
RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 1 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

WINDOWS CE 5.0 ON AN
X86 PLATFORM

© Copyright Dedicated Systems Experts. All rights reserved, no part of the
contents of this document may be reproduced or transmitted in any form or by

any means without the written permission of Dedicated Systems Experts.

Disclaimer

Although all care has been taken to obtain correct information and accurate test
results, Dedicated Systems Experts and Dedicated Systems Magazine cannot be
liable for any incidental or consequential damages (including damages for loss of
business, profits or the like) arising out of the use of the information provided in
this report, even if Dedicated Systems Experts and Dedicated Systems Magazine

have been advised of the possibility of such damages.

http://www.dedicated-systems.com

E-mail: info@dedicated-systems.com

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 2 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

EVALUATION REPORT LICENSE

This is a legal agreement between XXX and the company DEDICATED SYSTEMS EXPERTS.

1. GRANT. Subject to the provisions contained herein, DEDICATED SYSTEMS EXPERTS hereby grants XXX a

non-exclusive license to use its accompanying proprietary evaluation report for projects where XXX is involved
as major contractor or subcontractor. XXX is not entitled to support or telephone assistance in connection with
this license.

2. PRODUCT. DEDICATED SYSTEMS EXPERTS shall furnish the evaluation report to XXX electronically via
Internet. This license does not grant XXX any right to any enhancement or update to the document.

3. TITLE. Title, ownership rights, and intellectual property rights in and to the document shall remain in
DEDICATED SYSTEMS EXPERTS and/or its suppliers or evaluated product manufacturers. The copyright laws
of Belgium and all international copyright treaties protect the documents.

4. CONTENT. Title, ownership rights, and an intellectual property right in and to the content accessed through the
document is the property of the applicable content owner and may be protected by applicable copyright or other
law. This License gives XXX no rights to such content.

5. XXX CAN NOT:
– XXX can not, make (or allow anyone else make) copies, whether digital, printed, photographic or others,

except for backup purposes. The number of copies should be limited to 2. The copies should be exact
replicates of the original (in paper or electronic format) with all copyright notices and logos.

– XXX can not, place (or allow anyone else place) the evaluation report on an electronic board or other form of
on line service without authorization.

6. INDEMNIFICATION. XXX agrees to indemnify and hold harmless DEDICATED SYSTEMS EXPERTS against
any damages or liability of any kind arising from any use of this product other than the permitted uses specified
in this agreement.

7. DISCLAIMER OF WARRANTY. All documents published by DEDICATED SYSTEMS EXPERTS on the World
Wide Web Server or by any other means are provided "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. This disclaimer
of warranty constitutes an essential part of the agreement.

8. LIMITATION OF LIABILITY. Neither DEDICATED SYSTEMS EXPERTS nor any of its directors, employees,
partners or agents shall, under any circumstances, be liable to any person for any special, incidental, indirect or
consequential damages, including, without limitation, damages resulting from use of OR RELIANCE ON the
INFORMATION presented, loss of profits or revenues or costs of replacement goods, even if informed in
advance of the possibility of such damages.

9. ACCURACY OF INFORMATION. Every effort has been made to ensure the accuracy of the information
presented herein. However DEDICATED SYSTEMS EXPERTS assumes no responsibility for the accuracy of
the information. Product information is subject to change without notice. Changes, if any, will be incorporated in
new editions of these publications. DEDICATED SYSTEMS EXPERTS may make improvements and/or
changes in the products and/or the programs described in these publications at any time without notice. Mention
of non-DEDICATED SYSTEMS EXPERTS products or services is for information purposes only and constitutes
neither an endorsement nor a recommendation.

10. JURISDICTION. In case of any problems, the court of BRUSSELS-BELGIUM will have exclusive jurisdiction.

Agreed by downloading the document via the internet.

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 3 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

1 Introduction .. 6
1.1 Purpose and scope .. 6
1.2 Document issue: the 2.9 framework .. 6
1.3 Related documents .. 6

2 Results summary ... 8
2.1 Product under test.. 8
2.2 Test result... 8

2.2.1 Positive points .. 8
2.2.2 Negative points... 8
2.2.3 Ratings ... 8

3 Introduction .. 9
3.1 Product under test.. 9

3.1.1 Software ... 9
3.1.2 Hardware .. 9

3.2 Introduction .. 9
4 Installation and BSP .. 10

4.1 Installation .. 10
4.1.1 Installation on Host ... 10
4.1.2 Installation on target ... 11

4.2 BSP .. 11
5 Test Results ... 12

5.1 Calibration system test (CAL) .. 13
5.1.1 Tracing overhead (CAL-P-TRC)... 13
5.1.2 CPU power (CAL-P-CPU) .. 14

5.2 Clock tests (CLK) ... 15
5.2.1 Operating system clock setting (CLK-B-CFG) ... 15
5.2.2 Clock tick processing duration (CLK-P-DUR) .. 15

5.3 Thread tests (THR) .. 19
5.3.1 Thread creation behaviour (THR-B-NEW) ... 19
5.3.2 Round robin behaviour (THR-B-RR) .. 20
5.3.3 Thread switch latency between same priority threads (THR-P-SLS)..................................... 21
5.3.4 Thread creation and deletion time (THR-P-NEW).. 28

5.4 Semaphore tests (SEM)... 38
5.4.1 Semaphore locking test mechanism (SEM-B-LCK) ... 38
5.4.2 Semaphore releasing mechanism (SEM-B-REL)... 39
5.4.3 Time needed to create and delete a semaphore (SEM-P-NEW)... 39
5.4.4 Test acquire-release timings: contention case (SEM-P-ARN) ... 45
5.4.5 Test acquire-release timings: contention case (SEM-P-ARC) ... 49

5.5 Mutex tests (MUT).. 54
5.5.1 Priority inversion avoidance mechanism (MUT-B-ARC) .. 54
5.5.2 Mutex acquire-release timings: contention case (MUT-P-ARC) .. 55

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 4 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5.6 Memory tests.. 63
5.6.1 Memory leak test (MEM_B_LEK) ... 73

6 Support .. 74

7 Appendix A: Vendor comments ... 74

8 Appendix B: Acronyms .. 76

9 Appendix C: Document revision history... 77
9.1 Issue 1.0 (July 12, 2004).. 77

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 5 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

DOCUMENT CHANGE LOG

Issue
No.

Revised
Issue Date

Para's / Pages
Affected

Reason
for Change

1.00 October 7, 2004 All Initial Issue

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 6 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

1 Introduction

1.1 Purpose and scope
This paper presents the test results of the operating system and hardware platform under evaluation.

The layout and the content of this report follow the one depicted in “The evaluation report definition.”
[Doc. 3] and “The evaluation report template.” [Doc. 4]. See section 1.3 of this document for more detailed
references. Therefore these documents have to be seen as an integral part of this report.

The results of these tests can not be interpreted by the reader without knowledge of the test methodology
used. Therefore the evaluation report definition is attached as appendix to this report. It contains the
detailed description of each test performed (using the same test name). The generic code of each test is
also downloadable on Dedicated Systems website (http://www.dedicated-systems.com).

Due to the tight coupling between these documents, the framework version of “The evaluation report
definition.” must match the framework version of this evaluation report (which is 2.9). More information
about the document versioning, tests and the relations between both can be found in “The RTOS
evaluation framework.”, see [Doc. 1] in section 1.3 of this document.

The software (RTOS) and the hardware platform tested in this report are shown in section 3.1 of this
document.

1.2 Document issue: the 2.9 framework
This document shows the test results in the scope of the evaluation framework 2.9.

1.3 Related documents
These are documents that are closely related to this document. They can all be downloaded using
following link:
http://www.dedicated-systems.com/encyc/buyersguide/rtos/evaluations

Doc. 1 The RTOS evaluation framework.
This document presents the evaluation framework. It also indicates which
documents are available, the document naming convention, and how the numbering
and versioning of the documents are related. This document is the base document
of the evaluation framework.
EVA-2.9-GEN-01 Issue: 1 Date:

Doc. 2 What is a good RTOS?
This document presents the criteria that Dedicated Systems Experts use to give an
operating system the label “Real-Time”. The evaluation tests are based upon the
criteria defined in this document.
EVA-2.9-GEN-02 Issue: 1 Date:

Doc. 3 The evaluation report definition.
This document presents the different tests used for this report together with the

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 7 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

flowcharts and the generic pseudo code for each test. Test labels are all defined in
this document.
EVA-2.9-GEN-03 Issue: 1 Date:

Doc. 4 The evaluation report template.
This document presents the layout used for all reports within a framework.
EVA-2.9-GEN- Issue: TBD Date: TBD

Doc. 5 The OS evaluation report.
This document presents the quantitative evaluation of the OS being used for the
tests where the results are presented here. This document is independent of the
platform being used.
EVA-2.9-OS-TBD Issue: TBD Date: TBD

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 8 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

2 Results summary

2.1 Product under test
Windows CE version 5.0 from Microsoft Corporation on an x86 platform

2.2 Test result
“RT-VALIDATED”, CE 5.0 passed all tests without problems.

2.2.1 Positive points

– Modular operating system, with a large amount of optional features.

– All protection primitives use priority inheritance.

– Stable real-time results, worst case improved compared with CE 4.0.

– Interfaces easily with other Microsoft Operating systems.

2.2.2 Negative points

– Some limiting factors: like the number of processes and amount of virtual memory.

– Platform builder isn’t always reliable.

– Documentation could be improved further, although it is already better than previous version.

2.2.3 Ratings

For a description of the ratings, see [Doc. 3]. The first four ratings are the ones given in the theoretical
evaluation (independent of the platform used for the tests) which can be found in [Doc. 5].

 8 RTOS Architecture 0 10

 6 OS Documentation 0 10

 7 OS Configuration 0 10

 9 Internet Components 0 10

 8 Development Tools 0 10

 7 Installation and BSP 0 10

 7 Test results 0 10

 8 Support 0 10

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 9 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

3 Introduction

3.1 Product under test

3.1.1 Software

Windows CE 5.0 operating system from Microsoft.

For more information on the Windows CE 5.0 OS from Microsoft, see
http://msdn.microsoft.com/embedded/default.aspx or
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/wceintro5/html/wce50oriWelcomeToWindowsCE.asp

The Operating System in this report has been configured as an Enterprise Terminal configuration
(Release 15 Mb) and for comparison sake we tested the Tiny Kernel configuration (582Kb) as well.

The qualitative evaluation of this product is done in [Doc. 5].

3.1.2 Hardware

All the tests were executed using the following hardware:

– Motherboard: Chaintech 5TTMT M201 with a 33MHz PCI bus

– BIOS: Award BIOS v4.51PG

– CPU: Intel Pentium 200Mhz MMX Family 5 Model 4 Stepping 3 (with 32KB L1 Cache)

– RAM: 32 Mb

– Hard drive: Western Digital Caviar 22000 , Capacity 20Gb

– Graphic adapter: S3 trio6 TV2/DX

– Network interface card: The Realtek RTL8139C(L)

– VMETRO PCI exerciser in PCI slot 3 (PCI interrupt level D, local bus interrupt level 10)

– VMETRO PBT-315 PCI analyser in PCI slot 4.

– External and CPU internal cache was enabled during the tests, unless otherwise specified.

The qualitative evaluation of this platform is done in [Doc. 5].

3.2 Introduction
Microsoft has long been active in the operating systems market as a General Purpose Operating system
vendor used for desktop and server systems. It is only recently that it came to the embedded market
place as the mobile and embedded systems markets emerged. Indeed the first version of Windows CE
was introduced in the fall of 1996.

It was with the introduction of Windows CE version 3.0, however, that the operating system was
enhanced to address the needs of real-time applications.

This report is focused on version 5.0 of the operating system.

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 10 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

4 Installation and BSP

 7 Installation and BSP 0 10

Installation of the product toolchain went easy. The platform builder is easy to use for configuring a
platform. Although it is not failsafe: when you want to customize your platform a lot it can break apart your
configuration.

CE supports a large number of boards and drivers. Drivers are delivered in source code.

4.1 Installation

4.1.1 Installation on Host

The first step to use Windows CE 5.0 is installing the platform builder software. Platform builder 5.0 is the
set of tools that is used to create a custom Windows CE 5.0 platform. The platform builder comes on a
CD and supports ARM, MIPS, SH or Intel x86 based platforms. For this evaluation, only the Intel x86
component was installed and the configurations used are:

• Enterprise Terminal release configuration : approximately 15 Mb

• Tiny Kernel configuration : 582 Kb

• Enterprise Terminal Debug Configuration : approximately 30 Mb

Installing platform builder is similar to installing any other Microsoft software application, and is pretty
straightforward and user-friendly.

The next step is to use the platform builder to create, customize and configure a platform. Configuring the
platform to your requirements can be complicated in review to the expectations.

The platform builder integrated development environment (IDE) includes wizards for creating platforms
and components. Together with the increased help system, this is a major improvement. Now it is
possible to create a system for your device in a minimum of time. But there are still complications if you
want to customize a configuration: dependencies can fail or files can get corrupted so that the build
process needs to be restarted or even platform builder needs to be re-installed.

We had the impression that Platform Builder 5.0 has made a good progress in friendliness compared to
previous versions in terms of ease of normal configurations, however once you leave the predefined
configurations things still become difficult. Like for most RTOS, the graphical platform builder is build on-
top of a large number of configuration files and scripts. If something doesn’t work out like expected it can
become hard to get back to a workable platform.

There is dependency checking build-in in the platform builder, but it isn’t always correct. Also it doesn’t
add the needed other modules in the build when needed.

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 11 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

4.1.2 Installation on target

☺ Installation on the target goes quick and easy. Platform builder 5.0 has a boot loader which works
with Ethernet, serial port or an emulator. We used Ethernet for the evaluation. If you want to run an
application on the OS you need to make a specific SDK to support your code.

4.2 BSP
☺ It is possible to configure BSPs for the hardware platform, this is easily implemented under the form
of a wizard. You can create a new BSP, modify existing ones and even create global drivers.

Windows CE is a componentized operating system (OS) where features and drivers are selectable from a
graphical IDE catalog. After the user configures the OS feature set and collection of device drivers from
the catalog, a build dependency checker ensures that the image’s feature set is self-consistent with all
dependencies being met. Microsoft and other 3rd Party BSP vendors install their BSPs into the IDE
catalog and thus make them available to customers with similar (or the same) hardware.

In addition to the device drivers, BSP developers will need to create an OEM Adaptation Layer (OAL) to
abstract the kernel from the hardware implementation. The OAL is responsible for CPU and system
board initialization and is used routinely during system usage. The OAL handles things like cache
operations, system timers, device interrupt handling, etc.

Although the concept is good, it is not an easy task. You have to understand very well the hardware
software border and how the kernel interacts with it. Remark that this statement is in general true for all
embedded systems.

Once you try to build more complex configurations, the task becomes complicated with pit-falls. For
instance a dependency checking is not always working correctly, and some changes can make the
configuration uncompilable.

It is important to note that the drivers are delivered in source code. This is something that would not be
done some years ago. This is a result of the Open Source market pressure on traditional operating
system vendors.

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 12 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5 Test Results

 7 Test Results 0 10

No problems were detected, the worst case behavior improved a bit compared with CE 4.0, average
performance is about the same.

