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Abstract 
The efficient markets hypothesis asserts that the price of an asset 
reflects all of the information that can be obtained from past 
prices of the asset. A direct corollary of this hypothesis is that 
stock prices follow a random walk, and that any profits derived 
from timing the market are due entirely to chance. In the ab-
sence of any ability to predict the market, the most appropriate 
strategy—according to proponents of the efficient markets hy-
pothesis—is to buy and hold. In this paper we describe a meth-
odology by which neural networks can be trained indirectly, 
using a genetic algorithm based weight optimisation procedure, 
to determine buy and sell points for financial commodities 
traded on a stock exchange. In order to test the significance of 
the returns achieved using this methodology, we compare the 
returns on four financial price series with returns achieved on 
random walk data derived from each of these series using a 
bootstrapping procedure. These bootstrapped samples contain 
exactly the same distribution of daily returns as the original 
series, but lack any serial dependence present in the original. 
Our results indicate that on some price series the return 
achieved is significantly greater than that which can be achieved 
on the bootstrapped samples. This lends support to the claim 
that some financial time series are not entirely random, and 
that—contrary to the predictions of the efficient markets hy-
pothesis—a trading strategy based solely on historical price data 
can be used to achieve returns better than those achieved using a 
buy-and-hold strategy. 

Keywords: Financial Trading, Neural Networks, Genetic Algo-
rithms. 

1 Introduction 

Approaches to forecasting the future direction of share 
market prices fall broadly into two categories—those that 
rely on technical analysis, and those that rely on funda-
mental analysis. While technical analysis uses only his-
torical data (past prices, volume of trading, volatility, 
etc.) to determine the movement in the price of some fi-
nancial asset, fundamental analysis is based on external 
information; that is, information that comes from the eco-
nomic system surrounding the market. Such information 
includes interest rates, prices and returns of other assets, 
and many other macro- or micro-economic variables. The 
use of technical analysis goes against the grain of 
conservative academic opinion, which regards this 
behaviour as irrational given the efficient markets 
hypothesis (Malkiel 1996). 

The efficient markets hypothesis asserts that the price of 
an asset reflects all of the information that can be ob-
tained from past prices of the asset. The argument is that 
any opportunity for a profit will be exploited immedi-
ately, and hence disappear. That is, the market is so effi-

cient that no one can buy or sell quickly enough to 
consistently benefit. A consequence of the efficient 
markets hypothesis is that stock prices follow a random 
walk and are unpredictable based on any amount of 
historical data. The most appropriate investment strategy 
is thus a buy-and-hold strategy.  

Despite the implications of the efficient markets hypothe-
sis, many traders continue to make buy and sell decisions 
based on historical data. These decisions are made under 
the premise that patterns exist in that data, and that these 
patterns provide an indication of future movements. If 
such patterns exist, then it is possible in principle to apply 
automated pattern recognition techniques such as neural 
networks to the discovery of these patterns.  

Several sources have reported on the simulation of trad-
ing agents based on Artificial Neural Networks (ANNs) 
(White 1988; Kimoto et al 1990; Yoon & Swales 1991; 
Weigend & Gershenfeld 1994). While the traditional ap-
proach to supervised neural network weight optimisation 
is the well-known backpropagation algorithm (Rumelhart 
& McClelland 1986), Beltratti, Margarita and Terna 
(1996) report on the use of genetic search for neural net-
work weight optimisation in this domain. One of the ad-
vantages of genetic search as a weight-optimisation tech-
nique is that it allows flexibility in the choice of criteria 
that can be used as an objective function to guide search 
through the space of weight configurations. Thus, rather 
than making buy/sell decisions on the basis of a numeri-
cal prediction of the next day’s price, genetic weight op-
timisation allows a trading regime to be discovered that 
optimises the financial return over some training period.  

In this paper we describe the methodology by which neu-
ral networks can be trained indirectly, using a genetic 
algorithm based weight optimisation procedure, to deter-
mine buy and sell points for financial commodities traded 
on a stock exchange. In order to test the significance of 
the returns achieved using this methodology, we compare 
the returns on four financial time series with returns 
achieved on random walk data derived from each of these 
time series using a bootstrapping procedure. The boot-
strapped samples contain exactly the same distribution of 
daily returns as the original series, but lack any serial 
dependence present in the original. Our results indicate 
that on some price series the return achieved is signifi-
cantly greater than that which can be achieved on the 
bootstrapped samples. This lends support to the claim that 
some financial time series are not entirely random, and 
that—contrary to the predictions of the efficient markets 
hypothesis—a trading strategy based solely on historical 



price data can be used to achieve returns better than those 
achieved using a buy-and-hold strategy. 

