

75

AppleScript: The Missing Manual, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Chapter 5chapter

5

Controlling Files

Most people have a love-hate relationship with their computer. Sure, your Mac is a
great tool for when you want to edit images or video, send and receive email, or play
Halo. But your computer also serves as a digital file cabinet: a place where you can
create and store files, move them around, organize them in folders, trash them when
they’re no longer needed, and copy them to another disk or computer on the fly.

Files, of course, are nothing more than individual packages of information that
you keep on your hard drive. But for all the filing tasks they perform, most com-
puter users tend to handle files manually: drag this file here, create a new folder
there, and so on. After a while, these mundane tasks are what make people start to
hate their computers.

If you’re sick of dealing with your files one at a time—and taking up half your day
in the process—there’s no better tool in your arsenal than AppleScript. By com-
manding the Finder, AppleScript lets you:

• Move all the files off your desktop in one fell swoop (page 90)

• Back up an important folder to a separate hard drive, just in case your com-
puter dies (page 93)

• Rename all the files in a folder—without having to type their new names indi-
vidually (page 113)

For these jobs and more, AppleScript can save you annoyance, tedium, and—most
of all—time.

Note: The example scripts from this chapter can be found on the AppleScript Examples CD (see page 24
for instructions).

,ch05.7204 Page 75 Thursday, January 20, 2005 5:11 PM

AppleScript: The Missing Manual, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

76 AppleScript: The Missing Manual

File Path Boot Camp File Path Boot Camp
The one thing AppleScript can’t save you from is the fact that files are essentially
geeky things. Mac OS X’s Unix heritage, while great news for programmers, also
means that old Mac fans have to adapt to a few new file conventions—how to name
files, what programs to open them with, and so on. Therefore, before you jump head-
first into controlling files with AppleScript, there are a few things you should know:

• In Mac OS X, files should always have a file extension. A file extension is a short
abbreviation added after a period in a file name. Microsoft Word files, for
example, end in .doc, while sound files often end in .mp3 or .aiff.

To Mac OS X (and Windows, for that matter) a file extension reveals what
kind of information a file holds. In many cases, a file extension also tells Mac
OS X which program should open a file: .doc files open in Microsoft Word,
while .psd files open in Photoshop. (Of course, certain types of files can open
in several different programs; .jpg files, for example, can open in just about any
image-viewing program on the planet.)

Note: As a general rule, folders should not have file extensions. The exceptions are bundles—little fold-
ers that masquerade as files (page 34), like the .key files that Keynote produces.

To see what’s inside in a bundle, Control-click the bundle in the Finder and select Show Package Contents
from the shortcut menu. In the new window that appears, you can sift through the files that comprise the
package, discovering, for example, that Keynote “files” are actually made up of dozens of smaller files.

UP TO SPEED

Path Notation
As described on page 77, a path is a Unix-esque way of
describing where a file or folder resides on your hard drive.
When you want to specify the lowest level of your hard drive,
you simply specify the Unix path / (a single forward slash).
Similarly, when you want to refer to an item inside your hard
drive, you must begin the item’s path with a forward slash.

However, when specifying a path, folders must also end
in a forward slash. That means the path to your Applica-
tions folder would be /Applications/ (the first slash to tell
Mac OS X to look in your hard drive, and the last slash to
tell Mac OS X that Applications refers to a folder).

When you refer to a file, however, you omit the trailing slash.
The path to your Library ➝ Fonts ➝ Times New Roman file,
therefore, would be /Library/Fonts/Times New Roman, with
slashes after Library and Fonts (since they’re folders) but no
slash after Times New Roman (since it’s a file).

When you want to refer to your Home folder, you have two
choices. You can specify the folder the normal way, by typ-
ing /Users/yourUsername/ (substituting your actual user-
name for yourUsername, of course). Or you can use the
convenient Unix shortcut (~/), which tells Mac OS X “sub-
stitute the actual path to my Home folder here”.

If you want to refer to a file on a disk besides your startup
disk, you have to begin your path with /Volumes/. Just fol-
low that with the name of the disk and another slash—like
/Volumes/Backup Drive/ for a disk named Backup Drive—
and the path now refers to your specified disk.

And something to note if you come from the Windows
world: in places where you would have formerly used a
backslash (\) in a path name—to identify folders, for exam-
ple—use a forward-slash now. It’s just one more instance of
how Windows is, well, backward.

,ch05.7204 Page 76 Thursday, January 20, 2005 5:11 PM

AppleScript: The Missing Manual, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Chapter 5: Controlling Files 77

File Path Boot CampAlthough certain programs don’t require file extensions, it’s still a good idea to
use them. That way, if you ever need to send a file to a Windows user, you
won’t get back an angry email asking you to resend the file with an extension so
your recipient can actually open it.

• A path is a string that tells you how to get to a certain file or folder. Each item
in path is separated by a forward-slash (/) in Mac OS X—a by-product of your
computer’s Unix heritage. That means the path to your Home ➝ Desktop folder
would be /Users/yourUsername/Desktop/, while the path to your copy of Text-
Edit would be /Applications/TextEdit.app.

When you want to play with a path in AppleScript, you can use special type
of information called a POSIX file. (POSIX is nerd lingo for “portable oper-
ating system interface,” which basically means that file paths can be used
anywhere, on any computer that supports the POSIX standard. To learn
more about POSIX, you can read up on it online at www.satimage.fr/
software/en/file_paths.html.) To get the path to your Desktop folder, for
instance, you’d write the following, replacing yourUsername with your actual
one-word username:

POSIX file "/Users/yourUsername/Desktop/"

Still, you’ll find that most commands (like choose file, for presenting an Open
dialog box [page 97]) use the alias type to refer to files. The alias format sepa-
rates each folder in a path with a colon, rather than a forward slash. To get the
alias to your Desktop folder, for example, you’d write this:

alias ":Users:yourUsername:Desktop:"

Note: Of course, you should replace yourUsername with your actual username. If you don’t know what
your username is, you can look it up in System Preferences ➝ Accounts; you’ll find your username in the
Short Name field.

• You can open any file or folder with the open command directed at the Finder.
For example, to open Library ➝ Desktop Pictures ➝ Aqua Blue.jpg (the image
that appears behind Mac OS X’s login dialog box), you could write:

tell application "Finder"

 activate --Bring the Finder forward

 open POSIX file "/Library/Desktop Pictures/Aqua Blue.jpg"

end tell

Note: You’ll notice a couple of oddities when you run this AppleScript. First off, the open POSIX file state-
ment gets changed to open file. Then, all the forward slashes are converted to colons, and AppleScript
inserts the name of your hard drive at the beginning of the path string. None of these changes affect what
your code actually does; AppleScript just makes these changes so it understands what you’re asking it to do.

,ch05.7204 Page 77 Thursday, January 20, 2005 5:11 PM

AppleScript: The Missing Manual, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

78 AppleScript: The Missing Manual

Displaying Folders If you prefer to write your code using the more common alias type, you could
rewrite the previous script as follows:

tell application "Finder"

 activate

 open alias ":Library:Desktop Pictures:Aqua Blue.jpg"

end tell

Either way you write the script, the Aqua Blue image opens and shows up on
your screen.

