
Enterprise Agility

An Integrated Approach

Author: Lars Hansen

E-mail: lars.hansen@gmail.com

Supervisor: John Gøtze

Master Thesis at IT-Universitetet

November 2008

The picture on the front-page is a graphical illustration of TOGAF 8 as an ontology.

The picture is generated with the “Fly The Mothership” function in the Semantic Web
Ontology Editor (Swoop) application.

Foreword

This publication is a thesis submitted to the IT-University for a Master of Science in

Information Technology, Ebuss. The thesis is supervised by John Gøtze.

First and foremost, I would like to thank all the people who has somehow contributed to

this thesis. In particular, I would like to thank my supervisor John Gøtze. Since I followed

his course in Enterprise Architecture during my second term on the IT-University, I was

certain that my master thesis would be written within this particular field. In this, I have no

regrets. So I would like to thank him for his enthusiasm, his patience and most importantly

for pushing me to do my best.

Moreover, I would like to thank the people who have been interviewees for this thesis,

despite their busy work schedules. The input from specialists within the field has been

invaluable.

Finally, it is my hope that the reader will enjoy this thesis.

Lars Hansen

IT-Universitetet, November 2008

Abstract

This thesis concludes my Master of Science, Information Technology in Ebuss. It has been

the basic tenet for this thesis, that enterprises are operating in world that is becoming ever

more fast-paced and unpredictable. This reality calls for a greater emphasis on the ability

to respond effectively to changes, rather than on rigid long-term planning. As such, the

ability to act in an agile fashion will be a critical competence for enterprises in navigating

this new world. It was with these observations in mind, that I sought out to establish an

integrated approach to EA, SOA and BPM, which can be leveraged for agility. The focal

point was to enable enterprises to better handle business changes, driving changes in

business processes and their underlying information systems.

Keywords: enterprise, agility, business process management, enterprise architecture, service-
oriented architecture, alignment, governance, meta-data management, ontology, meta-model, rdf,
rdfs

The thesis was done through a theoretical literature study, supplemented by qualitative

interviews with people considered experts within relevant domains. Moreover, a simple

enterprise meta-model was devised and implemented in an ontology.

The main findings of this thesis are:

! The relationship between BPM and SOA is often sold on the idea of a business

analyst being able to analyse, design and deploy business processes with little or

no intervention from IT. I did however find significant semantic gaps in the chain

from analysis to deployment. The primary advantage of using BPM and SOA

together is to decompose business processes from their underlying implementation

details, rather than to automate software development

! Stake-holders, such as business analysts, system architects and system

developers still needs to come together in order to bridge the semantic gap

between business and IT. A process for service design was devised, including using

BPM for domain decomposition.

! Coupling remains an issue, even in a loosely coupled service-oriented

architectures. I especially pointed towards the problem of semantic coupling.

Managing residual coupling calls for sound meta-data management and

governance.

! BPM and SOA together requires long-term planning, commitment and management

far beyond the individual BPM-SOA project. I found EA to be an excellent tool for

establishing BPM and SOA. The focus on alignment is however at the cost of agility.

I devised some modifications to the TOGAF ADM that would make it possible to

better balance agility and alignment.

! Integrating EA, SOA and BPM for agility requires visibility across all EA artefacts.

An architecture based on BPM-SOA contains a rather large amount of components,

each having their own life-cycle to be managed. I found that a a shared neutral

language connecting EA artefacts was needed. This language could bridge the

many small worlds of domain specific models into a consolidated model of the

enterprise.

! A case scenario was described in order to codify important findings in the thesis

! Finally, I demonstrated initial feasibility of using ontologies and ontology

representation languages to established the common language for EA. The

ontology was based on RDFS.

The overall conclusion of this thesis is, that I see meta-data management and meta-data

integration through the creation of a common architecture language, as absolutely vital in

integrating BPM, SOA and EA around the theme of agility.

Table of Contents

Thesis Problem and Methodology...1
1.1 Motivation..1
1.2 Thesis problem..4
1.3 Delimitation..5
1.4 Clarification of Problem Definition...6
1.5 Methodology..7
1.6 Thesis structure ..10

Module 1 – Background and Concepts..12
Chapter 2 – Enterprise Agility..13

2.1 Definition of Enterprise..13
2.2 Definition of Enterprise Agility...14
2.3 Enterprise Agility and Information Technology..17
2.4 Agility versus Alignment..19
2.5 Enterprise Agility and Agile Software Development..21
2.6 Chapter Summary...23

Chapter 3 – Understanding the parts..24
3.1 Enterprise Architecture ...24
3.2 Business Process Management..35
3.3 Service-oriented Architecture..43
3.4 Chapter Summary...53

Module 2 – The Sum of the Parts..55
Chapter 4 – BPM and SOA..56

4.1 The Vision of BPM-SOA..59
4.2 The Model-driven View..62
4.3 The Methodology-driven View ..81
4.4 Is BPM the Business Case for SOA?..95
4.5 Chapter Summary...97

Chapter 5 – Contribution of Enterprise architecture ...99
5.1 Architecture Development in the Context of BPM-SOA......................................100
5.2 Enterprise Architecture and Agility..102
5.3 Building a Foundation for Execution..113
5.4 The Integrated Approach ..123
5.5 Challenges of Integrated Enterprise Modelling...126
5.6 Chapter Summary...135

Module 3 – Connecting the Dots...137
Chapter 6 – Implementing a Common Language...138

6.1 Ontologies...139
6.2 Ontology Representation...142
6.3 Using RDFS to Implement the Meta-model..149
6.4 Chapter Summary...151

Chapter 7 – The Project Scenario...152
7.1 Project Scenario – T.A.X...152
7.2 The Common Language..156
7.3 Personal Reflections...167

Module 4 – Conclusion, Perspectives and Criticism..170
Chapter 8 – Conclusion, Perspectives and Criticism..171

8.1 Conclusion ..171
8.2 Perspectives..175
8.3 Criticism...178

List of Appendices

A - Notice on Changed Problem Statement...183
B - Indicators of BPM-SOA Interest...184
C - Thesis Interviews...186
D - The Zachman Framework ...187
E - The TOGAF Architecture Development Method ...188
F - Note on Model-driven Architecture (MOF & XMI)..189
G - The Enterprise Meta-model...194
H - Meta-model Concepts (Class hierarchy)..195
I - Meta-model Relations (Object properties)...200
J - The RDF-Gravity Legend Map..201
K - Bibliography..202

Figures

Figure 1: Strategic Alignment Model [Adapted from Venkatraman & Henderson:479].......19
Figure 2: The Zachman Framework [ZIFA]..29
Figure 3: Architecture Development Method [TOGAF:20]...33
Figure 4: Process Life-Cycle [SAP]...37
Figure 5: 7FE BPM Framework [Adapted from Jeston & Nellis, 2008, 1:63]......................41
Figure 6: Conceptual Service Model [Own production]...46
Figure 7: Service Interaction Model [Arsanjani]...48
Figure 8: Abstraction of Business Processes [Own production]..52
Figure 9: BPM-SOA Stack [Kamoun]..59
Figure 10: Modelling Value-chain [Own production]..66
Figure 11: Language Description Elements [Own production]..71
Figure 12: Business versus Service Modelling..78
Figure 13: Domain Decomposition [Own production]..85
Figure 14: Simple Business Process [Own production]...87
Figure 15: Service Specification Requirements [Own production]......................................89
Figure 16: Semantic Service contract [Own production]...92
Figure 17: Alignment Model for the ADM [Own production]..103
Figure 18: Decomposing Business and IT alignment [Sousa, Pereira & Marques:35]....105
Figure 19: TOGAF ADM with Phase Steps [TOGAF:21]...107
Figure 20: Architecture Change [Own production]...112
Figure 21: Operating Models [Adapted from Weill, Ross & Robertson:29].......................115
Figure 22: The Effect of Operating Models on BPM-SOA [Own production].....................117
Figure 23: Foundation Architecture – Aligning Business and IT [Doucet et. al:5].............120
Figure 24: Extended Architecture [Doucet et al.:6]..121
Figure 25: Modified Architecture Development Method [Own production]........................123
Figure 26: Meta-model [Own production]..132
Figure 27: Ontology Layers [Own production]...141
Figure 28: Semantic Web Layers [Passin:14]..143
Figure 29: Example of RDF Triple [Own production]...144
Figure 30: Complex RDF Example [Own production]..145
Figure 31: Example Business Process [Own production]...159
Figure 32: Simple Process Overview [Own production]..160
Figure 33: Line-of-Sight - Architecture Domains [Own production]...................................161
Figure 34: Line-of-sight - Strategy Domain [Own production]...163
Figure 35: Business Process Versioning [Own production]...165
Figure 36: Architecture Versioning [Own production]..166
Figure 37: UML Model Exchange [Lundell et al.:626]..192
Figure 38: UML Model Exchange XMI 2.0+ [Lundell et al.:628]..193
Figure 39: Strategy Class Hierarchy [Own production]...195
Figure 40: Business Architecture Class Hierarchy [Own production]................................196
Figure 41: Application Architecture Class Hierarchy...197
Figure 42: Data Architecture Class Hierarchy [Own production].......................................198

Tables

Index of Tables

Table 1: Enterprise Change Process [Own production]...16
Table 2: BPM Initiation Drivers - [Own production]..42
Table 3: Tight versus Loosely Coupled Systems [Kaye:133]...50
Table 4: BPM versus SOA [Own production]...56
Table 5: Process Languages Feature Comparison [Own production].................................76
Table 6: Life-cycle Phases of Services in SOA [Own production].......................................81
Table 7: Benefits of SOA [Own production]..96

Page 1 /217

Thesis Problem and Methodology

1.1 Motivation

The basic premise for this thesis is that enterprises of today are operating in an

increasingly complex environment, characterised by constant change. It is sometimes said

that “change is the new constant”. But not only has the pace quickened; enterprises are

also facing increased competitive pressure. In a globalized world, with increasingly

demanding marketplaces, enterprises are faced with the daunting task of creating the

capability to respond to changes, and to continuously improve business. This issue is

highlighted in a recent Garner EXP survey: [Gartner, 2008]

“Eighty-five percent of chief information officers (CIOs) see significant change coming over

the next three years as they look to meet rising business expectations for IT to make the

difference in their enterprise strategy,”

The perhaps most important factor shaping the need for agility is globalisation.

Globalisation itself, can be considered an umbrella term, covering a lot of different

tendencies. Globalisation is a subject causing much discussion and controversy, but in this

context globalisation will be seen as “a tendency towards a higher degree of co-operation

integration and dependence across national state boundaries”.1 [OEM:5] Globalisation can

especially be seen expressed in advances in transportation-, communication- and

information technologies. But not only technological factors are at play. Deregulation has

had its effect too. Barriers once erected between between countries or regions, as well as

barriers between public and private sector enterprises are being broken down. So

enterprises who once were protected by legal or trade barriers are now subject to fierce

competition in an open market.

1 Translated from danish to english. Original quote is: “Globalisering er udtryk for en større grad af
samarbejde, integration og afhængighed på tværs af landegrænserne.”

Page 2 /217

Globalisation does not only increase competition, but also makes the environment more

unstable and unpredictable. This development towards the more unstable and

unpredictable, can be described more formally through some of Dave Snowdens work.

Snowden is engaged in describing how to make sense, and make decisions in different

types of systems. In his “Complex acts of knowing” he differentiates between complicated

and complex systems.2 [Snowden:7-8] Complicated systems are reducible and can be

subject to traditional cause-and-effect analysis. Complex systems in contrast, involves

many different agents (an agent denoting everything that has one or more identities).

Complex systems are irreducible, and cannot be subject to traditional cause and effect

analysis.

In it-self, complexity is nothing new. But as customers, competitors, suppliers, and partners

all react to the new opportunities and threats arising from globalisation, the environment

becomes more volatile. In order to position themselves, the various stake-holders all

change positions vis-á-vis each other, by constantly re-configuring their value chains.

Obvious examples are dis-intermediation, where online technologies allows for skipping

intermediaries in the value chain, providing a more direct producer / end-user relationship.

In other situations, intermediation takes place, where new intermediaries appear, such as

travel-bookers, shopping portals etc. Increased use of sourcing and outsourcing also

impacts the value chain. Moreover, many of the new competitors entering into ones home

market, often have access to a very different set of resources and competencies,

compared to the competitors originating in the geographical home market. This also

carries the risk of inducing non-linear changes, in the form of disruptive innovations, i.e.

innovations that drastically alters the rules on the market. This notion has been

popularized by Thomas L. Friedman in his bestseller “The World is Flat”. The central

theme of his book is that the economic playing field has been leveled. Globalization he

says, “is shrinking the world from a size small to a small tiny and flattening the playing field

at the same time” [Friedman:10]

2 Snowden further divides complicated systems into known and knowable. In known systems cause and
effect has already been identified, and in knowable systems we can identify cause and effect by using
enough resources for the analysis.

Page 3 /217

These developments creates a much more dynamic, and unpredictable environment. In

such a complex environment, enterprises can no longer identify cause and effect, and will

increasingly rely on managing patterns, rather than knowing exactly what to do next.

Snowden observes: “In the complex domain we need to identify the early signs of a

pattern forming and disrupt those we find undesirable while stabilising those we want“.

[Snowden:8] In such an environment, greater value is placed on the ability to detect

patterns and to respond fast, rather than on rigid long time planning. It appears that

something needs to be done in order to adapt to this environment.

Page 4 /217

1.2 Thesis problem

Having realized the growing need for change, enterprises are increasingly embracing the

concept of agility, and are employing a wide range of strategic initiatives to improve agility.

Sometimes used as standalone initiatives, and sometimes in combined effort. Among

these initiatives are:

! Enterprise Architecture (EA)

! Service Oriented Architecture (SOA)

! Business Process Management (BPM)

The central theme of this thesis is, that EA, SOA and BPM each concerns different aspects

of agility in an enterprise. The relationship between between these initiatives are however

not very well understood. The main argument of this thesis is that the three initiatives can

be brought together to improve agility, but also that something is missing in order to

integrate them. Thus, the overall goal of the thesis is to devise an integrated approach to

EA, SOA, and BPM. 3

The research problem for this thesis is:

How can enterprises integrate EA, BPM and SOA for agility?

3 It should be noted that the thesis problem has been modified. See appendix A

Page 5 /217

1.3 Delimitation

There are of course several elements to enterprise agility, and “IT i Praksis”, by Rambøll

Management defines four elements: [Rambøll;6]

! Structure

! People

! Processes

! Technology

To define an appropriate scope, for this thesis, I will however not deal with all four

elements. The focal point of this thesis will be business changes, driving changes in

business processes and their underlying information systems. Business processes are

core elements of an enterprise, and include interactions between humans and systems.4

An enterprise can be though of as “an aggregation of processes and the resources that

comprise those processes” [Bloomberg & Schmelzer:61] Smith & Fingar goes as far as

saying that: “business processes are the business”. [Smith & Fingar:17] While this

statement can be considered an oversimplification, business processes are without doubt

of central value to an enterprise, because business processes defines “how people and

other resources work”. [Bloomberg & Schmelzer:61]

But business processes cannot stand alone, as they are just the organising logic for the

work being done. I see a natural relationship between processes and information systems;

processes depends on information systems, and information systems are often designed

or customised to support business processes. Moreover, business processes are often

embedded within information systems, effectively making the business at the mercy of IT.

[Smith & Fingar:13]

Deciding to look mainly at process, and technology has some limitations. Agility in this

thesis is the capability to continuously perform incremental improvements to business

processes. This means, that this thesis will not concern the transformation of enterprises

through giant steps, but rather through series of small incremental steps. One could say

that this view on agility is more small-bang than big-bang.

4 Being Human-System, Human-Human, or System-System interactions

Page 6 /217

1.4 Clarification of Problem Definition

Having three main entities to study in the thesis, there will be the important question of

how to relate them to each other. An obvious approach would be to analyse the entities as

three pairs, i.e. EA, vs. SOA, EA, vs. BPM, and BPM vs. SOA.

I have however chosen a different approach. Instead, I will perform the analysis by first

looking at BPM and SOA combined under the umbrella term BPM-SOA. Bearing in mind,

that the focal point of this thesis is agility in relation to business processes and information

systems, I find it natural to treat them in combination. BPM for the business and SOA for

the IT. There are also several indicators pointing towards BPM and SOA already being

seen as complementary entities. Among these indicators are increased customer interest

in combining BPM and SOA, vendor consolidation within the field, and a generally growing

awareness around the combination of BPM and SOA. In appendix B, some of these

indicators have been detailed.

Following the BPM-SOA analysis, I will proceed to analyse the relationship between BPM-

SOA and EA. I see EA playing a very different role in regards to agility compared to that of

BPM and SOA; EA is taking the long-term enterprise-wide look at resource utilisation in the

enterprise. In some ways, this long-term view is an anti-thesis to agility, but I see huge

synergies in using EA in combination with BPM and SOA. The integrated approach,

combines BPM-SOA with EA, will be codified in a model.

But I will however also find, that something is missing from the equation. To be able to

integrate EA, BPM and SOA there need be a shared language to understand the

architecture as a whole. Thus, I will have to devise a way to define such a language.

Moreover, the language should be possible to implement by electronic means. I will create

a proof-of-concept implementation of such a language.

Finally, through a case scenario, I will codify the most important finding of this thesis, as

well as demonstrate the use of the language implementation.

Page 7 /217

1.5 Methodology

1.5.1 Research Design

The overall purpose of this thesis is to create a clearer conceptual understanding of the

relationship between enterprise agility, and an integrated approach to EA, SOA, and BPM.

The research design, provides guidance about how to achieve this goal. It is my intent to

identify potential problems in leveraging EA, SOA and BPM for agility, as well as pointing

out solutions to said problems. I have therefore chosen to opt for combined approach to

the research, by including two different research methods:

! Explorative: As the name implies, the explorative research design is about

exploring new or unknown fields or phenomena. A specific branch of the explorative

research methods concerns problem identification. Another important characteristic

of the explorative research design is that it allows me to formulate work hypotheses.

[Andersen:23-24] I will utilise these characteristics in combination; by formulating

working hypotheses, which can be either validated or rejected, I will uncover

possible problems in regards to leveraging EA, SOA, and BPM for agility.

! Normative: The normative research design is concerned with formulating solutions

or ways to remedy identified problems. [Andersen:28] Based on the problems

identified in my exploration of the problem domain, I will devise solutions to these

problems. As I have decided not to include a case, the solutions will be of a more

general nature, rather than with the purpose of intervening in a specific case or

enterprise.

Page 8 /217

1.5.2 Hermeneutics

It is a hallmark of good research, that it can be considered objective. Objectivity is often

contrasted to that of subjectivity (or bias versus non-bias). [Kvale:71] Unfortunately, the

term objective is in itself a rather subjective term, as there are many different

interpretations [Kvale:72]. A goal of this thesis is to perform research that has freedom

from bias, i.e. is free from my personal prejudice, opinions, and perceptions as possible.

This would among other things require, that I - as a researcher - should be able to interpret

the literature in an impartial, and unbiased way. This is however an attempted ideal.

Hermeneutics, which is a field that is concerned with the interpretation of literature,

highlights this point: “Hermeneutics is an approach to the analysis of texts that stresses

how prior understandings and prejudices shape the interpretative process”. [Denzin &

Lincoln:27] As a researcher, I already posses a body of knowledge before writing this

thesis, and this knowledge does not only affect how I look at the subject matter, but it will

also impact how I interpret the literature that I encounter.

The problem of interpretative bias is especially relevant in relation to the subject that I am

about to study. I consider enterprises complex systems in the same sense that I used the

word earlier. This leaves the problem, that one cannot expect to identify “hard truths” like in

natural sciences, where it is possible to identify natural laws. Studying enterprises gives

much room for interpretation. This ambiguousness is also evident in the literature

concerning EA, SOA, and BPM. All three concepts lacks stringent definitions, and

interpretations. Moreover, all three fields are constantly evolving and expanding. A

principally important hermeneutic question is to understand, whether there is only a single

legitimate interpretation, or if there is in fact multiple legitimate interpretations. [Kvale:208]

The obvious answer must be that there are several legitimate interpretations, since all

concepts are broad, and are applied in different ways.5 Because there are no commonly

accepted way of understanding either of these three concepts, my descriptions and

definitions of these terms, becomes as much my own interpretation of them.

5 Which does not eliminate the possibility that some definitions can be considered wrong or illegitimate

Page 9 /217

The hermeneutic circle is an approach that can be used to reduce the problem of “one-

sided” interpretations, and I will embed the hermeneutic circle in my work. The

hermeneutic circle states, that understanding the parts cannot be done without referencing

the whole, and understanding the whole cannot be done without referencing the parts.

Although sounding like a paradox, the idea is rather simple; there is a continuous shift

between looking at the parts, and looking at the whole. I start with a pre-understanding of

the subject matter. From there, I will start by understanding the parts by performing

literature study, and from this further understand the whole. Once the whole has been

grasped, I will return to revise my understanding of the parts. This circle of interpretation

does in principle go on continuously, but in reality, the circle will stop, once an acceptable

level of understanding has been achieved. [Kvale:57] By adopting the hermeneutic circle, I

will progressively arrive at an interpretation more free from bias.

To further strengthen the quest for objectivity, I will perform a range of interviews with

people that I consider experts within relevant domains (see appendix C for a list of

interviewees). The purpose of these interviews are two-fold; they are meant to help me

improve on my body of knowledge, but they are also meant to help interpret the knowledge

obtained in the theoretical literature study. Thus, these interviews becomes a part of the

hermeneutic circle, by letting them impact my interpretation of the literature.

Page 10 /217

1.6 Thesis structure

Module 1 - Background and concepts

The first module lays the theoretical foundation for the rest of the thesis. Many of the key

terms relevant for this thesis, have different meanings depending on context. It is therefore

necessary to describe and define the key terms, that will be used throughout this thesis.

! Chapter 2: This chapter concerns enterprise agility. Agility is a phrase gaining

much attention, and it is vital to gain an understanding of the meaning of agility,

especially seen in relation to business processes and information systems. The key

objectives will be to understand the meaning of the term agility, and to understand

how agility concept interfaces with other important concepts.

! Chapter 3: This chapter serves to establish a conceptual understanding of EA, SOA

and BPM as individual parts. Each of these strategic initiatives has the potential to

contribute to enterprise agility in certain ways. Understanding the parts, gives us

basis for analysing the sum of the parts in the next module of the thesis.

Module 2 - Understanding the sum of the parts

In this module, the sum of the parts will be analysed. A basic premise of this thesis is that

EA, SOA and BPM are similar in certain ways and different in certain ways, which allows

enterprises to use them in a complementary fashion. Thus, the goal of this module is to

investigate how a more integrated approach to EA, SOA and BPM can improve agility.

! Chapter 4: The first step of the analysis, is to look at the relationship between BPM

and SOA. The vision of BPM and SOA together will be presented. From there, I will

analyse the nature of the relationship between BPM and SOA. I will perform this

analysis by seeing BPM-SOA from two different perspectives, i.e. in the form of a

model-driven perspective and a methodology-driven perspective.

Page 11 /217

! Chapter 5: Having established the relationship between BPM and SOA, it will be

argued that EA provides key tools in in establishing and maintaining BPM-SOA. The

analysis will especially centered around the relationship between alignment and

agility. At the end of the chapter, the integrated model will be presented. But I will

also identify missing parts to this integrated approach and I will see a shared

language to be used across architecture artefacts as a necessity for integrating EA,

SOA and BPM for agility. I will set forth the requirements for such a language.

Module 3 – Connecting the Dots

This module is concerned with connecting all the dots of this thesis. The module will

consist of two chapters; in the first chapter I will lay the theoretical foundation for a way to

implement a shared language for EA, SOA and BPM. The second chapter will consist of a

case scenario, including a demonstration of an implementation of a shared language.

! Chapter 6: In this chapter, I will lay the theoretical foundation for an implementation

of a shared language for EA, SOA and BPM. I will introduce the concept of

ontologies, which will be seen as a logical progression from taxonomies. Whereas

taxonomies are hierarchical classifications schemes, ontologies are suited for

drawing the relationships between thousands of components in an architecture.

! Chapter 7: This chapter will codify the important findings of this chapter. The

chapter will also include a demonstration of the shared language, based on the

requirements set forth in chapter 5.

Module 4 – Conclusion, Perspectives and Criticism

The final section of the thesis will contain the conclusion, perspectives on the thesis

subject as well as critical self-reflection on the thesis research.

! Chapter 8: Conclusion, perspectives and criticism

Page 12 /217

Module 1 – Background and Concepts

Page 13 /217

Chapter 2 – Enterprise Agility

The purpose of this chapter is to set the scene for the rest of this thesis, as it creates an

understanding of the term enterprise agility. The first step will be to understand the term

enterprise, and then proceed to a definition of enterprise agility. The description of agility,

should especially be seen in the light of the thesis topic, focusing on business processes

and information systems. Following the definition of agility, I will proceed to discuss how

agility interfaces with other important concepts.

2.1 Definition of Enterprise

The word enterprise is used in many different different contexts, and usually refers to

some form of organisational entity. The term is also sometimes used to denote server-side,

or serious industrial software. But typically it is implied, that an enterprise represents some

kind of organisational entity, company, or a business. The term enterprise have been

chosen for this thesis for a particular reason; the use of the word enterprise indicates, that

both private and public sector entities are a subject of study. While there are obvious

differences between private and public enterprises, there are also a growing number of

similarities. Public enterprises are increasingly subject to new demands, such as increased

privatisation, benchmarking against private market players, outsourcing or sourcing of

activities, as well as reorganisations and structural reforms. In this sense, they have

increasingly similar requirements for agility, as their private market counterparts.

A definition of the enterprise term is put forward by Scott Bernard:

"An area of common activity and goals within an organization or between several

organizations, where information and other resources are exchanged" [Bernard:31]

From this definition it can be discerned, that an enterprise can be a part of a larger

organisation, span the entire organisation, or span across several organisations.

Exchange of information and other resources, defines the boundary of the enterprise.

