APPENDIX A

COST ESTIMATION PROCEDURE FOR CARBON MONOXIDE

The price of carbon monoxide was estimated based on the fuel value of carbon monoxide, and the cost and heat of combustion of methane since the price for carbon monoxide was not available from the Chemical Market Reporter. The price (\$/kg), and heats of combustion of methane (kcal/kg) and carbon monoxide are given in Table 4.24. The heats of combustion values for both the gases were taken from Perry's Chemical Engineers' Handbook. Using this information, the price of carbon monoxide was estimated in \$/kg of CO. The procedure for estimating the price of CO is given below.

Table A.1. Heats of Combustion of Methane and Carbon Monoxide, and Price of Methane.

Property	Methane	Carbon	Source	
		Monoxide		
Heat of Combustion	13,265.1	2414.7	Perry's Chemical Engineers'	
(kcal/kg)			Handbook	
Selling Price (\$/kg)	\$0.172/kg, or		http://www.repartners.org/rene	
	\$3.5/MBTU		wables/recosts.htm	

Price of methane = 0.172 /kg or 3.5 /MBTU

Heat of combustion of methane = 13265.1 kcal/kg-methane

Price of methane in terms of $\/\$ kcal = $\frac{\ 0.172 /\$ kg}{13265.1 kcal/\kg-methane

= \$ 1.2966 x 10⁻⁵ /kcal

Heat of combustion of carbon monoxide = 2414.7 kcal/kg-CO

Price of CO in terms of $kg-CO = (1.2966 \times 10^{-5} / kcal) (2414.7 kcal/kg-CO)$

= \$ 0.031 /kg-CO

Thus, the price of CO was estimated to be \$ 0.031 /kg-CO.

APPENDIX B

COST ESTIMATION PROCEDURE FOR HYDROGEN

The price of hydrogen depends on the price of natural gas. Using the price of natural gas as \$3.5 per thousand cubic feet or million BTUs, the formula given by Kuehler, 2003 to compute the hydrogen price is:

Hydrogen price (\$/Thousand SCF) = $\frac{[0.9(\text{natural gas price in $/MBTU)}]}{2} + 0.45$

where, SCF is standard cubic feet

Thus, 1 m³ of hydrogen costs \$ 0.0715

Kuehler, 2003, reported that the energy content (heat of combustion) of natural gas was 310 BTU/SCF. The density of hydrogen at standard state taken from Perry's Chemical Engineers' Handbook is 0.0898 kg/m^3 . Using the density of hydrogen, the price of hydrogen can be represented in terms of \$/kg of H₂.

Thus, the price of hydrogen = $\frac{0.0175}{0.0898}$ /kg H₂ = $\frac{0.796}{\text{kg H}_2}$

APPENDIX C

PROCEDURE FOR VALUE ADDED ECONOMIC ANALYSIS FOR A PROCESS

The procedure for evaluating a value added economic analysis for a process is discussed below with an example. The procedure is shown for the potentially new process for the production of acetic acid described by Taniguchi, et al., 1998. The calculations involve the raw material costs, product sales, and the energy costs. All the heat energy involved in the potentially new processes was assumed to be in the form of high-pressure (HP) steam. The conditions for HP steam are 47 bar, 260 °C, and with a specific heat of 1.067 kcal/kg °C.

The profit is calculated as the difference between the total product sales, raw material costs, and utility costs. The general equation for the calculation of value added economic profit is:

$$Profit = \Sigma Product Sales - \Sigma Ram Material Costs - \Sigma Utility Costs$$
(4.1)

Utilities include the cost of process steam, cooling water and electricity. In the value added economic analysis, the cost of steam and cooling water are included, but electricity is not included. Evaluating electricity requires a detailed process flow diagram with all pumps and compressors sized. Then the electrical requirements for the prime movers are summed.

The acetic acid process by Taniguchi, et al., 1998, described in Chapter Three is used to illustrate the evaluation. From the HYSYS simulation, the energy supplied to the process was 1,273 x 10^3 kJ/hr, and the process produced 933 kg/hr of acetic acid (Figure 4.12 and Table 4.13). Energy is supplied from the enthalpy of vaporization (ΔH_{vap}) of high-pressure (HP) steam, and the amount of HP steam required for this process is calculated as follows. The enthalpy of evaporation of HP steam at 260°C is 1661.5 kJ/kg (Smith, et al., 1996).