Displaying Folders
When you’re working on a bunch of related documents at once, you might want to
jump quickly to their folder in the Finder. Normally, of course, you’d switch to the
Finder and navigate through your hard drive to get to the correct folder. Or per-
haps, if you’re a power user, you’ve already put the folder in the Finder’s Sidebar
for easy access. Either way, though, you have to switch to the Finder and open a
new window, which is a massive waste of time.

Why go through all those steps when you can get AppleScript to do it for you?
Using AppleScript, you can save a folder-opening script as an application (page 33)
and place the script on the Dock for easy access. From then on, all you’ll need to
do is click the script’s icon in the Dock, and a Finder window pops open and takes
you right to the folder you want.

“But wait,” you say, “I could just put the folder’s icon on the Dock, no script
required.” You are, of course, correct—and your method is what most people use
for accessing commonly used folders. The trouble is, when you click a folder’s icon
on the Dock, you never know where the folder’s window will open onscreen, or
whether it’ll be in List, Column, or Icon view. Plus, a folder icon on the Dock can
open only one specific folder, whereas a script can open multiple folders at once—
like your Music and Pictures folders—as shown the following example:

tell application "Finder"

 activate

 open the folder "Users:yourUsername:Music"

 open the folder "Users:yourUsername:Pictures"

end tell

Again, just save this script as an application (page 33), and then drag the script’s
icon to your Dock. From then on, you’ll be just one click away from opening two
folders at once.

Tip: Of course, if you have more than two folders you’d like to open simultaneously, you can insert extra
open commands in the previous script for those folders as well.

,ch05.7204 Page 78 Thursday, January 20, 2005 5:11 PM

AppleScript: The Missing Manual, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Chapter 5: Controlling Files 79

Displaying FoldersOpening a Folder with AppleScript (Reprise)
As you’ve seen on pages 23 and 78, there’s more than one way to open a folder
from AppleScript. If you want to open your Applications folder, for example,
you’d have five separate choices:

tell application "Finder"

 activate

 make new Finder window to alias "Macintosh HD:Applications:" --Option 1

 make new Finder window to POSIX file "/Applications/" --Option 2

 open alias "Macintosh HD:Applications:" --Option 3

 open POSIX file "/Applications/" --Option 4

 open the folder "Applications" of the startup disk --Option 5

end tell

If you don’t have any Finder windows open and you use one of these commands,
the same thing would happen: a new Finder window would appear, taking you
right to the Applications folder.

GEM IN THE ROUGH

AppleScript Shortcuts
After using AppleScript for a while, you might be wondering
what exactly the word the does. The answer? Nothing.
Using the in your scripts just makes them easier for humans
to read—it makes no difference to AppleScript. You can
prove it to yourself by running this script, for example:

tell application "Finder"

open the the the folder "Applications"

of startup disk

end tell

The fact that you have three the’s in a row makes no differ-
ence—AppleScript ignores them all.

That’s not the only word you can omit in AppleScript,
though. If you’re writing a series of nested statements (like
if [page 47], tell [page 43], or repeat [page 71]) for com-
manding a program, you can omit the second half of the
end commands, and AppleScript fills them in for you auto-
matically when you compile the script. For instance, you
could write this script:

(* This script creates a bunch of new

folders in your Home folder; well, 15 of

them at least. *)

tell application "Finder"

 repeat 15 times

 if (count every folder in home) ¬

 is less than 15 then

 make new folder at home

 end

 end

end

When you compile or run this script (page 24), the last
three lines are automatically expanded to include the cor-
rect commands (end if, end repeat, and end tell). You can
even shorten the word application to app (on the fourth
line), and AppleScript expands it automatically.

Finally, you can replace the nerdy-sounding word of with
the more English-like ’s. For instance, the following script
would work just as well as the one shown at the top of this
sidebar:

tell application "Finder"

 open the startup disk's folder ¬

 "Applications"

 (*Note the apostrophe-S instead of

 the word "of"*)

end tell

,ch05.7204 Page 79 Thursday, January 20, 2005 5:11 PM

AppleScript: The Missing Manual, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

80 AppleScript: The Missing Manual

Displaying Folders However, if you already have your Applications folder open, the commands
behave differently:

• Options 1 or 2 create new windows, each of which drops you off in the Applica-
tions folder. Option 1 employs the alias data type to do so (page 78), while
Option 2 uses the new-age POSIX file data type (page 77). The make command,
used in both Options, is described in detail on page 61.

• Options 3, 4, or 5 simply bring the existing Applications folder to the front,
without opening a new Finder window. Option 3 uses the aforementioned alias
type, Option 4 uses the POSIX file type, and Option 5 uses neither (it simply
tells the Finder which disk to look in). That’s how open works.

The difference between these approaches is pretty small, of course, but it’s impor-
tant to understand: the make command always creates a new copy of something
(in this case, a window), while the open command opens a new copy only if one
doesn’t already exist.

Changing a Finder Window’s View
Why stop with just opening a folder when you can change the Finder window’s
view, too? If you’ve been using Mac OS X for more than a few days, you probably
already know that the Finder has three viewing options (available at the top of the
View menu), each of which provides a different, potentially timesaving way of
looking at your files:

• Icon view shows you the icons for each item in a folder (Figure 5-1, top). That
way, if you’re browsing a folder full of Photoshop images, for example, you can
find the particular image you want just by glancing at its icon.

• List view organizes the items in a folder alphabetically, by the dates they were
created, or by just about any other criterion you want (Figure 5-1, middle). As an
added benefit, list view shows more files in the same space than Icon view does.

• Column view gives you a hierarchical view of your hard drive, showing you the
order of folders that contain the item you’re looking at (Figure 5-1, bottom).
This is the most compact way of looking through a folder, so it’s worth using if
you need to locate a file in a hurry.

But the fun doesn’t stop there; each Finder view also has its own options. For
example, you can change a window’s background color from the default white to
some other color—or post a picture behind a Finder window. Simply open the
Finder’s dictionary (page 44) and navigate to the Finder window entry (Figure 5-2).

As you can see, there are several useful properties you can set for Finder windows.
If you want your script to automatically open the Applications folder in Column
view, for example, you could modify your script like this:

tell application "Finder"

 activate

 open the folder "Applications" of the startup disk

,ch05.7204 Page 80 Thursday, January 20, 2005 5:11 PM

AppleScript: The Missing Manual, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Chapter 5: Controlling Files 81

Displaying Folders set the current view of the front Finder window to column view

end tell

Now when you run your script, the Applications folder comes to the front and
then quickly switches into Column view.

Figure 5-1:
The three ways of looking at your
Library ➝ Desktop Pictures folder.
Top: Icon view (c-1) shows only four
items in a window this small, but their
icons are quite large. Use this view if
you have bad vision.

Middle: List view (c-2) shows nine
items in a window this small, and lets
you sort the items however you’d like.
Click the Date Created column to sort
your files and folders from newest to
oldest, for example, or click the Size
column to sort the items from biggest
to smallest. (Click either column a
second time to reverse the sorting
order.)