Page 14 /217

This is contrasted by the definition from TOGAF:

“A good definition of ‘enterprise’ in this context is any collection of organizations that has a

common set of goals and/or a single bottom line. In that sense, an enterprise can be a

government agency, a whole corporation, a division of a corporation, a single department,

or a chain of geographically distant organizations linked together by common ownership.“

[TOGAF:4]

The two definitions have a lot in common. Again, we see that an enterprise can be part of

a larger organisation, span the entire organisation or span several organisations. The

difference is that Bernard sees exchange of information and other resources as the

boundary, whereas TOGAF sees joint ownership as the boundary.

This difference in definition is subtle, but not entirely without importance. The boundaries

of the enterprise is getting ever more permeable; enterprises are sometimes considered

extended, because they include partners, customers and suppliers. [TOGAF:4] Large

corporations or governments agencies, may also span several enterprises [TOGAF:4] For

all practical purposes, I do however consider this distinction of no particular relevance to

this thesis.

2.2 Definition of Enterprise Agility

A simple dictionary definition of agile, would be something like: “able to move quickly and

easily”. Some of the words we typically associate with being agile are: quick, fast, nimble,

flexible, and able to change direction fast. The different words in use suggests us, that

agility is not a one-dimensional construct. The dictionary definition of being able to move

quick and easily, would however not constitute an appropriate definition of what it means

to be an agile enterprise.

Page 15 /217

Gartner has developed a useful definition of enterprise agility: "the ability of an

organization to sense environmental change and respond efficiently and effectively to that

change” [Gartner, 2006:2] Another view is presented by Vince Kellen, who defines

strategic agility as: “a firm’s ability to successfully handle significant, fast-moving, and

frequent unknown events within its competitive space” [Kellen:2] It is obvious that the

Gartner definition and the definition of strategic agility provided by Vince Kellen resembles

each other. Both definitions implies, that agility is not only about speed or flexibility.

Gartner talks about responding efficiently and effectively to change, whereas Kellen uses

the word successfully. There are two important observations. Firstly, we see that they are

both talking about responding to change in the external domain, either in the form of

environmental change or changes in the competitive space. Secondly, both of them are

reactive, rather than proactive; agility is thus about responding to changes. In reality, we

can consider the two definitions more or less equivalent except for one thing; Gartner also

emphasises the ability to sense environmental change. This is similar to the notion of early

warning agility mentioned in Rambølls “IT i Praksis” report.6 [Rambøll:6]

IT plays a special role in regards to agility, and Kellen adds another layer of agility to the

discussion. He defines IT strategic agility as: “a subset of strategic agility and refers to

specific IT resources and capabilities that need to contribute to the firm’s overall agility”.

[Kellen:2] The notion of IT strategic agility as a subset of strategic agility is an important

one; an enterprise does not become agile, just because it deploys a flexible IT-

architecture.7 Enterprises becomes agile when they are able to adapt to changes in the

environment, in similar ways to biologic organisms, who would need to adapt to a

changing environment.

6 Using the term agility isolated about the capability to detect changes in the environment, does seem like
an overuse of the word agility. Being able to detect changes in the environment is an important part of
being an agile enterprise, but this capability does not in itself produce a response to the changes. Early
warning capability would in my mind have been a better term.

7 This will be an important discussion later on. But let me already now indicate, that I think one of the
fallacies of SOA is to believe, that SOA in itself makes an enterprise more agile.

Page 16 /217

To further clarify the way I interpret agility in regards to this thesis, I have created a

conceptual life-cycle model for enterprise changes. The life-cycle assumes that an

enterprise detect a change in the environment, and then decides to react to this changes,

by creating/modifying business processes or IT-capabilities. The model is purely

illustrative, as I am not suggesting that the process of change necessarily goes through a

series of discrete steps (nor that it should).

Phase Description

Detect The enterprise detects changes in the environment and makes an

estimate on the potential impact of this change. If the enterprise

perceives the change in the environment to be an opportunity or a threat,

it decides to goes forward to the analysis.

Analysis During the analysis the enterprise seeks to understand the problem, and

to develop the business requirements for a solution.

Design Based on the requirements, the enterprise develops conceptual solutions

to the problems. The solution might involve changed/new business

processes and/or changed/new IT-capabilities

Development Business processes and IT-capabilities are developed, using the

development paradigm of choice in the enterprise.

Deploy New or changed business processes are deployed in unison8 with new or

changed IT-capabilities.

Table 1: Enterprise Change Process [Own production]

In the context of this thesis, I am going to view agility in a particular way; agility is defined

as the capability to effectively and efficiently manage business changes, manifesting itself

in changes to business processes and their underlying information system. This means

that changes should be managed across all these life-cycle phases.

8 I am not suggesting, that just because business and IT act in unison, they are also agile. See the next
section on Agility versus Alignment for more about this subject

Page 17 /217

Among drivers for business changes would be:9 [TOGAF:112-113]

! Business-as-usual developments

! Business exceptions

! Business innovations

! Business technology innovations

! Strategic change

As can be seen, this definition does not seek to define, whether these changes are driven

by strategic or tactical concerns. Rather, this definition stems from the observation, that

business processes are important assets, both on the strategic and tactical level.

2.3 Enterprise Agility and Information Technology

With changing business processes, and their related IT systems as the focal point of this

thesis, it is important to consider the relationship between IT and agility. The focus on

agility does not only depart from the observation, that the environment in which enterprises

are operating, has become more complex, more competitive, and more fast paced. Rather,

agility is becoming an important subject in part because enterprise information systems

have shown to be remarkably rigid to change. This dichotomy between environmental

factors shaping the need for agility, compared to the relative rigidness of information

systems is highlighted by the following quote:

“A recent survey of Fortune 500 companies indicated that over 80% had altered their

business model in a given two-year period. Two thirds of these – roughly half of the total

respondents – claimed that this business change had been constrained by inflexible IT. In

a survey by IBM Business Consulting Services, 90% of CEOs expect to transform their

enterprise to become more responsive, particularly to customer demand, within the next

five years” [Sprott:3]

9 The drivers for changes mentioned here, has been taken from the TOGAF “Architecture Change
Management”. There are of course also drivers for technical changes, such as new technology
developments. These are not deemed relevant to this thesis.

Page 18 /217

So the relationship between agility and IT can be seen from two opposite directions; either

as enablers of agility, or as impediments to agility. As enablers of agility, modern

information systems affects agility positively in three ways: [Huang & Nof:51]

! Speed: By speeding up activities in the enterprise, f. ex. by the use of automation

! Decision support: By providing intelligent and autonomous decision making

processes

! Distribution: By enabling distributed operations with collaboration

[Bloomberg & Schmelzer:13-14] however points out, three ways in which IT becomes

impediments to agility.

! Complexity: Modern enterprises are very complex entities, shaped through organic

growth, mergers, and acquisitions. This complexity is also found on the technology

side, where enterprises must cope with infrastructure layers piled upon layers, often

without any overarching architectural considerations. Complexity is a major

impediment to agility, as it forces enterprises to spend inordinate amount of

resources in order to figure out the existing infrastructure, and to devise new

solutions.

! Inflexibility: Inflexibility is the result of complexity. If processes or systems are

challenging to change, enterprises are likely to be very cautious about making

changes. Inflexibility is clearly an impediment to agility here; if you cannot change

your IT-systems, then it is very hard to adapt to the changed environment.

Inflexibility often leads to a “if it ain't broken, don't fix it” mentality.

! Brittleness: The other side of inflexibility is brittleness, which refers to how fault

tolerant something is. Brittle architectures are characterised by being prone to

breakdowns, when small changes are introduced to the architecture. So if tiny

changes can produce huge negative side-effects, then the architecture would be

considered brittle.

Page 19 /217

2.4 Agility versus Alignment

The relationship between agility and alignment is however not always clear. As [Bloomberg

& Schmelzer:13] points out, alignment is sometimes being mistaken for agility. The central

tenet of alignment is that effectiveness is not obtained by focusing on individual

components. Such an approach would lead to sub-optimisation, rather than the creation of

an overall effective enterprise. It can be said, that “effectiveness is driven by the

relationship between components, rather than by detailed specification of each

component”. [Lankhort:6]

The perhaps most famous model for alignment is the Strategic Alignment Model by

Henderson and Venkatraman. An adapted version of the model is depicted in figure 1.

Figure 1: Strategic Alignment Model [Adapted from Venkatraman &
Henderson:479]

Page 20 /217

The models depicts two different dimensions of alignment, where the Y-axis concerns the

strategic fit, i.e. the fit between the external external and internal domains of the firm.

[Henderson & Venkatraman:472-473] The external domain concerns the positioning and

differentiation of the firm within the marketplace, whereas the internal domain in contrast,

concerns the interior of the firm, including but not limited to the design and redesign of

critical business processes. The authors not only argues, that the strategic fit between the

external domain and the internal arrangements of the firm is key to maximising economic

performance, but also that the strategic fit should be on done both the business and IT

domains.

The second dimension concerns functional integration, otherwise known as business-IT.

Business-IT alignment. Alignment between business and IT is perhaps the holy grail of IT

management, and much research has been done in this area.10 Although not always

consistently, business-IT alignment is usually linked to improved performance, and

improved leverage of IT investments. It is sometimes argued, that the inability to realise

value from IT-investments is at least in part due to lack of alignment between business and

IT. [Henderson & Venkatraman:472] Empirical studies seems to support this notion. F. ex.

in a study among 84 pairs of plant managers, and IT managers it was found, that there

was a synergistic relationship between strategic alignment and IT investments; firms with

poor alignment can improve profits and revenues without investing more in IT, just by

improving business-to-IT alignment. Well-aligned firms can increase profits and revenues,

by increasing IT-investments, knowing that the increased investments are likely to pay off.

[Byrd, Lewis & Bryan] Strategic alignment may however not provide the above cited

benefits. According to [Chan et al.] creating the IT strategy is only a first step, as vital as it

may be. Rather, the realised IT11 strategy is important, suggesting that making joint plans

between business and IT is not the same as actually fulfilling these plans.12 [Henderson &

Venkatraman:472] holds a similar view, and sees strategy as as not only formulation, but

also implementation of the strategy.

10 [Chan & Reich] f. ex. provides an annotated biography of more than 150 IT-alignment related articles
11 The authors of the article uses the word IS instead of IT. To maintain consistency in this thesis, I have

substituted the authors use of IS with IT, knowing that some degree of approximation can be made
between the two terms.

12 With the observation that intended use of technology often differs from actual use, [Chan, Huff &
Copeland] further argues, that having a documented business or IT strategy, is not the same as having
the capabilities to implement said strategies.

Page 21 /217

Alignment and agility are clearly not the same concepts, but what is the relationship then

between them? It is obvious, that we can have agility without alignment, as well as

alignment without agility. Agility without alignment, would at least in the short run lead to an

enterprise responsive to changes, as it would be possible to make ad hoc changes rapidly.

It would however also be rather inefficient in the long run, and would lead us back the road

where we came from; towards a disorganised architecture that becomes complex,

inflexible, and brittle. Eventually, this would become an impediment to agility in itself. On

the other hand, we can clearly also have a perfectly aligned enterprise, which is very

unresponsive to change. Such an enterprise would be efficient, but would not be

sustainable in a volatile environment. So alignment and agility can certainly be opposed to

each other.

But the opposite can also be true; alignment and agility can in some way be supportive of

each other. A more flexible IT-infrastructure would make it easier to perform the necessary

steps in order to achieve alignment. Alignment on the other hand, is important for creating

an architecture that is flexible and maintainable in the long run. This should compared to

that of ending up with overly complex architectures, emerged from continuous short-term

decision-making about about the architecture. These are important points to keep in mind

in regards to this thesis; the concept of agility cannot stand alone. In the long run, there is

likely a relationship between alignment and agility. This means, that even if I agility is the

primary goal in this thesis, alignment will have to play a secondary role . I will touch further

upon the topic of alignment in later chapters.

2.5 Enterprise Agility and Agile Software Development

Some practitioners of IT would likely ask about the relation between enterprise agility, and

the agile software development methods. The agile software development movement

covers a range of various flavours of lightweight, and iterative development methods,

including but not limited to XP, Scrum, and RUP. The movement is epitomised by the

Manifesto for Agile Software Development, which is centred around a collection of

software development principles. [Manifesto]

Page 22 /217

There are some reasons why agile software development does not play a role in this

thesis. The agile movement is primarily seeking to address the problem of inherent

requirements unpredictability, i.e. that requirements are changing late into the project. By

introducing the notion of iterations, agile methods are more adaptable to requirement

changes during the development process [Fowler, 2005] This is in itself a laudable goal,

and an agile approach to software development might contribute to improve IT strategic

agility. But it does not address the problem of how to design the business, and how to

develop the right business requirements in the first place. The business modelling13 taking

place in agile development methods are used for understanding the problem domain; not

for developing the right business requirements. In RUP f. ex. the purpose of business

modelling is to “understand and communicate the structure and the dynamics of the

organisations in which the system is to be deployed”. [Larman:483-484]

Because of this, the agile development paradigm can be considered primarily an

operational initiative, focusing on improving the efficiency of the software development

process. This may impact IT strategic agility, but the effect on strategic agility is more

indirect. For the remainder of this thesis, the words agile and agility will not refer to the

agile software movement, unless stated otherwise.

13 Or domain modelling

Page 23 /217

2.6 Chapter Summary

The purpose of this chapter was to lay the foundation for the rest of the thesis. The chapter

begun with a definition of the term enterprise agility. By comparing different definitions, it

was found that enterprise agility is generally an ability to react efficiently and effectively to

changes in the environment. This makes agility a reactive concept. The notion of early

warning capability was also stressed.

In line with the scope for this thesis, agility was defined more precisely as the capability to

effectively and efficiently manage changes in business processes and their underlying

information system. Such business changes can be driven by either strategic or tactical

concerns. The problem of complex, inflexible, and brittle IT-architectures, as an

impediment to agility was briefly discussed.

Some energy was spent on discussing the relationship between agility and alignment.

Agility and alignment are definitely two different concepts, but their relationship is not

perfectly clear. On one hand, agility and alignment can be polar opposites. On the other

hand, the two concepts can go together, and be supportive of each other. Alignment will be

an important concept in later chapters.

Finally, the agile software movement was discussed, and it was found, that it was primarily

an operational initiative, focusing on improving software development efficiency. As such, it

had no direct impact on agility, and is thus not a further topic for study in this thesis.

Page 24 /217

Chapter 3 – Understanding the parts

The purpose of this chapter is to establish a common understanding of each of the three

main strategic initiatives. Understanding each of these, as individual parts, will provide the

basis for analysing the relationship between them in later chapters.

3.1 Enterprise Architecture

People are familiar with using the word architecture when thinking about buildings and

other large man-made physical structures. Encyclopædia Britannica says about

architecture: “the art and technique of designing and building, as distinguished from the

skills associated with construction”. [Britannica] But architecture does not just concern

large man-made structures. Software architecture is a commonly known example of

architecture applied to information technology. IEEE 1471:2000 is a recommendation for

describing the architecture of software-intensive systems. Such a system is:

“any system where software contributes essential influences to the design, construction,

deployment, and evolution of the system as a whole.” [IEEE1471:1]

The term architecture is increasingly applied in broader contexts, such as on enterprise

level. It is worth noting, that the IEEE 1471:2000 has been adopted as ISO standard

ISO/IEC 42010:2007.. A joint revision between IEEE and ISO is underway in order widen

the scope to general systems architecture, which will include enterprise architecture.

[ISO42010] Architecture itself can be defined as:

“The fundamental organization of a system embodied in its components, their

relationships to each other, and to the environment, and the principles guiding its design

and evolution.“ [IEEE1471:3]

This definition of architecture will be of great importance in later chapters.

Page 25 /217

3.1.1 What is Enterprise Architecture?

The term Enterprise Architecture (EA) was probably used the first time by Steven Spewak

in his book “Enterprise Architecture Planning”. [Bernard:32] Following the landmark article

“A Framework for information systems architecture” by John Zachman in 1987, EA has

widely become associated with him. His framework was extended in 1992 in collaboration

with J. F. Sowa, [Zachman & Sowa] and has been revised several times since then. In his

original article Zachman observed that:

“With increasing size and complexity of the implementations of information systems, it is

necessary to use some logical construct (or architecture) for defining and controlling the

interfaces and the integration of all of the components of the system”.

[Zachman, 1987:276]

In this sense, enterprise architecture emerged as an enterprise-wide approach to manage

the complexity of information systems architecture. Zachman did deliberately abstain from

pursuing the relationship between building the business strategy, and the linkage to

information system strategy. Zachman wrote:

“The development of a business strategy and its linkage to information systems strategies,

which ultimately manifest them- selves in architectural expression, is an important subject

to pursue; but it is quite independent of the subject of this work, which is defining a

framework or information systems architecture” [Zachman,1987:277]

The enterprise-wide view is perhaps the most salient feature of EA. But the general notion

of EA has however changed since Zachman published his article in 1987. EA is naturally

still positioned as enterprise-wide, but has become more holistic. Contemporary definitions

of EA now also includes elements such as strategy and business architecture.

Page 26 /217

Some common definitions of EA are:

! The Open Group: ”Enterprise architecture is about understanding all of the

different elements that go to make up the enterprise and how those elements inter-

relate.” [Schekkerman:21]

! Mark Lankhorst: ”Enterprise architecture: a coherent whole of principles, methods,

and models that are used in the design and realisation of an enterprise's

organisational structure, business processes, information systems, and

infrastructure” [Lankhorst et al.:3]

! Scott Bernard: ”The analysis and documentation of an enterprise in its current and

future states from an integrated strategy, business and technology perspective”

[Bernard:31]

The definitions are all different, but there are some commonalities. Based on the different

EA definitions, some commons traits of modern EA can be identified:

! Enterprise-wide: EA programs spans the entire enterprise and provides a way of

thinking about resource utilisation that spans across the entire enterprise. 14

! Holistic: EA is seen as something that help understands the individual elements

making up an enterprise, and how they relate to each other.15 The elements that

makes up the enterprise, often includes both strategy, business and technology.

! Documentation-centric: All flavours of EA relies on architecture descriptions for

documenting the enterprise. 16

! Transformation-oriented: The purpose of EA is to somehow change transform the

enterprise. By documenting the enterprise in the current as-is state and a desired

to-be state, it is possible to devise a transformation plan

14 Many frameworks do however support the notion of segmentation, so that individual parts of the
enterprise can be treated as slices of the entire enterprise.

15 Which is similar to the definition of architecture given in IEEE:1471:2000
16 The documentation can either be in the form of model artefacts or non-model artefacts. Models will

become an extremely important topic later in this thesis.

Page 27 /217

By taking an enterprise-wide and holistic perspective on the enterprise, it should be

possible to achieve functional integration between business and IT. And often Business-IT

alignment is hailed as one of the primary internal drivers behind the adoption of EA.17

[Lankhorst et al.:6] EA is a tool that can be used to escape the bottom-up systems thinking

that has dominated IT-development the last couple of decades. As Scott Bernard points

out, the bottom-up thinking has led to stove-pipe applications and duplicative efforts.

[Bernard:63] Other often cited benefits of doing EA are increased agility, [Bernard:63]

reduced exposure to regulatory and compliance risks, [Lankhorst et al.:8-10] and

reductions in cost and complexity. [Schekkerman:15]

3.1.2 Elements of Enterprise Architecture

In the following I will give an overview of the core terminology of EA. I will rely on the

definitions, as given by Scott Bernard in this “An Introduction to Enterprise Architecture”,

because his terminology is fairly consistent and comprehensive. The main concepts are:

! EA framework: The first element is the EA framework, which serves as a structure

for organising EA artefacts. As such, it both defines the scope of the documentation

effort, as well as describing how the different areas of the architecture relates to

each other. [Bernard:81] An EA framework can be considered a taxonomy, as

taxonomies are used to classify entities within a certain domain. [Gasevic, Djuric &

Devedzic:52]

! EA methodology: A step by step description of how EA will be implemented and

how the documentation will be developed, archived and used. The methodology

includes selection of framework, modelling tools, and on-line repository.

[Bernard:81]

! EA artefacts: These are not in themselves part of EA, but are documentation

products from the EA program. [Bernard:87] EA artefacts f. ex. concerns the

description of the enterprise in as-is and to-be states. Artefacts also includes

principles, standards, reference-models etc.

! EA tools (including repository): Used to persist and manage artefacts produced

during the EA program.

17 In this case, as in most others, alignment primarily means functional integration, and not the creation of
strategic fit

Page 28 /217

3.1.3 Enterprise Architecture Frameworks

There are many different ways to approach EA. In the book “How to survive in the jungle

of Enterprise Architecture Frameworks”, the author describes more than 10 different EA

frameworks. [Schekkerman] This is even without counting the many frameworks created

by EA tool vendors, consultancies, or by enterprises themselves, including but not limited

to those related to governmental EA programs. The huge number of approaches to EA is

perhaps not surprising, given how complex and different enterprises can be. But the many

different takes on EA does however give us some problems navigating the terminology.

The probably most confusing concept in EA is the use of the word framework. In general,

different flavors of EA are referred to as EA frameworks. But as it was seen from Scott

Bernard's terminology given earlier, EA does in itself contain a framework. For the

remainder of this thesis, I will use the term EA Framework to indicate a certain way to do

EA. Whenever I refer to a framework in the meaning of a taxonomy, I will use the term

taxonomic framework.18

In the following, the Zachman Framework and The Open Group Architecture Framework

(TOGAF) will be described.19 There are a couple of reasons for this. Firstly, both

frameworks are very popular takes on EA. Secondly, each of them represents complete

different angles on EA. By mainly serving as a tool for the classification of architecture

descriptions, the Zachman Framework is a taxonomic framework in its purest sense.

Moreover, the Zachman Framework does not have any methodology associated. The

TOGAF in contrast, clearly has the methodology as focal point. Moreover, TOGAF does

not in itself contain a taxonomic framework.20 The two frameworks can in this sense be

considered somewhat complementary.

18 Unless I directly refer to the Zachman Framework
19 Version 8.1.1, Enterprise Edition
20 This statement will be modified a bit later, as the Enterprise Continuum of TOGAF is discussed.

Page 29 /217

3.1.3.1 The Zachman Framework

The Zachman framework is a classic taxonomic framework, serving as a structure for

defining the scope of the enterprise architecture, as well as a structure for classifying EA

artefacts. The framework can be seen depicted in figure 2 below. The framework can be

found in full size in appendix D.

The framework itself, is a matrix structure with two dimensions. Each cell in the matrix is a

normalised aspect of the enterprise. On the vertical axis, the framework is partitioned into

six different layers, showing the enterprise at various levels of abstraction. These layers,

often called perspectives, consists of different types of models, such as business models,

logical models, and physical models. The idea behind the use of different perspectives is

that different types of stake-holders sees the enterprise in different ways. A holistic view of

the enterprise can however only be achieved through looking at all of the perspectives.

Figure 2: The Zachman Framework [ZIFA]

Page 30 /217

The perspectives are:

! The Scope (Contextual): Aimed at the planner

! The Business Model (Conceptual): Aimed at the owner

! The System (Logical): Aimed at the designer

! The Technology (Physical): Aimed at the builder

! The Detailed Representations (Out-of-Context): Aimed at the subcontractor

! The Functioning Enterprise viewpoint: The actual running systems or functions

On the horizontal axis, the framework contains a classification of artefacts, i.e. it serves as

a taxonomy for classifying concerns. [TOGAF:465] The horizontal axis contains a range of

aspects, expressed in the form of wh-questions, following the classical ”who-what-where-

when-why-how” pattern.21

! The Data aspect: What?

! The Function aspect: How?

! The Network aspect: Where?

! The People aspect: Who?

! The Time aspect: When?

! The Motivation aspect: Why?

The main strength of the Zachman Framework, stems from it being a taxonomy for

enterprise architecture descriptions. As such, the framework is indeed a very

comprehensive taxonomy for models and other artefacts [TOGAF:465] Since a good

taxonomy is characterised by being able to “separate its corresponding entities into

mutually exclusive, unambiguous groups and subgroups that, taken together, include all

possibilities” the framework can be considered a good taxonomy.22 [Gasevic, Djuric &

Devedzic:52]

21 With the notable exception of “How
22 Perhaps with the exception, that the Zachman Framework does not attempt to specify any cells in

relation to security, nor manageability.

Page 31 /217

It should however be noted, that as influential the framework has been, it has not been

free of criticism. The main critical point is that the framework has no methodology

attached, and provides little guidance on how to fill out the cells. Furthermore, there are

concerns that the amount of documentation required to populate all cells is too high. It

could be argued that few (if any) enterprises, are capable of mastering the contents of all

30 cells. The framework should instead be seen as a best-case, and populating the

framework should be guided by the needs of the enterprise. [Bloomberg & Schmelzer:123]

Zachman himself, however stress the importance of having all cells made explicit, at a

high level of detail: [Zachman, 2000:1]

“I am confident that at some point in time, the Enterprise is going to wish it had all of those

design artifacts (models, cells of the “Zachman Framework,” the Framework for Enterprise

Architecture) made explicit, Enterprise-wide, horizontally and vertically integrated at

excruciating levels of detail...."

Lastly, a basic problem with the Zachman framework is that is does not describe the

enterprise as an integrated whole, because it does not include interaction bonds between

the artefacts in different cells. Thus, the enterprise is regarded as an aggregate of

artefacts. The Zachman framework originally did not provide much information, as to the

relations between cells. Later, Zachman has expanded on his original thinking, and

recognises that “each cell has relationships to other cells in the same row” [EABOK:30].

Some holds that the Zachman Framework is today regarded more of a thinking tool, rather

than being a practical framework for EA. [EABOK:30] In any case, the influence of the

Zachman Framework on modern EA should not be dismissed.