HP steam required for this process = Energy from HYSYS/ ΔH_{vap} (kJ/hr)(kg/kJ)

$$= 1,273 \times 10^{3} / 1661.5 \text{ kg/hr}$$
$$= 766 \text{ kg/hr}$$

From HYSYS flow sheet, Figure 4.12, the total energy liberated from this process was calculated to be 1,148 x 10^3 kJ/hr. Cooling water was heated from 30°C and 50°C (Turton, et al., 1998). The amount of cooling water required is given by the following equation.

$$q = mc_p \Delta T \tag{4.2}$$

Where, q = Energy absorbed, kcal/hr

m = Mass flow rate of cooling water, kg/hr

 $c_p =$ Specific heat of water, kJ/kg-°C

 ΔT = Change in temperature, °C

The specific heat of water is 1 kcal/kg°C, and the difference in temperature is 20°C since the water is entering at 30°C and leaving at 50°C. The value of q is the energy absorbed by the cooling water, and for acetic acid plant it was 1,148 x 10^3 kJ/hr. Substituting the values in Equation 4.2, the amount of cooling water required for this process was calculated to be 13,730 kg/hr.

The economic data used for this process is shown in Table 4.13, and it is repeated here for convenience.

Table 4.13. Economic Results for the HYSYS Simulated Process for the Production of Acetic Acid described by Taniguchi, et al., 1998.

Product/Raw Material		Cost/Selling Price (\$/kg)	Source
Carbon Dioxide	685	0.003	Hertwig, T. A., Private Communication, 2003
Methane	249	0.172	http://www.repartners.org/r enewables/recosts.htm
Acetic Acid	933	1.034	Chemical Market Reporter, February 1, 2002
High Pressure Steam	766	0.00865	Turton, et al., 1998
Cooling Water	13,730	6.7 x 10 ⁻⁶	Turton, et al., 1998
Value Added Profit	\$ 913 / hr	97.9 cents/kg- acetic acid	

The product sales, raw material costs, cooling water costs, and the energy costs were calculated using the information provided in Table 4.12. The value added economic profit was calculated by substituting these values in equation 4.1.

HP Steam Cost = $766 \times 0.00865 (kg/hr)(\$/kg)$

= \$ 6.63 /hr

Cooling Water Cost = $13,730 \times 6.7 \times 10^{-6} (kg/hr)(\$/kg)$

= \$ 0.092 /hr

Methane feed cost = $249 \times 0.172 (\text{kg/hr})(\text{kg})$

= \$ 42.83 /hr

Cost for delivering CO₂ from pipeline = $685 \times 0.003 (\text{kg/hr})(\text{/kg})$

= \$ 2.06 /hr

Acetic acid sales = $933 \times 1.034 (\text{kg/hr})(\text{kg})$

= \$ 964.72 /hr

Total Profit, h = (- 6.63 - 0.092 - 42.83 - 2.06 + 964.72) /hr = 913 /hr

Total Profit, \$/kg- acetic acid = 913 / 933 (\$/hr)/(kg-acetic acid/hr)

= 97.9 cents/kg-acetic acid

Thus, the value added economic profit for this potentially new process was 97.9 cents per kg of acetic acid. This profit was based on a selling price of \$1.03 per kg of acetic acid (Chemical Market Reporter, 2002), as shown in Table 4.13. The above economic model considered only the raw material costs, product sales, cooling water costs, and the energy costs. The other operating costs, and a return on investment were not included. Thus, the profit expected from the value added economic model decreases if all the other operating costs were included.

A list of current selling prices of products and raw material costs for various chemicals used in this research was given in Table 4.25.

