
XQuery Implementation in a Relational Database System

Shankar Pal, Istvan Cseri, Oliver Seeliger, Michael Rys, Gideon Schaller, Wei Yu, Dragan Tomic,

Adrian Baras, Brandon Berg, Denis Churin, Eugene Kogan

Microsoft Corporation
One Microsoft Way, Redmond, Washington, USA

{shankarp, istvanc, oliverse, mrys, gideons, weiyu, dragant, adrianb, branber, denistc,
ekogan}@microsoft.com

Abstract

Many enterprise applications prefer to store
XML data as a rich data type, i.e. a sequence of
bytes, in a relational database system to avoid the
complexity of decomposing the data into a large
number of tables and the cost of reassembling the
XML data. The upcoming release of Microsoft’s
SQL Server supports XQuery as the query
language over such XML data using its relational
infrastructure.
XQuery is an emerging W3C recommendation
for querying XML data. It provides a set of
language constructs (FLWOR), the ability to
dynamically shape the query result, and a large
set of functions and operators. It includes the
emerging W3C recommendation XPath 2.0 for
path-based navigational access. XQuery’s type
system is compatible with that of XML Schema
and allows static type checking.
This paper describes the experiences and the
challenges in implementing XQuery in
Microsoft’s SQL Server 2005. XQuery language
constructs are compiled into an enhanced set of
relational operators while preserving the
semantics of XQuery. The query tree is
optimized using relational optimization
techniques, such as cost-based decisions, and
rewrite rules based on XML schemas. Novel
techniques are used for efficiently managing
document order and XML hierarchy.

1. Introduction

Enterprise applications use XML [3] for modelling semi-
structured and markup data in scenarios such as document
management and object property management [13].
Powerful applications can be developed to retrieve
documents based on document content, to query for
partial contents such as sections whose title contains the
word "background", to aggregate fragments from different
documents, and to find all the phone numbers of a person.
Storing XML data as a sequence of bytes representing

a rich data type has several advantages. XML schemas for
real-life applications are complex so that decomposing
XML data conforming to those schemas into the relational
data model results in a large number of tables. This makes
the decomposition logic complex, the re-assembly cost
high, and the queries very complicated. Furthermore,
changes to the XML schema require a significant amount
of maintenance of the database schema and the
application. XML as a rich data type also permits
structural characteristics of the XML data, such as
document order and recursive structures, to be preserved
more faithfully.
The upcoming release of Microsoft’s SQL Server

2005 [10] allows storage of XML data in a new, rich data
type called XML [1][8][13]. This data type stores both
rooted XML trees and XML fragments in a binary
representation (“binary XML”). The query language on
XML data type is a subset of XQuery [15][16][22], an
emerging W3C recommendation (currently in Last Call)
that includes the navigational language XPath 2.0 [20]. It
is supported using the relational query processing
framework with some enhancements. SQL Server 2005
also supports a data modification language on XML data
type for incremental updates, which is not discussed
further in this paper [1][13].
This paper discusses the XQuery processing

architecture in SQL Server 2005 and how XQuery
expressions are compiled into query trees containing
relational operators and a small number of new operators

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct

commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by

permission of the Very Large Data Base Endowment. To copy

otherwise, or to republish, requires a fee and/or special permission from
the Endowment

Proceedings of the 31st VLDB Conference,

Trondheim, Norway, 2005

1175

introduced for the purpose of XQuery processing. An
XQuery expression is parsed and compiled into an
internal structure called the XML algebra tree on which
rule-based optimizations are applied. This is followed by
a transformation of the XML algebra tree into the
relational operator tree. This paper describes some of the
interesting aspects of the implementation instead of being
a comprehensive manual on the subject.
XML as a richly structured data type introduces new

challenges for query processing, data modification and
indexing. Query processing must retain document order,
perform structural navigation, provide sequence
operation, and support dynamically constructed XML
nodes. These requirements are not supported by a
relational query processor and appropriate extensions to it
are necessary.
At runtime, the XML data (“XML blob”) must be

available in a parsed state (the so-called XQuery Data
Model [23]) to evaluate an XQuery expression. The data
may be parsed multiple times to evaluate several XQuery
expressions on the same data, or to evaluate complex
XQuery expressions using a streaming parser, such as the
XmlReader in the .NET framework [9], to avoid the
overhead of keeping the data in memory (e.g. DOM).
Runtime parsing is costly and often fails to meet the
performance requirements of enterprise applications. For
better query performance, SQL Server 2005 provides a
mechanism for indexing the XML data [12] based on its
Data Model content [2]. An XML index retains structural
fidelity of the data, such as document order and
hierarchical relationships among the XML nodes, and
speeds up different classes of queries on the XML data.
XQuery compilation produces a query tree that uses

relational operators, such as SELECT and JOIN, on the
primary XML index [12], if one exists, on an XML
column. For non-indexed XML columns, the query plan
contains operators to parse each XML blob, locate nodes
matching simple path expressions, and generate rows
resembling XML index entries that represent the subtrees
rooted at those nodes. From this point onward, the
processing for both the XML indexed and the XML blob
cases is largely the same – multiple rowsets are
manipulated using relational operators to yield the query
result. The queries that return XML results aggregate the
rows representing the resulting XML sequence into the
binary XML form as the final processing step.
The XQuery compiler performs static type inference

by annotating operator-nodes in the query tree with type
information. Type incompatibility between the inferred
type and the expected type raises static errors. This fits
well with the static type guarantees in the SQL language
and the relational query processor’s ability to optimize
query plans using statically known constraints. As a
result, many runtime checks are avoided.
The compiled query plan is optimized using well-

known relational optimization techniques such as costing
functions and histograms of data distributions. Query

compilation produces a single query plan for both
relational and XML data accesses, and the overall query
tree is optimized as a whole. SQL Server 2005 also
introduces optimizations for document order (by
eliminating sort operations on ordered sets) and document
hierarchy, and query tree rewrites using XML schema
information.
Relational query optimization, however, impacts