Bottom: Column view (c-3) shows 10
items in a window this small—the most
of any of the three views. As a nice
side effect, Column view also lets you
see where the folder you’re looking at
is stored (in the left columns).

,ch05.7204 Page 81 Thursday, January 20, 2005 5:11 PM

AppleScript: The Missing Manual, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

82 AppleScript: The Missing Manual

Displaying Folders Tip: If you’d prefer, you can replace column view with icon view or list view to suit your file-viewing tastes.

More Finder Window Settings
As you can see from the Finder’s dictionary, there are a good number of extra
properties you can set for Finder windows. You might have noticed with some
puzzlement, however, that there’s a big bold <Inheritance> label inside the entry
for Finder window.

Your first instinct might be to assume that this property is off-limits to you—after
all, it’s got the [r/o] label, which usually means that you can’t change the setting. As
it turns out, however, inheritance is a powerful tool in AppleScript that puts even
more control at your fingertips.

When you see the <Inheritance> label in a dictionary, look at the word immedi-
ately to its right. In the entry for Finder window, for instance, you’ll see window
next to <Inheritance>. That means that a Finder window, along with all its own
properties, also has all the properties of a regular, everyday AppleScript window.

So what’s that mean to you when you’re up late at night writing scripts? It tells you
to look in the dictionary entry for window in addition to the entry for Finder win-
dow (Figure 5-3), essentially doubling the number of commands you can send to a
Finder window.

Armed with this information, you can add an extra command to your script:

tell application "Finder"

 activate

Figure 5-2:
In AppleScript, the
properties of an object
are all the attributes it
has. Here you can see
the properties of a
Finder window: its
current view, whether its
toolbar is visible, and so
on. Options marked
with an [r/o] label are
generally read only—
that is, you can ask
AppleScript for their
values, but you can’t
change them.

,ch05.7204 Page 82 Thursday, January 20, 2005 5:11 PM

AppleScript: The Missing Manual, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Chapter 5: Controlling Files 83

Displaying Folders open the folder "Applications" of the startup disk

 set the current view of the front Finder window to column view

 --Minimize the window to the Dock.

 set the collapsed of the front Finder window to true

end tell

Working with More than One Window
The current script is great for showing your Applications folder, but it won’t save
you that much time; you can always just click once on the desktop and use a key-
board shortcut (Shift-c-A) to launch the Applications folder instead.

You really start saving time when your script opens more than one folder. That
way, you can have a quick way to view your Applications, Documents, Music, and
Movies folders, for example—all with a single click.

Figure 5-3:
Since Finder windows inherit
from plain old windows, you
should read the entry for window,
too. You’ll come across several
additional properties you can
control: where the window is
onscreen (the position property),
whether the window is big on the
screen (the zoomed property),
and even whether the window is
minimized to the Dock (the
collapsed property).

UP TO SPEED

Inheritance
Inheritance is such a simple word. It means you get some-
thing for nothing, and when it comes to scripting, you can’t
get any better than that.

AppleScript’s system of inheritance is pretty confusing at
first, especially if you’ve never programmed before. The key
to understanding it is seeing how similar it is to the real
world, where some things have properties of others.

Say you have a Subaru. Now, your Subaru has properties
that are different from most other cars: it uses four-wheel
drive, for example. However, your Subaru also has proper-
ties in common with other cars: it has tires, a steering
wheel, and brakes (you hope).

Think of it like this: your Subaru is a specific kind of car. In
AppleScript, you’d explain the relationship like this: “Sub-
aru inherits from car.” Your Subaru has all the properties of
a car, plus some extras of its own.

Keep in mind, however, that inheritance is a one-way street.
While every Subaru has the properties of a generic car, not
every generic car has the properties of a Subaru.

Now, applied to AppleScript, this whole scheme just means
that an object can use all the properties of the object
marked <Inheritance>, but not the other way around.
That’s why you can use the properties from a window in
your script that controls a Finder window, but you wouldn’t
be able to use the properties from a Finder window in a
script that controlled a generic window.

,ch05.7204 Page 83 Thursday, January 20, 2005 5:11 PM

AppleScript: The Missing Manual, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

84 AppleScript: The Missing Manual

Displaying Folders One approach to opening multiple folders from your script is to simply copy and
paste the existing commands repeatedly. (Then you’d insert the names of the folders
as appropriate.) Using this method, your final script would look something like this:

tell application "Finder"

 activate

 open the folder "Applications" of the startup disk

 set the current view of the front Finder window to column view

 set the collapsed of the front Finder window to true

 open the folder "Documents" of home

 set the current view of the front Finder window to column view

 set the collapsed of the front Finder window to true

 open the folder "Music" of home

 set the current view of the front Finder window to column view

 set the collapsed of the front Finder window to true

 open the folder "Movies" of home

 set the current view of the front Finder window to column view

 set the collapsed of the front Finder window to true

end tell

POWER USERS’ CLINIC

Moving a Window
Normally, moving a Finder window to a more convenient
place on your screen is easy: you just drag any gray area of
the window, and the rest of the window follows. This simple
task, however, masks the fact that moving a window pre-
cisely where you want it is an exceptionally difficult task. In
fact, getting a window to the exact top-left corner of your
screen—so you can see everything on the right side of your
monitor—is harder than writing a computer book.

That’s why AppleScript’s window-placing features are so
convenient. By setting a window’s position property, you
can send the window anywhere on (or off) the screen.
Here’s how:

tell application "Finder"

 activate

 open the folder "Applications" ¬

 of the startup disk

 set the current view of the front ¬

 window to column view

 --Move the window where you want it:

 set the position of the front window ¬
 to {200, 100}
end tell

In that script, you place the Applications window 200 pixels
from the left edge of the screen and 100 pixels from the top
edge of the screen—a good position if you want to leave
room for additional windows at the bottom of your screen.

Keep in mind when writing scripts like this, however, that
the menu bar is 83 pixels tall. Also, a Finder window needs
a 5 pixel “barrier” from the left edge of the screen, so you
can see the entire window. Therefore, if you wanted to
place a window at exactly the top-left pixel on the screen,
you would have to substitute the following command in the
bold part of the previous script:

set the position of the front window ¬

 to {5, 83}

For a more detailed explanation of Mac OS X’s odd window-
positioning system, see page 124.

,ch05.7204 Page 84 Thursday, January 20, 2005 5:11 PM

AppleScript: The Missing Manual, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Chapter 5: Controlling Files 85

Displaying FoldersThis kind of approach, unfortunately, has several downsides:

• It repeats a lot of commands. That means your script is longer than it has to be,
which can become a problem if you start writing scripts that are hundreds of
lines long.

• It’s annoying to use. Each time you paste the commands again, you have to go
back and change the portion of the command that needs modifying. Again, if
you’re working with a long script, this can be quite a nuisance.

• If you want to change a command, you have to change it in multiple places.
For instance, if you wanted to change column view to list view, you’d have to do
it four times.

Luckily, there’s a solution to these problems: breaking the redundant commands
into a separate portion of your script, known as a subroutine.