The paper is organized as follows. Section 2 introduces 
the trading problem and outlines the methodology that we 
use to train the network to represent a financial trading 
strategy. Section 3 describes the experimental design and  
includes a description of the bootstrapping procedure 
used to create random samples and the performance 
benchmark used for testing. Section 4 presents empirical 
results, Section 5 provides a discussion of these results, 
and Section 6 concludes the paper. 

2 Neural Networks for  Automated Trading 

One approach to developing neural network trading mod-
els is to first train the neural network to predict the value 
of the closing price of some asset one or more days into 
the future. An entry/exit (i.e. buy or sell) decision can 
then be made on the basis of this prediction. This section 
describes an alternative approach that does not attempt 
exact numeric prediction of the asset value, but rather, 
attempts to recognize patterns in the input data that can 
provide clues as to the optimal points to make buy or sell 
decisions.  

The neural network buying and selling agent we use con-
sists of an input layer, one hidden layer of sigmoidally 
activated units, and a single sigmoidally activated output 
that is thresholded such that output values above 0.5 are 
interpreted as a buy signal, and all other values are inter-
preted as a signal to sell. The inputs to the network are 
typically the price of the asset at the close of trade on the 
previous trading day, and variables derived from this. 
These could include moving averages, various delayed 
inputs (price two days prior, etc.).1 The network is shown 
schematically in Figure 1.  

The buy and sell signals that are generated by the net-
work, in conjunction with the particular trading strategy 
that is adopted, determines the trading position. The trad-
ing strategy that we adopt is a one-point buying and sell-
ing strategy. This means that all available capital is in-
vested in shares, or all capital is invested in some low-
risk fixed interest security. On the basis of the trading 
signal issued by the network, either the low-risk security 
is sold and shares are bought (buy signal), or vice-versa 
(sell signal). Note that shares can only be sold if the in-
vestor is currently ‘ in the market’ , and bought if the in-
vestor is “not in the market” . 

The most common approach to neural network weight 
optimisation is backpropagation training (Rumelhart &  
McClelland 1986). Backpropagation is a supervised train-
ing algorithm that relies on the availability of a set of 
labelled training data. However, direct (i.e. supervised) 
training of the network is not possible in this case, since 
we are not supplied with labelled training data. That is, 
we do not know a priori what are the optimal buy and sell 

                                                           
1 Variables representing other information can also be used; e.g. 
the value of some other index or asset. In this study we restrict 
ourselves only to the prices of the asset under consideration, and 
variables that can be directly derived from this series. 

points. An alternative approach is to discover a set of 
network weights indirectly by using some criterion to 
measure the performance of the trading decisions made 
by the agent, and to use this measure to guide search 
through the space of weight configurations. Genetic algo-
rithms provide one means of doing this. 

Genetic algorithms (Goldberg 1989; Holland 1975) have 
been extensively applied to complex parameter tuning 
problems in which various parameters of a system inter-
act in unknown and non-linear ways resulting in a com-
plex, irregular response surface (Bäck and Schwefel 
1993). They have also been applied to neural network 
weight optimisation (Whitley 1995). Their performance 
relies fundamentally on the formulation of an objective 
function that is able to evaluate the success of competing 
individuals in solving the problem at hand. Since we wish 
to discover a neural network trading agent that is able to 
maximize returns, we must formulate an objective func-
tion that determines the return made by the agent over 
data representing the value of the asset price over some 
period of time. The optimality of the agent’s decisions 
can be measured in terms of the financial return achieved 
in following the agent’s decisions.  

2.1 Calculating Financial Return 

Assuming that an investor has a choice of investing her 
capital in either shares or a low-risk fixed interest secu-
rity, the accumulation of wealth over a period of N days 
can be expressed as: 
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where rN is the total return at day t, rf is the return rate of 
the fixed interest security calculated daily, rm,t = (Pt - Pt-1) 

/ Pt-1 is the market return at day t where Pt is the share 
price at time t, 

�
t-1 is a delta function which equals 1 if 

capital is invested in shares at the completion of trading 
on day t-1 and 0 otherwise, c is the commission rate on a 

trade, and '
1−tδ  is a delta function which equals 1 if a 

trade occurs at the end of day t-1 and 0 otherwise. Thus, 
the first factor appearing in Equation 1 represents the 
daily return rate that is applicable for the current day (i.e. 
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Figure 1.  Neural network architecture. 



the market return rate, or the fixed interest return rate), 
and the second factor provides an adjustment for the cost 
of transactions.  

