant, countably additive set functiorP@R) with
1([0,1]) € (0, 00).

Definition 1.10. F' : R — R is calleddistribution functionf

(i) Fisnon-decreasing (ii) F'is right-continuous, i.e.lim F(z) = F(x) .

'\, T0
F is aprobability distribution functiorif in addition

(iii) lim F(z)=1, lim F(z)=0.

3Notation: Thecardinality of a countable set (such &kor Q) is Xo, for a continuous set (such &N), R or
the Cantor se€’) it is 2™ = c. For power sets of the latter we just writerd (P (R)) = 2°.

11



Proposition 1.9. Let ;. be a Radon measufen (R, B). Then for every: € R

() x> . . _ _
F.(z) := {—u((wﬂ”]) e<r (in particular F(r) = —pu(0) = 0)
is a distriburion function with 4((a,b]) = F,.(b) — Fy(a),a <b.

Also F,. 4+ C'is a distribution function with that property for adl' € R.

TheF, differ only in an additive constant, namelyF,.(z) = Fy(z) — Fo(r) forall » € R.

Proof. F, , by monotonicity ofx and u((a,b]) =
tion. Forz, N\, z > ritis F.(z,) = p((r,z,]) \,
measures. For,, \, r we have(r, z,,] \, ) such that F,
The F,. differ only in a constant, since for all > r

(@) = p((r,2]) = p((r,2]) = Fo(z) = Fo(r) = Fy(2) + Fo(r) =0,
andF,(r) = 0 = Fy(r) — Fo(r) . Both statements follow analogously fer< 0. O

Fu(b) — Fy(a) for b > a by defini-
(r,z]) = Fo(z ) by continuity of

u( v
( p(0) = 0= Fp(r).

X
r xn)

Remarks. (i) The distribution functions for the Lebesgue measureféfe) = x +r,r € R.

(i) Note that forz,, /" = we have(z,,z] / {x} # 0, so thatF, as defined in Proposition
1.9 is in general not left-continuous.

(i) If wis a probability measure one usually usesdbmulative distribution function
CDF,(z) := F_oo(z) = p((—00,2]) .

0,rx<a

E.g. for the Dirac measui®, concentrated i € R, CDF;, (x) = {1 e a

On the other hand, a distribution function uniquely determines a Radon measure.

Theorem 1.10. Let F' : R — R be a distribution function. Then there exists a unique Radon
measure:r on (R, B), such that

pr((a,b]) = F(b) — F(a) foralla<b.

The measurg is called theLebesgue-Stieltjies measwkF'.

Proof. As for Lebesgue measure, the set functignis well defined on the rin@R via

p(A)=> (F(b;) — F(a;)) where A=d](asbi]
=1 =1

The proof is then the same as that of Theorem 1.7 for Lebesgue measure. O

Remark. Analogous to Definition 1.93 can also be completed with respect to the Lebesgue-
Stielties measurg . However, the completiod,,. depends on the measyig. Although L

is much larger thaiB (see Theorem 1.8), it is therefore preferable to work with the measure
space(RR, B), since it is defined independent of the measure angd alwill have the same
domain of definition.

%i.e. u(K) < oo for K € B compact

12



1.5 Independence and Borel-Cantelli lemmas

Let (E,E,P) be a probability space. It provides a model for an experiment whose outcome
is random. FE describes the set of possible outcom&dhe set of events (observable sets of
outcomes) an@®(A) is the probability of an everd € £.

Definition 1.11. The event§ A;);cs, A; € &, are said to bendependenif

IP’( N Ai) = [[P(4:) for allfinite, nonempty/ C I .

icJ iceJ

Theo-algebrag&;).cr, & C & are said to bendependenif the eventg A;);c; are independent
for any choiceA; € &,.

A useful way to establish independence of iwalgebra is given below.

Theorem 1.11. Let&,, & C £ ber-systems and suppose that
P(A; N Ay) =P(A1)P(A3) wheneverd; € &, Ay € &, .

Theno (&) ando (&) are independent.

Proof. Fix A; € & and define the measurgsy by
w(A)=P(A1NA), v(A)=P(A;)P(A) forallAecf&.

w andv agree on ther-systemé&,; with u(E) = v(E) = P(A4;) < oo. So, by uniqueness of
extension (Theorem 1.6), for all; € & and A, € o(&;

P(A; N Ag) = p(A2) = v(Ag) = P(A;) P(A2) .
Now fix Ay € o(&;) and repeat the same argument with
W(A):=P(ANAs), V/(A):=P(A)P(A)
to show that for alld; € o(&1) we have P(A; N Ay) = P(A;) P(As). O

Remark. In particular, thes-algebrasr ({A}) ando ({42}) generated by single events are
independent if and only ifi; and A, are independent.

Background. Let (ay,),cn be a sequence iR. Then lim a, does not necessarily exist,

n—oo

e.g. fora,, = (—1)". To nevertheless study asymptotic propertie&Qf),cn consider

a, = inf a, and @, =supay, .
k>n k>n

Thena,, / anda, \, are monotone and both have limitskn= R U {—oc, +oc}. Define

liminfa, := lim inf a5 and limsupa, := lim supay ,
n— 00 n—oo k>n n—o00 n—00 >

which are equal to the smallest and largest accumulation poitt,0f.cn, respectively. In
general liminfa, <limsupa, since a,, < amyn < a, forallm,n € N. They may be

n—00 n—00
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different, as e.qg. hmmf( Nh=-1<1= hmsup( 1)™ . Both are equal if and only if
lim a, exists. Note that a sequence may have much more than two accumulation points, e.g.

n—o0
for a,, = sinn the set of accumulation pointsjis1, 1], hm 1nf ap, = —1 andlimsup a,, = 1.

n—oo

We use the same concept for a sequentg) ey of subsets of a sef. Note that"),~.,, Ax
andJ,,, Ax “\, are monotone im.

Definition 1.12. Let (A,,),en be a sequence of setsih Then define the sets

lﬂngn = U ﬂ A, and limsup A, := ﬂ U A .

neNk>n n—oee neNk>n

Remark. This definition can be interpreted as

liminf A4, = {:Jc : IneNVE>nx € Ak} = {x . x € A, for all but finitely manyn}

n—oo

limsup 4, = {x :VneNdk>nx € Ak} = {a: . x € A, for infinitely manyn} .

n—oo

One also writeéim inf A,, =" A,, ev.” (eventually) andim sup A,, =" A, i.0." (infinitely often).

n—oo n—oo

Properties. (i) Let £ be as-algebra. If4,, € £ foralln € Nthenliminf A,,, limsup A4,, € £.

n—00 n—o0

(i) liminf A,, C limsup A,, since x € A, eventually= z € A, infinitely often

n—oo n—o0

(i) (limsup A,)° =liminf AS since z € A, finitely often< = € AS eventually.

n—oo n—oo

Lemma 1.12. First Borel-Cantelli lemma
Let(E, &, 1) be a measure space afd,,),cy a sequence of sets &

f ) u(An) <oo then p(Anio)=0.
neN

Proof. (A4, i.o.) (ﬂ UAk)<M(UAk)§ZM(Ak)_>O for n — oo. 0

neNk>n k>n k>n

Lemma 1.13. Second Borel-Cantelli lemma
Let(E, £, P) be a probability space and suppose tlidt, ), are independent.

> P(4,) =o0, then P(A,io)=1.
neN

Proof. We use the inequality — a < e~®. With (A4,,),en also (A4S ),en are independent
(see problem 1.11). Then we have forale N

P 47) = [T (1-P(Aw) <exp | = S P(A)] =0

k>n k>n k>n
Hence ]P’(Ani.o.):l—P<linnli£fA,i) :1—P(U ﬂAz) —1. 0
neNk>n

14



2 Measurable Functions and Random Variables

2.1 Measurable Functions

Definition 2.1. Let (E, &) and(F, F) be measurable spaces. A functipn E — F'is called
measurable (with respect tband F) or £/ F-measurablef

VAeF : fYA)={zeE: flz)eA}e€& (shortif '(F)CE).

Often (F,F) = (R,B) or (R,B) with the extended real lindR = R U {—o0, 00} and
B={BUC :be B C C {-o00,00}}. Ifin addition E is a topological space with
&€ = B(E), f is calledBorel function

Remarks. (i) Every functionf : E — F'is measurable w.r.?(E) andF.

(i) Preimages of functions preserve the set operations

T(Ua)=U s, 7@ = (),

neN neN

sinceeg. {r € E: f(x) ¢ A} ={x € E : f(z) € A}°. Note that this second
property does not hold for images since in gengfal®) C (f(A))c for A € €.

(i) With (i) the following holds for any functiory : £ — F:
If F is ac-algebra onF" theno(f) := f~1(F) is ac-algebra onE, calleds-algebra
generated byf. This is the smallest-algebra on® w.r.t. which f is measurable.
If £ is ac-algebra onE thenC = {A C F : f~!(A) € £} is the largest-algebra on
F w.r.t. which f is measurable. Note thét# f(&), which is in general not a-algebra.

Lemma2.1. Letf: E — F andF = o(A) for someA C P(F).
Thenf is £/ F-measurable if and only if f=1(A4) € & forall A € A.

Proof. According to Remark (iii)C := {4 C F : f~(A4) € £} is ac-algebra onF.
Now if A C C theno(A) = F C C and f is £/F-measurable. On the other hand fifis

£/F-measurable then certainfy 1 (A) € Eforall A€ AC F. O
Lemma2.2. f: E — Ris £/B-measurable if and only if one of the following holds:

(i) fﬁl((—oo,c) {zeE: flz)<c}ef forallceR,

(i) f'((—oc,0))={z€eE: f(z)<cte& forallceR,

(iii) f ' (je,o0)) ={z€E : f(zx)>c} €& forallceR,

(iv) ' ((c,00))={z€E: flz)>c} €& forallceR.

Proof. (i) In problem 1.3 it was shown th# = o ({(—c0, ] : ¢ € R}). The statement then
follows with Lemma 3.1.
(i) — (iv) Show analogously tha8 is generated by the respective sets. O
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Lemma 2.3. Let £ and F' be topological spaces andl : £ — F be continuous (i.e.
f~1(U) C E open whenevell C F open). Thery is measurable w.r.3(E) and B(F).

Proof. Let7 = {U C F : U open} be the topology or". Then for allU € 75, f~*(U) is
open and thug ~1(U) € B(E). SinceB(F) = o(7r), f is measurable with Lemma 2.1. O

However, not every measurable function is continuous. Next we introduce another important
class of functions which turn out to be measurable.

Definition 2.2. Let14 : £ — R be the indicator function ot C E.
f+ E — Ris calledsimpleif

n
f:ZcillAi for somen € N, ¢; € Rand4,,..., 4, CE.
=1

We call this astandard representatioof f if the A; # 0, ¢; # ¢; andA; N A; = O fori # j. f
is called€-simpleif there exists a standard representation suchAhat £ foralli = 1,...,n.
Let S(€) denote the set of al-simple functions.

Remark. (i) Simple fct's are more general thatep functionswhere theA; are intervals.

(i) Standard representations are not unique, the order of indices may change; andya
or may not take the value

Lemma 2.4. Let (E, £) be a measurable space.
(i) A simple functioryf : E — R is £/B-measurable if and only if € S(&).

(i) S(€)isavectorspace,i.e.ffi, fo € S(E)then; fi+Aafe € S(E) forall A1, A2 € R.
In addition f; fo € S(E).

Proof. (i) Let f = > ¢; 14, be a simple function in standard representation.
=1
If A;eEfori=1,...,nthenforallBe B, f}(B)= |J A €&.
i:c;, EB

On the other hand, ifi; ¢ £ for somei thenf~*({c;}) = 4; ¢ £ and f is not measurable.
(i) Let fi1, fo € S(€) with standard representatioffis= > ; ¢; 14, andfo = >, d; 1p,.
DefineC;; = A; N B;. Then the{C;;} are disjoint and eact’;; € £ as well as all possible
unions ofC;;s. fi f2 andA; fi + A2 f2 are constant on eaat}; and thus-simple. O

Remark. In particular,14 : £ — R is £/B-measurable ifand only ifl € £.

Lemma 2.5. Let f; : By — Es and fo : Ey — Es. If f1is & /&-measurable and; is
&y /Es-measurable, theffs o f1 : B3 — Esis & /E3-measurable.

Proof. For everyA € &, (f2 0 f1)H(A) = fi ' (f; 1(A)) € & sincefy ' (A) € &. =
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Proposition 2.6. Letf,, : E — R, n € N, beS/E—measurabIe. Then so are

(i) c f1 forallce R (ii) f1 + fg (iii) f1 f2
(iv) irellf\l fn (v) sup fn (vi) liminf f, (vii) limsup f, ,
n neN n—o0

n—oo

whenever they are definetb(— oo and % are not well defined).

Remarks. (i) Notation: inlf\l foiz—inf{fy(z) : neN} eR and
ne

liminf f,, : x — lim (inf{fk(x) k> n}) cR.
(i) Inparticularf; V fo = max{fi, fa} andf; A fo = min{ f1, fo} are measurable.
Whenever it exists, alsdim f,, is measurable.

n—oo

(iiy f=f"—f meas.& fr=fvoandf~ = (—f)vOmeas.= |f|= fT+f meas.
The inverse of the last implication is in general false, ¢'g=14 andf =1 4. for AZE.

Proof. (i) If ¢ # 0 we have for ally € R
{zeE:cfi(z)<y}={z€E: fi(z) <y/c} €& since f; measurable

E,y>0

D y<0 € &£, s0c f1 is measurable for all € R.

Ifc:OitiS{:UEE:OSy}:{

(i) see example sheet

(i) f1f2=3((fi + f2)> = (fi — f2)?) is measurable with (i), (i), Lemma 2.3 and 2.5,
sinceg : R — R, g(x) = 22 is continuous and thus measurable.

(iv) — (vii) see example sheet O

Definition 2.3. Let (£, £) and(F, F) be measurable spaces and/ldte a measure of¥, £).
Then any¢ /F-measurable functiorf : £ — F induces thédmage measure v = o f1
onF,givenby v(A)=pu(f~'(A)) forallAe F.

Remark. v is a measure sincg 1(A4) € £ for all A € F and f~! preserves set opera-
tions as has been shown above.

2.2 Random Variables

Let (2, A, P) be a probability space and’, £) a measurable space.

Definition 2.4. An A/E-measurable functioX : Q@ — FE is calledrandom variablein £
or simplyrandom variablg(if £ = R). The image measugex =Po X! on(FE, &) is called
law or (probability) distributionof X .

For E = R the cumulative probability distribution functidiy = CDF),, : R — [0,1] with

Fx(z) = px((—00,2]) =P({w € @ : X(w) <z}) =P(X <z)

is calleddistribution function ofX.
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Remark. By Proposition 1.9 and Theorem 1.10x is characterised by'y. Usually ran-
dom variables are given by their distribution function without specifyifig.4, P) and the
functionX : Q — R.