Subroutines
In AppleScript (and in other programming languages), a subroutine is a section of
code that’s meant to be used over and over again. Rather than having to retype a
big block of code, a subroutine lets you write that code just once, assign a name to
the code, and then simply use the subroutine’s name whenever you want to run the
corresponding code. Think of it like using a kitchen appliance: no matter what
time of day it is, you can expect the “coffeemaker” appliance to behave the same
way. Similarly, no matter what part of your script you run a subroutine from, you
can expect the subroutine to run the exact same lines of code.

You can do anything you want in a subroutine: tally the points from a sports game,
connect to a Web site, or anything else you’re likely to do more than once in your
script. (And incidentally, subroutines are sometimes called handlers, too.)

Now that you know what subroutines can do, it’s time to put them to use in sim-
plifying your Finder window script.

Defining a subroutine

In general, a subroutine looks something like this:

on subroutineName(<any variables being passed into the subroutine>)

 --Any commands you want in the subroutine go here

end subroutineName

You’ll notice that, unlike repeat, if, and tell statements, subroutines begin with the
keyword on. That’s your way of telling AppleScript, “Hey! There’s a subroutine
here, and whenever I refer to this name, please run the lines of code that follow.”

Note: Some people use the word to instead of on to introduce their subroutines. Either way is valid.

,ch05.7204 Page 85 Thursday, January 20, 2005 5:11 PM

AppleScript: The Missing Manual, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

86 AppleScript: The Missing Manual

Displaying Folders Running a subroutine

Calling a subroutine from your script couldn’t be easier. (Calling is just geek-speak
for “running the code contained in a subroutine.”) You simply type the name of
the subroutine, followed by parentheses, like this:

subroutineName(<any variables you want to pass into the subroutine>)

On the other hand, if your code is inside a tell statement, you have to preface your
subroutine with the word my. That’s your way of telling AppleScript, “I know I’m
targeting a particular program with my script, but take a break for a second and
run my personal subroutine, will ya?”

Variables in subroutines

When defining a subroutine, you don’t have to put anything between the paren-
theses on the subroutine’s first line. If you do choose to put variable names there,
however, you’ll need to use the same number of values when you call the subrou-
tine from your script.

In other words, if you defined your subroutine like this:

on displayGreater(a, b) --Note that there are two variables

 if a > b then

 set theResult to a

 else

 set theResult to b

 end if

 display dialog "The greater number is: " & theResult

end displayGreater

you’d have to run the subroutine from your code like this:

displayGreater(10, 88) --You must provide two values

On the other hand, your subroutines don’t have to accept variables at all. Apple-
Script is perfectly happy to run a subroutine defined like this, for example:

on displayPi()

 display dialog pi

end displayPi

In that case, since the subroutine doesn’t expect any values (indicated by the lack
of variables between its parentheses), you’d run this subroutine with this simple
command:

displayPi() --Display a dialog box showing pi

Note: pi is a special AppleScript keyword, a namesake of the famous irrational number.

,ch05.7204 Page 86 Thursday, January 20, 2005 5:11 PM

AppleScript: The Missing Manual, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Chapter 5: Controlling Files 87

Displaying FoldersWriting the appropriate subroutine

Now that you know how to write and call subroutines, you can eliminate the
redundant portions of your Finder-window script (page 84). First, add this sub-
routine to the bottom of that script:

on columnAndMinimize()

 tell application "Finder"

 set the current view of the front Finder window to column view

 set the collapsed of the front Finder window to true

 end tell

end columnAndMinimize

In writing this subroutine, you’ve isolated your script’s redundant code. Now you
can erase your script’s redundant code by calling the columnAndMinimize subrou-
tine as follows:

tell application "Finder"

 activate

 open the folder "Applications" of the startup disk

 my columnAndMinimize()

 open the folder "Documents" of home

 my columnAndMinimize()

 open the folder "Music" of home

 my columnAndMinimize()

 open the folder "Movies" of home

 my columnAndMinimize()

end tell

--Here's the subroutine:

on columnAndMinimize ()

 tell application "Finder"

 set the current view of the front Finder window to column view

 set the collapsed of the front Finder window to true

 end tell

end columnAndMinimize

Note: Remember, you must use the word my before these subroutine-running commands because
you’re using those commands inside a tell statement.

Now, with this final script, you’ve not only saved several lines of code, but you’ve
also made it easier to change your script’s behavior in the future. If you ever want
to modify the code now, it’s simply a matter of modifying the subroutine once,
rather than modifying four separate lines. Here are a few possible tweaks:

• To keep all your newly opened windows from minimizing, delete set the col-
lapsed of the front Finder window to true from your subroutine.

,ch05.7204 Page 87 Thursday, January 20, 2005 5:11 PM

AppleScript: The Missing Manual, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

88 AppleScript: The Missing Manual

Moving Files
Around

• If you’d rather your new windows appear in List view or Icon view (page 80),
replace column view with either list view or icon view in your subroutine.

• Finally, if you don’t care what view your new windows use, just delete the entire set
the current view of the front Finder window to [whatever] line from your subroutine.

Moving Files Around
Being able to display your files is useful, but it’s only half of what the Finder can
do. The other half, of course, is to move your files—putting them in a new folder,
deleting them, and so on. With AppleScript, you can automate these actions and
more.

Transferring Items from One Folder to Another
The simplest action you can perform on a file is dragging it from one folder (or
disk) to another. With AppleScript, it’s also one of the simplest actions you can
control in the Finder.

The key to this trick is the move command. It’s part of the Finder’s Standard Suite
(page 45), so it’s a pretty common command. And, as the Finder’s dictionary
explains, the move command follows this simple structure:

tell application "Finder"

 move someItem to somePlace

end tell

Tip: In this example, someItem can be either a single item or a list of items. That makes the move com-
mand perfect for transferring whole clusters of files (or folders) in a single step. (See page 105 for the low-
down on lists.)

And also, if you use the move command to transfer files from one disk to another, AppleScript (like the
Finder) assumes that you mean to copy the files. If you want, you can then use the delete command
(page 94) to erase the files from the original disk.

Now, if you’re the sort of person who always saves downloads and email attach-
ments to your desktop, you’ve probably noticed your desktop getting pretty full.
You might have so many icons that you’ve had to shrink them down (View ➝

Show View Options). Or perhaps your desktop is so cluttered that icons have
started overlapping each other, obscuring all the important stuff you keep there.

No matter what the issue, AppleScript can help you clean up your desktop. With
one fell swoop, a script can sweep up all the files and folders there, and stash them
somewhere less intrusive.

Tip: You can use the move command for any number of other jobs, too: transferring sounds from an old
folder to the Mac OS X–standard Music folder; moving downloaded files to a special Just Downloaded
folder; or even sending files to another computer on your network (page 199).

,ch05.7204 Page 88 Thursday, January 20, 2005 5:11 PM

AppleScript: The Missing Manual, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Chapter 5: Controlling Files 89

Moving Files
Around

Creating the destination folder

Right out of the box, your computer comes with one Desktop folder—the one you
see right now. That won’t help much, though, when you want to clear your desk-
top and sweep all those files into another folder.

