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Abstract. On the basis of Karlin and McGregor result, which states that the transition probabil-
ity functions of a birth and death process can be expressed via the introduction of an orthogonal
polynomial system and a spectral measure, we investigate in this paper how the Laplace transforms
and the distributions of di�erent transient characteristics related to excursions of a birth and death
process can be expressed by means of the basic orthogonal polynomial system and the spectral mea-
sure. This allows us in particular to give a probabilistic interpretation of the series introduced by
Stieltjes to study the convergence of the fundamental continued fraction associated with the system.
Throughout the paper, we pay special attention to the case when the birth and death process is
ergodic. Under the assumption that the spectrum of the spectral measure is discrete, we show how
the distributions of di�erent random variables associated with excursions depend on the fundamental
continued fraction, the orthogonal polynomial system and the spectral measure.
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1. Introduction

The connection between probability theory, continued fractions, and orthogonal polynomials sys-
tems (OPS) is usually addressed in the literature via the very fundamental result of Karlin and
McGregor [12], which states that the transition probability functions of a birth and death process
can be expressed by means of some orthogonal polynomials associated with some spectral measure.
This is equivalent to claim that the backward Chapman-Kolmogorov equations can be solved via
the introduction of an OPS and a spectral measure.
Speci�cally, consider a birth and death processes f�tg with state space f0; 1; 2; 3; : : :g and de�ned

on some probability space (
;F ;P); the transition rates of the process f�tg are denoted by

qm;m+1 = �m > 0; qm;m�1 = �m; qm;m = � (�m + �m) for m � 0;(1.1)

qm;n = 0 otherwise. (The rate �0 is equal to 0 and �m > 0 for m > 0.) Karlin and McGregor result
asserts that there exist an OPS fQn(x)g and a regular positive spectral measure �(dx) of total mass
one and not supported by a �nite set of points so that

form;n � 0; pm;n(t)
def
= Pf�t = n j �0 = mg = �n

Z 1

0
e�txQn(x)Qm(x)�(dx)(1.2)

and Z 1

0
Qm(x)Qn(x)�(dx) = 0 for m 6= n; and

Z 1

0
Q2
m(x)�(dx) =

1

�m
;(1.3)

where the polynomials fQn(x)g form an OPS with respect to the spectral measure �(dx) and satisfy
the three-term recurrence relation8<

:
Q0(x) � 1; Q�1(x) � 0;

�nQn+1(x) + (x� �n � �n)Qn(x) + �nQn�1(x) = 0; n � 0;
(1.4)
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and the quantities �m are de�ned by

�0 = 1 and �m =
�0 : : :�m�1
�1 : : :�m

form � 1:(1.5)

The OPS fQn(x)g will be referred to in the following as the fundamental OPS associated with the
birth and death process f�tg.
The result of Karlin McGregor can notably be used to classify birth and death processes (especially

linear-growth birth an death processes), where the concepts of recurrence and transience are studied
in a purely analytic way instead of a probabilistic one [13]. The result is also of great interest for
the community dealing with the properties of orthogonal polynomials occurring in the modelling of
physical systems (see [10] for instance).
A complementary approach to the connection between probability theory and OPS [5] consists in

using the continued fraction de�ned by

for <(z) > 0; ~p0(z) =
1

z + �0 � �0�1

z + �1 + �1 � �1�2

z + �2 + �2 � . . .

;(1.6)

and representing the Laplace transform of p0;0(t) = Pf�t = 0 j �0 = 0g (i.e., ~p0(z) =R1
0 e�ztp0;0(t)dt). The continued fraction and the associated OPS can then be used to study the
recurrence and the transience of the birth and death process.
We adopt in this paper a slightly di�erent approach to the aforementioned connection. We

speci�cally show how the theory of continued fractions naturally arises when studying some transient
characteristics associated with the birth and death process f�tg, namely the time to an excursion
above a given threshold starting from a given state, and the duration of an excursion above a given
threshold. In analogy with the M=M=1 system studied in [8], special attention will be paid in this
paper to the case when the birth and death process f�tg is an ergodic Markov chain, which is a
natural assumption in a probabilistic setting. This assumption entails in particular that [4]

(C1)
1X

m=0

�m <1:

Moreover, we shall examine the case when the birth and death process satis�es Aldous' local
linearization property [2]. (The exact meaning of this property will be detailed in the subsequent
sections.) Under condition (C1), the stationary distribution fpmg of the process f�tg is given by

p0 =
1

1X
m=0

�m

> 0 and for m � 1; pm =
�m
1X

m=0

�m

> 0:(1.7)

The contribution of this paper can be summarized as follows:

� we give a probabilistic interpretation of the series introduced by Stieltjes to study the conver-
gence of the continued fraction ~p0(z);

� we show how the Laplace transforms of di�erent transient characteristics associated with ex-
cursions of the birth and death process can be expressed in terms of the fundamental OPS and
the continued fraction ~p0;

� under the assumption that the spectrum of the measure �(dx) is discrete, we show how the
distributions of di�erent transient characteristics depend on the continued fraction ~p0(z), the
basic OPS and the spectral measure �(dx).
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2. Basic Definitions and Results

We recall in this section some basic concepts and results, which hold for the continued fraction
~p0(z). The successive denominators fP�n (z)g of the continued fraction ~p0(z) satisfy the Wallis
recurrence relations [9]8<

:
P�0 (z) � 1; P��1(z) � 0;