Definition 2.5. The random variableéX,,),cn defined on(2,.4,P) and taking values in
(E, ), are calledndependenif the o-algebrasr(X,,) = X 1(£) C A are independent.

n

Lemma 2.7. Real random variabletX, ), cn are independent if and only if
P(X1 <ap,...,Xp <ap) =P(Xq <) P(Xp < )

forall z1,...,2, € R,k e N.

Proof. see problem 2.5 for two random variabl&s, X5.
This extends toX, . . . , Xj, noting that by continuity of measures e.g. o 3
P(X1 <21,X3 <23) = lim P(X; <1, Xy <29, X3 < 3) =

To—00

= lim ]P(Xl < :Cl)IP(XQ < .CUQ)]P)(X3 < wg) = ]P(Xl < :Cl)]P)(Xg < .CCg) . ]

T2—00

Remark. This Lemma provides a characterisation of independence using only distribution
functions. But to relate this to the definition, the functiofis have to be defined on the same
probability space. Although one usually does not bother to define them, at least it has to be
possible to do so. This is guaranteed by the next theorem which is, although rarely used in
practice, of great conceptual importance. It is split in two parts, the secon is Theorem 2.7.

Theorem 2.8. Skorohod representation theorem — part 1

For all probability distribution functionsfy, F,... : R — [0, 1] there exists a probability
space(2, A, P) and random variables(;, X, ... : 2 — R such thatF,, is the distribution
function ofX,, for eachn. TheX,, can be chosen to be independent.

Proof. see problem 2.4, for independence see hand-out 2

Remark. (X,,),>0 is often regarded as stochastic proceswith state spacé’ and discrete
timen. Theo-algebra generated by, ..., X,

fg:dxmuwxgzau3§4@DgA,
=0

contains events depending measurablyX@n. . . , X,, and represents what is known about the
process by time.. F,, C F,4+1 for eachn and the family(F,,),cn is called thefiltration
generated by the proce&x’, ),,>o.

Definition 2.6. Let (X,,),cn be a sequence of random variables. Define

Ty = 0(Xni1, Xnia,...) (\inn) and 7T=[)T7,CA.
neN

ThenT is called theail o-algebraof (X,,),en and elements ifl” are calledail events
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Example. A = {w : lim X, (w)exists € 7 since A = {w : lim Xyin(w) exists;

for every fixedN € N. Similarly, {w : limsup X, (w) =137} € T .

Theorem 2.9. Kolmogorov's0-1-law

Supposé X, ).cn IS a sequence of independent random variables. Then every tail event has

probability 0 or 1. Moreover, anyZ -measurable random variablg is almost surely constant,
ie. P(Y =c¢)=1 forsomeceR.

Proof. Theo-algebraF, = o(Xy,..., X,,) is generated by the-system of events
A= {Xl <z1,...,X, §$n}7

wheread’,, is generated by the-system of events
B={Xnt1 <@nt1,-- - Xngk < Ty}, keN.

SinceP(A N B) = P(A) P(B) for all suchA and B by independencef,, and7,, are indepen-
dent by Theorem 1.11 for ali € N. HenceF,, and7 are independent, since C 7,, 1.
Sincel/,, F,, is aw-system generating the-algebra Fo, = 0(X,, : n € N), F, andT
are independent, again by Theorem 1.11. But F., and thus everyl € 7 is independent
of itself, i.e.

P(A)=P(ANA)=PAPA) = PA) e{0,1}.
Let Y be a7-measurable random variable. Thep(y) = P(Y < y) takes values i{0, 1},
SOP(Y =c¢)=1for c=inf{y e R : Fy(y) =1}. O

Remark. Kolmogorov’'s0-1-law involves ther-algebras generated by random variables, rather
than the random variables themselves. Thus it can be formulated without using r.v.s;
Let (F.)nen be a sequence of independerélgebras inA. Let A be a tail event, i.e.

AeT, where T= ()7, with Tnza(Ufm).

neN n>m

ThenP(A) =0orP(A) = 1.

2.3 Convergence of measurable functions

Let (E, &, 1) be a measure space.

Remark. 'Convergence’ to infinity
Let (z,,)nen be a sequence IR. Here and in the following we say that

Tp —oo f VyeRINeENVn>N : z, >y,

andz,, / oo ifin additionz,,+1 > z, forall n € N (analogously:,, — —oc andz,, \, —o0).
Remember that,, is unbounded form aboviéevVy € RVN e Ndn > N : z, >y, i.e.
Yy e R : z, >y forinfinitely manyn, whereasc,, — oo meansthaty ¢ R : z, > y for
all but finitely manyn. This is not convergence in the usual sense, since dither z,,| is not
well defined or is equal too.
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Definition 2.7. We say thatd € £ holdsalmost everywheréshorta.e), if u(A°) = 0. If
w is a probability measurg.( E') = 1) one usesmost surely(shorta.s) instead.
Let f, f1, fo, ... : E — R be measurable functions. Say that

() fn— f everywhererpointwiseif f,(z) — f(x) forallz € E,

(i) f. — f almosteverywhergf, =% £), almost surely(f,, =% f) for u(E) = 1, if

p({z e E : fulx) A f(2)}) =pulfn ) =0,

(i) f, — f in measurein probability (f, 2, f)for u(E) =1, if

Ve>0: u(lfn—fl>€ —0 for n—oo.

Theorem 2.10. Let (f,,)nen be a sequence of measurable functions.
(i) Assume that(F) < co. If f,, — f a.e.thenf,, — fin measure.

(i) If f, — fin measure then there exists a subsequéngé&,.cn such thatf,,, — f a.e..

Proof. (i) Setg, = f, — f and suppose,, — 0 a.e.. Then for every > 0

(190l <€) = () {lgal < €}) / allgal < € ev.) = plgn — 0) = p(E)

m>n

Henceu(|gn| > €) — 0asn — oo andf,, — f in measure.
(i) Supposey, = f, — f — 0in measure. Thug(|g,| > %) — 0 for everyk € N and we
can find a subsequen¢ey,)xcn such that

p(lgn,| > 1) <27% andthus Y pu(lgn,| > 1) < oo
keN

So, by the first Borel-Cantelli lemma (Lemma 1.12)(|gn, | > 1 .0.) = 0.
{Igny] > +1i.0.}° C {gn, — 0} and thus

11(gny, 72 0) < p(|gnye| > £i0) =0,

S0gy,, — 0 a.e.. O

Definition 2.8. Let X, X1, X5, ... be random variables with distribution functioRsFy, Fs, . . ..
Say thatX; and X, areidentically distributedwritten asX; ~ Xy, if Fi(z) = Fa(z), z € R.

Say thatX,, — X in distribution(shortX, 2D, X) if for all continuity pointsz of F',

Fo(z)=P(X, <z) ->P(X <z)=F(zx) asn— .

Proposition 2.11. Let X, X1, X, ... be random variables on the probability spa¢e, A, P).
Then X, X = X, X and X, >ceR = X, ec.
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Proof. The first statement is proved on hand-out 2, the second follows directly from

n—oo

P(|Xn—c|>€¢)=P(X, >c+e)+P(X,<c—¢) — 0 foralle>0. O

Theorem 2.12. Skorohod representation theorem — part 2

Let X, X7, Xo, ... be random variables such thaf, — X in distribution. Then there exists a
probability spacg (2, A, P) and random variabled” ~ X,Y; ~ X3,Ys ~ X5, ... defined on
Qsuchthat Y, — Y a.s..

Proof. see problem 2.4

Example. Let X1, Xo,... € {0,1} be independent random variables with
P(X,=0)=1-1/n and P(X,=1)=1/n.

Then Ve>0:P(|X,|>¢)=1/n—0 asn— oo, i.e.X,— 0inmeasure.
On the other hand, >, P(X, =1) =00 and {X, =1} areindependentevents.
Thus with the second Borel-Cantelli lemma

P(X, 4 0)>P(X,=1i0.)=1, andthus X, 40 as..
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3 Integration
3.1 Definition and basic properties

Let (E, &, 1) be a measure space.

Theorem 3.1. Let f : E — [0, 00] be&/B-measurable. Theffi,(x) = U(gw A n defines
a sequence &f-simple, non-negative functions, such tliat ” f pointwise as, — oo.

Proof. We can write f,,(x Z La,,(z)27"k where

App = ffl([T”k:, 27" (k + 1))) fork <2"n and Agny,, = f*1<[n, ooD .

Sincef is measurable, so are the sds,,, and thusf,, € S(€) forall n € N.
From the first representation it follows immediately thiat () > f,.(x) for all z € E and
that|f,,(z) — f(x)] < 27" forn > f(x), or f,(x) T oo for f(x) = co. Thusf, ~ f. 0

This motivates the following definition.

Definition 3.1. Let f : E — [0,00] be an&/B-measurable function. We define thee-
gral of f, writtenas u(f) = /fd,u /fdu /f by

/Efdu:sup{[Egdu:965(5)70§9§f},

where/ gdy = ch u(Ag) is the integral of ar€-simple functiong : £ — R with
E

k=1
n

standard representatiory(z) = Z ck 14, . We adopto-0=0-00=0.
k=1
Remarks. (i) [ gdu is independent of the representation of &isimple functiong.

@iy If f,g: E— Rare&-simplethen: f<g = /fdpg/gdu and
E E

/(clf—i—czg)d,u,—cl/fd,u,—i—CQ/gdu forallcy,co € R.
E E E
Lemma 3.2. Let f : E — [0,00] be measurable andf,),.cn a sequence ir§(E) with
0< o/ f.hen [ fuda s [ .
E E

Proof. [ fodp < [ fdu foralln € N by definition of [, f du. It remains to show
that for any€-simpleg = >~} _, a4, < f (with standard representation amgl+ 0)

lim fnd,u>/gd,u.
E

n—oo
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Choose > 0and setB, := {z € E : fu(z) > g(x) —€}. ThusB, / E and foranyA ¢ &:

1W(Ba N A) 7 p(A).
Case (i) [p9du=o00 = pu(A;) =00 forsomere {1,...,n}anda, > 0. Then

/fndﬂz/fn]anﬂArdHZ/(g_G) ]anﬂArdM:(ar_e)H(BnmAr)_)oo
E E E

asn — oo, providede < a,..
Case (ii): [pgdu<oo = forA=J;_, Aitis u(A) < co. Then

/fnduZ/ fnﬂgnmAduz/@—e) L, adp =
FE FE E

—/g]anmAd,u—e,u(BnﬁA)—>/gd,u—e,u(A) asn — oo .
E E

This is true fore arbitrarily small and thus lim fndp > / gdi . a
E

n—oo E
Definition 3.2. Let f : E — R be a measurable function. Th¢i and f~ are measurable

with Proposition 2.6.f is called(u-)integrableif [, f*du < co and [, f~du < oo
and theintegral of f is defined as

/EfdMZ/Ef+du—/Ef‘dueR.

For random variableX : 2 — R the integral/ X dP = E(X) is also callecexpectation
Q

For A € £ andf integrable,f 1 4 is integrable and we write/ fdu:= / f1adpu.
A E

Remark. The integral can be well defined even fifis not integrable, namely if either
Jpftdu = oo or [ f~du = oo, it takes a valuetoo. In particular a measurable func-
tion f : E — [0, oc] is integrable if and only iff , f du < co.

Theorem 3.3. Basic properties of integration
Letf, g : E — R be integrable functions o, £, 11).

() Linearity: f 4 g and, foranyc € R, ¢ f are integrable with

/E(erg)du:/Efdqu/Egdu, /E(Cf)du:c/Efdu.

(i) Monotonicity: f>g = /fduz/gdu.
E E

(iii)fZOand/fduzo = f=0ae = /fd,u:().
E E
Let f : £ — R be measurable. Then

(iv) fintegrable < |f|integrable, and in this case/ |fldu > ‘/ fdu).
E E
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Proof. (i) If f,g > 0 choose sequences &fsimple functions witt) < f,,  f and0 <
gn /" g.- Thenf,, + g, is E-simple for alln € N and

/E(fn+gn)du=/Efndu+/Egndu.

Sinceogfn+gn/f+gitfoIIowsbyLemma3.2:/(f+g)du:/fdM+/9dl‘-
E E E
Forf,g: E—Rwehave (f+g)" - (f+g)~ =f"—f +g"—g  andthus

f+9) "+ +9g =(F+9) +/+g".

Since each of the terms is non-negative we also have

/E(f+g)+dﬂ+/Efdu+[Egdu=/E(f+g)du+/Ef+dﬂ+/Eg+du

and the statement follows by reordering the terms.

Forc f, ¢ > 0, analogously, and far < 0 use 0:/(f—f)du:/fdu+/(—f)du.
E E E

(i) With > g using (): /Efdu=/E(f—g)du+/Egdu2/Egdu-
—_—

>0

(iii) Let f > 0 and suppose that(f > 0) > 0. Then, since( f > 0} = U, enlf = 1/m},
we haveu(f > 1/n) = e > 0 for somen € N. Thusf > %llle/n and [, fdu>e€/n>0.
Ontheotherhandlegt=0ae. = f* f-=0ae = [,ftdu=[,f du=0
by definition, sincef, g du = 0 for all £-simple0 < g < f.

+ _ f —
(iv) Follows with |f|=fT+ f~ > {;_ - §+_ {f and (i), (ii). O
Remark. Let f, g : E — R be measurable anfl= g a.e.. Thenf is integrable if and only if
is integrable, and theff, f di = [, g du, which is a direct consequence of (iii). In particular,
wheneverf > 0 a.e. the integraIfE fdu € [0, 00] is well defined.

Proposition 3.4. Let(E, £, 1) and (F, F, v) be measure spaces and suppose that o f !
is the image measure of a measuraffle ¥ — F. Then

/ gdv = / (go f)du forallintegrableg : F — R..
F E

Remark. In particular for random variableX with distribution i x this leads to the useful
formula E(g(X)) = / g(z) ux(dz) .
R

Proof. Forg = 14, A € F, the identityv(A) = p(f~'(A)) is the definition ofv.

The identity extends to alF-simple functions by linearity of integration, then to all measurable
g : F — [0, 00] with Lemma 3.2, using the approximatiogis = 27" [2"g| A n, and finally to

all integrableg = gt — g~ : F — R again by linearity. O
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Examples. This notion of integration includes in particular Riemann integrals as is discussed
in section 3.3, but is much more general than the latter.

(i) [gfdo, = f( ) for all integrablef : £ — Randy €E.
Forg = Z crla, € S(E€), [pgdo, = Z cxdy(Ax) = g(y), since in standard
k= k=
representatlod (Ag) = 1 for exactly onek. So for€-simplef, /" f: E — [0, 0]

/fdéy— lim fn do, = hm faly) = f(y) byLemma3.2

n—oo

which extends tgf : E — R by linearity of integration.
(i) Let(E,&) = (N, P(N)) andu be the counting measure. Then for Al N — R

[ rau=tim [ g ngu—»hm»ijf p({k}) = 3 S (k)
k=1

By our definition: f integrable < |f|integrable < > |f(k)| < co.
k=1

Sof(k) = (—1)*/k is not integrable, althoug% (=1)*¥/k =1n2 ("= 0o — o).
k=1
3.2 Integrals and limits

We are interested under which conditiofis— f implies [ f, dp — [lim f,, dp.
Let (E, &, 1) be a measure space.