Thankfully, you can create a new folder to hold everything from your old desktop.
(In fact, if you’re feeling especially creative, you could even name the folder Old
Desktop.) Here’s how:

tell application "Finder"

 make new folder at home with properties {name:"Old Desktop"}

end tell

As you’ve seen on page 61, the make command lets you create a new item (such as a
document or folder) straight from AppleScript. The at option lets you specify where
to create it (in this case, your Home folder). Plus, when you add the with properties
option, you can specify various extra settings for the new item you create. (In this
case, the name property gives the new folder a name, which is Old Desktop.)

After the with properties option, the settings you specify have to follow a special
structure: they have to be surrounded by curly brackets, and each setting’s name
has to be followed by a colon and the value you want to use for it. For instance, to
create a folder with the name Old Desktop, you have to use the property {name:
“Old Desktop"}.

Tip: You can specify as many settings as you want inside the brackets. A more involved make com-
mand, for instance, could go something like this:

make new folder at home with properties ¬

 {name:"Old Desktop", comment:"Old Desktop files and folders"}

That creates an Old Desktop folder in your Home folder, but it also adds a comment to the folder. Then,
at some point in the future, you could see your comment by selecting the folder in the Finder and choos-
ing File ➝ Get Info (c-I).

Eliminating the “already an item with that name” error

When you first run your script, it’ll silently create a new folder named Old Desk-
top in your Home folder. The trouble is, if you already have an Old Desktop folder
when you run the script, you’ll see the error message shown in Figure 5-4.

The key to avoiding this problem is placing an if statement around the folder-
creating command. That way, if the script discovers that there’s already an Old
Desktop folder, AppleScript just skips over the command for creating the folder
and move on to the next command.

To add the if statement, just modify the script by adding the lines you see here in
bold:

tell application "Finder"

 if not (the folder "Old Desktop" of home exists) then

,ch05.7204 Page 89 Thursday, January 20, 2005 5:11 PM

AppleScript: The Missing Manual, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

90 AppleScript: The Missing Manual

Moving Files
Around

 make new folder at home with properties {name:"Old Desktop"}

 end if

end tell

The new if statement looks in your Home folder to see whether you have an Old
Desktop folder there already (the exists part). If you don’t have an Old Desktop
folder, the script runs the next command (make new folder) and creates one. Now
you’ll never get that annoying dialog box when you run your script in the future.

Moving the files and folders

Now that your script can tell whether or not there’s an Old Desktop folder, you
can get down to business: moving the files and folders from your desktop into your
Old Desktop folder. Luckily, this is just a matter of adding two move commands to
your script:

tell application "Finder"

 if not (the folder "Old Desktop" of home exists) then

 make new folder at home with properties {name:"Old Desktop"}

 end if

 move every file of the desktop to the folder "Old Desktop" of home

 move every folder of the desktop to the folder "Old Desktop" of home

end tell

These move commands, as you could probably guess, take all the files and folders
that sit on your desktop and deposit them into your Home ➝ Old Desktop folder.
In a single click of the Run button, your desktop’s clean.

Figure 5-4:
AppleScript isn’t very graceful
about handling errors with the
make command: it stops your
entire script and presents a
dialog box. Luckily, you can
spare it the trouble by
enclosing your make
command in an if statement.

,ch05.7204 Page 90 Thursday, January 20, 2005 5:11 PM

AppleScript: The Missing Manual, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Chapter 5: Controlling Files 91

Backing Up FilesTip: For the ultimate in convenience, add this script to your Script Menu (page 15). Then you can run it
from any program, whenever you want. This can come in really handy when, for example, you’re snap-
ping a bunch of screenshots (with either Shift-c-3 for a partial-screen picture or Shift-c-4 for a full-screen
picture) and you want to quickly move the images off your desktop (which is where Mac OS X saves them
by default). It’s a great trick for Mac book authors, especially.

Backing Up Files
Talk to any computer expert, and you’ll be told the same thing: backing up your
files is not an option, it’s a must! Unless you’re interested in joining the millions of
people who’ve lost essential files, you should back up your files regularly.

There are plenty of choices for backing up your files; it’s only a matter of picking
the one with the features and price you like. Here are a few of the options:

• Commercial programs like Dantz’s Retrospect Desktop (www.dantz.com/en/
products/mac_desktop/index.dtml; $130) let you automatically back up impor-
tant files at intervals you specify.

UP TO SPEED

Boolean Values
One of the cornerstones of all programming languages is
the Boolean type. This simple kind of information has only
two possible states: true and false. That makes it perfect for
simple operations, such as determining whether something
exists.

You can set Boolean variables just like any other variable:

set finderShouldQuit to true

set scriptDone to false

Boolean values also have special operators (keywords) you
can use. If you ever took a logic course in high school, you’ll
instantly recognize the three basic operators: and, or, and
not. These keywords let you combine two or more Boolean
values in one command, doubling their power. For
instance, operators let you check whether two conditions
are bothmet in your script, or whether either is met. Here’s
how:

• If both sides of an and operator are true, it produces
true. Otherwise, it produces false. For example:

 display dialog (true and false)

 --That displays "false"

 display dialog (true and true)

 --That displays "true"

• An or operator, on the other hand, produces true if
either side is true. The only time it produces a false
is if both sides are false. For example:

 display dialog (true or false)

 --That displays "true"

 display dialog (false or false)

 --That displays "false"

• The not operator works with only a single value
(either true or false), and produces its opposite; for
example:

 display dialog (not true)

 --That displays "false"

 display dialog (not false)

 --That displays "true"

You can use any of these operators in your if statements as
well. That’s why the script for creating the Old Desktop
folder works: it checks to see if the Old Desktop folder
already exists, and then applies a not operator to the result.
That means that if the folder doesn’t exist, the if statement
is run; if the folder does exist, the if statement isn’t run.

,ch05.7204 Page 91 Thursday, January 20, 2005 5:11 PM

AppleScript: The Missing Manual, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

92 AppleScript: The Missing Manual

Backing Up Files • Apple’s own Backup 2.0 program is a perk for using the .Mac service ($99 per
year). You can use it to automatically back up files onto a CD or DVD, to your
iPod, or even to your iDisk. See www.mac.com for more details about Backup 2.0,
a mac.com email address, and all the other benefits of a .Mac membership.

• Shareware programs like Mike Bombich’s Carbon Copy Cloner (www.bombich.
com/software/ccc.html; $5) can back up your entire hard drive to another disk,
quickly and easily. If you’re looking for an inexpensive, simple backup solu-
tion, Carbon Copy Cloner is the perfect tool.

• The Finder (free, included with Mac OS X) can be used to back up files, too.
Unfortunately, every file or folder you want to back up has to be copied—man-
ually—by you. Don’t use this method if you have lots of important files to back
up; it’ll take hours.

The problem with all these solutions, of course, is that they either cost money or
are too time-consuming to use regularly. That’s why AppleScript is a great alterna-
tive: you can customize the files you want it to back up, and it’s completely free.