For the evaluation we did the tests on various configurations, so that comparisons can be made. The
different configurations used were:

– Enterprise Terminal (Release build)

– Enterprise Terminal (Debug build, with kernel debugger)

– Tiny Kernel (Release build)

We noticed great differences between Debug and Release configurations, but this is normal due to the
extra features like stack checking and so on. The debug configuration also included the kernel debugger
that allows you to halt OS execution (break) and step through the kernel (and device-drivers, etc.). Note
that the kernel debugger can also be used in a release build.

In this report all tests were done on Release configurations, except some tests to show the differences
between debug versions and release versions. We made a rather large configuration of an enterprise
terminal (binary of 15 Mb) and a very tiny kernel version (binary of 582Kb).

The behavior tests gave the same results on both configurations so they will only be shown for one
version in the report. The different configurations will only be compared in the performance tests.

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 13 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5.1 Calibration system test (CAL)
These tests are used to calibrate the tracing overhead compared with the processing power of the
platform. This is important to understand the accuracy of the measurements done in scope of this report.

Also it measures the Processing power of the platform, so the results can be compared with the results
on other platforms.

5.1.1 Tracing overhead (CAL-P-TRC)

This test calibrates the tracing system overhead. This is more hardware than OS related, but it is needed
to correct the measured times. More details about how these measurement are performed can be found
in the “The evaluation report definition.” [Doc. 3], a must read for understanding this report.

In the rest of the report, the tracing overhead is subtracted from the results obtained.

Tracing accuracy depends here on the PCI clock (33MHz), as this is the minimum time frame that can be
detected. In general, the results in this report are correct to +/- 0.03 µseconds (one PCI clock cycle).
Therefore the results shown in the tables are rounded to the nearest 0.1 microsecond.

5.1.1.1 Test results

Test result

Average tracing overhead 209.1 nsec

minimum tracing overhead 209.1nsec

maximum tracing overhead 209.1 nsec

tracing accuracy <0.1 µsec

Critical section primitive present? YES

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 14 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5.1.2 CPU power (CAL-P-CPU)

This test will calibrate the CPU performance and the memory bandwidth of the platform being used. This
test measures the same algorithm when cached (looped) or not cached (un-looped) code and data. As
such the effects of the cache can be calculated and performance of platforms can be compared with other
platforms. In this test report our standard platform is being used.

Worst case behaviour is caused by caching issues, so this is an important measure to predict worst case
delays.

Again, to understand how these tests are run and what exactly they are measuring you will need to read
the “The evaluation report definition.” [Doc. 3]. This document has to be considered a part of this report.

5.1.2.1 Test results

The test on our standard platform (Pentium MMX 200 MHz):

Test no cache cached cache effect

CPU test duration 401.9 us 270.8 us 1.48

MEM test duration 5.442 ms 1.512 ms 3.60

Average caching effect (CPU and MEM) 2.54

As for this report the operating system is tested on our standard platform, the same results may be used.

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 15 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5.2 Clock tests (CLK)
The clock test measures the time the operating system needs to handle its clock interrupt. On the tested
platform, the clock tick interrupt is set on the highest hardware interrupt level, interrupting any other
thread or interrupt handler.

The priority of the clock interrupt depends on the board used and the hardware configuration of these.

In Windows CE the clock interrupt is a very small piece of code that only activates the kernel scheduler
when a time-out is detected. More details about the working of the clock interrupt in Windows CE can be
found in the architectural review rapport on CE.

5.2.1 Operating system clock setting (CLK-B-CFG)

This tests the period of the clock tick interrupt in the operating system. The test shows the default clock
timing as set by the BSP and or the kernel.

5.2.1.1 Test results

Test result

Test succeeded YES

Tested clock period 995.10 µs

Clock period adaptable No

5.2.2 Clock tick processing duration (CLK-P-DUR)

This tests the clock tick processing duration in the kernel. The test results are extremely important, as the
clock interrupt will disturb all other measurements done. Windows CE passes this test very well: the clock
interrupt takes only 2.9 µs.

These results are as expected taking into account the architectural design of the system clock. The clock
timer interrupt will only activate the scheduler when something is timed-out: then a rescheduling will occur
and some waiting thread can activate.

When using the kernel debugger, it can be clearly seen that on regular times a rescheduling occurs: a
second line is located about 14µs above the clock duration.

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 16 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5.2.2.1 Test results on Enterprise Terminal /Release Build

Test result

CLOCK_LOOP_COUNTER 10000

Normal busy loop time 248.8 µs

Busy loop time with clock interrupt 251.7 µs

Clock interrupt duration 2.9 µs

5.2.2.2 Test results on Tiny Kernel /Release Build

Test result

CLOCK_LOOP_COUNTER 10000

Normal busy loop time 248.8 µs

Busy loop time with clock interrupt 251.7 µs

Clock interrupt duration 2.9 µs

5.2.2.3 Test results on Enterprise Terminal /Debug build /Kernel debugger used

Test result

CLOCK_LOOP_COUNTER 10000

Normal busy loop time 796.09 µs

Busy loop time with clock interrupt 799.91 µs

Clock interrupt duration 3.82 µs

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 17 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5.2.2.4 Diagram

Enterprise Terminal /Release Build

Tiny Kernel /Release Build

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 18 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

Enterprise Terminal Debug build /Kernel debugger used

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 19 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5.3 Thread tests (THR)
These tests are used to measure the performance of the scheduler.

The thread test behaved well and stable. There is one shortcoming that could easily be improved: when
you create a thread you can’t give a priority with it. So if you want to set the priority from the creating
thread you need to perform following steps:

– create the thread in suspended state

– set the priority and the thread quantum

– start the thread.

This mechanism for starting a thread (in suspended state) was used for all the tests in this report.

5.3.1 Thread creation behaviour (THR-B-NEW)

This will test the behavior of creating threads. Does the operating system behave as it should for a real-
time operating system?

In our opinion, a thread created with a higher priority than the creating thread should activate
immediately. A thread created with a lower priority than the creating thread should surely not activate until
any higher priority threads have finished their job. By default Threads are created at priority of 251 and
there are 256 priorities. The only thing missing in the CreateThread call is a parameter for the priority,
which would be really useful.

This lacking feature can cause problems if you create threads from a thread running at a lower priority
than the default one, therefore it’s good practice to start a thread in suspended mode first.

5.3.1.1 Test results

Test result

Test succeeded YES (only if creating thread in suspended state,
setting priority and then starting the thread)

Lower priority not activated? OK

Same priority at tail? OK

Yielding works? YES

Higher priority activated? OK

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 20 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5.3.2 Round robin behaviour (THR-B-RR)

This test checks if the scheduler uses a fair round robin mechanism when threads are having the same
priority and all are in the ready-to-run state!

In Windows CE, there is round-robin scheduling between processes using the same priority. The test isn’t
much dependent on the number of threads used in the test. We did the test with 2, 10 and 128 threads.

We detected a problem with the first time scheduling of each thread. By default the round-robin time tick
(called thread quantum by Microsoft) is set to 100ms. The OEM may overload this default value and the
application programmer can set this value for each thread independently.

So when needed you can change this with the CeSetThreadQuantum() system call. However this only
works the second time the thread is activated by the kernel, even if the quantum is set before the thread
starts (thread created in suspended state). This can have side-effects when you start-up your real-time
application. It seems logical that changing the thread quantum has only an affect on the next scheduling,
as the scheduler will calculate the time-out event time. But it isn’t logical that it is not taken into account if
it set before the thread is even started!

Remark that the thread quantum can also be set to zero: in this case the thread runs until termination (at
its priority of course).

5.3.2.1 Test Results

Test result

Test succeeded YES

Time slice following this test 1 ms (Default 100ms)

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 21 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5.3.3 Thread switch latency between same priority threads (THR-P-SLS)

This test measures the time to switch between threads of the same priority. Therefore the voluntary yield
processor to other thread system call is used (in Windows CE this is done by the System Call Sleep(0)).
The time between the entry of the yield call (thread going to sleep) and the exit of the yield call (activated
thread) is measured.

This test behaved differently than other RTOS tested, but it is a valid behavior in a real-time environment.
This is due to some design choices in the kernel which are explained in the architectural review of CE
(see ???). In Windows CE, no difference is made between being pre-empted by:

– any higher priority thread (for instance caused by an interrupt event),

– or by itself by lowering its priority below any other thread in the "ready-to-run" state.

The first case is correct and even mandatory behavior in a real-time system. A pre-empted thread should
not be put back at the tail of its priority FIFO!

As a consequence it is plausible to use the same mechanism in the second case.

In short: this test creates a number of threads (N) with a decreasing ID (N-1, N-2, …, 1, 0). Each created
thread lowers its priority below the creating thread when started and all of them set themselves to the
same priority. As a result a queue of suspended threads is waiting to be activated.

Most RTOS will put the pre-empted thread by lowering its priority at the tail of the FIFO. CE puts them at
the front.

You can see clearly that the switch latency time rises a bit when the number of threads involved in the
application becomes larger. This is a normal as caching effects will occur, but it stays within limits (remark
that caching can have an influence of a factor 2 to 3). This can be seen more in detail when zooming in
on the diagram (shown for the 128 thread test in tiny configuration). There are no dependencies between
the number of suspended threads to be activated and the switch latency.

It is a good exercise to compare the results with our previous evaluation of CE: the 4.0 version. Clearly
Microsoft did a good job! The thread switch latency has become more stable. The worst case switch time
which happened when the thread first started has disappeared.

The clock tick overhead is clearly seen in the test results.

The spikes on the enterprise terminal (of about 14µs) were caused by a network interrupt.

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 22 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5.3.3.1 Test results on Enterprise Terminal /Release Build

Test result

Test succeeded YES

Test Sample qty Avg Max Min

Thread switch latency, 2 threads 16383 2.9 µs 13.4 µs 2.8 µs

Thread switch latency, 10 threads 10919 3.3 µs 8.4 µs 3.19 µs

Thread switch latency, 128 threads 10880 5.0 µs 19.0 µs 4.3 µs

Diagrams

Enterprise Terminal /Release Build

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 23 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

Enterprise Terminal /Release Build

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 24 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5.3.3.2 Test Results on Tiny Kernel /Release Build

Test result

Test succeeded NO: LIFO scheduling used!

Test Sample qty Avg Max Min

Thread switch latency, 2 threads 16383 2.8 µs 8.4 µs 2.8 µs

Thread switch latency, 10 threads 10919 3.49 µs 11.2 µs 3.15 µs

Thread switch latency, 128 threads 10880 4.9 µs 9.2 µs 3.5 µs

Diagrams

Tiny Kernel /Release Build

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 25 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 26 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

Detailed extract: dependency on number of threads

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 27 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5.3.3.3 Test results on Enterprise Terminal Debug build /Kernel debugger used

Test result

Test succeeded NO: LIFO scheduling used!

Test Sample qty Avg Max Min

Thread switch latency, 2 threads 16383 4.2 µs 13.6 µs 4.1 µs

Enterprise Terminal Debug build /Kernel debugger used

Remark that for the OS to be predictable, the number of threads in the ready queue may not have an
impact on the switch latency measured. In this case there is indeed no impact.

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 28 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5.3.4 Thread creation and deletion time (THR-P-NEW)

This tests the time to create a thread and the time to delete a thread in different scenarios:

– Scenario “never run”: The created thread has a lower priority than the creating thread and is deleted
before it had any chance to run: in this test no thread switch occurs.

– Scenario “run and terminate”: The created thread has a higher priority than the creating thread and
activates. The created thread immediately terminates itself (thread does nothing).

– Scenario “run and pre-empt”: The same scenario as the second case (above), but the created thread
does not terminate (it lowers its priority when it is activated).

In the scenarios where the thread actually runs, the creation time is the duration from the system call
creating the thread to the time when the created thread activates. For the “never run” scenario the
creation time is the duration of the system call. The deletion time is the time of the system call duration
that terminates a thread.

Remark that in a well designed real-time application, threads are created once at startup and they will live
until the end of the application. Just like any resource allocation and freeing, no one can guarantee when
and if resources will be available within a certain timeframe. Therefore creation/deletion tests are less
important as usage of system objects in a real-time environment.

However we do these test to try to detect anomalies in the OS.

In this case we clearly detect a spike now and then where the creation/deletion takes about an extra
millisecond to complete.

5.3.4.1 Test results on Enterprise Terminal /Release Build

Test result

Test succeeded YES

Test Sample qty Avg (µs) Max (µs) Min (µs)

Thread creation, never run 7500 91.8 1190.0 89.2

Thread deletion, never run 7500 388.1 1493.0 356.0

Thread creation, run and terminate 7500 229.5 1343.0 225.8

Thread deletion, run and terminate 7500 5.5 11.2 5.2

Thread creation, run and block 7500 235.7 1263.0 232.1

Thread deletion, run and block 7500 383.0 1470.0 316.7

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 29 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

Diagrams:

– Thread creation time in the “NER” scenario (duration of system call). (Enterprise Terminal /Release
Build)

– Thread deletion time in the “NER” scenario. (Enterprise Terminal /Release Build)

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 30 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

– Thread creation time in the “RTE” scenario (duration of system call start to activated thread).
(Enterprise Terminal /Release Build)

– Thread deletion time in the “RTE” scenario. (Enterprise Terminal /Release Build)

– Thread creation time in the “RNT” scenario (duration of system call start to activated thread).
(Enterprise Terminal /Release Build)

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 31 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

– Thread deletion time in the “RNT” scenario. (Enterprise Terminal /Release Build)

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 32 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5.3.4.2 Test results on Tiny Kernel /Release Build

Test result

Test succeeded YES

Test Sample qty Avg (µs) Max (µs) Min (µs)

Thread creation, never run 7500 88.5 108.6 86.1

Thread deletion, never run 7500 261.1 1282.0 211.0

Thread creation, run and terminate 7500 113.0 1156.0 111.0

Thread deletion, run and terminate 7500 4.9 10.0 4.6

Thread creation, run and block 7500 116.3 126.8 114.1

Thread deletion, run and block 7500 256.8 1194.0 194.7

Diagrams:

– Thread creation time in the “NER” scenario (duration of system call). (Tiny Kernel /Release Build)

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 33 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

– Thread deletion time in the “NER” scenario. (Tiny Kernel /Release Build)

– Thread creation time in the “RTE” scenario (duration of system call start to activated thread). (Tiny
Kernel /Release Build)

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 34 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

– Thread deletion time in the “RTE” scenario. (Tiny Kernel /Release Build)

– Thread creation time in the “RNT” scenario (duration of system call start to activated thread). (Tiny
Kernel /Release Build)

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 35 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

– Thread deletion time in the “RNT” scenario. (Tiny Kernel /Release Build)

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 36 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5.3.4.3 Test results on Enterprise Terminal \DEBUG

Test result

Test succeeded YES

Test Sample qty Avg (µs) Max (µs) Min (µs)

Thread creation, never run 7500 159.7 176.1 138.8

Thread deletion, never run 7500 586.6 1573.0 528.2

Thread creation, run and terminate 7500 358.3 1408.0 354.0

Thread deletion, run and terminate 7500 10.7 20.8 10.4

Thread creation, run and block 7500 369.3 1451.0 356.0

Thread deletion, run and block 7500 580.5 1646.0 480.3

Diagrams: We won’t show all the diagrams here because the debug results are not very different than
the release configurations.