Product/Raw	Cost/Selling	Source
Material	Price (\$/kg)	
Methane	0.172	http://www.repartners.org/renewables/recosts.htm
Hydrogen	0.796	Appendix B
Methanol	0.300	Chemical Market Reporter, 2003
Graphite	0.882	Camford Chemical Prices, 2000
HP Steam	0.00865	Turton, et al., 1998
Cooling Water	6.7 x 10 ⁻⁶	Turton, et al., 1998
Carbon Monoxide	0.031	Appendix A
Dimethyl Ether	0.946	http://www.che.cemr.wvu.edu/publications/projec
		ts/dimethyl/dme-b.pdf
Carbon Dioxide	0.003	Hertwig, T. A., Private Communication, 2003
Formic Acid	0.690	Chemical Market Reporter, April 1, 2002
Mono-Methylamine	1.606	Chemical Market Reporter, 2000
Di-Methylamine	1.606	Chemical Market Reporter, 2000
Ammonia	0.150	Chemical Market Reporter, February 4, 2002
Ethanol	0.670	Chemical Market Reporter, 2002
Acetic Acid	1.034	Chemical Market Reporter, 2002
Ethylbenzene	0.551	Chemical Market Reporter, 2002
Styrene	0.705	Chemical Market Reporter, 2002
Propane	0.163	C & EN, June 2003, p.15
Propylene	0.240	C & EN, June 2003, p.15

Table C.1. Product Prices and Raw Material Costs.

APPENDIX D

STREAM FLOW RATES AMONG PLANTS IN THE CHEMICAL COMPLEX

Plant Name	Entering	Flow Rate	Leaving	Flow Rate
	Streams	(metric	Streams	(metric
		tons/year)		tons/year)
Contact process	Sulfur	1,226,200	Sulfuric acid	3,758,700
sulfuric acid	Air	7,847,400	Vent	6,039,200
	Boiler feed water	5,894,700	LP steam	1,952,900
	H ₂ O	736,600	Blowdown	424,500
			HP steam	2,929,300
			IP steam	588,000
			Others	12,300
Wet process	Decant water	7,838,800	H ₂ SiF ₆ & H ₂ O	26,000
phosphoric acid	Phosphate rock	4,656,800	SiF ₄ & H ₂ O	1,850,400
	Sulfuric acid	3,758,700	P_2O_5	2,906,100
	LP steam	2,880,400	Cooled LP	
	H ₂ O	537,100	steam	2,880,400
			H ₂ O	4,233,600
			Others	1,997,000
GTSP	Phosphate rock	331,000	GTSP	822,300
	P_2O_5	552,200	HF	10,700
			Vapor	30,500
			Others	19,700
MAP & DAP	P ₂ O ₅	2,324,900	MAP	321,900
	NH ₃	494,500	DAP	2,062,100
	Urea	28,100	H ₂ O	128,500
			Others	335,000
Power	HP steam	2,929,300	LP steam	3,899,400
generation	IP steam	588,000	H ₂ O	848,600
-	Fuel (methane)	51,300	CO_2	140,600
	Boiler feed water	1,230,700	Electricity	1,821 (TJ)
Ammonia	Air	720,000	NH ₃	658,100
	Natural gas	274,400	CO_2	752,900
	Steam	522,500	H ₂ O	93,800
			Purge	12,100
Nitric acid	Air	923,100	HNO ₃	330,600
	NH ₃	48,400	Vent	741,700
	H ₂ O	100,900		,
Methanol	CO ₂	62,900	Methanol	181,400
	H_2O	51,100	Vent	800
	Natural gas	68,200		

Table D.1. Stream Flow Rates Among Plants, Base Case.

Table D.1. (Continued)

	mucuj			
Ammonium	HNO ₃	330,600	NH ₄ NO ₃	246,300
nitrate	NH ₃	48,300	H ₂ O	132,600
UAN	NH ₄ NO ₃	27,900	UAN	60,500
	Urea	32,600		
Urea	NH ₃	56,700	Urea	99,800
	CO_2	73,200	H ₂ O	29,900
	LP steam	37,400	Cooling water	37,400
			NH ₃	100
			CO_2	100
Acetic acid	CO ₂	4,500	Acetic acid	8,200
	Methanol	4,400	H ₂ O	1,200
	CH ₄	500		
Ethylbenzene	Benzene	634,000	Ethylbenzene	861,800
	Ethylene	227,800		
Styrene	Ethylbenzene	861,800	Styrene	753,300
			Fuel gas	35,500
			Toluene	6,700
			С	15,600
			Benzene	50,700