Theorem 3.5. Monotone convergence
Letf, f1, f2,... : E — R be measurable witlf,, > 0 a.c. foralln e Nand f,,  f a.e..

Then / fndp / fdpu.
E E
Proof. Suppose first thaf,, > 0 andf,,  f pointwise.
For eachn € N let (f¥)zcn be a sequence éEsimple functions witld < f* 7 f,, ask — oo

and letg,, := max{f{‘, cee f];} . Theng, is an increasing sequence &fsimple functions
with f} < g, < f,, for eachm < n, n € N. Taking the limitn — oo we get

fm <g<f foreachm e N withg= lim g,: E — [0,00] .
Taking the limitm — oo givesg = f. Hence/ fdu= lim / gn dp by Lemma 3.2. But
E n— JE

/f,f}bdug/gndug/fndu for eachm < n,n € N and so with
E E E

n— oo : /mws/fMSMg/nw
E E n—oo Jg

m—00

m — 00 lim fmd,u</fd,u§ lim/fndu.
E n—xJE
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Now, letf, > 0a.c.andf, / f a.c.. SinceN = U, ({fn < O0}U{fn > fat1})U{fn / [}

is a countable union of null setg(/N) = 0. Then use monotone convergencehto get

/fndu /fndu// fdu= /fdu .

Lemma 3.6. Fatou’ilemma
Let f1, fo,...: E — R be measurable functions wiify > 0 a.e. forall n € N. Then

/ liminf f, du < lim inf/ fndu .

E " n E

Proof. As previously,N = (J, {f» < 0} is a null set, so supposé > 0 pointwise w.l.0.g..

Letg, := ]ir>1f f1. Then theg,, are measurable by Proposition 2.6 apnd,” lim inf f,,.

So sincef,, > g, and by monotone convergence:| f, du > / gn dp — / liminf f,, du
E E E "

which proves the statement, takiligh inf,, on the left-hand side. O

Theorem 3.7. Dominated convergence
Let f, f1, f2,... : E — R be measurable and, g1, gs,... : E — [0, 0] be integrable with
fn— fae,gn— gae,|fs] < gnae forallneNand [, g,dp — [5gdu < oo.

Thenf and thef,, are integrable and / fndp — / fdu.
E E
Proof. f, f, are integrable since witly,,| < g, and|f| < g, [ |faldp, [ |f]dp < co.
As before,N = |, {fn > lgnl} U{fn # f} U{gn # g} is a null set which does not affect

the integral, so we assume pointwise validity of the assumptions w.l.0.g..
Wehave 0<g,+ f, g+ f, so liminf,(9,+ fn) =9+ f. By Fatou'slemma,

Jgdu+ [ fdu= [liminf(g,+fn) du < lminf [(gn+fn) du = [ gdp+liminf [ £, dy
Jgdp= ] fdp= [liminf(gn—fn) dp < liminf [ (gn—fn) du = [ g du—limsup [ fu du
Since [ g dp < oo it follows that

[ fdp < lin%linfffndu <limsup [ frdp < [ fdu,
provingthat [ f,du— [ fdp asn — oo O
Remark. If g, = g for all n € N this isLebesgue’s dominated convergence theorem

Corollary 3.8. Bounded convergence
Letu(E) < oo and f, f1, fo : E — R be a measurable witlf,, — f a.e. and|f,| < C a.e.

for someC' € R and alln € N. Thenf and thef,, are integrable and / fndp — / fdu.
E E

Proof. Apply dominated convergence with = C, noting thatf g du = C u(E) < oc.
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The following example shows that the inequality in Lemma 3.6 can be strict and that domi-
nation by an integrable function in Theorem 3.7 is crucial.

Example. On (R, B, i) with Lebesgue measuyetake f, = n? L(0,1/n)-
Thenf, \, f = 0 pointwise, but [ fdu=0< [ fpdp=n— o00.

Remarks. Equivalent series versions of Theorems 3.5 and 3.7:

(i) Let(fn)nen fn : E — [0,00] measurable. Then;/Efn dp = /E (; fn) du .

(i) Let(fn)nen, fn: E — R measurable. IS f, converges an#Z fk,‘ < g, whereg is
00 oo (0.)
integrable, theny_ f,., f, are integrable and Z/ frdp = / (Z fn> du .
n=1 n=1"F L

Definition 3.3. Let u, 1, pa, . .. be measures ofR, B). Say thatu,, converges weaklo 1,
written p,, = p, if

/ fdu, — / fdu forall f € Cp(R,R), i.e.f:R — Rboundedand continuous
R R

Theorem 3.9. Let X, X, Xo, ... be random variables with distributions 1, ps, . . ..
Then X, X & po=u (& E(f(X.)—E(f(X)) byProp.34.

Proof. SupposeX,, L. X. Then by the Skorohod theorem 2.12 there eXist- X and
Y, ~ X, on a common probability spad¢€, A, P) such that, f(Y,) — f(Y) a.e. since
f € Cy(R,R) (see also problem 2.6). Thus by bounded convergence

/Rfdun=/Qf<Yn>d%/ﬂf<Y>dP=/Rfdu SO Jin = 1t

Suppose:,, — p and lety be a continuity point of’y .

]l(foo,y}(x) y L ¢ (y7y+6)

14+(z—y)/0 , z & (y—4,y)
[t dn] < [ gsdu| where go(w) = { L+(y-2)/5 . 2 € ly.ytd)
R R 0 , otherwise

Ford > 0, approximatel ., by fs(z) = { such that

The same inequality holds fat, for all n € N. Then a1 — o

B, = Fx)] = | [ 1acnydin— [ 1y di] <
R R

<| [ s+ | [sdu|+| [ s [ sadu| ~2| [ gsan].
R R R R R

since f5, g5 € Cy(R,R). Now, | [pgsdu| < u((y —d,y+06)) — 0asd — 0, since
r({y}) =0,s0X, L. x. O
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3.3 Integration in R and differentiation

Theorem 3.10. Differentiation under the integral sign
Let(E, &, u) be a measure spac, C R be open and suppose that U x E — R satisfies
(i) = — f(t,x)Iisintegrable for allt € U

(i) t— f(t,z) is differentiable for all € F
(iii) ‘%(t, :z:)) < g(z) for some integrablg : F — Randallx € E,t € U
ThenZL (¢, ) is integrable for alk, the function? : U — R defined by F (¢

/ f(t,x) p(dx)
d [ of
is differentiable and p F(t)= : E(t’ x) p(dx).

Proof. Take a sequende, — 0 and set

gn(t, ) := flt+ hn’;z P AUL) @6{( t,x) .

Thenforallx € E,t € U, g,(t,x) — 0and|g,(t,x)| < 2g(x) foralln € N by the MVT
ot \bs -

(t,.) is measurable as the limit of measurable functions, and integrable]%ﬁke: g
Then by dominated convergenceas- co
F(t+h,) - F(t)

of
hn

875( ,x) p(dr) = /Egn(t,x) wu(dz) — 0

Remarks. (i) The integral orR w.r.t. Lebesgue measureis calledLebesgue integral

We write /Rfdu:/_c:f(x)dx and /ﬂj\)f]l(&b]du:/abf(x dx

(i) Llnearltyofthemtegralthenlmplles/ f(z d:p-/ f(z dx+/ f(z

for all ¢ € R, using the convent|07[ f(z / f(z

Theorem 3.11. Fundamental theorem of calculus

(i) Letf :[a,b] — R be a continuous function and sef, ( / f(z
ThenF, is differentiable orja, b] with F, = f.

(i) LetF : [a,b] — R be differentiable with continuous derivatiye Then

b
/ f(z)dx = F(b) — F(a) .

28



Proof. (i) Fixt € [a,b). Ve>030>0 : |z—y|<d = |f(x)—f(t)|<e. So for0<h<d,

Fa(t"f—h})l—Fa(t) _f(t)’ - i‘/tﬁh (f(z) = f(1)) dw’ < Z/tt+hdx: €.

Analogous for negativé andt € (a, b, thusf, = f.
(i) (F—F,)'(t)=0forallte (a,b) sobythe MVT

b
F(b) — F(a) = Fa(b) — Fa(a) = / f(z)da . o

So the methods of calculating Riemann integrals also apply to Lebesgue integrals.

Proposition 3.12. Partial integration and change of variable

(i) Letu,v € C'([a,b],R), i.e. differentiable with continuous derivative, then
b b
/ u(z) v’ (z) dz = [u(b) v(b) — u(a) v(a)] —/ o' (z) v(x) dw .
(i) Letg € C*([a,b],R) be strictly increasing. Then

o(b) b
/Cb O / F(6()) ¢ (@) de forall f € C([d(a). 5(B)].R) .

Proof. see problems 2.12 and 2.13

Definition 3.4. Let (E, &, ) be a measure space afid: £ — [0,00) be integrable. We
say a measure on (E, £) hasdensityf with respect tqu, shortv = f - , if

u(A):/fdu forallAe&.
A

Lemma 3.13. Let (E, &, 1) be a measure space. For every integralfle £ — [0,00),
v: A~ [, fduisameasure ofE, &) with u-densityf and

/gdl/:/ fgdu forallintegrableg: E — R ..
E E

Let u be a Radon measure diR, B) with distribution function € C*(R,R). Thenyu has
densityf = F’ with respect to Lebesgue measure.

Proof. For the first part see problem 2.15(a).
b

With Theorem 1.10 and 3.11,4((a, b)) = F(b) — F(a) = / f(z)dx .

Sov coincides withf - 1, on ther-systemZ U {0} = {(a,b] : a < b} U{0} that generates.
Thus by unigueness of extension= f - 1 on B andv hasu-densityf. O
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3.4 Product measure and Fubini’s theorem

Let (Eq, &1, 1) and(Es, 2, p2) be finite measure spaces ald= F; x Es.

Definition 3.5. Theproducto-algebra & = & ® & := o(A) is generated by the-system
AZ{AleQ : A1€51,A2€(€2}.

Example. If By = E; = Rand&; = & = Bthen&; ® & = B(R?).

Lemma 3.14. Let f : E — R be&-measurable. Then the following holds:

(i) f(x1,.): B2 — Ris &-measurable for alk; € F.

(i) If fis bounded,f;(x;) ::/ f(x1,x2) ua(dxo) is bounded and;-measurable.
Es

Proof. (i) Forfixedz; € E; define T,, : Es — E by T, xo= (x1,22).
For A=A xA e A, T;'A= {%22222
Ty, is E;/E-measurable. S¢(x1,.) = f(Tx,(.)) is E2/B-measurable with Lemma 2.5.

(i) By (i) and sincef is boundedf; is well defined and bounded, singg(FE>) < cc.

For f = 14, fi(z1) = p2(7,,'(A)). Denote D = {A € £ : fismeasurablg,
which can be checked to belesystem. Since fi(x1) = 14, (x1) p2(A2) for A = A; x Ag,
ACD andthus £ =0(A) =D with Dynkin’s lemma (1.5).

By linearity of integration the statement also holds for non-negéatigmple functions, and
by monotone convergence for all bounded, measurfbiging

€ & and thus with Lemma 2.1

fi(z1) = : JH (@1, w2) pa(das) — : (1, 22) pa(das) . m

Theorem 3.15. Product measure
There exists a unique measure= 1 ® e onE, such that

,U,(Al X Ag) = (Al) IU/Q(AQ) forall Ay € & andA; € & R

defined as ,LL(A) = / / ]lA(ZL‘l,{L‘Q);LQ(dl’Q) ,ul(dazl) .
Ey JE>

Proof. With Lemma 3.14 . is a well defined function off. Using monotone convergenge
can be seen to be countably additive and is thus a measure.

Sincel 4, x4, = 14, 14, the above property is fulfilled for al; € £ andAs € &.

Since A = {A; x Ay : A; € &} is aw-system generating and u(E) < oo, p is uniquely
determined by its values oA following Theorem 1.6 (Uniqueness of extension). O

Remark. f : By x E; — R is measurable if and only if : Fy x E; — R with f(z9, ) =

f(x1,x2) is measurable and for integrahffe / fdps ® py = / fdu @ pa .
FEox Eq E1xE2
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Theorem 3.16. Fubini's theorem

(i) Letf: E — [0,00] beE-measurable. Then

/ fdu =/ f(@1, 22) po(dzs) pur (dy) =/ f(@1,22) pa (dzr) po(da)
E E1 E2 E2 El

taking values if0, co].
(i) Letf: E — R be&-measurable. If at least one of the following integrals is finite

/ fldu, / | (@1, 22)| o ds) pa (dey ), / (@1, 22)| pa(der) paa(dec)
E Ey JE>

E> JE,

then all three are finite and is integrable. Furthermore,

f(z1,.) is pe-integrable foru;-almost allx; ande2 f(., o) po(dxs) is up-integrable,
f(.,z2) is up-integrable foruq-almost allz, and fEl f(z1,.) pi(dzy) is ug-integrable,
and the formula in (i) holds.

Proof. (i) If f = 14 for someA € £ the formula holds by definition gf and can be extended

to non-negative measurabfeas in the proof of Lemma 3.14 (ii).

(i) Since|f|is non-negative, the formula in (i) holds and all integrals coincide and are finite.
By Lemma 3.14f*(z1, .) is measurable ang,-integrable since

fi(acl,m) pa(dzg) < / ‘f(a:l,:vg)‘ pa(dxe) < oo for uy—a.e. x1 € By

E2 E2

Furthermore [ [ £ (a1,22) pa(de) i (dr) < [ |7l < 0.
Ey JE> E

The same follows forf(., z2) and finally the formula in (i) holds fof* and thus forf =
fT — f~ by linearity. O

Remarks. (i) Product measures and Fubini can be extendegHioite measure spaces, i.e.
forall A € &, there exist4,, € £, n € Nwith ;1 (A,) < oo forallnandA =, An.

(i) However, withoutr-finiteness Fubini's theorem does in general not hold. Consider e.g.
the measure () = 0, ¥(A) = oo for a # () on (R, B). This is noto-finite and with
Lebesgue measugeon (R, B) we have

/ / Ig(x +y) u(dx)v(dy) =0 whereas / / Ig(x +y)v(dy) p(de) = oo
R JR R JR

(i) The operation of taking products of measure spaces is associative
E0ERE=(6085) =60 (& ®E) (alsofor measures)

So products can be taken without specifying the order,(®&g, B(R?), p).
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Example. I = / e d = /7, since by Fubini’s theorem and polar-doordinates
R

00 2
12:/ 6(12+y2)d95dy:/ / eiTzrdrng):Zw[—e*"Z/ﬂgo:7r.
R2 r=0J $=0

Proposition 3.17. Let (E1, &1, 11) be ao-finite measure space. Then

/ fdu :/ wu(f > x)dx forall & /B-measurablef : £ — [0,00) .
E 0

Proof. see problem 2.15(b)

Remark. Together with Proposition 3.4, this consequence of Fubini's theorem is particularly
useful to calculate expectations of random variables.
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4 [P-spaces

4.1 Norms and inequalities

Let (E, &, 1) be a measure space.