2.2 Genetic Weight Optimisation 

A set of neural network weights can be represented as a 
binary string by encoding each (real valued) weight as a 
binary string, and then concatenating each of these indi-
vidual strings together.2 Genetic search proceeds as fol-
lows. A population of individuals, each representing a 
distinct neural network, is generated. Each of these net-
works is evaluated by following its trading predictions 
over the period represented by a set of historical training 
data and determining the return at the end of this period. 
The fitness of an individual is measured directly as the 
return that it is able to achieve. Reproduction, crossover 
and mutation operators are then applied to produce a new 
generation, with fitter individuals having a greater likeli-
hood of contributing offspring to the next generation. 
This procedure is allowed to proceed until either a prede-
termined number of generations has been reached, or un-
til there is no further increase in fitness. At the comple-
tion of search, the best network is used to make buy/sell 
decisions over some test period. 

2.3 Moving-Windows Training/Testing  

The procedure described above can be used to discover a 
set of network weights representing a trading strategy that 
performs well on a set of training data. The network can 
then be applied to some out of sample period to determine 
the placement of buy and sell decisions. In order to test 
the performance over some extended period we use a 
moving windows approach in which a pair of train-
ing/testing windows are advanced by N days after each 
training/testing cycle, where N is the number of days in 
each test period. This is shown schematically in Figure 2.  
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Figure 2. Moving windows. Testing the system over a large 
period of time can be achieved using a moving-window ap-
proach. In each cycle the training/testing window is advanced 
by N days, where N is the number of days in each forecast pe-
riod. 

                                                           
2 Because of this low-level encoding scheme, the standard ge-
netic operators could be used without modification. However, 
we use a modified form of crossover called multi-point re-
stricted crossover. This crossover operator works by selecting a 
crossover point within each weight, and restricting the crossover 
to within weights. 

The advantage that using such a moving window ap-
proach has over that of using a single training/test cycle is 
that it allows for the fact that the prediction model may 
change over time. That is, a training strategy that was 
optimal in the past may not be optimal when projected 
too far into the future. 

2.4 Previous Results 

Based on previous work (Skabar & Cloete 2001; Cloete 
and Skabar 2001) we highlight the following observa-
tions. Firstly, there is usually a great variation in per-
formance depending on the split between training and test 
sets. This variation arises not only due to the placement 
of starting and ending points for the test and training sets, 
but also from the size of these sets. For example, using a 
24-day test window can lead to significantly different 
results from using a 25-day window. These observations 
are also supported by Le Baron & Weigend (1994) who 
state that “ the variation due to different resamplings … is 
significantly larger than the variation due to different 
network conditions” . However, the dependence on train-
ing window size does not appear as significant. 

As a consequence of this, it is often possible to obtain 
good results by sufficient fiddling with the parameters, a 
form of so called data-snooping. Data-snooping occurs 
when a given set of data is used more than once—
typically once for model parameter selection (e.g. select-
ing optimal values for training and testing size windows), 
and once for inferencing. The problem with using the 
same data for multiple purposes in this way is that it leads 
to the possibility that the results achieved may be due to 
chance rather than an inherent merit in the method.  

A second set of observations concerns the complexity of 
the network required to represent the trading strategy. In 
Cloete &  Skabar (2001) we generated a training set of 
buy/sell decisions using the network trained by genetic 
learning and then further trained this network using back-
propagation with Structured Learning with Forgetting 
(Ishikawa 2000). The purpose of doing this was to obtain 
a network that was more amenable to human interpreta-
tion. We found that networks trained using a large num-
ber of input variables can usually be reduced to much 
smaller networks that only use two variables (e.g. a short 
term moving average and a longer term moving average). 
Furthermore, the results were found to often be not highly 
sensitive to the period of these moving averages. We also 
observed that networks with few units in the hidden layer 
are sufficiently complex to model a good trading strategy, 
and that in some cases, performance using linear rules 
(i.e. no hidden layer) can actually be better than that ob-
tained using a hidden layer. 

3 Exper imental Design 

As described in the introduction, a consequence of the 
efficient markets hypothesis is that price series follow a 
random walk, and hence any trading strategy based on 
timing or predicting the market will never consistently 
outperform a simple buy-and-hold strategy. However the 
trading strategy described above has been observed to 
outperform a buy-and-hold strategy on some financial 



price series (Skabar &  Cloete 2001; Cloete and Skabar 
2001). How might we determine whether the observed 
returns achieved by using the neural network trading 
agent to time buy and sell points based on historical data 
are real or anomalous?  

One way of testing this is to compare the performance of 
the procedure on real data with performance on one or 
more sets of random walk data. If performance on the 
random data does not differ significantly with that on real 
data, then we cannot claim to have discovered any real 
predictability. We first address the problem of generating 
random walk data. 