P�n+1(z) + (�z � �n � �n)P
�
n (z) + �n�1�nP�n�1(z) = 0; n � 0;

(2.1)

and it is easily checked that 8<
:

P�0 (�z) � 1; P��1(�z) � 0;

P�n (�z) = �0 : : :�n�1Qn(z):
(2.2)

Hence, the polynomials fP�n (�z)g form an OPS with respect to the measure �(dx).
The J (Jacobi) fraction ~p0(z) can be viewed as the even part of a RITZ�1 fraction of the form

~P (z) =
�1
z

+
�2
1

+
�3
z

+
�4
1

+ � � � ;

whose even part ~P e(z) is given by

~P e(z) =
�1

z + �2
� �2�3

z + �3 + �4
� �4�5

z + �5 + �6
� �6�7

z + �7 + �8
� � � �

In the present case, we clearly have8<
:

�1 = 1 and �2 = �0;

�2k�2k+1 = �k�1�k and �2k+1 + �2(k+1) = �k + �k for k � 1;
(2.3)

which immediately yields [5]

�1 = 1; �2k = �k�1; and �2k+1 = �k for k � 1:(2.4)

Since �k > 0 for all k, ~P (z) is an S fraction. Note that the method of directly proving that the
coe�cients of the RITZ�1 fraction are all positive can be used instead of checking Stieltjes criterion
as in [5].
The measure �(dx) is one solution of the Stieltjes problem corresponding to the polynomials

fP�m(�z)g, i.e., a measure satisfying eq. (1.3) (see [12]). Note that without further assumptions, the
measure �(dx) is a priori not the unique solution of the Stieltjes moment problem.
The successive numerators P+

m(z) of the continued fraction ~p0(z) satisfy the Wallis recurrence
relations 8>><

>>:
P+
0 (z) � 0; 1

�0
P+
1 (z) � 1

�0
;

�n+1
P+
n+2(z)

�0 : : :�n+1
+ (�z � �n+1 � �n+1)

P+
n+1(z)

�0 : : :�n
+ �n+1

P+
n (z)

�0 : : :�n�1
= 0; n � 0:

(2.5)

At this stage, let us introduce the concept of polynomials associated with the basic OPS fQn(x)g
[6]. Speci�cally, the associated polynomials fQn(x; 
)g, 
 = 0; 1; 2; : : : are de�ned by the recursion8<

:
Q�1(z; 
)� 0; Q0(z; 
) � 1;

�n+
Qn+1(z; 
) + (z � �n+
 � �n+
)Qn(z; 
) + �n+
Qn�1(z; 
) = 0; n � 0:
(2.6)

When 
 = 1, these polynomials are also referred to as polynomials of the second kind in [3]. It is
known in the literature that the associated polynomials fQn(x; 
)g form an OPS.
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With regard to the associated polynomials, the initial value of the coe�cients �n+
 (i.e., �
)
may change the orthogonal polynomial class and the spectral measure. This point is discussed for
example in [10] and a natural choice for the initial value of �
 is zero. In this paper, however, since
we deal with excrusions of the birth and death process, which can then be viewed as a transient
(absorbed) process, we shall consider the case �
 > 0.
By identi�cation, it is easily checked that

P+
n (z) = �1 : : :�n�1Qn�1(�z; 1)(2.7)

with the convention �2 : : :�n = 1 for n = 0; 1. It follows that the [n-1/n] Pad�e approximant [~p0(z)]n
of the continued fraction ~p0(z) is given by

[~p0(z)]n
def
=

P+
n (z)

P�n (z)
=

1

�0

Qn�1(�z; 1)
Qn(�z; 0) ;(2.8)

where by de�nition Qn(x; 0) = Qn(x).
Regarding the convergence of the continued fraction ~p0(z), the properties of the spectrum and the

uniqueness of the solution of the Stieltjes moment problem, let us introduce as in [5] the sequence
fang de�ned by

�1 =
1

a1
and �n =

1

an�1an
for n > 1:(2.9)

In the present case, it can be shown that

a2m =
�1 : : :�m�1
�0 : : :�m�1

=
1

�m�1�m�1
form � 1;(2.10)

a2m+1 =
�0 : : :�m�1
�1 : : : �m

= �m for m � 0:(2.11)

On the basis of Stieltjes' work, the authors of [5] recall that by considering the series

S =
1X
n=1

an;(2.12)

B =
1X
n=1

(a1 + : : :+ a2n�1)a2n;(2.13)

C =
1X
n=1

(a2 + : : :+ a2n)a2n+1;(2.14)

we have the following convergence results and properties for the poles of the continued fraction:

Result 1.: The zeros of the successive even denominators ~P�2n(z) (which coincide with the polyno-
mials P�n (z)) and odd denominators ~P�2n+1(z) of the continued fraction ~P (z) are real, negative
and simple. (This entails that the zeros of the polynomials Qn(x) are real, positive and simple).

Result 2.: If S < 1, then the odd and even parts of the continued fraction ~P (z) converge,
possibly to di�erent functions, which are meromorphic functions with poles on the negative
real axis; the poles sk , k = 1; 2; : : : of ~p0 satisfy the property

1X
k=2

1

sk
<1:(2.15)

Result 3.: If S = 1, then the odd and even parts of the continued fraction ~P (z) converge to
the same function, which is analytic in the whole complex plane deprived of the negative real
axis; the successive numerators and denominators do not have in general �nite limits; however
there are two (and only two) cases where the even and the odd polynomials have �nite limits
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Result 3.1.: if B <1, P�n (z) converges to a �nite limit ~P�(z) and the poles of ~P (z) satisfy
inequality (2.15);

Result 3.2.: if C <1, the odd polynomials ~P�2n+1(z) of the continued fraction ~P (z) have a

�nite limit and the poles of ~P (z) satisfy inequality (2.15).