Page 32 /217

3.1.3.2 The Open Group Architecture Framework

TOGAF is emerging as a popular EA framework, and can be considered a very

comprehensive methodology for creating architectures. The focal point of TOGAF is to

provide a set of “methods and tools for developing a broad range of IT architectures”

[TOGAF:11]. As the quote indicates, TOGAF is rather technology-centric, and business

architecture was not added until version 8 of the Enterprise Edition. [Temnenco] Currently,

TOGAF includes four “kinds” of architecture:

! Business Architectures

! Data Architectures

! Application Architectures

! Technical Architectures

The combination of Applications Architecture and Information Architecture is collectively

referred to as Information Systems Architecture. [TOGAF:11] TOGAF is intended to be a

generic framework, which can be used in a wide variety of environments. It does not

prescribe a specific set of deliverables (EA artefacts). Rather, it describes a set of generic

deliverables by example. [TOGAF:4] [TOGAF:12] The focus is on the types of deliverables

to be produced, and on how to produce them. Enterprises may therefore decide to use the

generic TOGAF deliverables, or decide to include a taxonomic framework, containing more

precise specifications of the deliverables to produce.

Page 33 /217

TOGAF consists of three main parts, of which the Architecture Development Method

(ADM) is the central one. The ADM is a method, which is hailed as “a reliable, proven

method for developing an enterprise IT architecture that meets the needs of your

business”.23 [TOGAF:7] The ADM is illustrated in figure 3 (full size image can be seen in

appendix E). Other parts of TOGAF are the Enterprise Continuum and the Resource Base.

The Enterprise Continuum can be regarded as a virtual repository of all architecture assets

[TOGAF:131] As the enterprise works through the ADM process, it will populate its own

Enterprise Continuum. [TOGAF:18] TOGAF makes no recommendations as to the

selection of a taxonomic framework nor make any recommendations on how to persist,

and manage EA artefacts physically. The final part of TOGAF is the Resource Base, which

contains a range of resources, including guidelines, templates, checklists, and other

detailed materials to be used in conjunction with the ADM. [TOGAF:18].

23 Again, we see the technology focus in TOGAF; the main point is to develop IT architectures that are
aligned with business needs.

Figure 3: Architecture Development Method
[TOGAF:20]

Page 34 /217

The ADM is an iterative process for developing architectures, including nine different

phases (see figure 3). The Requirements Management process is at the center of the

ADM, and is for identifying, storing, and feeding requirements in and out of relevant ADM

phases [TOGAF:18]. Each phase contains descriptions of its objectives, inputs to the

phase, outputs of the phase, as well as the steps that needs to be performed during the

phase to produce the output.

The overall impression from this description of TOGAF is that TOGAF can be regarded as

a very practical approach to architecture development.

Page 35 /217

3.2 Business Process Management

Being able to manage business processes for efficiency, effectiveness, and agility is a vital

competency in ensuring continued survival and thrift of the enterprise. This challenge has

not been ignored by CIO's. In fact, the 2007 Gartner EXP survey revealed, that improving

business processes was the number one business priority among the 1400 CIO's

participating. [Gartner, 2007]

3.2.1 What is Business Process Management?

The first step in understanding BPM will be to understand the role of business processes

and why managing them is a challenge. A business process can be defined as:

“A set of one or more linked procedures or activities which collectively realize a business

objective or policy goal, normally within the context of an organizational structure defining

functional roles and relationships” [Khoshafian, 2007:224]

This definition highlights a central issue; while business processes are certainly important

assets to the enterprise, enterprises are not driven by business processes. A process

should ideally, always satisfy a goal or a policy for the enterprise. Moreover, business

processes are sequences of activities, which essentially are collections of tasks that

contributes or adds value to process goals. [Jeston & Nelis, 2008, 1:183]

Another important distinction is to be made; for the remainder of this thesis, I will consider

business processes the organising logic for the activities taking place. The organising logic

is to be distinguished from the actual underlying work being done (in the activities). The

importance of this distinction will become apparent later, when the attention is turned

towards the relationship between business processes and services in SOA.

Page 36 /217

Often, business processes are not the result of design, but tends to emerge over time.

[Juric & Pant:11] Business processes are difficult to manage for several reasons. Firstly,

managing business processes is complex because business processes are themselves

complex; they often span people, departments, organisational layers and information

systems. Furthermore, business processes may include complex business logic. The

complexity of processes makes them inherently difficult to understand and to manage.

BPM can be regarded as a structured approach to managing business processes and

usually enterprises are concerned with realising process improvements by optimising the

sequence of activities in the process or by automating entire processes, sub-processes or

activities. One definition of BPM sounds:

“The achievement of an organization's objectives through the improvement, management

and control of essential business processes.” [Jeston & Nellis:11]

The history of process management paradigms is long, and as there have been

successes, there have been spectacular failures. Process management can be divided

into three distinct waves. [Smith & Fingar:18-19] The first wave was the scientific

management school, as put forward by Frederick Taylor. This wave took of in the 1920's.

The scientific management paradigm was more focused on organising work activities than

focused on automation. The second wave, which flourished from the 1980's and onwards,

focused on manually reengineering processes, f. ex. in the form of Business Process

Reengineering (BPR) or implementations of Enterprise Resource Planning systems (ERP).

Both paradigms were attempts at improving processes revolutionary, rather than enabling

incremental improvements. Despite the hype and popularity of BPR in its heyday, the

reengineering efforts often failed. Estimation of failure rates vary, but are usually around

50-70%. [Fitzgerald & Murphy] The impact of ERP systems as process management

initiatives are much harder to gauge; ERP systems do define “best-practice” business

processes. But after all, ERP systems are as much about managing technology as

managing business processes. Empirical studies, such as [Hunton et al.] does however

suggest, that adopters of ERP systems performs better than non-adopters. Incidentally,

adopters are not performing better than before adoption; rather, non-adopters are

performing worse.24[Hunton et al.:181]

24 It is not clear if the improvements has much (if anything) to do with the business processes themselves.

Page 37 /217

In the last wave, which should be emerging, processes becomes first class citizens.

Change is the primary design goal: “The ability to change is far more prized than the ability

to create in the first process”. [Smith & Fingar:18] Based on the lessons learned from

previous process management paradigms, modern approaches to process management

are less radical and more evolutionary. They place more emphasis on creating the ability

to constantly improve processes. The approach to BPM that I will be using in this thesis,

will mostly resemble the 3rd wave of business process management. The focal point will be

to enable continuous process improvements, rather than seeking radical re-design of

processes.

3.2.2 The Business Process Life-Cycle

One central tenet of BPM is that business processes are having a life-cycle, and that

management of processes must occur across all these phases. Figure 5 depicts a

conceptual life-cycle model for business processes. As the figure indicates, managing

business processes is an ongoing and iterative effort.

Figure 4: Process Life-Cycle [SAP]

Page 38 /217

The life-cycle model contains four stages:

! Analysis: The “business analyst”25 performs analysis of the business process. The

analysis can be initiated f. ex. on basis of a process improvement project or

because process failures have been detected. In this phase, the business

processes are modelled as-is.

! Design: Through the use of user-friendly modelling tools, the business analyst can

design new business processes or make adaptions to existing processes. In this

phase, the business process is modelled in a desired to-be state.

! Deployment: The designed or changed business process is deployed. The

deployment may include changes to information systems.

! Monitoring/Run: Once the process has been deployed and active, the process is

executed. monitored in order to investigate performance, and detect process

failures.

Business Activity Monitoring (BAM) solutions can be used to provide an overview of

processes within the enterprise [Juric & Pant:44] A BAM solution would f. ex. help gather

information about the processes, such as the time to complete different activities, the

number of process instances running at any given time or how much time it takes to

complete a process. [Juric & Pant:94] Although BAM solutions can indeed provide very

valuable information in relation to monitoring and optimisation of business processes,

dealing with BAM is out of the scope for this thesis.

25 The term 'business analyst' is frequently used to denote the person that is responsible for business
analysis and design. In reality, the 'business analyst' function is likely to be spread across several
business stake-holders. For the remainder of the thesis I will use the term 'business analyst' as a
'persona' describing a functional role rather than a person.

Page 39 /217

3.2.3 Digitisation of Business Processes Management

BPM can and will be done without the assistance of technology. But very often technology

will be involved in order to digitise processes. Digitisation of processes can denote two

things:

! Automation of Business Processes: Digitising business processes involves

automating processes, sub-processes or activities

! Business Process Management Digitisation: BPM is in itself a process that can

be digitised. This involves using digitised as-is and to-be models to help closing the

gap between modelling and execution.

The importance of automation manual work is often overemphasised in relation to BPM.

While automation may be valuable because it improves efficiency, automating a

fundamentally flawed process provides little value. Effectiveness is not realised unless the

process is streamlined to support the goals or policies of the process. The role of digitising

the business process management process itself is to facilitate better management of the

rest of the business processes.

A Business Process Management System26 (BPMS) is often a vital component in digitising

processes. A BPMS is both a software platform and a product category. [Khoshafian,

2007:229] The purpose of BPM Suites are to facilitate the management of the processes

digitally. Ideally processes could be managed across all phases of the life-cycle, i.e. it is

not only possible to model and design and monitor business processes, but also to deploy

(and execute) the processes on the underlying execution platform. [Khoshafian, 2007:231]

The ability to manage digitised business processes across the entire life-cycle, will be an

important discussion point in the next chapter.

26 Sometimes also called a Business Process Management Suite

Page 40 /217

It should be noted that the term BPMS is sometimes being equated with BPM itself. In

[Khoshafian, 2005] the author f. ex. explicitly equates BPM with BPMS, claiming that it is

similar to Database Management and Database Management Systems, where “in most

contexts they are synonyms”. [Khoshafian, 2005:106] I do however think this is missing the

point; BPM is goal-oriented behaviour, i.e. seeking to manage business processes in order

to achieve organisational goals. A BPMS is just a tool for realising this. For the remainder

of this thesis, the definitions of BPM and BPMS will be kept separate; BPM is

methodology, and a BPMS is a tool.

3.2.4 Elements of Business Process Management

Just like their EA counterparts, BPM efforts needs structured methodologies to be used as

guidance. BPM has however yet to mature into a structured and acknowledged discipline.

[Jeston & Nelis, 2008, 2:1] This means, that BPM often gets used as a catch-all phrase for

anything somewhat related to business processes. Moreover, the lack of maturity often

means that approaches to BPM are developed from scratch. [Jeston & Nelis, 2008, 2:1]

This makes it difficult to deal with BPM at an abstract level. But to be able to understand

how BPM relates to SOA and EA later in this thesis, an understanding of the basic

elements that makes up BPM is needed. A brief discussion of the 7FE BPM framework will

therefore be given below. Figure 5 shows the basic structure of the 7FE framework. The

description will be given to illustrate certain characteristics that can be considered generic

across most BPM frameworks. Moreover, since the BPM framework is very

comprehensive, the description will be kept to the absolute minimum of details that are

considered relevant to the rest of this thesis.

The basic elements of the 7FE approach will be described below the figure.

Page 41 /217

Organisation strategy: As emphasised earlier, processes are not ends in themselves, but

rather means through which goals and policies are satisfied. Based on strategy, the

management determines goals and policies. Failure to align processes with goals and

policies leads to sub-optimal processes.

Process Architecture: Provides the link between organisational strategy and the launch-

pad phase and forms the foundation for later phases. In particular the process architecture

includes:

! Process guidelines: General principles to the process domain. Includes standards,

methods, guidelines, policies tool selections.

! Process Models: A high-level overview of the processes in the organisation.

Includes visual representations of high-level processes, links between the

processes and a list of end-to-end processes.

Figure 5: 7FE BPM Framework [Adapted from Jeston & Nellis, 2008, 1:63]

Page 42 /217

The Launch-pad Phase It is rather unlikely, that an enterprise will attempt to manage all

of its business processes at the same time. Some processes are more valuable than

others, and some processes are more ripe for management than others. In a structured

approach to BPM, an enterprise will adopt a formal decision making process to be used as

guidance for the identification, prioritisation and selection of processes to manage.

Program/Project phase: BPM is realised through one or more projects. The projects can

be independent or part of a larger program. Sustainable value is achieved as the

enterprise builds on its experiences. Preferably, all BPM projects would have top-level

sponsorship, have strong roots in organisational strategy, and a sound process

architecture. But not all BPM projects are created equal. BPM projects can be strategic or

tactical to varying degrees. Table 2 shows three different approaches. [Jeston & Nelis,

2008, 1:64-66]

Driver Description

Strategy-driven Assumes organisation strategy has been defined and documented.

Based on this it has decided to implement a BPM program/project. The

approach is top-down.

Issue-driven Based on operational or business issues within an enterprise f. ex. at

department or line of business level. Drivers are typically business

opportunities, problems or regulatory issues). More tactical in nature

than strategy-driven BPM

Process-driven A business unit is investigated for process improvement opportunities.

Contains a high-level and a subsequent detail process examination. Can

be strategic or tactical.

Table 2: BPM Initiation Drivers - [Own production]

To quickly sum up this part of the chapter; BPM can be seen as an initiative that

contributes to the achievement of an organisations objectives through improvement,

management and control of business processes. The basic tenet is that processes should

be managed across their entire life-cycle.

Page 43 /217

3.3 Service-oriented Architecture

The term Service-oriented architecture (SOA) is a likely candidate to being the most

ambiguous term used in IT today. The exact meaning often remains a source of confusion,

even among scholars and practitioners. Martin Fowler describes how many words or

phrases in IT goes through a process of semantic diffusion, akin a kind of “chinese

whispers”,27 in which the original meaning of the word eventually gets lost. But Fowler also

claims that SOA never had a real meaning to begin with. [Fowler, 2006] It does however

seem, that the SOA term was coined by Gartner in 1996.28 In short, SOA can be

considered an architectural paradigm that emphasises loosely coupled, autonomous, and

re-usable services.

3.3.1 What is Service Oriented Architecture?

Definitions of SOA are often divergent, and at times even conflicting. The most common

source of divergence seems to be the whether SOA should be considered an abstract

architectural style or whether SOA should be considered a concrete technical style. The

technical SOA (or Web Service SOA) often refers to a SOA that adheres to specific Web

Service standards, such as those originating from W3C, OASIS and WS-I.29 This is the

SOA that Thomas Erl refers to as the “false SOA”. [Erl, 2005:2] In this thesis, the Web

Services SOA will however be considered a tactical implementation of SOA, i.e. Web

Services are an open-standard based approach to building SOA.

27 Chinese whispers is “a game in which each successive participant secretly whispers to the next a phrase
or sentence whispered to them by the preceding participant. Cumulative errors from mishearing often
result in the sentence heard by the last player differing greatly and amusingly from the one uttered by the
first.” [Wikipedia]

28 Unfortunately I have had no access to the original Gartner article: SSA Research Note SPA-401-068, 12
April 1996

29 The standards are sometimes referred to as the WS-* or even WS-Deathstar standards, due to their
complexity

Page 44 /217

In response to the many conflicting understandings, standards-organisation OASIS has

created a SOA reference model (SOA-RM). The SOA-RM is an “abstract framework for

understanding significant entities and relationships between them within a service-oriented

environment”. [SOA-RM:1] With this model, OASIS hopes to spur growth of SOA, as well

as to help establish a more common understanding of SOA. Since the model is abstract,

concrete architectural models should be derived from the reference model. The high level

of abstraction is a main strength of the model; it is not tied to any particular vendor,

technology nor technology standard.

According to the reference model, the basic tenet of SOA is “the task or business function

– getting something done”. [SOA-RM:10] In the reference model, SOA is defined as:

[SOA-RM:8]

“a paradigm for organizing and utilizing distributed capabilities that may be under the

control of different ownership domains “

Service capabilities “represents a specific function of a service through which the service

can be invoked”. [Erl, 2008:115] So capabilities are essentially the ability to perform a task

or an assignment. Capabilities should ideally be created on the basis of needs, but there is

not necessarily a one-to-one relationship between needs and capabilities. Sometimes

several capabilities must be brought together to satisfy one need, and sometimes a single

capability may be able to satisfy more than one need. [SOA-RM:8] Furthermore, invoking a

service means the realisation of real-world effects, which includes: [SOA-RM:12]

! information returned in response to a request for that information

! a change to the shared state of defined entities

! or a combination of both.

Page 45 /217

3.3.2 What are Services?

As the name suggests, services are the central unit of work in SOA. The idea in SOA is

that “services are the mechanism by which needs and capabilities are brought together”

[SOA-RM:9]. This is an important concept; because capabilities and needs can arise

independently, services can help align needs and capabilities.

But what exactly is a service? In abstract terms, something can be considered a service,

whenever an entity carries out a distinct task in support of someone else. Services can be

provided by many different types of entities, such as persons, groups of persons acting

collectively, IT-systems or by enterprises themselves. To classify a distinct task as a

service, it should be well-defined and relatively isolated from other tasks [Erl, 2008: 68]. In

daily life, we are all both providers and consumers of services. Services can be either

atomic or composite. An atomic service would f. ex. be a haircut service, where the real-

world effect is a haircut, which is obtained in exchange for a payment. Composite services

are composed by a range of smaller services, each providing specific and distinct

capabilities. An example of a complex services could be a travel package booking service,

including flight tickets, transfer, hotel, and insurance.

A conceptual model of a service in SOA can be seen in figure 6. In a very simple sense,

services are collections of capabilities. Services can be simple, i.e. encapsulating a single

capability or be complex services, encapsulating a collection of capabilities. Capabilities

are grouped together in services, usually because they are related by some functional

context [Erl: 2008:70], which also improves cohesion.30

30 Cohesion is an informal measure of how functionally related the operations of a software elements are
[Larman:290]

Page 46 /217

The purpose of accessing the capabilities through a well-defined interface (rather than

directly) is to make the implementation details opaque to the service consumer. This

provides abstraction between the external and the internal behaviour of the service,

freeing the consumer from considering implementation details of the service.

An important concept in SOA is granularity, which is a relative measure of the size of the

service. In general, services encapsulating a rich set of functionality are considered

coarse-grained, whereas services encapsulating a smaller set of functionality are

considered fine-grained. Things are however a little more subtle than that, as there are

several different types of granularity in relation to services.

Figure 6: Conceptual Service Model [Own production]

Page 47 /217

There are at least four documented types of granularity in relation to SOA: [Erl, 2008:115-

117]

! Service Granularity: Refers to the functional scope of the service itself. The overall

granularity is not determined by the actual logic that a service encapsulates, but

rather the potential logic that the service could encapsulate, within its functional

context. An order service would f. ex. be more coarse-grained than an order entry

service, even if both were encapsulating the same set of capabilities.

! Capability Granularity: The functional scope of a specific capability. Coarse-

grained services usually performs more work than fine-grained services.

! Data Granularity: The quantity of data a capability needs to exchange in order to

carry out its function.

! Constraint Granularity: The amount of detail with which a particular constraint on

the service is being expressed with.

Determining the right mix of granularities in service design is difficult. A coarse-grained

service could f. ex. expose fine-grained capabilities, and a fine-grained service could

expose a (relatively) coarse-grained capability. The right granularity depends heavily on

context.

While services may follow the same basic pattern, not all services are created equal. In

fact, there are different types of services, each with different purposes and characteristics.

Several authors suggests taxonomies or classification schemes for service types, each

relying on different dimensions or principles for the classification. Different taxonomies are

provided in [Lublinsky & Tyomkin], [Sundblad & Sundblad], [Rossberg & Redler] & [Erl,

2008] A common idea in service classification is to classify services according to a

hierarchy of volatility; by arranging services into such a hierarchy, it is possible to compose

volatile services from less volatile services. This provides isolation of changes.

Page 48 /217

The most important service type in relation to business processes is the business service.

It should be noted, that the term business service is used quite differently in other

contexts.31 Because business services encapsulates actual business functionality, they will

be especially important to align with business requirements. [Lublinsky & Tyomkin:56]

Business services should be less volatile than the business processes that they are being

consumed by. Another type of service is the entity service. Entity services supplies and

protects the data entities that the enterprise depends upon.32 [Rossberg & Redler:285]

Entity services are foundational services, which should be stable over time. Finally, the last

type be mentioned here is the utility services, which are process-agnostic, as they do not

carry any business logic. [Erl, 2008:269] A utility service could f. ex. be a generic logging

service. From this description it also appears quite evident, that the type of service to a

large degree is a determinant of the service granularity. Business services are f. ex. likely

to be much more coarse-grained than entity services.

Having seen SOA from the perspective of the individual service, it is now time to proceed

the see how service interaction takes place. The service interaction model is another

characteristic of the service-oriented architectural style. Figure 7 illustrates a conceptual

SOA interaction model,

31 TOGAF does for example use the term in a different way.
32 Such as business objects, i.e. Customer, Employee, Sales-order etc.

Figure 7: Service Interaction Model [Arsanjani]

Page 49 /217

The service interaction model separates service interactions into three distinct parties:

[Arsanjani]

! Service provider: Delivers services to the service consumers. Publishes Service

Description and provides implementation of the service. Service consumers may

not be known to the provider.

! Service consumer: A consumer of the service, who is either aware of the service

directly or looks up the service in an appropriate registry

! Service broker: Provides and maintains the service registry. The Service Broker is

optional but recommended, as it provides for a more loosely coupled interaction

style

The service provider and the service consumer are sometimes jointly referred to as service

participants. [SOA-RM:9] The service description is not a party to the interaction, but by

providing a description of the service, separation of concerns is further promoted between

provider and consumer. Effectively, it is possible to achieve separation between

“description, implementation, and binding” [Arsanjani, 2004]

3.3.3 Loose Coupling

Based on the description of services and the description of the provider/consumer

interaction pattern, it is now time to go further into the principle of loose coupling. Coupling

refers to the dependency two parts holds on each other. [Erl, 2008:165] If two parts are

very dependent on each other, it will be difficult for either of the parts to change behaviour.

Therefore, loosely coupled systems generally have the advantage, that they are much

easier to change than tightly coupled systems. Loose coupling is for a reason, perhaps the

most often mentioned benefit of SOA. Dependency is a measure of coupling and

dependency can be divided into: [W3C, 2004, 1]

! Real dependency: “the set of features or services that a system consumes from

other systems. The real dependency always exists and cannot be reduced”

! Artificial dependency: “the set of factors that a system has to comply with in order

to consume the features or services provided by other systems”

Page 50 /217

One can never expect to eliminate all dependency between two communicating systems.

Rather, there will always be a residual (or real) dependency. So the goal is to reduce or

eliminate artificial dependency, as well as reducing the cost of the real dependency. The

principle of loose coupling is complex, and manifests itself on many different levels. Table

4 shows just how different tightly coupled systems are from the loosely coupled ones.

Tight Coupled Loosely Coupled

Interaction Synchronous Asynchronous

Messaging Style RPC Document

Message Paths Hard Coded Routed

Technology Mix Homogenous Heterogeneous

Data Types Dependent Independent

Syntactic Definition By Convention Published Schema

Bindings Fixed and early Delayed

Semantic Adaption By Re-coding Via transformation

Software Objective Re-use, Efficiency Broad Applicability

Consequences Anticipated Unexpected

Table 3: Tight versus Loosely Coupled Systems [Kaye:133]

Loose coupling is of course not a panacea. The extra cost of developing loosely coupled

systems may in itself deter enterprises from pursuing loose coupling. Moreover, loose

coupling should be regarded an ideal that needs to weighed against other non-functional

requirements. Non-functional requirements are “sometimes known as constraints or

quality requirements. [Swebok:2-2] ISO 9126-1 is a standard for measuring software

quality and is considered: “One of the most, if not the most, widespread quality standard

available in the software engineering community” [Carvallo & Franch:10]. The ISO

standards details the following five main characteristics of non-functional requirements:

reliability, usability, efficiency, maintainability & portability. So we should always expect to

make trade-offs between the ideal of loose coupling versus costs and non-functional

requirements.

Page 51 /217

This also means that SOA is not the right solution in all situations. Especially, in some

environments, SOA might be rendered inappropriate due to certain non-functional

requirements. An obvious example is environments with real time requirements, because

SOA typically relies on loosely coupled asynchronous communication. Heavy batch

processing may also be difficult to fit into SOA.

The final row of the table shows the most dramatic effect of switching towards more

loosely coupled systems; consequences change from from being anticipated to becoming

unexpected. Striving towards autonomous and re-usable services improves flexibility, but

also makes it more difficult to anticipate future use cases for a service. Thus, it also

becomes more difficult to calculate the ROI for the service development. This is likely to

pose a challenge to existing models of funding IT-development projects.

3.3.4 The Effects of Service-Oriented Architecture

So far, a lot of ground have been covered in regards to the characteristics of SOA. But in

the end, SOA is of little interest, unless it provides benefits to the enterprise. The meaning

of abstraction and loose coupling has already been seen on micro-level, i.e. between

consumer and provider. But the SOA paradigm has much wider implications. Figure 8

views SOA in a broader perspective. The business processes resides at the upper layer.

At the lowest layer, the legacy systems are depicted. The services are located as an

intermediary layer between business processes and the legacy systems.33 Services thus

provides acts as an abstraction layer between business and technology. In this context, it

may be worthwhile to remember, that activities in business processes were defined as

collections of tasks, whereas services were defined as collections of capabilities. There is

a big conceptual overlap between activities and services.

33 For the sake of simplicity only business services are depicted, and services are matched one-to-one
with activities. This is of course not a realistic scenario.

Page 52 /217

A traditional problem with legacy systems is that they turn business logic and

implementation details into functional silos. Functional silos are, “structure[s] that

separates its content from outside influences”. [Bloomberg & Schmelzer:70] From an

information systems perspective, a silo is a monolithic structure, where the “functional

logic of a system, has not been properly decomposed and clearly separated from the

associated implementation details”. [Guttman & Matthews] By using services as an

abstraction layer, consisting of loosely coupled and autonomous services, the organising

logic is separated from the underlying implementation details. Business processes can

now be managed independently from the underlying legacy systems.

So SOA does not only provide loose coupling within the IT-architecture, but also looser

coupling between the business and the IT-architecture. Business processes can thus

easier be composed by the business. This allows for much more flexible architectures.

Figure 8: Abstraction of Business Processes [Own production]

Page 53 /217

3.4 Chapter Summary

The purpose of this chapter was to describe EA, BPM and SOA as individual entities. This

would lay the foundation for the next chapters.

