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NEW TECHNIQUES FOR BOUNDS ON THE TOTAL NUMBER
OF PRIME FACTORS OF AN ODD PERFECT NUMBER

KEVIN G. HARE

Abstract. Let σ(n) denote the sum of the positive divisors of n. We say
that n is perfect if σ(n) = 2n. Currently there are no known odd perfect
numbers. It is known that if an odd perfect number exists, then it must

be of the form N = pα
∏k
j=1 q

2βj
j , where p, q1, · · · , qk are distinct primes

and p ≡ α ≡ 1 (mod 4). Define the total number of prime factors of N as

Ω(N) := α + 2
∑k
j=1 βj . Sayers showed that Ω(N) ≥ 29. This was later

extended by Iannucci and Sorli to show that Ω(N) ≥ 37. This was extended
by the author to show that Ω(N) ≥ 47. Using an idea of Carl Pomerance this
paper extends these results. The current new bound is Ω(N) ≥ 75.

1. Introduction

Here and throughout, n is any natural number, and N is a hypothetical odd
perfect number. Let σ(n) denote the sum of the positive divisors of n. We say
that n is perfect if σ(n) = 2n. It is known that if σ(n) = 2n and n is even, then
n = 2k−1(2k − 1) where 2k − 1 is a Mersenne prime. Currently there are no known
odd perfect numbers. First shown by Euler, it is well known that if an odd perfect
number exists, then it must be of the form

N = pα
k∏
j=1

q
2βj
j ,(1)

where p, q1, · · · , qk are distinct primes and p ≡ α ≡ 1 (mod 4).
Based on (1) we define the total number of prime factors of an odd perfect

number as

Ω(N) := α+ 2
k∑
j=1

βj ,(2)

and we define the total number of distinct prime factors of N as

ω(N) := 1 + k.(3)

A number of bounds have been derived for Ω(N). Cohen showed that Ω(N) ≥ 23
[3]. Sayers showed that Ω(N) ≥ 29 [12]. Iannucci and Sorli showed that Ω(N) ≥ 37
[8]. The author extended this to give Ω(N) ≥ 47 [7]. This paper extends this result
to give
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Table 1. Timing results for algorithm

Result Time to Prove result Lines to Prove result
Ω(N) ≥ 69 7 days, 17 hours, 23 minutes, 40 seconds 25,234,126 lines
Ω(N) ≥ 71 10 days, 22 hours, 17 minutes, 58 seconds 37,752,001 lines
Ω(N) ≥ 73 17 days, 1 hour, 28 minutes, 28 seconds 56,352,180 lines
Ω(N) ≥ 75 25 days, 3 hours, 17 minutes, 27 seconds 83,900,721 lines

Theorem 1.1. If N is an odd perfect number, then Ω(N) ≥ 75.

In proving these results, the methods of [7] were modified and applied. For an
introduction and explanation of the algorithm we refer the interested reader there.

To some extend, with this modification of the algorithm given here, the calcula-
tion becomes a matter of book-keeping. In [7] there was a specific road-block which
would prevented any further calculation. This is no longer the case. With enough
computational power, we could get to any number, (although this amount appears
to double every time we increase the bound by 4), so it is just a matter of how
much computer power to dedicate towards the problem.

The choice of 75 in the theorem above was motivated by the fact that 75 is an
“esthetically nice” number. (Based on the completely arbitrary and non-scientific
reasoning that we work in base 10.) The next number that the author would con-
sider nice, namely 101, is beyond reach, using the current techniques and computa-
tional power. (Some timing data is given in Table 1.) That being said, although 75
could doubtless be extended to 77 or possibly even 79, no purpose was seen in doing
this, as the numbers themselves do not provide any greater insight, and the bound
of 75 was sufficient to demonstrate the improvement of the current technique over
that found in [7].

Between 69 and 71, there is an increase by a factor of about 1.414. Between 71
and 73, there is an increase by a factor of about 1.561. Between 73 and 75, there
is an increase by a factor of about 1.473.

Based on these numbers, we could estimate that the amount of time to compute
up to 101 would be over 11 years of CPU time.