3. Probabilistic Interpretation of the Series S, B, and C

We consider the random variable �m representing the duration of an excursion by the process
f�tg above the level m� 1, m � 1, which is de�ned by

�m = infft > 0 : �t = m� 1 j �0 = mg:(3.1)

Moreover, let �m be the �rst passage time from state m � 1 to state m. This random variable is
precisely de�ned by

�m = infft > 0 : �t � m j �0 = m� 1g:(3.2)

On the basis of the above de�nitions, let Um and Dm denote the upcrossing time from state 0 to
state m and the downcrossing time from state m to state 0, respectively. We clearly have

Um =
mX
n=1

�n and Dm =
mX
n=1

�n:(3.3)

Finally, let

Cm = Um + Dm(3.4)

The random variable Cm represents the time between two visits by the process f�tg at state 0,
knowing that the process f�tg hits the state m.

Lemma 1. Under condition (C1), the respective mean values �m and �m of the random variables
�m and �m are given by

�m =
1

�m�1�m�1

1X
n=m

�n;(3.5)

�m =
1

�m�1�m�1

m�1X
n=0

�n:(3.6)

Proof. From the strong Markov property satis�ed by the process f�tg and the memoryless property
of the exponential distribution, the successive excursion times by process f�tg above the level m� 1
are i.i.d. Hence, we can write

1X
n=m

Z t

0
1f�s=ngds =

Nm
t �1X
`=1

�m` + "t

where the random variables �m` are i.i.d. with the same law as �m, and fNm
t g is the point process

counting the excursions by the process f�tg above the level m � 1. "t is the excursion time of the
last excursion up to time t. Owing to the ergodicity property satis�ed by the process f�tg,

lim
t!1

1

t

1X
n=m

Z t

0
1f�s=ngds =

1X
n=m

pm a.s.

From the strong law of large numbers,

lim
N!1

1

N

NX
k=1

�mk = ��m a.s.
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Finally, since fNm
t � �m�1

R t
0 1f�s=m�1gdsg is a martingale whose quadratic variation process is

simply f�m�1
R t
0 1f�s=m�1gdsg, satisfying

lim
t!1

1

t
�m�1

Z t

0
1f�s=m�1gds = �m�1pm�1 a.s.;

we deduce from the strong law of large numbers for martingales that

lim
t!1

Nm
t

t
= �m�1pm�1 a.s.

Obviously, "t=t! 0 a.s. and eq. (3.5) follows.
The mean value of the random variable �m can be computed as follows. Using once again the

strong Markov property of the process f�tg, we can write8><
>:

�m
d
= E�m�1+�m�1 with probability �m�1

�m�1+�m�1

�m
d
= E�m�1+�m�1 + � 0m + �m�1 with probability

�m�1
�m�1+�m�1

form � 1;(3.7)

where E�m�1+�m�1 is a random variable exponentially distributed with parameter �m�1 + �m�1,
the random variables �m, �

0
m and �m�1 are independent, and �m and � 0m are identically distributed.

Taking expectations, we get
�m�1��m = 1 + �m�1��m�1;

and straightforward manipulations yield the desired result, given that ��1 = 1=�0. This completes
the proof.

From the de�nition of the random variables Um, Dm and Cm for m � 1, we have the following
probabilistic interpretation of the series S, B, and C.

Theorem 1. Under condition (C1), the series S, B, and C are related to the respective mean values
�Um, �Dm and �Cm of the random variables Um, Dm and Cm for m � 1 as follows:

B = lim
m!1

�Um;(3.8)

C = lim
m!1

�Dm;(3.9)

S =
1

p0
+ lim

m!1
�Cm:(3.10)

The above result shows that the series S, B, and C can be expressed in terms of the mean values
of some transient characteristics related to the excursions of the birth and death process.
As already shown in the paper by Karlin and Mc Gregor [11] (see also [4]), the ergodicity assump-

tion (C1) implies that S = 1. Indeed, on the one hand, under the assumption that the Markov
process f�tg is ergodic, we have limt!1 p0;0(t) = p0 > 0 and hence, ~p0(0) =1. On the other hand,
from the theory of continued fractions [9, eq. (12.1-23)], we have

~p0(z) =
1X

m=1

�0 : : :�m�2�1 : : :�m�1
P�m�1(z)P

�
m(z)

:(3.11)

It is easily checked that P�m(0) = �0 : : :�m�1 and it then follows that
1X

m=1

�1 : : :�m�1
�0 : : :�m�1

=1:(3.12)

As a consequence, the series S = 1, which entails, under condition (C1), B =1. In this case, the
solution of the Stieltjes moment problem is unique [12, Chap. IV, Theorem 14]. The odd and even
parts of the S-fraction ~P (z) converge to the same limit, which is an analytic function in the complex
plane deprived of the non positive real axis. Note that the above result entails that the measure



EXCURSIONS OF BIRTH AND DEATH PROCESSES 7

�(dx) has the mass 1=
P1

m=0 �m = p0 > 0 located at the origin [12]. Furthermore, from [9], ~p0 can
be expressed as the Stieltjes transform of the measure �(dx), that is, for z 2 C n(�1; 0),