I sat out describing EA as an enterprise-wide and holistic approach to building

architectures. EA emphasises documenting the enterprise in the as-is state and in a

desired to-be state. A main goal of EA was to escape the bottom-up thinking about

resource development in the enterprise, thus providing alignment.

Two dominant EA frameworks were then described. The Zachman Framework were seen

as the archetypical taxonomic framework, as it mainly serves as a structure for classifying

artefacts, and for defining the scope of the EA artefacts to be produced. TOGAF in

contrast, was seen as a more methodology-oriented approach, focused on describing the

types of deliverables to produce and on how to produce them.

I then proceeded to defining and describing BPM, which was seen as an initiative that

seeks to contribute to the achievement of an organisations objectives. Business processes

are sequences of activities, that should ideally contribute to fulfil a goal or a policy of the

enterprise. A central tenet is that business processes are having a life-cycle, which needs

to be managed across all phases. A particular important topic concerns the digitisation of

business processes. Digitisation implies automation, but it can be seen on two different

levels. The first level concerns automation of business processes, sub-processes or

activities. The second level concerns the digitisation of the business process management

process itself. This would included using digitised models to close the gap between

models and execution. A BPMS was found to be an important tool in this context.

Finally, I went on to describe SOA as an architectural paradigm. The technical SOA was

regarded as tactical implementation of the SOA paradigm. The central unit of work in SOA

are services, which are collections of capabilities. An important SOA issue is the question

of granularity. Service granularity can be seen as a relative measure of the size of a

component, usually referring to the functionality of a service. But as there are different

types of granularity, defining the right granularity would depend on context.

Page 54 /217

The idea of different types of services, classified according to a hierarchy of volatility was

also described. Such a hierarchy would allow more volatile services to be composed from

less volatile services.

Loose coupling was seen as an ideal, that would provide for more flexible architectures.

But it was also found, that loose coupling had to be weighed against other non-functional

requirements. Finally, I looked at the impact of the SOA paradigm on a scale greater than

that of the relationship between the individual consumer and provider. It was found, that

SOA could help separating the organising logic of business processes from the underlying

implementation details. This is likely to provide a much more flexible way to compose

business processes.

Page 55 /217

Module 2 – The Sum of the Parts

Page 56 /217

Chapter 4 – BPM and SOA

The purpose of this chapter is to analyse how BPM and SOA fits together, and especially

to understand how the combination can help improve agility. The term BPM-SOA will be

used as a shorthand term referring to BPM and SOA together.34

At surface level, BPM and SOA may seem like two very distinct entities. Table 4 highlights

some of the findings from chapter 3.

BPM SOA

What The achievement of an organization's

objectives through the improvement,

management and control of essential

business processes

A paradigm for developing

and using capabilities across

physical and ownership

boundaries

Who Business-driven IT-driven

Unit of work Business processes (sequence of

activities)

Services (collections of

capabilities)

Scope Project Enterprise-wide (potentially)

Table 4: BPM versus SOA [Own production]

34 The term “Process Driven SOA” could have been used as well. This would however de-emphasise the
use of BPM as a methodology.

Page 57 /217

Several theories can be raised as to the nature of the relationship between BPM and SOA.

The following two dimensions will be used to evaluate the relationship between them:

! Orthogonal versus Overlapping: The term orthogonal originates from the field of

geometry, where orthogonality involves something having right angles. In computer

science however, two entities are considered orthogonal if the are completely

distinct, isolated and does not produce any side-effects towards each other. In the

context of BPM-SOA, orthogonality would mean that BPM and SOA can be

managed as two completely independent entities. This would be one extreme end

of a continuum. The opposite extreme is a situation where two entities are

completely overlapping (i.e. essentially a theory of sameness).

! Opposite versus Complementary: The second dimension concerns the value of

combining BPM and SOA. The question is whether BPM and SOA are entities that

detracts from each other because they are conflicting, or whether they are entities

that completes each other, and emphasises each others strengths.

The chapter will progress in this way; I will start by fleshing out a vision of BPM-SOA. This

vision will describe the nirvana of BPM-SOA. Based on this vision, I will establish a

working hypothesis as to the relationship between BPM and SOA. The hypothesis willl

describe where BPM-SOA would be expected to be located within the two dimensions.

The relationship between BPM and SOA will then be explored through two different views.

Each view will contribute to the larger picture, but leave out details irrelevant to the

particular view.

Page 58 /217

The two views are:

! Model-driven view: In this view, BPM-SOA will be seen as a model-driven

paradigm, which emphasises the use of models rather than code. In this way, it

should be possible to turn business process models into executable models. I will

analyse whether this is in fact possible or if there are semantic gaps preventing this.

! Methodology-driven view: In this view, I will see BPM and SOA not just as

individual entities, but also as methodologies that can work together.

At the end of the chapter, I will be able to discuss the relationship between BPM and SOA.

In particular, I will raise and answer the question: “Is BPM the Business Case for SOA?”.

Based on this, I will proceed to the conclusion, where I will be able to either validate or

reject the working hypothesis.

Page 59 /217

4.1 The Vision of BPM-SOA

The purpose of this section is to give a 50.000 feet view on the relationship between BPM

and SOA. The vision here is based on the way the relationship between BPM and SOA is

often popularised by vendors, in blog-posts etc. In other words; this section is not for blunt

criticism.

The combination of BPM and SOA is often depicted as a stack, consisting of a number of

independent layers. This stack-based view of BPM-SOA is illustrated in figure 9. One is

likely find BPM-SOA depicted similarly in many vendor presentations or vendor reports.

BPM will be situated as the upper layer of the model. The business processes interacts

with the underlying technology by consuming a layer of business services. By exposing

capabilities through well-defined service interfaces, the business services becomes an

abstraction layer between business and technology.

Figure 9: BPM-SOA Stack [Kamoun]

Page 60 /217

The overall vision of this BPM-SOA stack is to empower the business analyst. The nirvana

of BPM-SOA would be a an architecture, where the business analyst is able to manage

business processes across the entire life-cycle, with little or no intervention from IT.

Looking from a perspective of BPM-SOA, the business process life-cycle would ideally be

managed like this:35

! Analysis: The business analyst performs analysis of the business process. The

analysis can be initiated f. ex. on basis of a process improvement project or

because process failures have been detected.

! Design: Through the use of user-friendly modelling tools, the business analyst can

alter and design business processes. Preferably, the business analyst is also able

to simulate the proposed business process design.

! Implement: The designed or changed business process is automatically deployed

to a run-time execution engine, which is then capable of executing the business

process as necessary.

! Run/Monitoring: Once the process has been deployed and active, the business

analyst is capable of monitoring the business processes in order to investigate

performance, and to detect process failures.

It sounds almost like the 3rd wave of BPM, as expressed by Smith & Fingar, who states

that: “the gap between business and IT is not bridged, but rather obliterated”. [Smith &

Fingar] This vision do also seem remarkably similar to the description of the BPMS

discussed in chapter 3. So in which ways does this approach differ from the integrated

BPMS solution? The main difference is that the traditional integrated BPMS solution would

usually be implemented on a fairly closed stack of proprietary technologies, including a

proprietary integration platform. The BPM-SOA solution in contrast, emphasises the use of

industry standards. The idea is, that the business analyst designs business processes in a

standard modelling language. The business process models are then passed down the

stack for execution on the standard-based execution engine, which is then capable of

executing the SOA services.

35 The life-cycle phases are identical to the phases described in chapter 3.

Page 61 /217

SOA here serves as the flexible underlying IT-architecture, that qua re-usable and coarse-

grained business services can provide a level of integration and flexibility that would

otherwise be difficult to achieve. So in this context, SOA is regarded as the plumbing

underneath BPM. Based on this vision of the relationship between BPM and SOA, it

appears that the two entities are complementary, but also orthogonal. In the rest of the

chapter, I will therefore explore the following working hypothesis:

BPM and SOA are orthogonal but complementary entities

Page 62 /217

4.2 The Model-driven View

In the model-driven view, BPM-SOA will be regarded as a kind of Model-Driven

Engineering (MDE). MDE is a form of software development that emphasise production

and use of models as primitives, rather than code. As with the object oriented paradigm

where everything was considered objects, everything is considered models in MDE.

[Bézivin, 2005:1]. Under the model-driven paradigm, models will be important as both

design and run-time artefacts. The purpose of using models is to raise the level of

abstraction above code-level, and to enable separation of concerns36 between

specification and implementation.

Since models are central primitives in MDE, understanding the term is vital. The term

model has many different connotations to people, and is used in many different contexts.

People are able to recognise different types of models, such as car models, fashion

models or models that are physical replicas. Moreover, models are a well-recognised

within the field of software engineering. Rothenberg provides a rich description on the use

of models:

"Modeling, in the broadest sense, is the cost-effective use of something in place of

something else for some cognitive purpose. It allows us to use something that is simpler,

safer or cheaper than reality instead of reality for some purpose. A model represents

reality for the given purpose; the model is an abstraction of reality in the sense that it

cannot represent all aspects of reality. This allows us to deal with the world in a simplified

manner, avoiding the complexity, danger and irreversibility of reality." [Rothenberg:1]

So models are considered simplified versions of something that exists in reality. These

models can be used as tools for communication, analysis or design. Models are often

presented by a combination of drawings and text. The text could be expressed either in

natural language or in a custom modelling language. [OMG, 2003:2-2]

36 I.e. modularising or separating distinct concerns into different areas, so that each has a cohesive purpose
[Larman:441]

Page 63 /217

In this context there are two important types of models to consider:37 [Dietz, p. 64]

! Conceptual model: An abstraction or a conceptualisation of a concrete (proposed)

system. The model is expressed in an informal way, such as via drawings or natural

language.

! Symbolic model: A symbolic model can also be considered a conceptual model,

but differs because it is expressed in a formal language, i.e. by using symbols. A

symbolic model can thus be considered a formulation of a conceptual model.

MDE is concerned with using symbolic models for representing systems at different levels

of abstraction. Model transformations are central to this approach: a model at a given level

of abstraction can be used as a source model, being transformed to a target model at

another level of abstraction.38 Transformations are achieved “by using a set of rules,

specifying the mapping between source and target model”. [Brahe & Bordbar:3] The word

transformation may imply that this is an automatic process (in parts or in whole). This is

certainly an ideal, but in some cases, human intervention is required, f. ex. by elaborating

on source models before they can be transformed to target models. It is also worth noting,

that transformations (which are sometimes also called translations) implies some level of

understanding of the meaning of the model. This is in contrast with transcoding, i.e. the

conversion of a model from one format to another.39 [Dietz: 65]

37 Other types of models exist, such as concrete models. A concrete model of a system would be
considered an imitation

38 This is the most typical scenario. The reverse could also happen
39 Which would just be different syntactical representations of the same model

Page 64 /217

It is difficult to talk about MDE without also mentioning Model Driven Architecture (MDA).

MDA is a framework and a set of standards from the Object Management Group (OMG),

which can be regarded as one of the most well-known branches of MDE.40 Recently, OMG

has also extended focus into the business domain. [Lankhorst et al.:27] At this point, MDA

does however not play a significant role within the BPM-SOA space. An important reason

for this is, that none of the most important languages for BPM-SOA has yet become MDA-

based. But I have decided to include a description of MDA anyway for two important

reasons. Firstly, a basic description of MDA can be used to demonstrate important model-

driven principles. Secondly, OMG is trying to position MDA within the BPM-SOA space.

Thus, MDA has the potential to become an important future player in this space. I will

therefore return to the subject of MDA several times in latter parts of this chapter.

The basic structure of MDA can be described through three different viewpoints, which

operates at different layers of abstraction. The three viewpoints separates business

modelling from the underlying implementation details:

! Computation-Independent Model (CIM): The CIM model is at the highest level of

abstraction, and contains no technology details. This is where the business

modelling (or domain modelling) resides. The business analyst is the primary stake-

holders.

! Platform-Independent Model (PIM): The PIM model, is the first level that

describes the system. Although PIM models contains computational logic, they still

do not contain implementation details. The primary stake-holder is the solution

architect.

! Platform-Specific Model (PSM): At the lowest level of abstraction the PSM models

are found. This is the level of abstraction just above the code itself. Typical

examples of PSM models are models of object oriented classes, such as in UML

Class Diagrams. PSM models are aimed at the system developer.

40 Another popular MDE framework is the Eclipse Modeling framework [EMF]

Page 65 /217

The process of turning a high-level business model into code would follow this pattern:

Initially, business modelling would be performed at the highest level of abstraction (CIM

level), without any attention being paid to implementation details. Through a series of

steps, the CIM model is transformed into a system model, that contains computational

logic, but no implementation details (PIM). The PIM can then be turned into a model that is

specific to the underlying platform. Finally, the platform specific model (PSM) can be

transformed into executable code. This process enables business models to become not

only important artefacts for analysis and design, but also important run-time artefacts.

BPM-SOA can be regarded as model-driven, because we are using models to “direct the

course of understanding, design, construction, deployment, operation, maintenance and

modification”. [OMG, 2003:2-2]. Both the BPM-SOA envisioned earlier and MDE favours:

! The use of symbolic models as central primitives, rather than code

! Business modelling is performed at a high level of abstraction

! High level models are turned into lower level models through transformations

! Eventually, models are transformed into executable code

But to realise the vision of BPM-SOA, it should be possible to establish a complete

modelling value chain from business modelling and down to deployment. Any semantic

gaps in this value-chain, would become an impediment to continuous improvements.

[Khoshafian, 2005]

4.2.1 Semantic Gaps in BPM-SOA

The main purpose of this section is to investigate, whether such a modelling value-chain

can in fact be established without semantic gaps.

This part of the chapter will fall in three main parts. First, I will propose a modelling value-

chain, based on the most likely candidates for modelling languages that would fit each

layer in the value-chain. Secondly, I will describe some important elements to defining

modelling languages. Understanding these elements, will be required for understanding

the issues that can crop up, when transforming between two modelling languages. Lastly, I

will analyse the proposed value-chain for semantic gaps.

Page 66 /217

4.2.1.1 The Modelling Value-chain for BPM-SOA

In the following a modelling value-chain for BPM-SOA will be proposed. Figure 10 depicts

the conceptual value-chain, including an overview on how the different layers fits within the

three MDA perspectives. The different layers are described below the figure, including the

most likely candidates for modelling languages fitting the purpose of each individual layer.

The Business Context concerns modelling of the context and the dependencies which

surrounds processes and services. As such, the business context is setting the overall

frame that BPM-SOA projects operates within. Some of the contextual business

information captured here would be strategy and vision, business policies, decision rules,

and organisational models. [Khoshafian, 2005:105-106] Moreover, goals and objectives

are important process-related meta-data. An important thing to note is that although recent

years has seen a flux of new business-related modelling languages,41 not all aspects of the

business context can yet be expected to be captured in standardised modelling languages.

Much contextual information will still be found in natural language documents, such as

strategy papers.

41 F .ex the Business Motivation Model [BMM], the Semantics of Business Vocabulary and Business Rules
[SBVR] and the Organizational Structure Metamodel [OSM]

Figure 10: Modelling Value-chain [Own production]

Page 67 /217

The second layer concerns the Business Process Modelling, which of course is central

to BPM-SOA. Previously, business process modellers had to rely on proprietary notation

standards for drawing up business process diagrams. Today, business process diagrams

are usually modelled with the Business Process Modelling Notation 1.1 (BPMN) standard,

which is emerging as the de facto standard. BPMN is primarily a standardised graphical

notation for business process modelling, rather than a standard for creating executable

process models.

The next layer is the Process Execution Modelling. In this layer, attention is turned away

from analysis and design, and towards the execution of business processes. The WS-

BPEL 2.0 standard (hereafter just referred to as BPEL) is “an XML based-language for

describing business processes and business interaction protocols”. [Brahe & Bordbar:3]

BPEL provides the facilities for combining and co-ordinating service invocations. [Brahe &

Bordbar:3] In this sense, the BPEL language can be considered a process integration

model.

The third layer defines the Service Interface Modelling. During the investigation of SOA

in chapter 3, the importance of using a service interface to hide implementation details

was emphasised. Two main standards are used to define the technical service interface:

! Web Services Description Language (WSDL): WSDL is an XML format for

describing Web Services and how to access them.

! XML Schema Definition (XSD): XSD is used for describing the structures and for

constraining the contents of XML documents. WSDL relies on XML Schema

Definition (XSD) for defining input- and output data types.42

42 Moreover, BPEL also relies on XSD

Page 68 /217

The two final layers illustrates service modelling. At the time of writing this thesis, there are

no generally accepted way to model services, but some proposals have been put forward.

See f. ex. [Emig et al.] and [UMPS] In [Emig et al.] service modelling is suggested being

divided into an abstract part, and a concrete part. The abstract service model would be

used to model services in a platform independent way, i.e. detached from the run-time

environment. In the case of composite services, the abstract model will also describe the

relationship to other services. [Emig et al.:1] The concrete service model in contrast,

includes deployment information. At run-time several instances of the same abstract

service may exist. The concrete service model is derived from the abstract service model,

with the addition of deployment specific information, such as binding type and service

endpoint references. [Emig et al.:3] This is completely in line with the WSDL standard

which states that: “The operations and messages are described abstractly, and then

bound to a concrete network protocol and message format to define an endpoint“. [WSDL]

Page 69 /217

4.2.1.2 Elements of Domain Specific Modelling Languages

Before proceeding, it will be necessary to give an introduction to domain specific modelling

languages. This introduction will serve as basis for understanding some of the issues that

can arise when attempting to bridge two modelling spaces. The introduction will be fairly

thorough, as a sound understanding of modelling languages will be vital knowledge in the

rest of this thesis.

The notion of transforming symbolic model have been stressed throughout this chapter.

The definition of symbolic models given earlier, stating that symbolic models are

“expressed in a formal language” is however not particular precise. In this section a more

thorough description of language formalism will be given. It will be the point, that there are

certain elements that are central to defining (or describing) languages formally. The

language formalism given here, applies to software languages as a whole, including

programming and modelling languages. But in this context, Domain Specific Modelling

Languages (DSML's) are of particular interest. A DSML addresses a particular problem

domain, encapsulating domain-specific knowledge using a domain specific terminology

[Erche, Wagner & Hein:1037] Such languages are vital elements in the modelling value-

chain.

A simple language definition is:

“A language L is the set of all linguistic utterances of L.” [Kleppe:2]

The term linguistic utterances refers to the expressions that can be given in a certain

language. The definition implies, that a language description should contain syntactical

rules.

Page 70 /217

Syntax can however be divided into two types: [Kleppe:3] [Erche, Wagner & Hein:1037]

! Abstract Syntax: The abstract syntax encapsulates language concepts, by

defining elements, their relationships and their constraints. Meta-models can be

used as formalism to express the abstract syntax.

! Concrete Syntax: The meta-model does however not describe how the language

is presented to the user [Kleppe:3] This is the role of the concrete syntax, which f.

ex. can be a graphical format, a textual format or a file format.43

Abstract and concrete syntax are mapped towards each other through syntactic mapping.

It is important, that the abstract and the concrete syntax are not the same. Rather, the

abstract syntax should be considered the “backbone” of a modelling language. It is f. ex.

often desirable to have several concrete representations of the same language; one

concrete syntax would f. ex. define the graphical notation, whereas another concrete

syntax would define the serialisation format. Finally, different concrete syntax's of the same

language, should be syntactically mapped to the same abstract syntax. If not, they would

essentially be different languages.

A more thorough definition of the language term provides further insights:

“A language description of language L is the set of rules according to which the linguistic
utterances of L are structured, optionally combined with a description of the intended

meaning of the linguistic utterances” [Kleppe:2]

This definition also includes optional semantics. It could however be argued, that

semantics ought to be mandatory, as it provides the basis for a common understanding of

the language. Two additional elements are used to define semantics: [Erche, Wagner &

Hein:1037]

! Semantic Domain: The meaning of the abstract syntax elements is defined by the

semantic domain.

! Semantic Mapping: Elements of both the semantic domain and the abstract

domain are mapped

43 Abstract syntax is also often referred to as the notation

Page 71 /217

All semantics are however not created equal. To be able to execute a model on a technical

platform, the execution semantics needs to be defined very precisely. There is no exact

way to discern whether a semantic description can be considered a description of

execution semantics. But in general, execution semantics would provide a step-by-step

description on how to execute any given abstract syntax element on a run-time platform.44

Finally, a graphic illustration of language descriptions elements can be seen in figure 11.

There are important efforts underway in order to standardise some of the elements.

Especially, the OMG is active in this space, attempting to establish important standards

around MDA. The Meta-object Facility (MOF) is an OMG standard that defines a standard

way to express meta-models. The MOF language is a minimal set of constructs that can

be used to model other modelling languages. [Gasevic, Djuric & Devedzic:114] As such, it

can be considered a meta-meta-language for expressing meta-models. By establishing

MOF as a single language for the specification of meta-models, MOF becomes a bridge

that ensures a modest degree of commonalities between different languages.

44 Execution semantics is also sometimes referred to as operational semantics or process semantics.

Figure 11: Language Description Elements [Own production]

Page 72 /217

Moreover, OMG has created the XML Meta-data Interchange (XMI) format. XMI is a

standard for serialising MOF meta-models and MOF based models to XML. Because XMI

also allows for the creation of XML schemas for MOF based models, it can implicitly be

used to define a concrete syntax for modelling languages. There are however some

interoperability issues with XMI. Appendix F provides a more thorough description of MDA

and MOF, as well as a discussion of the interoperability issues with XMI.

As shall be seen later, there are efforts underway to use MDA, MOF and XMI for BPM and

SOA.

4.2.1.3 Semantic Gap – From Process Modelling to Process Execution

It is now time to look at the potential gap between the process modelling (BPMN) and the

process execution (BPEL) spaces. Crossing this chasm is challenging in part because

BPMN itself has some limitations, and in part because mapping from BPMN to BPEL is a

complex endeavour.

As for the BPMN standard itself, it is primarily a notation for drawing business process

diagrams. It does not attempt to define execution semantics, and there is no official meta-

model attached either.45 Furthermore, there is no standardised approach to serialising

BPMN models to XML. Proprietary meta-models and serialisation formats have been

derived from the BPMN specification, but the lack of standardisation does hamper

interoperability.

45 According to [Silver, 2006] a non-public draft of a BPMN 1.1 meta-model do exist

Page 73 /217

All this should not be a problem, as the BPMN chapter contains a chapter on how to map

to BPEL. Things are however more complex than so. As the BPMN FAQ states: “By

design there are some limitations on the process topologies that can be described in

BPEL, so it is possible to represent processes in BPMN that cannot be mapped to BPEL”.

[BPMN, 2005] The two languages has origins in different backgrounds and supports

different phases in the business process life-cycle. This has led to conceptual mismatches

between BPMN and BPEL. [Recker & Mendling] One key problem is the divergence in the

level of expressiveness provided by the two languages; BPMN provides a much richer set

of modelling constructs than BPEL [Recker & Mendling]. BPEL does f. ex. have

shortcomings in regards to managing human tasks and sub-processes [Julic & Kant:209]

So mapping from BPMN to BPEL, either requires using a basic set of BPMN modelling

constructs, risking making models that cannot be transformed to BPEL without information

loss or defining additional extensions to BPEL to accommodate these shortcomings.46

Furthermore, BPMN and BPEL are not aligned particular well in regards to their underlying

structure. The graph47 nature of BPMN does not match well with the more block-oriented48

approach to BPEL, which further impedes the opportunities for making standard mappings

between BPMN and BPEL. [Joergensen]. Finally, because BPEL does not contain a

graphical notation, there is not way to preserve the diagram layout when performing round-

tripping.

So the relationship between BPMN and BPEL is far from optimal; there is no standard way

of mapping between BPMN and BPEL, and BPMN is clearly not itself adequate as an

execution language.

46 BPMN and BPEL extensions has f. ex. been added to the Oracle BPA and the BPEL Process Manager
products [Julic & Kant:209]

47 The graph theoretic approach holds that from a particular node you can only move to another that is
connected [Harrison-Broninski:124]

48 Block-structured programming takes the approach that groups activities into sequences – even which the
can be executed in parallel the idea is to follow one specific activity with one other activity

Page 74 /217

Towards BPMN 2.0

There are emerging solutions to some of these problems, as there has been ongoing work

on creating a new Business Process Meta-model Definition (BPDM) standard. This

standard includes a meta-model and a schema for serialising BPMN to XML. The BPDM

is a MDA/MOF standard. The BPDM is to be aligned with BPMN under the name of BPMN

2.0 by establishing:

A single specification, entitled Business Process Model and Notation

(BPMN 2.0), that defines the notation, metamodel and interchange format,

with a modified name that preserves the “BPMN” brand. [BPMN, 2006:1]

Since the BPMN 2.0 is going to be syntactically mapped to the BPDM, it would implicitly be

aligned with the semantic domain of the BPDM. In other words; BPMN 2.0 would implicitly

have execution semantics defined.

The decision to align the BPMN closer to MDA has however caused quite a debacle.

According to [Silver, 2008] a different proposal was submitted by IBM, SAP, Oracle &

BEA.49 Their proposal “looks a lot like today’s BPMN, but with a bit of cleanup in the

semantics, an explicit metamodel and XML schema”. [Silver, 2008] The core idea behind

their proposal is to make the implicit execution semantics in BPMN 1.1 explicit, but without

modifying the semantics. They argue that this is the least disruptive solution for existing

adopters of BPMN.50 Again with [Silver, 2008] as the source, the outcome of the

standardisation process does not seems to be preordained. The standard is currently

pending approval. In any case, both of these proposals defines execution semantics for

BPMN 2.0, whether the BPDM solution or the “simple” solution wins.

49 It should be noted that all the parties in the proposal are BPMS vendors. This is likely to have influenced
their interest in the outcome of the BPMN 2.0 work.

50 And this is unquestionably the right conclusion to draw. Aligning BPMN 2.0 with MDA would increase the
learning curve for current adopters. Whether the solution is better, obviously depends on context.