Theorem 4.1. Chebyshev’s inequality
Letf : E — [0,00] be measurable. Then forany> 0: Au(f > A) < / fdu.
E

Proof. Integratef > A1 >y - |

Example. Let X be a random variable witl = E(X) < oco. Then takef = |X — m|?
toget P(f > \2) =P(|X —m| > \) < Var(X)/A? forall A > 0.

Definition 4.1. For1 < p < oo we denote byL? = LP(E, €&, ) the set of measurable
functionsf : E — R with finite LP-norm, || f||, < oo, where

1/p )
o= ([ 1P an)™ forp<oo. =it (AER I < Ao}
We say thatf,, converges tqg in LP, f, L, £t || f = fallp — 0asn — oo.

Remarks. (i) Atthe end of this section we will see in what sersg, is a norm onL?.
(i) Forf e C(R), [[fllcc = sup,ep | f(x)l.
(iii) Forl<p<oor |[flly <nu(E)"?|fls .

(iv) Letf € LP, 1 < p < oo. Then pu(|f] = A) < (||f]l,/A)? forall X > 0 by Cheby-
shev’s inequality.
For f € LP(R) this includes thatf(x) essentially tends to zero &8 — oo in the
sense||f 1jy>yllcc — 0 asy — oco. For random variablesX € L” the relation
P(|X| > X) = O(X"P) as\ — cois called aail estimate (see also problem 3.6) .

Definition 4.2. A function f : R — R is convexf, for all z,y € R andt € [0, 1]
fltz+ (1 —t)y) <tf(@) +(1—1) fly).

Remark. Let f : R — R be convex. Therf is continuous (in particular measurable) and
Vg e RIaeR : f(x) > alx—x0)+ f(x0) .

Theorem 4.2. Jensen’s inequality
Let X be an integrable r.v. and : R — R convex. Then E(f(X)) > f(E(X)).

Proof. With m = E(X) < oo choosea € R such that f(X) > (X m) + f(m).
In particularE(f(X)™) < |a|E(|X]|) + |f(m)| < oo andE(f(X)) € R is well defined.
Moreover

E(f(X)) = a (E(X) —m) + f(m) = f(m) = f(E(X)) . o
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Theorem 4.3. Hblder’s inequality
Letp, ¢ € [1, 00| be conjugate indices, i.%.+ % = 1 or equivalentlyy = p/(p — 1). Then for

allmeasurablef.g: £ =R, [ |faldi=17all <1171, gl
p q
@ _le@p

£ Nglld

Proof. Forp = 1, ¢ = oo the result follows with f g| < |f]| ||g|lcc a.e.. If || fp, |lg]lq = 0 0OF
oo the result is trivial, so in the following, ¢ € (1, c0) and|| f||,, ||f 94 € (0, 00).
For given0 < a,b < oo leta = €%/, b = ¢!/ and by convexity ot* we get

Equality holds if and only if

et

es aP b . .
S < 4~ andthus ab< — + — . (Young’s inequality)
p q p q

By strict convexity ofe” equality holds ifand only if s=¢t < b=aP"!.
Now inserta = | f|/|| f|l, andb = |g|/| ]|, and integrate

S1fPdp [ gl?du
pIIflIp qllglld

1 gl < 11£1 ngq( ) = [1£llp lglly (5 + 1) = 1711y llglly -

After integration equality holds if and only = a?~! a.e., finishing the proof. O

Corollary 4.4. Minkowski’s inequality
For p € [1,00] and measurablg, g : E — Rwehave  ||f + g, < |fll, + llgll, -

Remark. This is the triangle inequality fg»-norms. For every norm this implies thegative
triangle inequality|| f, — fI| > [l fall = [lf]I|, and thus| f.|| — || f|| whenever| f, — f|| — 0.

Proof. The case® = 1,00 follow directly from the triangle inequality ofR, so assume
p € (1,00) and||f|p, [lgll, < oo, |If + gllp > 0.

Then [f+gP < (2(1fVIgD)" <2°(IfIP +19?) so [If +gll, < .
The result then follows from

I +alp= [ 1 +aldn< [ 111+l ds [ 117+ oP s
1/q . . .
< (Hpr + Hng) (/E |f + g|P e du) using Holder withg = 2

= (I£1lp + llgllp) 1I£ + gl 0

Corollary 4.5. Monotonicity of LP-norms
Letl < p < ¢ < cc. Then for allf € LP(u1) we have || f|, < w(E)Y/P=Ya||f|,,
which includes L9(u) C LP(p) inthe caseu(FE) < oo .

Proof. For g = oo the result follows from Remark (iii) on the previous page. kot oo
apply Holder with indices = g/pandg =p/(p — 1) = q/(q — p) to get

- /D ~
191 = [ e v < ([ 1707 dn) " )= g1 ey,

Sincez — zP is monotone increasing far > 0 this implies the result. a
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Examples. (i) There is no monotonicity of.”-norms if u(E) = oo. Take e.g.f(z) = 1/x
on (0,00) with Lebesgue measure. Thef1; )lli1 = co > 1 = [[fl )l

and [V fl)lh =2 <oo=[VFflonle.
(i) Consider the counting measyre= ) 4, on the measurable spa(:N, P(N)). Then

> 1/p
171y = (X 1£@") ™ forp <oo and ||flle =sup ()]
n=1 n
So LP(N, u) = ¢P is the space of sequences with finiteorm.

Definition 4.3. For f,g € LP we say thay is aversionof f if g = f a.e.. This defines an
equivalence relation oh? and we denote by? = L? /[0] the quotient space of all equivalence
classegf]={ge€ L? : g— f=0a.e.}.

Proposition 4.6. (£?, ||.||,) is a normed vector space.

Proof. If f,g € L? with f = g a.e. then||f||, = ||lg|l, < oo by Theorem 3.3, sd.||,, is
well defined onC?. In particularf = 0 a.e. implies|| f||, = 0. Furthermorg|Af||, = || || f]l»
for all A\ € R by linearity of integration and f + g, < | fll, + llgll, by Minkowski’s in-
equality. These properties extend to equivalence classes. In parfi¢ulgf € £P implies
thatA\[f] = [\ f] and[f] + [g] = [f + g] are inLP, so thatLP is a vector space. O

Remark. In the following we follow the usual abuse of notation and idendfwith LP.

Theorem 4.7. Completeness af?
(LP,]|.|lp) is a Banach space, i.e. a complete normed vector space, for p\efy, oo|.

Proof. The case = o is left as problem 3.3, in the following < oc.
Let (fn)nen be a Cauchy sequenced such that || f, — fil[p = 0 asn,m — oc.

Choose a subsequen@e, );cy such that S := Z I s — Jrnllp <00

k=1
K
By Minkowski's inequality, for anyk e N, H > fn = Ful|| <5
— p
k=1 .
By monotone convergence this bound holds alsdfor oo, so Z | frgir — fr| < 00 ace.
k=1

Sofora.ex € R, f,, (z) is Cauchy and thus converges by completene&s af/e define

 Jlimg—eo fn, () , if the limit exists
fx) = { 0 , otherwise '

Givene > 0, we can findV € N such that /\fn — fm|Pdu <€ forallm >n > N, and

in particular / |fr — fn|P du < € for sufficiently largek. Hence by Fatou's Lemma
/ | fu—fIP du :/ limkinf | fr— e [P dp < limkinf |fo—fn P dp < e foralln > N .
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Hence|| f,, — f||, — 0 sincee > 0 was arbitrary and" € L” since forn large enough

1fllp < 1 = Fallp + [ fnllp < 1+ [[fallp < oo O

4.2 [? as aHilbert space
Let (E, &, 1) be a measure space ahtl = L?(E, &, ).

Proposition 4.8. The form(.,.) : L? x L? — R with (f,g) = [, fgdu is an inner
product onZ?, and the inner product spadd.?, (., .)) is a Hilbert space, i.e. complete with

respect to the norif |l = +/{f, f)-

Proof. By Holder’s inequality we have for alf, g € L?

(f,9)] < /E Foldu<|fl2lgl:  (Cauchy-Schwarz inequality)

Thus{(.,.) is finite and well defined o2, symmetric by definition and bilinear by linearity of
integration. Furthetf, f) = | f||3 > 0 with equality if and only iff = 0 a.e. and(L?, |.||2)
is complete by Theorem 4.7. O

Proposition 4.9. For f, g € L? we havePythagoras’ rule

If + gll3 = 1F113 +2 (£, 9) + gl13 .

and theparallelogram law

1 + g3 + 1 = gll3 = 2(II£115 + llg113) -

Proof. Follows directly from||f + g||2 = (f £ g, f + g). O

Definition 4.4. We sayf, g € L? areorthogonalif (f, ) = 0. ForV C L?, we define
Vi={fel’: (fv)y=0forallveV}.

V C L? is calledclosedif, for every sequencéf,,).cn in V, with £, — f in L?, we have
f=wv a.e., forsomev € V.

Remark. ForallV C L?, V1 is aclosed subspace, sintg € V* includes)\; f+\ag € V+
for all A, Ao € R and for(f,,),en in V4 with f,, — fin L? we have for alb € V

[(f,0)] = (f = fas0)| <Nl fn = fll2llollz = 0 asn — oo

Theorem 4.10. Orthogonal projection

LetV be a closed subspace 6. Then eacty € L? has a decompositiofi = v + u, with

v € V andu € V+. The decomposition is unique up to a version arid called theorthog-

onal projectionof f on V. Moreover,||f — vz < [|f — g]|2 for all g € V, with equality iff
=T a.e..
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Proof. Uniqueness: Suppost = v +u = o + @ a.e. With v,o € V andu, @ € V> .
Then with Pythagoras’ rule

O=llv—0+u—al3=lv-0|3+ lu—al|3 = dG=u=uvae..
Existence: Choose a sequengec V such that, as — oo,

If =wvnlla = d(f, V) :=inf {|[f —glla : g€ V}.
By the parallelogram law,

12(f = @a +vm)/2) |5+ llon = vall3 = 2(1f = vall3 + 1 f = vmll3) -

But||2(f — (v + vm)/2) H; > 4d(f,V)?, so we must havgv,, — vy, |2 — 0 asn,m — oo.
By completenessjv,, — g||2 — 0, for someg € L?, and by closurg = v a.e., for some < V.
Hence

If = vlls = lim |[f = valls = d(f,V) < [[f~ bl forallheV,
In particular, for allt € R, h € V, we have
2
d(f, VY <||f = (w+th)|; =d(f,V)? =2t (f —v,h) + | k|3 .

So we must havéf — v, h) =0, andu = f — v € V1, as required. m

Definition 4.5. For R-valued random variableX,Y € L?(P) with meansmy = E(X)
andmy = E(Y') we definevariance covarianceandcorrelationby
var(X) =E((X —mx)?), cov(X,Y)=E((X —mx)(Y —my)),

corr(X,Y) =cov(X,Y)/y/var(X) var(Y) .

For anR"-valued random variabl& = (Xi,...,X,) € L?(P) (this means that each coordi-
nateX; € L?(PP)) the variance is given by theovariance matrix

var(X) = (cov(X;, Xj))

ij=1,.n"

Remarks. (i) var(X) =0 ifandonlyif X =mx a.s..

(i) cov(X,Y) = cov(Y,X), cov(X,X) = var(X) andifX andY are independent,
then cov(X,Y)=0.

(i) By Holder |cov(X,Y)| < |var(X)var(Y)| andthus corr(X,Y) e [-1,1].
Proposition 4.11. Every covariance matrix is symmetric and non-negative definite.
Proof. Symmetry by definition. FoX = (X1,...,X,) € L?*(P) anda = (ay,...,a,) € R"

alvar(X)a = i ajajcov(X;, X;) = var(a'X) > 0,

ij=1

sincea’ X = 3. a; X; € L*(P). O
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Revision. Let (2, .4, P) be a probability space and lét € A be some event. Fd@&(G) > 0
the conditional probabilityP(. | G), given by

P(ANG)

PAIG) =5

forallAe A,
is a probability measure a2, A).
Definition 4.6. For a random variabl&” : 2 — R we denote
E(X|G) = /Xd]P’ 1G) = (/X]lngP’)/IP’ E(X 1g)/P(G)

whenevel®(G) > 0, and we seE(X | G) = 0 whenP(G) = 0.
Let (G;)icr be a countable family of disjoint events with, G; = Q andG = o(G; : i € I).
Then theconditional expectationf a r.v. X giveng is given by

E(X|G) =) E(X|G)1

el

Remarks. (i) E(X |G) is aG/B-measurable r.v., taking constant values on &&ch
In particular, forg = o() = {0,Q}, E(X[{0,Q}) =E(X|Q) 1o =E(X).

(i) ForeveryA e Gitis A=J,.;G;forsomeJ C I. Thus

i€

/ (X|G)dP =) E(X 1¢,) /]lgid]P’/]P’( =Y E(X1g,) /XdIP’
A

i€l iceJ
In particular, ifE(X) < oo, E(X | G) is integrable and (E(X | G)) = E(X).

(i) For ac-algebraG C A, L?*(G,P) is complete and therefore a closed subspace of
L*(A,P). If X € L*(A,P) thenE(X |G) € L*(G,P).

Proposition 4.12. If X € L?(A,P) thenE(X | G) is a version of the orthogonal projection of
X onL?(G,P).

Proof. see problem 3.10

Remarks on the general case

(i) For a generab-algebraF C A one can show, that for every integrable rX. there
exists anF-measurable, integrable r¥. with [, Y dP = [, X dP for everyF' € F. It
is unique up to a version, defining thenditional expectatioly” = E(X | F).
For X € L?(A,P), E(X | F) is the orthogonal projection of on L?(F,P).

(i) If X is F-measurableg(X | F) = X. In particularE(X | A) =

(iii) Foro-algebrasF; C F» C A we have

E(E(X | F) | Fi) = B(X | Fi) = E(E(X | F) | F2) .
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4.3 Convergence in.!
Let (92, .4, P) be a probability space and consider= L!(Q, A, P).
By monotonicity of LP-norms X, ox implies X, L X forall 1 < ¢ < p, SO conver-

1
gence inL! is the weakest. From problem 3.4 we know that x implies convergence
in probability. The converse holds only under additional assumptions.

Theorem. 4.13. Bounded convergence
Let (X,,)nen be a sequence of random variables wikh — X in probability. If in addition
|X,| <C a.s.forall n € Nand som& < oo, thenX,, — X in L.

Proof. By Theorem 2.10(ii)X is the almost sure limit of a subsequence| X0 < C a.s. .
Fore > 0 there existsV € N such that for alh > N: P(|X,, — X| > ¢/2) < ¢/(4C) . Then

E(|Xn — X|) =E(|Xn — X|Lix,—x|>¢/2) + E(1Xn — X| Lix,—x|<e/2) <
<2C(e/(40)) +¢/2=€. |

Remark. Corollary 3.8 on bounded convergence gives a similar statement under the stronger
assumptionX,, — X a.s.. Although the assumptions in 4.13 are weaker, they are still not nec-
essary for the conclusion to hold. The main motivation of this section is to provide a necessary
and sufficient extra condition, such that convergence in probability implies convergehte in

Lemma 4.14. For X € L'(A,P)set  Ix(6) =sup{E(|X|14) : Ac A P(A) <é}.
ThenIx(5) \,0asé \, 0.