3.1 Bootstrapping 

We would like to compare the return performance on the 
real data with performance on random data that has the 
same empirical distribution of daily returns, but without 
the serial dependence—if any—that is present in the 
original series. If we knew the precise form of the distri-
bution of daily returns present in the original data then we 
could simply sample from this distribution to construct 
our randomised datasets. However, we do not know the 
nature of this distribution. The difficulty of determining 
the precise distributional form can be avoided by direct 
sampling from the actual returns present in the original 
series. This technique is generally referred to as ‘boot-
strapping’  the original series (Efron and Tibshirani 1993; 
Levich and Thomas 1993). The bootstrapping technique 
that we use can be described as follows: 

Step 1: Obtain the return series from the original price 
series. This is the series of daily returns, r, where r is the 
value of the index at the close of the current day’s trading 
divided by the value at the close of the previous day’s 
trading i.e., rt = Pt ÷ Pt-1. 

Step 2: Create a bootstrap return series by sampling 
(without replacement) from the return series obtained in 
step (1). 

Step 3: Calculate the bootstrap price series for each boot-
strap sample using Pt = r t × Pt-1.  

The price series generated in this way are pseudo price 
series that retain all of the distributional properties of the 
original series, but do not contain the serial dependence 
present in the original series.  

Note that in Step 2 we have the choice of sampling either 
with or without replacement. There is a distinct methodo-
logical advantage in sampling without replacement. Be-
cause the values of each price series will be identical both 
at the start and end of the test period, the buy-and-hold 
return for each pseudo series will be identical to that for 
the original series. This is important because it allows us 
to use as an independent performance benchmark the 
return of the network trained on the time series relative to 
the buy-and-hold return.3 

                                                           
3 In order to achieve this, we have actually had to perform a 
double bootstrap—one for the prices in the training period, and 
one for the process in the test period. 

At this point it is worth emphasizing that if the efficient 
markets hypothesis holds true (i.e. if financial time series 
are truly random), then each of the pseudo-series pro-
duced using the above procedure is as equally likely to be 
observed as is the original series. If each of the series are 
random, then we would not expect a significant differ-
ence between the returns achieved from applying the neu-
ral network trader to these (random) price series. 

3.2 Hypothesis Testing 

We are interested in determining whether the return 
achieved by applying the procedure of Section 2 to a real 
price series differs significantly to that achieved by apply-
ing it to the pseudo price series. Thus, the null hypothesis 
can be expressed as follows: 

H0: There is no significant difference between the 
return achieved when the procedure is ap-
plied to the real time series and the return 
achieved when the procedure is applied to the 
pseudo time series. 

The corresponding alternative hypothesis is thus: 

H1: There is a significant difference between the 
return achieved when the procedure is ap-
plied to the real time series and the return 
achieved when the procedure is applied to the 
pseudo time series. 

The null hypotheses can be tested by applying the proce-
dure we have described in Section 2 to each of the pseudo 
time series that have been produced using the bootstrap-
ping procedure. This will result in some empirical distri-
bution of overall returns. The return on the original series 
can then be compared with this distribution of returns and 
a p-value obtained. The p-value simply provides the 
probability of observing a result as extreme, or more ex-
treme, than that which would be expected if the null hy-
pothesis were true; the smaller the p-value, the less likely 
the null hypothesis is true.4 Rejection of a null hypothesis 
would allow us to accept the alternative hypothesis that 
the return achieved on the original price series is signifi-
cantly different to that which we would be expected if the 
series was random. And this, in turn, would imply that 
there is some serial dependence in the original time series 
(which is not present in the pseudo time series), thus pro-
viding support against the efficient markets hypothesis. 

3.3 Benchmark Compar ison 

As described above, the decision to sample the original 
return series without replacement results in pseudo price 
series which have an overall return which is identical to 
that of the original price series over the test period. This 
means that the returns that are achieved can be compared 
directly to those of a buy-and-hold strategy. This is an 
advantage because we are often interested in determining 
how the return achieved by some trading strategy com-
pares with the buy-and-hold return. 

                                                           
4 The usual convention is to reject the null hypothesis if the p- 
value is less than 0.05; that is, if chance of observing such an 
extreme result is less than 1 in 20. 



The experimental procedure that we adopt can be summa-
rised as follows: 

1. Obtain the series representing the price of the finan-
cial commodity of interest at the close of trading on a 
set of consecutive trading days. 

2. Create N random walk pseudo price series by apply-
ing the bootstrapping methodology to the original 
price series (i.e. the series in Step 1 above). 