XQuery semantics and introduces new challenges. The
query optimizer shuffles operators around in the query
tree to produce a faster execution plan, which may
evaluate different parts of the query plan in any order
considered to be correct from the relational viewpoint.
Consequently, path expression based navigational
accesses are not guaranteed to be executed top-down and
may be evaluated bottom-up. This may yield dynamic
errors, such as type cast errors, when none would occur
with top-down evaluation. For this reason, SQL Server
2005 currently converts dynamic errors to empty
sequences. In most contexts this yields correct results, but
not always (e.g., in the presence of negation).
A significant number of XQuery functions and

operators are supported in the system. Wherever possible,
these functions and operators are compiled into the
analogous SQL functions and operators for efficient
execution. In all other cases, additional code in the server
executes the XQuery function or operator while
preserving XQuery semantics.
The rest of the paper is organized as follows. Section 2

provides background material on the native XML support
in SQL Server 2005. Section 3 introduces the query
processing architecture and provides an overview of the
XML algebra operators used in the server. Section 4
discusses the transformation of XML algebra trees for
XPath and XQuery expressions into relational operator
trees. Section 5 deals with the type inference mechanism
employed by the XQuery compiler and Section 6
discusses optimizations on the query trees yielding the
execution plan for the queries. Related work is discussed
in Section 7 while concluding remarks appear in Section
8.

2. XML Support in SQL Server 2005

This section provides a look into some of the XML
features of SQL Server 2005 necessary for the discussions
in this paper. Detailed information and be found in the
product’s documentation [10] as well as MSDN
whitepapers [13][14].

2.1 XML Data Type

Microsoft’s SQL Server 2005 [10] introduces native
storage for XML data as a new, rich data type called
XML. A table may contain one or more columns of type
XML wherein both rooted XML trees and XML
fragments can be stored. Variable and parameters of type
XML are also allowed. XML parsing occurs either

1176

implicitly or explicitly during assignments of either string
or binary SQL values to XML columns, variables and
parameters.
XML values are stored in an internal format as large

binary objects (“XML blob”) in order to support the XML
data model characteristics more faithfully such as
document order and recursive structures.
The following statement creates a table DOCS with an

integer, primary key column PK and an XML column
XDOC:

CREATE TABLE DOCS (

PK INT PRIMARY KEY, XDOC XML)

2.2 XML Schema Support

SQL Server 2005 provides XML schema collections as a
mechanism for managing W3C XML schema documents
[21] as metadata. XML data type can be associated with
an XML schema collection to have XML schema
constraints enforced on XML instances. Such XML data
types are called “typed XML”. Non-XML schema bound
XML data type is referred to as “untyped XML”.
Both typed and untyped XML are supported within a

single framework, the XML data model is preserved, and
query processing enforces XQuery semantics. The
underlying relational infrastructure is used extensively for
this purpose.

2.3 Querying XML Data

XML instances can be retrieved using the SQL SELECT
statement. Four built-in methods on the XML data type,
namely query(), value(), exist() and nodes(), are available
for fine-grained querying. A fifth built-in method modify()
allows fine-grained modification of XML instances but is
not discussed further in this paper.
The query methods on XML data type accept the

XQuery language [15][16][22], which is an emerging
W3C recommendation (currently in Last Call), and
includes the navigational language XPath 2.0 [20].
Together with a large set of functions, XQuery provides
rich support for manipulating XML data. The supported
features of the XQuery language are shown below:

• XQuery clauses “for”, “where”, “return” and
“order by”.

• XPath axes child, descendant, parent, attribute,
self and descendant-or-self.

• Functions – numeric, string, Boolean, nodes,
context, sequences, aggregate, constructor, data
accessor, and SQL Server extension functions to
access SQL variable and column data within
XQuery.

• Numeric operators (+, -, *, div, mod).

• Value comparison operators (eq, ne, lt, gt, le,
ge).

• General comparison operators (=, !=, <, >, <=,
>=).

The following is an example of a query in which

section titles are retrieved from books and wrapped in
new <topic> elements:

SELECT PK, XDOC.query('

 for $s in /BOOK/SECTION

 return <topic>

 {data($s/TITLE)}

 </topic>')

FROM DOCS

The query execution is tuple-oriented – the SELECT

list is evaluated on each row of the DOCS table, the
query() method is processed on the XDOC column in
each row, and the result is a two-column rowset where the
column types are integer (for PK) and untyped XML (for
the XML result). The query methods are evaluated on
single XML instances, so that XQuery evaluation over
multiple XML documents is currently not supported by
the syntax but is allowed by the architecture. Scalar value-
based joins over XML instances are possible.

2.4 Indexing XML Data

Query execution processes each XML instance at runtime;
this becomes expensive whenever the XML blob is large
in size, the query is evaluated on a large number of rows
in a table, or a single SQL query executes multiple
XQuery expressions requiring the XML blob to be parsed
multiple times. Consequently, a mechanism for indexing
XML columns is supported in SQL Server 2005 to speed
up queries.
A primary XML index [12] on an XML column creates

a B+tree index on the data model content of the XML
nodes, and adds a column Path_ID for the reversed,
encoded path from each XML node to the root of the
XML tree.
The structural properties of the XML instance, such as

relative order of nodes and document hierarchy, are
captured in the OrdPath column for each node [11]. The
primary XML index is clustered on the OrdPath value of
each XML instance in the XML column. The other
noteworthy columns are the name, type and the value of a
node.
XML indexes provide efficient evaluation of queries

on XML data, and reassembly of the XML result from the
B+tree. These use the relational infrastructure while
preserving document order and document structure.
OrdPath encodes the parent-child relationship of XML
nodes by extending the parent’s OrdPath with a labelling
component for the child. This allows efficient
determination of parent-child and ancestor-descendant
relationships. Furthermore, the subtree of any XML node
N can be retrieved from the primary XML index using a

1177

range scan over the OrdPath values of N and the
descendant limit of N. The latter value can be determined
from N’s OrdPath alone, which makes OrdPath a very
simple yet efficient node labelling scheme.
Secondary XML indexes can be created on an XML

column to speed up different classes of commonly
occurring queries: PATH index for path-based queries,
PROPERTY index for property bag scenarios, and
VALUE index for value-based queries are currently
provided.
Statistics are created on the key columns of the

primary and secondary XML indexes. These are used for
cost-based selection of the secondary XML indexes.
Choice of the primary XML index is currently a static
decision.
The next section describes the architecture for query

processing on XML data.