Proof. Suppose not. Then, for some> 0, there exist4,, € A, with P(4,,) < 27" and
E(|X|14,) > eforall n € N. By the first Borel-Cantelli lemmaZ(A,, i.o.) = 0. But then
by dominated convergence

e <E(|X]10,,40) = E(IX|1{a, i0y) =0 asn — oo,

which is a contradiction. O

Definition 4.7. Let X be a family of random variables dif?, 4,P). Forl < p < oo we
say that’ is uniformly bounded irl? if sup {|| X||, : X € X} < oo . Define

Ix(6) =sup{E(|X|14) : X € X, Ac A P(A) <4}
We say thatt’ is unif. integrable(Ul) if X is unif. bounded in! andZy () \, 0, asé \ 0.

Remarks. (i) X is unif. bounded ir.! if and only if Zx(1) =sup {||X|:: X € X} < .

(i) With Lemma 4.14, any single, integrable random variable is Ul, which can easily be
extended to finitely many.

(iii) If (2, A,P) = ((0,1], B((0,1]), n) then if Ly (5) \, 0 there exist$ > 0 such that

n—1
E(IX]) =Y E(IX|Lg/n,pes1)m) <n forn=[1/5] andalX € X,
k=0

which includes tha®’ is uniformly bounded. In general this does not hold.
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(iv) Some sufficient conditionsY is Ul, if
— there existy” € L'(A,P) suchthatX| <Y forall X € X
[ E(|X|14) <E(Y 14) forall A€ A, then use (ii)]

— there exist® > 1 such thatY is uniformly bounded in.?
[ by Holder, for conjugate indicgsandg < oo, E(|X|14) < || X[, P(4)Y ]

Example. X,, = n1 gy is uniformly bounded in." ((0, 1], B((0,1]), ) but not UI.

Proposition 4.15. A family X of random variables of2, A, P) is Ul if and only if
sup {E(|X[1jx>k) : X €X} =0, asK — oo.

Proof. Supposet isUI. Givene > 0, choose) > 0 so that/x(§) < ¢, then choosé{ < oo
so thatZx (1) < K6. ThenwithA = {|X| > K} we have| X |; > P(A) K so thatP(A) < §
andE(|X|14) < eforall X € X. Hence, as — oo,

sup{E(]X\]l‘XEK) : X GX} —0.

On the other hand, if this condition holdg (1) < oo, sinceE (|X|) < K +E(|X|1)x>x) -
Givene > 0, chooseX” < oo so thatE(|X| 1 y>x) < €/2 forall X € X.
Then choosé > 0 so thatK'¢ < ¢/2. ForallX € X andA € A with P(A) < ¢, we have

E(IX|14) <E(|X|1jx5k) + KP(A) <.
HenceX isU1. O

Theorem 4.16. Let X,,, n € N and X be random variables. The following are equivalent:
() X,eL'foralneN, X eL'andX, - XinL',

(i) {X, :n eN}isUlandX, — X in probability.

Proof. Suppose (i) holds. TheN,, — X in probability, following problem 3.4.
Moreover, givere > 0, there existsV such thaff (|.X,, — X|) < ¢/2 whenevem > N. Then
we can findd > 0 so thatP(A) < ¢ implies, using Lemma 4.14,
E(|X]1a) <€¢/2, E(|Xn|1a) <¢, foralln=1,...,N.
Then, also fom > N andP(A4) < 4§, E(|X,|14) <E(|X, — X|) +E(|X|14) <.
Hence{X,, : n € N} is Ul and we have shown that (i) implies (ii).
Now suppose that (ii) holds. Then there is a subsequéngesuch thatX,, — X a.s..
So, by Fatou's lemm& (|X|) < liminf; E(|X,,|) < oo .
Now with Proposition 4.15, givea > 0, there existd{ < oo such that, for alh,
E(|Xn|1ix,>x) <€/3, E(IX|Lxsk) <€/3.

Consider the unif. bounded sequedtf = (—-K)Vv X, A K and setX® = (-K)VX A K.
Thean — XX in probability, so, by bounded convergence, there exists N such that,
foralln > N, E(|XX — XX|) <¢/3. Butthen,foralln > N,

E(| X, — X|) S E(|Xn| Ljx,5x) + E(IXE — XX|) + E(|1X| Lix>k) <€.
Sincee > 0 was arbitrary, we have shown that (ii) implies (i). O
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5 Characteristic functions and Gaussian random variables

5.1 Definitions

Definition 5.1. For a finite measurg: on (R™, B(R™)), define theFourier transform
i :R"™ — Cby

fu) = / W) y(dz), forallu e R".

n
Here (u,z) = Y u;a; denotes the usual inner product®n.
=1
For a random variabl& in R™, thecharacteristic functionbx : R™ — C is given by
ox(u) = E(ei<“’X>) , forallueR".

Thus¢x = ix whereux is the distribution ofX in R™.

Remark. For measurability off : R — C identify f = (Ref,Imf) € R? and useB3(R?).
The integral of such functions is to be understood as

. fu(de) = /n Ref p(dx) +1i /]R" Imf p(dx) .

Sincee™™ = cos z + i sin 2 has bounded real and imaginary part it is integrable with respect to
every finite measure. Thus algdu) and¢ x (u) are well defined for all. € R™ (in contrast to
moment generating functiond x, see problem 3.13).

Definition 5.2. A random variableX in R" is calledstandard Gaussiaif

1 2
P(X € A) = —lal*/2 g forall A € B(R") .
Xea)= [ G, € BR")

Example. For a standard Gaussian random variablen R it is

] 1 9 5 ef(mfiu)2/2
= [ e /2y — /21 where I:/kd .
dx (u) /Re 27Te r=c¢ , A o T

I can be evaluated by considering the complex integln:&l—z2/2 dz around the rectangular

contourT” with cornersR, R —iu, — R —iu, — R. Sincee=*"/2is analytic, the integral vanishes
by Cauchy’s theorem for eve® > 0. In the limit R — oo, the contributions from the vertical
sides ofl" also vanish and thus

1 2 2
I=[] —e*Pdz=1 = = W/2
/R\/ﬂe T Px(u) =e

In the next subsection we will also make use of the following.

Definition 5.3. Fort > 0 andz, y € R™ we define théneat kernel

1

—lz—y|?/(2t
ek e—y?/(20) ¢ R

p(t,z,y) =
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. . ) 1
Remark. From the previous calculation we have /2 = / et ——
R V2T

With w = ( — y)/+/t and the change of variable= u/+/t , we deduce fon = 1

e %/2 du.

p(t,z,y) = 21 /e”” e V2 e gy
m

. 1 ‘ A
Forn > 1 we obtain analogously p(t, z, y) = @ / et} = I0lPt/2 o=iuv) () .
T n

5.2 Properties of characteristic functions
The characteristic function of a random variable uniquely determines its distribution.
Theorem 5.1. Uniqueness and inversion

Let X be a random variable ifR™. The lawu x of X is uniquely determined by its character-
istic function¢ x. Moreover, if¢ x is integrable, thenX has density functiorfix (x), with

¢>X() —iw) gy

Remark. The above formula is also called thwerse Fourier transformation.

Proof. Let Y be a standard Gaussian r.v.Ik¥, independent ofX, and letg : R® — R
be a bounded Borel function. Then, for- 0, by change of variablg’ = = + +/ty and Fubini,

E(g(X +Viv)) /n/ng (x + Vi) 2m) "2 e W2 dy iy (dar) =

/n/nptmy Y) dy px(dr) =

:/ < o) = lult/2 —i(uy) gy, ux(dx)> 9(y) dy
n ]R" R”

-/ ((2@ e e du) gly) dy

By this formula,¢ x determineﬁ*:(f(X + \/EY)). For any bounded continuoyswe have

E(g9(X +VtY)) - E(g(X)) ast\,0,

so¢x determine€ (g(X)). Hencegx determines.y due to problem 4.1.
If ¢x is integrable and if is continuous and bounded, then

}QSX Hg ‘ )| € LY (du ® dy) .

So, by dominated convergencetas, 0, the last integral above converges to

/ <(271r) L ox(we <u’y>dU> 9(y)dy .

HenceX has the claimed density function. O
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Remark. Let X, Y be independent r.v.s iR™. Then the characteristic fct. of the sum is

S () = E( ) = E(05) 09 = g (u) oy (u)

The next result shows that independence of r.v.s is equivalent to factorisation of the joint char-
acteristic function.

Theorem 5.2. Let X = (X4,...,X,) be arv.inR". Then the following are equivalent:
() Xi,...,X, areindependent,

(i) px =px, @...Qpx, ,

(iii) E( ﬁ fk(Xk)> = ﬁE(fk(Xk)) , for all bounded Borel functiong, . .., f, ,
k=1 k=1

(V) ¢x(u H% (ug), forallu = (ui,...,u,) € R™.

Proof. If (i) holds, px (A1 x...x Ay) =[], nx,(Ag) for all Borel setsAy, ..., A,.
So (ii) holds, since this formula characterizes the product measure by Theorem 3.15.
If (ii) holds, then, forfy, ..., f, bounded Borel,

B(TLA000) = [ [Tt () /fk o) o) = [T (160
k

so (iii) holds. Statement (iv) is a special case of (iii), Wlﬂg(xk) = el KTk
Suppose, finally, that (iv) holds and take independent tX;s. . ., X,, with B, = HX), for

all k. Then¢X = ¢x,, and we know that (i) implies (iv) foK = (X,...,X,), s0

c(w) = [[ o5, (ux) =[] ox, () = dx(w) .
k k

andyu ; = px by uniqueness of characteristic functions. Hence (i) holds. O

5.3 Gaussian random variables

Definition 5.4. A random variableX in R is Gaussiarif it has density function

(@) = 0 e~ n)?/(20%)

2mo?

for somey € R ando? € (0, 00). We write X ~ N (p, 0?) .
We also admit as Gaussian the degenerate ¥asey a.s., corresponding to taking? = 0 .

Proposition 5.3. SupposeX ~ N (i, 0?) anda, b € R. Then
(i) E(X)=upn, (i) var(X) = o2,
(III) aX +br~ N(CLM + b, a202) , (IV) ¢X(U) — plup—u 02/2
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Proof. see problem 4.7
Definition 5.5. A random variableX in R™ is Gaussiarnif (u, X) is Gaussian, for all, € R™ .

Examples. (i) If X = (X1,...,X,) is Gaussian, in particulaX; is Gaussian for each

(i) LetXy,...,X, beindependemt/(0,1) random variables. TheN = (Xi,...,X,,)Iis
Gaussian, since for all € R*

]E(e“’(“’)Q) = E( H ew“’fX’“> = e V’Iul’/2 , forallveR.
k=1
Thus(u, X) ~ N(0, |u|?) by uniqueness of characteristic functions.

Remark. Let X be a random variable IR". Then the covariance matrix

2 = var(X) = (cov(X;, X;)) =E((X -E(X))(X —-E(X))")

igj=l,m

is symmetric and non-negative definite by Proposition 4.11. Thimsn real eigenvalues
Ai > 0 and the eigenvectors form an ortho-normal basis &", i.e. (v;,v;) = d; ;. SO

n
z = (vi,z)v; = (vl z)vy; and Tz = Z \vi(vlz) forallz e R™.

)
=1

So we can write ¥ = zn: Xiviv!l ,  and we define /2 .= zn: Vvl
P, = vv] € R™"is ti\zelprojection on the one-dimensional ie:i;;enspace corresponding to the
eigenvector\;. SinceP, P; = §; ; P;, it follows thaty = (21/2)2 .
Theorem 5.4. Let X : Q — R"™ be a Gaussian random variable. Then

(i) AX + bis Gaussian, for ald € R"*™ and allb € R™,

(i) X € L%*(Q) (coordinatewise) and its distribution is determined by the mean=
E(X) € R™ and the covariance matrix = var(X) € R™" , we writeX ~ N (u, X),

(iv) if ¥ isinvertible, thenX has a density function dR", given by

1

fx (@) = Jandets exp [— (=, (@ _M)>/2} )

(v) if X =(Y,Z),withY inR™andZ in RP (m-+p=n), then the block structure

var(X) = <vag(Y)

implies that Y andZ are independent

i)
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Proof. We use(u, v) = u’v and(Av)? = vT AT for all u,v € R® andA € R**",
(i) Forallu € R", (u, AX +b) = (ATu, X) + (u, b) is Gaussian, by Proposition 5.3.
(ii),(iii) Each X is Gaussian, s& € L?. For allu € R we haveE ((u, X)) = (u, 1) and

var ((u, X)) = E(uT(X —p)(X — M)Tu> = <u,E((X —p)(X — ,u)T)u> = (u, Xu) .
Since(u, X is Gaussian, by Proposition 5.3, we must haweX) ~ N ((u, z1), (u, Zu)) and

¢X(U) — E(ei<u,X)) — ¢<U7X>(1) — ei(u,u)—(u,Eu)/Q )

This is (iii) and (ii) follows by unigueness of characteristic functions.
(iv) LetYs,...,Y, beindependent/(0,1) r.v.s. Theny = (Y1,...,Y,) has density

_ L wee

SetX = »'/2Y + p, thenX is Gaussian, witht(X) = p andvar(X) = ¥, since

cov(Xi, X;) = E((SY2y),(3Y2Y),) ( Z =EY; ) =%
k=1

due toE(Y3Y}) = ;. S0X ~ X. If X is invertible, thenX and henceX has the density
claimed in (iv), by the linear change of variabls= ¥ ~1/2(X — ;) leading to

d"x
Vdety

(v) Finally, if X = (Y, Z) andX = var(X) has the block structure given in (v) then, for all
v € R™andw € RP,

|y‘2 <y y) <ZC — U, E_l(x — ,u)> and dny = d"x det 2_1/2 —

{((v,w),% (v,w)) = (v, By v) + (w, Sz w), whereXy =var(Y)and¥, = var(Z) .
With . = (uy, pz), the joint characteristic functiopx then splits into a product

bx (v, w) = vy ) —=(0,5y ) /2 jiw,pz)—(w,Ezw)/2 7
soY andZ are independent by Theorem 5.2. O

Remarks. Let X = (X1,...,X,,) ~ N(u, X) be a Gaussian.
(i) Xq,...,X, areindependent if and only X is a diagonal matrix.

(i) If isinvertible,Y = X~1/2(X — pu) ~ N(0, I,) are independent/(0, 1).
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6 Ergodic theory and sums of random variables

6.1 Motivation

Theorem 6.1. Strong law of large numbers
Let (X,,)nen be a sequence of independent random variables such that, for some constants
uweR, M >0,

E(Xn) =p, E(X;) <M, forallneN.

n
Then, with S,, = >~ X; we haveS,,/n — u a.s. asn — oo.
i=1
Proof. ForY,, := X,, — u we have
4 4
Vi < (1Xnl + [ul)” < (2max{|X,|, [u]})" < 16(1Xal* + ul*) ,

and thus E(Y;}) < 16(M + u*) = M < oo for alln € N. With Y;* alsoY,,, ¥;? andY;? are
integrable and by independence &1d") = 0

E(Y:Y}) =E(Y;Y;¥) =E(Y;Y; YY) =0,
for distinct indices, 7, k, . Hence
4
E((Sn —np)") :E< > mwm) =E<Zn4+ <2> ZY?Yf) :
i,5,k,l % 1<j

and by Jensen’s inequalityM > E((Y;%)?) > E(Yf)2 , S0 using independence

E((Sn — n,u)4) <nM + 672(712_1)]\2 < 3n°M .