3. Apply the neural network trading procedure de-
scribed in Section 2 to determine the overall return 
on the original price series. 

4. Apply the neural network trading procedure to de-
termine the overall return on each of the random 
walk pseudo price series, thus generating an empiri-
cal distribution of returns for the random walk data. 

5. Determine the probability of observing the return 
achieved in (3) given the empirical distribution ob-
tained in (4). 

Note that in order to avoid the possibility of data-
snooping (i.e. fluking a good result), the return measured 
on the original price series (Step 3 above) should be cal-
culated and averaged over several trials.  

4 Empir ical Results 

This section describes the application of the above proce-
dure to the following four financial indices: the Dow 
Jones Industrial Average, the Australian All Ordinaries, 
the S&P500, and the NASDAQ.5 All of the experiments 
are based on daily close values of the indices over the 5-
year period from 1 July 1996 to 30 June 2001. Out of 
sample results cover the last 4 years of this 5-year pe-
riod.6 

The network architecture that was used in all experiments 
consisted of a single layer containing 2 sigmoidally acti-
vated units, and a single sigmoidally activated output. In 
each experiment, only two network input variables were 
used: a 5-day moving average (MA5) and a 30-day mov-
ing average (MA30). Both input variables were scaled 
linearly between 0 and 1. The commission rate on each 
trade (the value of c in Equation 1) was set at 0.1%. 

Figure 3 shows the four financial price series, each ac-
companied by two of the 25 pseudo series produced by 
bootstrapping the original series using the procedure out-
lined in Section 3.1. Note that the values of each price 
series are identical both at the start and end of the 40-day 
test period. This means that the buy-and-hold return for 
each pseudo series will be identical to that for the original 
series.  

                                                           
5 This presumes the existence of an investment product (e.g. a 
unit trust) which purchases according to the make-up of the 
index (i.e. the investment fund manager invests in all companies 
represented in the index). 
6 It is not possible to provide test results over the entire 5 year 
period, since the training window size is 250 days (1 year). 
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Figure 3.  Original time series and two pseudo time series (a) Dow 
Jones Industrial; (b) Australian All Ordinaries; (c) S&P500; (d) 
NASDAQ. Pseudo series are constructed by sampling without 
replacement from the set of daily returns present in the original 
time series. 



In order to help avoid the possibility of data-snooping, the 
procedure described in Section 2 was applied to each of 
the 4 original time series over 25 trials. The number of 
days in the test period was different for each trial, and 
ranged from 25 (10% of the 250 training window period) 
to 49 days (just below 20% of the training period). In the 
case of the random walk pseudo series, one trial was per-
formed for each pseudo series for each financial index. 
The test window size was randomly chosen between 25 

and 49 (the same range as for the original price series). 
The genetic search population consisted of 40 individuals. 
The number of generations used in the training phase (for 
each training/testing cycle) was set at 250. Total process-
ing time was approximately 12 hours. 

Table 1 shows the financial return achieved by the neural 
trader on the original price series for each of the four fi-
nancial indices. Table 2 shows the financial return 
achieved by the neural trader on the random walk pseudo 

 Dow Jones Industrial Aust. All Ords. S&P500 NASDAQ 
 rb&h = 1.369 rb&h = 1.257 rb&h = 1.383 rb&h = 1.498 

Trial  # Trades rnet rnet/rb&h Trades rnet rnet/rb&h Trades rnet rnet/rb&h Trades rnet rnet/rb&h 
1 45 1.721 1.257 25 1.454 1.157 27 1.342 0.970 43 0.914 0.610 
2 39 1.682 1.229 27 1.455 1.158 39 1.208 0.873 39 0.759 0.507 
3 43 1.690 1.235 25 1.387 1.104 27 1.230 0.890 33 0.805 0.537 
4 37 1.803 1.317 21 1.567 1.247 27 1.576 1.139 31 0.919 0.614 
5 45 1.897 1.386 19 1.530 1.217 27 1.256 0.908 39 1.268 0.846 
6 33 1.712 1.251 23 1.271 1.011 23 1.083 0.783 31 0.648 0.432 
7 45 1.649 1.205 23 1.742 1.387 29 1.417 1.025 27 0.967 0.646 
8 37 1.751 1.279 25 1.441 1.146 27 1.183 0.855 37 0.681 0.455 
9 33 1.575 1.151 23 1.576 1.254 31 1.146 0.829 29 0.756 0.505 