~p0(z) =

Z 1

0

1

z + x
�(dx):(3.13)

The condition (C1) is however not su�cient to determine the convergence of the series C. Indeed,
take for instance �n = u for some real u > 0 and �n = n. Then, the condition (C1) is satis�ed and
the series S = B = C = 1. Now, if we consider the case �n = u and �n = n2, then condition (C1)
is satis�ed and the series S = B =1, but C <1.
The condition (C1) is also not su�cient to determine the asymptotic behavior of the mean values

��m. Indeed, in the case �n = u and �n = n for some real u > 0, ��m ! 0 as m ! 1. In the case
�n = u and �n = 1 for some real u 2 (0; 1), ��m = 1=(1� u) for all m � 1.
To progress in the investigations of the properties of the birth and death process f�tg, we are

led to make further assumptions on the process f�tg. In the literature, it is usual to take some
speci�c birth and death rates or more generally to suppose some asymptotic behavior for the birth
and death rates. For instance, for linear growth birth and death processes, a classical assumption
consists in supposing the asymptotic behavior �n = O(n�) and �n = O(n�) for some real �; in this
case, the process is said to be asymptotically proportional.
In this paper, we adopt a slightly di�erent approach. Speci�cally, we assume in the following that

(C2) C =1
but with

(C3) �m ! 0 as m!1:

The above assumptions are notably veri�ed by the occupation process of an M=M=1 queue.
The introduction of the two above assumptions is motivated by the Aldous local linearization

property satis�ed by some birth and death processes arising in the modelling of physical systems.
Speci�cally, we say that a birth and death process f�tg satis�es the Aldous local linearization
property if

f�m
kmtg d! fntg asm!1;(3.14)

where f�m
t g is the excursion process above the level m, de�ned by

�m
t = �t^�m �m given that �0 = m+ 1;(3.15)

fntg is a birth and death process taking values in f0; 1; 2; : : :g, with initial state 1, and absorbed
at state 0 at time �, and fkmg is a sequence of real numbers such that km ! 1 as m ! 1. The
Aldous local linearization property is satis�ed for instance for the birth and death process with rates
�m = �(m+1)� and �m = m� for positive constants � and �; the limiting process fntg is in this case
the occupation process of an M=M=1 queue with input rate � and unit service rate. Note that the
conditions (C2) and (C3) are satis�ed once

P
k 1=km = 1 and E[�] < 1. For the above example,

the conditions (C1) is satis�ed if � 2 (0; 1) and the conditions (C2) and (C3) hold if in addition
� � 1. In that case, the limiting M=M=1 queue is stable.

4. Laplace Transforms of Transient Characteristics

The fundamental OPS fQn(x)g has been introduced so far in connection with the continued
fraction ~p0(z). We now show how this polynomial system arises in the computation of the Laplace
transforms of some transient characteristics associated with the birth and death process. We suppose
that the process f�tg satis�es the assumptions (C1), (C2), and (C3) and we consider in a �rst step

the �rst passage time �m;n from state m to state n, n > m. Note that �m
def
= �m�1;m, where �m is

de�ned by eq. (3.2). The analysis of the Laplace transform in the M=M=1 case has been carried
out in [15].
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Proposition 1. The Laplace transform ~�m;n(z) of the passage time �m;n from state m to state n,
n > m is given by

for <(z) � 0; ~�m;n(z) =
Qm(�z)
Qn(�z) :(4.1)

Proof. By taking Laplace transforms in eq. (3.7), we obtain, owing to the independence between the
di�erent random variables,

(z + �m + �m)~�m+1(z) = �m + �m~�m(z)~�m+1(z)(4.2)

Let

T0(z) = 1; and for m � 1; Tm(z) =

 
mY
`=1

~�`(z)

!�1
;(4.3)

where ~�m is the Laplace transform of �m. From the recurrence relations (3.7), we have for m � 1

�mTm+1(z)� (z + �m + �m)Tm(z) + �mTm�1(z) = 0(4.4)

Since

T1(z) =
1

~�0(z)
=

z + �0
�0

;

eq. (4.4) is valid for m = 0 by setting T�1(z) = 0. We immediately deduce that

T0(�z) = 1 and form � 1; Tm(z) = Qm(�z):(4.5)

By the strong Markov property,

~�m;n(z) = ~�m+1(z) : : : ~�n(z) =
Tm(z)

Tn(z)

and the relation (4.1) follows. This completes the proof.

As an easy consequence of the above result, we have the following corollary.

Corollary 1. The Laplace transform of the random variable Um is given by

for <(z) � 0; ~Um(z) = 1

Qm(�z) :(4.6)

We now consider the duration �m of an excursion by the process f�tg above the level m � 1,
m � 1. We give in a �rst step the formal continued fraction representation of its Laplace transform;
the convergence of the continued fraction will be addressed in the next section. In fact, we extend
to the general birth and death process f�tg the analysis carried out in [7] for the occupation process
of an M=M=1 system.