Page 75 /217

XML Process Definition Language (XPDL)

One way of eliminating the transformation gap altogether is to create a unified modelling

and execution language. An example of such language could be the the XML Process

Definition Language (XPDL). XPDL is foremost designed as a common interchange

format, that allows for persistence and exchange of BPMN process diagrams. This has

been achieved by the creation of an extended meta-model, which unifies XPDL and BPMN

constructs. As such, XPDL should be completely orthogonal to BPEL; XPDL is a process

diagram persistence format, whereas BPEL is a process model execution format. In

theory, this would lead to a value chain consisting of BPMN-XPDL-BPEL. [Palmer:54]

XPDL holds a number of important advantages over BPEL. Firstly, being a storage format

for BPMN, the two standards are already somewhat better aligned than the uneven levels

of expression between BPMN and BPEL. Secondly, because of this alignment, XPDL

supports round-tripping without information loss, including preservation of diagram layouts.

Finally, XPDL also allows for extensions. These extensions can also be preserved during

round-tripping or tool exchange.51 Things are however a little more subtle than just seeing

XPDL as a persistence format. Some proponents are positioning XPDL as a run-time

language as well. The main idea is that if business process models are captured in BPMN,

then business process execution engines should be able to consume the XPDL files.

Some tools are already supporting this today.

But for all the advantages of XPDL, it does not guarantee execution semantics.

[Swenson:3] Execution of a process model persisted to XPDL, thus requires external

interpretation of execution semantics by the consumer.

51 Which on the other hand allows for proprietary extensions muddling the standard.

Page 76 /217

Process Language Feature Comparison

So what is the right way to bridge the gap between process modelling and process

execution? Table 5 sums up the features of the four process language variants, and it is

quite evident that there is no optimal solution yet.

Standard Graphical

Notation

Execution

Semantics

Serialisation

Format

BPMN 1.1 Yes No No

BPMN 2.0 52 Yes Yes53 Yes54

BPEL No Yes Yes

XPDL 2.0 Yes55 No Yes

Table 5: Process Languages Feature Comparison [Own production]

A common language for modelling and execution would clearly be preferable. But at least

for the foreseeable future, modellers will have to use several DSML's, which needs to be

mapped against each other. This will invariably create semantic gaps. Opportunities do

however exist for a unified language to emerge. It is very difficult to predict the outcome of

this format war, as the outcome of the BPMN 2.0 work is still not known. But it is likely that

BPMN will retain its status as a de-facto graphical notation for business process diagrams,

whether the preferred version will be version 1.1 or version 2.0. Much however hinges on

the outcome of BPMN 2.0 process. If the BPMN 2.0 manages to get unscathed through

the standardisation process (and without alienating the user base), then it seems like an

obvious candidate for a combined modelling and execution language. If not, XPDL may

have a chance at playing a pivotal role, if not only because it already has some

momentum.

52 Request for Proposal
53 Either provided implicitly by the BPDM or by a separate meta-model with execution semantics defined.
54 Either as XMI (BPDM) or as a separate XML serialisation schema
55 Mapped to BPMN graphic notation

Page 77 /217

The discussion about modelling standards leads to another observation: it appears that

there is still a fundamental semantic gap between business and IT, i.e. there is a

foundational trade-off to make. More formal languages are easier to make executable, but

restricts the business modeller. Less formal modelling languages empowers the business

modeller, but are more difficult to make executable. This observation can be seen reflected

in this statement from Francis McCabe:

“Personally, I think that the issue is that we are trying to have it both ways: have an easily

understood execution semantics and allow the business modeller to do whatever and

however he/she likes.” [McCabe]

Despite the opportunities for a unified modelling and execution language to emerge, there

will still exist a deep-running gap between the business modeller and the IT-side. It is

likely, that such unified language will affect the way the business modeller has to work. A

model that will be used for execution is likely to require more discipline by the business

modeller. This is a potential cultural issues to handle.

But for most parts, it is possible to bridge the gap between business modelling and

execution through standard modelling languages. Thus, it is possible to empower the

business analyst by facilitating the opportunity to dynamically re-configure business

processes through re-usable and discoverable services. At this point however, the solution

will not be based on standards mappings and/or without proprietary extensions.

Page 78 /217

4.2.1.4 From Business Modelling to Service Modelling

The gap between business process modelling and execution could with some caveats be

bridged. There is however an important limitation; the underlying assumption is that

services already exists, are discoverable and are implemented in a way that is useful to

the business process modeller. Given the vastness of the enterprise IT-asset portfolio,

most assets are not likely to be service-enabled by default. Any enterprise worth its salt,

would service-enable systems and components very selectively. Creating a service is an

investment decision and should be treated as such.

This begs the question if services can be derived directly, i.e. if it is possible to

automatically go from business modelling to service modelling? Figure 12 shows a

simplified value-chain.

The service interface can clearly be created from the business models through a top-down

approach. On the other hand, the service interface layer can also be created via a bottom-

up approach; by defining the abstract service model, and by enriching the abstract service

model with deployment information, it is possible to create a concrete service model. Since

this concrete service models now contains both interfaces and deployment information,

generating the technical interface, consisting of WSDL and the XSD is possible.

Figure 12: Business versus Service
Modelling

Page 79 /217

But it is not possible to automatically cross the service interface layer from either direction.

Neither BPM, SOA nor the two together, can come up with the right re-usable services.

[Guttman] As expected, the service interface acts as an intermediary layer between the

two worlds. Human cognition and human work will still be needed in order to close this

semantic gap. Especially, collaboration between stake-holders, such as business analysts,

solution architects and system developers will be needed.

To return to the discussion about the vision of BPM-SOA, I will quote a blog-post by

Michael Guttman, who reflects on a presentation at a large financial institution. Several

vendors were presenting their view on BPM and SOA together: [Guttman]

“In general, the vision presented was a brave new world where business analysts can

simply compose the new or improved business processes they need from a set of

reusable business components, after which some run-time execution BPM engine

(nowadays usually based on BPEL) will end up invoking the appropriate reusable SOA-

based services to execute those processes.

To this end, each of the various presenters happily showed off slideware of his own

company's BPM/SOA 'marketecture'”

This view is very similar to the vision that I presented at the beginning of the chapter.

Guttman further states:

“As with most such magic tricks, the presenter must get the audience to believe they 'saw'

something that didn't really happen. In this case, this involves getting the audience to

believe that, just using BPM and SOA, they will automagically come up with an

appropriate set of reusable, recomposable components at both the BPM and SOA layers,

plus an efficient mapping between the two.” [Guttman]

Page 80 /217

Although perhaps a bit polemic, the observation by Michael Guttman is true; there is

absolutely nothing new in BPM nor in SOA that would warrant any claims as to automated

software development. Rather, claiming the opposite would be like trying to brand BPM-

SOA as Case Tools 2.0. The combination of BPM-SOA is not a silver-bullet.

This is not to say that a model-driven approach to BPM-SOA can not provide value; it

certainly can. It provides the value that is normally associated with MDE. By using models

rather than the code, complexity is reduced and this can improve developer productivity.

Moreover, being able to automate or semi-automate transformations in some parts of the

value-chain, can potentially reduce the manual coding effort. Thus, a model-driven

approach can help reduce the time to market for new solutions, as well as reducing the

cost of development and integration.

And once discoverable services has been developed, the model-driven approach actually

allows for dynamic composition of business processes. But in addition to the model-driven

approach, formal methodologies are needed in order to bridge the semantic gap, including

identifying and specifying new services, and for making changes to existing services. In

this sense, BPM and SOA can no longer be considered orthogonal. How this semantic gap

should be closed, will be the main topic in the methodology-driven perspective.

Page 81 /217

4.3 The Methodology-driven View

As was seen in the previous part of the chapter, viewing BPM-SOA purely as a

technological stack does not hold. Rather, formal methodologies are needed in order to

close the semantic gap. In this part of the chapter, BPM and SOA will be seen not just as

technologies, but also as methodologies that works together.

4.3.1 Introduction

Just like their business process counterparts, services in SOA are also considered having

their own life-cycle, which needs to be managed. Table 6 describes the three main phases

of the service life-cycle. [Seeley, 2008]

Life-cycle phase Description

Design-time Identification, specification, and realisation of service.

Run-time At run-time services are invoked by consumers. Policies are further

enforced at run-time.56

Change-time To provide a flexible platform, that can be dynamically re-configured,

much of the configuration in SOA does take place in declarative

configuration files based on XML. This includes security policies and

service contracts. Providing configuration through declarative

configuration files, eliminates the need for recompilation at change-

time.

Table 6: Life-cycle Phases of Services in SOA [Own production]

The purpose of this section is to understand how business processes interfaces with the

service life-cycle. The main emphasis will be on managing the life-cycle of business

services, as these are the ones that will be consumed directly by processes. Managing

entity services do share some of the same issues as business services.57

56 In reality, service policies would have their own life-cycle as well, as they are supposed to be managed
independently of the service. For the sake of simplicity I have omitted service policies from this analysis.

57 Although to a lesser degree, as entity services are supposed to be more fine-grained and less volatile.

Page 82 /217

The subject of managing all life-cycle phases of a service is a considerable subject.

Therefore, only the most pressing issues in bridging the semantic gap will be dealt with

here. The analysis will cover the design-time tasks of identifying and specifying services,

as well as how to manage the change-time phase.

Service identification includes identifying the right services to build. A key objective will be

to devise a way to use BPM to identify candidate services. Service specification in

contrast, includes determining the right service granularity in order to balance a number of

different requirements.

Finally, as for the change-time phase, the key objective of the analysis will be to find out

how coupling affects the ability to change services. It will be an important point, that

although services and their consumers are loosely coupled, there will still be residual

coupling that must be managed.

4.3.2 Design-time (Service Identification and Service Specification)

A dominant approach to software engineering is the Object-Oriented Analysis and Design

(OOAD). Using the words analysis and design has a special meaning. The emphasis of

analysis is to “investigate the problem and requirements, rather than finding a solution”.

[Larman:6] In contrast, the emphasis of design is to create conceptual solutions to the

requirements. In combination, the purpose of analysis and design is to understand the

problem, the requirements, and to create conceptual solutions to the requirements. OOAD

is however concerned with micro-level abstractions, such as objects and classes

[Zimmermann, Krogdahl & Gee] Such a paradigm would not be suitable for designing

coarse-grained services. Instead, a new paradigm should emerge in the form of Service-

Oriented Analysis and Design (SOAD).

Page 83 /217

A sub-set of SOAD would be to identify and specify the right services to build. An approach

to identification, specification and realisation of services can be found in IBM's framework

for Service-Oriented Modelling and Analysis (SOMA). SOMA suggests employing a

combined approach to service identification, which contains: 58 [Arsanjani]

! Existing Assets Analysis (bottom-up)

! Domain Decomposition (top-down)

The SOMA approach highlights a fundamental issue in service design. Even if a top-down

approach allows the enterprise to set the context for the service design, such an approach

would not provide opportunities for re-use of assets. Few development projects can be

seen as “green field” efforts, because enterprises typically have vast portfolios of existing

systems, components and services. So a combined top-down and bottom-up approach to

service design is needed.

58 The method also includes Goal-Service modelling which is a middle-out method to identify services not
found through domain composition nor existing asset analysis

Page 84 /217

4.3.2.1 Using Business Process Management for Service Design

The SOMA approach is certainly valuable as a framework for service design, but it lacks a

structured method for performing the domain decomposition. BPM can however be seen

as a tool for this. There are two main advantages of using BPM for domain decomposition.

Firstly, because BPM analysis and design involves decomposing processes into a

sequence of activities, important insights are given about the work to be performed

performed during the process. Secondly, because BPM is naturally business-oriented, it

should be expected that much process-related meta-data will be uncovered or determined

during analysis and design. This provides a sound basis for establishing the right

requirements for the service design. Figure 13 depicts a conceptual model for

decomposing the domain via BPM.

The model does in some ways resemble the modelling value-chain presented earlier in the

chapter. It is important to note, that the use of this decomposition process does not

preclude the use of modelling. Rather, such an approach would be encouraged. The two

perspectives are not mutually exclusives.

The model takes as granted, that domain decomposition within an appropriate scope has

already been decided. In this way. business process improvements becomes drivers for

service design. Strategy-driven BPM projects would usually start by performing a value

chain analysis, until all relevant processes and sub-processes have been identified. If a

BPM project is being driven by less strategic needs, such as issue-driven or process-

driven improvement projects, then the domain decomposition would more likely be driven

by use-cases, and single processes would typically be targeted for analysis and design.

Page 85 /217

Figure 13: Domain Decomposition [Own production]

Page 86 /217

The first step in the domain decomposition is to document the business process from a

high-level perspective. Obviously, it is vital to gain an understanding of the purpose of the

process, as well as to identify the goals or policies that the process should support. Such

meta-data, gives direction for the rest of the domain decomposition process.

The second step is concerned with decomposing the process itself. By identifying and

documenting the activities in the process, the enterprise is given important insights as to

the work being performed during the process. The enterprise should also understand the

control flow, including the activities related to the control flow.59 Business objects and

business documents are also important entities. Business objects are abstract or

conceptual representations of things in the business domain. [Jenz:8] Business documents

are the set of information components that are interchanged as part of the business

activities. [Jenz:8] Business documents are closely related to business objects, as they

are the physical counterparts to the abstract business objects. Moreover, the information

flow should be documented. The information flow describes the “relationship between a

business activity and a business document or between a business activity and a business

object”. [Jenz:9] Business activities may read, update, or create business documents or

business objects.

The third step is aimed at identifying candidate services. By breaking down the individual

business processes into a sequence of activities, the enterprise ends up with a number of

activities, which could potentially become services. By filtering out activities that for various

reasons are not suitable as service candidates, a smaller set of candidate services is

identified. Some activities are not likely service candidates, f. ex. because the activities are

clearly human task oriented, such as calling a customer on the phone. Another likely

selection criteria is cost versus benefit. Candidate services will be selected based on an

initial cost justification. There is no need in spending resources on specifying services that

can not be expected to have a positive ROI.

59 The control flow is also vital for establishing the process execution model.

Page 87 /217

The filtering process can be demonstrated with a simple example. Figure 14 shows a

sample business process, which is a simple order entry process. A customer order is

checked against the customer credit history. If the order is approved, then the order is

shipped to the customer. If the order is rejected, the customer is being contacted. The

“Ship Order” and the “Contact Customer” activities are not likely service candidates; their

names indicates that these tasks are primarily human oriented. The Analyse Customer

Order and Check Credit History are however are likely service candidates.

These candidate services are conceptual specifications of functional requirements. The

candidate services may however be impacted by opportunities for re-use. By performing a

bottom-up matching of existing asset against the functional requirements, opportunities for

re-use may be found. Deciding to re-use existing asset may imply re-factoring of existing

services and/or changing the requirements of service candidates.

In step 4 the requirements are specified. The requirements are an amalgation of the

documentation obtained in the previous steps. It may however be necessary to define

additional requirements, such as additional constraints or additional non-functional

requirements. These non-functional requirements may be driven by both business and

technology issues. The word additional should be taken very literal. The enterprise should

define which types of non-functional requirements that should be captured during the

process. Moreover, non-functional requirements should be captured as early in the

process as possible. Otherwise, there is a risk, that the non-functional requirements

captured in step 4 just becomes a “bucket” of random requirements.

Figure 14: Simple Business Process [Own production]

Page 88 /217

Finally, in step 5 the service candidates will be specified. Specification does not concern

the implementation details of the service, but rather the service interface and the service

data model. The service requirements defined in step 4, along with the service interface

and the service data model forms the realisation contract.

There is however an important caveat to using this procedure. While using candidate

services as inputs to service specification is valuable, the implicit granularity defined by the

candidate services should not be taken as gospel truth. What is the right service

granularity? In theory, the granularity of services and capabilities could be derived directly

from the domain decomposition, i.e. by making a direct one-to-one relationship between

activities and business services.60 But would this necessarily lead to an optimal service

design? Steve Jones tells “Why BPM screws up SOA”:

“This is one of the big challenges of BPM and SOA in that if you start with BPM, which is

about co-ordinating steps, then suddenly every service looks like a step. I've seen this

problem on several occasions now, and heard it repeated by many others so it looks to be

pretty endemic in BPM driven solutions.

[.......]

the SOA-RM says 'A service is a mechanism to enable access to one or more capabilities',

so it is possible for it to be a single capability, but that is certainly not the only, or indeed

the most likely, number of capabilities in a service.”

[Jones]

Steve Jones certainly has an important point; it is not advisable to derive service

granularity directly from activities. Non-functional requirements always acts as constraints

on the service design. An obvious non-functional requirement is re-use. It can often be

valuable to define a broader functional scope for the service, than that required by an

individual use-case. It may f. ex. be more appropriate to define an order service, rather

than an order entry service in order to create cohesive services. It would also be a problem

to ignore other non-functional requirements, such as performance or security

considerations, which places restrictions on granularity.

60 And by mapping the tasks encapsulated by activities to capabilities in services.

Page 89 /217

This is not to say, that BPM should not be used for service design. Rather, BPM is very

valuable as it provides opportunities for aligning needs and capabilities. But service design

should attempt to balance all three types of requirements, as can be seen depicted in

figure 15. The three parts are linked together in a triangle on purpose, as each of the three

factors have the ability to impact each other.

The observation that these three requirements must be balanced against each other has

some major implications. The first implication is that service identification and specification

must be an iterative process, and thus less sequential than the physical layout of the figure

13 may suggest. Following a strict top-down approach would not lead to the development

of the right requirements. Instead, a combined top-down and bottom-up approach is

needed. This also means, that identifying and specifying services are not in themselves

orthogonal activities. Business and IT will have to work closely together in order to develop

the requirements, thus becoming able to specify the right services. The traditional pattern

of capturing business requirements and then designing systems according to these

requirements, would clearly lead to a less-than-optimal service design.

Figure 15: Service Specification Requirements [Own production]

Page 90 /217

4.3.3 Service Change

A main purpose of adopting SOA is to enable looser coupled architectures. This would

help enterprises move towards more dynamically re-configurable business processes. But

an important problem in relation to coupling remains; even if we are able to eliminate all

artificial dependency by promoting loose coupling, real dependency (or coupling) will

continue to exist. An interaction between two service participants will always be done with

a particular purpose in mind, as both provider and service are looking to achieve “real

word effects”. [SOA-RM:18] It should be noted, that service-to-consumer coupling in

composite service scenarios will be considered a variation of consumer-to-service

coupling, as they exhibit similar problems.

Consumer-to-service coupling can be either be in the form of syntactic dependency (such

as addressing, binding, or contracts) or in the form of semantic dependency (the implied

meaning of the data or the meaning of the interaction between consumer and provider).

[Lothka] For the most part, syntax coupling is handled pretty well in SOA. Standards that

pertains to SOA (such as XML, XSD, WSDL), registries (UDDI), and communication

brokers (ESB) all contributes to the reduction of syntactical coupling.

Things are however far worse in SOA in regards to managing semantic coupling. The SOA

Reference Model states that, “The primary task of any communication infrastructure is to

facilitate the exchange of information and the exchange of intent” [SOA-RM:17] This

statement indicates, that there are both information elements, as well as a behavioural

elements involved in service invocations. The SOA Reference Model only briefly touches

upon the potential issues on semantics in SOA, but does nothing to address them.

Realising, that service semantics was mostly absent in the original SOA Reference Model,

work has been done to create a new Reference Ontology for Semantic Service Oriented

Architectures (SSOA). The Semantic SOA Reference Model is however still work in

progress at the time of writing this. The current incarnation of the document has reached

the status of Release Candidate 11. The problems of behavioural and information coupling

will be detailed in the next parts of the chapter.

Page 91 /217

4.3.3.1 Behavioural Coupling

Because service consumers are designed to interact with a service, there is dependency

on the service; there is an actual meaning to the service interaction, whether this meaning

is explicitly stated or not. With simple services, the behavioural dependency is trivial. Take

a currency conversion service as an example. There is a small set of behaviour attached

to such a service, and the exact meaning of the service is almost self-evident. It would also

seem reasonable to expect no negative side-effects to be produced by invocating the

simple service. The problem is orders of magnitudes larger, when looking at the coarse-

grained business services; these services are expected to perform a much wider range of

actions. A composite order entry service would f. ex. perform actions such as matching the

customer against the customer database, perform look-up of the products on the order,

calculate prices etc. before adding the order to the back-end system. Clearly, the client

would have to make more assumptions about the behaviour of such a service, compared

to that of the simple services. Thus, the problem of behavioural coupling correlates with

the functional scope of the service.

The service contract is one of the most important tools for achieving loose coupling in

SOA. A service contract, will typically comprise a number of different service description

documents [Erl, 2008:126]. The technical service contract is a subset of the main service

contract, comprising descriptions that defines the technical interface of the service, using

now familiar standards such as WSDL and XML Schema. [Erl, 2008:126] But WSDL and

XSD mainly provides logical representation, and does not explicitly deal with semantics. In

an ideal world, the consumer would only have to depend on the service contract for

information about the service. But there is also a semantic contract, which is often not

specified. Moreover, one can not expect to have all assumptions about the service

behaviour made explicit. As Dave Snowden puts it so eloquently: “We can always know

more than we can tell, and we will always tell more than we can write down”. [Snowden:11]

Figure 16 shows the difference between the explicitly stated technical contract and the

semantic contract.

Page 92 /217

The fact that consumers cannot be completely de-coupled from the service implementation

details has a number of consequences. Firstly, the semantic coupling places restrictions

on the ability to change a service. Changing the implementation details of a service, would

potentially break the clients assumption about the behaviour of the service, thus

introducing the risk of undesirable side-effects. In shared-use scenarios, where a service is

used by different consumers in different contexts, the “load” on the service increases. This

is likely to place heavy restrictions on the changeability of services. This also means, that

changes often have to be synchronised across several components in the architecture, as

changes can have cascading effects. Changes to an entity service might f. ex. affect

several other services depending on the service (or even business processes depending

on the business services consuming the entity service).

Moreover, if service changes are not expressed through changes to the technical contract,

then service changes might not be detected until run-time. It is clear, that unless

behavioural semantics in SOA is somehow managed, then the architecture will quickly

become brittle and sedimented.

Figure 16: Semantic Service contract [Own production]

Page 93 /217

4.3.3.2 Information Coupling

Another type of semantic coupling in SOA concerns the meaning of the information that

the provider and consumer will exchange. In loosely coupled relationships, service

participants exchanges data through messages. When service participants exchange data

through their interactions, they need to have have a common shared understanding about

the meaning of those data. Business processes relies on abstract representations of

information entities, such as business objects. Therefore, an order entry service, would f.

ex. need to understand the concepts of Customer and Sales Order the same way as would

the business understand the concepts. While a Customer object may have different logical

representations (or schemas) or may be stored differently in physical data-stores across

the enterprise, all parties in the enterprise would ideally have a shared understanding of

the Customer concept; they would ideally point to the same semantic definition.

Semantics of information entities are often defined inconsistently across the enterprise. A

common problem is that many information entities have been established in different

contexts, and for different purposes. The problem can originate horizontally, f. ex. when

different legacy systems or different parts of the organisation uses different terminologies.

The problem can also exist vertically, i.e. when business and IT uses different terms to

denote the same thing. [Missikoff:3] There are two different types of semantic

inconsistencies:61 [Missikoff:3] [Jenz:11]

! Synonyms: Different symbols referring to the same thing. Postcode and ZIP-code

f. ex. both refers to the same part of the postal address.

! Homonyms: The same symbol refers to different things. A term like person is likely

to be used differently depending on who is using the term; the legal department

might use the term differently than the payroll department. Another possibility is two

symbols referring two the same physical thing, but interpreting them in different

ways.

61 Synonyms and homonyms can also be used to manage semantic inconsistencies

Page 94 /217

Sometimes an enterprise will partake in SOA and willingly or unwillingly ignore semantic

coupling. This would lead to each service becoming a “small language” in itself, because

each service would implicitly carry its own semantic definition of important concepts. This

might be manageable for a small number of services, but with hundreds or even

thousands of services, it would eventually turn the SOA into a “tower of Babel”. [Rugg]

Generally, semantic inconsistencies can be managed through a common information

model or through mapping of entities to each other.

4.3.3.3 The Impact of Coupling on Agility

Analysing the change-time phase in the service life-cycle from a perspective of coupling,

has revealed some potential threats to achieving agility. It is not possible to arbitrarily

change single components in the architecture without knowing the impact of these

changes on other components. Disciplines like change management and impact analysis

are not likely to go away just because of SOA. In fact, there is a paradox; adopting BPM

and SOA results in the decomposition of monolithic structures into smaller structures.

These smaller structures each need to have their life-cycle managed. While it makes for

more flexible architectures, it does also in some way increase complexity. This conclusion

gives rise to two observations.

Firstly, the enterprise needs to be able understand the dependencies between the

components in the architecture. Architecture is about the components, their relationships

and their relationship to the environment. It will be impossible to gauge the impact of

modifying a component in the architecture, unless the relationship to other components in

the architecture can be understood. This realisation makes it evident, that managing meta-

data becomes a key discipline for the agile enterprise. The second observation is closely

related to the first. Because, components in the architecture can not always be changed

unitarily, then it follows, that changes may need to be synchronised across multiple

components. So not only should it be possible to understand the relations between

components, but it should also be possible to support some kind of versioning of multiple

components. This would allow changes to multiples components to be developed and

deployed in unison fashion, i.e. “releases” of changes can be defined. These two problems

will be addressed in the next chapter, where enterprise architecture will be introduced.

Page 95 /217

4.4 Is BPM the Business Case for SOA?

Having determined that BPM and SOA are not orthogonal entities, it is time to turn the

attention towards the next question: are BPM and SOA complementary or opposite

entities? I will pose the question: “Is BPM the business case for SOA?”. Business cases

are often the means, through which enterprises makes decisions about investments. There

is an ongoing discussion about the 'business case for SOA'. Ismael Ghalimi bluntly states

that: “Service Oriented Architecture (SOA) is a solution in search of a problem”.62 [Ghalimi,

2006] He certainly raises important questions about the value of SOA.

