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Abstract

Surya project aims to improve IPv4 forwarding path scalability.
Improving forwarding scalability enables a Solaris machine to forward
a higher number of packets per second to a greater number of destina-
tions described in the forwarding table.

The project delivers a faster forwarding table lookup scheme and
a streamlined IPv4 forwarding path. These improvements, when com-
bined with soft-ring(PSARC 2005/654) and Crossbow’s polling im-
plementation, will vastly enhance Solaris forwarding throughput per-
formance. Crossbow’s polling-based feature will aim to solve receive
livelock problems that are common in interrupt-driven kernels, like So-
laris (for more details please see reference 5) In addition, Surya will
also deliver APIs for IP Filter that will allow simplification of IP Filter
implementation.

The changes addressed by this project improves IPv4 forwarding
only and thus does not address IPv6 forwarding performance.
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1 Introduction

This document records the design of Surya project. Section 2 discusses the
goals of the project. Section 3 identifies the non-goals of this project. Sec-
tion 4 discusses the details of the new Forwarding Information Base scheme
(FIB). Section 5 provides an overview of current Solaris IPv4 forwarding
path. Section 6 covers the detailed design of the changes necessary to im-
prove the IPv4 forwarding path. The reader will find it useful to consult
Appendix A when reading section 6. Section 7 describes new IP filter API.
Section 8 discusses future directions we may want to pursue. Section 9 pro-
vides references consulted when producing this design. Section 10 identifies
people who provided much appreciated help during this project. Two ap-
pendices are provided. Appendix A describes the new code flow for the
IPv4 forwarding path. Appendix B describes the analysis we did of two FIB
schemes to aid us in choosing the best scheme for Solaris.

2 Goals

The goals of this project are:

1. Improving IPv4 forwarding scalability - this entails the following:

• A faster FIB scheme.

• An optimized IPv4 forwarding path.

• Optimization of timer-based ICMP redirect processing in the
FIB.

2. Delivering APIs for IP Filter. This project will deliver two interfaces
to be used by IP Filter.

3. Restructuring the link layer address storage in ire t data structure
and insertion of incomplete ires (ie ires whose link layer address is not
fully-resolved) in IRE cache table via the forwarding path. The latter
scheme should be, in the future, extended to the host path to greatly
simplify IPsec and other implementations in IP module. Please refer
to section 6 for this discussion.

3 Non-goals

The following items are non-goals for this project:

1. Improving IPv6 forwarding performance. We plan to address this in
future project by extending the implementations of this project. Surya
will not impact current IPv6 functionality, and IP will continue to
support IPv6 as it currently does.
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2. Merging of the ARP kernel module functionality into the IP module.
Since Surya’s focus is to improve IPv4 forwarding performance, and
ARP-IP merge would not have any impact on that goal, the latter is
out of the scope of this project.

4 New Forwarding Information Base algorithm

4.1 Existing FIB scheme

Currently in Solaris, the IP forwarding lookup is based on a per-netmask
hash table. For a 32-bit IP address, there are 33 netmasks possible and one
hash bucket dedicated per netmask. As an example case, in current Solaris,
if the following route add commands are executed on a system:

# route add 10.10.10.50/32 172.16.0.21

# route add 10.10.10.50/32 172.16.1.21

the corresponding FIB layout would look like this:

Sun Microsystems, Incorporated.
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ip_forwarding_table

.-----------------.

0 | |

-------------------

| : |

-------------------

32 | o----------+--.

----------------- |

V

array of irb_t structures

-------------------

0 | |

|-----------------|

| : |

|-----------------|

[#B] | irb_ire -------+---> ire_t

| : |<-. -----------------------------------

| : | | | ire_next ---------------------+------.

| irb_ire_cnt = 2 | | | IRE_HOST | |

| : | | | ire_addr = 10.10.10.50 | |

|-----------------| | | ire_mask = 255.255.255.255 | |

| : | | | ire_gateway_addr = 172.16.0.21 | |

| : | ‘-+ ire_bucket | |

|-----------------| | | : | |

N | | | ----------------------------------- |

------------------- | |

Note : | |

N = IP_FTABLE_HASH_SIZE - 1; | |

[#B] in the figure above is | |

computed as | |

IRE_ADDR_HASH(ire_addr, ip_ftable_hash_size) |

| |

| |

| ire_t <----------------’

| -----------------------------------

| | ire_next ----------------------+-----.

| | IRE_HOST | |

| | ire_addr = 10.10.10.50 | =

| | ire_mask = 255.255.255.255 |

| | ire_gateway_addr = 172.16.1.21 |

‘--+ ire_bucket |

| : |

-----------------------------------
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4.2 Prototyping of alternative schemes 6

In order to find the outgoing interface for a packet, the longest matching
prefix from the FIB must be looked up. In the current scheme, the search
begins at the bottom of the hash table i.e., corresponding to the /32 netmask
(i.e., 255.255.255.255). A value is computed to identify the appropriate
bucket, and then the linked list of entries is walked to find a matching entry.
This process is repeated for each netmask bucket in descending order (32,
31, 30 ..) till a match is found.

This algorithm does not scale well for large routing tables, when each
netmask bucket containing potentially long lists of route entries has to be
traversed.

4.2 Prototyping of alternative schemes

We looked into various lookup algorithms in search of a scheme that would
be appropriate for general-purpose systems. We found most schemes to be
suited for embedded systems, hardware and distributed implementations.
We thus decided to look at PATRICIA trees(aka Radix tree) and a variant
of the multi-bit trie. The algorithms tested were:

a. Address-directed FIB scheme that has a multi-bit trie structure,
in which segments of the IP address index in, to lead to the last
level of the trie which points to the list of ires (possibly dupli-
cate). A search for the most specific route would search the trie
starting with the destination address. The backtracking is done
by masking the address with zeros progressively, from more spe-
cific prefixes to less specific prefixes and retrying the search in the
trie. An 8-bit trie is used. Thus there are 256 entries per node,
and a total of 4 levels. At each node, the backtracking is speeded
up by having a bitmask for the entries to find out whether it is
non-zero. This scheme is not a software re-implementation of a
pure multi-bit trie as described in reference 4 as most of the op-
timizations listed in that document have patent rights attached
to them, and are geared towards hardware implementation of
multibit-trie.

b. FreeBSD’s implementation of Radix tree. Note that the Radix
tree implementations in FreeBSD, OpenBSD and NetBSD are
essentially the same (with minor differences). Thus FreeBSD
was arbitrarily chosen. For a detailed description of Radix tree,
please refer to reference 2 and 3.