10 37 1.784 1.303 23 1.362 1.084 29 1.229 0.888 23 0.931 0.621 
11 37 1.694 1.238 19 1.500 1.193 29 1.518 1.098 31 0.684 0.457 
12 39 1.677 1.225 23 1.424 1.133 23 1.231 0.890 35 1.150 0.768 
13 41 2.048 1.496 17 1.562 1.243 27 1.355 0.980 23 1.002 0.669 
14 39 1.838 1.343 25 1.471 1.171 31 1.263 0.913 19 0.918 0.613 
15 45 2.045 1.494 29 1.422 1.132 33 1.208 0.873 31 1.028 0.686 
16 35 1.665 1.217 21 1.341 1.067 19 1.341 0.970 29 0.650 0.434 
17 39 1.556 1.137 17 1.428 1.137 27 1.218 0.881 23 0.882 0.589 
18 35 1.662 1.214 19 1.650 1.313 23 1.177 0.851 27 0.968 0.646 
19 39 1.802 1.316 23 1.493 1.188 17 1.347 0.974 29 1.120 0.748 
20 39 1.849 1.351 15 1.541 1.226 21 1.241 0.897 33 0.998 0.666 
21 33 1.973 1.441 19 1.456 1.159 19 1.142 0.825 19 0.818 0.546 
22 32 1.693 1.237 21 1.435 1.142 37 1.305 0.944 31 0.781 0.521 
23 31 1.728 1.262 19 1.548 1.232 23 1.295 0.936 19 1.168 0.780 
24 33 1.705 1.245 23 1.431 1.139 23 1.234 0.892 33 0.845 0.564 
25 35 1.768 1.292 17 1.492 1.188 23 1.301 0.941 27 0.713 0.476 

Mean 37.8 1.759 1.285 21.6 1.479 1.177 26.4 1.274 0.921 29.6 0.895 0.597 
St Dev 4.3 0.127 0.093 3.5 0.099 0.079 5.3 0.112 0.081 6.4 0.170 0.114 

 Dow Jones Industrial Aust. All Ords. S&P500 NASDAQ 
 rb&h = 1.369 rb&h = 1.257 rb&h = 1.383 rb&h = 1.498 

Trial  # Trades rnet rnet/rb&h Trades rnet rnet/rb&h Trades rnet rnet/rb&h Trades rnet rnet/rb&h 
1 38 1.219 0.891 55 1.689 1.344 25 0.898 0.649 17 2.310 1.541 
2 19 1.149 0.839 27 1.083 0.862 37 1.154 0.835 48 1.416 0.945 
3 38 1.158 0.846 41 0.880 0.701 25 0.829 0.600 30 1.090 0.728 
4 47 0.890 0.650 19 1.179 0.938 48 1.769 1.279 27 1.247 0.832 
5 33 1.452 1.061 35 1.430 1.138 25 1.367 0.989 37 1.262 0.842 
6 25 1.576 1.151 31 1.091 0.868 29 1.348 0.975 21 1.204 0.803 
7 26 1.351 0.987 31 1.240 0.987 38 1.013 0.733 29 1.277 0.853 
8 38 1.606 1.173 18 1.463 1.165 46 1.376 0.995 32 1.137 0.759 
9 29 1.107 0.809 36 1.365 1.086 27 1.299 0.939 19 1.277 0.852 

10 32 0.886 0.647 20 1.032 0.821 27 1.741 1.259 23 1.033 0.689 
11 27 1.832 1.339 31 1.263 1.005 30 1.146 0.828 39 1.810 1.208 
12 25 1.379 1.007 32 1.229 0.978 29 1.201 0.868 24 1.016 0.678 
13 33 1.063 0.777 31 1.286 1.024 30 1.075 0.777 21 1.251 0.835 
14 31 1.709 1.249 33 1.131 0.900 39 1.017 0.735 24 1.085 0.724 
15 25 1.271 0.929 30 0.947 0.753 29 1.703 1.231 25 1.196 0.799 
16 26 1.010 0.738 24 1.256 1.000 23 1.332 0.963 29 0.917 0.612 
17 31 1.254 0.916 39 0.903 0.718 29 1.733 1.252 37 0.882 0.589 
18 28 1.055 0.771 27 0.953 0.758 26 1.241 0.897 31 1.614 1.077 
19 29 1.571 1.148 25 1.558 1.240 32 1.181 0.854 25 1.891 1.262 
20 21 1.171 0.855 44 1.061 0.844 26 1.127 0.815 45 0.966 0.645 
21 21 1.719 1.256 23 1.223 0.974 25 1.191 0.861 24 2.033 1.357 
22 20 1.277 0.933 25 1.456 1.158 38 1.396 1.009 21 0.721 0.481 
23 32 1.125 0.822 22 1.020 0.812 21 1.257 0.909 25 1.708 1.140 
24 31 1.242 0.907 29 1.132 0.901 25 1.029 0.744 22 1.204 0.804 
25 18 0.921 0.673 31 1.084 0.863 28 1.065 0.770 22 1.389 0.927 