The main benefits of SOA can be divided into intrinsic and extrinsic benefits. Intrinsic

benefits should be understood as those benefits directly obtainable by adopting the SOA

paradigm. Intrinsic benefits can be said to be about improving the efficiency of the IT-

function, such as the ability to reduce integration and development costs, as well as

reducing the time to market of integration and development. The main factors affecting

intrinsic benefits is the promotion of asset re-use, improvements in productivity by use of

models and improved flexibility by establishing more loosely coupled IT-architectures.

Intrinsic benefits are typically reaped in tactical SOA projects. A likely tactical SOA

scenario could be the IT-function using SOA in order to solve development and integration

challenges, local to the IT-function.

Extrinsic benefits are about the effectiveness of the enterprise as a whole, and not just the

IT-function. Here, SOA is regarded as an enabler of change in the enterprise. SOA

promises not only to enable a more loosely coupled IT-architecture, but also that the

looser coupling between business architecture and IT-architecture makes it possible to

perform business process changes more dynamically. Extrinsic benefits are typically more

strategic in nature, because SOA is used to make the enterprise, and not just the IT-

function, responding faster to changes in the environment. The main benefit of BPM-SOA

should thus be seen as the possibility to perform decomposition of functional silos, i.e.

separating the business logic from implementation details.

62 There is a caveat to Ismael's remark; SOA is a paradigm – not a product, a technology or a concrete
architecture. As a 'thought-pattern' or a set of guiding principles we can only use SOA to make physical
implementation of these principles.

Page 96 /217

The effects of intrinsic vs. extrinsic benefits can be seen in table 7 below.

Intrinsic benefits Extrinsic benefits

Reducing cost of application integration

Reducing time of application integration

Reducing cost of application development

Reducing time of application development

Reducing cost of Business process change

Reducing time of Business process change

Reducing operating costs as a result of

automation

Table 7: Benefits of SOA [Own production]

Is BPM the business case for SOA? The answer must be yes; process improvement

projects provides exactly the kind of leverage that SOA needs. Moreover, the positive

effect of SOA in combination with BPM will be of increasing strength over time, as the

enterprise will posses a larger and larger portfolio of re-usable services, which can be

used to re-configure existing business processes or to deploy new ones. Strategic SOA

can only be achieved by being connected to business changes. Tactical SOA is for

efficiency, strategic SOA is for effectiveness.

Furthermore, using BPM for domain decomposition allows business services to be well

aligned with business goals and policies. This is a form of functional integration. But

establishing an infrastructure for BPM and SOA requires a long-term vision that reaches

far beyond that of the individual process improvement project. To provide the vision for

doing so, the enterprise should see BPM-SOA in a strategic light, rather than just a tactical

one. The purpose of adopting BPM-SOA should be seen as a way to achieve strategic fit,

i.e. to tie the internal capabilities to the external positioning of the enterprise.

Page 97 /217

4.5 Chapter Summary

The purpose of this chapter was to analyse the relationship between BPM and SOA. I

started out by describing the vision of BPM-SOA, as it was often popularised by vendors.

The nirvana of BPM-SOA would mean that a business analyst was able to manage the

entire business process life-cycle without intervention from IT.

I then proceeded to view BPM-SOA from two different perspectives. The first perspective

was the model-driven perspective, in which BPM-SOA was seen as a paradigm that

emphasised the use of models, rather than code. Following a proposed modelling value-

chain for BPM-SOA, this value-chain was analysed for semantic gaps. It was found that

there were still a semantic gap between process modelling and process execution. With

some limitations however, this gap was however possible to bridge. Future modelling

languages may provide better opportunities for closing the gap, but the gap represents a

fundamental cleft between business and IT.

It was found, that whenever appropriate discoverable and re-usable services was available

to the business analyst, then it would be possible to dynamically re-configure business

processes. But it was also found, that it is not possible to automatically bridge the gap

between business modelling and service modelling. As such, managing the business

process life-cycle will continue to require the collaboration of business analysts, solution

architects and system developers. Because of this, BPM and SOA cannot be considered

orthogonal entities.

The methodology-driven perspective were focused on bridging semantic gaps. BPM was

proposed as a tool that could be used for domain decomposition. Business process

analysis and design would both provide important insights as to process related meta-data

and the work to be done during the process. This lead to a conceptual model for identifying

and specifying services. The process seeks to balance functional requirements, non-

functional requirements and re-use of existing assets. The service design phase should

thus be considered iterative. Moreover, business and IT will have to work closely together

to determine the right requirements. The capture-then-design pattern must be abandoned.

Page 98 /217

The change-time phase of the service life-cycle was analysed from a perspective of

coupling. It was found that semantic coupling, in the form of behavioural and information

coupling, would absolutely have to be managed. This led to the observations that meta-

data management would be a critical competence, and that the ability to develop and

deploy components in the architecture in a synchronised way would be vital too.

Finally, it was asked if BPM is the business case for SOA. It was found that BPM certainly

provides an important leverage for SOA. In this sense, BPM and SOA are complementary.

But it was also found that the vision to establish BPM-SOA should be based in strategic

considerations. As such, the decision to adopt BPM-SOA should always be seen as an

attempt at creating strategic fit.

The final conclusion is that the working hypothesis of BPM-SOA being orthogonal but

complementary must be rejected. BPM and SOA should instead be considered

complementary but overlapping entities.

Page 99 /217

Chapter 5 – Contribution of Enterprise architecture

In most of the previous chapter, the relationship between BPM and SOA was seen in a

very project-oriented light. The focus was on using business services as an abstraction

layer between business and technology. However, building an architecture for BPM-SOA

requires investment, planning and management that goes far beyond the scale of

individual BPM-SOA projects. The purpose of this chapter is to analyse how EA can help

meet these demands. TOGAF will be used as the base for the analysis. The primary

reason for this is that TOGAF to some degree can be considered a candidate for a de-

facto EA methodology.63 In cases where references to a taxonomic framework will be

needed, I will reference the Zachman Framework. The two frameworks are illustrated in

appendix D & E.

The chapter will fall in five main parts. I will start out by briefly introducing BPM and SOA in

the context of the TOGAF Architecture Development Method (ADM). This is purely for

setting the stage for the remainder of the chapter.

Then I will proceed to analyse how EA affects agility; in some ways EA will contribute to

agility, but in other ways EA will also be an impediment to agility.

In the third part of the chapter, I will contrast the approach prescribed by the TOGAF ADM

to that of the three key disciplines for realising a “Foundation for Execution” (as described

by Ross, Weill & Robertson in their “Enterprise Architecture as Strategy”). Their work

provides some unique perspectives, which can help nuance some of the problematic

assumptions behind the TOGAF ADM approach.

In the fourth part of the chapter, I will integrate what has been learned from the ADM, with

what has been learned from the Foundation for Execution approach. The purpose is to

modify the ADM, thus establishing an integrated approach to architecture development,

which can be used for managing BPM-SOA for agility.

63 Given the commonalities among EA frameworks, many of the points in this analysis, should hold across
different methodology oriented frameworks.

Page 100 /217

In the final part of the chapter, I will argue that a common language for EA is needed in

order to realise the integrated approach. The role of this language is to connect the many

different EA artefacts. I will also look at some of the challenges of creating such a

language. Finally, I will sketch out a meta-model, and some high-level requirements for the

language. This will set the stage for the next chapter, where I will further investigate the

opportunities for creating such a language.

5.1 Architecture Development in the Context of BPM-SOA

The first part of this chapter will detail how BPM and SOA fits into the ADM.

Even though the TOGAF ADM is generic in nature, and does not specify any architectural

style, there are some challenges to using TOGAF for SOA.64 Certain enhancements are to

be made to the ADM by adding or modifying objectives, inputs, steps, and outputs of the

individual phases. Therefore, TOGAF has launched the SOA/TOGAF Practical Guide

Project. [TOGAF, 2006] The aim of the project was to deliver guiding principles concerning

the use of the ADM for SOA, which would be considered “good enough” and “practical” to

the architecture practitioner. [TOGAF, 2006:1] The work is primarily aimed at making

adjustments to the Preliminary Phase and Phase A-D in the ADM. The “Delivering SOA

with TOGAF” [Dico] presentation is an output of the Practical Guide Project, and details

the changes needed to be done against the ADM. Work from this project will be used (and

specifically referred to) during the next parts of this chapter.

64 Better support for SOA is supposedly one of the design goals for TOGAF 9, which is in the making. So far
not many details about TOGAF 9 has been released publicly. There has not been communicated any time
of release either

Page 101 /217

One key question concerning the use of the ADM for SOA is to understand, where SOA

services fits in the ADM cycle. TOGAF states about the Application Architecture that:

“applications are not described as computer systems, but as logical groups of capabilities

that manage the data or business Architecture”. [TOGAF:67] This definition sounds

remarkably similar to the definition of services in SOA. Business services in particular,

consists of collections of capabilities used to support business processes, and entity

services are collections of capabilities used to manage date. Applications in contrast, are

implemented by composing or orchestrating services. [Dico:10] In this sense, the phase C

of the ADM can both be referred to as Service Architecture and Application Architecture.

[Dico:10-11]

As for integrating BPM into the ADM cycle, there are no official recommendations. The

business architecture phase do however contain many of the same elements, that would

be found in a structured approach to BPM. Recalling the description of the 7FE BPM

framework given earlier in this thesis, it is fairly obvious that the process architecture

overlaps very much with the ADM business architecture. In particular, there is a great

overlap of modelling artefacts between BPM and business architecture, such as:

[TOGAF:50-51]

! Business goals and objectives

! Business functions

! Business services65

! Business processes

! Business roles

! Business data model

Furthermore, both the ADM and BPM supports the notion of modelling as-is and to-be.

65 As recalled from the discussion in chapter 3, the notion of Business Services in TOGAF is different from
the notion of Business Services in SOA.

Page 102 /217

5.2 Enterprise Architecture and Agility

The purpose of this section is to investigate how the TOGAF ADM impacts agility. It will be

argued, that the ADM can both be seen as an enabler of agility, as well as an impediment

to agility.

5.2.1 TOGAF and Alignment

As Scott Bernard notes, EA is unique in providing enterprise-wide thinking about resource

utilisation. [Bernard:61] It is especially qua this unique role, that EA has the potential for

impacting agility in a positive way. In the following it will be the argued, that EA primarily

promotes alignment, but that this alignment is needed for enabling sustained agility.

The ADM provides both strategic fit and functional integration. Figure 15 depicts the ADM

phases A-D from the perspective of alignment, rather than through the regular cycle view.

The figure is organised according to the the same dimensions used in the Strategic

Alignment Model by Venkatraman & Henderson.66 Phases A-D places emphasis on the

creation of Baseline and Target Architectures, which are important in regards to planning

for alignment. But whereas phase A-D are concerned with creating conceptual solutions to

requirements, phase E-H (Opportunities and Solutions, Migration Planning,

Implementation Governance, and Architecture Change Management) concerns the actual

implementation and management of the architecture.

66 See figure 1 on page 20.

Page 103 /217

The ADM provides strategic fit by having the architectural work being aligned with the

strategy. The foundation is laid in the Architecture Vision phase of the ADM (Phase A),

which takes strategy as input, including goals, drivers, and principles. The initial Baseline

and Target Architectures for the business, application, data and technology domains are

created as output from the Architecture Vision. The initial Baseline and Target

Architectures are then further elaborated upon during phase B-D. In this way, the

enterprise strategy sets the context for developing the architecture. Requirements can be

developed through what TOGAF calls Business Scenarios, which are used to identify and

understand business needs. [TOGAF:375] Thus, the Architecture Vision sets the scope

for the further work being performed in the ADM, and ties together the external positioning

of the enterprise, with the internal architectural work being done in the rest of the ADM

cycle.

Figure 17: Alignment Model for the ADM [Own production]

Page 104 /217

Such an approach to creating strategic fit can provide the commitment to establish BPM-

SOA. This is especially evident in the enhancements to the ADM Preliminary Phase and

the Architecture Vision (Phase A) as specified in the SOA Practical Guide Project.

The following objectives have been added or changed to the Preliminary Phase: [Dico:5]

! To define the architecture principles (including SOA principles)

! To asses SOA readiness, maturity and define SOA adoption plan

! To setup and monitor a process (including SOA governance framework)

Moreover, the following objective have been added to the Architecture Vision phase:

[Dico:6]

! To develop business case for SOA for this architectural style

By connecting the enterprise strategy to the architecture development process, and by

taking the long-term enterprise-wide approach to resource development, it becomes

possible to make more coherent decisions about the architecture. Thus, the ADM can help

provide the long-term vision and the commitment to embark on the path of BPM-SOA.

Moreover, the ADM serves as a structured planning tool, that ensures that the architecture

work is aligned with enterprise strategy.

Page 105 /217

The ADM also contributes to achieving functional integration. Following the establishment

of the Architecture Vision, the initial architectures are then elaborated upon during the next

phases in a top-down fashion. The process of defining the Business Architecture, and then

elaborating on the Data, Application, and Technology Architectures provides functional

integration. Figure 18 illustrates Business-IT alignment, decomposed into alignment

between the four architectural domains.67 [Sousa, Pereira & Marques:36] The four

domains are mostly similar to those of TOGAF, and can be held as generally accepted

domains within the EA community.68 [Sousa, Pereira & Marques:36] Since latter phases in

the ADM cycle can impact former phases in the ADM, the relationship between the

architectural domains can be considered a many-to-many relation.

67 The authors do not discuss the fit with the external domain, so the article is purely an attempt at
demonstrating business-IT alignment.

68 With the exception that Information Architecture is used in the model, whereas Data Architecture is used
in the ADM. The Business Data Model is an output of the Business Architecture phase.

Figure 18: Decomposing Business and IT alignment
[Sousa, Pereira & Marques:35]

Page 106 /217

Functional alignment does not in itself produce agility. One can hypothesise, that there is a

relationship between higher degrees of functional integration, and a reduction in

complexity of the architecture. Much of the current complexity in the architecture comes

from short-sighted decisions, that makes for quick adaptions, but eventually contributes to

the sedimentation of the architecture. Functional integration would f. ex. typically result in a

reduction of duplicated logic across the enterprise, which could make the architecture

more transparent. So the improved planning that leads to functional integration, would

probably also lead to the creation of architectures that are better thought out, and thus less

complex to manage.

More importantly however, the ADM reflects one of the key findings from the BPM-SOA

chapter pretty well; because there are still dependencies between the architectural

domains, neither of them can be developed independently of the other. Thus, the ADM

provides an overarching framework for developing the four architectural domains in a

concerted fashion. The ADM is however very generic in nature, and more fine-grained

methodologies will be called for. One obvious example would be SOAD, including the

process for identifying and specifying services that was suggested in the previous chapter.

The overall impression from this investigation is that the ADM is very well suited for

achieving alignment. Strategic fit in particular is important, as it provides the vision and the

commitment for building the BPM-SOA infrastructure. And while functional integration does

not provide agility in itself, it does provide an overarching framework for building the four

architectural domains in a concerted fashion, as well as for creating less complex

architectures. Such architectures should be easier to change and more sustainable.

Page 107 /217

5.2.2 TOGAF and Agility

Having seen how the ADM can certainly be an enabler of agility, especially by providing

the long term vision to establish BPM-SOA, it is now time to turn the attention towards

ADM as an impediment to agility. In this regard, it will be especially important to distinguish

between the deliverables of the ADM methodology (architectures and EA artefacts), and

the ADM as a methodology. It will be shown that certain assumptions around the ADM as

a methodology, impacts agility negatively.

From a macro perspective, the ADM does appear to be a mostly top-down approach to

resource development. As described earlier, the ADM starts with the big picture by

establishing initial Baseline and Target Architectures, which are then elaborated upon in

later phases. The top-down view is however moderated a bit; there are iterations both

among the individual phases, and among the steps within each individual phase.

[TOGAF:19] Figure illustrates this point.

Page 108 /217

It is also possible to re-order the phases of the ADM. [TOGAF:22] An example where the

re-ordering of phases would be an implementation of a standard ERP system. In such

cases, business processes are often adapted to fit the “best practices” processes defined

by the ERP vendor.

An evaluation of TOGAF as a tool for agility cannot be done without considering the ADM

cycle length. But it is notoriously difficult to make any exact predictions as to the cycle time

of an iteration; there are too many variables at play. TOGAF does however indicate, that

the first iteration is the longest, because there will be a need to generate many new

artefacts for the Enterprise Continuum.69 Subsequent iterations should be faster, as it will

be possible to leverage existing artefacts. Previous iterations should also be able to cope

with some of the most urgent and pressing architectural needs, which makes later

iterations faster. But it is also quite obvious, that we should consider ADM cycles fairly

long and at least substantially longer than the iterations in agile software development

projects. [Temnenco] The ADM is however a very adaptable framework, and there several

ways to shorten the cycle time if needed. For each iteration a number of decisions that

affects the cycle length must be made: [TOGAF:24-29]

! Scope: In very large enterprises, such as those found in federated environments,

performing a full ADM can almost be a mission impossible. For this reason, the

architecture can be reduced to certain business sectors, functions, geographical

areas, or organisations.

! Architecture Domains: A complete ADM contains all four architecture domains,

but it is not always realistic to include all four domains in the same iteration. Thus,

one or more architectural domains may be omitted (or reduced) within a particular

cycle of the ADM. Business architecture should however always be present.

! Vertical Scope: Care must be taken to decide the appropriate level of detail in the

architecture effort. Especially, the demarcation between the architecture effort and

related activities like system design, and system engineering should be decided.

! Time: To meet time demands, a transformation can be divided across several

iterations of the ADM cycle. The target architecture is then defined for the overall

system, with intermediate Transitional Architectures in-between.

69 The ADM however also states, that an enterprise, does not have to create a detailed architecture
description in the first attempt [TOGAF:28]

Page 109 /217

The ability to shorten the ADM cycle should however not be taken as a carte blanche to

compromise on basic EA principles. TOGAF does in particular warn against selecting a too

narrow scope. The TOGAF f. ex. re-iterates a warning from the “Practical Guide to Federal

Enterprise Architecture”: [TOGAF:26]

‘‘It is critically important that enterprise architecture development be approached in a top-

down, incremental manner, consistent with the hierarchical architecture views that are the

building blocks of proven enterprise architecture frameworks. ... In doing so, it is equally

important that the scope of the higher-level business views of the enterprise architecture

span the entire enterprise or agency. By developing this enterprise-wide understanding of

business processes and rules, and information needs, flows, and locations, the agency will

be positioned to make good decisions about whether the enterprise, and thus the

enterprise architecture, can be appropriately compartmentalized. Without doing so,

scoping decisions about the enterprise architecture run the risk of promoting ‘‘stove-piped’’

operations and systems environments, and ultimately sub-optimizing enterprise

performance and accountability.”

From this warning we can discern, that TOGAF certainly advocates a top-down approach,

and that at least at the business architecture should be defined enterprise-wide. So even if

the ADM is iterative, it would not be correct to consider it an agile methodology. This is

clearly problematic; if business change cycles can be expected to be shorter than the ADM

cycles, then the EA effort would then become a bottleneck. Thus, from this point of view,

the ADM seems to prioritise alignment over agility.

Page 110 /217

5.2.3 Architecture Change Governance

Because the ADM is not a particular agile methodology itself, it becomes vital to determine

how the ADM responds to sudden shifts in requirements and priorities. The most

interesting phase in TOGAF in regards to this is the Architecture Change Management

(Phase H). This phase involves setting up processes to monitor the environment for

changes, including “Monitor Technology Changes” and “Monitor Business Changes”. A

systematic process to monitor the environment for business and technology changes is an

important step in achieving agility, as proactive monitoring is likely to result in faster and

better detection of opportunities and threats. This is related to the concept of early warning

capability, that was mentioned in chapter 2.

Not all changes are handled the same way. Some changes are incremental in nature and

can be handled within the current ADM iteration. Other changes have wider implications

and affects the entire architecture. Such changes can only be handled through a new

iteration of the ADM. The ADM suggests the following structure for categorising changes:

[TOGAF:113]

! Simplification change: A simplification change can normally be handled via

change management techniques.70

! Incremental change: An incremental change may be handled via change

management techniques, or it may require partial re-architecting. This decision

obviously depends on the nature of the change.

! Re-architecting change: Change that requires restarting the entire architecture

development cycle.

70 Simplification changes, could f. ex. be de-commissioning elements in the architecture, such a systems,
components, or services.

Page 111 /217

The guidelines put forward by TOGAF for determining whether to manage a change

incrementally or by restarting the ADM circle are fairly strict:

! Restart: If the change impacts two stake-holders or more, then it is likely to require

an architecture re-design and re-entry to the ADM.

! Incremental: If the change impacts only one stake-holder, then it is more likely to

be a candidate for change management.

! Dispensation: If the change can be allowed under a dispensation, then it is more

likely to be a candidate for change management.

Under these guidelines, many BPM-SOA related projects, involving both processes- and

services would require a restart of the ADM. This approach does not deal very well with

unexpected changes. It is clear, that such strict Architecture Change Management policies,

would be an impediment to agility.

5.2.4 Discussion: TOGAf for Agility?

As it has now been established, the ADM is a very good tool for establishing sustainable

and flexible architectures. On the other hand, it has also been found, that ADM iterations

were rather long and that the Architecture Change Management is inflexible. In general, it

seems that the underlying assumption of the ADM is that target architectures can be

based on a fairly fixed baseline; changes to the baseline are to be considered exceptions.

Figure 19 illustrates a more realistic scenario. Both Baseline Architecture and Target

Architecture have been documented. In-between the Baseline Architecture and the Target

Architecture iterations of the Baseline Architecture will emerge, as new opportunities and

threats are being addressed continuously. Many of these solutions will impact several

stake-holders. The Target Architecture always operates on a moving Baseline

Architecture.

Page 112 /217

In agile software development practices, the inherent unpredictability of requirements are

being managed through the use of iterations. So why are iterations less efficient in the

ADM? The answer is that because the iterations in TOGAF are much longer, and because

the enterprise is always moving against a baseline that will itself evolve. A rigid

interpretation of the ADM would just compartmentalise the architecture development into a

series of sequential steps. If the TOGAF ADM approach was to be taken literally, it would

stifle the enterprise. The enterprise could create highly efficient architectures, but at the

cost of agility.

In reality, there are those changes that an enterprise will know ahead of time, and those

changes that an enterprise knows will happen eventually. But the most difficult changes, to

deal with, are those changes that cannot be foreseen. [Bloomberg & Schmelzer:5] The

ADM is very well suited for planning change, and planning for change. Less so for

managing the unforeseen. It is obvious, that a more balanced approach to enterprise

architecture development is needed.

Figure 19: Architecture Change [Own production]

Page 113 /217

5.3 Building a Foundation for Execution

In this part of the chapter, the approach taken by the ADM, will be contrasted against the

approach suggested by Ross, Will & Robertson in their “Enterprise Architecture as

Strategy”.71 They describe a Foundation for Execution, which is the “IT infrastructure and

digitized business processes automating a company's core capabilities”. [Weill, Ross &

Robertson:4] This idea would fit well with the establishment of a service oriented

infrastructure and a process architecture, leading to the digitisation of business processes.

The authors argues, that some companies perform better than others, because they have

a Foundation for Execution. These companies has made IT an asset, rather than a liability.

Through a survey of 103 U.S. and European companies, they discovered, that 34% of

these companies had digitised their core processes.72 The companies excelled by having

higher profitability and got more value form their IT investments. Yet, the companies that

had digitised their core processes also had IT costs 25% lower than those who did not.

[Ross, Weill & Robertson:2] Moreover, they argue that these companies are also more

agile.73 These companies, they argue, have successfully built a Foundation for Execution.

Their approach does in some way parallel the ADM approach, but does also provide some

important nuances. The knowledge obtained in this part of the chapter, will be used in the

next part of the chapter, establishing a model illustrating the integrated approach.

71 Which was briefly introduced in the final part of the last chapter.
72 There is no mentioning to which degree, the companies in the survey among 103 U.S. and European

companies, had redesigned business process, along with the digitisation of their processes. This would
however seem plausible.

73 Their explanation of why these companies becomes more agile are at times a bit awkward. They f. ex.
speculate that: “...having a digitized Foundation for Execution probably enabled managers in these
companies to spend more time focusing on what products would succeed and then bringing those
products to market”. [Ross, Weill & Robertson:2] In similar vein it is said: “Managers cannot predict what
will change, but they can predict somethings that won't change. And if they digitize what is not changing,
then they can focus on what is changing”. [Ross, Weill & Robertson:12]

Page 114 /217

There are three suggested key disciplines, for effectively building a Foundation for

Execution: [Weill, Ross & Robertson:8-9]

! Operating Model: The Operating Model contains a commitment as to how the

company operates. Defines the necessary level of business process integration,

and standardisation for delivering goods and services to customers. The operating

model defines which core processes and systems to standardise, and which to

integrate. Integration of processes allows for end-to-end processing, and a single

interface towards the customer, but forces a common understanding of data across

the company.

! Enterprise Architecture: The enterprise architecture is the organising logic for

business processes, and IT infrastructure. As such, the operating model is

implemented via enterprise architecture. EA provides the long-term view on the

enterprise, including processes, systems, and technologies. It is exactly the long-

term view that allows companies to build capabilities, rather than just focus on

immediate needs.

! Engagement Model: The system of governance mechanisms to ensure that

business, and IT projects achieve both local and companywide objectives. The

Engagement Models provides linkages between senior-level IT decisions, such as

project prioritisation, and company-wide process design, and project-level

implementation decisions.

The three key disciplines will be detailed below, and contrasted against the ADM

approach.

5.3.1 The Operating Model

The first step in creating a Foundation for Execution is to formulate an Operating Model.

The Operating Model is essentially a commitment on how to perform the business. [Weill,

Ross & Robertson:26] The Operating Model consists of two different dimensions; the level

of business process integration across business units, and business process

standardisation across business units. This segmentation leads into a classic two-by-two

matrix structure, which can be seen in figure 20.