A kernel prototype implementation of each scheme was implemented.
Each algorithm was installed on a SunFire V40Z quad 2.4 GHz cpu AMD
Opteron System and tested against the Spirent Smartbits Tera Routing
Tester. The results containing the throughput and memory usage data is
listed in Appendix B.

Due to following considerations:

Sun Microsystems, Incorporated.
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a. No significant difference in throughput and memory usage was
noted between the Address-directed FIB scheme and Radix tree
implementation.

b. The FreeBSD implementation is well documented, understood,
and has had exposure for years.

c. The FreeBSD implementation can be easily extended to IPv6 for-
warding scheme and implementation of ECMP(Equal-Cost Mul-
tipath Protocol) in future projects.

the FreeBSD scheme was chosen for the FIB algorithm.

4.3 Solaris glue points to FreeBSD’s radix tree structure

A description of the data structures used to represent the Radix tree in BSD
can be found in reference 3.

As an example case, Solaris implementation of radix tree (with glued
ire t data structure) on a system where the following route add commands
are executed:

# route add 10.10.10.50/32 172.16.0.21

# route add 10.10.10.50/32 172.16.1.21

would look like this:

Sun Microsystems, Incorporated.
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radix_node_head

--------------

| radix_node |

| (left end) |

-------------

.---- | | ----.

| ------------- |

| | radix_node | |

| | (right end)| |

| -------------- |

V V

(left) (right)

: :

: :

.-> rt_entry

| ------------------------

| | radix_node {} |

| | rn_Key = 10.10.10.50 |

| ------------------------

| | radix_node {} |

| | rn_bit = 46 |

| ------------------------

| | rt_dst = 10.10.10.50 |

| ------------------------ ire_t

.--(->| irb_ire -------+-+----> .--------------------------------.

| | | : | | | ire_next ----+--.

| | | : | | | IRE_HOST | |

| ‘--+---- irb_rt | | | ire_addr = 10.10.10.50 | |

| | irb_rr_origin --+-’ | ire_mask = 255.255.255.255 | |

| ------------------------ | ire_gateway_addr = 172.16.0.21 | |

+--------------------------------------+--- ire_bucket | |

| | : | |

| ‘--------------------------------’ |

| |

| ire_t <-----------------’

| .--------------------------------.

| | ire_next ----+--.

| | IRE_HOST | |

| | ire_addr = 10.10.10.50 | |

| | ire_mask = 255.255.255.255 | =

| | ire_gateway_addr = 172.16.1.21 |

‘--------------------------------------+--- ire_bucket |

| : |

‘--------------------------------’
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4.3 Solaris glue points to FreeBSD’s radix tree structure 9

NOTE : For a detailed description of data structure radix node head and
radix node, please refer to reference 3.

The routing table has a radix node head and all the nodes in the routing
tree, both the internal nodes and the leaves, are radix node structures. The
routing table tree is built from rt entry structures. Each rt entry structure
contains two radix node structures which attach it to the radix tree: one
radix node structure is an internal node, corresponding to the bit to be
tested, and the leaf node itself containing information about the internet
route.

In order to glue Solaris ire t data structure, we have modified the rt entry
structure (note that it’s different from BSD’s rtentry structure) The layout
of the rt entry structure is shown below:

struct rt_entry {

struct radix_node rt_nodes[2]; /*tree glue */

/*

*struct rt_entry must begin with a struct

* radix_node (or two!) to a ’struct rt_entry

*/

struct rt_sockaddr rt_dst;

/*

* multiple routes to same dest/mask via

* varying gate/ifp are stored in the

* rt_irb bucket.

*/

irb_t rt_irb;

};

Detailed information about the route is stored in a linked list of
ire t structures which may be accessed by following the rt_irb->irb_ire

pointer. Thus, multiple routes to the same IPv4 destination and netmask
are stored in the same rt irb. Further details of the contents of the rt irb and
modifications to the existing ire t structures are discussed in next section.

The functions in the BSD implementation that modify or search the
radix tree expect to be passed a pointer (void *)varg to the search key such
that the length of the key may be obtained in the first byte pointed to by
varg. Since ire t structures store IP addresses as ipaddr t structures, in
order to efficiently call the radix functions, the search key is stored in the
rt entry in the rt dst as a rt sockaddr structure that is defined as:

struct rt_sockaddr {

uint8_t rt_sin_len;

uint8_t rt_sin_family;

uint16_t rt_sin_port;

Sun Microsystems, Incorporated.
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struct in_addr rt_sin_addr;

char rt_sin_zero[8];

};

4.4 Introducing rt entry and modifications to irb t

Each leaf of the radix tree (where the radix node has rn b < 0) is a rt entry
structure containing a bucket of Internet routing entries. The existing defi-
nition of ire t has been re-used without change for the routing entries them-
selves. Although the irb t type continues to be used as the bucket data
structure, it has been modified to accommodate the requirements introduced
by the radix tree. These modifications are listed below.

• Maintain a pointer irb rt to the rt entry containing the bucket.

• irb t structures were never deleted or freed in the pre-Surya imple-
mentations of the FIB, but are now dynamically allocated and freed
in Surya. Since an irb t may only be freed when there is no reference
to the for the irb ire list, a new irb marks flag of IRB MARK DEAD
has been introduced. This marker is set on the rt irb when a route is
deleted from the the radix tree, indicating that the bucket is no longer
attached to the tree, and allows IRB REFRELE to safely free the as-
sociated rt entry when all the ire’s in the bucket have been removed.

4.5 Default route handling in new FIB scheme

Pre-Surya implementation of the FIB provides for simplistic load balancing
scheme that round-robins through the list of default routers. The list of de-
fault routers is accessed by looking at the contents of ip forwarding table[0],
and the global index ip ire default index indicates the next list member at
which the round-robin search should start. Further, if TCP notices prob-
lems that causes excessive retransmits (i.e., a problematic router) it invokes
ip ire delete() via tcp ip notify() to adjust the round-robin search so that
the problematic router is skipped.