– Thread creation time in the “NER” scenario (duration of system call). (Enterprise Terminal Debug
build /Kernel debugger used)

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 37 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

– Thread creation time in the “RNT” scenario (duration of system call start to activated thread).
(Enterprise Terminal Debug build /Kernel debugger used)

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 38 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5.4 Semaphore tests (SEM)
Here the performance and the behavior of the counting semaphore are tested. The counting semaphore
is a system object that protects for simultaneous accesses to some device.

We use the well known acronyms from Dijkstra, the Dutch mathematician who invented the semaphore:

– P() : “Probeer”, the dutch word for “Try”, thus trying to take the semaphore

– V(): “Vrij”, the dutch word for “Free”, thus releasing the semaphore.

It is important to remark that in Windows CE the semaphore uses a priority inheritance to avoid priority
inversion. This is exceptional: most RTOS use only priority inheritance with the mutex object.

This is a very nice feature for making real-time systems reliable. Some will argue that this makes the OS
slower. This is true indeed, but only in the average case: in real-time systems the worst case behavior is
far more important, this is why priority inheritance is an important feature!

5.4.1 Semaphore locking test mechanism (SEM-B-LCK)

This will test if the counting semaphore locking mechanism works as it is expected. The P() call should
block only when the count is zero. The V() call should increment the semaphore counter. In the case the
semaphore counter is zero, the V() call should cause a rescheduling in the kernel: indeed blocked threads
may be activated.

The Windows CE semaphore does behave as expected.

5.4.1.1 Test results

Test result

Test succeeded YES

Maximum semaphore value? 0x7FFFFFF

Rescheduling on free? OK

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 39 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5.4.2 Semaphore releasing mechanism (SEM-B-REL)

This test verifies that the highest priority thread being blocked on a semaphore will be released by the
release operation. This should be independent of the order of the acquisitions taking place.

Windows CE passed this test without problems.

5.4.2.1 Test results

Test result

Test succeeded YES

5.4.3 Time needed to create and delete a semaphore (SEM-P-NEW)

This will test the time needed to create a semaphore and the time to delete it. The deletion time is
checked in two cases:

– Where the semaphore is used between the creation and deletion.

– Where the semaphore is not used between the creation and deletion.

For a good real-time operating system it is expected that there is no difference between the two
scenarios. If a difference is detected, then this probably means that the operating system handles some
initializations on the semaphore on its first use (making the first use slower). In a good real-time
application design, all operating system objects will be allocated and initialized at start of the application
and never release until the application terminates. The application developer expects however that these
objects will be predictable when they are used, even if it is the first time.

In Windows CE the difference between the two scenarios are minimal which is good.

Remark that sometimes the clock interrupt occurs during an interval measurement, the 2.9 µs clock tick
spike is found back in these graphics.

The first time to create/delete the semaphore takes longer due to caching mechanisms.

5.4.3.1 Test results on Enterprise Terminal /Release Build

Test result

Test succeeded YES

Test Sample qty Avg Max Min

Semaphore creation time, used 7500 4.3 µs 13.1 µs 4.0 µs

Semaphore deletion time, used 7500 4.8 µs 9.4 µs 4.4 µs

Semaphore creation time, never used 7500 4.0 µs 11.2 µs 3.9 µs

Semaphore deletion time, never used 7500 4.1 µs 10.7 µs 4.0 µs

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 40 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

Diagrams

Enterprise Terminal /Release Build

Enterprise Terminal /Release Build

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 41 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

Enterprise Terminal /Release Build

Enterprise Terminal /Release Build

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 42 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5.4.3.2 Test results on Tiny Kernel /Release Build

Test result

Test succeeded YES

Test Sample qty Avg Max Min

Semaphore creation time, used 7500 3.4 µs 8.5 µs 3.3 µs

Semaphore deletion time, used 7500 4.7 µs 9.4 µs 4.5 µs

Semaphore creation time, never used 7500 4.3 µs 9.8 µs 4.2 µs

Semaphore deletion time, never used 7500 4.2 µs 10.1 µs 4.0 µs

Diagrams:

Tiny Kernel /Release Build

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 43 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

Tiny Kernel /Release Build

Tiny Kernel /Release Build

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 44 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

Tiny Kernel /Release Build

5.4.3.3 Test Results on Enterprise Terminal Debug build /Kernel debugger used

Test result

Test succeeded YES

Test Sample qty Avg Max Min

Semaphore creation time, used 7500 8.7 µs 19.9 µs 8.1 µs

Semaphore deletion time, used 7500 12.5 µs 26.8 µs 11.6 µs

Semaphore creation time, never used 7500 7.5 µs 23.2 µs 7.3 µs

Semaphore deletion time, never used 7500 9.6 µs 21.6 µs 9.4 µs

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 45 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5.4.4 Test acquire-release timings: no-contention case (SEM-P-ARN)

This tests the acquisition and release time in the no-contention case. As in this test case the semaphore
does not block nor cause any rescheduling (thread switch), the duration of the system call should be very
short.

In fact, the OS will only need to increase or decrease the semaphore counter in an atomic way. However
as a semaphore can be used between processes, the semaphore data is probably located in the kernel.
Therefore a system call is needed to the kernel which takes more time than just
incrementing/decrementing the counter.

Again the 2.9 µs spike caused by the clock interrupt can be seen on the diagrams.

5.4.4.1 Test results on Enterprise Terminal /Release Build

Test result

Test succeeded YES

Test Sample qty Avg Max Min

Semaphore acquisition time, no-contention 7500 3.8 µs 9.2 µs 3.8 µs

Semaphore release time, no-contention 7500 3.7 µs 16.0 µs 3.6 µs

Diagrams:

Enterprise Terminal /Release Build

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 46 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

Enterprise Terminal /Release Build

5.4.4.2 Test results on Tiny Kernel /Release Build

Test result

Test succeeded YES

Test Sample qty Avg Max Min

Semaphore acquisition time, no-contention 7500 3.8 µs 8.1 µs 3.8 µs

Semaphore release time, no-contention 7500 3.7 µs 10.2 µs 3.7 µs

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 47 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

Diagrams

Tiny Kernel /Release Build

Tiny Kernel /Release Build

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 48 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5.4.4.3 Test results on Enterprise Terminal Debug build /Kernel debugger used

Test result

Test succeeded YES

Test Sample qty Avg Max Min

Semaphore acquisition time, no-contention 7500 6.7 µs 18.8 µs 6.5 µs

Semaphore release time, no-contention 7500 6.0 µs 16.7 µs 5.8 µs

Diagrams:

Enterprise Terminal Debug build /Kernel debugger used

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 49 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

Enterprise Terminal Debug build /Kernel debugger used

5.4.4.4 Test acquire-release timings: contention case (SEM-P-ARC)

This is used to test the time needed to acquire and release a semaphore depending on the number of
threads blocked on the semaphore. It measures the time in the contention case: so when the acquisition
and release system call causes a rescheduling to occur.

The aim of this test is to verify if the number of blocked threads has an impact on these timings. So this
will answer the question: “how much time the operating system needs to find out the next thread to
schedule”.

As can be seen on the detailed extract of the release timings (tiny configuration), the number of pending
threads does not affect the release time. The first release is quicker due to caching issues: in the test 128
threads of different priorities are waiting on the semaphore. They grab the semaphore from low priority to
high priority (threads created in this order). So when releasing the semaphore the highest priority thread
activates again. As the highest priority thread was also the last one taking the semaphore, it will still be
cached.

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 50 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5.4.4.5 Test results on Enterprise Terminal

Test result

Test succeeded YES

Max number of threads pending as much threads as memory resources allows.

Test Sample qty Avg Max Min

Semaphore acquisition time, contended 7500 15.6 µs 28.1 µs 14.2 µs

Semaphore release time, contended 7500 19.4 µs 27.0 µs 12.8 µs

Diagrams

Enterprise Terminal /Release Build

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 51 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

Enterprise Terminal /Release Build

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 52 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5.4.4.6 Test results on Tiny Kernel

Test Sample qty Avg Max Min

Semaphore acquisition time, contended 7500 13.1 µs 21.3 µs 12.2 µs

Semaphore release time, contended 7500 19.0 µs 25.6 µs 13.0 µs

Diagrams:

Tiny Kernel /Release Build

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 53 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

Tiny Kernel /Release Build

Detailed extract from previous diagram

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 54 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5.5 Mutex tests (MUT)
Here the performance and the behavior of the mutual exclusive semaphore are tested.

Although the mutual exclusive semaphore (further called mutex) could be the same as the counting
semaphore where the count is one, this is not the aim of this test. In scope of the framework, this test will
look into detail of a mutex system object that avoids priority inversion.

Windows CE implements an inheritance technique to avoid priority inversion it does this for three
synchronization objects:

– Semaphores

– Mutexes

– Critical sections.

All three are verified if they indeed implement the priority inheritance. Mutexes and critical sections are
also tested on performance. Semaphores were already tested in the previous section of this document.

As Microsoft claims that their counting semaphores uses priority inheritance as well, this behavior is
tested in the section concerning mutex. Following our test definitions we define a mutex as “any
protection object that provides mechanisms for avoiding priority inversions”. In case of Windows CE, a
semaphore also has this ability.

For other operating systems, critical sections are normally not tested. We do this for Windows CE as CE
uses also priority inheritance with the critical section primitive. The aim here is to test if all three
mechanisms provide priority inheritance as Microsoft claims. And to test which one of the three
mechanisms has the best performance.

5.5.1 Priority inversion avoidance mechanism (MUT-B-ARC)

This test will determine if the system call under test prevents the priority inversion case. Therefore the test
will artificially create a priority inversion and verify if indeed the system raises the lower priority thread’s
priority temporarily when that thread owns a synchronization object required by a higher priority thread.

5.5.1.1 Test results

Semaphore:

Test result

Priority inversion avoidance
system call present

YES

System call used WaitForMultipleObjects / ReleaseSemaphore

Test succeeded YES

Priority inversion avoided YES

Mechanism used if any? Temporary priority Inheritance

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 55 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

Mutex:

Test result

Priority inversion avoidance
system call present

YES

System call used WaitForMultipleObjects / ReleaseMutex

Test succeeded YES

Priority inversion avoided YES

Mechanism used if any? Temporary priority Inheritance

Critical section:

Test result

Priority inversion avoidance
system call present

YES

System call used EnterCriticalSection / LeaveCriticalSection

Test succeeded YES

Priority inversion avoided YES

Mechanism used if any? Temporary priority inheritance

5.5.2 Mutex acquire- release timings: contention case (MUT-P-ARC)

This is the same test as above, but performed in a loop. In this case, the time is measured to acquire and
release the mutex (and critical section) in the priority inversion case.

The acquisition time is the time for:

– the acquisition,

– activating the thread which has the lock

– raising the priority of this thread to the priority of the acquiring thread

The release time is the reverse:

– the release,

– lowering the thread that hat the lock

– activating the thread which took the lock.

Some remarkable findings in these tests in respect with the semaphore test:

– Critical sections are (a little bit) slower than mutexes!

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 56 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

This is very strange: we would expect that critical sections would be faster as they can not be used
between processes! This should make the handling simpler than the mutex/semaphore.

5.5.2.1 Test results on Enterprise Terminal /Release Build

Test result

Test succeeded YES

Test Sample qty Avg Max Min

Critical sections acquire timings, contended 7500 11.6 µs 20.5 µs 10.9 µs

Mutex acquire timings, contended 7500 10.9 µs 18.5 µs 10.4 µs

Diagrams

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 57 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

Test Sample qty Avg Max Min

Critical sections release timings, contended 7500 9.21 µs 15.28 µs 8.34 µs

Mutex release timings, contedted 7500 9.85 µs 13.84 µs 9.35 µs

Diagrams

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 58 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5.5.2.2 Test results on Tiny Kernel /Release Build

Test Sample qty Avg Max Min

Critical sections acquire timings, contented 7500 11.8 µs 22.9 µs 11.2 µs

Mutex acquire timings, contented 7500 11.2 µs 14.9 µs 10.5 µs

Diagrams

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 59 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

Test Sample qty Avg Max Min

Critical sections release timings, contended 7500 9.23 µs 15.34 µs 8.4 µs

Mutex release timings, contended 7500 10.0 µs 14.08 µs 9.59 µs

Diagrams

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 60 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5.5.2.3 Test Results on Enterprise Terminal Debug build /Kernel debugger used

Test Sample qty Avg Max Min

Critical sections acquire timings, contended 7500 31.2 µs 47.5 µs 28.9 µs

Mutex acquire timings, contended 7500 20.3 µs 26.9 µs 18.9 µs

Diagrams

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 61 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

Test Sample qty Avg Max Min

Critical sections release timings, contended 7500 22.95 µs 31.84 µs 19.7 µs

Mutex release timings, contended 7500 22.82 µs 31.72 µs 21.32 µs

Diagrams

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 62 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 63 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5.6 Interrupt Tests (IRQ)
Here the performance of the interrupt handling in the operating system and hardware is tested.

In a real-time system, interrupt handling is a major part of the system: indeed such systems are typically
event driven.

For these tests, our standard tracing system is adapted. Interrupts are generated by a plugged in PCI
related card (can be PMC/PCI or CPCI). This card has a complete independent processor on board, with
custom-made software. As such we can guarantee an independent interrupt source compared with the
platform under test.

Microsoft uses a different way of handling interrupts in CE: The low level hardware interrupt (Interrupt
Servicing Routine) is handled in the OAL and isn’t meant to be used by drivers. Drivers will normally use
an Interrupt Servicing Thread (IST) running as a normal thread at a certain thread priority! The low level
hardware interrupt is handled in the OAL and if it is needed, it is possible to do specific interrupt handling
at the OAL for handling critical real-time constraints, but than you need to adapt the OAL (which is not an
easy job).

The advantages of the interrupt service routine (ISR) being handled at driver level as an interrupt service
thread (IST) are:

– All system calls are available.

– You have the possibility to set the relative priorities of the ISTs so that the highest-priority interrupt
handler receives the most reliable response (independent of the hardware interrupt level).

This gives you a great flexibility but increases the interrupt latency.

Therefore only the IST tests were run in scope of this report.

As can be seen in the test results shown further, no problems were detected and the results were
predictable.

5.6.1 Simultaneous interrupt priority handling (IRQ_B_SIM)

This test verifies if simultaneous interrupts are handled prioritized. It answers the question if a lower
priority interrupt can be pre-empted by a higher level interrupt.

This is done by starting the interrupt generation of one device in the interrupt handler of the other device.

As interrupts are handled at prioritised thread levels we didn’t find any difficulties here (remember we are
testing the IST).

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 64 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5.6.1.1 Test results on Tiny Kernel

Test result

Test succeeded YES

Interrupt pre-emption existing following the documentation? YES

Lower level interrupt pre-empted by higher level interrupt? YES

Higher level interrupt not pre-empted by lower level interrupt? YES

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 65 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5.6.2 Interrupt latency (IRQ_P_LAT)

This measures the time it takes to switch from a running thread to an interrupt service thread (running at
the highest priority level).

This is different compared with most other RTOS where you have a real interrupt servicing routine. So the
results are difficult to compare. You should add the IRQ_P_LAT with IRQ_P_TLT results of traditional
RTOS to compare with the results we got here.