Page 115 /217

The basic premise for using the Operating Model as guidance for the architecture effort is

that an Operating Model is less volatile than strategy, and thus provides a firmer basis for

creating the Foundation for Execution. The authors argues, that “[because of changing

strategic directions]...strategy rarely offers clear direction for development of stable IT

infrastructure and business process capabilities” [Weill, Ross & Robertson:25]

Formulating the Operating Model thus concerns formulating a very high-level set of

requirements, which drives future business and IT initiatives. Since the Operating Model

predates strategy, selecting the Operating Model also predates the enterprise architecture

effort, and is thus out of scope of the ADM.

Figure 20: Operating Models [Adapted from Weill, Ross & Robertson:29]

Page 116 /217

There is a subtle relationship between the Operating Model and enterprise strategy. At first

glance, it seems like the Operating Model is completely distinct from strategy. By basing

the foundation of execution on the Operating Model, rather than the strategy, it is easier to

achieve strategic agility. The argument is, that if an architecture is based on achieving

strategic fit, then the strategy and the architecture is likely to be tighter coupled, than had

the Operating Model been used to formulate the architecture requirements. On the other

hand, the authors also point out that the Operating Model will make limits as to which

strategies that can be pursued. This notion is expressed in this way: “Thus, the Operating

Model is a choice about what strategies are going to be supported” [Weill, Ross &

Robertson:26] But this limitation also goes the other way around. In most cases,

enterprises already have existing strategies and existing architectures, which will limit the

opportunities for selecting an Operating Model Depending on circumstance, there is a risk

that the Operating Model becomes more of a description, than a prescription. The

Operating Model and strategy are far more intertwined than what may seem at first glance.

Despite these observations, the Operating Model do indeed pose some important

questions on how to scope a BPM-SOA effort; the chosen level of standardisation and

integration are decisive factors when choosing whether a BPM-SOA effort should span

several business units or not. Figure 21 depicts the same matrix structure as seen in

figure 20, but now describes how the different Operating Models affects BPM, SOA and

the data model.74 The model is in part based on [Malik].

74 The table is created based on the simple premises, that integration (all things equal) requires a shared
information model (coordinated or common), whereas standardisation requires centralised process
management, and central SOA

Page 117 /217

The Operating Model certainly provides food for thought, as on how to scope the

architecture development in the Architecture Vision phase.

Figure 21: The Effect of Operating Models on BPM-SOA [Own production]

Page 118 /217

5.3.2 Enterprise Architecture

But enterprises needs more than an Operating Model to guide their architecture effort. As

the authors says: “[Companies] looking to build a strong Foundation for Execution need

more detail than the Operating Model provides – they need an enterprise architecture to

guide their efforts” [Ross, Weill & Robertson:46] EA is used to implement the Operating

Model. The word implement should perhaps be taken a bit lightly here, as the EA that they

describes only concerns the high-level logic for business processes and IT capabilities.

More precisely, “the enterprise architecture delineates the key processes, systems, and

data composing the core of a company's operations”. [Ross, Weill & Robertson:46-47]

One could say, that the EA here described here, roughly equates to the Architecture Vision

(phase A), and the four architectural domains (phase B-D) in the ADM. The notion of

business design (as seen in ADM phase B) does however seem to be de-emphasised.

The main focus is automation, not process design.

The perhaps most surprising aspect of this approach to EA is that the EA effort is not at all

driven by strategy, but only by the Operating Model. This is remarkably different from the

approach devised by the ADM, which takes strategy, including goals, drivers, and

principles as input. The EA approach described here, thus only defines the core

capabilities of the enterprise. EA in this context does not aim to address any specific needs

of the enterprise. Another interesting aspect is that EA is not concerned with the actual

implementation. There is no methodology attached to this approach to EA. This view on

EA, is in some way quite limited compared to that of the ADM.

Page 119 /217

5.3.3 IT Engagement Model

The final key discipline needed for implementing a Foundation for Execution is the IT

Engagement Model, which is defined as “the system of governance mechanisms assuring

that business and IT initiatives achieve both local and company-wide objectives”. [Ross,

Weill & Robertson:118-119]

The Engagement Model is thus responsible for updating and evolving the enterprise

architecture. The IT Engagement Model is used to co-ordinate companywide (enterprise-

wide) business unit, and project activities, [Ross, Weill & Robertson:118-119] and includes

company-wide IT-governance, project management, and linking mechanisms connecting

the project-level activities to overall IT-governance. The Engagement Model includes work

that would be performed during Migration Planning (phase F), Implementation Governance

(phase G), and the Architecture Change Management (phase H) of the ADM.75 One key

task of the Engagement Model is to implement the requirements as formulated by the

enterprise architecture. The Engagement Model is also valuable in the sense, that it

provides the link between solution specific projects and the overall architecture.

The main difference compared to the ADM is that the EA work is separated from the actual

Migration Planning, Implementation-, and Architecture Change Governance. This frees the

governance model to pursue both enterprise-wide, and more local projects at the same

time. The tight link between the architecture development cycle and the architecture

governance, was exactly one of the problems with the ADM.

5.3.4 Is the Foundation of Execution the Better Model??

Having seen the approach to building a Foundation for Execution, it can be asked, if this

approach is better than using the ADM for BPM-SOA? By now the characteristics of their

approach stands clear; the focus on building capabilities rather than solutions, the

separation of EA and the Engagement Model, and the use of an Operating Model to guide

the EA effort.

75 The Engagement Model could be considered a broader concept, than the content of phase F + G + H in
the ADM, as the Engagement Model concerns the enterprise-wide IT-governance

Page 120 /217

In [Doucet et al.] the authors argue that there are three modes of EA, representing

progression in thought and practice of EA. [Doucet et al.:1] The first level (and thus lowest

level) is called Foundation Architecture. The primary purpose of this mode of EA is to align

business and IT, by capturing information about the business, and then design IT

according to business requirements. Figure 22 illustrates this type of EA. The approach to

EA presented by Ross, Weill & Robertson can be classified as Foundation Architecture.

Their approach seems primarily concerned with automating business processes. Business

design is de-emphasised, and the Operating Model is used for creating the high-level

requirements. The Foundation of Execution can in many ways be considered rather IT-

centric.

Figure 22: Foundation Architecture – Aligning Business and IT [Doucet et. al:5]

Page 121 /217

To be able to capture and design both business and IT is a part of the intent behind

adopting BPM-SOA to begin with. Thus, this is closer to the second mode of EA, which is

called Extended Architecture. (see figure 23). In this mode of EA, the focal point is to

engineer enterprises from an integrated strategy, business, and technology perspective.

A quote highlights the difference between the two approaches: [Doucet et al.:5]

“Whereas Foundation Architecture used architecture methods and tools to capture

business requirements in order to design better IT systems, in the extended approach

architecture methods and tools capture strategic goals and related business requirements

in order to design the enterprise.”

It is obvious, that the ADM emphasises an integrated strategy, business and technology

approach to EA to a higher degree than the Foundation for Execution does. So the ADM is

in some ways closer to the ideal behind the Extended Architecture, compared to that of the

Foundation for Execution. On the other hand, the business design aspects of the ADM are

far from perfect. While the ADM does emphasise business design, there is still an air of

“capture-then-design” over the ADM. The ADM does f. ex. not attempt to establish a

bottom-up dialogue, such as required by the SOAD paradigm. The inclusion of BPM and

SOA specific methodologies will therefore modify the rather top-down approach to

architecture development. Even if the ADM does emphasise both strategy, business and

technology, the three domains does not seem to well integrated.

Figure 23: Extended Architecture [Doucet et al.:6]

Page 122 /217

When it comes to delivering practical guidance, the ADM approach does however outshine

the approach by Weill, Ross & Robertson. The key disciplines for creating the Foundation

for Execution completely lacks tools and methodologies for performing the architecture

work. In contrast, by providing the ADM, TOGAF excels in this area. The overall

conclusion is that the Foundation of Execution holds some appealing aspects, but the

approach to architecture development is also found wanting in many respects. As such, it

can be considered more of a thinking tool concerning EA, rather than a concrete approach

to EA.

The next part of the chapter will be spent on attempting to bridge the teachings from the

ADM, with the teachings from the Foundation of Execution.

Page 123 /217

5.4 The Integrated Approach

The purpose of this section of the chapter is to devise a modified Architecture

Development Method.

The main idea is to preserve as many elements from the ADM as possible. Although there

are certainly problems to be found in the ADM, there are also a lot of strengths to be

found; the ADM is indeed a very practical approach to architecture development. So an

overall design goal of the model is to preserve as many core ideas from the ADM as

possible, while still being able to alleviate the problems that causes the ADM to stifle

agility. The modified architecture development method is illustrated in figure 24.

Figure 24: Modified Architecture Development Method [Own production]

Page 124 /217

There are several overarching principles behind the model design. The first principle is to

establish a separate Engagement Model. The Engagement Model will define important

governance processes, principles and incentives. One of the key findings from the

previous analysis of the ADM was, that the architecture governance (phase E, F, G & H)

was to closely coupled to the ADM cycle. The separation of the Engagement Model from

the rest of the architecture work, as suggested by Ross, Weill & Robertson, was clearly a

more flexible approach. By de-coupling the architecture governance from the ADM cycle, it

becomes possible to pursue long-term proactive planning, as well as performing more

short-term reactive adaptions to the architecture. Moreover, in this model the Engagement

Model is guided by strategic concerns, which will provide the context for developing the

architecture. The “Monitor Business Changes” provides input to the Architecture Change

Management phase. Business change drivers can thus invoke the change management

process, which can then affect the architecture development process.

The Engagement Model is used for updating and evolving the enterprise architecture in

exactly the same way as seen by the Foundation to Execution approach. The way the

enterprise architecture is being developed in this model however, will be different from that

of the original ADM. In the ADM, the main assumption was to develop the Target

Architecture on a seemingly fixed Baseline Architecture. This model reflects the reality that

was discussed earlier in the chapter, namely that enterprises needs to manage both long

term planning and short term reactions. There will never be a permanent baseline to build

upon. Rather, a Target Architecture is to be accomplished, against a baseline that itself

evolves. The baseline is constantly being modified through solution architecture. There is

no commonly accepted way to define solution architecture, but it can be said, that

enterprise architecture and solution architecture touches on virtually all the same subjects,

but with different perspectives and different contexts. [Temnenco] Solution architecture is

much more narrow in scope compared to the ADM, and also takes a more short term view.

A typical example of solution architecture would be a business process improvement

project, including creation or adaption of business services.

The second principle follows from the first; because the Engagement Model has been

separated from the ADM cycle, the architecture development process is now also a

separate entity. The architecture process consists of phase B-E in the ADM. The ADM is

still guided by the Architecture Vision, which is rooted in strategy.

Page 125 /217

Finally, there has been no changes to the way strategy is used to drive the architecture

effort. This means, that the Operating Model has been discarded as the primary tool for

making decisions about architecture requirements. This is not to say that the Operating

Model is not a valuable thinking tool; it is however likely to be more integrated with

strategic considerations.

Page 126 /217

5.5 Challenges of Integrated Enterprise Modelling

Having seen the modified architecture development method, it will now be the time to look

at some of the challenges of realising this model.

One critical point, which can be raised against the approach sketched above is that the

architecture work becomes more complex. This is true; by pursuing both long-term and

short-term development cycles at the same time, the architecture development process

invariably becomes more complex. The counter-argument is however, that an approach

that primarily emphasises long-term planning is an unrealistic simplification. In other

words, separating the Engagement Model from the process of developing the architecture,

may increase perceived complexity, but this increase is just a reflection of the real

complexity in managing both long-term planning and short-term changes at the same time.

Managing this complexity is however a major challenge. To manage the complexity, it

would be necessary to have visibility through the architecture artefacts. In EA,

documentation in form of EA artefacts is typically used to reduce complexity. EA artefacts

are highly abstract and codified representations of “physical” things in the architecture.

Often the artefacts are modelled using DSML's, which encapsulates the domain

knowledge. So having the individual components in the architecture documented will not

be enough. Unless the enterprise can understand the relations between components in the

enterprise with relative ease, then an inordinate amount of resources would have to be

used to understand the impact of introducing changes in the architecture. Traceability thus

becomes a critical capability; it should be possible to understand the enterprise

architecture as a coherent system, instead of just as individual components. This

sentiment is much in line with the IEEE 1471:2000 definition of architecture, which

emphasises the relations between components.

The purpose of this part of the chapter is to understand the obstacles to such a language,

but also to build a foundation for a solution.

Page 127 /217

5.5.1 Characteristics of Enterprise Modelling

The next step is to understand the nature of contemporary enterprise modelling.

Enterprises are already having a variety of different modelling practices and standards.

Different models makes up, what can be referred to as the enterprise model set, which is a

“group of conceptual models built to obtain a coherent and comprehensive picture of an

enterprise. [Dursum & Perakath:257] Models in the enterprise model set are usually

sharing three critical characteristics: [Dursum & Perakath:259]

! Different in nature: All model types are different in nature from other types of

models, i.e. the model captures information different from other models. The

difference lies in the different semantic categories of primitives that the model builds

upon (such as business processes, tasks, services etc.). This is not dissimilar to the

Zachman Framework, where each cell describe a normalised aspect of the

enterprise.

! Equal importance: All model types are equally important in making up a complete

description of the enterprise.

! Dependencies: All models constituting the set are dependent rather than

independent, as each model depends upon and is constrained by aspects captured

in other models.

So the first part of explaining modelling heterogeneity is to understand that the many

different modelling practices, and the many different modelling standards, each serves

different purposes. Different stake-holders have different modelling needs, and each

DSML helps to meet the specific needs of a stake-holder. But although each modelling

paradigm uniquely fits the purpose of a stake-holder, the different modelling paradigms

also turns models into silos that encapsulates domain specific information.

Page 128 /217

The second main reason for modelling heterogeneity is caused by immature modelling

practices and immature modelling standards. It can be said that “the current practice of

enterprise architecture often comprise many heterogeneous models and other

descriptions, with ill-defined or completely lacking relations, inconsistencies, and a general

lack of coherence and vision”. [Lankhorst et al.48] Although a rather bleak description, this

observation is very much in line with the findings concerning the model-driven perspective;

there are still considerable gaps in enterprise modelling.

TOGAF acknowledges that “there is a need to provide an integration framework that sits

above the individual architectures”, and divides “integratability” into low-end, and high-end.

[TOGAF:29] At the low-end, architecture descriptions have a look-and-feel that is

“sufficiently similar to enable critical relationships between the descriptions to be identified,

thereby at least indicating the need for further investigation”. [TOGAF:29] At the high-end

integratability means that “different descriptions should be capable of being combined into

a single logical and physical representation”. [TOGAF:29] The TOGAF finally goes on to

conclude that: “At the present time, the state of the art is such that architecture integration

can be accomplished only at the lower end of the integratability spectrum”. [TOGAF:29] If

this conclusion stands to reason, then it would be extremely difficult to achieve an

integrated approach.

5.5.2 Strategies for Information Integration

So how is it possible to bridge the small worlds (i.e. all the domain specific modelling

paradigms) into a big world (i.e. consolidated) view of the enterprise? In general, when

sharing information across domains, there are three available strategies: [Uschold, Jasper

& Clark:2]

1. Use of sharing services via point-to-point integration: Two or more systems

exchange information via run-time interactions.

2. Neutral authoring: A neutral language is used for authoring information

3. Neutral interchange formats: Knowledge is exchanged between systems, via an

“neutral” intermediate format.

Page 129 /217

The first solution of using point-to-point integration services, leads to the problem of

managing n*(n-1) connections between the information sources.76 Given the many different

sources of information, this solution does not appear manageable. The second solution

concerns the use of a neutral language for authoring; individual parts of the global model

would then be transformed into domain specific models. This solution is very complex and

does not seem attainable.77 It is difficult to imagine a common language, which would

cover all the needs that are met by DSML's. Moreover, end-users are often reluctant to

modify existing modelling practices and working methods. [Terrasse et al.:21]

The final solution concerns the use of a neutral interchange format. Through the use of a

common enterprise language, all stake-holders would be able to understand the relations

between components in the architecture. Such a language would be easier to implement,

as some degree of information loss can be accepted; the purpose is to make

generalisations about the domain, rather than including all possible attributes. A simple

and neutral language could in particular be approximated towards the minimum set of

attributes, that could satisfy the need of understanding the enterprise as a whole.

5.5.3 The Enterprise Meta-model

The first step in creating a new language is to define the abstract syntax expressed

through a meta-model. The purpose of this section is just that; to define a simple

enterprise meta-model. Meta-models are important tools, because they help describe the

enterprise in abstract terms, including the basic concepts that may appear in a concrete

model, [Stahl & Völter:19], and the different types of relationships that can be drawn

between those concepts.

76 Assuming that connections are uni-directional
77 Of course a language like the MOF could be used to construct such a language. But the authoring

language would have to be built on to of MOF, and this language would in itself be unwieldy and
unmanageable.

Page 130 /217

I should however point out, that the enterprise meta-model may sometimes be defined

rather implicitly, as many EA repositories will have a pre-defined (and typically proprietary)

meta-model. If an enterprise has such a repository, has all the relevant information stored

in the repository and if the meta-model fits the needs, then meta-modelling (and meta-data

integration) need not exist as an explicit discipline. Moreover, most EA literature seems to

take for granted, that an EA repository exists in the enterprise, and that this repository is

capable of holding and integrating all relevant information. As such, meta-modelling is not

a particular well-described discipline in regards to EA. This I think, is a limitation of current

EA literature. To enable more mature modelling practices, enterprises must understand the

importance of the enterprise meta-model.

An important benefit of meta-models are that they raise the level of abstraction. By

defining the concepts to be used in the enterprise meta-model on abstract level, the meta-

model also becomes a vocabulary of these concepts. Moreover, defining connections

between models on a micro level would be extremely resource intensive. Instead, a

smaller set of types of relations can be defined on meta-level.

In the following, I will establish a meta-model, which will be used later in this thesis, as I

will seek to implement the shared language. The overall design principle of this meta-

model will be simplicity. There are two main reasons for this. The first reason is related to

the purpose of including a meta-model in this thesis; the purpose is not to make a ready-

to-use meta-model, but rather to create a proof-of-concept, which can be considered good

enough to demonstrate the importance of such an approach. Secondly, from a usage

point of view, it can also be argued, that attempting to merge all possible information

sources and providing a cumulated view of all attributes, would leave too much complexity

on the end-user. [Vdovjak & Houben:2] This would defeat the purpose of reducing

complexity.

Page 131 /217

Besides the main principle of simplicity, the meta-model will be developed on the basis of

two different use-cases:

! Line-of-sight: The meta-model should support line-of-sight, i.e. traceability across

all architecture domains. Moreover, strategy concepts should be included as well, in

order to provide traceability all the way from strategic initiatives and down to the

technical architecture. The line-of-sight will be an important tool in being able to

understand the architecture as a whole, and thus providing for impact analysis. The

meta-model will thus include strategy, business architecture, application

architecture, data architecture and technology architecture.

! Versioning: The meta-model should be constructed in a way that makes it possible

to version components, as well version aggregate artefacts (such as on baseline

architectures, business architecture etc.). As it was concluded in the previous

chapter, many changes to an architecture will have to deployed in unison due to

coupling. If not, there will be a considerable risk of introducing negative side-effects

by unitarily changing one component in the architecture.

The meta-model has to a large degree been defined by the use of TOGAF concepts. It has

however been enriched with constructs that relates to BPM or SOA. The entire meta-

model can be seen in figure 25. The figure can also be seen in full figure in appendix G.

Page 132 /217

For most parts, the meta-model is likely to be fairly obvious to the reader, given the ground

that has been covered in the thesis so far. More documentation is however provided in the

appendices:

! Concept / Class Hierarchy: Appendix H documents the five domains that makes

up the meta-model. For each domain, the hierarchy of concepts are presented in a

figure. Furthermore, each concept is described shortly.

! Semantic connections: The types of semantic connections that are included in the

meta-model are documented in appendix I. The documentation includes a

description of each types, as well as parent child relations to concepts.

Figure 25: Meta-model [Own production]

Page 133 /217

There are however a few clarifications:

Firstly, as the ADM itself does not deal with SOA, there are no related artefacts defined by

the ADM. Business services and entity services has however been added to the meta-

model. Activities in business processes can consume services through use of the

has_service object relation.

Secondly, it is important to make a remark concerning the modelling of business objects

(or business concepts). The Data Architecture deals primarily with logical and physical

modelling of data. The Business Data Model in contrast, is an output of the Business

Architecture phase in the ADM. Little guidance is given as to the exact primitives in this

data model, except that it concerns “entities, attributes and relationships” [TOGAF:61] It

stands to reasons, that such a Business Data Model would have to include semantic

definitions of business objects. At least, such an approach would make sense in the

context of business modelling. Therefore, the concept of a business object has been

added to the Business Architecture. The business object is expressed through one or

more logical models (schemas).

Finally, the strategy domain is defined, based on the terminology used in TOGAF.

Page 134 /217

5.5.4 Requirements for a Concrete Syntax

The abstract syntax, expressed by the meta-model, will however be of little value, unless it

can implemented in one or more concrete syntax's. Without the implementation of a

concrete syntax, the meta-model will just be a “pretty drawing”. There are some high-level

requirements for the concrete syntax:

! Machine-readable: The first requirements is that the language should be

implemented in a machine-readable standard format, i.e. in a format that can be

persisted to files and then loaded again as needed.

! Human-understandable: The concrete syntax should also be available in a form

that is understandable to humans. The purpose of the enterprise architecture

language is exactly to facilitate analysis and communication about the architecture.

! Support viewpoints: Moreover, to support analysis and decision making it is vital

that it is possible to provide stake-holders with viewpoints that supports their

particular need. A viewpoint is a “selection or derivation” of another model.

[Lankhorst et al.:153] Few, if any stake-holders, will have interest in viewing a model

of the entire enterprise. The viewpoints can be pre-defined, or defined ad-hoc to

support specific analysis requirements.

! Machine-understandable: Finally, it would be preferable to have a language that is

machine-understandable. Given the number of “moving parts” in a BPM-SOA based

architecture, which is built for change, managing all the different parts manually

becomes increasingly difficult. Thus, the enterprise language should support

automated information gathering about the enterprise architecture. Digitally stored

models are machine-readable, but not necessarily machine- understandable.

The purpose of the next chapter is to devise a way to implement the concrete syntax.

Page 135 /217

5.6 Chapter Summary

The purpose of this chapter was to gain an understanding of the role of EA in the context

of BPM-SOA. The TOGAF ADM was used as basis for the analysis. The chapter consisted

of five parts.

In the first part, I briefly set up the relationship between BPM-SOA and the ADM. Although

the ADM is a generic approach to architecture development, certain adaptions has to be

made to accommodate SOA. I referred to the SOA/TOGAF Practical Guide project for this.

In particular, it was pointed out, that SOA services fits well into the Application

Architecture. As for the role of BPM in the ADM, I stressed the striking similarities between

the artefacts of BPM and the output from the Business Architecture phase. Moreover, both

BPM and the ADM emphasises the notion of as-is and to-be modelling.

In the second part of the chapter, the relationship between the ADM and agility was

established. I found that the ADM is a very good tool for creating both strategic fit and

functional integration. In this way, the ADM provides a structured methodology to build

flexible and sustainable architectures. On the other hand, the ADM methodology was not

found to be particular agile. Rather, the ADM seems to rest on the assumption, that the

baseline is fairly stable, and that changes to the baseline can be treated as exceptions.

Such an approach would not fit well with the intentions of BPM-SOA.

In the third part of the chapter, the ADM approach was contrasted to that of the Foundation

for Execution. This model was found to hold some appealing aspects, especially in regards

to the separate Engagement Model. It was also found, that the Operating Model provided

important questions as to the scoping of BPM-SOA across business units. On the negative

side however, the Foundation of Execution was found to be very IT-centric. Moreover, the

approach did not contain tools or methodology for the EA work.

Page 136 /217

In the fourth part of the chapter, I integrated the knowledge from the ADM, with the

knowledge gained from the Foundation of Execution. This knowledge was codified in a

model. Most importantly, the architecture process was separated from the Engagement

Model. This would have the consequence, that the architecture could be developed both

through long-term thinking, but also through continuous iterations of the baseline by use of

solution architecture.

In the final part of the chapter, the challenges of pursuing both long-term planning and

short-term changes was discussed. This would necessarily make the architecture process

more complex, but this complexity is a reflection of the underlying complexity of managing

both long-term and short-term planning. I found that a common language for EA is needed,

which could provide traceability across architecture artefacts. Such a language would

include both an abstract syntax, expressed by the enterprise meta-model, as well as one

or more concrete syntax's. The meta-model was defined, based on TOGAF concepts,

enriched with BPM and SOA specific concepts. Moreover, two use-cases that could

demonstrate feasibility was described. Finally, four requirements for an implementation of

the language was defined.

Page 137 /217

Module 3 – Connecting the Dots

Page 138 /217

Chapter 6 – Implementing a Common Language

In the previous chapter it was argued, that a common language across the architecture

artefacts was needed. The abstract syntax was defined by a meta-model. In this chapter, I

will investigate the opportunities for establishing the concrete syntax to implement the

language. In particular, I will look towards ontologies and ontology representation

languages, to see which features they hold in relation to describing and exchanging meta-

data.

In the first part of the chapter, I will look at ontologies from a conceptual level. Initially, a

definition and a short description of ontologies will be given, as familiarity with this field is

not expected from the reader. From there, I will argue that there are certain characteristics

of ontologies, that makes them ideally suited for representing and sharing knowledge

within a domain. In this context, key objectives will be to understand how ontologies

relates to meta-models and how ontologies differs from taxonomies.

In the second part of the chapter, I will analyse how ontology representation languages

can provide a concrete syntax for the common EA language. The search for such a

representation language, will take its departure in Semantic Web technologies. The

purpose will be to investigate whether ontology representation languages can be used to

implement the concrete syntax. In particular, the implementation should satisfy the

requirements set forth in the final part of last chapter, i.e.:

! Machine-readable

! Human-understandable

! Support viewpoints

! Machine-understandable

Page 139 /217

6.1 Ontologies

The purpose of this part of the chapter is to understand ontologies on a conceptual level,

Among the key discussion points for this part of the chapter will be to understand how

ontologies relates to other important concepts, such as meta-models and taxonomies.