The above scheme has the limitation that it does not extend well to allow
the round-robining of general (i.e., nondefault) prefix routes. Further, in
the radix tree implementation, the ip forwarding table[0] pointer to default
routes is no longer supported.

Instead, a new field, irb rr origin is maintained in every irb t structure,
to track the next ire at which the round-robin search should start. When
problematic routers are detected in ip ire delete(), the irb rr origin is up-
dated appropriately. Round-robin itself is implemented in the new function
ire round robin().

Sun Microsystems, Incorporated.
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4.6 Locks and synchronization structures

BSD implementations of the PATRICIA tree provide support for a mutex
that protects the radix node head. Surya refines this mutex to be a rw lock,
with the lock being held as RW WRITER during route addition or deletion,
and held in RW READER mode elsewhere. The rationale for this locking
scheme was to optimize access for multiple readers, which was expected to
be the more commonly encountered case. Most systems will likely have just
a single thread (the user-space routing daemon) that is actually writing to
the kernel’s FIB. A reader-writer lock implements an implicit mutex, and,
if lookup is a big fraction of the time involved in forwarding and allows
multiple cpus to handle incoming packets.

4.7 Route addition

When adding an entry to the FIB in ire add v4(), the function ire get bucket()
is called to obtain the rt irb for the route to be added. ire get bucket()
first attempts to add a node to the radix tree by invoking rn addroute().
If the route already exists, rn addroute() returns NULL, in which case
ire get bucket() calls rn match() to return the existing route. The value
of rt irb is returned to the caller.

4.8 Route deletion

The existing function, ire delete() is invoked for both cache-table and
forwarding-table ire entries. In the latter case, when the ire is deleted,
if there are no other ire entries in the bucket, the bucket itself, and the
rt entry it belongs to, must be removed from the radix tree. Cache table
ire entries must continue to delete the entry following pre-Surya procedures
which are now contained in the function ire delete1().

Thus the function ire delete() now executes as follows(note that the fol-
lowing code fragment is not the complete illustration of this function):

/*

* Delete the specified IRE.

*/

void

ire_delete(ire_t *ire)

{

struct radix_node *rn = NULL;

struct rt_sockaddr rdst, rmask;

struct rt_entry *rt;

if ((ire->ire_type & IRE_FORWARDTABLE) == 0) {

ire_delete1(ire);

return;

Sun Microsystems, Incorporated.
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}

/* first remove it from the radix tree. */

....

if (ire->ire_bucket != NULL &&

ire->ire_bucket->irb_ire_cnt == 1) {

/*

* only one ire in this bucket;

* can remove irb from tree

*/

rn = ipftable->rnh_deladdr(&rdst, &rmask,

ipftable);

}

.....

/* got a free standing irb; mark it dead */

rt = (struct rt_entry *)rn;

rt->rt_irb.irb_marks |= IRB_MARK_DEAD;

ip1dbg(("mark rt 0x%lx dead\n", (ulong_t)rt));

}

ire_delete1(ire);

}

The marker IRB MARK DEAD is described in sub-section 4.4, and is
set when a leaf node is removed from the tree, allowing IRB REFRELE to
delete the node.

4.9 Route lookup

Forwarding table lookup is done by invoking an enhanced version of rn match()
function. The modifications made to rn match() are described below.

By default, the BSD code for tree-search returns the longest matching
prefix to the caller. In Solaris, ire ftable lookup can be called with complex
permutations of IRE MATCH * flags so that the matched key may not nec-
essarily be the longest matching prefix. In order to support these queries,
the BSD radix code for tree search was modified to allow callers to pass in
a (possibly null) function pointer matchf() to the rn match() function, so
that matchf() is invoked on every matching leaf. If the the supplied function
pointer matchf() is NULL, then the default BSD search(ie. longest match-
ing prefix) is performed, otherwise search will include lookup for matching
prefixes.

Modifications to the round-robin search for default routers has been dis-
cussed earlier in sub-section 4.5.

Sun Microsystems, Incorporated.
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4.10 Routing table walk

The radix tree may be walked by invoking the function rn walktree() which
already accounts for the case when a node is deleted by the traversing func-
tion, while the tree is being walked. However, since there is a possibility of
lock recursion if the function invoked by rn walktree() attempts to lock the
radix tree, the radix node head read lock is released before invoking function
pointers from rn walktree().

5 Overview of existing IPv4 forwarding code path

In current Solaris, processing of forwarded packets proceeds as follows:

1. Search cache table to find a ire cache entry for the ipha dst

2. If no cache entry is found in step 1, look up the FIB to find the
appropriate route for ipha dst. Assume that this search produces a
route through some gateway G.

3. Try to find an ire cache entry for G. If none exists, send a request to the
external resolver. This request contains a chain of mblks containing:

--------------- --------------- -----------

| | | | | |

| dl_unitdata | --> | mblk w/ ire| --> | pkt |

| request | | "ire_mp" | | |

--------------- --------------- -----------

Where the ire ire mp contains a template for the ire cache entry for
G.

4. When the external resolver provides the information to complete
ire mp, the ire cache entry for G is added to the cache table.

5. The code now attempts to add an ire cache entry for the off-link dst,
ipha dst, itself. After completion of this step, the packet’s ip header
is processed (ttl adjustment, qos etc.) and the packet is sent out.

The above scheme has the following limitations:

a. The creation of per-dst cache entry for the off-link destination
for every forwarded packet in Step 5 results in additional looping
through IP outbound code path.

b. In the above scheme, ires of the next hop are inserted into the
cache table only after its link layer address is fully resolved.
There is no need to have this limitation. In fact in future when
IPsec implements policy hooks in the forwarding path, the re-
moval of this limitation could simplify IPsec’s implementation.

Sun Microsystems, Incorporated.
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In the rearchitected IPv4 forwarding path addresses the above limitations
thus:

1. By improving the lookup speed of the FIB, we have eliminated the
need to keep per-dst cache entry for the off-link destination for every
forwarded packet.