Thus E(Z(Sn/n - M)4> <3M) 1/n® < oo by monotone convergence. Therefore

n n

Z(Sn/n — )t < oo a.s. andthus S,/n — u a.s.. 0

n
Intuitively, the above result should also hold without the restrictive assumption on the fourth
moment of the random variables. One goal of this chapter is in fact to prove the above statement
with a much weaker assumption. For this purpose it is convenient to use a different approach,
leading to ergodic theory which is introduced in the next two sections.

6.2 Measure-preserving transformations

Let (E, &, u) and(F, F,v) be ac-finite measure space.

Definition 6.1. Letd : £ — FE be measurable A € £ is calledinvariant (under?) if
6=1(A) = A. A measurable functiorf : E — Fis calledinvariant (underf) if f = fo6.

Remarks. (i) Forgenerald C Eitis 6(67'(A)) CAC61((A)) (where the first
and second inclusion become equalitied, ig surjective and injective, respectively) .
If A is invariant,§(A) C A (motivating the definition), and alsd = 67!(6(4)),
since in addition to the general relation we havé~'(6(A)) C 6~1(A) = A.
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(i) &:={Aec& :071(A) = A} isac-algebra since pre-images preserve set operations.
(i) Aeisinvariant< T4 =1400, sincelaol =Tg1(y).

(v) f: E— Fisinvariant& VB e F : f~1(B)=0"1(f"1(B))
& VBeF : f7Y(B)e&,ie.fis&-measurable .

Definition 6.2. A measurable functiofi : £ — F is calledmeasure-preserving
(071 (A4)) = p(A) forallAe€.

Suchd is ergodicif & istrivial, i.e. contains only sets of measurand their complements.

Examples. (i) The constant functiof(z) = ¢ € E is not measure preserving.
The identityd(z) = = is measure preserving, but not ergodic, sifige- £.

(i) Translation map on the torusTake E = [0, 1)™ with Lebesgue measure, farc E set
Ou(z1,...,2p) = (1 +a,...,x, +a) with addition modulol .

In problem 4.10 it is shown for = 1 thatf is measure-preserving, and also ergodic if
and only ifa is irrational.

(i) Baker's map.TakeE = (0, 1] with Lebesgue measure and seét(z) = 2z — [2z] .
In problem 4.11 it is shown th#tis measure-preserving and ergodic.

Proposition 6.2. If f : E — R is integrable and) : E — F is measure-preserving, thefio 0
is integrable and / fdu= / fobOdu.
E E

Proof. For f = 14, A € € the statement reduces g9 A) = p(6~*(A)), which holds since
1 iS measure-preserving. This extends to simple functions by linearity, to non-negative mea-
surable functions by monotone convergence and to integyablef ™ — £~ again by linearityd

Proposition 6.3. If # : £ — FE is ergodic andf : £ — R is invariant, thenf = ¢ a.e.
for some constant€ R .

Proof. ForallA € B, u(f € A) = 0oru(f € A°) = 0, sincef is Eg-measurable and
¢ is ergodic. Set :=inf{a € R : pu(f > a) = 0}. Sou(f < a) = 0foralla < cand
u(f >a)=0foralla > ¢, and thusf = ¢ a.e.. O

Interpretation. 6 : E — E defines a dynamical system, = z,(z9) = 0"(z9) € E

with discrete time: € N and initial conditionzy € E. The dynamics is defined on the abstract
state spacéF, £, 1) and theobservablesire given by measurable functiofis £ — R.

If 11 is measure-preserving, thgp f(x,,) pu(dzo) = [ f(z0) p(dao) for all f by Proposition

6.2 andu can be interpreted asssationary distributiorfor the processz,, ),. If f is invariant
thenf(x,) = f(xo) foralln andf is a conserved quantity, such as energy in a physical system.
If there exists such a non-constgitthe state space can be partitioned in subgetéy) C E
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for all y € f(E), which are non-communicating under the time evolution define@. byow-

ever if 6 is ergodic, Proposition 6.3 implies that the only invariant functions are constant a.e..
So an ergodic dynamical system does not have conserved quantities which partition the state
space into non-communicating classes of non-zero measure (compare to Markov chains).

For the rest of this section we consider the infinite product space
E:RN:{x:(azn)neN : anRjnGN}

with o-algebra& = o(X,, : n € N) generated by theoordinate mapsX,, : £ — R with
Xn(x) =z .

Remark. £ = o(C) generated by the-system

C= {®An . A, € B, A,, = R for all but finitely manyn} ,
neN

which consists of socallecylinder setswhere only finitely many coordinates are specified.

Let (Y,,).en be a sequence of iidrv’s with distribution. With the Skorohod theorem they
can be constructed on a common probability spéeed,P). Y : Q — RN defined as
Y(w) = (Ya(w)),cy is A/E-measurable and the distributipn=P o Y ~! of Y satisfies

p(A) =[] m(An) forall cylinder setsd = X) A, € C .

neN neN

SinceC is am-system generating, this is the unique measure ¢#, £) with this property.
Therefore(Q2, A, P) = (RN, &, 1) is a generic example of such a common probability space.

Definition 6.3. On the probability spacéR", £, i) the coordinate mapsX,, : RY — R
themselves are iidrv’s with distributiom, and this is called theanonical modefor such a
sequence. Thehift map 6 : RY — RN is defined as 0(z1, x2,...) = (z2,23,...) .

Theorem 6.4. The shift ma@ is ergodic.

Proof. 6 is measurable and measure-preserving (see problem 4.9).
To see thad is ergodic recall the tair-algebra

T = ﬂTn where 7, =o(X,, : m>n)CE.
neN
For A=QenA4r€C, 07" (A)={z € E : Xpi4(z) € Acforallk>1} €7, .
SinceT, is ac-algebra,0~"(A) € 7, forall AcE£.If Ac&={Bec&:6'(B)=B}
then A = §~"(A) € 7,, forall n € N andthusA € ,7, =7 sothat& C T . By
Kolmogorov's0-1-law 7" and thusfy is trivial andé is ergodic. a
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6.3 Ergodic Theorems

In the following let(E, £, 1) be ac-finite measure space with a measure-preserving transfor-
mationf : £ — E. Let f : E — R be integrable and defing, : £ — R by .Sy = 0 and

Sp=S8u(f)=f+fob+...+fob" 1 forn>1.

Example. Let (RY, &, i) be the canonical model for iidrvi6X,),en, f = X1 : E — R the
n

first coordinate map angithe shift map from the previous section. Th&nX;) = > X;.
i=1

Lemma 6.5. Maximal ergodic lemma

LetS*:supSn:E—JR.Then/ fdu>0.
neN S*>0

Proof. Set S, = [ax Sy and A, = {S); > 0}. Then,form =1,...,n,

Sm=f~+Sm100<f+S 0.

On A,, we have S;:1r<na§ Sm, 808, < f+S;00.
<m<n

On AS we have S =0< S} o06. So, integrating and adding, we obtain

/S;d,ug/ fd,u-i—/S;‘Lon,u.
E An E

But S} is integrable and is measure-preserving, so

/ Srofdu :/ Sy du < oo which implies / fdu>0.

E E Ap

Asn — oo, A, /" {S* > 0} so, by monotone convergenc% fdu>0. O
{S*>0}

Theorem 6.6. Birkhoff’s almost everywhere ergodic theorem

There exist§ : E — R invariant, with/ |fldu < / |f| du and Sn f a.e.asn — oco.
E E n

Proof. The functiondim inf,,(S,,/n) andlim sup,, (S, /n) are invariant, since

(hm inf %) o f = liminf (Snno 9) = lim inf (w) = lim inf (fﬁi) .

Therefore, fora < b,

D = D(a,b) = {liminf(S,/n) < a < b < limsup(S,/n)} .
is an invariant event. We shall show thatD) = 0. First, by invariance, we can restrict
everything toD and thereby reduce to the caBe= E. Note that eitheb > 0 ora < 0. We

can interchange the two cases by replagify — f. Let us assume then thiat> 0.
Let B € £ with u(B) < oo, theng = f — b1y is integrable and, for eache D, for somen,

Sn(g)(@) 2 Su(f)(2) =nb>0.
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HenceS*(g) > 0 everywhere and, by the maximal ergodic lemma,
0< [(F-vimdu= [ fdu-buB).
D D

Sincey is o-finite, we can letB " D to obtain b u(D) < / fdu.
D
In particular, we see that(D) < oo. A similar argument applied te f and—a, this time with
B = D, shows that (—a)u(D) < / (=f)du. Hence bu(D) < / fdu<auw(D).
D

D
Sincea < b and the integral is finite, this forceg D) = 0.
Back to generaFE. Set

A = {liminf(S,/n) < limsup(S,/n)} ,
thenA is invariant. Also, A = |J, ycg.q4<p P(a,b) , s0 p(A) = 0. On the complement of
A, S, /n converges ifi—oo, o], so we can define an invariant functign £ — R by

Fo lim,, (S, /n) on A¢
N 0 onA

Finally, we have [, |f o 0"|du = [, |fldw, SO [5|Snldp < n [4|f|dp forall n. Hence,
by Fatou’s lemma,

/|f_]du—/liminf[Sn/n]dugliminf/ ]Sn/n]dug/ |f]dp . ]
E E " " E E

Theorem 6.7. von Neumann'sL” ergodic theorem
Assume that(E) < co andp € [1,00) and let f be the invariant limit function of Theorem

6.6. Then, forf € LP, S,/n — f in LP.

Proof. Sinced is measure-preserving we have

1/p
Hfoe"Hp:UE!f\poendu) =0 = =11l

So, by Minkowski's inequality, |15, (f)/nll, < || £]l, -

Given € > 0, chooseK < oo sothat||f —g|l, <€/3, whereg = (—K)V fAK .

By Birkhoff’s theorem, S,,(g)/n — g a.e. . We have |S,(g)/n| < K for all n so, by
bounded convergencg(E) < o), there existsV such that, fom > N,

15n(g)/n = gllp, < €/3.

By Fatou’s lemma,

I£~ gl = [ timint
E n
Hence, forn > N,

[0,

Sl =9 < 15— g1

M‘p du < liminf/
n n E

Sn(f - g)

n Hp ’

Sn(g)

n

<]

3| +la-flp<3e/3=c. D
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Corollary 6.8. Letu(E) < oo, f € L' and f be the invariant limit function of Theorem 6.6.
Then /fd;z:/ fdu andif is ergodic, f:/fdu/u(E) ae..
E E

Proof. ‘/E%du — /Efdu’ < ||Sn/n — f||, — 0 by Theorem 6.7. By the definition of

Spy | —dp = / fdu for all n € N sincefl is measure preserving and the first statement
n E

E
follows. -

If 6 is ergodic, the invariant functioffi is constant a.e. by Proposition 6.3, and together with
the first this implies the second statement. O

6.4 Limit theorems for sums of random variables

Theorem 6.9. Strong law of large numbers
LetY, : @ — R, n € Nbeiidrv’s withE(Y,) = v € RandE(]Y,|) < oo, i.e. Y, € L'. For
S, =Y, +...+Y, we have

Sp/n— v a.s., asn— oo.

Proof. Let (RY, &, ;1) be the canonical model for the sequente= (Y,),eny € RY with
distributiony. as in Def. 6.3. Takg = Y; € L' to be the first coordinate map. Note that

Sp=Yi+..+Y,=f+fol+...+fob !,

whered : RN — RY is the shift map which is measure preserving and ergodic by Theorem 6.4.
With (RY) = 1 we have by Theorem 6.6 and Corollary 6.8

Sp/n LB E(f) =E(Y) =v. |

Remarks. (i) By Theorem 6.7 we also have convergencé inn Theorem 6.9.

(i) Theorem 6.9 is stronger than Theorem 6.1 where we neB@gd) < M for all n € N.
But here the¥,, have to be identically distributed férto be measure preserving.

(i) With Thm 2.10 and Prop 2.11 the strong implies Wk law of large numbers
Sp/n— v as. = S,/n—wvinprobabilty < S,/n=v asn— .

Theorem 6.10. Lévy’s convergence theorem for characteristic functions
Let X,,, n € N and X be random variables ifR with characteristic functions¢x(u) =
E(e™X) and¢x, (u). Then

ox,(u) — ¢x(u) foralu e R < X, — X indistribution.

Proof. ‘<’ By Theorem 3.9X,, > X < E(f(Xn)) = E(f(X)) forall f € Cy(R)
ande’® = cos(ux) + i sin(ux) is bounded and continuous for allc R.
‘="1is more involved, see e.g. Billingsley, Probability and Measure (3rd ed.), Thm 2613.
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Theorem 6.11. Central limit theorem
Let (X, )nen be a sequence of iidrv’s with meéirand variancel. SetS,, = X1 + ... + X,,.
ThenP(S,/v/n <.) = N(0,1), i.e.foralla <b,

2
eV /?dy asn— oo .

b
P(S,//n € [a,5]) —>/ jzf

™

Proof. Set¢(u) = E(e™*1). SinceE(X7) < oo, we can differentiat@ (¢™*1) twice under
the expectation, to show that (see problem 4.2(b))

p0)=1, ¢'0)=0, ¢"(0)=-1.

Hence, by Taylor’s theoremp(u) = 1 — u?/2 + o(u?) asu — 0.
So, for the characteristic functiaf), of S,,/\/n,

d)n(u) = E(eiu(xl-‘rm—&-Xn)/\/ﬁ) = (E(el(u/\/ﬁ)Xl))n = (]_ — u2/(2n) + o(uz/n))n .
The complex logarithm satisfielog(1 + z) = z + o(|z|) asz — 0, so, for each: € R,
log ¢ (u) = nlog (1 —u?/(2n) + o(u®/n)) = —u?/2 +o(1), asn — oo.

Henceg, (u) — e~**/2 for all u. Bute=**/2 is the characteristic function of the (0, 1) dis-
tribution, so Levy’s convergence theorem completes the proof. 0

Remarks. (i) This is only the simplest version of the central limit theorem. It holds in
more general cases, e.g. for non-independent or not identically distributed r.v.s.

(i) Problem 4.5 indicates th&}, /n can also converge to other (socaltdblg distributions
than the Gaussian.
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Appendix

A Example sheets

A.1 Example sheet 1 — Set systems and measures

1.1 Let F be a set.
(@) Let F C P(E) be the set of all finite sets and their complements (caltfthitesets). Show
that F is an algebra.

(b) Let G C P(E) be the set of all countable sets and their complements. Showjtima
o-algebra.

(c) Give a simple example df ando-algebrast, &, such that; U & is not ac-algebra.