3. XML Query Processing Architecture

As outlined in the previous section, the XML data is
persisted in the relational store to leverage the existing
relational infrastructure. An XQuery expression is
compiled into a query tree that can be optimized and
executed by the relational query processor. The
hierarchical nature of the XML data is modelled as
parent-child relationship using the OrdPath node labelling
scheme [11] instead of developing a new, hierarchical
store. Query processing for ordered, hierarchical data
model requires more work than for the flat relational
model. For this reason, the set of relational operators is
extended with additional operators for XML processing.
This enhancement yields “relational+” operators.
XQuery compilation is performed in multiple stages,

starting with the parsing of XQuery expressions and
resulting in the generation of the query plan containing
the enhanced set of relational operators. The overall
architecture is shown in Figure 1. The main steps consist
of an XQuery Compiler, which includes XQuery parsing,
and an XML Operator Mapper.
The XML algebra tree is an intermediate

representation on which rule-based (as opposed to cost-
based) optimizations are applied. One such optimization
is path collapsing described in Section 6. Rewrites using
XML schema information are also applied to the XML
algebra tree. The output of the XQuery Compiler step is
an XML algebra tree that is highly optimized for XML
processing.
Using the appropriate XML and relational type

information, the XML Operator Mapper converts the
XML operators in the XML algebra tree into a relational
operator tree that includes the enhanced set of relational
operators. This mapping is discussed in more details in
Section 4.

Figure 1. Architecture for XQuery compilation.

XML Operator Mapper recursively traverses the XML

algebra tree. For each XML operator in the XML algebra
tree, a relational operator sub-tree is generated, which
includes enhanced relational operators. The relational
operator sub-trees are then inserted into the overall
relational operator tree for the XQuery expression.
The mapping of each XML operator to a relational

operator subtree depends upon the existence of a primary
XML index on the XML column being queried. If it
exists, then the query plan is generated to access columns
in the primary XML index. If it does not exist, then the
query plan is produced to evaluate path expressions
without branching on the XML blob and to generate a set
of rows representing the subtree of the matching nodes in
document order. These rows contain most of the columns
of the primary XML index except notably the primary key
columns from the base table (used in back join from the
primary XML index to the base table) and the Path_ID
column that contains the reversed, encoded path from an
XML node to the root of the XML tree.
The rest of the query plan is the same if the primary

key and Path_ID columns are not needed. Otherwise, it
continues to differ.
The relational operator tree for the XQuery expression

is grafted into the main query tree for the whole SQL
query. Thus, a single query tree is produced, and the
query optimizer can optimize the full query plan
containing both relational and XML accesses. This also
supports interoperability between relational and XML
data at the server, making way for richer application
development.
The next subsection describes some of the XML

operators used in the XML algebra tree.

XQuery expression

XQuery Compiler

XML algebra tree (XmlOp operators)

Relational Operator Tree
(relational+ operators)

 Relational Query Processor

XML Operator Mapper

1178

3.1 XML Operators

The XQuery Compiler parses an XQuery expression and
produces an XML algebra tree that includes XML
operators. This section describes a handful of the XML
operators introduced in SQL Server 2005, some of which
are used further in this paper. This list is representative
but not exhaustive; detailed descriptions are beyond the
scope of this paper.
Each XML operator may accept input such as an

ordered XML node list, an unordered XML node set, a
Boolean condition, an ordinal condition, a node list
condition, and other scalar input.

3.1.1 XmlOp_Select

The XmlOp_Select operator takes a list of items,
including ordered XML nodes, as a left child and a
condition as right child. It returns the input items in their
input order which satisfy the given condition.

3.1.2 XmlOp_Path

The XmlOp_Path operator is used for simple paths
without predicates and produces the eligible XML nodes.
This operator also uses a path context to collapse paths
(see Section 6 for more information).

3.1.3 XmlOp_Apply

The XmlOp_Apply operator takes two item lists as input,
and returns one item list. It has an “apply name” property
whose value is the variable name bound by the
corresponding “for” clause in XQuery. The variable is
bound to each of the items in a first item list. The second
item list typically contains references to this variable, and
is evaluated using the variable binding with the items in
the first list.
The XmlOp_Apply operator also takes a “where” and

an “order-by” child. It is a complex operator that the
XML Operator Mapper translates to a relational operator
tree for evaluating the “for”, “where” and “order-by”
clauses with the appropriate XQuery semantics.

3.1.4 XmlOp_Compare

This is a comparison operator with a field indicating the
type of the comparison.

3.1.5 XmlOp_Constant

This operator represents a constant, which can be a literal
or the result of constant folding. Constant folding is the
static optimization that evaluates constant expressions
during query compilation to avoid runtime execution costs
and to allow more query optimizations.

3.1.6 XmlOp_Construct

The XmlOp_Construct operator creates all the XML node
types: elements, attributes, processing instructions,

comments, and text nodes. For element construction, the
operator takes as input the sub-nodes (attributes and/or
children), otherwise the value of the constructed node.

3.1.7 Scalar Operators

The XmlOp_Function operator represents a built in
function that returns a scalar or XML nodes. The inputs
are the parameters of the function and the output is the
result of the function.
The next section describes the mapping of the XML

operators for XPath and XQuery expressions to relational
operators.