2. We insert ires of next hops without link layer information in the IRE
cache table (we call these ires in the cache table incomplete ires) and
proceed with the rest of packet processing. Eventually Surya’s new
packet transmit routine, ip xmit v4() attempts to send a packet to the
driver. If it now finds that there is no link layer information, it triggers
the ARP resolution process, and queues the packet in an internal queue
and then sends queued packets out once the ARP resolution is over.

6 IPv4 forwarding Path Changes

6.1 Addition of nce ts for IPv4 IRES

6.1.1 Motivation for using nce ts for IPv4 ires

To implement this new architecture, and in an attempt to unify the code
path with that chosen for IPv6 Neighbor-discovery, we will utilize the exist-
ing nce t data structure and the member ire->ire_nce for IPv4 ires.

Note that only specific members of the nce t data struct are relevant for
IPv4 ires:

a. ire->ire_nce->nce_state will track the link layer resolution
status. The IPv4 related status values are thus:

ND INITIAL indicates that the sending of DL UNITDATA
request for the link layer address resolution is pending.

ND INCOMPLETE indicates that a DL UNITDATA re-
quest has been sent to the resolver, and link layer address
resolution is pending.

ND REACHABLE indicates that the link layer resolution is
complete, and the layer 2 address is available.

NOTE : ires of type IRE PREFIX and IRE DEFAULT remain
in ND INITIAL state permanently.

b. the ire->ire_nce->nce_qd_mp will be used as the internal queue
to queue data packets for the ire while waiting for its ARP res-
olution to complete.

c. ire->ire_nce->nce_res_mp and ire->ire_nce->nce_fp_mp

will be used for DL UNITDATA request and responses, making
ire dlureq mp/fp mp unused fields. In a future release we plan
to remove ire dlureq mp/fp mp from the ire t data structure.

Sun Microsystems, Incorporated.
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Note that in Surya, the IPv4 nces will not be used as a link layer address
cache (ie: ace t will continue to be used for that).

6.2 Initialization of ire nce for IPv4 ire’s

The ire nce field in the ire t will track the information necessary for resolv-
ing the link layer corresponding to the outgoing interface that is tracked by
ire stq. When all the layer-2 information necessary to send a packet is avail-
able, the ire will be termed as complete, and the ire nce will be defined to be
reachable. As mentioned above, the state of the ire nce is determined from
the nce state field, and will be set to ND INITIAL, ND INCOMPLETE or
ND REACHABLE.

The ire nce is initialized by calling the function ire nce init() from
ire init common(). The contents of this field for each ire type are described
as follows:

• ire t entries with NULL values of the send queue, ire stq (e.g.,
IRE LOCAL, IRE LOOPBACK) have a NULL ire nce. The resolver
information in these cases is deterministic. ire t entries with null
ire nce fields are assumed to be ND REACHABLE by definition.

• Non-loopback IRE BROADCAST ire’s have the nce res mp set to
the pre-computed template generated in ip ll subnet defaults(). The
ire nce has nce addr/nce mask set to the IPv4-mapped-IPv6 addr cor-
responding to ire addr/ire mask. Since no DL UNITDATA request
needs to be sent to the resolver for these ire entries, their state is
initialized to ND REACHABLE in ire init common. Note that a fast-
path probe is sent out to the network drivers to obtain the fast-path
header for these ire’s.

• ire entries for subnet prefixes (IRE DEFAULT, IRE PREFIX) have
the ire nce initialized with the nce addr and nce mask set to the IPv4-
mapped-IPv6 addr corresponding to the ire addr and ire mask. The
nce res mp for these ire types is used to track a copy of the template
DL UNITDATA message. If a template for the resolver mp (mblk
to be used as DL UNITDATA message) is not passed in, ire nce init()
will set the nce res mp to a copy of the ill resolver mp for the outgoing
interface. If the interface is of type IRE IF RESOLVER, the nce t is
set to ND INITIAL when the nce t is created. If the interface is of type
IRE IF NORESOLVER, the nce state is set to be ND REACHABLE.

• IRE CACHE type ire entries have the ire nce initialized in ire nce init
as follows:

– The nce addr is set to the IPv4-mapped-IPv6 addr correspond-
ing to the ire gateway addr, for indirect routes and to the IPv4-
mapped-IPv6 addr corresponding to the ire addr for on-link des-
tinations.

Sun Microsystems, Incorporated.



6.3 Modifications to IPv6 Neighbor Discovery code 16

– The nce mask is set to ipv6 all ones.

– If the outgoing interface for the ire is of type IRE IF RESOLVER
(i.e. external resolver has to be called to resolve the layer
2 header), the nce t is set to ND INITIAL when the nce t
is created; if the outgoing interface for the ire is of type
IRE IF NORESOLVER (e.g., tunnel or point to point interfaces),
the nce t is set to ND REACHABLE when the nce t is created.
As with IRE DEFAULT/IRE PREFIX ire’s, the nce res mp is
set to the template res mp if one is passed in, or by making a
copy of the ill resolver mp for the outgoing interface when no
res mp is passed in.

After a DL UNITDATA request is dispatched to the external
resolver for IRE CACHE entries, the nce state transitions to
ND INCOMPLETE. When layer 2 resolution is completed, and
a DL UNITDATA response is received from the resolver, the
nce res mp is set to the mblk with the DL UNITDATA response,
and the nce state transitions to ND REACHABLE, at which
point the ire is defined as complete.

NOTE : The ire to nce mapping is many-one; e.g., if we have a subnet
route that is added by the command:

# route add 10.10.10.0/24 129.23.45.1

then the IRE CACHE entries for 10.10.10.1, 10.10.10.2 (created as a
result of local traffic sent to 10.10.10.1 or 10.10.10.2) and 129.23.45.1 will all
hold a pointer to an nce t with nce addr containing the IPv4-mapped-IPv6
addr for 129.23.45.1.

6.3 Modifications to IPv6 Neighbor Discovery code

Neighbor cache entries added by Surya from the IPv4 packet processing path
are managed in a hash table that is kept separate from the IPv6 hash table.
Thus ip ndp.c now defines two entries:

static nce_t *nce_hash_tbl_v6[];

static nce_t *nce_hash_tbl_v4[];

with IRE ADDR HASH() defined as the hash function used to access
buckets in nce hash tbl v4[]. As a result of the addition of separate hash
tables, nce lookup addr() has been modified so that the caller passes in the
nce t after computing the appropriate hash-bucket.