Plant Name	Entering	Flow Rate	Leaving	Flow Rate
	Streams	(metric	Streams	(metric
<u> </u>	0.10	tons/year)	0.10 : :1	tons/year)
Contact process	Sulfur	1,226,200	Sulfuric acid	3,758,700
sulfuric acid	Air	7,847,400	Vent	6,039,200
	Boiler feed water	5,894,700	LP steam	1,952,900
	H ₂ O	736,600	Blowdown	424,500
			HP steam	2,929,300
			IP steam	588,000
			Others	12,300
Wet process	Decant water	7,838,800	H_2SiF_6 & H_2O	26,000
phosphoric acid	Phosphate rock	4,656,800	SiF ₄ & H ₂ O	1,850,400
	Sulfuric acid	3,758,700	P_2O_5	2,906,100
	LP steam	2,880,400	Cooled LP	
	H ₂ O	537,100	steam	2,880,400
			H ₂ O	4,233,600
			Others	1,997,000
GTSP	Phosphate rock	331,000	GTSP	822,300
	P_2O_5	552,200	HF	10,700
			Vapor	30,500
			Others	19,700
MAP & DAP	P ₂ O ₅	2,324,900	MAP	321,900
	NH ₃	494,500	DAP	2,062,100
	Urea	28,100	H ₂ O	128,500
			Others	335,000
Power	HP steam	2,929,300	LP steam	4,701,200
generation	IP steam	588,000	H ₂ O	956,000
-	Fuel (methane)	89,200	CO_2	244,500
	Boiler feed water	2,139,900	Electricity	2,149 (TJ)
Ammonia	Air	720,000	NH ₃	658,100
	Natural gas	274,400	CO_2	752,900
	Steam	522,500	H ₂ O	93,800
		, ,	Purge	12,100
Nitric acid	Air	923,100	HNO ₃	330,600
	NH ₃	48,400	Vent	741,700
	H ₂ O	100,900		,
Ammonium	HNO ₃	330,600	NH ₄ NO ₃	246,300
nitrate	NH ₃	48,300	H ₂ O	132,600
Methanol	CO ₂	62,900	Methanol	181,400
-	H ₂ O	51,100	Vent	800
	Natural gas	68,200		
UAN	NH ₄ NO ₃	27,900	UAN	60,500
	Urea	32,600		

 Table D.2. Stream Flow Rates Among Plants in Optimal Structure from Superstructure, Case Study One.

Table D.2. (Coliti	nucu).			
Urea	NH ₃	41,600	Urea	73,200
	CO ₂	53,700	H ₂ O	22,000
	LP steam	27,400	Cooling water	27,400
			NH ₃	0
			CO_2	100
Ethylbenzene	Benzene	634,000	Ethylbenzene	861,800
	Ethylene	227,800	-	
Styrene	Ethylbenzene	861,800	Styrene	753,300
			Fuel gas	35,500
			Toluene	6,700
			С	15,600
			Benzene	50,700
New acetic acid	CO ₂	6,000	Acetic acid	8,200
	CH ₄	2,200		
Graphite	CO_2	67,900	H ₂ O	55,600
	CH ₄	36,700	С	46,000
			Hydrogen	3,000
Synthesis gas	CO_2	150,000	CO	191,000
	CH ₄	54,700	Hydrogen	13,800
Formic acid	CO_2	74,500	Formic acid	77,900
	Hydrogen	3,400		
Methylamines	CO ₂	104,100	СО	6,800
	Hydrogen	13,300	MMA	26,400
	NH ₃	25,300	DMA	28,700
			H ₂ O	80,800

Table D.2. (Continued).