4. XML Operator Mapping

The XML Operator Mapper transforms an XML algebra
tree into a relational operator tree. Conventional
relational algebraic operators are inadequate to process
the hierarchical XML data model in an efficient way.
Consequently, the set of relational operators is enhanced
with new operators for the purpose of XQuery processing,
yielding the relational+ algebra. The relational operator
tree is submitted to the query processor for optimization
and execution.
We describe the mapping of the XML algebra tree to

the relational operator tree in the following subsections.
For convenience, we subdivide the discussion into the
following categories:

• Mapping of XPath expressions

• Mapping of XQuery expressions

• Mapping of XQuery built-in functions

4.1 XPath Expressions

The XmlOp_Path operator representing a path is mapped
to a relational operator in a different way for XML blob
than for a primary XML index on an XML column. Each
of these scenarios is further subdivided into two cases –

• Simple path expressions without branching in
which the full paths from the root of the XML
trees are known after path collapsing (“exact
paths”)

• Paths expressions without branching in which
the full paths are not known (“inexact paths”).

As described later in Section 6, segments of simple paths
may be concatenated together to produce a longer simple
path using the path collapsing technique.
Inexact paths occur in the XML algebra tree when

segments of the path cannot be collapsed or a path is split
into multiple segments. It occurs most commonly for
paths containing wildcard steps, the //-operator, self and
parent axes.

1179

The resulting four mappings are discussed below
using the path expression /BOOK/SECTION as example.
Predicate and ordinal evaluations are discussed later in
this section.

4.1.1 Non-indexed XML, Exact Path

 The XmlOp_Path operator is mapped to an XML_Reader
operator for parsing the XML blob. XML_Reader is a
streaming, pull-model XML parser, similar to the
XmlReader in the .NET framework [9]. It is chosen for its
efficiency in parsing XML data and its relatively low
memory requirements, compared to a non-streaming
XML parser such as for DOM, for handling large XML
instances.
The path /BOOK/SECTION is an argument to the

XML_Reader operator and is applied during runtime
parsing of the XML blob. The result is a set of rows
representing the subtrees of the qualifying <SECTION>
nodes and retaining the structural properties of those
subtrees using their OrdPath values.
The XmlOp_Path operator can occur at the top-level

of the XML algebra tree when the path expression occurs
within the query() method, i.e. XDOC.query
(‘/BOOK/SECTION’). In this case, rows representing the
subtree of each <SECTION> node are reassembled into
an XML data type result using an XML_Serialize
operator. This step is referred to as XML Serialization in
the rest of the paper. The overall mapping is shown in
Figure 2.

4.1.2 Non-indexed XML, Inexact Path

The path, such as /BOOK/SECTION//TITLE, is used by
XML_Reader during XML blob parsing to filter the
eligible nodes. Thus, the relational operator tree is similar
to the one in Figure 2 with the appropriate path as input to
the XML_Reader operator.

Figure 2. Relational operator tree for the exact path query
XDOC.query (‘/BOOK/SECTION’) in the non-indexed
case.

4.1.3 Indexed XML, Exact Path

The XmlOp_Path operator with the exact path is mapped
to a relational SELECT operator that filters primary XML

index rows (GET(PXI)) by matching the supplied path
/BOOK/SECTION with the value in the Path_ID column.
The Path_ID column stores the reversed path in an
encoded form. The XML Operator Mapper uses a
function PATH_ID (/BOOK/SECTION) over the path to
generate the search value for the Path_ID column. For
simplicity, the result of this function is depicted as
#SECTION#BOOK. The resulting relational operator tree
is shown in Figure 3.
Top-level XmlOp_Path requires the XML_Serialize

operator that receives rows corresponding to the subtree
of each <SECTION> node and produces the XML result.
The APPLY operator [6] in the relational operator tree is
a correlated join between the <SECTION> rows and the
right child of the APPLY operator.

Figure 3. Relational operator tree for the exact path query
XDOC.query (‘/BOOK/SECTION’) for the indexed case

Retrieval of each <SECTION> node’s subtree utilizes

the OrdPath property for generating the subtree – nodes
belonging to the subtree are chosen (SELECT operator in
the right child of APPLY) with the OrdPath value in
between those of the <SECTION> node and its
descendant limit (DL). This is executed efficiently using a
range scan over the primary XML index.

4.1.4 Indexed XML, Inexact Paths

Inexact paths are matched on the Path_ID value using the
LIKE operator. For example, rows for the <TITLE>
nodes in the path expression /BOOK/SECTION//TITLE
are found from the primary XML index using the
predicate Path_ID LIKE #TITLE%#SECTION#BOOK.
Finally, the subtree under each <TITLE> node is
serialized in the result. The relational operator tree for this
example is shown in Figure 4.
The path expression /BOOK/SECTION/../@id

containing the parent axis is split into the evaluation of
the paths /BOOK/SECTION and //@id, and then ensuring
that the parent of the <SECTION> element is the same as
that of the @id attribute. The inexact path //@id is
evaluated using the expression Path_ID LIKE #@id%,
and benefits from the use of XML indexes. This technique
can be used for any path for which the tail end of the path
is known.

XXMMLL__SSeerriiaalliizzee

AAppppllyy

SSeelleecctt (($$bb))

GGEETT((PPXXII))

PPaatthh__IIDD==##SSEECCTTIIOONN##BBOOOOKK

$$bb..OOrrddPPaatthh ≤≤

OOrrddPPaatthh << DDLL(($$bb))
GGEETT((PPXXII))

SSeelleecctt

1180

Figure 4. Relational operator tree for the inexact path
query XDOC.query (‘/BOOK/SECTION//TITLE’) for the
indexed case.

As should be apparent from the discussions above, the

indexed and the non-indexed cases differ mainly in the
way paths are evaluated on XML blobs or the column
Path_ID in the primary XML index. The rest of the
processing is done much the same way on columns
common to both the primary XML index and the output
rows of the XML_Reader. For this reason, in the
remainder of this paper, only the indexed case is
illustrated for brevity.