Neighbor cache entries for IPv4 are managed by the following functions
(which have v6 counterparts):
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• Neighbor cache entries for IPv4 are added by ndp add v4(). This
function takes inaddr t arguments for the address and mask. The
address is stored in the nce t as a IPv4-mapped-IPv6 address. If the
mask is IP HOST MASK, then the nce mask is set to ipv6 all ones;
otherwise it is set to the IPv4-mapped-IPv6 address corresponding to
the mask passed in.

• ndp lookup then add v4() which differs from the v6 counterpart by
allowing the caller to pass in precomputed values for nce res mp and
nce fp mp when adding nce t.

• The nce hash tbl v4[] nce t’s may be walked by invoking the func-
tion ndp walk impl v4(). Analogous to ndp g walker, a global flag,
v4ll g walker has been added to prevent ndp delete() from unlink-
ing and freeing nce’s while the list is being walked. Modifica-
tions to v4ll g walker are protected by v4ll g lock. In addition, a
boolean v4llg walker cleanup has been added as the IPv4 analog of
ndp g walker cleanup.

• nce queue mp has been broken up into a v6-specific function, and
nce queue mp common which is shared with ipv4.

The formulating of IPv4 ires with ire->ire_nce causes a IPv4 ire to hold
reference to the nce t that has been installed in a nce hash tbl v4[] entry.

When a link layer address resolution request is sent to the external re-
solver, the ARP query message chain represents an ire that may hold a
reference to an nce t structure, if the ire was added as an incomplete ire to
the cache table. If the link layer address resolution fails, this reference will
need to be released as part of failure recovery and cleanup. Refer to the
next Section’s discussion on the free routine, ire freemblk() to see how this
is achieved.

6.4 Rearchitected IPv4 forwarding code path

In the rearchitected IPv4 forwarding path, processing of forwarded packets
will proceed as follows:

1. Search cache table to find a ire cache entry for the ipha dst

2. If no cache entry is found in step 1, look up the FIB to find the
appropriate route for ipha dst. Assume that this search produces a
route through some gateway G.

3. Try to find an ire cache entry for G. If none exists, create an ire cache
entry for the gateway. Mark this ire entry as incomplete, indicating
that its link-layer address is yet to be resolved, and insert it into the
IRE cache table.
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4. Complete all of the packet processing that does not require the link-
layer address, and queue the packet into the incomplete ire’s internal
queue.

5. Send a request to the external resolver to have the ire’s link-layer
address resolved.

6. Once the external resolver provides the link-layer address, the ire is
marked as complete and all packets that were queued in its internal
queue are sent out.

The code flow of the rearchitected IPv4 forwarding path is de-
picted in Appendix A. The diagram illustrates both the fast and slow
(FWD FASTPATH and FWD SLOWPATH) paths of the forwarding code
path. Please refer to junction points in the diagram to follow the discussion
in this section.

The key points of the new IPv4 forwarding code path are the following:

• Unlike current Solaris, cache entries for off-link destinations are no
longer inserted into the IRE cache table via the IPv4 forwarding path.
Instead, only cache entries of next hops are inserted.

• Unlike the host path, the IPv4 forwarding path will insert incomplete
ires into the cache table (refer to JUNCTION A). In fact, the ARP
resolution process is delayed until the very end at JUNCTION C in
the following code path:

ip_xmit_v4()->ire_arpresolve()

• Note that the ARP message chain (refer to JUNCTION D):

ARP_REQ_MBLK-->IRE_MBLK

formulated in ire arpresolve() of the IPv4 forwarding code path, does
not include the data packet (unlike in the case of ip newroute(),
ip newroute ipif() of the host path). Instead, for the forwarding path,
the data packet is already queued in ire->ire_nce->nce_qd_mp in
nce queue mp common() before the sending of the ARP query.

Since the incomplete ire has already been added to the cache table, a
dummy (fake) ire is sent to ARP as part of the ARP message chain.
The fake ire contains the minimum information required to retrieve
the corresponding incomplete ire from the IRE cache table by doing an
ire ctable lookup(); this is needed to either fill in the link layer address
info into the ire->ire_nce->nce_res_mp in case of a successful layer
2 address resolution or for cleanup purposes in case of a failed Layer
2 resolution.
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The second mblk of the ARP query message chain (this applies to host
path as in the case of ip newroute(), as well as forwarding path, as in
the case of ire arpresolve()), containing the ire information (ie the one
labeled as IRE MBLK in picture above) is allocated via esballoc(),
with the free() routine set to ire freemblk().

In the case of a failed link layer address resolution, ire freemblk() can
be invoked by ARP (in case of a timeout) or IP. On such an event,
ire freemblk() performs the following cleanup tasks:

a. Retrieval of the incomplete ire in the cache table that cor-
responds to the fake ire in the original message.

b. Sending of icmp unreachables for any queued data packets
on the ire’s internal queue.

c. Release of resources held by the ire (including the reference
on the nce t, if the ire was added to the cache table).

d. Cleaning up the incomplete ire (and its ire nce) entry in the
IRE cache table.

In the case of a successful link layer resolution, ire freemblk() can be
called by IP in code flow:

<ARP>->ip_wput()->ip_output()->ip_wput_nondata()

which will free the mblk after processing the ARP response.

• The new function, ip xmit v4() is in charge of triggering the ARP
querying and queuing of the data packets in ire’s internal queue until
the ire’s link layer address resolution is complete. Once ARP resolu-
tion is complete, ip xmit v4() is revisited for the second time via code
path(refer to JUNCTION E):

<ARP>->ip_wput()->ip_output()->ip_wput_nondata()->

ip_xmit_v4()

This time, since the ire’s nce state has changed to ND REACHABLE,
ip xmit v4 () processes each queued packet by attaching the link layer
header and sending it out on the wire. Note that ip xmit v4() does not
handle fragmentation, and that task is still handled by ip wput frag().