2. Definitions and Notation

By pa||N we mean pa|N and pa+1
- N . We define the function σ−1(n) as

σ−1(n) :=
∑
d|n

d−1 =
σ(n)
n

.(4)

A number of simple results concerning σ−1(n) are summarized below.

Lemma 2.1. Let n be any natural number. Then
• σ−1(n) is a multiplicative function, i.e. if (n,m) = 1 then σ−1(n · m) =
σ−1(n)σ−1(m),

• σ−1(n) > 1 for all n > 1,
• σ−1(n) = 2 if and only if n is perfect,
• p+1

p ≤ σ−1(pa) < σ−1(pa+1) < p
p−1 for all primes p and integers a > 1.

There are a number of useful results concerning ω(N), the total number of dis-
tinct prime factors.
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Lemma 2.2. Let N be an odd perfect number. Then
• ω(N) ≥ 8 [2, 5].
• If 3 - N then ω(N) ≥ 11 [6, 9].
• If 3 - N and 5 - N then ω(N) ≥ 15 [10].
• If 3 - N , 5 - N and 7 - N then ω(N) ≥ 27 [10].

This last result is well known in the literature. We use the version given in [4].

Lemma 2.3 (Cohen, Sorli [4]). Let

N = pα1
1 pα2

2 · · · p
αk
k qβ1

1 qβ1
2 · · · qβ1

r

be an odd perfect number, where the pi and the αi are known. Define

S := σ−1 (pα1
1 · · · p

αk
k )

Then we have,

min qi <
2 + S(r − 1)

2− S
moreover, if r ≥ 3 we have the tighter bound

min qi <
8 + 2S2(r − 1)

4− S2
.

Furthermore we have the lower bound

min qi > max
(

3,
S

2− S

)
Proof. Taking h = σ−1, µ = 1, h(λ) = S and w = r, this follows directly from
equations (2.3), (4.1) and (2.4) of [4]. �

Example 2.4. Assume that N = 32 ·134 ·30941 · qβ1
1 · q

β2
2 is an odd perfect number.

Then by Lemma 2.3 we can assume that 3.5962 < q1 < 8.1924. So in, particular
we can assume that q1 = 5 or 7.

3. The Algorithm and Proof of Theorem 1.1

Suppose N = pα
∏
q2βi
i , as before. To prove that Ω(N) ≥ K, we assume that

Ω(N) = α+
∑

2βi ≤ K − 2 and obtain a contradiction for every combination of α
and βi.

There are two main modifications to the algorithm in [7]. First, as opposed to
doing every individual case of [α, β1, · · ·βk] where Ω(N) = α+ 2

∑
βi, we combine

them into one test. For example, if we want to prove 3 - N , where Ω(N) = 57,
we look at the possibilities 32||N, 34||N, · · · , 356||N , and recurse. (Actually, for any
power n > 44, we have that 3n will give rise to a contradiction as ω(N) ≥ 8.) This
was done because the original method of looking at every possible partition of N
caused a large amount of duplicated effort in the automated proofs. By combing
these tests together we speed up the calculation, and significantly reduce the storage
space requirements.

It should be pointed out that this modification introduced a new contradiction,
which in [7] was taken care of in the choice of partitions. This is listed as contra-
diction (5) below.

The second modification to the algorithm is the use of Lemma 2.3. If the algo-
rithm finds itself in a situation where previously it could not continue, because it
did not know the factorization of some very large number, then we compute X from
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Lemma 2.3. If X is reasonably small, then we run though all of the possibilities of
qi prime, and qi ≤ X, as a means of continuing the calculation. Here “small” was
defined as anything less than 100000. This was sufficient for these calculations. It
should also be noted that the primes are checked in order. After proving that a par-
ticular prime (say p) causes a contradiction, it is assumed that it cannot occur as a
factor for the next cases being checked, within the same sub-branch. (For example,
with an abuse of notation, we assume p0||N , and would arrive at contradiction (1)
if a factor of p occurs.)

There are five contradictions that we test for. The first four are from the original
algorithm, or the equivalent variation needed to combine all tests into one test. The
last is commented on above.