The clock interrupt is detected again. Also the first sample is slower caused by caching issues. In fact:
under normal circumstances the interrupt latency will be more likely the un-cached result, except if the
interrupt occurs a lot. Anyhow, any designer should use the “un-cached” result as a real value.

5.6.2.1 Test results on Enterprise Terminal /Release Build

Test Sample qty Avg Max Min

Interrupt dispatch latency 676 8.8 µs 14.8 µs 8.4 µs

5.6.2.2 Test results on Tiny Kernel /Release Build

Test Sample qty Avg Max Min

Interrupt dispatch latency 263 8.8 µs 13.31 µs 8.4 µs

5.6.2.3 Test results on Enterprise Terminal /Debug build /Kernel debugger used

Test Sample qty Avg Max Min

Interrupt dispatch latency 258 13.54 µs 24.43 µs 12.29 µs

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 66 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

Diagram : Enterprise Terminal /Release Build

Diagram : Tiny Kernel /Release Build

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 67 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

Diagram : Enterprise Terminal /Debug build /Kernel debugger used

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 68 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5.6.3 Interrupt dispatch latency (IRQ_P_DLT)

This measures the time it takes to switch from the interrupt service thread back to the interrupted thread.

The same remark concerning the clock interrupt and caching issues is valid here.

5.6.3.1 Test results on Enterprise Terminal /Release Build

Test Sample qty Avg Max Min

Dispatch latency from interrupt handler 672 7.5 µs 10.6 µs 7.2 µs

5.6.3.2 Test results on Tiny Kernel /Release Build

Test Sample qty Avg Max Min

Dispatch latency from interrupt handler 262 7.45 µs 9.17 µs 7.17 µs

5.6.3.3 Test results on Enterprise Terminal /Debug build /Kernel debugger used

Test Sample qty Avg Max Min

Dispatch latency from interrupt handler 774 11.92 µs 16.30 µs 11.15 µs

Diagram : Enterprise Terminal /Release Build

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 69 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

Diagram : Tiny Kernel /Release Build

Diagram : Enterprise Terminal /Debug build /Kernel debugger used

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 70 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5.6.4 Interrupt to thread latency (IRQ_P_TLT)

This measures the time it takes to switch from the interrupt service thread to the thread that is activated
(by using a semaphore) from the interrupt service thread.

As the interrupt is already running at thread level, this test is in fact about the same of the semaphore
acquisition/release test!

The same remark concerning the clock interrupt and caching issues is valid here.

5.6.4.1 Test results on Enterprise Terminal /Release Build

Test Sample qty Avg Max Min

Dispatch latency from interrupt handler 10000 11.4 µs 20.4 µs 10.4 µs

5.6.4.2 Test results on Tiny Kernel /Release Build

Test Sample qty Avg Max Min

Dispatch latency from interrupt handler 10000 11.16 µs 18.61 µs 10.02 µs

5.6.4.3 Test results on Enterprise Terminal /Debug build /Kernel debugger used

Test Sample qty Avg Max Min

Dispatch latency from interrupt handler 9516 19.38 µs 25.39 µs 15.34 µs

Diagram on Enterprise Terminal /Release Build

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 71 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

Diagram: Tiny Kernel /Release Build

Diagram on Enterprise Terminal /Debug build /Kernel debugger used

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 72 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5.6.5 Maximum sustained interrupt frequency (IRQ_S_SUS)

This test measures the probability an interrupt is missed: is the interrupt handling duration stable and
predictable?

The test is done on three levels:

– 100 000 interrupts, initial phase: each test takes only some seconds.

– 100 000 000 interrupts, second phase based on the results from the first phase. This test takes less
than two hours and gives already accurate results.

– 1 000 000 000: third phase (one billion interrupts), based on the results of previous phase. The
probability something goes wrong is ten times higher. Disadvantage is the test duration which takes
multiple hours!

Windows CE passes this test. The minimum sustained interrupt period is 25 µs. This changes to 35 µs in
longer test runs! These results seem long for an RTOS but you have to keep in mind that these are the
timings from the IST and not from the ISR.

5.6.5.1 Test results

Interrupt
period

#interrupts
generated

#interrupts
serviced

#interrupts
lost

20 µs 100 000 99 972 28

23 µs 100 000 99 997 3

25 µs 100 000 100 000 0

28 µs 100 000 100 000 0

26 µs 100 000 000 99 999 999 1

28 µs 100 000 000 100 000 000 0

30 µs 100 000 000 100 000 000 0

27 µs 1 000 000 000 1 000 000 000 0

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 73 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

5.7 Memory tests
This tests the OS for memory leaks.

5.7.1 Memory leak test (MEM_B_LEK)

This test continuously create/remove objects in the operating system (threads, semaphores, mutexes,
…).

Ce5.0 passed this test, no memory leaks were detected.

Test result

Test succeeded YES

Test duration (how long we let the endless loop run) >20h

Number of main test loops done >1.000.000

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 74 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

6 Support

 8 Support 0 10

Support is done well. Via email you receive a response within a couple of days.

Most problems were solved within a couple of days.

Most of the information can be found on the internet. The best documentation can be found on MSDN,
with howtos and other technical support.

If you can’t find your support on the web, you can contact the Microsoft team via email. We encountered a
bug which caused a memory leak (not caused by the operating system), but their suggestion solved the
problem quickly.

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 75 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

7 Appendix A: Vendor comments

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 76 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

8 Appendix B: Acronyms
Acronym Explanation

API Application Programmers Interface: calls used to call code from a library
or system.

BSP Board Support Package: all code and device drivers to get the OS running
on a certain board

DSP Digital Signal Processor

FIFO First In First Out: a queuing rule

GPOS General Purpose Operating System

GUI Graphical User Interface

IDE Integrated Development Environment (GUI tool used to develop and
debug applications)

IRQ Interrupt Request (hardware interrupt line)

ISR Interrupt Servicing Routine

MMU Memory Management Unit

OS Operating System

PCI Peripheral Component Interconnect: bus to connect devices, used in all
PCs!

PIC Programmable Interrupt Controller

PMC PCI Mezzanine Card

PrPMC Processor PMC: a PMC with the processor

RTOS Real-Time Operating System

SDK Software Development Kit

SoC System on a Chip

RTOS EVALUATION PROGRAM
Doc. No: EVA-2.9-TST-CE-x86-01

Experts Doc. Version: 1.00 Doc. date: 07 October, 2004

Windows CE 5.0 on an x86 platform Page 77 of 77

©
 C

op
yr

ig
ht

 D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
. A

ll
rig

ht
s

re
se

rv
ed

, n
o

pa
rt

of
 th

e
co

nt
en

ts
 o

f t
hi

s
do

cu
m

en
t m

ay
 b

e
re

pr
od

uc
ed

 o
r t

ra
ns

m
itt

ed
 in

 a
ny

 fo
rm

 o
r b

y
an

y
m

ea
ns

 w
ith

ou
t t

he
 w

rit
te

n
pe

rm
is

si
on

 o
f

D
ed

ic
at

ed
 S

ys
te

m
s

Ex
pe

rts
.

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

E
-m

ai
l:

in
fo

@
de

di
ca

te
d-

sy
st

em
s.

in
fo

Th
is

 li
ce

ns
ed

 c
op

y
is

 o
w

ne
d

by
 M

ic
ro

so
ft

C
or

po
ra

tio
n,

 In
c.

9 Appendix C: Document revision history

9.1 Issue 1.0 (October 8, 2004)
First official version of this report.

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 1 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

EVALUATION REPORT
DEFINITION

© Copyright Dedicated Systems Experts NV. All rights reserved, no part of the
contents of this document may be reproduced or transmitted in any form or by any

means without the written permission of Dedicated Systems Experts NV,
Bergensesteenweg 421 B12, B-1600 St-Pieters-Leeuw, Belgium.

Disclaimer

Although all care has been taken to obtain correct information and accurate test
results, Dedicated Systems Experts and Dedicated Systems Magazine cannot be
liable for any incidental or consequential damages (including damages for loss of
business, profits or the like) arising out of the use of the information provided in
this report, even if Dedicated Systems Experts and Dedicated Systems Magazine

have been advised of the possibility of such damages.

http://www.dedicated-systems.com

Email: info@dedicated-systems.com

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 2 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

EVALUATION REPORT LICENSE

This is a legal agreement between you (the downloader of this document) and/or your company and the
company DEDICATED SYSTEMS EXPERTS NV, Bergensesteenweg 421 B12, B-1600 St-Pieters-Leeuw,
Belgium.
It is not possible to download this document without registering and accepting this agreement on-line.

1. GRANT. Subject to the provisions contained herein, Dedicated Systems Experts hereby grants you a non-

exclusive license to use its accompanying proprietary evaluation report for projects where you or your company
are involved as major contractor or subcontractor. You are not entitled to support or telephone assistance in
connection with this license.

2. PRODUCT. Dedicated Systems Experts shall furnish the evaluation report to you electronically via Internet. This
license does not grant you any right to any enhancement or update to the document.

3. TITLE. Title, ownership rights, and intellectual property rights in and to the document shall remain in Dedicated
Systems Experts and/or its suppliers or evaluated product manufacturers. The copyright laws of Belgium and all
international copyright treaties protect the documents.

4. CONTENT. Title, ownership rights, and an intellectual property right in and to the content accessed through the
document is the property of the applicable content owner and may be protected by applicable copyright or other
law. This License gives you no rights to such content.

5. YOU CAN NOT:
– You cannot, make (or allow anyone else make) copies, whether digital, printed, photographic or others, except

for backup reasons. The number of copies should be limited to 2. The copies should be exact replicates of the
original (in paper or electronic format) with all copyright notices and logos.

– You cannot, place (or allow anyone else place) the evaluation report on an electronic board or other form of on
line service without authorization.

6. INDEMNIFICATION. You agree to indemnify and hold harmless Dedicated Systems Experts against any damages
or liability of any kind arising from any use of this product other than the permitted uses specified in this
agreement.

7. DISCLAIMER OF WARRANTY. All documents published by Dedicated Systems Experts on the World Wide Web
Server or by any other means are provided "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. This disclaimer of
warranty constitutes an essential part of the agreement.

8. LIMITATION OF LIABILITY. Neither Dedicated Systems Experts nor any of its directors, employees, partners or
agents shall, under any circumstances, be liable to any person for any special, incidental, indirect or
consequential damages, including, without limitation, damages resulting from use of OR RELIANCE ON the
INFORMATION presented, loss of profits or revenues or costs of replacement goods, even if informed in advance
of the possibility of such damages.

9. ACCURACY OF INFORMATION. Every effort has been made to ensure the accuracy of the information presented
herein. However Dedicated Systems Experts assumes no responsibility for the accuracy of the information.
Product information is subject to change without notice. Changes, if any, will be incorporated in new editions of
these publications. Dedicated Systems Experts may make improvements and/or changes in the products and/or
the programs described in these publications at any time without notice. Mention of non-Dedicated Systems
Experts products or services is for information purposes only and constitutes neither an endorsement nor a
recommendation.

10. JURISDICTION. In case of any problems, the court of BRUSSELS-BELGIUM will have exclusive jurisdiction.

Agreed by downloading the document via the Internet.

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 3 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

1 Introduction .. 6

1.1 Purpose and scope .. 6
1.2 Document issue: the 2.9 framework .. 6
1.3 Related documents .. 7

2 The evaluation report... 8
2.1 Introduction .. 8

2.1.1 The evaluation framework .. 8
2.1.2 The two evaluation tracks... 8

2.2 The evaluation report layout .. 9
2.3 Measurement method .. 11

2.3.1 Tracing PCI access cycles ... 11
2.3.2 State analysis ... 12
2.3.3 Statistical analysis .. 12
2.3.4 Generating interrupts.. 12

2.4 System configuration parameters .. 13
2.4.1 Memory Protection model .. 13

3 Testing overview.. 14
3.1 Naming of the test series ... 14

3.1.1 The Backus-Naur Form .. 14
3.1.2 Test identifiers .. 14
3.1.3 Diagram identifiers.. 15
3.1.4 Source code identifier... 15

3.2 Coding style ... 18
3.2.1 Identifiers .. 18
3.2.2 Bracing styles ... 19
3.2.3 Indenting... 19
3.2.4 Code blocks and comments ... 20

3.3 Libraries.. 21
3.3.1 Tracing API... 21
3.3.2 Interrupt generating API ... 22
3.3.3 Generic operating system API.. 22

4 The tests described ... 28
4.1 Calibration system test (CAL) .. 28

4.1.1 Tracing overhead (CAL_P_TRC) ... 28
4.1.2 CPU power (CAL_P_CPU)... 29

4.2 Clock tests (CLK) ... 30
4.2.1 Operating system clock setting (CLK_B_CFG).. 30
4.2.2 Clock tick processing duration (CLK_P_DUR)... 31

4.3 Thread tests (THR) .. 32
4.3.1 Thread creation behaviour (THR_B_NEW).. 32
4.3.2 Round robin behaviour (THR_B_RR)... 33

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 4 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

4.3.3 Thread switch latency between same priority threads (THR_P_SLS) 34
4.3.4 Thread creation and deletion time (THR_P_NEW).. 36

4.4 Semaphore tests (SEM)... 38
4.4.1 Semaphore locking test mechanism (SEM_B_LCK).. 39
4.4.2 Semaphore releasing mechanism (SEM-B-REL)... 40
4.4.3 Time needed to create and delete a semaphore (SEM_P_NEW) ... 41
4.4.4 Test acquire-release timings: no contention case (SEM_P_ARN) .. 42
4.4.5 Test acquire-release timings: contention case (SEM_P_ARC) ... 43

4.5 Mutex tests (MUT).. 45
4.5.1 Priority inversion avoidance mechanism (MUT-B-ARC) .. 46
4.5.2 Mutex acquire-release timings: contention case (MUT_P_ARC)... 51

4.6 Interrupt tests (IRQ) ... 52
4.6.1 Simultaneous interrupt priority handling (IRQ_B_SIM) .. 53
4.6.2 Interrupt latency (IRQ_P_LAT)... 54
4.6.3 Interrupt dispatch latency (IRQ_P_DLT) .. 54
4.6.4 Interrupt to thread latency (IRQ_P_TLT).. 55
4.6.5 Maximum sustained interrupt frequency (IRQ_S_SUS)... 55

4.7 Memory tests (MEM).. 56
4.7.1 Memory leak test (MEM_B_LEK) ... 56

5 Appendix A: Document revision history... 57
5.1 Issue 1.0 (April 29, 2004) ... 57

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 5 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

DOCUMENT CHANGE LOG

Issue
No.

Revised
Issue
Date

Para's / Pages
Affected

Reason
for Change

1 April 29,
2004

All Initial Issue

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 6 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

1 Introduction

1.1 Purpose and scope
This paper explains the evaluation tests done and how the results are presented in the RTOS evaluation
report. It explains how framework 2.9 describes the tested real-time OS and shows how detailed the
results are. This document is an important companion document in reading and understanding the
evaluation reports.

The evaluation report itself shows the test results obtained for a particular RTOS. The executed tests are
explained here. Due to the tightly coupling between these documents, the issue of this document has to
match the issue of the evaluation report. Information on how we handle versions of documents and tests
can be found in “The evaluation framework.”, see section 1.3 of this document.