• In Surya, we have introduced a new mblk t.dblk t.db type called
IRE ARPRESOLVE TYPE, that is distinct from IRE DB TYPE.
IRE ARPRESOLVE TYPE is used by ire arpresolve() to send ARP
query message in the forwarding path for incomplete ires that have
already been inserted in the cache table. IRE DB TYPE continues to
be used by ip newroute and ip newroute ipif in the host path that do
not add incomplete ires in the cache table. Thus the handling of the
ARP response for each case in ip wput nondata() is different:
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– In the case of IRE DB TYPE, ip wput nondata() calls
ire add then send() to insert the completely resolved ire into the
cache table and then send the packet that was attached to the
ARP request message chain. Surya will preserve this implemen-
tation in the host path as is in current Solaris.

– In the case of IRE ARPRESOLVE TYPE, the ire is al-
ready present in the cache table. So ip wput nondata() calls
ip xmit v4() which simply processes each queued packet of the
ire’s ire_nce->nce_qd_mp by attaching a link layer header and
sending it out on the wire.

6.5 Handling of incomplete ires in the host path

6.5.1 Motivation for insertion of incomplete ires in cache table

As discussed in Section 5, in the existing Solaris model only complete ires
are inserted into the cache table in both host and forwarding path. This
limitation adds unnecessary complexity to IPsec and other packet processing
in the host path. Let us take the case of IPsec.

One of the problems of IPsec policy enforcement is that it has to survive
asynchrony and recover state used to protect the packet on the outbound
side. One source of asynchrony is the limitation in outbound host path
where ip newroute only inserts complete ires in the cache table. IPsec policy
decisions on outbound packets are made after determining the IRE cache
entry, because only then are the source and destination addresses known.
Since the cache entry insertion requires link layer resolution, IPsec processing
is unnecessarily delayed even though it does not require any link layer info.
Thus insertion of incomplete ire cache entries (that has the source address
fixed) by ip newroute() will allow IPsec processing to occur in parallel with
ARP resolution completion.

The long-term goal is to implement incomplete ires in IPv4 and IPv6
host and forwarding paths in IP. Ideally it would be good to implement this
full-blown incomplete ire scheme within a single project. However due to
code complexity (ie CGTP, IPsec) in host path, this work has to be done in
phases. Surya has implemented incomplete ires in the IPv4 forwarding path
in a way such that the infrastructure can be extended into the host path in
a future project.

6.5.2 Changes to the IP outbound legacy path to handle incom-
plete ires

Surya has changed the following key functions in IP outbound path:

1. ip wput ire()

2. ip rput forward()
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3. ip mrtun forward()

so that at the end of packet processing, instead of calling
ip wput attach llhdr(), they each call ip xmit v4() and supply the ire and
the data packet to it to have the packet sent out on the wire. The function
ip xmit v4() is designed to handle link layer address resolution, queueing of
the packets while address resolution is pending and eventual sending out of
the packet.

In the case of ip wput ipsec out(), it will drop a packet if the corre-
sponding ire is incomplete. If, on the other hand, the ire is complete,
ip wput ipsec out() will hand over the packet and the ire to ip xmit v4()
to handle IPsec hardware acceleration. It’s too complex to get the IPsec
hardware acceleration approach to fit well with ip xmit v4() doing ARP
without doing IPsec simplification, which is a separate project in itself.

Similarly ip wput frag() has been modified, so that early in the function
(before fragmentation effort begins), the code checks to see if the supplied
ire is incomplete. If it is, and the ire’s nce state indicates ND INITIAL
(e.g. ARP request has not been sent out), it calls ip xmit v4() to trigger the
sending of ARP request for that ire, and drops the packet (and all subsequent
packets for that ire, until its link layer address is resolved). Post-ARP
resolution, after ire’s nce state changes to ND REACHABLE, all subsquent
large packets for this ire will be fragmented and sent out by ip wput frag().

Note that in the case of ip wput ipsec out() and ip wput frag() there is
a slight risk here, in that, if we have the forwarding path create an incom-
plete ire, then until the ire is completed, any transmitted IPsec packets, or
fragmentable packets will be dropped instead of being queued, waiting for
resolution. But the likelihood of a forwarding packet and a wput packet
sending to the same destination at the same time and there is not yet be an
ARP entry for it is small. Furthermore, if this actually happens, it would
be likely that wput would generate multiple packets (and forwarding would
also have a train of packets) for that destination. If this is the case, some of
them would have been dropped in existing Solaris as well, since ARP only
queues a few packets while waiting for resolution

6.5.3 Impact of incomplete ires for callers of ire lookup functions

Note that the only thing missing in an incomplete ire is the link layer ad-
dress information in the dl unitdata and fast-path headers; everything else
is already initialized at the time of their insertion into the IRE cache table.
So with the exception of a few, most consumers of the functions:

ire_ctable_lookup(), ire_cache_lookup(), ire_route_lookup()

will be unaffected if the lookup function returns an incomplete ire. We
will now discuss the few consumers that are affected, and how they are dealt
with:
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tcp send data() this function already checks ire’s fastpath header for non-
null value before sending a packet on the wire.

tcp multisend() Surya has modified this function to check for incomplete
ire and if so, send the packet on the IP outbound legacy path.

udp send data() Surya has modified this function to check for incomplete
ire and if so, send the packet on the IP outbound legacy path.

ip wput frag mdt() In the case of an incomplete ire, Surya’s modifica-
tions to ip wput frag() will disallow calling of this function and the
packet will dropped early in in the caller of this function.

ip sioctl iocack() Surya has modified this function so that if the call to
ire ctable lookup() returns an incomplete ire, it’s treated as if the
lookup had returned a NULL ire.

fr fastroute() This IP Filter function already checks the ire to see if it has
a complete link layer address before attempting to send a packet out
into the wire.

pfil sendbuf() This IP Filter function already checks the ire to see if it
has a complete link layer address before attempting to send a packet
out into the wire.

Future consumers of the above ire* lookup functions who retrieve the ire
to either refer to or use the link layer address from the ire’s data structure,
must make the following check:

if (ire != NULL && ire->ire_nce &&

ire->ire_nce_nce_state == ND_REACHABLE)

before proceeding. If the caller of the ire has completed all packet pro-
cessing and the only task left to do is the attachment of a link layer header
and the sending of the packet to the wire, then they do not need to check
for the completeness status of the ire. Instead they can simply hand over
the packet and the ire to ip xmit v4().