Proposition 2. The Laplace transform ~�m of the random variable �m for m � 1 can formally be
represented by a continued fraction as

~�m(z) = � 1

�m�1

1
K

n = 1

��m+n�2�m+n�1
z + �m+n�1 + �m+n�1

for <(z) � 0:(4.7)

Proof. From the strong Markov property satis�ed by the process f�tg, we can write

�m
d
= E�m+�m

with probability �m=(�m + �m) and

�m
d
= E�m+�m + �m+1 + �0m

with probability �m=(�m+�m), where E�m+�m denotes an exponentially distributed random variable
with parameter �m + �m, and where �m and �0m are i.i.d., the random variables E�m+�m , �m, �m+1,
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and �0m being independent. Denoting by ~�m the Laplace transform of the random variable �m, the
above relations yield

(z + �m + �m)~�m(z) = �m + �m~�m+1(z)~�m(z)(4.8)

from which we deduce

~�m(z) =
�m

z + �m + �m � �m~�m+1(z)
:(4.9)

From condition (C3), �m ! 0 as m ! 1 and then since �m � 0, �m
d! 0 as m ! 1, which

entails that ~�m(z)! 1 as m!1. Hence, we can formally write

~�m(z) =
�m

z + �m + �m +
��m�m+1

z + �m+1 + �m+1 +
��m+1�m+2

z + �m+2 + �m+2 +
...

and we formally obtain eq. (4.7).

Let ��n (z;m) be the nth denominator of ~�m(z), which satisfy the Wallis recurrence relations:
���1(z;m) = 0, ��0 (z;m) = 1 and for n � 0,

(4.10) �m+n

 
��n+1(z;m)

�m : : :�m+n

!
� (z + �m+n + �m+n)

�
��n (z;m)

�m : : :�m+n�1

�

+ �m+n(1� �0;n)

 
��n�1(z;m)

�m : : :�m+n�2

!
= 0

from which we deduce that

��n (z;m) = �m : : :�m+n�1Qn(�z;m);(4.11)

where fQn(z;m)g are the polynomials associated with the fundamental OPS fQn(z)g.
The numerators �+n (z;m) of the continued fraction ~�m(z) satisfy the recursion �+0 (z;m) = 0,

�+1 (z;m) = �m and for n � 0,

�m+n+1

 
�+n+2(z;m)

�m : : :�m+n+1

!
� (z + �m+n+1 + �m+n+1)

 
�+n+1(z;m)

�m : : : �m+n

!

+ �m+n+1

�
�+n (z;m)

�m : : :�m+n�1

�
= 0:

By identi�cation, we have

�+n (z;m) = �m�m+1 : : :�m+n�1Qn�1(�z;m+ 1):(4.12)

It follows that the [n-1/n] Pad�e approximant [~�m(z)]n of the continued fraction ~�m(z) is

�m
�m

Qn�1(�z;m+ 1)

Qn(�z;m)
:

The above results show how the fundamental OPS, via the associated polynomials, arise in the
computation of the Laplace transform of the random variable �m. The analysis can be led further
and we can show that the Laplace transform under consideration can directly be expressed in terms
of the fundamental OPS and of the continued fraction ~p0(z). For this purpose, we assume that all
the continued fraction appearing below are converging for z 2 C n(�1; 0); the convergence issues
will be addressed in the next section.
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Proposition 3. For m � 1, ~�m(z) satis�es

8z 2 C n(�1; 0); ~�m(z) =
Qm(�z)
Qm�1(�z) �

�1 : : : �m�1
�0 : : :�m�1Q2

m�1(�z) (~p0(z)� [~p0(z)]m�1)
;(4.13)

where fQm(x)g is the fundamental OPS de�ned by the recurrence relations (1.4) and where
[~p0(z)]m�1 denotes the mth approximant of the continued fraction ~p0(z).

Proof. We prove the result by mathematical induction. For m = 1, using the relations (4.7) and
(1.6), it is easily checked that

~p0(z) =
1

z + �0 � �0~�1(z)

and whence

~�1(z) =
z + �0
�0

� 1

�0~p0(z)
:

This expression has the desired form with the convention [~p0(z)]0 = 0. The relation (4.13) is hence
valid for m = 1.
Assume now that the relation (4.13) is valid at rank m. Using the recurrence relation (4.9) for

n = m, it follows after some algebra that ~�m(z) can be expressed as

~�m+1(z) = Bm � Nm

~p0(z)�Rm

(4.14)

with

Bm =
z + �m + �m

�m
� �m
�m

Qm�1(�z)
Qm(�z) ;(4.15)

Nm =
�0 : : : �m

�1 : : :�mQm(�z)2 ;(4.16)

Rm = [~p0(z)]m�1 +
�1 : : :�m�1
�0 : : :�m�1

1

Qm�1(�z)Qm(�z) :(4.17)

Using the recurrence relations satis�ed by the polynomials Qm(z) immediately yields

Bm =
Qm+1(�z)
Qm(�z) :

It is known [9, eq. (12.1-22)] that the di�erence between two consecutive approximants of the
continued fraction ~p0(z) is given by

[~p0(z)]m � [~p0(z)]m�1 =
�0�1�2�1 : : :�m�2�m�1

�0 : : :�m�2Qm�1(�z)�0 : : :�m�1Qm(�z)
=

�1 : : :�m�1
�0 : : :�m�1

1

Qm�1(�z)Qm(�z) ;

where we have used the relation between the denominators of the continued fraction ~p0(z) and the
polynomials Qn(z). It follows that

Rm = [~p0(z)]m:

Bringing the above results all together, we see that if eq. (4.13) is valid at rank m, it is valid at
rank m+ 1. Since this relation holds for m = 1, the proof is done.
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5. Convergence and Properties of the Continued Fraction