This document defines and explains all tests executed in the framework 2.9. Generic pseudo “C” code for
these tests is available in another document which can be obtained on request. The results of the test will
indicate if a system may or may not be qualified as “real-time”. For each test, objective criteria are set to
determine if a result is real-time or not. (real-time is used here in the sense of “predictable response time
and behavior”

1.2 Document issue: the 2.9 framework
Framework 2.9 is a serious revision of the previous framework to achieve:

– Better readability

– More objective qualification criteria

These are the main changes between the current (2.9) and the previous (2.5) framework:

– Test labeling is completely changed to improve the readability of the evaluation reports.
Remark that in appendix, a lookup table is added to find the relation between the test labels used in
the previous framework and the current framework.

– Separation of the RTOS memory model and the test labeling, again to improve readability.

– Generic pseudo code is made for each test.
This code is based on the “C” programming language and uses macros for the RTOS dependent
system calls. (Published in a separate document).

– Added a new test category to test the RTOS “Behavior”.
These tests check if the operating system acts as expected in a certain scenario we define. These
scenarios correspond to classical scenarios one would use in an application.

– Added some objective criteria to differentiate between “real-time” and “non real-time”.

Generic pseudo code is now available for download on request. Third parties can therefore more easily
repeat the tests presented here. However, these third parties should also be aware of the fact that one

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 7 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

needs extensive and costly measuring equipment to do the timing measurements in order for these
measurements not to impact on the behavior of the system!

1.3 Related documents
These are documents that are closely related to this document. They can all be downloaded using following
link:
http://www.dedicated-systems.com/encyc/buyersguide/rtos/evaluations

Doc. 1 The evaluation framework.
This document presents the evaluation framework. It also indicates which documents
are available, and how their name giving, numbering and versioning are related. This
document is the base document of the evaluation framework.
EVA-2.9-GEN-01 Issue: 1 Date: April 29, 2004

Doc. 2 What is a good RTOS?
This document presents the criteria that Dedicated Systems Experts use to give an
operating system the label “Real-Time”. The evaluation tests are based upon the
criteria defined in this document.
EVA-2.9-GEN-02 Issue: 1 Date: TBD

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 8 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

2 The evaluation report

2.1 Introduction

2.1.1 The evaluation framework

The evaluation framework is introduced in [Doc. 1]. This document also describes the aim of the evaluation
reports. Our concept of real-time is introduced there. More ideas and concepts used in this document are
explained in the paper “What is a good RTOS?”, see [Doc. 2] in section 1.3 of this document.

The tests are designed in order to verify if:

– A system behaves like expected

– The system response is predictable in all circumstances (worst case time needed?)

– A system does not have buggy behavior or instable behavior.

Depending on the results of the tests a system is labeled “RT-VALIDATED”, “VALIDATED” or “DID NOT
QUALIFY”. Logos are available for each of the qualifications.

2.1.2 The two evaluation tracks

Our evaluation is divided into two tracks:

- The first track is a qualitative study called the technical evaluation. In this approach, we focus on the
system architecture of the operating system and/or the architecture of the platform.

- The second track is referred as the practical evaluation and is a quantitative approach. This second track
is detailed in depth in this document.

2.1.2.1 Qualitative track: The technical evaluation

The two technical evaluations closely related with a test report are:

– The operating system evaluation

– The platform evaluation.

Both evaluations are merely theoretical. The content and layout of these reports are given in two other
documents, but these are not mandatory to understand the evaluation reports in this case.

2.1.2.2 Quantitative track: The practical evaluation

The practical evaluation measures specific real-time features of the operating system. It does not certify
that a set of application threads will meet their deadlines; rate monotonic scheduling and similar methods
can be used for this purpose. The purpose is to assert that a RTOS is suitable or not for real-time
applications. If the behavior of an application needs to be predictable, then the underlying software, i.e. the
RTOS, needs to have all the features necessary to meet these requirements. In general, all the system
calls and operations of an operating system should exhibit predictable behavior. This implies that the
execution time has to be bounded, independent of the workload of the system.

The purpose of our test suite is not only to measure the throughput and the responsiveness of the RTOS,
but also to test its determinism and behavior, much more important than performance figures.

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 9 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

2.2 The evaluation report layout
In the figure below a sample of the table of contents of an evaluation report is shown.

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 10 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

Figure 1 Content table of example test report

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 11 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

2.3 Measurement method

2.3.1 Tracing PCI access cycles

An absolute time reference is required to measure time intervals. Most operating systems include software
timers that could be used as a measurement tool. But timers in different operating systems do not
necessarily have the same resolution or precision to perform accurate measurements. The use of software
timers adds unpredictable overhead to the results because the measurements are performed by the
operating system while it executes the test. The use of it may also change the behavior of the system.
Furthermore, the measurements based on the software timers are synchronous with the system clock and
this is not what we are looking for. Instead of a software timer, DS-Experts uses an external hardware
device: a PCI bus analyzer.

During the execution of a test, tracing data is written at a valid PCI bus address before and after the
evaluated system operation. Writing the trace to a double word aligned address on a 33MHz PCI bus takes
on most platforms six to seven bus-cycles, i.e. 180ns to 210ns (this largely depends on the platform used).
The trace is specific to its position in the code, making it possible to identify and follow the execution path
of the test during the analysis of the results.

The PCI bus analyzer stores the data written on the PCI bus into its local memory and timestamps it. When
the test is completed, the data is downloaded from the PCI bus analyzer to a PC where it can be further
processed.

Tracing is done in the test code by issuing TraceWriteXxx() calls. There are four types of traces written on
the PCI bus:

– A trace to indicate the start of a timing measurement: TraceWriteBefore.

– A trace to indicate the end of a timing measurement: TraceWriteAfter.

– A trace to check the behavior of a test (state analysis): TraceWriteData.

– A trace to indicate an error condition in the generic to RTOS dependent library: TraceWriteError

Figure 2 shows the generic performance measurement using the two timing traces: the time difference
between the traces “before” and “after” written on the PCI bus gives the execution time for the system
operation. As the collected data marks the start and the end of a system operation, it can be used to
calculate the desired time intervals. Each test loops until the trace buffer of the PCI analyzer is full
(currently this is 32K trace samples or about 16K time samples).

TraceWriteBefore TraceWriteAfterSystem operation tested

Do repeatedly
Figure 2 generic performance measurements

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 12 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

2.3.2 State analysis

The state traces written during any test performed have a specific identification indicating the state
transition that will take place.

Therefore it is possible to do a state analysis on the captured trace: does the system behave as expected?
Dedicated Systems Experts designed a tool to verify the captured trace files and to detect anomalies in the
expected behavior. This tool improves the verification of a system: such errors would be difficult to notice
without. Remark that the trace files can indeed be as large as ten thousands of samples making it almost
impossible by hand to detect a fault that only occurs once in a while.

Sometimes multiple valid state changes are possible depending on the features of the system being tested.
So the state checker does not only check for a valid trace, it can also determine if the trace is the one
expected for a real-time system or not.

Furthermore, the tests are designed to detect invalid state changes and generate an error trace when such
a condition is met.

2.3.3 Statistical analysis

The captured trace file, once validated by the state checker, is passed through a statistical program, which
generates the diagrams and the “minimum, average and maximum” duration of a certain action.

These values and diagrams are shown in the test evaluation reports.

2.3.4 Generating interrupts

For the interrupt testing series, we use a PCI bus exerciser to generate interrupts at programmable
intervals on the PCI bus. To test simultaneous interrupt behavior, two such exercisers are used.

It is important to note that the interrupts are generated by the firmware in the exerciser, this means
completely independent of the system under test. This is an extremely important requirement otherwise
interrupt generation will always be linked in a way or another to the operating system clock.

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 13 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

2.4 System configuration parameters
Here we discuss the parameters that remain constant during all tests. They depend on the system
configuration. The most important setting concerns the protection model used by the operating system.

2.4.1 Memory Protection model

Memory configurations of an operating system can be classified into the following protection models each
being an enhancement of the precedent (see figure 3):

– No memory protection model: flat memory layout without memory protection between the threads in
the system. This model does not require an MMU.

– System/User memory protection model: the system address space is protected from the user
address space. User processes and system processes run in a common virtual address space. This
model requires an MMU.

– User/user protection model: adds protection between user processes to the system/user model. This
model requires an MMU.

Independent of the memory protection model, it is also possible to have virtual addressing by the MMU. In
this case the physical addresses are mapped onto some virtual address space.

Figure 3 Memory models

Besides the memory protection model, most CPU’s have also the notion of privileged CPU instructions that
can only be called in some processor mode. This is used to restrict some functionality outside the kernel.

If an OS supports more than one model, some or all tests are redone for the different configurations. In
such case, there will be multiple “test results” chapters in the evaluation report: one for each configuration.
The same protection configuration is used for all tests published in one chapter.

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 14 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

3 Testing overview
This section of the document describes in detail how tests are identified, how they are compiled and the
generic system calls used in the generic test code.

3.1 Naming of the test series
The naming of the different test series is based on multiple identifiers separated with an underscore. We
can express this in the Backus-Naur Form (BNF), a formal meta-syntax used to express context-free
grammars. A short introduction is given here below.

3.1.1 The Backus-Naur Form

A definition of the symbols used in the BNF notation is shown here:

– “HELLO” “” indicates a string exactly as it should appear

– “A” | “B” | indicates a choice (or)

– <name> <> indicates a definition (type), with the name: name

– <space>::= “ ” ::= indicates an equality (the definition <space> is equal “ ”)

– # comment # indicates start of comment (until end of line)

We give an example of a BNF syntax definition and possible valid syntax:

<bit> ::= “0” | “1”
<binary value> ::= <bit> | <bit><binary value> # recursive example!

Valid syntax for <binary value> are then: “001101”, “1”, “110”, ...

3.1.2 Test identifiers

Here we define the BNF used for the test identifiers:

<test identifier> ::= <main test id> | <main test id> “_” <optional parameters>
<main test id> ::= <tested object name> “_” <test class> “_” <test name>
<tested object name> ::= # one of the entries as shown in the table below
<test class> ::= # one of the entries as shown in the table below
<test name> ::= # defined in a table for each tested object name
<optional parameters> ::= <parameter> | <parameter> “_” <optional parameters>
<parameter> ::= # for each test, the description of the optional parameters

An example would be “THR_P_NEW”: this would be a performance (P) test on threads (THR), more
specific it would test the creation (NEW) time of a thread.

All tests are grouped by object type. We believe that this is the most logical way of ordering the tests.

In the tables below, we define the valid <tested object name> and <test class> used in this document.

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 15 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

<test object name> description: test related to

CAL Calibration test: test used in order to calibrate the platform

CLK Operating system’s internal clock

THR Threads (in same user space)

SEM Semaphores

MUT Mutex = mutual exclusion semaphore. In the scope of the
evaluations we differentiate the mutex from a semaphore
when a priority inheritance mechanism is involved.

IRQ Interrupts

<test class> description

B Test Behavioral issues

P Test the Performance of something

S Stress testing: test the behavior under heavy load conditions

3.1.3 Diagram identifiers

The test result diagram will have the same identifier, but may have an extra parameter if multiple
measurements are performed for the same test.

Here we define the name giving for each diagram:

<diagram identifier> ::= <test identifier> | < test identifier > “_” <measurement type>
<measurement type> ::= # for some tests a measurement type may be defined

An example would be “THR_P_NEW_DEL”: this would be a performance (P) test on threads (THR), more
specific it would test the creation/deletion (NEW) time of a thread: results shown in the diagram are the
ones of the deletion (DEL) time.

3.1.4 Source code identifier

The source code related with a certain test has the same file name as the test identifier. If the test has
optional parameters, the same source code will be compiled (by use of a make tool) in different test
executables depending on the optional parameters.

We can illustrate this with an example:

– Say we perform a test with name “X_Y_Z”

– Say that this test has one parameter, a loop quantity “PAR_LOOP”

– Say that we perform this test with the “PAR_LOOP” parameter set to the values 1, 10 and 128
respectively

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 16 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

The generic source code file would have the name “X_Y_Z.c”. An example of such code file is shown
below:

void TestEntry(void)
{
 int iLoopCounter = PAR_LOOP;

 while (iLoopCounter > 0)
 {
 DoTheTest();
 iLoopCounter--;
 }
}

It is then possible to change the parameter by using compiler command line parameters. All “C” compilers
support a command parameter to add a preprocessor macro name, like shown here: “-Dname=value”. This
is then used in the make file to differentiate the compilation for different parameter settings.

An example of the make description file for the test above could be:

X_Y_Z_1: X_Y_Z.c
 $(CC) –DPAR_LOOP=1 -o X_Y_Z_1 X_Y_Z.c

X_Y_Z_10: X_Y_Z.c
 $(CC) –DPAR_LOOP=10 -o X_Y_Z_10 X_Y_Z.c

X_Y_Z_128: X_Y_Z.c
 $(CC) –DPAR_LOOP=128 -o X_Y_Z_128 X_Y_Z.c

The test executables generated in the directory would then be

> ls
X_Y_Z_1
X_Y_Z_10
X_Y_Z_128

The results of these tests would also have these labels in the test report.

This approach makes it easy to add extra tests with other parameter settings without writing any code. It
guaranties that the same code is used again. If these scenarios would be stored in different source files, it
would be almost impossible to guarantee consistent code.

The same system may be used for issuing a test in different scenarios. Then the parameter can generate
different executables by using the #if, #else, #elif and #endif preprocessor constructions.

We can illustrate this again with an example:

– Say we perform a test with name “X_Y_Z”

– Say that this test has different scenarios set by the “SCENARIO” parameter

– Say that we perform this test with two scenarios: “SC1” and “SC2”

The generic source code file would have the name “X_Y_Z.c”. An example of such code file is shown
below:

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 17 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

/* test scenarios: if invalid used, compiler errors will occur */
#if SCENARIO==1
define DoTheTest Test1
#elif SCENARIO==2
define DoTheTest Test2
#endif

void TestEntry(void)
{
 /* init depends on test scenario */
 DoTheTest();
}

void Test1(void)
{
 …
}

void Test2(void)
{
 …
}

It is then possible to change the scenario by using again some compiler command line parameters. This is
used in the make file to differentiate the compilation for the different scenarios.

An example of a make description file for the test above could be:

X_Y_Z_SC1: X_Y_Z.c
 $(CC) –DSCENARIO=1 -o X_Y_Z_SC1 X_Y_Z.c

X_Y_Z_SC2: X_Y_Z.c
 $(CC) –DSCENARIO=2 -o X_Y_Z_SC2 X_Y_Z.c

The test executables generated in the directory would be

> ls
X_Y_Z_SC1
X_Y_Z_SC2

The results of these tests would also have these labels in the test report.

Using scenarios makes only sense when the code differences between each scenario are minimal.
Otherwise another test name will be used instead.

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 18 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

3.2 Coding style
A coding style is used to clearly identify functions, type definitions and variables and to describe the layout
of bracketing and indenting. This should considerably enhance the readability of the code.

Remark that we use strict ANSI C for coding. As a consequence, comments are always written using the
“/**/” construct and not the “//” construct.

3.2.1 Identifiers

3.2.1.1 Functions

Functions are written using concatenated words starting with an uppercase for each word, the rest of the
characters are written in lower case.