4.1.5 Predicate Evaluation

Predicate evaluation is performed by comparing the
search value with that in the value column of the primary
XML index. The relational operator tree for the path
expression /BOOK[@id = “123”] is shown in Figure 5.
The evaluation of the simple paths /BOOK and

/BOOK/@id proceed as described above using the
Path_ID column of the primary XML index. The specified
value “123” is compared with the VALUE column in the
same row of the primary XML index as the @id attribute.
Since the two paths are evaluated separately, a check for
the parent-child relationship is also needed. This is
depicted in Figure 5 as the Parent_Check() function. The
check uses the OrdPath property that the parent’s OrdPath
is a prefix of the child’s OrdPath except for the rightmost
component.
The value of a simple-valued, typed element is stored

in the same row as the element, so that predicates on the
element are evaluated in the same way as an attribute.
Predicates on untyped XML are more complicated to
evaluate since values may need to be aggregated from
multiple rows, which makes the relational operator tree
more complex.

Figure 5. Relational operator tree for the query
XDOC.query (‘/BOOK[@id=”123”]’).

The relational operator tree may also contain

CONVERT operators if the operands need to be
converted to the appropriate types to perform an
operation.

4.1.6 Ordinal Predicate

Ordinal predicate evaluation such as /BOOK[n] adds a
ranking column to the rows for <BOOK> elements and
then retrieves the nth <BOOK> node. A special
optimization exists for the cases n = 1 and n = last(). The
ordinal predicate is mapped to TOP 1 ascending and TOP
1 descending, respectively. TOP n is a relational operator
that chooses the topmost n values from a rowset. When
the input set is sorted, such as the rows in the primary
XML index, this rewrite avoids ranking all the nodes
before the ordinal predicate is evaluated.

4.2 XQuery Expressions

SQL Server 2005 supports the FLWOR clauses “for”,
“where”, “order-by” and “return”. XML operator
mapping is described in some detail below for these
constructs. A formal algorithm for the mapping is not
presented in this paper for lack of space. However,
fragments of the algorithm are illustrated below using
examples.
The XQuery processing framework described in this

paper is powerful enough to support “let” but this is not
discussed further in the paper.

4.2.1 “for” Iterator

The XML algebra operator for the “for” iterator in
XQuery is XmlOp_Apply. It maps to the relational
APPLY operator, as shown in the example in Figure 6 for
the query

for $s in /BOOK//SECTION

where $s/@num >= 3

return $s/TITLE

Apply

Select ($s)

GET(PXI)

Path_ID LIKE #TITLE%#SECTION#BOOK

XML_Serialize

Assemble subtree of

<TITLE>

XML_Serialize

Path_ID=#@id#BOOK
& VALUE=“123” &

Parent_check($b)

Apply

Select

GET(PXI)

Apply

Select ($b)

GET(PXI)

Path_ID=#BOOK

Assemble subtree of

<BOOK>

1181

In the example, the Path_ID column is used to match
the path /BOOK//SECTION using the LIKE operator. The
APPLY operator with the $s binding iterates over the
<SECTION> nodes and determines its <TITLE> children.
The operators for the “where” condition are discussed
later.
Nested “for” expressions and “for” with multiple

bindings (e.g. for $i in /Customer, $j in /Order …) turn
into nested APPLY operators, where each APPLY binds
to a different variable.

Figure 6. Relational operator tree for the XQuery
expression 'for $s in /BOOK//SECTION where $s/@num
>= 3 return $s/TITLE' for indexed XML.

4.2.2 “where”

The “where” clause in XQuery is represented by the
“where” child of the XML algebra operator
XmlOp_Apply. It maps to a relational SELECT operator
on the input sequence that filters the rows matching the
specified condition. An example is shown in Figure 6. In
the example, <SECTION> elements matching the path
/BOOK//SECTION are bound to the variable $s. Another
path matching using the LIKE operator occurs for the path
/BOOK//SECTION/@num obtained by path collapsing on
the path $s/@num inside the “where” condition. At the
same time, the VALUE comparison is performed using
the specified value 3, and to check parent-child
relationship between <SECTION> nodes and the @num
attributes. The OrdPath values of the the <SECTION>
element and its @num attribute satisfies the conditions of
the parent-child relationship.

The EXISTS operator further on is introduced to filter
the <SECTION> rows because of the existential
semantics of the >= operator.

4.2.3 “order by”

“Order-by” sorts rows based on the order-by expression
and adds a ranking column to these rows. The ranking
column is then converted into OrdPath values that yield
the new order of the rows to fit the rest of the query
processing framework.

4.2.4 “return”

XQuery expressions in the “return” clause are evaluated
based on the foregoing principles. If the return sequence
of nodes is in document order, then the stored OrdPath
values suffice in capturing the structure of the returned
result. Thus, the XML_Serialize operator at the end can
generate the final, XML result.
New element and sequence constructions are

considered in the next subsection. The top-level
XML_Serialize converts the constructed rows, based on
the new structural relationships, into the final, XML
result.

Figure 7. Relational operator tree illustrating element
construction.

4.2.5 Construction

New element construction is done by generating new
rows for the constructed element with an appropriate
OrdPath value. The new element’s content requires
XQuery evaluation as described in this section, and may
require JOIN with the primary XML index to retrieve
nodes. Multiple constructed sibling nodes are put together
using UNION_ALL operator. For the query

Path_ID LIKE
#@num#SECTION%#BOOK

& VALUE >= 3
& Parent_check($s)

Select

Select ($s)

GET(PXI)

 Path_ID LIKE

#SECTION %#BOOK

Exists

GET(PXI)

Select

XML_Serialize

Assemble subtree of

<SECTION>

Path_ID LIKE
#TITLE#SECTION%#BOOK

& Parent_check($s)

Apply ($s)

Apply

GGEETT((PPXXII))

XXMMLL__SSeerriiaalliizzee

AAppppllyy

SSeelleecctt (($$ss))

PPaatthhIIDD == ##SSEECCTTIIOONN##BBOOOOKK

GGEETT((PPXXII))

SSeelleecctt

AAppppllyy

UUnniioonn__AAllll

<<ttooppiicc>>

SSwwiittcchh__UUnniioonn

AAsssseemmbbllee

ssuubbttrreeee ooff <<TTIITTLLEE>>
CCTTGG((11)) NNeeww??