1.2 A non-empty sed in ac-algebraf is called aratom if there is no proper subsét C A such that
B e&. LetAy,..., Ay be non-emtpy subsets of a get
(a) If the A,, are mutually disjoint an§lJ,, A, = E, how many elements doeg{4,,..., Ax})
have and what are its atoms?

(b) Show that in generat({A1,..., Ay}) consists of only finitely many sets.

1.3 Show that the following families of subsetsRfgenerate the samealgebral:
(i) {(a,b) : a < b}, (i) {(a,b] : a < b}, (iii) {(—o0,b]:be R} .

1.4 A os-algebra is calledeparabldf it can be generated by a countable family of sets. Show that the
Borel o-algebraB3 of R is separable.

1.5 For whicho-algebras ofR are the following set-functions measures:
0,ifA=0 0 ,ifA=10 0 , if Aisfinite
— ’ — ’ — ’ o)
1 (4) {1 tazge M) {oo itagge M) {1 if Acis finite

1.6 Let& be aring onE andy : £ — [0, oo] an additive set function. Show that:
(a) If pis continuous from below at all € £ it is also countably additive.
(b) If u is countably additive it is also countaldubadditive.

1.7 Let (£, &, 1) be a measure space. Let,,),cn be a sequence of setsdnand define

liminf A,, = U ﬂ A, limsup A4,, = ﬂ U A,

neNm>n neNm>n
(@) Show that p(liminf A,) < liminf u(A4,) .

(b) Show that pu(limsup A,,) > limsup p(A4,) if u(E) < co.

Give an example withu(E) = oo when this inequality fails.

1.8 (a) Show that ar-system which is also é&system is ar-algebra.
(b) Give an example of d-system that is not a-algebra.

1.9 (a) Find a Borel set that cannot be written as a countable union of intervals.
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(b) Let B € B be a Borel set with\(B) < oo, where\ is the Lebesgue measure. Show that, for
everye > 0, there exists a finite union of disjoint intervals= (a;,b1] U ... U (an, b,] such
that \(AA B) <e, whereAAB=(A\B)U(B\A).

(Hint: First consider all bounded sefisfor which the conlusion holds and show that they form
ad-system.)

1.10 Completion

Let (E, &, 1) be a measure space. A subaeof £ is callednull if N C B for someB € £ with
u(B) = 0. Write VV for the set of all null sets.

(a) Prove that the family of subsets’ = {A UN:Aeé& Nce /\/} is ac-algebra.
(b) Show that the measugemay be extended to a measuyreon C with ©/(AU N) = u(A).

Theo-algebraC is called thecompletionof £ with respect tqu.

1.11 Let (Ay)nen be a sequence of events in the probability spdzed, P), i.e. A, € A for all n.
Show that thed,,, n € N, are independent if and only if the-algebras which they generate,
A, ={0, A, A%, Q}, are independent.

1.12 (a) Let upr be the Lebesgue-Stielties measurefoassociated with the distribution functian.
Show thatF" is continuous at: if and only if ug ({z}) = 0.

(b) Let(F),)nen, be asequence of distribution functionssuch thatF'(z) = lim F,(z) exists
for all x € R. Show thatF" need not be a distribution function.

1.13 Cantor set
Let Cy = [0, 1], and letC, Cs, . . . be constructed iteratively by deletion of middle-thirds.
Thus C;=1[0,3]U[3,1], Cx=10,4]U[Z,i U3, ZJU[5,1] andsoon.
ThesetC = lim C, = ﬂ C,, is called theCantor set

n—oo

neN
Let F,, be the distribution function of the uniform probability measure concentratéd,on
(&) Show that”' is uncountable and has Lebesgue mea8ure

(b) Show that the limitF'(z) = lim F,(z) exists for allx € [0, 1].

(Hint: Establish a recursiorrlrrgiation fét, (x) and use the contraction mapping theorem.)
(c) Show thatF' is continuous orj0, 1] with F'(0) = 0, F(1) = 1.
(d) Show thatF is differentiable except on a set of meas0Oyand thatF”(z) = 0 whereverF' is

differentiable.
1.14 Riemann zeta function -
TheRiemann zeta functidis given by ((s) = n™, s> 1.
n=1
Lets>1 andP; : P(N) — [0, 1] be the probability measure with mass functigm) = n=*/{(s).

Forpe {1,2,...}letA,={neN: p|n} (pdividesn).
(a) Show that the eventg4,, : p prime} are independent. Deduce Euler’s formula

1 1
o 1 (-5)

p prime

(b) Show that P;({n € N : nis square-fre) =

1
((2s)
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A.2 Example sheet 2 — Measurable functions and integration

Unless otherwise specified, Iet, £), (F, ) be measurable spaces &t A, P) be a probability space.

2.1 Let f : & — F be any function (not necessarily measurable).
(a) Show thatf~!(o(A)) = o(f'(A)) forall A C P(F).
(b) Let f be&/F-measurable. Under which circumstanceg(i§) C P(F') ac-algebra?
(c) Take(E,&) = (F,F) = (R, B). Find theo-algebrass( f;) generated by the functions
h@)==z, fole)=2*, f3(z)=lz[. falz)=1g(z).

2.2 Letf, : E — R, n € N be&/B-measurable functions. Show that also the following functions are
measurable, whenever they are well defined:

@i+ O inffi  ©@supfy (@ lminffy (@) limsup .

neN n—o0

(f) Deduce furtherthat: {z € E : f,,(z) converges as — oo} € £

2.3 Let f : E — R? be written in the formf(z) = (fi(z),..., f4(z)). Show thatf is measurable
w.r.t. £ andB(R?) if and only if eachf; : £ — R is measurable w.r.£ andB.

2.4 Skorohod representation theorem

Let F,, : R — [0,1], n € N be probability distribution functions. Consider the probability space

(Q, A, P) whereQ2 = (0,1], A = B((0,1]) are the Borel sets ofv, 1] andP is the restriction of

Lebesgue measure #. For eachn defineX,, : (0,1] - R, X,(w)=inf{z : w < F,(2)}.

(a) Show that theX,, are random variables with distributio#% . Are the X, independent?

(b)* Supposé’'(z) is a probability distribution function such thdtm F,,(z) = F(z)forallz € R
atwhichF' is continuous. LeX : (0, 1] — R be a random variable with distributidn defined
analogously to theX,,. Show thatX,, — X a.s..

2.5 Let X1, X, ... be random variables aif2, A, P).

(a) Show thatX; and X, are independent if and only if
IP’(Xl <z, Xo Sy) =P(X1 <2)P(Xy<y) forallz,yeR. (%)
(b) Supposéx) holds for all pairsX;, X, i # j. Is this sufficient for th¢ X, ),,cn to be indepen-
dent? Justify your answer.

(c) Let X1, X, be independent and identically distributed. Show thHat= X, almost surely
implies thatX; andXs are almost surely constant.

2.6 Let X, Xo, ... be random variables witl,, 2, X. Show that then alsa(X,) 2, h(X) for
all continuous functiong : R — R. (Hint: Use the Skorohod representation theorem)

2.7 Let X1, X5, ... be random variables off, .4, P) and7 the tailo-algebra of( X,,),en-
Foreactm e Nlet S, = X; + ...+ X,,. Which of the following are tail events i,

{X, <0ev.}, {S,<0i0}, {liminfS, <0}, {lim S, exists ?
n—oo n—oo
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n? — 1 with probability 1 /n?
—1  with probability1 — 1/n?

X144 X,
n

2.8 Let X1, X5, ... berandom variables with  X,, = {

X144 X,
n

Show thatIE( ) = 0 for eachn , but — —1 almost surely.

2.9 Let X, X3, Xo, ... be random variables aif2, A, P).
(a) Showthat {weQ: X, (w) - X(w)} € A.
(b) Show that X,, — X almostsurely < sup |X,, — X| — 0 in probability .

m>n

2.10 Let X1, X, ... be independent random variables with distributié(0, 1). Prove that
lim sup (Xn/\/m) =1 a.s.
(Hint: g;nogider the eventd,, = {X,, > ay/2logn} for a € (0,00).)
2.11 Show that, as — oo,
(@ /000 sin(e”)/(1 +na?®) dz — 0, (b) /Ol(n cosz)/(1+ n2x3/2) dx — 0.

2.12 Letu, v : R — R be differentiable orja, b] with continuous derivatives’ andv’.
Show that fora < b

b b
/ u(z) v'(z) de = [u(b) v(b) — u(a)v(a)] — / o (z)v(z) dw .

2.13 Let ¢ : [a,b] — R be continuously differentiable and strictly increasing. Show that for all continu-
ous functiong; on [¢(a), ¢(b)]

(b) b .
/ 9ly) dy = / 9(¢(x)) ¢ (x) dx .
¢(a) a

2.14 Show that the function f(z) = 2 'sinz is not Lebesgue integrable oVt co) but that

Yy
lim f(z)dx = g . (use e.g. Fubini's theorem and ! = [ ¢~ dt)

Yy— Jo

2.15 (a) Let u be a measure ofZ,&) andf : E — [0,00) be&/B-measurable with, f du < oo.
Definev(A) = [, f dufor eachA € £. Show that is a measure of¥, £) and that

/ gdv = / fgdu forallintegrableg: F — R.
E E
(b) Let  be ac-finite measure ofE, £). Show that for all€ /B-measurablg : £ — [0, c0)

/gdu=/ (g = A)dA.
E 0
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A.3 Example sheet 3 — Convergence, Fubini,”-spaces

Unless otherwise specified, Igt, £, 1) be a measure space affel A, P) be a probability space.

3.1 Let x1 be the Lebesgue measure (@&, B(R?)).
(@) For f(z,y)= m calculate the iterated Lebesgue integrals

fo fo x,y)dxdy and fo fo x,y)dydz .
What does the result tell about the double mtedtr 5)2 fdu?

0 , (z,y) = (0,0)
JL SN fay)dedy and [ [ e, y) dy de
coincide, but that the double integrﬁl_1 )2 f du does not exist.

(c) Let v be the counting measure @R, 53), i.e. v(A) is equal to the number of elementsin
wheneverA is finite, andv(A) = oo otherwise. Denote bA = {(z,y) € (0,1)* : = =y}
the diagonal in(0, 1)? and calculate the iterated integrals

fol fol Ia(z,y)drv(dy) and fol fol 1a(z,y) v(dy) dex .
Does the result contradict Fubini's theorem?

Yy
(b) Show thatfor f(z,y) = { oy o (#9) 7 (0,0) the iterated integrals

3.2 (a) Are the following statements equivalent? (Justify your answer.)
() fis continuous almost everywhere, (i)f = g a.e. for a continuous functiog.
(b) Let X,, ~ U([—1/n,1/n]) be uniform random variables dr-1/n,1/n] for n € N.
Do the X,, converge, and if yes in what sense?

3.3 Prove that the spade™ (E, £, i) is complete.

3.4 Letp € [1,00] and letf,, f € LP(E, &, u) for n € N. Show that:
fo—f InLP = f,— f inmeasure butthe converse is not true

3.5 Read hand-out 2 carefully. Find examples which show that the reverse implications, concerning
the concepts of convergence on page 1, are in general false. How does the picture change if the
measure spadg?, A, P) is not finite?

3.6 Let X be arandom variable iR and letl < p < ¢ < co. Show that
E(|XP) = / pAPTIP(IX]| > A) dA
0
and deduce: X € LY(P) = P(|X|>\) =0\ = X ecL’P).

Remark on questions 3.7(a) and 3.8(a): Start with an indicator function and extend your argument to the
general case, analogous to the proof of Lemma 3.14(ii).

3.7 A stepfunctiory : R — R is any finite linear combination of indicator functions of finite intervals.

(a) Show that the set of stepfunctiofiss dense inL?(R) for all p € [1, 00),
i.e. forall f € LP(R) and every > 0 there existg € Z such that| f — g||, < e.
(Hint: Use the result of question 1.9.)
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(b) Using (a), argue that the set of continuous functi6fi®) is dense inL?(R), p € [1, c0).

3.8 (a) Show that, ifX andY are independent random variables, thepX V|1 = || X |1 [|Y |1 ,
but that the converse is in general not true.

(b) Show that, ifX andY are independent and integrable, theB(X V) = E(X)E(Y) .

3.9 LetV; C V» C ... be anincreasing sequence of closed subspack$ ef L?(E, &, ).
For f € L?, denote byf,, the orthogonal projection of on V;,. Show thatf,, converges in.2.

3.10 Given a countable family of disjoint eventsx; );c; , G; € A, with | J,.; Gi = Q.
Set G=0(Gn, : neN) and V =L*Q,G,P).
Show that, for X € L?(Q2, A,P), the conditional expectatiorE(X |G) is a version of the
orthogonal projection oK onV'.

3.11 (a) Find a sequence of random variabl€s, ),cn Which is not bounded iri.!, but satisfies the
other condition for uniform integrability, i.e.

Ve>030>0VAcAViel : P(A) <é = E(|Xi|14) <e.
(b) Find a uniformly integrable sequence of random variablés),cn such that
X, — 0 as. and E(sup|X,|) =o0.

3.12 Let (X, )nen be a sequence of identically distributed r.v.<#{P). Show that, as — oo,
(a) foralle >0, nP(|Xi|>ev/n) —0,
(b) n~1/? max|Xi| — 0 in probability ,

) n~Y? max|X;| — 0 inL'.
k<n

3.13 Themoment generating functiall x of a real-valued random variabl€ is defined by
Mx(0) =E(™), 6eR.
(a) Show that the maximal domain of definition/ = {§ € R : Mx(f) < oo} isan interval
and find examples faf = R, {0} and(—o0, 1).
Assume for simplicity thal' > 0 from now on.

(b) Show that ifl contains a neighbourhood of 0 th&hhas finite moments of all orders given by
n d n
B(X™) = (@) ‘Q:OMX(H) '

(c) Find a necessary and sufficient condition on the sequence of momgnts E(X™) for I to
contain a neighbourhood of 0.
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A.4 Example sheet 4 — Characteristic functions, Gaussian rv’s, ergodic theory

4.1 Let u1, pg be finite measures diR, B) such that/ gdus = / g duo for all bounded continuous
R R
functionsg : R — R. Show thatu; = ps.

4.2 Let u be a finite measure iR, B) with Fourier transformi. Show the following:
(a) [ is a bounded continuous function.

(b) If / |z|¥ p(dz) < oo, thenji has ak-th continuous derivative, which atis given by
R
i(0) =i [ o uds)
R
4.3 Let X be areal-valued random variable with characteristic funcfign
(@) Show thatpx (u) € Rforallu € Rifandonly if —X ~ X | i.e. u_x = ux .

(b) Suppose thafpx (u)| = 1 for all |u| < e with somee > 0. Show thatX is a.s. constant.
(Hint: Take an independent copy’ of X, calculatep y_ x+ to see thatX = X’ a.s..)

4.4 By considering characteristic functions or otherwise, show that there do not exist idr¥’ssuch
that X — Y is uniformly distributed on[—1, 1] .