The duplicate Command
The move command is for transporting an item from one folder to another. The
duplicate command, on the other hand, is for copying an item from one folder to
another. The original file stays untouched, and an exact copy of that file is goes
anywhere you specify. That location can be another folder, another partition of
your hard drive, or another drive altogether (including a USB thumb drive, an
external FireWire drive, or your iPod).

The way you use the duplicate command is very similar to the way you use the
move command:

tell application "Finder"

 duplicate someItem to somePlace with replacing

end tell

Here’s how the command breaks down:

• duplicate is the command directed at the Finder, to tell it to copy something.

• Everything that follows the duplicate command goes by the order of “what you
want to duplicate” followed by “where you will save that duplicated copy.” You
replace the someItem variable with the name(s) of the files and/or folders you
want to duplicate. Likewise, you replace somePlace with the name of the folder
or disk where you want those duplicate copies to be saved.

• The with replacing bit tells the Finder to erase any older revisions of your files in
the backup folder and replace them with the newer version. That way, you
won’t be stuck with all your month-old backups; you’ll just have the newest ver-
sions of your files backed up.

,ch05.7204 Page 92 Thursday, January 20, 2005 5:11 PM

AppleScript: The Missing Manual, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Chapter 5: Controlling Files 93

Backing Up FilesNote, however, that the with replacing option considers only one thing: file
names. If two files have the same name, the file that you’re duplicating always
replaces the one that’s already there—even if the file that’s already there is big-
ger, newer, and shinier than the one that you’re duplicating.

Note: The with replacing option is case insensitive. If you duplicate myllamas.txt to a folder that already
has MyLlamas.txt, for instance, Mac OS X considers them the same name, so it would replace the existing
file (MyLlamas.txt) with the new file (myllamas.txt).

With that information in hand, you can write a simple backup subroutine, as
shown here:

on backupFolderToDisk(startFolder, targetDisk)

 tell application "Finder"

 duplicate every file of startFolder to disk targetDisk with replacing

 duplicate every folder of startFolder to disk targetDisk ¬

 with replacing

 end tell

end backupFolderToDisk

Say you’re a doctor and you want to back up your Patients folder to an external
FireWire drive called Medical Backup. While you’re at it, you’d also like to back up
everything in your Home ➝ Documents folder, just in case your hard drive gets
damaged on the flight to your next medical convention.

The good news is that you already have a subroutine for backing up files to a sepa-
rate disk, so you’re halfway to a working script. The bad news is that your script
doesn’t actually run your subroutine anywhere, so your essential files never get
copied over to your external drive.

To fix this, you just have to call your existing subroutine from elsewhere in your
script. The new subroutine-calling lines (shown next in bold) are what actually tell
AppleScript “Please run my backup commands”:

backupFolderToDisk("Patients", "Medical Backup")

--Replace yourUsername below with your actual username

backupFolderToDisk("Macintosh:Users:yourUsername:Desktop:","Medical Backup")

--Here's the previous subroutine:

on backupFolderToDisk(startFolder, targetDisk)

 tell application "Finder"

 duplicate every file of startFolder to disk targetDisk with replacing

 duplicate every folder of startFolder to disk targetDisk with

replacing

 end tell

end backupFolderToDisk

,ch05.7204 Page 93 Thursday, January 20, 2005 5:11 PM

AppleScript: The Missing Manual, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

94 AppleScript: The Missing Manual

Deleting Files Each time you call the backupFolderToDisk subroutine, the Finder whirs into
action and copies your requested files to the backup disk (Figure 5-5).

Tip: Be sure to replace “Patients,” “Medical Backup,” and so on with the actual folders and backup disk
you want to use.

And if you’d like to back up additional folders, just insert extra backupFolderToDisk calls at the top of your
script.

When it’s this easy, you have no excuse not to back up your Mac.

Tip: To make it even easier, you can schedule your backup script to run on certain days of the week.
Page 261 has the details.

Deleting Files
So far, you’ve moved and copied files in the Finder from one place to another.
There are some times, though, when you just want to get rid of a file—and Apple-
Script can do that too.

The key here is AppleScript’s delete command. It works just like move or duplicate,
except you don’t have to specify where the deleted files should go (AppleScript
automatically knows that deleted files should go in the Trash). Thus, a typical
delete command would look something like this:

tell application "Finder"

 delete the file "Chihuahuas.doc" of the desktop

end tell

When you run this command—substituting the name of the actual file you want to
delete, of course—you hear a satisfying clunch as the Finder wads up your file and

Figure 5-5:
This same window shows up whether
you’re copying files yourself in the Finder
or having AppleScript do the copying for
you.

,ch05.7204 Page 94 Thursday, January 20, 2005 5:11 PM

AppleScript: The Missing Manual, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Chapter 5: Controlling Files 95

Deleting Filesdeposits it in the Trash can. If you don’t hear this sound effect, three things could
be wrong:

• You’ve muted your speakers. The fix: press the volume-up key or increase the
volume in your System Preferences ➝ Sound ➝ Output tab.

• You’ve turned off Mac OS X’s sound effects. To turn them back on, visit Sys-
tem Preferences ➝ Sound ➝ Sound Effects tab and turn on “Play user interface
sound effects.”

• You don’t have a Chihuahuas.doc file on your desktop. Either get one, or
replace Chihuahuas.doc of the desktop with the name of the file you want to
delete.

An Example: Clearing Out Safari’s Icon Cache
If you use Safari for a few weeks, visiting hundreds or thousands of Web sites,
you’ll probably notice a significant slowdown each time you load a page. That’s
caused, in part, by Safari’s gigantic database of favicons—those little icons you see
in Safari’s Address bar (Figure 5-6).

If you delete Safari’s icon cache (which is stored in your Home ➝ Library ➝ Safari
➝ Icons folder), you can give Safari a significant speed boost—and save a few
megabytes of space while you’re at it. Here’s a script to automate the process:

tell application "Finder"

 delete folder "Icons" of folder "Safari" of folder "Library" of home

 display dialog "Would you like to empty the trash now?"

 (* If you click Cancel in the dialog box, the script ends here.

 Otherwise, it continues to the next line *)

 empty the trash

end tell

When you run the script, the Finder drops the Icons folder in the Trash, and then
presents the dialog boxes shown in Figure 5-7.

Figure 5-6:
The Apple icon, shown
here, is the favicon that
goes along with Apple’s
Web site. If you add this
site to your bookmarks
(Bookmarks ➝ Add
Bookmark), the
specialized icon will
show up in the
Bookmarks menu too.

,ch05.7204 Page 95 Thursday, January 20, 2005 5:11 PM

AppleScript: The Missing Manual, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

96 AppleScript: The Missing Manual

Deleting Files The only other time you’d really use the delete command is when you have a
folder that needs to be emptied regularly (like your Decade-old Home Videos
folder, for example). Besides that, there’s not much use for delete, since you can
always achieve one-time erasures by choosing File ➝ Move to Trash (or by press-
ing c-Delete) in the Finder.

Figure 5-7:
Top: Your script shows you a dialog box
asking whether it should continue, thereby
emptying the Trash. Click Cancel to stop
the script in its tracks.