Mean 28.9 1.280 0.935 30.4 1.198 0.954 30.3 1.260 0.911 27.9 1.317 0.879 
St Dev 6.9 0.267 0.195 8.4 0.209 0.166 6.9 0.257 0.186 8.0 0.383 0.256 

Table 2.  Returns achieved over 4 year out of sample period on random walk pseudo price series. ‘Trades’ is the total number of 
trades, ‘ rnet'’  is the overall return achieved by following the network output signals, and  ‘ rnet/rb&h’  is the network return relative to the 
buy-and-hold return. 

Table 1.  Returns achieved over 4 year out of sample period on original price series. ‘Trades’ is the total number of trades, ‘ rnet'’  is 
the overall return achieved by following the network output signals, and  ‘ rnet/rb&h’  is the network return relative to the buy-and-hold 
return. 



series. Means and standard deviations are provided at the 
bottom of each table. The buy-and-hold returns for each 

index are shown in the second line of each table. 

The tables show—for each of the four indices—the num-
ber of trades (Trades), the overall return achieved by fol-
lowing the buy/sell signals generated by the neural trad-
ing agent (rnet), and the ratio of the return achieved by the 
network to the buy-and-hold return (rnet / rb&h). Figure 4 
shows how the returns achieved by following the signals 
of the network compare with the buy-and-hold return and 
the return on the fixed interest (4%) low-risk security. 
These results correspond to Trial #1 from Table 1. 

In the case of both the Dow Jones Industrial Average and 
the Australian All Ordinaries, the return achieved by the 
network on the original price series was greater than the 
buy-and-hold return on each of the 25 trials. The network 
return exceeded the buy-and-hold return on the original 
S&P500 series on only 3 of the 25 trials, and for the 
original NASDAQ series the return was lower than the 
buy-and-hold return over all 25 trials. The average return 
over the 25 random walk pseudo price series was lower 
than the buy-and-hold return for each of the four financial 
indices (0.935 of buy-and-hold return for Dow Jones, 
0.954 for Aust. All Ords., 0.911 for S&P500 and 0.879 
for NASDAQ). 

Is the good performance on the Dow Jones and the Aus-
tralian All Ordinaries significant, or is it due to chance? 
This question can be answered by determining the likeli-
hood of observing such a return, given the distribution of 
returns on the random walk pseudo series (i.e. the distri-
bution of returns in Table 2). Table 3 provides the mean 
return on the original series, the mean and standard devia-
tions of the returns on the 25 random walk pseudo series, 
and the 1-tail (right hand tail) and 2-tail p-values calcu-
lated from this data using a t-test with 24 degree of free-
dom. 

 Mean Ret MeanRet St.Dev p-value 
 (original) (sample) (sample) 1-tail 2-tail 

Dow Jones  1.285 0.935 0.195 0.046 0.092 

Aust. All Ords. 1.177 0.954 0.166 0.099 0.199 

S&P 500 0.921 0.911 0.186 0.478 0.957 

NASDAQ 0.597 0.879 0.256 0.855 0.290 

Table 3.  p-values for each of the four financial indices.   

How can these p-values be interpreted? Consider first the 
1-tail test for the Dow Jones data. The 1-tail p-value is 
simply the probability of observing a value greater than 
or equal to 1.285, given the distribution of values ob-
tained from the random walk data. The p-value in this 
case is 0.046. That is, Pr ( X ≥ 1.285 ) = 0.046, where X is 
the mean return on the original prices series. The two-
tailed value differs from the 1-tail value in that it repre-
sents the probability of observing a result which departs 
from the sample mean by such a degree in either direc-
tion. In this case we have Pr ( X ≤ 0.585 or X ≥ 1.285 ) = 
0.092. As mentioned earlier, a p-value of less than 0.05 is 
regarded by convention as sufficient to reject the null 
hypothesis. Which is the appropriate p-value to con-
sider—the 1-tial or 2-tail value? This of course, depends 
on the null hypothesis. In our case, the null hypothesis 
stated that “ there is no significant difference between the 
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Figure 4. Automated trading return on original price series 
compared with buy and hold return and 4% fixed interest 
return. All data corresponds to Trial #1 from Table 1. 
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return achieved when the procedure is applied to the real 
time series and the return achieved when the procedure is 
applied to the pseudo time series”  (see Section 3.2). This 
implies difference in either direction, and hence the ap-
propriate p-value is the 2-tail value. Since the p-value in 
this case is 0.092, this (null) hypothesis cannot be re-
jected at the 0.05 level. However, a weaker null hypothe-
sis which states that “ the return achieved when the proce-
dure is applied to the real time series is not significantly 
greater than the return achieved when the procedure is 
applied to the pseudo time series”  can be rejected at the 
0.05 level, since the 1-tail p-value is 0.046. Neither the 
original null hypothesis nor the weaker form of the null 
hypothesis can be rejected at the 0.05 level for any of the 
other three financial series considered. 