To alleviate the notation, we make use in this section of the scale function � associated with the
birth and death process f�tg. This function is precisely de�ned so that for 0 � j < i0 � i

Pi0fTi < Tjg = �(i0)� �(j)

�(i)� �(j)
;(5.1)

where Ti = infft > 0 : �t = ig. A possible choice for the scale function is

�(0) = 0; �(1) =
1

�0
; �(m) =

m�1X
`=1

�1 : : : �l
�0 : : :�`

form > 1;(5.2)

and we immediately see that

S =
1

p0
+ p0 lim

m!1 �(m):(5.3)

To show that the J-fraction ~�m(z) is convergent for <(z) � 0, we study the series Sm associated
with this continued fraction in the same manner as the series S is associated with the continued
fraction ~p0(z). Let us �rst compute the RITZ�1 fraction ~�m(z) which even part is the J-fraction
~�m(z).

~�m(z) is of the form

~�m(z) =
�m1
z

+
�m2
1

+
�m3
z

+
�m4
1

+ � � � ;

whose even part ~�e
m(z) is given by

~�e
m(z) =

�m1
z + �m2

� �m2 �
m
3

z + �m3 + �m4
� �m4 �

m
5

z + �m5 + �m6
� �m6 �

m
7

z + �m7 + �m8
� � � �

In the present case, we clearly have8<
:

�m1 = �m and �m2 = �m + �m;

�m2k�
m
2k+1 = �m+k�1�m+k and �m2k+1 + �m2(k+1) = �m+k + �m+k for k � 1:

(5.4)

We show in a �rst step that the coe�cients �mk are positive.

Lemma 2. The coe�cients �mk are given by �m1 = �m and for k � 1,

�m2k = �m+k�1
�(m+ k)� �(m� 1)

�(m+ k � 1)� �(m� 1)
(5.5)

�m2k+1 = �m+k
�(m+ k � 1)� �(m� 1)

�(m+ k)� �(m� 1)
;(5.6)

where � is the scale function de�ned by eq. (5.2).

Proof. From the recurrence relations (5.4), we can write for k � 1

�m2(k+1)�
m
2k � (�m+k + �m+k)�

m
2k + �m+k�1�m+k = 0:(5.7)

De�ne then

Am
�1 = 0; Am

0 = 1 and Am
k =

1

�m : : :�m+k�1

kY
`=1

�m2` for k � 1:

From eq. (5.7), we obtain

�m+k(A
m
k+1 � Am

k ) = �m+k(A
m
k �Am

k�1);(5.8)



12 F. GUILLEMIN AND D. PINCHON

and as a consequence,

Am
k =

kX
`=0

�m : : :�m+`�1
�m : : :�m+`�1

=
�(m+ k)� �(m� 1)

�(m)� �(m� 1)

for k � 1. Since �m2k = �m+k�1Am
k =A

m
k�1, eq. (5.5) follows. Relation (5.6) is obtained by using the

recurrence relations (5.4).

The above result shows that the coe�cients �mk are positive and then that ~�m(z) is a formal
S-fraction. De�ne the sequence famk g by

am1 =
1

�m1
and �mk =

1

am
k�1a

m
k

for k � 2:(5.9)

It is easily checked that

am2k =
�m1 : : :�m2k�1
�m2 : : :�m2k

and am2k+1 =
�m2 : : :�m2k
�m1 : : :�m2k+1

for k � 1:(5.10)

Since

�m2 : : :�m2k = �m : : :�m+k�1Am
k and �m1 : : :�m2k+1 = �m : : :�m+k

1

Am
k

;

we obtain for k � 0

am2k =
�m : : :�m+k�1
�m : : :�m+k�1

1

Am
k�1A

m
k

and am2k+1 =
�m : : :�m+k�1
�m : : :�m+k

[Am
k ]

2 :(5.11)

Before proceeding further, let us show how the series
P

k a2k and
P

k a2k+1 occur in the work of
Karlin and McGregor. For this purpose, assume that �0 = i +m with i � 0 and let f�m

t g be the
excursion process de�ned by eq. (3.15). De�ne then the absorbing time �m as

�m = infft > 0 : �t = m� 1g:(5.12)

The process f�m
t g is a birth and death process taking values in 0; 1; 2; : : :. The evolution of the

process f�m
t g in this state space is governed by the in�nitesimal generator0

BBB@
�(�m + �m) �m 0 0

�m+1 �(�m+1 + �m+1) �m+1 0
0 �m+2 �(�m+2 + �m+2) �m+2

. . .
. . .

. . .

1
CCCA(5.13)

Note that unlike the process f�tg, the process f�m
t g is absorbed at state -1. It turns out that

the OPS associated with the birth and death process f�m
t g consists of the associated polynomials

fQn(x;m)g (de�ned with the initial condition corresponding to �n > 0.).
In [12], it is shown that the uniqueness of the solution of the Stieltjes moment problem associated

with the polynomials fQn(x;m)g depends on the convergence of the series
P

k �
m
k Q

2
k(0;m) with the

quantities �mk de�ned by

�mk =
�m : : :�m+k�1
�m+1 : : :�m+k

:(5.14)

Since Am
k = Qk(0;m), it is easily checked that

�m

1X
k=0

am2k+1 =
1X
k=0

�mk Q
2
k(0;m) and �m

1X
k=1

am2k =
1X
k=0

1

�m+k�mk Qk+1(0;m)Qk(0;m)
(5.15)
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Moreover, we can write Am
k as