Remark that some of the functions used may also be macro definitions. There is no syntax difference
between the two types.

Example:

/* write a state trace */
TraceWriteData(5);

3.2.1.2 Type definitions

These are written just like the functions as defined before, but a character “t” is added in front of definition.

Example:

/* data needed for os dependent part of mutex */
typedef struct tOsMutexData
{
 int *ipMutex; /* the mutex */
} tOsMutexData;

3.2.1.3 Variable declarations

Written just like the functions defined before, but prefix are added in front to indicate the type of the
variable. The examples below show how this is done.

Examples:

int iCounter; /* an integer */
int *ipCounter; /* a pointer to an integer */
int iaCounters[10]; /* an array of integers */
int *ipaCounters[10]; /* an array of pointers to integers */

tData *tpData; /* pointer to a type defined structure */

char cChar; /* a character */
unsigned int uiCounter; /* an unsigned int */
void *vpDummy; /* a void pointer */

So the prefix does not only explains the type, but also how it is used (as pointer, array etc …)

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 19 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

3.2.1.4 Pre-processor constants

These are written in all uppercase, where each word is separated by an underscore. Prefixes are used to
show the origin of the constant.

Examples:

TRACE_BUFFER_SIZE /* size of the trace buffer in samples */
PAR_QTY_LOOP /* number of loops to perform */

3.2.2 Bracing styles

In the code the bracing style as shown in the example will always be used.

Examples:

/* bracing in a if/else scenario */
if (iX != 0)
{
 Function1();
}
else
{
 Function2();
}

/* bracing in a switch/case scenario */
switch(iX)
{
case 1:
 Function1();

case 2:
 Function2();

default:
 FunctionDefault();
}

3.2.3 Indenting

Braces are used to separate code blocks. Each deeper level, the code will be indent with three white
spaces.

So no tabs will be used (as this depends on the editor) and a fixed font has to be used (so that each letter
has the same width).

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 20 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

3.2.4 Code blocks and comments

Comments will be placed before the code block or code lines it comments. There will be a blank line before
the comment and no blank line after the comment.

A code block (separated by braces) can be used to comment a larger part of the code.

Example:

/* handle this */
HandleThis();

/* this block of code does something */
{
 /* do the initialisation */
 InitIt();

 /* now do the real thing */
 DoIt();
}

A comment may be put on the same line where an identifier is defined.

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 21 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

3.3 Libraries
As we want to re-use the same generic test code again, independent of the platform under test, libraries
are made.

These libraries abstract the tracing system and the operating system. As such the API used in the generic
code remains the same, but the implementation may differ.

The different generic API calls used are explained in this section.

3.3.1 Tracing API

All tracing API calls use the “Trace” prefix.

Following constants are defined:

– TRACE_BUFFER_SIZE
Number of samples that can be stored in the trace buffer.

Following API calls are defined:

– void TraceInitialise(void)
This call will initialise the tracing system, it has to be called before any other Trace API call.

– void TraceCleanUp(void)
This call will clean up the tracing system first initialised with TraceInitialise. It has to be called at the end
of the test.

– void TraceWriteData(int iState)
This call has to be used for tracing state data. This data can then be analysed by the state analyser to
detect invalid behaviour.

– int iState
Number used to identify the current state.

– void TraceWriteBefore(int iTimer)
This call has to be used for starting a time measurement. Multiple such calls may be used for multiple
time measurements at the same time. Therefore the iTimer parameter is used.

– int iTimer
The identifier of the timer to start.

– void TraceWriteAfter(int iTimer)
This call has to be used to stop a time measurement which was started with the TraceWriteBefore call.
Multiple such calls may be used for multiple time measurements at the same time. Therefore the iTimer
parameter is used.

– int iTimer
The identifier of the timer to stop.

– void TraceWriteError(int iErrno)
This call is used to signal an erroneous condition whenever detected. It is also used within the libraries.
The trace file analyzer will always detect such traces and declare the test result as invalid.

– int iErrno

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 22 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

An identifier signalling the error type.

3.3.2 Interrupt generating API

Interrupts are generated by PCI boards (P-Drive) containing their own processor. On the P-Drive some
software is running that may generate PCI interrupts. The test application starts the interrupt generation
process by sending a command to the P-Drive (using a PCI mailbox register).

In the current test environment, it is possible to activate two P-Drives for testing interrupt prioritisation.

All the interrupt generating API calls use “IrqGenX” as prefix, where X can be 1 or 2 for the two P-drives
used:

– void IrqGen1Initialise(void)
This will initialise the PCI card for generating interrupts.

– void IrqGen1Start(void)
Will start the interrupt generating process.

– void IrqGen1Disable(void)
Will stop the interrupt generating process.

– void IrqGen1AckInterrupt(void)
Will acknowledge the interrupt and clear the interrupt source.

– int IrqGen1GetVector(void)
This will return the interrupt vector in the operating system used for this device.

Above calls exist also with the “IrqGen2” prefix.

3.3.3 Generic operating system API

These API calls abstract the operating system used, otherwise it would not be possible to write portable
generic testing code.

All operating system API calls start with the “Os” prefix followed by the object related to the call. For
instance, all thread related calls shall have the prefix “OsThread”.

As not only the API calls may differ between the different operating systems, but also the object data, the
operating system object data will be hidden in a type definition with the name “tOsObjData”.

To avoid complex handling in the library that would delay the effective system-call and generate
measurement overhead, most of these API calls will be macros. In general, the complex system calls (like
creating and starting a thread) will be split in two parts:

– An “OsObjCreate” call, that will be used to set-up an operating system dependent structure. This call will
be handled by a real function and may take some time.

– An “OsObjXxx” call, that will be a macro using the operating system dependent structure already set-up
by the previous call so the extra overhead will be minimum.

Both the “OsObjCreate” and “OsObjDelete” calls are used only for this purpose and are never measured in
the scope of this framework.

In the next sections the API calls for each object type are explained in detail.

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 23 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

3.3.3.1 Threads

All API calls concerned with this library use the “OsThread” prefix

Following data structure is defined:

– tOsThreadData
A data structure containing all operating system dependent data for accessing threads and the related
data. This is used to hide the operating system internals.

Following constants are defined:

– OS_PRIORITY_HIGHEST
Highest priority an application thread can use in the system.

– OS_PRIORITY_HIGH

– OS_PRIORITY_MIDDLE

– OS_PRIORITY_LOW

– OS_PRIORITY_LOWEST
Lowest priority an application thread can use in the system.
Remark that the exact priority is of no importance, only the RELATIVE priority is relevant.

Following API calls are defined:

– int OsPriorityIncrement(int iPriority)
This call is used to increment the priority: increment means in this context to higher the priority level,
which is not the same as setting the priority variable to a higher number!

– return: int
The incremented priority.

– int iPriority
The priority to increment.

– int OsPriorityDecrement(int iPriority)
This call is used to decrement the priority.

– return: int
The decremented priority.

– int iPriority
The priority to decrement.

– void OsThreadSetMyPriority(int iPriority)
This call is used to change the priority of the current active thread.

– int iPriority
The new priority of the calling thread after executing this system call.

– tOsThreadData *OsThreadCreate(int iPriority, void (*Function)(void*), void *vpArgument)
This call is used to create the operating system dependent data for starting, stopping the thread.
Remark that in scope of this framework priority based scheduling will always be used.

– return: tOsThreadData*
The operating system dependent data.

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 24 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

– int iPriority
The default priority that the thread of execution will have when started.

– void (*Function)(void*)
The entry function called when the thread starts.

– void *vpArgument
The argument passed to the entry function of the thread when the thread starts. Remark that some
operating systems do not have an ability to pass arguments to a thread. In such case a more
complex library will be needed to pass arguments to a starting thread. Without arguments our
generic tests cannot run.

– void OsThreadStart(tOsThreadData *tpThread)
This call is used to start the execution thread already initialised by the OsThreadCreate call.

– tOsThreadData* tpThread
The operating system dependent thread data for the thread to start.

– void OsThreadStop(tOsThreadData *tpThread)
This call is used to stop the execution thread started by the OsThreadStart call.

– tOsThreadData* tpThread
The operating system dependent thread data for the thread to stop.

– void OsThreadDelete(tOsThreadData *tpThread)
This call is used to clean up the structure allocated and initialised by the OsThreadCreate call.

– tOsThreadData* tpThread
The operating system dependent thread data to clean up. After this call, the thread data will be
invalid.

– void OsThreadYield (void)
This call is used to yield the CPU to another ready thread at the same priority level (if any).

– void OsThreadSleepSeconds(int iSeconds)
This call is used to delay the current active thread for some seconds (non-busy blocking wait).

– int iSeconds
The number of seconds the executing thread should wait.

– void OsThreadSleepOneTick(void)
This call is used to delay the current active thread until next clock tick (block until next OS tick).

3.3.3.2 Semaphores

All API calls concerned with this library use the “OsSem” prefix

Following data structure is defined:

– tOsSemData
Data structure containing operating system dependent data for accessing semaphores and related data.
This structure is used to hide operating system internals.

Following API calls are defined:

– tOsSemData *OsSemCreate(unsigned int uiInitialCount)
This call is used to create the operating system dependent data.

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 25 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

– return: tOsSemData*
Operating system dependent data.

– unsigned int uiInitialCount
Initial count of the semaphore.

– void OsSemInit(tOsSemData *tpSemaphore)
This call is used to initialise the semaphore with its initial value.

– tOsSemData *tpSemaphore
Operating system dependent data.

– void OsSemP(tOsSemData *tpSemaphore)
This call is used to try and take the semaphore.

– tOsSemData *tpSemaphore
Operating system dependent data.

– void OsSemV(tOsSemData *tpSemaphore)
This call is used to release the semaphore.

– tOsSemData *tpSemaphore
Operating system dependent data.

– void OsSemDestroy (tOsSemData *tpSemaphore)
This call is used to destroy the operating system semaphore initialised by the OsSemInit call.

– tOsSemData *tpSemaphore
The semaphore to destroy.

– void OsSemDelete (tOsSemData *tpSemaphore)
This call is used to clean up the structure allocated and initialised by the OsSemCreate call.

– tOsSemData *tpSemaphore
The operating system dependent semaphore data to clean up. After this call, the semaphore data
will be invalid.

3.3.3.3 Mutex

All API calls concerned with this library use the “OsMutex” prefix

Following data structure is defined:

– tOsMutexData
Data structure containing all operating system dependent data for accessing mutexes and related data.
This is used to hide operating system internals.

Following API calls are defined:

– tOsMutexData *OsMutexCreate(void)
This call is used to create the operating system dependent data to use a mutex.

– return: tOsMutexData*
Operating system dependent data.

– void OsMutexInit(tOsMutexData *tpMutex)
This call is used to initialise the operating system mutex object.

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 26 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

– tOsMutexData *tpMutex
Operating system dependent data.

– void OsMutexP(tOsMutexData *tpMutex)
This call is used to try and take the mutex.

– tOsMutexData *tpMutex
The mutex to take.

– void OsMutexV(tOsMutexData *tpMutex)
This call is used to release the mutex.

– tOsMutexData *tpMutex
The mutex to release.

– void OsMutexDestroy (tOsMutexData *tpMutex)
This call is used to destroy the operating system mutex initialised by the OsMutexInit call.

– tOsMutexData *tpMutex
The mutex to destroy.

– void OsMutexDelete (tOsMutexData *tpMutex)
This call is used to clean up the structure allocated and initialised by the OsMutexCreate call.

– tOsMutexData *tpMutex
The operating system dependent mutex data to clean up. After this call, the mutex data will be
invalid.

3.3.3.4 Interrupts

Remark that for some operating systems it is not possible to use the generic interrupt handling test code. In
such case specific custom interrupt test software is written. These tests still follow the structure of the
generic tests.

All API calls concerned with this library use the “OsIrq” prefix.

Following data structure is defined:

– tOsIrqData
Data structure containing OS specific data.

Following API calls are defined:

– tOsIrqData* OsIrqCreate(int vector, void(*isr)(void*), void *arg)
This API call will create and set-up the tOsIrqData structure.

– Int vector
Interrupt vector to connect interrupt handler on (use the IrqGenXGetVector() call to get this from the
interrupt generating library).

– void(*isr)(void*)
The interrupt handler to be called from the interrupt.

– void *arg
Argument to be passed to the interrupt handler.

– void OsIrqDelete(tOsIrqData* Irq)

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 27 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

This API call will clean-up and free the tOsIrqData structure.

– tOsIrqData* Irq
Data structure containing OS specific data.

– void OsIrqEnable(tOsIrqData* Irq)
API call used to enable the interrupt.

– tOsIrqData* Irq
Data structure containing OS specific data.

– void OsIrqDisable(tOsIrqData* Irq)
API call to disable the interrupt.

– tOsIrqData* Irq
Data structure containing OS specific data.

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 28 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

4 The tests described

4.1 Calibration system test (CAL)
These tests are used to calibrate the tracing overhead in comparison with the processing power of the
platform. This is important to understand the accuracy of the measurements done in scope of this report.

Here the minimum time between two traces is measured, which shows the time duration of taking a
sample. The results in the evaluation report are the trace timestamps decremented with this value.

To detect how much the impact is of the tracing system in comparison with CPU performance a second test
is done. In this test, the loop time is measured and compared with the tracing overhead.

In short:

<test name> description

P_TRC Measure the tracing overhead

P_CPU Measure the CPU performance in comparison with the
tracing overhead

4.1.1 Tracing overhead (CAL_P_TRC)

This test will calibrate the tracing system overhead. The result found will not only be used to have an idea
of the overhead but also to depict the accuracy of the measurements. If the trace delay is stable and
known, then the measurement accuracy will be better than with an unstable delay. Therefore, the test loop
will disable interrupts during the two traces to avoid any influence from the platform on the time
measurements. For this the critical section operating system calls are used.

In the rest of the report, the tracing overhead will be subtracted from the results obtained.

4.1.1.1 Test Parameters

None

4.1.1.2 Measurements done

Following times are measured during the test:

– Tracing overhead.

4.1.1.3 Test results

Results will be shown in a table as shown below:

Test result

Average tracing overhead In nsec

Minimum tracing overhead In nsec

Maximum tracing overhead In nsec

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 29 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

Test result

Tracing accuracy In nsec

Critical section primitive
present?

YES or NO

4.1.2 CPU power (CAL_P_CPU)

This test will calibrate the CPU performance and the memory bandwidth of the platform being used. This
test does measurements with the same code in 2 cases: cached (loop) or not cached (un-looped) code and
data. As such the effects of the cache can be calculated and performance of platforms can be compared
with our standard platform (Pentium MMX 200 MHz platform).

4.1.2.1 Test Parameters

None

4.1.2.2 Measurements done

– Duration of CPU test loop (cached and not cached)

– Duration of memory test loop (cached and not cached)

4.1.2.3 Test results

Caching effect:

Test no cache cached cache effect

CPU test duration

MEM test duration

Average caching effect (CPU and MEM)

The same test on our standard platform (Pentium MMX 200 MHz):

Test no cache cached cache effect

CPU test duration 401.9 us 270.8 us 1.48

MEM test duration 5.442 ms 1.512 ms 3.60

Average caching effect (CPU and MEM) 2.54

Performance compared with our standard platform, larger values mean faster:

Test no cache cached

CPU performance factor

MEM performance factor

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 30 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

4.2 Clock tests (CLK)
The clock test measures the time an operating system needs to handle its clock interrupt. Some platforms
(like the x86 motherboard) have the clock interrupt on the highest system interrupt. This is certainly not the
best choice for real-time systems. In such a case, a clock interrupt showing up during a testcycle will cause
a delay in the measurement for that cycle. If any test takes multiple operating system clock cycles to finish,
than these spikes will be seen in the test results.