6.6 Optimizing the ICMP redirect work in FIB

In current Solaris, the entire FIB is traversed whenever the ICMP redirect
timer (default value is 60 secs) goes off, even if there are no ires of type
IRE REDIRECT in the table. In a system, containing several hundred
thousand entries in the FIB, these frequent, often unnecessary traversals
cause dips in forwarding throughput.

Ideally a system set up as a pure router should ignore ICMP redirects.
RFC 1812 (see reference 1), section 5.2.7.2 states:

”A router using a routing protocol (other than static routes) MUST NOT
consider paths learned from ICMP Redirects when forwarding a packet. If
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a router is not using a routing protocol, a router MAY have a configura-
tion that, if set, allows the router to consider routes learned through ICMP
Redirects when forwarding packets.”

However, we expect our machine to be predominantly used as router
and a host. To solve the problem of frequent unnecessary traversals of the
forwarding table, we have added a global counter called ip redirect cnt, that
keeps count of the IRE REDIRECTS in the IPv4 FIB at all times. Whenever
the redirect timer goes off, one can check for the value of this counter. A
value of 0 will indicate that the traversal of FIB should be skipped, while a
non-zero value will cause the traversal of the entire FIB.

7 New IP Filter API

The following API functions will allow simpification of IP Filter code. Specif-
ically, it will allow removal of the following existing functions:

ip_nexthop(), and ip_nexthop_route()

as part of the upcoming pfhooks-api project. The specification of the
API functions are as follows:

ifindex lookup - Given a destination address, the API would supply the
outgoing interface to use for sending a packet to this destination.The
supplied dst addr could be on-link host or off-link host.

/*

* Return values: ifindex or 0 (means failed)

*/

ifindex_lookup(const struct sockaddr *ipaddr, zoneid_t zoneid);

Sun Microsystems, Incorporated.



24

ipfil sendpkt - The supplied ifindex may or may not be 0. IP will not
manipulate ttl,checksumming, ipsec work for the data packet. IP Filter
will handle fragmentation before calling this function. The supplied
dst addr could be on-link or off-link host.

/*

*

* Return values:

* 0 IP was able to send of the data pkt

* ECOMM Could not send packet

* ENONET No route to dst.

* EINPROGRESS Transmission is being attempted though not guaranteed.

*

*/

ipfil_sendpkt(const struct sockaddr *dst_addr, mblk_t *mp, uint_t ifindex,

zoneid_t zoneid);

8 Future projects/RFEs

The following is a list of future projects or requests for enhancement (RFE)
ideas:

• Implement full-blown ECMP.

• Improve the default route selection scheme to something better than
current round-robin scheme.

• Extend insertion of incomplete ires in the host path.

• Merge ARP into IP.

• Polling implementation (Crossbow is slated to do this).

• Improvement of IPv6 forwarding scalability.
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A High-level Code flow of IPv4 forwarding path

ip_input

|

-------------------------------------------------

|in a chain of incoming packets, is the previous|

|packet’s dst the same as the current one? |

-------------------------------------------------

| | YES

| NO | cache the ire

| | obtained from last

| | packet ("prev_ire")

----------------

|

-------------------------------------

| CGTP, QOS, Mobile IP disabled |

| and the packet is not multicast |

| and not a IPPROTO_RSVP protocol |

| packet? |

-------------------------------------

| \

| \

| \

| \

| TRUE \ FALSE

----------------- \

N- | prev_ire NULL ?| |

| ----------------- |

attach link-layer header| | Y |

and send pkt on wire | ire = ire_cache_lookup(dst) | {FWD_SLOWPATH}

^ | | |

^ ‘------>| |

| |{ire of nexthop is NULL |

|{ire of nexthop complete |or of IRE_CACHE type} .

| send it on the wire} | /

| |{FWD_FASTPATH} /

| | V

ire=ip_fast_forward()<----------- ire = ip_rput_noire()

| | /

| |{ire of nexthop /

| |is NULL} V

| ‘------------------>{FWD_SLOWPATH}

| ‘>ire = ire_forward()

| | >ire_ftable_lookup() will return (ire, sire)

| | ire_t returned can be
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| {FWD_FASTPATH | 1.IRE_CACHE of nxthop gateway

| Exception | 2.IRE_IF_RESOLVER of nxthop gateway

| case: continue @ | 3.IRE_IF_NORESOLVER of nxthop gateway

V [[JUNCTION F]] | >ire_create()

ip_rput_process_forward()| > ire_init()

| > ire_init_common()

| > ire_nce_init() [[JUNCTION B]]

| > ndp_lookup_then_add()

| {creates nce_t for IPv4 ires

| with nce_state as "ND_REACHABLE"

| for IRE_IF_NORESOLVER/IRE_BROADCAST

| and "ND_INITIAL" for

| IRE_IF_RESOLVER/ND_IRE_CACHEs

| NOTE: IRE_LOOPBACK has no ire_nce}

| > ire_add(new_ire,NULL,NULL,NULL)

| [[JUNCTION A]]

| {add incomplete ires in ctable}

| > return newly created ire to

| ip_rput_noire() which returns to ip_input()

|

|

‘> ip_rput_process_forward() [[JUNCTION F]]

> ip_rput_forward()

> ip_xmit_v4()

[[JUNCTION C]]

check ire->ire_nce->nce_state value

ire->ire_nce->nce_state can be one

of the following:

a) ND_INITIAL

b) ND_INCOMPLETE

c) ND_REACHABLE

For each case, continue as shown below:

ND_INCOMPLETE ND_INITIAL ND_REACHABLE **

| | |

| | |

| | V

| | V

‘> nce_queue_mp_common | dequeue each mp and:

| | a)ip_wput_attach_llhdr()

‘> return status to | b) if no IPsec hw accel:

caller | putnext() - send it

| on the wire

| if IPsec hw accel

| ipsec_hw_putnext()
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‘> nce_queue_mp_common()

|

‘> ire_arpresolve() [[JUNCTION D]]

| create arp chain and send to ARP

| (do *not* send the packet itself)

| AR_ENTRY_QUERY -> "fake" ire_t w/db_type

| IRE_ARPRESOLVE_TYPE

| $

‘> change nce_state to ND_INCOMPLETE $

$

$

$

(STREAMS msg from IP to ARP) $

$$$$$$$$$$$$$$$$$$$$$

ARP MODULE

send back reply from ar_query_reply();

inserts xmit template after "fake" ire.