Bottom: If you click OK, the Finder displays
a progress bar as it erases everything in
the Trash. That includes other things
you’ve recently deleted—not just the Icon
folder—so make sure that’s OK with you
before you proceed.

GEM IN THE ROUGH

The Reveal Command
As you go about your script-writing business, there might
come a time when you want to show a file or folder in the
Finder. After you’ve copied a file from one folder to
another, for instance, you might want to display the new
location for the file.

AppleScript makes this job easy using the reveal command.
It works just like the File ➝ Show Song File command in
iTunes—that is, it shows you the folder that contains a given
file in the Finder. Try this to select your copy of TextEdit in
the Applications folder:

tell application "Finder"

 activate

 reveal the file "TextEdit.app" ¬

 of the folder "Applications" ¬

 of the startup disk

end tell

The reveal command is useful for showing folders, too. For
example, you could highlight your Home folder (inside the
Users folder) with this command:

tell application "Finder"

 activate

 reveal home

end tell

,ch05.7204 Page 96 Thursday, January 20, 2005 5:11 PM

AppleScript: The Missing Manual, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Chapter 5: Controlling Files 97

Picking a File from a
Dialog Box

Picking a File from a Dialog Box
Back on page 60, you learned how to use the display dialog command to present
information onscreen, and how to give feedback to your scripts while they’re run-
ning. The trouble with that command, though, is that you can’t choose a file with
it. And when you’re using Finder commands, you often want to choose a file for
your script to work with.

That’s where the choose file command comes in. Rather than having to specify an
actual file name in your script, choose file uses Mac OS X’s standard Open dialog
box, letting you pick the precise file you want to work on (Figure 5-8). That way
you can choose a different file for your script to operate on each time it runs.

In its purest form, the choose file command can occupy a line all by itself—display-
ing an Open dialog box but doing absolutely nothing else:

choose file

Of course, it won’t do much good just to display an Open dialog box on the screen;
the real power comes when your script can figure out what file you chose. Apple-
Script makes this easy, too:

set selectedFile to (choose file)

(*The selectedFile variable now stores an "alias" [page 77] of the file you

chose*)

Figure 5-8:
When you use the
choose file command,
you see the same Open
dialog box that you see
in other Mac OS X
programs. There’s only
one difference: the
choose file dialog box
shows normally hidden
files (like .DS_Store),
too. There are some
benefits to this feature:
you can see all the Unix
configuration files that
Mac OS X uses, for
example. However, if it
bothers you to have all
those hidden files
clogging up your Open
dialog box, just add the
without invisibles option
to the end of your
choose file command.

,ch05.7204 Page 97 Thursday, January 20, 2005 5:11 PM

AppleScript: The Missing Manual, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

98 AppleScript: The Missing Manual

Picking a File from a
Dialog Box

tell application "Finder"

 open selectedFile

end tell

When run, this script presents an Open dialog box, and then opens whatever file
you chose. It’s not going to win any programming awards, but it’s a start.

Tip: If you’d like to pick out a folder instead of a file, use the choose folder command. For more informa-
tion on these commands, check out the Standard Additions dictionary (page 50).

Showing When a File was Created
Admit it: you’ve got folders that you haven’t cleaned out in months—or maybe
even years. You’ve let your junk accumulate, putting off the day you have to sort
through it. Now, using AppleScript, you can finally tell how long it’s been sitting
around, so you can brag to your similarly procrastinatory friends.

When you script the Finder, you have access to the modification date property for
everything on your hard drive. To figure out when a file was modified, therefore,
you simply have to tell AppleScript which file you want the information for. The
choose file command provides the perfect opportunity to enlighten AppleScript as
to your file of interest:

set selectedFile to (choose file)

tell application "Finder"

 set modDate to the modification date of selectedFile

end tell

display dialog "That file was last modified on: " & modDate

Still, this script isn’t perfect. For one thing, it doesn’t give you any perspective, like
how many months ago the file was modified. Instead, it just tells you the date the
file was modified, which isn’t as easy to interpret at a glance.

One of AppleScript’s nice features, though, is that you can subtract one date from
another. It’s a great way to figure out how long ago a file was modified—in days,
months, or even years. Simply edit your script like this:

--Part 1:

set selectedFile to (choose file)

tell application "Finder"

 set modDate to the modification date of selectedFile

 --Part 2:

 set curDate to the current date

 --Part 3:

 if (the year of modDate) ≠ (the year of curDate) then

 set ageInYears to (the year of curDate) - (the year of modDate)

 display dialog "The file was changed " & ageInYears & " years ago."

 --Part 4:

 else

,ch05.7204 Page 98 Thursday, January 20, 2005 5:11 PM

AppleScript: The Missing Manual, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Chapter 5: Controlling Files 99

Picking a File from a
Dialog Box

 if (the month of modDate) ≠ (the month of curDate) then

 set ageInMonths to (the month of curDate) - (the month ¬

 of modDate)

 display dialog "The file was changed " & ageInMonths & ¬

 "months ago."

 --Part 5

 else

 if (the day of modDate) ≠ (the day of curDate) then

 set ageInDays to (the day of curDate) - (the day of modDate)

 display dialog "The file is " & ageInDays & "days old."

 else

 display dialog "The file was changed today."

 end if

 end if

 end if

end tell

Note: You can type the ≠ symbol by pressing Option-=. Or, if you’d prefer, you can substitute the plain-
English phrase is not equal to in place of the ≠ symbol.

This is the most involved script you’ve written so far. At first it looks pretty com-
plicated, but it actually works fairly simply:

• Part 1: The script presents an Open dialog box, and sets modDate to the date the
selected file was modified.

Tip: If you want to check when a file was created rather than when it was modified, use the creation date
property instead of modification date.

• Part 2: The current date, as you’re running the script, goes into the curDate
variable.

• Part 3: The script checks if the year the file was modified is the same as the cur-
rent year. If they’re not the same, the script sets the ageInYears variable to the
difference between the two years—and a dialog box tells you how many years
ago the file was modified.

On the other hand, if the file was modified this year, the script proceeds to the
next part.

• Part 4: Now the script checks if the month the file was modified is the same as
the current month. If they’re different, the script shows a dialog box with the
difference in months. Otherwise, if they’re the same month, the script proceeds
to the next part.

• Part 5: If the script has gotten this far, you know that the file was modified this
month of this year. The only thing left to check, then, is whether the file was last
modified today.

,ch05.7204 Page 99 Thursday, January 20, 2005 5:11 PM

AppleScript: The Missing Manual, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

100 AppleScript: The Missing Manual

Saving Files If it wasn’t, the script calculates how many days ago the file was modified. It
then displays that information in a dialog box.

On the other hand, if the file was last modified today, the script presents a dia-
log box informing you of that. At this point, every possibility has been covered,
and the script ends.