PPaatthhIIDD ==
 #TITLE#SECTION#BOOK
&& PPaarreenntt__cchheecckk(($$ss))

1182

for $s in /BOOK/SECTION

return <topic>{$s/TITLE}</topic>

the relational operator tree is shown in Figure 7. The
<TITLE> nodes are found from the primary XML index
as described earlier in this section. An UNION_ALL
operator over these rows and the rows generated for the
new <topic> elements produces a single set of rows; the
hierarchical relationship between the two rowsets for
<topic> and <TITLE> is maintained using compile time
OrdPath values. Each row also contains a flag to indicate
whether the row represents a newly constructed node or
an existing node (the “New” flag in Figure 7).
The SWITCH_UNION operator checks the “New”

flag on each row. For a newly constructed <topic> row, it
outputs a constant row (CTG(1)) with an appropriate
OrdPath value. For an existing <TITLE> row, it
assembles the subtree of the <TITLE> element from the
primary XML index and modifies the OrdPath values in
the subtree to maintain the hierarchical relationship with
the corresponding <topic> element. Finally, the XML
data type result is produced using the XML_Serialize
operator.
Sequence construction is handled in a similar way

using UNION_ALL, and if needed, a SWITCH_UNION.

4.2.6 Other XQuery Constructs

Other XQuery constructs, such as if/then/else, are
expressed in terms of the appropriate relational operators.
A discussion of these is too detailed and beyond the scope
of this paper.

4.3 XQuery Functions & Operators

Several of the XQuery functions and operators are
available in SQL Server 2005. These are selected based
on customer requirements rather than completeness.
The XQuery built-in functions and operators are

mapped to the underlying relational functions and
operators wherever possible. An example is the fn:count()
function, which is evaluated using the count() function in
SQL. For XQuery types, functions and operators that
cannot be mapped directly, additional support has been
added to the query processor.
A couple of the aggregate functions, namely, fn:data()

and fn:string() are specially optimized since they are
frequently used and expensive. Each of these functions
aggregates the values from multiple rows. This would
normally result in JOIN operations over those rows.
Special operators have been introduced to perform these
aggregations directly for runtime efficiency.

5. XQuery Type System

The XQuery 1.0 and XPath 2.0 type system is based on
W3C XML Schema [21]. The type system is used for type

inferences and for generating static type error during
query compilation. This fits well with the static type
system of the relational data model. In fact, XPath 1.0
[19] has a dynamic type system which prevents error
detection during query compilation, and does not fit as
well into a relational database system.
Most of the SQL types are compatible with the

XQuery type system (e.g. decimal). A handful of types
(e.g. xs:duration) are stored in an internal format and
suitably interpreted for compatibility with the XQuery
type system.
Compilation of XQuery expressions requires

annotation of the XML algebra tree with type information,
which can be obtained from type definitions or by using
type derivation. The type information must be supplied
using XML Schema. For example, a node whose value
must be of type xs:integer is prevented at compilation
time from being supplied with a value of an incompatible
type such as xs:string. When such schema information is
unavailable, e.g. for “untyped” XML, a limited set of type
inferences using the XQuery type system is still possible.
Static type checking of XQuery expressions can raise
static errors during query compilation and report errors
without executing the expressions. This improves the
responsiveness of the database system in a big way.
Dynamic errors are still possible during query execution
time, such as failure of type casts, and return in empty
XML or a NULL result instead of an error.

5.1 Type Inference Mechanism

The XQuery Compiler loads type information from XML
schemas in the XML schema collection associated with an
XML instance into a symbol table. It annotates the nodes
in the XML algebra tree with type information retrieved
from the symbol table. The type of a node is also based on
the inferred types of the earlier processed nodes. The
resulting operator tree is referred to as the “annotated
XML algebra tree” (AXAT).
For example, when adding two inputs annotated with

the type xs:decimal, the node for the addition is annotated
with the type xs:decimal.
The symbol table contains a normalized form of the

type information that makes retrieval of type information
from it very efficient.

5.2 Static Type Checking

Compilation errors are returned from syntactically
incorrect XQuery expressions. The compilation phase
checks static type correctness of XQuery expressions, and
raises static type errors if an expression could fail at
runtime due to type safety violation. Examples of static
errors are addition of a string to an integer, and detecting
potential mistakes such as querying for a non-existent
node name in typed XML data.
Explicit casting to the proper type allows users to

work around static errors, although runtime cast errors are

1183

transformed to empty sequences as a deviation from the
W3C recommendation; an option to return dynamic errors
could have been provided. The empty sequence may
propagate as empty XML or NULL in the query result
depending upon the invocation context. SQL Server 2005
requires "cast as" with "?" (0 or 1 occurrence) since any
cast can result in the empty sequence due to runtime
errors.
Location steps, function parameters, and operators

(e.g. eq) requiring singletons return an error if the
compiler cannot determine whether a singleton is
guaranteed at runtime. The problem arises often with
untyped data and path expressions that may yield multiple
nodes, and an explicit iteration or an ordinal predicate
(e.g. (/book)[1]) selecting a single node needs to be used.
If a node is specified as a singleton in an XML schema,
the XQuery Compiler uses that information and no error
occurs. However, the use of descendant-or-self axis, as in
/BOOK//TITLE, loses singleton cardinality inference for
<TITLE> element even if the XML schema specifies it to
be so. An ordinal predicate is required in this case. In
some contexts, the ordinal specification can be removed,
even for untyped XML [14].
If the type of a node cannot be determined, such as in

an xs:any section with processContents = “skip”, it
becomes xs:anyType, which is not implicitly cast to any
other type. An element may be defined as xs:anyType in
an XML schema and navigation using parent axis (e.g.
XDOC.query('/book/@genre/../price')) also results in
xs:anyType for the parent node type. In both cases, the
loss of more precise type information often leads to static
type errors, and requires explicit cast of atomic values to
their specific types.

6. Optimizations on Query Tree

The relational query optimizer treats the query plan with
relational semantics. This is appropriate for many cases,
such as for evaluating relational accesses before XML
data accesses or vice versa, and results in an optimal
execution.
This section describes some of the optimizations

supported for XQuery processing.