This is the reason why this test is the first run in our test bench. The table below shows the different tests
done:

<test name> description

B_CFG Test the internal clock period setting

P_DUR Test the clock interrupt processing duration

4.2.1 Operating system clock setting (CLK_B_CFG)

This will test the setting of the clock tick in the operating system. In our tests we use the default setting from
the OS vendor. This test verifies the setting, or detects the clock tick timing if it is not settable.

4.2.1.1 Test Parameters

None

4.2.1.2 Measurements done

None

4.2.1.3 Test results

These test results only show the clock tick time. They are not used to validate a system as being real-time.
If the test would not behave as expected (e.g. sleep behavior problem) than the clock time is measured by
other means.

Results will be shown in a table as shown below:

Test result

Test succeeded YES or NO

Tested clock period Time measured in msec

Clock period adaptable YES or NO

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 31 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

4.2.2 Clock tick processing duration (CLK_P_DUR)

This will test the clock tick processing duration in the kernel. The test can be parameterized to detect any
impact of the system load on the clock processing time.

This test will have only one application thread running. This application performs busy loops. The time
needed for each busy loop is measured and expected to always be the same. However, if during the loop a
clock interrupt occurs, the busy loop will be interrupted for some time. The differences between the longer
busy loop duration and the normal busy loop duration can only be caused by the clock interrupt, as al other
interrupts are turned off during this test.

The test results are extremely important, as the clock interrupt will disturb all other measurements done in
this framework.

It may be possible to disable the clock interrupt for some operating systems and platforms. Of course, then
some other OS features may cease functioning such like “perform any delay” or “waiting with timeout”.
Tests of these are then impossibleest.

4.2.2.1 Test Parameters

None

4.2.2.2 Measurements done

– Clock duration time

4.2.2.3 Test results

These test results show the clock tick processing duration. The test results are shown in a diagram
together with a table containing the normal busy loop time and the loop time when a clock interrupt
occurred.

The loop counter used in the test loop has to be chosen so that:

– Enough loop samples including a clock interrupt are gathered (some hundreds)

– Time can be measured accurately.

With long loops, more samples are generated, but the timing accuracy of the samples becomes less (timing
is done with a 16-bit exponential timing system: limited bit size of mantissa!).

Test result

CLOCK_LOOP_COUNTER The value set for the test loop.

Normal busy loop time Time in µs of the busy loop when parameter
above is used for this test.

Busy loop time with clock interrupt Time in µs of the busy loop when an clock irq
occurred.

Clock interrupt duration Difference between the two values above.

Diagrams:

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 32 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

– Clock duration time

4.3 Thread tests (THR)
Thread tests shows the behavior of the scheduler. What is the thread switch latency? Does it depend on
system load? What’s the time to create/delete a thread? Are the priorities handled well? These are some of
the questions we solve with the Thread tests.

The table below shows the different tests done:

<test name> description

B_NEW Thread creation behavior: when creating a thread with lower,
same or higher priorities how are these scheduled?

B_RR Test checks the Round Robin scheduling of threads at the
same priority level.

P_SLS Thread switch latency performance between same priority
threads.

P_NEW Thread creation and deletion time.

4.3.1 Thread creation behaviour (THR_B_NEW)

This will test the thread creation behavior. Does the operating system behave as a real-time operating
system should behave?

This test checks following issues when generating a thread:

– When creating a thread with a lower priority than the creating thread, following rule applies: “The new
thread shall not run while the creating thread is active”.

– When creating a thread with the same priority than the creating thread, following rule applies: “The new
thread should not be activated immediately; it should be put at the tail of the ready thread queue”.

– When yielding the processor, another thread in the same priority FIFO queue (if any) shall run.

– When creating a thread with a higher priority than the creating thread, following rule applies: “The new
thread shall preempt the creating thread and become active immediately.

– When a thread lowers its priority below the priority of another thread that is in the ready-to-run state,
then the thread shall be preempted and the highest priority ready-to-run thread shall be activated.

If these tests fail, most other thread tests will not be able to run.

4.3.1.1 Test Parameters

None

4.3.1.2 Measurements done

None

4.3.1.3 Test results

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 33 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

If the test fails, then the operating system will NOT receive the RT-VALIDATED logo!

The data trace of this test should be:

/* normal behavior */
STATE_START
STATE_YIELDING
STATE_MIDDLE_ACTIVE
STATE_HIGH_ACTIVE
STATE_LOW_ACTIVE
STATE_END

Also no error trace may be generated, otherwise the test invalidates the OS as being RT!

Results will be shown in a table as shown below:

Test result

Test succeeded YES or NO

Lower priority not activated? OK or FAILED

Same priority at tail? OK or FAILED

Yielding works? YES or NO

Higher priority activated? OK or FAILED

Diagrams: none

4.3.2 Round robin behaviour (THR_B_RR)

This test checks if the scheduler uses a fair round robin mechanism when threads are having the same
priority and all are in the ready-to-run state!

All threads are in the ready-to-run state so on each operating system clock tick (end of time slice) the round
robin mechanism should schedule the next thread in the ready queue and store the current thread at the
end of the FIFO queue.

Remark that not all operating systems use round robin scheduling between threads running at the same
priority. As this feature is not needed for guarantying real-time behavior, an OS without this feature can still
receive the “RT-VALIDATED” logo.

4.3.2.1 Test Parameters

– PAR_THREADS_QTY: number of threads that will be used in this test, the number of threads that have
to be scheduled in the FIFO
In normal circumstances, this test is run only with PAR_THREADS_QTY set to 10. If anomalies are
detected, other values than 10 may be used trying to understand the bad behavior.

4.3.2.2 Measurements done

None

4.3.2.3 Test results

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 34 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

If the operating system uses a fair round robin system for scheduling ready-to-run threads of the same
priority, then each clock tick a trace will show up. Also the order of the trace is important: the thread with ID
PAR_THREADS_QTY will be the first followed by decreasing thread IDs until zero is reached. Then it
should restart the same scenario all over again.

When there is no fair scheduling it can occur that a thread will loop endlessly. After some time the main
thread will higher its priority to stop the test in all cases.

Results will be shown in a table as shown below:

Test result

Test succeeded YES or NO

Time slice following this test Time slice in ms

Diagrams: none because it deals with behavior

4.3.3 Thread switch latency between same priority threads (THR_P_SLS)

This test will measure the time to switch between threads of the same priority. Therefore the
“voluntary_yield_processor_to_other_thread” system call is used. If the THR_B_NEW test fails, then this
test cannot be run.

A number of threads at the same priority will be generated. Each thread will yield another thread. These
threads are handled in round-robin mode (if supported by the OS).

As for a voluntary yield, only the ready-to-run queue of the same priority level has to be checked, this test
may have better results than the switch latency test for different priorities.

The aim here is to check the FIFO queuing mechanism: this should not depend on the number of threads in
the FIFO: otherwise the scheduler is has not a predictable behavior.

4.3.3.1 Test Parameters

– PAR_THREADS_QTY: number of threads that will be used in this test, the number of threads that have
to be scheduled in the FIFO
This test is run with PAR_THREADS_QTY set to:

– 2

– 10

– 128

4.3.3.2 Measurements done

Test Sample qty Avg Max Min

Thread switch latency, 2 threads

Thread switch latency, 10 threads

Thread switch latency, 128 threads

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 35 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

4.3.3.3 Test results

If the test fails, then the operating system will NOT receive the RT-VALIDATED logo!

Results will be shown in a table as shown below:

Test result

Test succeeded YES or NO

Diagrams:

– Thread switch latency between two threads.

– Thread switch latency between ten threads.

– Thread switch latency between 128 threads.

Remark that for the OS to be predictable, the number of threads in the ready queue may not have an
impact on the switch latency measured.

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 36 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

4.3.4 Thread creation and deletion time (THR_P_NEW)

This will test the time to create a thread and the time to delete a thread. Different scenarios are possible,
from which the following are tested here:

– Scenario “NER” (NEver Run): The created thread has a lower priority than the creating thread and is
deleted before it had any change to run: in this test no thread switch occurs.

– Scenario “RTE” (Run and TErminate): The created thread has a higher priority than the creating thread
and activates. The created thread immediately terminates itself (thread does nothing).

– Scenario “RNT” (Run, but does Not Terminate): The same scenario as above, but the created thread
does not terminate (it lowers it’s priority when it is activated).

In the scenarios “RTE” and “RTN”, the creation time is the duration from the system call creating the thread
to the time when the created thread activates. For the “NER” scenario the creation time is the duration of
the system call.

Remark that this test cannot run if the THR_B_NEW test failed!

4.3.4.1 Test Parameters

– SCENARIO: test scenario selected

– SC1: NER, Never run

– SC2: RTE, Run and terminate

– SC3: RNT, Run, but do not terminate

4.3.4.2 Measurements done

Test Sample qty Avg Max Min

Thread creation, never run

Thread deletion, never run

Thread creation, run and terminate

Thread deletion, run and terminate

Thread creation, run and block

Thread deletion, run and block

4.3.4.3 Test results

If the test fails, then the operating system will NOT receive the RT-VALIDATED logo!

Results will be shown in a table as shown below:

Test result

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 37 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

Test result

Test succeeded YES or NO

Diagrams:

– Thread creation time in the “NER” scenario (duration of system call).

– Thread deletion time in the “NER” scenario.

– Thread creation time in the “RTE” scenario (duration of system call start to activated thread).

– Thread deletion time in the “RTE” scenario.

– Thread creation time in the “RNT” scenario (duration of system call start to activated thread).

– Thread deletion time in the “RNT” scenario.

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 38 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

4.4 Semaphore tests (SEM)
This is testing the performance and the behavior of a counting semaphore. The counting semaphore is a
system object that protects for simultaneous accesses to some device or resource. This is well known as
the Dijkstra paradigm. A semaphore object has:

– A semaphore counter

– A P() function which tries to acquire the semaphore (from the Dutch language “Probeer” = Try). If the
counter is zero, this system call will block the calling thread until the semaphore is released by another
thread. If the semaphore counter is not zero, the counter will decrement and the thread continues.

– A V() function which releases the semaphore (from the Dutch language “Vrij” = Release). This will
increment the semaphore counter.

Remark that in scope of this test, only protection semaphores between threads belonging to the same
process are tested.

In most operating systems, there exists system calls for a simpler version of the counting semaphore
object: where the counter can only be zero or one (acquired or free). In the next section we discuss such
an object that we will call the “MUTEX” (MUTual EXclusive semaphore).

The table below shows the different tests done for this object:

<test name> description

B-LCK Semaphore protection behavior.

B-REL Verifies that blocked thread with highest priority activates on
a release operation.

P-NEW Semaphore creation and deletion time.

P-ARC Acquire and release time in contention case

P-ARN Acquire and release time in no contention case

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 39 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

4.4.1 Semaphore locking test mechanism (SEM_B_LCK)

This will test if the counting semaphore locking mechanism works as expected. The P() call should block
only when the count is zero. The V() call should increment the semaphore counter. In the case the
semaphore counter is zero, the V() call should cause a rescheduling in the kernel: indeed blocked threads
may be activated.

The aim of this test is to detect the good behavior of the the counter functions.

4.4.1.1 Test Parameters

None

4.4.1.2 Measurements done

Only state behavior is measured.

4.4.1.3 Test results

If the test fails, then the operating system will NOT receive the RT-VALIDATED logo! In case where the test
fails in a way that the semaphore cannot guaranty some protection over shared objects, then the operating
system will receive the DID_NOT_QUALIFY logo.

The data trace of this test should be:

/* normal behavior */
STATE_HIGH_ACTIVE
STATE_LOW_ACTIVE
STATE_HIGH_ACTIVE
STATE_LOW_ACTIVE
STATE_HIGH_ACTIVE

Also no error trace may be generated, otherwise the test invalidates the OS as being RT!

Results will be shown in a table as shown below:

Test result

Test succeeded YES or NO

Maximum semaphore value? Not tested: from documentation

Rescheduling on free? OK or FAILED

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 40 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

4.4.2 Semaphore releasing mechanism (SEM-B-REL)

This test verifies that the highest priority thread being blocked on a semaphore will be released by the
release operation. This should be independent of the order of the acquisitions taking place.

Therefore the test is run in two scenarios:

– Where the highest priority thread acquires first the semaphore (called the scenario “HI”)

– Where the lowest priority thread acquires first the semaphore (called the scenario “LOW”)

The release result of both scenarios should be the same: the highest priority thread should be activated
upon the release.

4.4.2.1 Test Parameters

– SCENARIO: test scenario selected

– 1: “HI” Highest priority thread acquires first.

– 2: “LOW” Lowest priority thread acquires first.

4.4.2.2 Measurements done

Only state behavior is measured

4.4.2.3 Test results

If the test fails, then the operating system will NOT receive the RT-VALIDATED logo! However, the
semaphore can still be used to protect shared data and devices.

The data trace of this test should be:

/* behavior in “HI” */ /* behavior in “LOW” */
STATE_LOW_ACTIVE STATE_LOW_ACTIVE
STATE_HIGH_ACTIVE STATE_MIDDLE_ACTIVE
STATE_MIDDLE_ACTIVE STATE_HIGH_ACTIVE
STATE_LOW_ACTIVE STATE_LOW_ACTIVE
STATE_HIGH_ACTIVE STATE_HIGH_ACTIVE
STATE_LOW_ACTIVE STATE_LOW_ACTIVE
STATE_MIDDLE_ACTIVE STATE_MIDDLE_ACTIVE
STATE_LOW_ACTIVE STATE_LOW_ACTIVE

Results will be shown in a table as shown below:

Test result

Test succeeded YES or NO

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 41 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

4.4.3 Time needed to create and delete a semaphore (SEM_P_NEW)

This will test the time needed to create a semaphore and the time to delete it. The deletion time is checked
in two cases:

– Where the semaphore is used between the creation and deletion (the “USE” scenario).

– Where the semaphore is not used between the creation and deletion (the “DUM” or dummy scenario).

For a good real-time operating system it is expected that there is no difference between the two scenarios.
If a difference is detected, then this probably means that the operating system handles some initializations
on the semaphore on its first use (making the first use slower, which is not desirable in a RT system).

4.4.3.1 Test Parameters

– SCENARIO: test scenario selected

– 1: “USE” semaphore used.

– 2: “DUM” semaphore not used: thus a dummy semaphore.

4.4.3.2 Measurements done

Following times are measured during the test:

Test Sample qty Avg Max Min

Semaphore creation time, used

Semaphore deletion time, used

Semaphore creation time, never used

Semaphore deletion time, never used

4.4.3.3 Test results

If the test fails, then the operating system will NOT receive the RT-VALIDATED logo!

Results will be shown in a table as shown below:

Test result

Test succeeded YES or NO

Diagrams:

– Semaphore creation time, used.

– Semaphore deletion time, used.

– Semaphore creation time, never used.