Am
k = �m�1�m�1

"
m+kX
`=1

1

�`�1�`�1
�

m�1X
n=1

1

�n�1�n�1

#
;(5.16)

and then, using the fact that Am
k � 1, straightforward manipulations yield

1X
k=0

am2k+1 �
1X
k=0

�m : : :�m+k�1
�m : : :�m+k

Am
k

� C �
m�1X
k=1

�k

kX
`=1

1

�`�1�`�1
�
 1X
k=m

�k

! 
m�1X
n=1

1

�n�1�n�1

!
:

Under the condition (C3),
P1

k=0 a
m
2k+1 =1 and then, the solution of the Stieltjes moment problem

associated with the polynomials fQn(x;m)g is unique. Hence, there exists a unique regular positive
spectral measure �̂m(dx) of total mass one for the polynomials fQn(x;m)g, which satis�esZ 1

0
Qi(x;m)Qj(x;m)�̂m(dx) =

1

�mi
�i;j :

Coming back to the convergence of the continued fraction ~�m(z), we immediately deduce from

the above results that Sm
def
=
P

k a
m
k =1. This shows that the continued fraction ~�m(z) converges

to an analytic function over the complex plane deprived of the negative real axis and that the even
and odd parts of this continued fraction converge to the same limit. Moreover, from [5], we know
that the poles of Qn(x;m) are real, simple, and positive. This allows us to state the following result.

Proposition 4. Under conditions (C1), (C2), and (C3), the continued fraction ~�m(z) de�ned by
eq. (4.7) converges to an analytic function over the whole complex plane deprived of the negative real
axis.

From [9, Theorem 12.9e], ~�m(z) is the Stieltjes transform of some spectral measure, say �̂0m(dx),
that is,

~�m(z) � ~�m(z) =

Z 1

0

1

z + s
d�̂0m(s):(5.17)

From [9, Corollary 12.11c], we know that the polynomials f��n (x)g are orthogonal with respect to

the measure �̂0m(dx) and satisfyZ 1

0
��n (x)�

�
` (x)�̂

0
m(dx) = �m1 : : :�m2n+1�n;`:

Owing to the relationship between the polynomials f��n (x)g and fQn(x;m)g and to the uniqueness

of the measure �̂m(dx), it follows from the above relation that �̂0m(dx) = �m�̂m(dx). In particular,

the total mass of the measure �̂0m(dx) is equal to �m. Note moreover that since ~�m(z) is the Laplace

transform of a proper random variable, ~�m(0) = 1 and hence,

�m

Z 1

0

1

s
�̂m(ds) = 1;

which is the relation given in [12, Lemma 6].
In the notation of the paper by Karlin and McGregor [12], the above analysis shows that when

a birth and death process is absorbed at state -1 and when the solution of the S moment problem
is unique, the Stieltjes transform of the spectral measure is related to the Laplace transform of the
random time to absorption. To some extent, this analysis generalizes that of Karlin and Mc Gregor,
who showed the above result only for m = 1. Here, we show that the spectral measure of the
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associated polynomials of rank m are related to the excursion time of the birth and death process
above the level m� 1.

6. Properties of the Spectrum

In this section, we assume that the spectrum of the measure �(dx) is discrete and we show how

the di�erent spectral measures �̂m(dx) for m � 1 can be deduced from the measure �(dx). For this
purpose, let 0 < �1 < �2 < : : : denote the atoms of the measure �(dx). ��n for n � 1 are the
(simple) poles of the Laplace transform ~p0. Let rn be the residue of ~p0 at pole ��n. We have

~p0(z) =
1X
n=1

rn
z + �n

;(6.1)

so that

PfV > xg =
1X
n=1

rn
�n

e��nx(6.2)

and

�(dx) =
1X
n=1

rn
�n

��n(dx);(6.3)

where ��n(dx) is the Dirac mass at point �n. Note that we have the normalization condition

1X
n=1

rn
�n

= 1:(6.4)

As a consequence of the above assumption, ~p0 is a meromorphic function over the whole complex
plane and on the basis of relation (4.13), it is easy to see that ~�m is also a meromorphic function,
which must have simple poles.
The zeros in z of Qm(�z) are negative and it follows in view of relation (4.13) that these zeros

may potentially be singularities for the Laplace transform ~�m(z). However, it can be shown that
they are removable singularities. Indeed, consider z0 a (simple) zero of polynomial Qm�1(�z). Using
[9, eq. (12.1-23], we can write

~p0(z) =
1X

m=0

�1 : : :�m�1
�0 : : :�m�1

1

Qm�1(�z)Qm(�z)
and then, since the polynomials Qm(z) have no common zeros,

lim
z!z0

Qm�1(�z)~p0(z) = �1 : : :�m�1
�0 : : :�m�1

1

Qm(�z0) +
�1 : : :�m�2
�0 : : :�m�2

1

Qm�2(�z0) = 0;

where we have used the recurrence relations (1.4) in the last step and the fact that Qm(�z0) = 0.
As a consequence, since Qm�1(z) and Qm�2(z; 1) have no common zeros,

lim
z!z0

Qm�1(�z)~�m(z) = Qm(�z0) + �1 : : :�m�1
�1 : : :�m�1Qm�2(�z0; 1) :

It follows that limz!z0 Qm�1(�z)~�m(z) exists and that z0 is a removable singularity for ~�m(z). The

actual singularities of ~�m(z) are in fact located in (�1; 0] and correspond to the negative roots of
the equation

~p0(z) = [~p0(z)]m�1:

This allows us to state the following result.
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Theorem 2. The poles of the Laplace transform ~�m(z) of the random variable �m are located at the
negative roots of the equation

~p0(z) = [~p0(z)]m�1;(6.5)

where [~p0(z)]m�1 is the (m� 1)th approximant of the continued fraction ~p0(z).