(STREAMS msg from ARP to IP) $

$$$$$$$$$$$$$$$$$$$$$

answer is parsed at ip_wput()

[[JUNCTION E]]

ip_wput()->ip_output()->ip_wput_nondata()

|case (IRE_ARPRESOLVE_TYPE) :

‘> ire = ire_ctable_lookup()

|

‘> nce= ire->ire_nce

|

‘> a) fill ire->ire->nce_res_mp

| with the ARP response

‘> b) nce->nce_state= ND_REACHABLE

|

‘> c) ire_fastpath()

|

‘> d) ip_xmit_v4() **

refer to ND_REACHABLE case in

ip_xmit_v4() above
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B Comparative analysis of FIB schemes

Test setup:

A Sun Fire V40Z quad 2.4GHz cpu AMD Opteron System was

connected to the Tera Routing Tester from Spirent using

the test setup shown below.

----------------- data forwarded ----------------------

| | --------> | Smartbits SMB-6000 |

| Sun Fire V40Z | | Tera Routing Tester |

| | <-------- | (version 4.5) |

----------------- data traffic -----------------------

TRT 4.5 was used to generate routing tables of different

sizes, which was uploaded into the V40Z using BGP. The TRT

4.5 interface was then used to generate packets at

different rates to execute a throughput test as described

in Section 3.17 of RFC 1242 .

Listed below is the comparative analysis of the current

Solaris release and the prototypes of the two alternate

schemes.

***************************

EXISTING SOLARIS SCHEME

***************************

TEST 1: Throughput and Memory usage

--------------------------------------------------------

Number of route distribution Thruput Memory

Routes (% of 1Gb/s) (MB)

--------------------------------------------------------

1000 Internet 30.53 0.40

10000 Internet 8.75 3.75

100000 Internet <1.25 37.26

150000 Internet - 55.88

TEST 2: Forwarding throughput with route flap is not applicable since
the throughput without route flap is so poor.
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************************************

EXISTING SOLARIS SCHEME (contd.)

*************************************

TEST 3: Route add/delete times on Surya5:

Routes Route add Route flush

-------------------------------------------------------

smb100000 real 5m11.06s real 1m5.20s

user 0m6.17s user 0m1.79s

sys 0m16.65s sys 0m4.31s

smb150000 real 9m5.76s real 5m35.17s

user 0m9.15s user 0m5.05s

sys 0m24.56s sys 0m27.61s
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**********************************************

ADDRESS DIRECTED FORWARDING TABLE SCHEME

**********************************************

TEST 1: Throughput and Memory usage

--------------------------------------------------------

Number of route distribution Thruput Memory

Routes (% of 1Gb/s) (MB)

--------------------------------------------------------

1000 Internet 40.93 .48

10000 Internet 40.93 4.26

100000 Internet 40.93 42.06

100000 Exponential 40.93 40.17

112758 Even 40.93 56.39

303217 Custom 40.93 142.60

----------------------------------------------------

• Space consumption depends on the route distribution, since the scheme
works by partitioning the search space and not the set of keys (routes).

• In this implementation the worst case Trie memory needed is 944
bytes/route

TEST 2: Forwarding Throughput with Route Flap:
Test duration: 150 secs Flap schedule:

Time Interval 30 sec

Step 1: BGP Break TCP Session: ce: Session 2

Time Interval 30 sec

Step 2: BGP Restore TCP Session ce: Session 2

Time Interval 30 sec

Final Step: Unflap All

Continuous flapping was disabled.

Note: All traffic was sent to session 1 (using Traffic

Wizard GUI) as Smartbits will send traffic to session

2 even after the session is broken, and count the

(correctly) lost packets toward throughput measurement.

# of routes Throughput

-------------------------

150000 40.93%

181892 40.93%

Max packet loss: 0.5
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****************************************************

ADDRESS DIRECTED FORWARDING TABLE SCHEME (contd)

****************************************************

TEST 3: Route add/delete times on Surya5:

Routes Route add Route flush

-------------------------------------------------------

smb100000 real 3:29.40 real 6.9

user 6.3 user 0.2

sys 16.8 sys 2.4

smb150000 real 5:13.2 real 4.0

user 9.4 user 0.3

sys 24.1 sys 3.6

************************

RADIX TREE SCHEME

************************

TEST 1: Throughput and Memory usage

---------------------------------------------------------

Number of route distribution Thruput Memory

Routes (% of 1Gb/s) (MB)

---------------------------------------------------------

1000 Internet 40.93 0.53

10000 Internet 40.93 5.29

100000 Internet 38.96 52.95

100000 Exponential 39.53 52.98

112764 Even 38.66 35.50

303217 Custom 41.38 160.67

------------------------------------------------------------
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*****************************

RADIX TREE SCHEME (contd)

*****************************

TEST 2: Forwarding Throughput with Route Flap:

Test duration: 150 secs

Flap schedule:

Time Interval 30 sec

Step 1: BGP Break TCP Session: ce: Session 2

Time Interval 30 sec

Step 2: BGP Restore TCP Session ce: Session 2

Time Interval 30 sec

Final Step: Unflap All

Continuous flapping was disabled.

Note: All traffic was sent to session 1 (using Traffic

Wizard GUI) as Smartbits will send traffic to session

2 even after the session is broken, and count the

(correctly) lost packets toward throughput measurement.

# of routes Throughput

-------------------------

150000 39.41%

181892 37.01%

Max packet loss: 0.5%

TEST 3: Route add/delete times on Surya5:

Route add/delete times on Surya5:

Routes Route add Route flush

-------------------------------------------------------

smb100000 real 3m27.06s real 1m8.50s

user 0m7.92s user 0m1.97s

sys 0m14.72s sys 0m5.26s

smb150000 real 5m2.37s real 5m29.06s

user 0m11.95s user 0m4.96s

sys 0m21.12s sys 0m23.86s
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