Plant Name	Entering	Flow Rate	Leaving	Flow Rate
	Streams	(metric	Streams	(metric
	G 10	tons/year)	G 10 · · · 1	tons/year)
Contact process	Sulfur	894,800	Sulfuric acid	2,742,900
sulfuric acid	Air	5,726,700	Vent	4,407,200
	Boiler feed water	4,301,700	LP steam	1,425,100
	H ₂ O	537,500	Blowdown	309,800
			HP steam	2,137,700
			IP steam	429,100
			Others	8,900
Wet process	Decant water	5,720,400	H_2SiF_6 & H_2O	18,900
phosphoric acid	Phosphate rock	3,398,400	SiF ₄ & H ₂ O	1,350,400
	Sulfuric acid	2,742,900	P_2O_5	2,906,100
	LP steam	2,102,000	Cooled LP	
	H ₂ O	392,00	steam	2,120,800
			H ₂ O	3,089,500
			Others	1,457,300
GTSP	Phosphate rock	241,500	GTSP	600,100
	P_2O_5	402,900	HF	7,800
			Vapor	22,300
			Others	14,300
MAP & DAP	P ₂ O ₅	1,696,600	MAP	234,900
	NH ₃	360,900	DAP	1,504,800
	Urea	20,500	H ₂ O	93,800
			Others	244,500
Power	HP steam	2,137,700	LP steam	4,241,900
generation	IP steam	429,100	H ₂ O	806,400
-	Fuel (methane)	103,400	CO_2	283,500
	Boiler feed water	2,481,500	Electricity	1,873 (TJ)
Ammonia	Air	537,500	NH ₃	491,200
	Natural gas	204,900	CO_2	562,00
	Steam	390,000	H ₂ O	70,000
			Purge	9,000
Nitric acid	Air	461,600	HNO ₃	165,300
	NH ₃	24,200	Vent	370,900
	H ₂ O	50,400		,
Ammonium	HNO ₃	165,300	NH ₄ NO ₃	133,000
nitrate	NH ₃	24,100	H ₂ O	56,500
Methanol	CO ₂	62,900	Methanol	181,400
	H_2O	51,100	Vent	800
	Natural gas	68,200		
UAN	NH ₄ NO ₃	27,900	UAN	60,500
	Urea	32,600		

 Table D.3. Stream Flow Rates Among Plants in Optimal Structure from Superstructure, Case Study Two.

nueu).			
NH ₃	56,700	Urea	99,800
CO ₂	73,200	H ₂ O	29,900
LP steam	37,400	Cooling water	37,400
		NH ₃	100
		CO_2	100
Benzene	634,000	Ethylbenzene	861,800
Ethylene	227,800	2	
	861,800	Styrene	753,300
		Fuel gas	35,500
		Toluene	6,700
		С	15,600
		Benzene	50,700
CO ₂	6,000	Acetic acid	8,200
CH ₄	2,200		
CO ₂	67,900	H ₂ O	55,600
CH ₄	36,700	С	46,000
		Hydrogen	3,000
CO ₂	151,800	CO	193,200
CH ₄	55,400	Hydrogen	13,900
CO ₂	74,500	Formic acid	77,900
Hydrogen	3,400		
CO ₂	104,100	СО	6,800
Hydrogen	13,300	MMA	26,400
NH ₃	25,300	DMA	28,700
		H ₂ O	80,800
Propane	43,400	СО	13,800
CO_2	21,700	Propylene	41,400
		H ₂ O	8,900
		Hydrogen	1,000
	$\begin{array}{c} \mathrm{NH}_{3}\\ \mathrm{CO}_{2}\\ \mathrm{LP \ steam}\\\\\\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Table D.3. (Continued).