Equation (6.5) gives a means of numerically computing the singularities and the corresponding
residues of the Laplace transform ~�m(z). Note in addition that by using the relation [9, p. 601]

~p0(z)� [~p0(z)]m�1 =
Z 1

0

"
P�m�1(��)
P�m�1(z)

#2
d�(�)

z + �
;

we deduce that

~p0(z)� [~p0(z)]m�1 =
1

Q2
m�1(�z)

1X
n=1

rnQ
2
m�1(�n)
�n

1

z + �n
:

Hence, for each m � 1, ~�m has a unique pole on each interval (��n+1;��n) for n � 1. The residue

r at the pole s of ~�m is �nally given by

r =
�1 : : :�m�1

�0 : : :�m�1
P1

n=1
rnQ

2

m�1(�n)

�n(s+�n)2

:(6.6)

The above results show how the di�erent measures �̂m(dx) for m � 1 depend on the continued
fraction ~p0(z), the measure �(dx) and the basic OPS fQm(x)g. Speci�cally, if we denote by 0 <

sm1 < sm2 < : : : the atoms of �̂m(dx), where smj 2 (�j; �j+1), �smj for j � 1 are the poles of the

Laplace transform ~�m and we have

�m�̂m(dx) =
1X
j=1

Rm
j

smj
�smj (dx)(6.7)

where

Rm
j =

�1 : : :�m�1

�0 : : :�m�1
P1

n=1
rnQ

2

m�1(�n)

�n(�smj +�n)2
:(6.8)

To conclude this paper, let us brie
y discuss a conjecture formulated in [5]. In that paper, it
is claimed that for asymptotically proportional birth and death processes (i.e., �m � �m� and
�m � m� as m! 1 for some positive constants � and �), the poles of the continued fraction ~p0(z)
are asymptotically proportional to m� (i.e., �m � Cm� for some constant C, which depends only
on �). In this paper, we assume that � < 1.
We �rst note that under the asymptotic proportionality assumption, the birth and death process

f�tg satis�es Aldous' local linearization property (as discussed in Section 3) and ~�m(m�z) ! ~�(z)

as m! 1, where ~� is the Laplace transform of the duration of a busy period of an M=M=1 queue
with input rate � < 1 and unit service rate. It follows that

1X
j=1

Rm
j

m�z + smj
! ~�(z) asm!1

and a classical theorem in Stieltjes transform theory then implies
1X
j=1

Rm
j

smj
� sm

j
m�

(dx)
v! �̂(dx) as m!1;

where �̂(dx) is the measure such that its Stieltjes transform is equal to ~�. In the Appendix, it is

shown that the measure �̂(dx) has a continuous density on the compact support [(1�p�)2; (1+p�)2].
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In view of the above arguments, it seems reasonable to conjecture as in [5] that the atoms sjm and
the residues Rm

j are of the same order as n�. Thus, one may expect that smj = O(m�) for j � m

as m ! 1. Since smj 2 (�j ; �j+1), these observations heuristically support the conjecture that

�m = O(m�) as m ! 1. It is also reasonable to conjecture that the coe�cient of proportionality

depends only on � since it is the case for ~�(z).

Appendix: Analysis of the duration of a busy period

in an M=M=1 queue

Consider an M=M=1 queue with input rate � < 1 and unit service rate. It is well known in
queueing literature that the Laplace transform of the duration � of a busy period is given by [14]

~�(z) =
1 + z + ��p(1 + �+ z)2 � 4�

2�

which is the Laplace transform of the probability density function

f(y) =
1

y
p
�
e�(1+�)yI1(2y

p
�);

where I1 is the Bessel function of the �rst kind of order one. The functions s ! e�ks=s and

s! e�ksI1(ks) for k > 0 are the Laplace transforms of the functions �̂1 : t! u(t� k) and

�̂2 : t! k � t

�k
p
t(2k � t)

[u(t)� u(t � 2k)] ;

respectively [1], where u(t) is the unit step function de�ned by

u(t) =

8<
:

0 if t < 0
1
2 if t = 0
1 if t > 0

Noting that

f(y) =
1p
�

1

y
e�(1+��2

p
�)ye�2y

p
�I1(2y

p
�);

the function f is the Laplace transform of the convolution �̂d = �̂1��̂2. Straightforwardmanipulations
then yield

�̂d(t) =
1

2��

p
4�� (t� 1� �)2 1[(1�p�)2;(1+

p
�)2](t);

where 1[(1�p�)2;(1+
p
�)2] is the indicator function of the interval [(1�p

�)2; (1 +
p
�)2].

The above analysis shows that the Laplace transform ~� is the Stieltjes transform (i.e., the iterated

Laplace transform) of the measure �̂ with compact support and continuous density �̂d, that is,

�̂(dx) = �̂d(x)dx =
1

2��

p
4�� (x� 1� �)2 1[(1�p�)2;(1+

p
�)2](x)dx:
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