Hammett equation (Hammett relation)

The equation in the form:

$$\lg (k/k_0) = \rho \sigma$$

or

$$\lg (K/K_0) = \rho \sigma$$

applied to the influence of *meta*- or *para*-substituents X on the reactivity of the functional group Y in the benzene derivative m- or p-XC₆H₄Y. k or K is the rate or equilibrium constant, respectively, for the given reaction of m- or p-XC₆H₄Y; k₀ or K₀ refers to the reaction of C₆H₅Y, i.e. X = H; σ is the substituent constant characteristic of m- or p-X: ρ is the reaction constant characteristic of the given reaction of Y. The equation is often encountered in a form with $\lg k_0$ or $\lg K_0$ written as a separate term on the right hand side, e.g.

$$\lg k = \rho \sigma + \lg k_0$$

or

$$\lg K = \rho \sigma + \lg K_0$$

It then signifies the intercept corresponding to X = H in a regression of $\lg k$ or $\lg K$ on σ .

See also ρ -value, σ -constant, Taft equation, Yukawa–Tsuno equation.

1994, 66, 1119

IUPAC Compendium of Chemical Terminology

2nd Edition (1997)