Plant Name	Entering	Flow Rate	Leaving	Flow Rate
	Streams	(metric	Streams	(metric
a	a 10	tons/year)	a 10 · · · 1	tons/year)
Contact process	Sulfur	1,226,200	Sulfuric acid	3,758,700
sulfuric acid	Air	7,847,400	Vent	6,039,200
	Boiler feed water	5,894,700	LP steam	1,952,900
	H ₂ O	736,600	Blowdown	424,500
			HP steam	2,929,300
			IP steam	588,000
			Others	12,300
Wet process	Decant water	7,838,800	H_2SiF_6 & H_2O	26,000
phosphoric acid	Phosphate rock	4,656,800	SiF ₄ & H ₂ O	1,850,400
	Sulfuric acid	3,758,700	P_2O_5	2,906,100
	LP steam	2,880,400	Cooled LP	
	H ₂ O	537,100	steam	2,880,400
			H ₂ O	4,233,600
			Others	1,997,000
GTSP	Phosphate rock	331,000	GTSP	822,300
	P_2O_5	552,200	HF	10,700
			Vapor	30,500
			Others	19,700
MAP & DAP	P_2O_5	2,324,900	MAP	321,900
	NH ₃	494,500	DAP	2,062,100
	Urea	28,100	H ₂ O	128,500
			Others	335,000
Power	HP steam	2,929,300	LP steam	4,812,600
generation	IP steam	588,000	H ₂ O	970,900
	Fuel (methane)	9,440	CO_2	258,900
	Boiler feed water	2,266,200	Electricity	2,195 (TJ)
Ammonia	Air	720,000	NH ₃	658,100
	Natural gas	274,400	CO_2	752,900
	Steam	522,500	H ₂ O	93,800
			Purge	12,100
Nitric acid	Air	878,800	HNO ₃	314,800
	NH ₃	46,000	Vent	706,200
	H ₂ O	96,000		
Ammonium	HNO ₃	314,800	NH ₄ NO ₃	235,500
nitrate	NH ₃	46,00	H ₂ O	125,300
Methanol	CO ₂	62,900	Methanol	181,400
	H ₂ O	51,100	Vent	800
	Natural gas	68,200		
UAN	NH ₄ NO ₃	27,900	UAN	60,500
	Urea	32,600		

 Table D.4. Stream Flow Rates Among Plants in Optimal Structure from Superstructure,

 Case Study Three.

nued).	EE 400	TT	07 (00
-			97,600
=		=	29,300
LP steam	36,600	-	36,600
		-	100
			100
	,	Ethylbenzene	861,800
	,		
_			97,400
Ethylbenzene	369,300	-	362,200
		H ₂ O	62,700
CO_2	6,000	Acetic acid	8,200
CH ₄	2,200		
CO ₂	67,900	H ₂ O	55,600
CH ₄	36,700	С	46,000
		Hydrogen	3,000
CO ₂	151,800	CO	193,200
CH ₄	55,400	Hydrogen	13,900
CO ₂	74,500	Formic acid	77,900
Hydrogen			,
CO ₂	66,100	СО	4,300
Hydrogen	8,500	MMA	16,800
NH ₃	16,100	DMA	18,200
		H ₂ O	51,300
Propane	43,800	Propylene	41,800
Ĩ	,		2,000
			ŕ
CO ₂	21,700	СО	13,800
=	,	Propylene	41,400
1 1	,	H ₂ O	8,900
		-	1,000
CO ₂	77.400		18,200
-			22,700
J 8	0,000		3,900
		H ₂ O	40,600
	$\begin{array}{c} \mathrm{NH}_{3}\\ \mathrm{CO}_{2}\\ \mathrm{LP \ steam} \end{array}$ $\begin{array}{c} \mathrm{Benzene}\\ \mathrm{Ethylene}\\ \mathrm{CO}_{2}\\ \mathrm{Ethylbenzene} \end{array}$ $\begin{array}{c} \mathrm{CO}_{2}\\ \mathrm{CH}_{4}\\ \mathrm{CO}_{2}\\ \mathrm{CH}_{4}\\ \end{array}$ $\begin{array}{c} \mathrm{CO}_{2}\\ \mathrm{CH}_{4}\\ \mathrm{CO}_{2}\\ \mathrm{CH}_{4}\\ \mathrm{CO}_{2}\\ \mathrm{CH}_{4}\\ \mathrm{CO}_{2}\\ \mathrm{Hydrogen}\\ \end{array}$	NH_3 $55,400$ CO_2 $71,600$ LP steam $36,600$ Benzene $634,100$ Ethylene $227,800$ CO_2 $153,100$ Ethylbenzene $369,300$ CO_2 $6,000$ CH_4 $2,200$ CO_2 $67,900$ CH_4 $36,700$ CO_2 $67,900$ CH_4 $36,700$ CO_2 $74,500$ $Hydrogen$ $3,400$ CO_2 $66,100$ $Hydrogen$ $8,500$ NH_3 $16,100$ Propane $43,800$ CO_2 $21,700$ $Propane$ $43,400$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table D.4. (Continued).