As you’ll surely notice, the script is full of nested if statements, which makes it hard
to read. Luckily, AppleScript lets you merge an else statement (on one line) with a
subsequent if statement (on the following line), creating an else if statement. Here’s
what the previous script would look like if you linked your else and if statements in
that way:

set selectedFile to (choose file)

tell application "Finder"

 set modDate to the modification date of selectedFile

 set curDate to the current date

 if (the year of modDate) ≠ (the year of curDate) then
 set ageInYears to (the year of curDate) - (the year of modDate)

 display dialog "The file was changed " & ageInYears & " years ago."

 else if (the month of modDate) ≠ (the month of curDate) then

 set ageInMonths to (the month of curDate) - (the month of modDate)

 display dialog "The file was changed " & ageInMonths & "months ago."

 else if (the day of modDate) ≠ (the day of curDate) then

 set ageInDays to (the day of curDate) - (the day of modDate)

 display dialog "The file is" & ageInDays & "days old."

 else

 display dialog "The file was changed today."

 end if

end tell

Now the script is much easier to read, and still works exactly the same way.

Note: People use else if statements for all sorts of other tasks, too. For example, you can check the file
format of a document in this way: if it’s a Word document…else if it’s a PowerPoint document…else if
it’s an Excel file, and so on.

You can also use else if statements to react to the magnitude of something: if there are less than 5 files on
the Desktop, leave the files alone…else if there are between 5 and 20 files on the Desktop, copy them to a
different folder…else if there are more than 20 files on the desktop, delete them, for example.

Saving Files
The last piece of the Mac OS X file puzzle is saving documents you already have
open. AppleScript makes this simple: the save command works the same way as
choosing File ➝ Save.

,ch05.7204 Page 100 Thursday, January 20, 2005 5:11 PM

AppleScript: The Missing Manual, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Chapter 5: Controlling Files 101

Saving FilesTip: Similarly, the save as command works the same way as choosing File ➝ Save As (that is, when you
provide a file path to the save as command, Mac OS X saves a copy of your current file in the location you
specify).

Unfortunately, this trick works only in certain programs (TextEdit, Microsoft
Word, and Safari, for example). To see if a particular program supports Apple-
Script-based saves, open the program’s dictionary and see if the dictionary’s Stan-
dard Suite (page 45) includes the save command.

POWER USERS’ CLINIC

You Can’t Judge a File by its Extension
Back in the days of Mac OS 9, before you had to put file
extensions at the end of documents’ names, your Mac
knew what kind of files you had by their type and creator
codes. The type code told your Mac what kind of informa-
tion was stored in a file. For example, if a file’s type code
was “TEXT,” that meant the file was just plain text, while a
type code of “APPL” meant the file was an application.

The creator code, on the other hand, told your Mac which
program produced a file. A file created with Photoshop
would use the creator code “8BIM,” while one created with
AppleWorks would use “BOBO”—go figure.

The importance of type and creator codes in Mac OS X is
reduced, but they’re still around. In fact, if a file has a type
and creator code, they override any settings for which pro-
gram should open the file. That’s why the help files that
come with Photoshop won’t open in your default Web
browser: Adobe has set their creator code to “MSIE,” so
they’ll always open in Internet Explorer.

Thankfully, AppleScript lets you modify type and creator
codes—or get rid of them completely. The following script
can help you do it:

set selectedFile to (choose file)

(* Get the file's current type and creator

codes: *)

tell application "Finder"

 set fType to the file type of ¬

 selectedFile

 set cType to the creator type of ¬

 selectedFile

end tell

(* Get the new type and creator codes you

want to use: *)

set newF to text returned of ¬

 (display dialog "Current type code: " ¬

 & fType & ". New:" default answer "")

set newC to text returned of ¬

 (display dialog "Current creator ¬

 code: " & cType & ". New:" default ¬

 answer "")

--Set the new type and creator codes:

tell application "Finder"

 set the file type of ¬

 selectedFile to newF

 set the creator type of ¬

 selectedFile to newC

end tell

If you’d like to banish the type and creator code from a
file—so that Mac OS X will judge the file by its extension—
enter “????” for both codes (or, if you want the details of
erasing such codes, see http://daringfireball.net/2004/02/
setting_empty_file_and_creator_types). If you’d rather
just replace the existing codes with new ones, check out
http://kb.indiana.edu/data/aemh.html for a list of type and
creator codes for different programs and files.

,ch05.7204 Page 101 Thursday, January 20, 2005 5:11 PM

AppleScript: The Missing Manual, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

102 AppleScript: The Missing Manual

Saving Files An Example: Saving in TextEdit
As the epitome of Mac-ness, TextEdit does support the save command. Thus, if you
needed a script to save your current TextEdit document, this one would work well:

tell application "TextEdit"

 activate

 save the front document

end tell

If you haven’t saved your current TextEdit document yet, a Save dialog box
appears. (The Save dialog box, as you know, lets you specify a name for the docu-
ment and where you want it stored.)

Forgoing the Dialog Box
Of course, you could always save your files without using AppleScript. The real
benefit of scripting Save operations, though, is that you can completely bypass the
Save dialog box, saving you several precious seconds:

tell application "TextEdit"

 activate

 save the front document in ":Users:yourUsername:Desktop:kiwi.rtf"

 --Remember to replace yourUsername with your actual one-word username

end tell

The in option lets you specify the colon-separated path of the file into which you
want to save your document (in this example, the kiwi.rtf file on your desktop). If
there’s a particular file you often save—say, your personal home page—you might
find it useful to run the previous script whenever you want to save a new version of
the document in the old location.

Note: Make sure you specify a file, not a folder! If you put a path to a folder after the in option, Apple-
Script overwrites that folder completely. And if that folder were your desktop, the script would instantly trash
your Desktop folder and every file inside it, leaving your desktop files as mere memories. Here’s what to avoid:

--DO NOT RUN THIS SCRIPT!!

tell application "TextEdit"

 activate

 --Wanna erase your Desktop? Here's how:

 save the front document in ¬

 "Macintosh HD:Users:yourUsername:Desktop:"
(* Since you specify the path to your Desktop, Mac OS X overwrites the

Desktop...permanently! *)

end tell

Instead, specify the actual file you want to save the document into. (You can tell you’re specifying a file
because it won’t end in a colon.)

,ch05.7204 Page 102 Thursday, January 20, 2005 5:11 PM

AppleScript: The Missing Manual, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Chapter 5: Controlling Files 103

Saving FilesSaving All Documents at Once
There’s one more timesaving trick to the save command: saving all your docu-
ments in one step. This can come in handy for those times when you have multi-
ple files open and want to quickly save all of them—without switching to each
document window individually and hitting c-S. Use this script to get the job done:

tell application "TextEdit"

 activate

 save every document

end tell

When you run this script, TextEdit does the same thing it would do if you chose
File ➝ Save All. The nice thing about this script, though, is that it works in many
programs that don’t even have a Save All command, such as Microsoft Word,
Safari, and even Script Editor itself. Simply change the tell statement to reflect the
program you want to command, and run the script again.

For example, here’s how that script would look if you wanted to use it with Word:

tell application "Microsoft Word"

 activate

 save every document

end tell

Now that you know how to open, move, copy, and save documents automatically,
you can call yourself a true AppleScript filephile.

,ch05.7204 Page 103 Thursday, January 20, 2005 5:11 PM