These results suggest that the ability to time buy and sell 
decisions on the daily movements of the Dow Jones In-
dex is not anomalous, but indicates some regularity in the 
time series which can be exploited to make future profit-
able decisions. In the case of the Australian All Ordinar-
ies price series, while the neural trading agent consis-
tently outperformed a buy-and-hold strategy over all 25 
trials, we cannot claim that the difference between per-
formance on the original data and performance on the 
random walk data is statistically significant. In the case of 
the S&P500 and NASDAQ data, there is no evidence to 
suggest that the neural trading agent can perform any 
better than a simple buy-and-hold strategy. 

5 Discussion 

As mentioned in Section 2.4, one of the main dangers in 
attempting to automate trading strategies is that of data-
snooping. We believe that our methodology is reasonably 
free from criticisms of data-snooping for the following 
reasons. Firstly, every experiment that we conducted—
across all four indices—used exactly the same network 
structure, the same inputs, the same learning parameters, 
and the same training/test set samplings. The only differ-
ence was that between the actual time series. Secondly, 
by performing many trials on the original price series 
using different test set windows, we can be quite confi-
dent that the average returns we achieved are not anoma-
lous.  

A second criticism often directed at research which pur-
ports to have discovered a trading strategy that outper-
forms a buy-and-hold strategy is that the costs associated 
with trading have not been accounted for. Our experi-
ments have been performed incorporating a trading cost 
of 0.1% per trade, which is currently the approximate 
commission for online trading. It is interesting to note the 
relatively low frequency of trading performed by the net-
work, which ranges from a maximum of approximately 
10 trades per year on the Dow Jones data to a minimum 
of approximately 5 trades per year on the Australian All 
Ordinaries. This trading frequency is significantly less 
than that of network traders based on forecasting numeri-
cal price movements.   

What might be the cause of the differences in being able 
to successfully trade using these four indices. One possi-
ble explanation for this could be the fact that the Dow 

Jones and Australian All Ordinaries indices are blue chip 
indices. That is, they represent the averaged values of a 
large number of large, established, stable, and relatively 
secure companies. In contrast, the S&P500 and the 
NASDAQ include a significant proportion of tech. stocks, 
whose prices are known to have been much more volatile 
than blue chip companies, especially in recent years (re-
call the bursting of the technology stocks bubble). The 
inclusion of such volatile stocks in the makeup of these 
indices may make these series more chaotic, thus reduc-
ing the capacity to time trading decisions on past prices of 
these indices. However, this is highly speculative and 
experiments would need to be designed to test these ideas 
formally. 

A rather obvious question that arises out of the results of 
this research is that if it is possible to exploit historical 
prices on the Dow Jones data to achieve a return better 
than a buy-and-hold strategy, how might we identify 
other series with this same property. That is, how might 
we determine a priori whether some given price series 
possesses such a desirable quality? One approach to this 
would be to perform the same experiments described in 
this paper over very many different price series and, on 
the basis of the results, assign each of these series some 
measure of what may cautiously be called ‘predictability’ . 
Patterns could then be sought between these so-called 
predictability values and measurable statistical properties 
of the price series (autocorrelation, Box-Pierce Q statis-
tics, etc.). We leave this exploration for future work. 

6 Conclusions 

This paper has described a methodology by which neural 
networks can be trained indirectly, using a genetic algo-
rithm based weight optimisation procedure, to determine 
buy and sell points for financial commodities traded on a 
stock exchange. In order to test the significance of the 
returns achieved using this methodology, the returns on 
four financial price series were compared with returns 
achieved on random walk data derived from each of these 
series using a bootstrapping procedure. These boot-
strapped samples contain the same distribution of daily 
returns as the original series, but lack any serial depend-
ence present in the original. The results indicate that on 
the Dow Jones Industrial Average Index, the return 
achieved over a four year out of sample period are sig-
nificantly greater than that which would be expected had 
the price series been random. This lends support to the 
claim that some financial time series are not entirely ran-
dom, and that—contrary to the predictions of the efficient 
markets hypothesis—a trading strategy based solely on 
historical price data can be used to achieve returns better 
than those achieved using a buy-and-hold strategy. 
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