Hammett equation (Hammett relation)

The equation in the form:

$$
\lg \left(k / k_{0}\right)=\rho \sigma
$$

or

$$
\lg \left(K / K_{0}\right)=\rho \sigma
$$

applied to the influence of meta- or para-substituents X on the reactivity of the functional group Y in the benzene derivative m - or $p-\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{Y} . k$ or K is the rate or equilibrium constant, respectively, for the given reaction of m - or $p-\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{Y}$; $k 0$ or K_{0} refers to the reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Y}$, i.e. $\mathrm{X}=\mathrm{H}$; σ is the substituent constant characteristic of m - or $p-\mathrm{X}: \rho$ is the reaction constant characteristic of the given reaction of Y. The equation is often encountered in a form with $\lg k_{0}$ or $\lg K_{0}$ written as a separate term on the right hand side, e.g.

$$
\lg k=\rho \sigma+\lg k_{0}
$$

or

$$
\lg K=\rho \sigma+\lg K_{0}
$$

It then signifies the intercept corresponding to $\mathrm{X}=\mathrm{H}$ in a regression of lg k or $\lg K$ on σ.

See also ρ-value, σ-constant, Taft equation, Yukawa-Tsuno equation.
1994, 66, 1119