6.1 Exploiting Ordered Sets

The XML Operator Mapper produces query plans for
XQuery processing in structure preserving ways. Order
preservation among the nodes of an XML tree is achieved
using OrdPath as a ranking column – it not only supports
relative order but also encodes hierarchical relationship –
so that it can serve as a node identifier column during the
intermediate processing steps. The query optimizer honors
the directives given by the relational operator tree in its
optimization decisions.
Rows representing the subtree of an element, either

retrieved from the primary XML index or generated by
the XML_Reader, are in ascending order of OrdPath, i.e.

the rows are in depth-first order of the nodes in the
subtree. This information is made available to further
relational operators in the relational operator tree to
eliminate sort operations. Serialization of an XML subtree
using the XML_Serialize operator serves as an example.
Similarly, the fn:data() and fn:string() aggregators avoid
sorting on OrdPath when the input is already in document
order (e.g. retrieved from the primary XML index).

6.2 XML Index and XML Blob Accesses

XML indexes are used as available. The choice of the
primary XML index is made statically by the XML
Operator Mapper, which work well in most cases [12].
The choice of secondary XML indexes is cost-based and
is made by the relational query optimizer.
For indexed XML data, the XML Operator Mapper

produces a query plan that uses lookups on the Path_ID
column of the primary XML index for path evaluation.
The lookup may be an exact match for a fully specified
path such as /BOOK/SECTION. For a path expression
containing //, such as //SECTION/TITLE, the LIKE
operator is used to match the prefix of the Path_ID
column with the ending portion of the specified path. This
works since the Path_ID column stores reversed paths.
For non-indexed XML data, XML index rows are

generated in document order at runtime using the
XML_Reader operator, which is a streaming table-valued
function (TVF). To transform an XML blob into XML
index rows, XML_Reader uses a streaming, pull-model
XML parser, similar to the XmlReader in the .NET
framework [9]. Searching for paths is done differently for
XML blobs than using the Path_ID column in the indexed
case. XML_Reader accepts simple XPath expressions
without branching and generates rows for the result of the
XPath expression evaluation.
The XML_Reader has a special optimization to

minimize the number of passes over an XML blob. The
rows generated from an XML_Reader can serve as XML
node references for a second, correlated XML_Reader.
The latter can use these node references to locate the
corresponding XML nodes in a single pass over the blob.
An example is the path expression /BOOK[@id =
“123”]//TITLE, in which the rows generated by an
XML_Reader for /BOOK are used as <BOOK> node
references in a correlated XML_Reader. Making
XML_Reader a stateful operator allows the second
XML_Reader to generate <TITLE> elements in a single
pass over the XML blob using the <BOOK> element
references. An interesting extension is to merge multiple
XML_Reader operators into a single one that evaluates
multiple path expressions in a single pass over the XML
blob, although this optimization is not in the product.

6.3 Using Static Type Information

Node values within an untyped XML instance are stored
as Unicode strings. Operations such as numeric addition

1184

(+) require such values to be converted at runtime to
compatible types. Within a typed XML instance, on the
other hand, node values are stored as the primitive XML
Schema types mapped to the corresponding SQL types.
For typed XML, the type conversion of values is
eliminated wherever possible for faster execution.
Elimination of type conversion also enables range scans
over XML indexes; this can yield significantly faster
execution for range queries. XML schemas are used for
other optimizations as well, notably the determination of
singleton cardinality.
The query processor uses the static type information to

optimize queries. For instance, if it is known from the
XML schema that an element <BOOK> occurs at most
once in an XML instance, then parsing of an XML
instance for the path expression /BOOK can stop as soon
as the <BOOK> element has been found. Furthermore,
searching for singleton nodes can collapse multiple node
retrievals into a single parse of the XML instance.

6.4 Transformations on XML Algebra Tree

A few optimizations on the XML algebra tree are
performed by the XQuery Compiler. In the expression

for $i in /BOOK/SECTION
 return $i/TITLE

the variable $i is annotated with the path
/BOOK/SECTION. Within the scope of $i, a path
expression relative to $i, such as $i/TITLE, is expanded
into the exact path /BOOK/SECTION/TITLE. This
technique is called path collapsing. In the indexed case,
the collapsed path is mapped to an equality comparison on
the Path_ID column of the primary XML index for
efficient execution. In the case of XML blob, the path is
used during XML data parsing to retrieve the <TITLE>
nodes.
Path collapsing can be used in more complex path

expressions as well, such as /BOOK/SECTION [TITLE =
“Introduction”]. In practice, this simple optimization
yields very good results.
The XQuery Compiler rewrites the ordinal predicates

1 and last(), as in /BOOK[1] and
/BOOK/SECTION[last()], to TOP 1 ascending and TOP 1
descending, respectively. Primary XML index rows as
input to the TOP operator avoid sorting the rows and
yields better performance.

7. Related Work

A significant body of research exists on the execution of
XQuery on an XML view of relational data, such as
SilkRoute [4], XPeranto [17][18], etc. Several commercial
products support XML views as well, such as Microsoft’s
SQL Server 2000 [10]. These approaches compile the
XQuery or XPath expression into one or more SQL
statements using the XML view definition. The results of

execution of these SQL statements are combined into the
XML result. Unlike our approach, these techniques still
operate on relational data and cannot efficiently handle
the full richness of general XML documents or the non-
relational aspects of XQuery/XPath. Our approach is to
devise query plans for rich XML data type as well as for
XML indexing.
This paper differs from our earlier paper on XML

indexing [12] in that it describes the internal operators
used in the query trees produced for executing XQuery
expressions. The XML indexing paper discusses how
XML data can be indexed to speed up different query
classes and how query plans use those indexes. Thus,
these two papers complement one another.
Grust et al. [7] discusses an XQuery implementation

on a relational database system. They use the pre-order
and post-order node labeling scheme instead of OrdPath,
and their approach comes closest to our treatment of
indexed XML data. Their approach, however, is built
outside the database engine. Our work fits XQuery
compilation and execution into the relational query
processing framework and pursues optimizations possible
within the relational query optimizer.
Florescu et al. [5] describe an XQuery implementation

on streaming XML data. By comparison, we consider a
persistent, shared state of the XML data on which XQuery
processing is studied using a relational query processing
framework.