4.5 The Cauchy distribution has density functiorf (z) = M , TER.
T i

(a) Show that the corresponding characteristic function is given bgu) = e~

(b) Show also that, if Xy, ..., X,, areindependent Cauchy random variables, then
(X1+---+ X,)/n is also Cauchy.
Comment on this in the light of the strong law of large numbers and the central limit theorem.

4.6 Let X, Y ~ N(0,1) andZ ~ N(0, 0?) be independent Gaussian random variables. Calculate the
characteristic function oh) = XY — 7.

4.7 SupposeX ~ N (i, 0?) anda, b € R. Prove Proposition 5.3, i.e. show that
@) E(X) =u, (b) var(X) = 02,
(©) aX + b~ N(ap+b,a%0?), (d) ¢ (u) = emmnie/2,

4.8 Let X, ..., X,, be independent/(0, 1) random variables. Show that
n n—1
<X, Z(Xm - X)2> and <Xn/\/ﬁ, Z an>
m=1 m=1
have the same distribution, wheke= (X7 + - -- + X,,)/n.

4.9 Show that the shift ma@ of Definition 6.3 is measurable and measure-preserving.

4.10 Let E = [0, 1) with Lebesgue measure. Rorc E consider the mapping
0, E—FE, 60i(z)=(x+a)modl.

(&) Show that, is measure-preserving.
(b) Show thaty, is not ergodic whem is rational.
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(c) Show thatd, is ergodic whenu is irrational.
(Hint: Considera,, = [, f(z) e2™ne dx to show that every invariant function is constant.)

(d) Let f : E — R be integrable. Determine for eaehe E the limit function
fznlii&(f+f09a+...+f09271)/n.

4.11 Show that 6(z) = 2z mod1 is a measure-preserving transformation Bn= [0, 1) with
Lebesgue measure, and thas ergodic. Findf for each integrable functiofi.
(Hint: Consider the binary expansian= 0.z;xsz3 ... and use thak(,, (z) = z,, are iidrvs with
P(X, = 0) = P(X,, = 1) = 1, which is proved on hand-out 2.)

4.12 Call a sequence of random variab(es, ).,y on @ common probability spastationaryif for each
n, k € N the random vector6X,, ..., X,,) and(Xg+1, ..., Xkt+n) have the same distribution, i.e.
for Ay,..., A, € B,

IP)(X1 € Al,... , Xn € An) = P(Xk+1 S Al,. . ka—l—n S An) .
Show that, if(X,,),en is a stationary sequence aid € L?, for somep € [1, o), then

1 n
-~ Y X, — X a.s.andinl?,
n

=1

for some random variabl& € LP, and findE(X).

4.13 Find a sequenceX, ),cn of independent random variables will{|X,,|) < oo andE(X,,) = 0
foralln € N, such that(X; + ...+ X,,)/n does not almost surely convergeito

4.14 Let (X, ),en be independent random variables witl?(X,, = 0) = P(X,, = 1) = 5, and define
U, =X1Xo+Xo X3+ ...+ XonXont1 -

Show that U, /n — ¢ a.s. forsomec € R, and determine.
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B Hand-outs

B.1 Hand-out 1 — Proof of Caratheodory’s extension theorem

Theorem 1.4. Caratleodory’s extension theorem
Let& be aringonE andy : £ — [0, 00| be a countably additive set function. Then there
exists a measurg’ on (E,0(€)) such that 4/(A) = pu(A) forall A€ €.

Proof. For anyB C F, define theouter measure u*(B) = ianM(An) ,

n
where the infimum is taken over all sequengés),cn in € such thatB C | J,, A, and is taken
to beco if there is no such sequence. Note thais increasing ang*(()) = 0. Let us say that
A C Fis yu*-measurablef, forall B C F,

i (B) = p*(BNA) + ' (BN A°).

Write M for the set of all.*-measurable set$Ve shall show thaM is ac-algebra containing
& and thaty™* is a measure oM, extendingu. This will prove the theorem.

Step I. We show thap:* is countably subadditive.
Suppose thaB C |J,, By. If p*(By,) < oo for all n, then, givere > 0, there exist sequences
(Anm)men in &, with

B, C UAnma N*(Bn) + 6/2n > ZN(Anm) .

Then B C|J| JAmm andthus p*(B) <> p(Apm) <> p*(By) +e.

n m

Hence, in any casep*(B) <> p*(B,) .

Step Il. We show thaj.* extengm.
Sincef is a ring andu is countably additivey is countably subadditive. Hence, fdre £ and

any sequencéA,, ) cn in £ with A C |, A,, we have  p(A) < ZM(An)-

On taking the infimum over all such sequences, we seqiht < 1*(A). On the other hand,
it is obvious thafu*(A) < u(A) for A € €.

Step Ill. We show thatM containse.
Let A € £ andB C E. We have to show that

p(B) = p*(BNA)+ p*(BNA%.
By subadditivity ofu*, it is enough to show that
p'(B) = p*(BNA) + p*(BNAY).

If u*(B) = oo, this is trivial, so let us assume that(B) < oo. Then, givere > 0, we can
find a sequencéA,,),cr in € such that

BC|JAn, w(B)+e=) u(4n).
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Then BNAC| J(4,nA), BnA°C|J(A,NA%), sothat

PHBNA) +p (BNAY <Y (AN A) + Y p(An NAS) =) p(Ay) < p*(B) +e.

Sincee > 0 was arbitrary, we are done.

Step IV. We show thatM is an algebra.
Clearly F € M andA¢ € £ wheneverA € £. Suppose thatl;, A, € M andB C E. Then

p(B)

p* (BN Ay) + (B N AS)

p (BNA;NAy)+ p"(BNANAS) + p (BN AJ)

M*(B NA;TNAg) +p" (BN (A1 N AN AL+ p" (BN (AN Ay)°N AY)
(BN (A1 NA)) + u* (BN (AN A2)).

Henced; N A5 € M.

Step V. We show thatM is ac-algebra and that* is a measure oM.
We already know thaM is an algebra, so it suffices to show that, for any sequence of disjoint
sets(Ap)nen iN M, for A = J,, A, we have

AeM, p(A)=> u(A
So, take anyB C E, then
p(B)=p (BN AL+ p (BNAT) = p" (BN AL + p* (BN Ag) + p (BN AT N Aj)

=...=) p(BNA)+p (BNATN...NAS).
i=1

Note thatu* (BN AfN...NAS) > p*(BnN A°) for all n. Hence, on lettingr — oo and using
countable subadditivity, we get

Z (BNA,) +p*(BNA®) > p*(BNA)+ u* (BN A°).

The reverse inequality holds by subadditivity, so we have equality. H&neeM and, setting

B=Aweget p*(A)=> p*(Ay). 0
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B.2 Hand-out 2 — Convergence of random variables

Let X, X,, : © — R be random variables on a probability sp&te A, P) with distributions, i,
There are several concepts of convergence of random variables, which are summarised in the following:

() X, — X everywherer pointwiseif X, (w) — X(w) forallw e Qasn — co.
(i) X, %> X almostsurelfa.s)if P(X, A X)=0.
(i) X, -~ X in probabilityif ¥e>0 : P(|X, - X|>¢) —0 asn— oco.
(v) X, 25 X inLPforpe[l,00], if | X, — X[, >0 asn— oo.

v) X, L., X in distributionor in law if P(X, <z)— P(X < z)asn — oo, for all continuity
points of P(X < x). Since equivalent to (vi), this is often also calledak convergence

(Vi) pn = p  weaklyif / fdu, — / fdu forall f € Cp(R,R) .
R R

The following implications hold > p > 1):

X,— X = X, X

X, 55X = X, 25X & p=p

x, 2x = XRKJ(//T

Proofs are given in Theorem 2.10, Proposition 2.11 (see below), Theorem 3.9 (see below), Corollary 5.3
and example sheet question 3.2.

Proof. of Proposition 2.11: X, L.ox = X, Pox

SupposeX,, £, X and write F,(x) =P(X,, <z),F(x) =P(X <x) forthe distr. fcts.
Ife>0, Fo(z) =P(Xp <2, X <z+e)+P(X, <z, X >z+4¢) < Flz+e)+P(|X,,—X]| >¢).
Similarly, F(z—¢) =P(X <z—¢, X, <z)+P(X <z —¢, X;, > z) < Fp(2) +P(| Xn—X| > €).
Thus F(zx —¢) —P(| X, — X|>¢€) < F(x) < F(x +¢) +P(| X, — X| >¢€), andasi — oo

F(z —¢€) <liminf F,(z) < limsup F,,(z) < F(x +¢) foralle>0.
n n

If F'is continuous at, F'(z —¢) / F(x) andF(z + €) \, F'(x) ase — 0, proving the result. O

Proof. of Theorem 3.9: X, P x e L = 1

SupposeX,, L. X. Then by the Skorohod theorem 2.12 there eXist X andY,, ~ X,, on a common
probability spacé(), A, P) such that, f(Y,) — f(Y)a.e. sincef € Cy(R,R). Thus

/fdun:/f(Yn)dPa/f(Y)dP:/fdu and pu, = by bounded convergence
R Q Q R
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Suppose:,, — 1 and lety be a continuity point oFX

Fordé > 0, approximatel _, ,; by fs(x) = { (y @ (y,y+0)

(@)
/0, x € (y,y+9)

:U)

such that

I+(z—y)/d , x & (y—6,y)
[t dn] <] [ gsdu| where go(w) = { L+(y-2)/5 . 2 € ly.y+5)
R R 0 , otherwise

The same inequality holds fat, for all n € N. Then as1 — o

B, = Fx)] = | [ 1o din — [ Loy ] <
R R

< ‘/gadun +‘/gadu‘+’/f5dun—/fadu‘HQ‘/gadu),
R R R R R

sincefs, g5 € Co(R,R). Now, | [ gsdu| < u((y =6,y +0)) — 0assd — 0, sinceu({y}) =
so X, L, X.

Skorohod representation theorem
For all probability distribution functionsFy, F»,... : R — [0,1] there exists a probability space
(Q, A, P) and random variables(;, Xs, . .. :  — R such thatX,, has distribution functiorf’,.

(a) TheX,, can be chosen to be independent.

(b) If F,, — F for all continuity points of the probability distribution functidn, then theX,, can also
be chosen such thaf,, — X a.s. with X : Q — R having distribution functiorf-.

Proof. Consider the probability spa¢e, A, P) whereQ = (0, 1], A = B((0, 1]) andP is the restriction
of Lebesgue measure . For eacm € N defineG,, : (0,1] = R, Gp(w)=inf{z : w < F,(z)}.
(b) In problem 2.4 it is shown that,, = G,, are random variables with distribution functioAs and
that X,, — X a.s. under the assumption in (b), whekgw) = G(w) is defined analogously.

(a) Eachw € Q has a unique binary expansien= 0.wiwaws . . ., Where we forbid infinite sequences
of 0’'s. TheRademacher functionsk,, : @ — {0, 1} are defined a®,,(w) = w,. Note that

Bi=1gy, R=lgg+ley, Rs=loyg+ley+leytlay,

277,71

. 2k —1 2k
thus in general R, = 14, where A, = U Iy and I, = < }

on 7 on
k=1
With problem 1.11 the&R,, are independent if and only if thé,, are. To see this, take, < ... < ng, for
someL € N and we see that,, , ..., 4,, are independent by induction, using that

Pk N Any) = 2P(Lnk) = Py, k) P(Ay,,,) forallk=1,...,2m7 ",
andthus  P(A,, N...NA, NA,., ) =P(Ay N...NAy)P(Ay ) .

o
Now choose a bijectionm : N> = N and set Y;, = R,y and Y, = Z 27" Yim -
k=1
ThenYi,Ys,... are independentandP(i2 % < Y, < (i +1)27%) =27% foralln,k,i.
ThusP(Y,, < z) = zforall x € (0,1]. SoX, = G,(Y,) are independent random variables with
distribution F,,, which can be shown analogous to (b). O
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B.3 Hand-out 3 — Connection between Lebesgue and Riemann integration

Definition. f : [a,b] — R is Riemann integrabléR-integrable) with integrak € R, if

Ve>0 35>ovxjefj:‘R—Zf(xj)ujy)«, (B.1)
j=1
for some finite partitio{ /1, . . ., I, } of [a, b] into subintervals of lengthd;| < .

This corresponds to an approximationfaby step functioni?:1 f(z;) 1;;, aspecial case of
simple functions which are constant on intervals.

Lebespue tequidistant) Riemann

The picture is taken from R.L. Schilling)leasures, Integrals and MartingaleSUP 2005. He
writes:

. the Riemann sums patrtition the domain of the function without taking into
account the shape of the function, thus slicing up the area under the fumetion
tically. Lebesgue’s approach is exactly the opposit: the domain is partitioned
according to the values of the function at hand, leadinghorizontaldecompo-
sition of the area.

Theorem. Lebesgue’s integrability criterium
f ¢ [a,b] — R is R-integrable if and only iff is bounded orja, b] and continuous almost
everywhere, i.e. the set of points[in b] wheref is not continuous has Lebesgue meagure

Corollary. Supposef : [a,b] — R is R-integrable. Then it is also Lebesgue integrable
(L-integrable) and the values of both integrals coincide.

Proof. For a partition{I1, ..., I,,} define the step functions

n

Gn = Zsup{f(x) rx €Ll g = Zinf{f(x) rx € L1y, .
j=1

J=1

Thusg < f < gnandif fis continuousu.c., g ,g, — f a.e.asn — oo and|[;| — 0.
Sincef is bounded, it follows by dominated convergence for the L-integrals

/abgn(m) = /:f@f) de /abgn@:) dz — /abf<x>dx,
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so the sum inB.1) converges and R = f;’ f(z)dx .

On the other hand, if the sum iB (1) converges, then f; |Gn(z) =g, ()| dz — 0 and thus
for the limit functionsg = g a.e., andf is continuousz.e. sinceg < f < g.
If f was not bounded, one could choasgn (B.1) such that the sum does not converget

On the other hand, not every L-integrable function is also R-integrable. The standard example
is f = 1p,1)nq » Which can be made R-integrable by changing it on a set of L-measure
This might suggest that for every L-integralfléhere exists an R-integrabjewith f = g a.e. .

This is not true as demonstrated by the following example:

Let {ry,r2...} be an enumeration of the rationals(in 1). For smalle > 0 and eaclh € N
choose an open intervdl, C (0,1) with , € I, and L-measure.(I,,) < €27". Put

A =, In. ThenAis dense in0,1) with 0 < u(A) < e and thus for any non-degenerate
subintervall of (0,1), u(AN1I)> 0.

Take f = 14 and suppose that = g a.e.. Let{;} be some decomposition ¢, 1) into
subintervals. Since for eaghp(I; NAN{f = g}) = p(I; N A) > 0, g(z;) = f(z;) = 1for
somer; € I; N A, and thus

n

> glay) plly) = 1> p(A) . (B.2)

Jj=1

If ¢ were R-integrable, its integral would have to coincide with the L-inteﬁ}’eﬁ du = p(A),
which is in contradiction toH.2).

B.4 Hand-out 4 — Ergodic theorems

Hand-out 4 contains statements and proofs of Lemma 6.5 and Theorems 6.6 and 6.7, which
can be found in Section 6.3.
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