(1) Excess of a given prime:
By assuming pk||N we derive the contradiction that pk+1|N . This is

denoted in the output by “xs=p” where p is the prime in question.
(2) Excess of the number of primes:

We have more primes than we are allowed, given the restrictions on Ω(N)
and the fact that only one prime can have an exponent of 1. This is denoted
in the output by “xs=prime”. Incompletely factored numbers are counted
as contributing two primes, even though this may be too low. Incompletely
factors numbers are known not to be perfect powers. Furthermore, incom-
pletely factored numbers are checked to ensure that they are co-prime with
each other, as well as other primes within the relevant branch.

For example, if at some point in the calculation, we check the assumption
that 2688114||N , we would get as a result that 3, 5, 31, 43, 3368729516337631,
6717545999551, 5601667, 8265157321, 18691, 145861 and 1801 must all di-
vide N . If we only had 6 primes unaccounted for, and none of primes listed
were potential factors already, we would get this contradiction.

(3) Partition cannot be satisfied:
The factors that must divide N , along with their powers, cannot satisfy

the partition. In the original algorithm there were a number of different
ways that it could occur. Given that in this implementation, there are not
specific exponent bounds assigned before starting to recurse, this can only
occur in one way. This is if of the remaining primes, one of them has to
be the special prime (with an exponent a ≡ 1 (mod 4)), and of all of the
remaining primes, all of them are such that p 6≡ 1 (mod 4). This is denoted
in the output by “exponent bounds exceeded”.

(4) Excess of σ−1:
A lower bound for σ−1(N) using known factors gives σ−1(N) > 2. This is

denoted in the code by “S= number”, giving a floating point approximation
for a lower bound of σ−1(N). (The code uses exact rational arithmetic to
check the inequality.)

(5) ω-bound exceeded.
Given the choices of primes and exponents made so far, it is not possible

to satisfy Lemma 2.2. For example, if N = 57, and we knew that we
have the factor 346, we would then have at most 6 other factors, which
contradicts ω(N) ≥ 8 from Lemma 2.2. This is denoted as “violate omega
bound”.
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In Table 2 an example of running this code is given, and the five possible excep-
tions. These exceptions are indicated by the numbers (1) through (5) on the left
hand side of the page. The use of Lemma 2.3 is indicated with an star, ∗, on the
left hand side of the page. Minor formatting has been done to the output, to avoid
lines with more than 80 characters. (The output of the actual code would have put
the line starting with “It would be nice to know” all on one line.)

As was done in [7], numbers were factored using the ifactor command in MAPLE,
with the easy option specified. If easy factors were not found, then number was
then checked in a hints database (which currently contains over 700 completely, or
partially factored numbers).

4. Comments and Acknowledgments

In [7] it was said that there were three numbers that needed to be factored,
without which the algorithm in [7] could not be continued. Using the methods
of Carl Pomerance, this problem was avoided. At this point, the calculations was
terminated not by a particular obstruction, but instead because 75 was estheti-
cally pleasing, and the next obvious goal of 101 is beyond the reach of the current
techniques and computer power.

The purpose of this paper was to demonstrate a new technique to extend this
bound, and not necessarily to extend this bound to the farthest extend possible.

I would like to thank Phil Carmody, Christophe Clavier, Don Leclair Paul Ley-
land, Tom Womack, Paul Zimmermann, and the people at http://mersenneforum.org
who helped provide factorizations for the numbers

• σ(σ(54718)16), a 789-digit number, with a factor of:

1520135498523547561326750429418247.

• σ(σ(322112)22), a 927-digit number, with a factor of:

46973400441039677515399714233826061.

which I had listed in [7] as obstructions to my calculations. This information was
included in the hints database used by the code.

I am also indebted to Carl Pomerance for bringing a weaker form of Lemma 2.3 to
my attention [11], and more importantly how this could be applied to improve the
existing bound. I would also like to thank the unknown referee for the reference [4],
which replaced Lemma 2.3, as well as many other useful suggestions and comments.

Also, I would like to acknowledge William Lipp, the creator of www.oddperfect.org,
for providing some additional factorizations. (The website www.oddperfect.org is
a website, which when complete, will co-ordinate an attack to improve the lower
bound on odd perfect numbers, of N ≥ 10300, given by [1].)
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