– Semaphore deletion time, never used

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 42 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

4.4.4 Test acquire-release timings: no contention case (SEM_P_ARN)

This tests the acquisition and release time in the no contention case. As in this test case the semaphore
does not block nor causes any rescheduling (thread switch), the duration of the system call should be very
short.

In fact, the OS will only need to increase or decrease the semaphore counter in an atomic way.

4.4.4.1 Test Parameters

None

4.4.4.2 Measurements done

Following times are measured:

Test Sample qty Avg Max Min

Semaphore acquisition time, no contention

Semaphore release time, no contention

4.4.4.3 Test results

If the test fails, then the operating system will NOT receive the RT-VALIDATED logo!

Results will be shown in a table as shown below:

Test result

Test succeeded YES or NO

Diagrams:

– Semaphore acquisition time, no contention.

– Semaphore release time, no contention.

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 43 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

4.4.5 Test acquire-release timings: contention case (SEM_P_ARC)

This is used to test the time needed to acquire and release a semaphore depending on the number of
threads blocked waiting for the semaphore. It measures only the time in the contention case: this means
when the acquisition and release system call causes a rescheduling to occur.

The aim of this test is to verify if the number of blocked threads waiting for the semaphore has an impact on
these timings. So this will answer the question: “how much time the operating system needs to find out the
next thread to schedule?”.

This test is very important to detect how predictable the operating system is depending on the number of
blocked threads in the wait for semaphore list. When a good search algorithm is used the impact should be
small. This test also figures out where most time is spend in ordering the threads:

– During acquisition: when the thread gets in the blocked state.

– During release: when the thread gets in the read-to-run state.

This test will be done with a number of threads equal to the number of priorities available in the operating
system with a maximum of.

Remark that we are testing the contention case: so each measurement will always include the thread
switch latency!

4.4.5.1 Test Parameters

– None

4.4.5.2 Measurements done

Following times are measured:

Test Sample qty Avg Max Min

Semaphore acquisition time, contented

Semaphore release time, contented

4.4.5.3 Test results

If the test fails, then the operating system will NOT receive the RT-VALIDATED logo!

Results will be shown in a table as shown below:

Test result

Test succeeded YES or NO

Max number of threads
pending

128 or number of priority levels if less than 128

Diagrams:

– Semaphore acquisition time, contended.

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 44 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

– Semaphore release time, contended.

Most of the time, a zoom-in diagram will be shown to see the influence on the number of blocked threads.

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 45 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

4.5 Mutex tests (MUT)
Here the performance and the behavior of the mutual exclusive semaphore are tested.

Although the mutual exclusive semaphore (further called mutex) could be the same as the counting
semaphore where the count is one, this is not the aim of this test to copy the precious described tests. In
the scope of the framework, this test will look into the details of a mutex system object that avoids priority
inversion.

Details about the priority inversion situation can be found in [Doc. 2].

Different mechanisms exists to avoid a priority inversion scenario, most RTOS use one of these:

– Priority inheritance: the blocking thread will inherit the priority of the blocked thread.

– Priority ceiling: the priority of the blocking thread will be set to a high fixed (ceiling) priority.

In scope of this framework, it does not matter how the operating system avoids priority inversion. It only
detects if such a system actually does prevent the priority inversion.

If the operating system does not has such a mechanism, then this section will be skipped (tests will not be
done).

The tests in this section will also detect how much time it takes to deal with the priority inversion avoidance
mechanism.

The table below shows the different tests done for this object:

<test name> description

B_ARC Acquisition en release behavior in the contention case with
priority inversion.

Does the system call really avoid the priority inversion case?

P_ARC Acquire and release time in contention case with priority
inversion.

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 46 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

4.5.1 Priority inversion avoidance mechanism (MUT-B-ARC)

This test will determine if the system call under test prevents the priority inversion case. Therefore the test
will artificially create a priority inversion.

The flow chart, with the expected execution path is shown in the figure below (execution path in light
green). The important steps in the execution flow are:

– 1: The main test execution thread, which runs at low priority will create two other threads.

– A high priority thread, that will start execute immediately. This thread will block on the semaphore
“high”.

– A middle priority thread, with the priority between the creating and the high level thread. Also this
thread will block, now on the semaphore “middle”.

– 2: The main thread will acquire the mutex (so the critical section lock starts there).

– 3: The main thread will release the semaphore “high” so the high priority thread activates. This
simulates an external event in a real system.

– 4: The high level thread also acquires the mutex: as the mutex is taken, the high priority thread blocks,
and the low level priority activates again.

– 5: This is the crucial point: the low level thread activates the middle level thread (by releasing the middle
semaphore). If priority inversion protection is enabled, then the middle level thread will NOT activate!
Instead, the low-level priority thread has inherited the high level priority of the blocked high level thread
(or received the mutex ceiling priority). As this priority is now higher than the middle priority, the low
level thread continues!

– 6: The low level thread comes at the end of the critical section and releases the mutex. At that moment
the priority of the thread is restored and the operating system will schedule the high level thread when
the lock is released.

The rest of the flow is straightforward.

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 47 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

Main: low level
thread

Middle level
threadHigh level thread

Start two other
threads (high &

middle)

Create two
blocking

semaphores (high
& middle)

Acquire high
semaphore (block)

Acquire middle
semaphore (block)Acquire mutex

Release high
semaphoreAcquire mutex

Release middle
semaphore

End EndEnd

Release mutexRelease mutex

1

2
3

4

5

6

Figure: Priority inversion avoidance

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 48 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

When there is no priority inversion avoidance mechanism, the flow of the test will be as shown in the
following diagram. In that case the middle level thread will be activated first!

Main: low level
thread

Middle level
threadHigh level thread

Start two other
threads (high &

middle)

Create two
blocking

semaphores (high
& middle)

Acquire high
semaphore (block)

Acquire middle
semaphore (block)Acquire mutex

Release high
semaphoreAcquire mutex

Release middle
semaphore

End EndEnd

Release mutexRelease mutex

1

2
3

4

5

6

Figure: No priority inversion avoidance

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 49 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

In the figure below, the timing difference between the two scenarios is shown. It is clear that priority
inversion causes an extra delay (delta T) for the high level thread. As a result, the system becomes less
predictable. Do not forget that in a real live situations the middle priority thread can be active for a long
time!

Priority

Time

Acquire
mutex

release
middle

semaphore

Acquire
mutex

release
high

semaphore

high
thread

end

release
mutex

release
mutex

middle
thread

end

Priority

Time

Acquire
mutex

release
middle

semaphore

Acquire
mutex

release
high

semaphore

low
thread

end

release
mutex

release
mutex

middle
thread

end

low
thread

end

high
thread

end

delta T

Low level tr. Middle level tr. High level tr.

Timing diagrams

Therefore, an operating system that does not have any system call to avoid a priority inversion case will not
receive the RT-VALIDATED logo!

4.5.1.1 Test Parameters

None

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 50 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

4.5.1.2 Measurements done

None

4.5.1.3 Test results

If the test fails, then the operating system will NOT receive the RT-VALIDATED logo! However, it still can
receive the VALIDATED logo if the locking of the mutex is usable for disabling mutual access to some part
of the code.

The data trace of this test should be:

/* RT-VALIDATED */ /* VALIDATED */
STATE_LOW_ACTIVE STATE_LOW_ACTIVE
STATE_HIGH_ACTIVE STATE_MIDDLE_ACTIVE
STATE_LOW_ACTIVE STATE_LOW_ACTIVE
STATE_LOW_ACTIVE STATE_MIDDLE_ACTIVE
STATE_HIGH_ACTIVE STATE_LOW_ACTIVE
STATE_MIDDLE_ACTIVE STATE_HIGH_ACTIVE
STATE_LOW_ACTIVE STATE_LOW_ACTIVE

Results will be shown in a table as shown below:

Test result

Priority inversion avoidance
system call present

YES or NO

System call used

Test succeeded YES or NO

Priority inversion avoided YES or NO

Mechanism used if any? INHERITENCE or CEILING

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 51 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

4.5.2 Mutex acquire-release timings: contention case (MUT_P_ARC)

This is the same test as above, but performed in a loop. In this case, the time is measured to acquire and
release the mutex in the priority inversion case.

4.5.2.1 Test Parameters

None

4.5.2.2 Measurements done

Following times are measured:

Test Sample qty Avg Max Min

Mutex acquisition time, contended

Mutex release time, contended

4.5.2.3 Test results

If the test fails, then the operating system will NOT receive the RT-VALIDATED logo!

Results will be shown in a table as shown below:

Test result

Test succeeded YES or NO

Diagrams:

– Mutex acquisition time, contended.

– Mutex release time, contended.

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 52 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

4.6 Interrupt tests (IRQ)
Here the performance of the interrupt handling in the operating system and hardware is tested.

In a real-time system, interrupt handling is a major part of the system: indeed such systems are typically
event driven. The stress tests, which check how stable the interrupt latency is shows how much the kernel
uses a critical section with disabling interrupts. Real-Time operating systems do this as less and as short
as possible.

The table below shows the different tests done for this object:

<test name> description

B_SIM Behavior of nested interrupts: do they prioritize, or are they
handled in a FIFO way.

P_LAT Interrupt latency (from interrupt to interrupt handler),
hardware and operating system delay combined.

P_DLT Interrupt dispatch latency (from interrupt handler to
interrupted thread) when no rescheduling occurs.

S_SUS Maximum sustained interrupt frequency the system can
handle without loosing interrupts.

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 53 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

4.6.1 Simultaneous interrupt priority handling (IRQ_B_SIM)

This test verifies if simultaneous interrupts are handled prioritized. It answers the question if a lower priority
interrupt can be pre-empted by a higher-level interrupt.

Just like thread priorities, prioritization of interrupts makes higher level interrupts more predictable. Remark
that it is not always possible to change the priority of a certain interrupt: this depends largely on the
platform used.

Prioritization behaviour can easy tested by starting the interrupt generation of one device in the interrupt
handler of the other device. This is done in two scenarios, in one of the two scenarios the interrupt handler
will be interrupted by the other. In the other scenario the interrupt handler won’t be interrupted. If this is the
case, then prioritization occurs.

4.6.1.1 Test Parameters

– SCENARIO: test scenario selected

– 1: Interrupt handler A will initiate interrupt B.

– 2: Interrupt handler B will initiate interrupt A.

4.6.1.2 Measurements done

Only state change is measured

4.6.1.3 Test results

If the test fails, then the operating system will NOT receive the RT-VALIDATED logo!

Results will be shown in a table as shown below:

Test result

Test succeeded YES or NO

Interrupt pre-emption existing following the documentation? -

Lower level interrupt pre-empted by higher level interrupt? YES or NO

Higher-level interrupt not pre-empted by lower level interrupt? YES or NO

If not priority based: which mechanism is used? LIFO or FIFO

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 54 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

4.6.2 Interrupt latency (IRQ_P_LAT)

This measures the time it takes to switch from a running thread to an interrupt handler. So it only measures
the software latency.

The latency caused by the hardware: from interrupt line going high, until the processor starts the exception
vector, is not measured here.

4.6.2.1 Test Parameters

None

4.6.2.2 Measurements done

Following times are measured:

Test Sample qty Avg Max Min

Dispatch latency from interrupt handler

4.6.2.3 Test results

Diagrams:

– Dispatch latency from interrupt handler.

4.6.3 Interrupt dispatch latency (IRQ_P_DLT)

This measures the time it takes to switch from the interrupt handler back to the interrupted thread.

The total overhead on an interrupted thread is both the interrupt latency and the dispatch latency. Of
course also the duration of the interrupt handling itself has to be added.

4.6.3.1 Test Parameters

None

4.6.3.2 Measurements done

Following times are measured:

Test Sample qty Avg Max Min

Dispatch latency

4.6.3.3 Test results

Diagrams:

– Dispatch latency.

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 55 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

4.6.4 Interrupt to thread latency (IRQ_P_TLT)

4.6.4.1 Test results

This measures the time it takes to switch from the interrupt handler to the thread that is activated (by using
a semaphore if this can be provided by the OS) from the interrupt handler.

This can largely depend on the operating system under test. In the generic code the semaphore is used to
do this. However, in Linux for instance, there is no simple way to do this. Most drivers in Linux will block the
calling process and activate it again when data is available (interrupt occurred).

Most RTOS do provide such a mechanism.

4.6.4.2 Test results

Test Sample qty Avg Max Min

Latency from interrupt to activated thread

4.6.4.3 Diagrams

Diagrams:

– Latency from interrupt to activated thread.

4.6.5 Maximum sustained interrupt frequency (IRQ_S_SUS)

This test measures the probability an interrupt is missed: is the interrupt handling duration stable and
predictable?

The test is done on different levels, depending on the RTOS and the results of each test:

– 100 000 interrupts, initial phase: each test takes only some seconds.

– 1 000 000 interrupts, second phase based on the results from the first phase. This test still takes less
than a minute and gives already accurate results.

– 1 000 000 000 interrupts, takes some hours: to verify stability.

On some operating system the worst-case interrupt latency is so large, that it is impossible to do the test
with a billion interrupts. In such case, a smaller number of interrupts will be used.

4.6.5.1 Test results

Shown in a table as below. Remark that this table is just an example.

Interrupt
period

#interrupts
generated

#interrupts
serviced

#interrupts
lost

20 µs 100 000 100 000 0

20 µs 1 000 000 999 982 18

25 µs 1 000 000 1 000 000 0

25 µs 1 000 000 000 1 000 000 000 0

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 56 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

4.7 Memory tests (MEM)
This test will check if there are memory leaks in the operating system. It will create and delete in a loop
different type of operating system objects (threads, semaphores, mutex, …).

The table below shows the different tests on this subject:

<test name> description

B_LEK Test if there are memory leaks in the OS.

4.7.1 Memory leak test (MEM_B_LEK)

This test continuously create/remove objects in the operating system (threads, semaphores, mutexes, …).

4.7.1.1 Test Parameters

– None

4.7.1.2 Measurements done

Nothing: memory consumption is checked after a large number of test loops.

4.7.1.3 Test results

Results will be shown in a table as shown below:

Test result

Test succeeded YES or NO

Test duration (how long we let the endless loop run)

Number of main test loops done

©

 C
op

yr
ig

ht
 D

ed
ic

at
ed

 S
ys

te
m

s
Ex

pe
rts

. A
ll

rig
ht

s
re

se
rv

ed
, n

o
pa

rt
of

 th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t m
ay

 b
e

re
pr

od
uc

ed
 o

r
tra

ns
m

itt
ed

 in
 a

ny
 fo

rm
 o

r b
y

an
y

m
ea

ns
 w

ith
ou

t t
he

 w
rit

te
n

pe
rm

is
si

on
 o

f
D

ed
ic

at
ed

 S
ys

te
m

s
E

xp
er

ts
.

Experts

 The Evaluation Test Report Definition Page 57 of 57

ht
tp

://
w

w
w

.d
ed

ic
at

ed
-s

ys
te

m
s.

co
m

em
ai

l:
in

fo
@

de
di

ca
te

d-
sy

st
em

s.
co

m
RTOS Evaluation Project

Date: April 29, 2004 Doc EVA-2.9-GEN-03 Issue: 1

5 Appendix A: Document revision history

5.1 Issue 1.0 (April 29, 2004)
Initial version