8. Conclusions and Future Work

This paper gives an overview of some of the major
features of the XQuery language implemented in SQL
Server 2005 using the relational query processor. (A data
modification language is also available and fits into the
relational query processing framework equally well.) The
underlying query processing and data storage frameworks
have been built up to provide users with a good set of
features that perform and scale well.
SQL Server 2005 is the first release from Microsoft

Corporation which implements XQuery. This has been a
major undertaking with the primary focus of building up
the infrastructure that can support the implementation of
the full XQuery specification. Features not currently
supported, such as “let” and typeswitch, can be
implemented using the same framework. Needless to say,
future work includes a long list if items.
From the language perspective, although many built-in

functions are available, features such as the remaining
XQuery language constructs, remaining XPath axes, user-
defined function library, user-defined recursive functions,
and many built-in functions and operators can be done in
the future. Converting dynamic errors to empty sequences
yields correct results as in predicates without negations.
However, in the presence of negation and update
expressions, wrong results can occur. Therefore, a future

1185

version needs to provide better filtering of spurious errors
in the execution framework.
From the query processing viewpoint, more cost-based

optimizations, such as the cost-based selection of the
primary XML index, can be done. This can be achieved
by making the XML Operator Mapper an integral part of
the relational query processor. Computed columns based
on XML data type methods are useful for property
promotion and are supported by SQL Server 2005. In the
future, the query optimizer can provide support for
matching such columns and in general matching
materialized views on XML columns.
Experimental results can be found in the paper on

XML indexing [12] for the XMARK benchmark. The
query plans were produced for those experiments by the
query processing framework described in this paper. As
future work, it will be interesting to study the benefits of
individual optimizations and to work on further
optimizations.

ACKNOWLEDGMENTS

The authors would like to thank their colleagues Denis
Altudov, Mike Rorke, Jinghao Liu, Cesar Galindo-
Legaria, Milind Joshi, Florian Waas, Torsten Grabs and
Joe Xavier for their discussions on XQuery
implementation; and specially thank their former
colleagues Peter Kukol and Chris Kowalczyk for their
invaluable contributions to the project.

REFERENCES

[1] B. Beauchemin, N. Berglund, D. Sullivan. A First Look at
Microsoft SQL Server 2005 for Developers. Addison-
Wesley, 2004.

[2] J. Cowan, R. Tobin, eds. XML Information Set.
http://www.w3.org/TR/2001/WD-xml-infoset-20010316.

[3] Extensible Markup Language (XML) 1.0.
http://www.w3.org/TR/REC-xml.

[4] M. Fernandez, Y. Kadiyska, A. Morishima, D. Suciu, W-C
Tan. SilkRoute : a framework for publishing relational data
in XML. ACM TODS, vol. 27, no. 4, December, 2002.

[5] D. Florescu et al. The BEA/XQRL Streaming XQuery
Processor. VLDB Conference, 2003.

[6] C. Galindo-Legaria, M. Joshi. Orthogonal Optimization of
Subqueries and Aggregation. SIGMOD 2001.

[7] T. Grust, S. Sakr, J. Teubner. XQuery on SQL Hosts.
VLDB Conference, 2004.

[8] J. Melton. ISO/IEC 9075-14:2003, Information technology
— Database languages — SQL — Part 14: XML-Related
Specifications (SQL/XML), 2004.

[9] Microsoft .NET framework.
http://msdn.microsoft.com/netframework.

[10] Microsoft SQL Server™. http://www.microsoft.com/sql.

[11] P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller.
ORDPATHs: Insert-Friendly XML Node Labels. SIGMOD
2004.

[12] S. Pal, I. Cseri, O. Seeliger, G. Schaller, L. Giakoumakis,
V. Zolotov. Indexing XML Data Stored in a Relational
Database. In Proceedings of VLDB Conference, Toronto,
2004.

[13] S. Pal, M. Fussell, I. Dolobowsky. XML support in
Microsoft SQL Server 2005. MSDN Online,
http://msdn.microsoft.com/xml/default.aspx?pull=/library/e
n-us/dnsql90/html/sql2k5xml.asp, 2004.

[14] S. Pal, V. Parikh, V. Zolotov, L. Giakoumakis, M. Rys.
XML Best Practices for Microsoft SQL Server 2005.
MSDN Online,
http://msdn.microsoft.com/xml/default.aspx?pull=/library/e
n-us/dnsql90/html/sql25xmlbp.asp, 2004.

[15] M. Rys. XQuery and Relational Database Systems. In
XQuery from the Experts, Howard Katz (ed.), Addison-
Wesley, 2003.

[16] M. Rys. XQuery in Relational Database Systems. XML
2004 Conference, Washington DC, Nov 2004.
http://www.idealliance.org/proceedings/xml04/abstracts/pa
per254.html.

[17] J. Shanmugasundaram, R. Krishnamurthy, I. Tatarinov. A
General Technique for Querying XML Documents using a
Relational Database System. SIGMOD 2001.

[18] I. Tatarinov, E. Viglas, K. Beyer, J. Shanmugasundaram, E.
Shekita. Storing and Querying Ordered XML Using a
Relational Database System. SIGMOD 2002.

[19] XML Path Language (XPath) 1.0.
http://www.w3.org/TR/xpath, 1999.

[20] XML Path Language (XPath) 2.0.
http://www.w3.org/TR/2003/WD-xpath20-20031112,
2003.

[21] XML Schema Part 1: Structures and Part 2: Datatypes.
W3C Recommendation 2 May 2001.
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502,
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502.

[22] XQuery 1.0: An XML Query Language.
http://www.w3c.org/TR/xquery.

[23] XQuery 1.0 and XPath 2.0 Data Model.
http://www.w3.org/TR/2005/WD-xpath-datamodel-
20050211.

1186