6.1.1 What are Ontologies?

Ontology is a term borrowed from philosophy, which refers to the science of describing the

kinds of entities in the world and how they are related. [OWL] Ontologies can also be

considered “a systematic account of existence”. [Gruber:199] The main feature of

ontologies are that they can “provide a shared and common understanding of a domain

that can be communicated across people and application systems” [OWL] In the simplest

form, ontologies can be defined as: [Gruber:199]

“a specification of a conceptualization”

A conceptualisation refers to an abstract, simplified view of a problem domain. The

specification means, that the conceptualisation should be done in a formal, and declarative

way. [Gasevic, Djuric & Devedzic:46] Ontologies are used for making clear and precise

statements about the world. From a theoretical point of view, ontologies are high level

models that describes the problem domain, completely independent of implementation

details. Thus, the ontological model offers a huge reduction of complexity; by making

generalisations about the problem domain, the domain becomes easier to understand and

manage. It goes without saying, that the ability to reduce complexity is especially

interesting in the context of being able to create an understanding of complex

architectures.

Page 140 /217

Hendler provides a more elaborate definition of ontologies:

“a set of knowledge terms, including the vocabulary, the semantic interconnections, and

some simple rules of inference and logic for some particular topic” [Hendler]

Already at this point it becomes evident, that there is a huge conceptual overlap between

ontologies and meta-models. They are both conceptual models of a problem domain, and

just as an ontology specifies the constructs and rules to represent the domain, so does the

meta-model. Meta-models can be said to be “ontologies used by modellers”. [Gasevic,

Djuric & Devedzic:73] Roughly speaking, Hendlers definition can be separated into three

parts; the vocabulary, the semantic interconnections, and the rules of inference and logic.

The first part concerns the vocabulary, which is a list of abstract concepts that makes up

the domain (enterprise), such as services, business processes etc. This is similar to the

notion of a vocabulary in meta-modelling.

The second part concerns the semantic interconnections. There are two important

observations to make in this regard. Firstly, the notion of semantic interconnections

implies, that the meaning of the connections between the concepts should be defined in

the ontology. This guides us towards semantics that is not only machine-readable, but also

machine-understandable.78 Secondly, the notion of interconnections is a key difference

between ontologies and taxonomies. Whereas taxonomies are hierarchical classification

schemes, used for organising the concepts in the vocabulary, ontologies are also used to

draw the relationships between instances of these concepts. Taxonomies and ontologies

are however closely related. An ontology can be thought of as consisting of two parts,

which can be seen depicted in figure 26.

78 The notion of machine-understandable semantics will become much more apparent during the
discussion of ontology representation languages.

Page 141 /217

The upper layer depicts of the “terminological box” (T-box in short). The T-box describes

the class (or concept) hierarchy. As the T-box orders classes into a hierarchy, the T-box

can in fact be considered a taxonomy. In contrast, the “assertional box” (A-box) concerns

knowledge about specific instances and their properties. There are two main types of

properties; object properties defines relations between instances and data properties

associates constants to instances.79 So the A-Box provides the main distinction between

taxonomies and ontologies. Distinguishing between taxonomies and ontologies in relation

to enterprise architecture is important. A primary focus in EA has been the establishment

of taxonomies, such as the Zachman Framework or the Enterprise Continuum in TOGAF.

As the ontology describes instances and their relations, the ontology can become an

important addition to the taxonomy.

The final part of the definition concerns rules of inference and logic. A main reason for

striving towards machine-understandable semantics is the possibility to make inferences,

i.e. the ability to find or infer information based on the information in the ontology.

[McComb] Inference is distinct from queries, because it allows returning answers, that are

based on information not explicitly stated. [Parreiras, Staab & Winter:5] Queries only

returns answers based on explicitly stated information. As will become apparent later in

this chapter, ontology representation languages plays a crucial role in enabling inference.

79 A third property type is the annotation property

Figure 26: Ontology Layers [Own production]

Page 142 /217

6.2 Ontology Representation

Using ontologies for knowledge sharing, requires formalism for expressing them. Informal

ontologies, such as those expressed in a series of natural language statements or as

informal visual drawings, relies too much on the user-agent for interpretation. This is

especially a challenge in regards to making the meta-data machine-understandable.

Rather, it should be possible to make á priori assumptions about how data is to be

interpreted; a more formal data model is needed. [Gasevic, Djuric & Devedzic:83].

The role of ontology representation languages is to provide the formalism to describe

instances of ontologies and to encode the ontologies themselves. But several

requirements needs to be balanced when selecting (or designing) an ontology

representation language. An important design decision regarding ontology representation

languages concerns the level of expressiveness, which refers to the richness with which

the problem domain can be expressed. The expressiveness is decided by the different

axioms that can be used in the language. Axioms are constructs that are used to “to

provide information about classes and properties”. [OWL]

Ontology representation languages do however also need to balance the need for

expressiveness against other factors, such as the need for computational completeness80

and decidability.81 A final factor concerns the possibility of implementing the software

programs and reasoning algorithms needed for automatic reasoning; the higher degree of

expressiveness, the harder it is to implement inference engines to support the reasoning.

82

80 Computational completeness, i.e. that all entailments of the ontology is calculates
81 Decidability, i.e. the reasoning about the ontology should be done within reasonable amount of time.
82 An inference engine is a software program that infers knowledge from a knowledge-base, i.e. an

ontology.

Page 143 /217

6.2.1 Ontologies and the Semantic Web

Despite its huge success and influence on society, the current incarnation of the internet is

not without its limitations. While the content on the web is machine-readable, little of it

presented in a machine-understandable way. Machines can parse basic web site

elements, such as the title, meta-tags links etc. Most content is however stored in

unstructured natural language documents. The Semantic Web envisioned by Tim Berners-

Lee is an attempt at addressing some of the shortcomings, by making the content more

understandable for machines [Heflin & Hendler:54] The Semantic Web is interesting in the

context of this thesis, because it deals with the description and interexchange of meta-data

in a way that can be understood by both humans and machines. Important concepts of the

Semantic Web can be seen depicted in figure 27.

The two upper layers are out of scope for this thesis. The two lower levels contains XML

and XML Schema. Neither of these two languages deals explicitly with semantics, and

Both languages relies on external documentation for semantic descriptions, such as

annotations, links or hooks to external documents.83 Modern ontology representation

languages are usually built on XML, and XML Schema, which provides an unambiguous

way to encode syntax.

83 XML represents data through an object-tree structure, and the use of ID/IDREF mechanisms. As such, it
does provide some semantics. But since XML does not provide much insights into the interpretation of
data, it does not help us represent ontologies in way that can be understood by machines.

Figure 27: Semantic Web Layers [Passin:14]

Page 144 /217

6.2.1.1 Resource Description Framework (RDF)

Moving up the stack, the Resource Description Framework (RDF) is found, which “allows

the specification of the semantics of data based on XML in a standardized interoperable

manner”. [Gómez-Pérez & Corcho:55] In other words, RDF provides a formal language for

describing and exchanging information about resources. Statements about resources are

expressed through triples, which follows to the subject-predicate-object pattern.84 The

triple pattern can be considered the abstract syntax of RDF. Figure 28 depicts a triple,

illustrated by use of a semantic network.85 Semantic networks uses nodes, arcs and

squares as primitives, where arcs between nodes defines (unidirect) arbitrary relations.

Literals are illustrated by use of squares. The semantic networks and RDF shares data-

model formalism. [Gómez-Pérez & Corcho:55] Semantic networks can thus be regarded a

concrete syntax for RDF.

The triple illustrated in the figure, describes the natural language sentence: “the ball is

yellow”. A triple consists of a subject, a predicate, and an object. The subject identifies

what the triple is describing, i.e. in this case the ball. The predicate defines the property or

characteristics about the subject that we are describing. The object is the actual value, i.e.

in this case yellow.

84 The pattern is sometimes also referred to as the Object-Atribute-Value pattern (O-A-V pattern). See f.ex.
[Gasevic, Djuric & Devedzic:15]

85 It should be noted that there are several variations of semantic networks. A more thorough investigation
of semantic network types is given by [SOWA]

Figure 28: Example of RDF Triple [Own production]

Page 145 /217

A more complex example is depicted in figure 29. There are several interesting features in

this example. Firstly, RDF can include objects that holds references to literals. The literal

title is denoted by the square: the subject thesis has a title called Enterprise Agility.

Secondly, it is possible to mix subjects, objects and predicates from different sources. In

the example, the predicate student refers to a (fictional) studentid at www.itu.dk, with the

studentid equal to 12345. Because of this ability to mix sources, and because URIs are

used to point to other resources, RDF is essentially a distributed format by design. The

programme predicate further tells us, that the student is enrolled at Ebuss programme.

The last feature requires a bit more explanation; because an object can hold references to

another resource, it is possible to build graphs of interconnected resources. An RDF graph

is simply a set of RDF triples. A sub-graph of an RDF graph is a subset of the triples in the

graph. The graph expressed in a set of triples can be seen below:

Subject: Predicate: Object

www.enterpriseagility.dk/thesis www.enterpriseagility.dk/title Enterprise Agility

www.enterpriseagility.dk/thesis www.itu,dk/student www.itu.dk/studentid/12345

www.itu.dk/studentid/12345 www.itu.dk/programme www.itu.dk/programmes/ebuss

Figure 29: Complex RDF Example [Own production]

Page 146 /217

RDF can also be persisted to files in standardised file formats. There are several different

syntactic formats available. Examples are RDF/XML, Notation 3 (N3), and N-Triple. The

current W3C adopted standard is RDF/XML. N3 is a rather popular standard for encoding

RDF in XML , which holds the distinct advantage over RDF/XML, that it encodes triples in

a more tabular way. This provides a more uniform representation than that of RDF/XML.

N3 is also easier readable by humans than the XML counterpart. Finally, triples can also

be persisted to triple-stores, which can be built-for-purpose databases or regular relational

databases with an RDF layer on top.86

It is essential to stress, that RDF is only used to describe instances of an ontology, thus

only providing a domain-neutral mechanism to describe resources in a domain. RDF does

not by itself contain any ontological constructs, which could be used to make á priori

assumptions about a domain.

86 On [ESW] a list of triple stores that are scalable to a large number of triples is provided. Incidentally,
there is little information as to the response times of said triple stores under maximum load, which makes
the scalability claims rather dubious for practical purposes.

Page 147 /217

6.2.1.2 RDF Vocabulary Description Language (RDFS)

The first level of ontological constructs (axioms) is defined by the Resource Definition

Framework Schema (RDFS). RDFS extends RDF by providing a vocabulary of frame-

based primitives, much similar to classes in object-oriented programming. This allows for

the creation of stereotypical representations of concepts. RDF Schema represents a

standard way to encode ontologies, providing a way to make á priori assumptions about

the semantics of a problem domain. RDFS also uses RDF to describe the RDF

vocabularies. This makes RDFS self-containing, as meta-data and data are described

together and with the same syntax

The most prominent primitives of RDFS are Class, SubClassOf, Property, and

SubPropertyOf. The SubClassOf primitive is the basic construct for building the

taxonomy.87 [Gómez-Pérez & Corcho:57] Properties can be considered “attributes of

resources and in this sense correspond to traditional attribute-value pairs”. [RDFS]

Properties are defined independently of classes. This means that a property can in theory

be applied to any class. The RDFS constructs domain88 and range89 can however be used

to restrict the use of properties. In this way, they can indirectly be attached to certain

classes. [OWL]

It should be noted, that RDFS is a rather limited ontology representation language, as it

only contains few ontological primitives. Therefore, it only provides little opportunities for

reasoning about a problem domain. Most importantly however, RDFS allows sub-classing

and the definition of properties.

87 In [Gómez-Pérez & Corcho:57] the authors further describes three other primitives for defining
taxonomies in ontology representation languages. Neither of these three are implemented in RDFS.

88 The rdfs:domain property is used to state that any resource that has a given property is an instance of
one or more classes.

89 The rdfs:range property is used to state that the values of a property are instances of one or more
classes

Page 148 /217

6.2.1.3 Simple Protocol and RDF Query Language (SPARQL)

As the name suggests, SPARQL is both a protocol and a query language. As a query

language, SPARQL can be used to perform queries across various data sources, “whether

the data is stored natively as RDF or viewed as RDF via middleware”.90 [SPARQL] The

protocol specification of SPARQL concerns remote invocation of SPARQL queries over

either HTTP or SOAP. The most common use of the SPARQL term refers to the query

language. It is in similar vein, that I will use the term in the rest of this thesis.

The purpose of SPARQL is to provide a human friendly query-syntax for application

developers. In this sense, SPARQL is much similar to SQL. This is also evident in the

choice of language constructs, which includes SELECT, WHERE and ORDER BY clauses.

Most queries in SPARQL follows a basic graph pattern, which is similar to a regular triple,

except that “each of the subject, predicate and object may be a variable”. [SPARQL] There

are two basic ways to return results from SPARQL queries; SELECT queries returns result

sets, which are tabular representations of query answers, encoded in the SPARQL Query

Results XML Format. The CONSTRUCT query in contrast, returns the result as RDF

graphs. Furthermore, CONSTRUCT can be used to merge several graphs or retrieve sub-

graphs. The ability to merge, extract and export graphs are very interesting features of

SPARQL, especially in regards to being able to create different viewpoints.

Finally, because ontologies expressed in RDFS are self-contained, it is also possible to

query their meta-data via SPARQL. This is unlike f. ex. in a relational data system, where

meta-data queries would involve querying system tables. [Baurmann] This means, that is

is possible to use SPARQL to “find values for partially known graph structures”,

[Beckett:10] as well as for getting “information about an identifiable object with unknown

properties” [Beckett:10] In the relational world, the entire RDBMS platform would be a self-

containing system. This makes the ontology an abstract model of a domain, that can be

moved freely around between different applications. [Baurmann]

90 An example is the D2R Server and the D2RQ mapping language (that describes mappings between
relational data and ontologies), which provides the opportunity for treating relational data as RDF graphs,
including querying relational data via SPARQL. Moreover, the DARQ project attempts to establish a
standard way to perform federate queries over multiple data sources.

Page 149 /217

6.3 Using RDFS to Implement the Meta-model

In the previous chapter, four requirements for a the concrete syntax's of the common

language were laid out. The purpose of this section is to conclude whether RDFS actually

meets these four demands.

The first requirement was that the language should be machine-readable, i.e. it should be

possible to load and save models expressed in the language, through a standardised file

format. It was found that this is the case, although there are several syntactical versions

available. The serialisation formats are generic, i.e. they do provide a standard way to

express facts about resources by using triples, as well as a standard way to express the

data-model. Because data- and meta-data are stored together, and with the same syntax,

no external schema is needed for understanding the semantics of the ontology.91

The second requirement was that the implementation should contain a concrete syntax,

suitable for human interpretation. Semantic networks provides such a notation, as

semantic networks shares data-model with RDF. Moreover, semantic networks naturally

offers the same reduction of complexity as the use of RDF triples does. Semantic

networks are however a generic way to express the domain. More visually appealing

graphical notations (including intuitive symbols mapped to concepts in the vocabulary)

could be developed on top of the ontology.92

The language implementation should also support the creation of viewpoints. Through

SPARQL, which is an application-developer “friendly” query language, it is possible to

query the ontology, as well as merging or extracting graphs.

91 However, not all RDF triples in the file are necessarily described by the data-model. This is entirely up to
the ontology designer.

92 ArchiMate is f. ex. an example of a concrete syntax for service-oriented enterprise architecture.
[Lankhorst]

Page 150 /217

The final requirement concerns the possibility to perform automatic reasoning on the

model. RDFS provides some ontological constructs, which can be used to make simple á

priori assumptions about the problem domain. Support for automated reasoning is

however rather limited. A better candidate language for automatic reasoning would be the

Web Ontology Language (OWL). In general, OWL comes with much richer facilities for

expressing the domain, as many more axioms exists. OWL comes in three different

dialects, each with a varying number of axioms included. The degree of richness affects

the degree of computationability and implementability of the language dialects. The three

OWL dialects are: [OWL]

! OWL Lite: supports those users primarily needing a classification hierarchy and

simple constraint feature. An example of this simplification is that OWL Lite supports

only binary cardinalities

! OWL DL: supports those users who want the maximum expressiveness without

losing computational completeness. Due to its expressiveness, OWL DL is harder to

implement than OWL Lite

! OWL Full: meant for users who want maximum expressiveness and the syntactic

freedom of RDF with no computational guarantees. The expressiveness and the

syntactic freedom means that OWL Full is not likely to be implemented in a way that

fully support automatic reasoning.

There is no doubt that OWL-based ontologies will represent a huge step forward in

reasoning capabilities. There is however at this point one major problem with OWL; there

is no standardised equivalent to the SPARQL language. Since OWL is built on RDFS (with

some limitations), SPARQL can be used to query OWL ontologies, but SPARQL does not

understand OWL semantics. Therefore, I will go with RDFS for my implementation of an

ontology. Moreover, since an RDFS-based ontology is simpler to implement than an OWL

ontology, a likely strategy by ontology adopters will be to use RDFS as “bootstrapping”,

later progressing to one of the OWL dialects.

So with some caution, it can be concluded that RDFS can be used to implement the meta-

model, as designated in the previous chapter.

Page 151 /217

6.4 Chapter Summary

The purpose of this chapter was to investigate how ontologies and ontology representation

languages could provide the basis for implementing the meta-model.

In the first part of the chapter, I investigated ontologies from a conceptual point of view.

Ontologies are used to make generalisations about a problem domain, thus reducing the

complexity in understanding it. Ontologies are much similar to meta-models, as they are

both conceptual models of a domain, including a vocabulary of the abstract concepts in the

domain, as well as types of relations to be drawn between instances of concepts.

Taxonomies and ontologies are very closely related, but ontologies extends taxonomies by

also including instances and the relations between the instances.

I then proceeded to investigating the role of ontology representation languages. Such

languages, are used to provide the formal means to describe instances of ontologies and

to encode ontologies. I especially investigated the two Semantic Web related languages,

RDF and RDFS. RDF provides for the description of instances of ontologies, whereas

RDFS extends RDF with ontological constructs, that can be used to make á priori

assumptions about a domain. Moreover, I also looked at SPARQL, which is a protocol and

a query language at the same time. As a query language, SPARQL holds some important

features, as it is possible to extract, merge and export graphs. This allows for the creation

of viewpoints, and for exporting parts of the ontology for specific purposes.

I finally concluded, that RDFS could provide the means for implementing the meta-model,

according to the four requirements. RDFS could definitely provide a serialisation format. a

human understandable notation and the possibility to create viewpoints. Less convincingly,

the RDFS language provides some basic reasoning facilities. I see OWL as a huge step

forward in reasoning capabilities, but there is of writing this not yet a standard language for

OWL, that allows for returning results as graphs, while also respecting OWL semantics.

Page 152 /217

Chapter 7 – The Project Scenario

The purpose of this chapter is to codify the main findings of this thesis through a case

scenario. Moreover, I will demonstrate the implemented ontology, which defines the shared

language. The ontology will be demonstrated through the two use-cases defined in chapter

5.

The chapter will be divided into three main parts. I will start by presenting the scenario

description, which will provide background information, as well as highlight important

concepts from the thesis. In the second part of the chapter, I will demonstrate an ontology,

which serves as the concrete syntax for the enterprise architecture language. The ontology

will be an implementation of the meta-model defined in chapter 5. Moreover, it will be

based on RDFS as described in the previous chapter. I will demonstrate how the

ontologies can be used to fulfil the two use-cases from chapter 5. In the final part of the

chapter, I will reflect upon the need for a common enterprise architecture language in

general, and the use of Semantic Web technologies to implement the language in

particular.

7.1 Project Scenario – T.A.X

T.A.X. is a government agency, administrating tax laws at state level, including income

taxes, car registration taxes, value added taxes and import/export taxes. The T.A.X.

enterprise operates within a very complex field, including a complex body of laws, and with

many stake-holders having different interests. Furthermore, T.A.X. has been subject to

many structural reforms, which includes having to take on tasks previously being

performed by local government institutions at county and municipality level. The merging

of entities into T.A.X. was often done in a haphazard way, due to financial and time

constraints. The negative effects had become apparent both on the business and the IT

side. On the business side, there were concerns that managers had to little visibility into

the business processes, and thus had difficulties managing them.

Page 153 /217

On the IT-side, the many mergers of smaller units into T.A.X. had meant, that a large

portfolio of legacy systems had been accumulated. The integration of these systems had

turned out to be very complex and brittle. Moreover, massive duplication of logic exists

within the architecture. In short, the architecture of T.A.X. can neither be considered

efficient nor flexible. This makes it difficult to adapt business processes to new

requirements.

To add injury to the insult, T.A.X. is increasingly facing new political demands. In recent

years, the legislative pace has increased considerably, prompting the demand for

implementing new tax regulations in shorter time. Moreover, the government sector at

large is being pushed towards a higher degree of efficiency. “Doing more with less” is the

new mantra. This has lead to a focus on digitisation in the public sector, which should

increase the use of self-service, with the dual aim of becoming more efficient through

automation, and providing a higher degree of customer satisfaction. Government

enterprises maintaining their own IT-infrastructure would also become mandated to

perform benchmarking against private market players. The thinly veiled threat is that

poorly performing IT-functions will be outsourced or centralised to larger IT-functions.

In many ways, the current situation represents a “worst case scenario” for T.A.X. At

political level, it was however recognised, that the current architecture of T.A.X. would be

inadequate for meeting future demands. T.A.X. thus was provided funding, which was

earmarked at performing a large scale modernisation of its architecture. In return for the

provided funding, T.A.X. should ensure that the architecture would become more modular,

ultimately ensuring better flexibility and improved opportunities for outsourcing.

Following the provision of funds for the modernisation program, the management of T.A.X.

quickly came to the realisation, that they needed a structured methodology for this

massive undertaking. They knew that they would need to balance both the long term

modernisation of the architecture, with the ongoing changes to the architecture. As the use

of TOGAF was well established within the government environment, using the ADM was

the obvious choice.

Page 154 /217

The first iteration of the ADM would need to balance the two most pressing architectural

needs:

! Improve process modelling and process management tools

! Improve service-oriented infrastructure

T.A.X. already had an established business modelling practice, but the diagrams mostly

ended up as “shelf-ware” with limited usability. Thus, a priority of the business architecture

development phase was to establish more efficient modelling practices in the form of a

process architecture, including:

! Process guidelines: Standards, methods, guidelines, policies and tool selection.

Modelling paradigms are chosen based on the existing practice in the enterprise,

whenever applicable.

! Process Models: To provide a starting point for managing business processes a

high-level overview of the processes in the enterprise was to be made. This would

include visual representations of high-level processes, links between the processes

and a list of end-to-end processes.

On the IT-architecture side, management quickly came to see SOA as a possible solution.

At the onset of the modernisation program, the IT-function in T.A.X. had already been

using SOA on a small scale to solve local integration issues. During the Architectural

Vision phase of the ADM, the business case for SOA was developed and eventually

approved.

Page 155 /217

The primary drivers behind adopting SOA was:

! A more flexible architecture due to loose coupling

! Ability to align service development projects with business requirements

! Increased modularity (as per the requirement for funding)

! Improve opportunities for re-use. This is especially relevant in regards to the

different customer-facing web-portals.

! The ability to use business services as an abstraction layer between business

processes and the underlying IT-systems. This would later provide for easier

migration from legacy systems to new platforms.

Some drivers were considered for the business case, but was for various reasons de-

emphasised or postponed to later:

! Opportunities for Business Activity Monitoring (BAM) would not be pursued until

T.A.X. has a firmer grip on aligning enterprise goals/objectives with process design

! The potential to position T.A.X. as provider of shared business services to partners

(either within the federated environment or outside) would also be postponed. The

management of T.A.X. found that there were no obvious business model yet, and

that T.A.X. would already have their hands full.

Page 156 /217

The experience with SOA in the IT-function had mostly been good, but it was also

apparent, that a much more thorough approach was needed for large scale adoption of

SOA. Moreover, some of the architecture development processes devised by the ADM,

was deemed too generic. Therefore a process for service identification and specification

was devised. The process was based on business process decomposition, and would

yield a service realisation contract, including the technical interface for the services.

Service development could then be transferred to the IT-function or to an external vendor.

It was realised, that governance would be vital in managing the effort. An Engagement

Model was set up, including Migration Planning, Implementation Governance, and

Architecture Change Governance. The Engagement Model would be responsible for

linking overall architecture development with local projects.

7.2 The Common Language

The Engagement Model defines important governance processes, principles and

incentives. As such, the Engagement Model is completely crucial in order to establish and

maintain a sustainable architecture. To exercise the functions of the Engagement Model, it

is however necessary to have full visibility through the architecture artefacts. As the

architecture gets decomposed into individual components, each having their own life-

cycle, the ability for any human to comprehend the entire architecture would get lost. So

unless supported by IT, managing the many different components and their relations would

be impossible.

The components and relations in an architecture can be understood at three different

levels of abstraction. At the level of taxonomies, different types of concepts are

categorised according to a hierarchical classification scheme. The second level is provided

by the enterprise meta-model, which offers an abstract view of the concepts in the

enterprise, including the types of relations that can be drawn between them. Finally, at the

concrete level, instances of primitives will be defined and relations will be drawn between

them. At this level, a common language is needed in order to provide a concrete syntax,

i.e. a notation that can be understood by humans and/or machines.

Page 157 /217

7.2.1 Technology Choice

The concrete syntax for the common language can either be defined explicitly, f. ex. by

use of ontologies or through the use of integrated repository solutions. Such integrated

solutions may have more or less explicitly defined meta-models. The benefits and

disadvantages of each of these two solutions must be weighed against each other. There

is no inherently right solution. In the case of T.A.X. the choice was pretty clear. Faced with

the choice of ripping out existing modelling practices, tools and repositories to acquire an

integrated solution, the solution based on using RDFS ontologies for integration of meta-

data seemed more appealing. It would not be a perfect solution, but the solution was

deemed “good enough”. On the negative side, T.A.X. would be very much on its own.

There would be no off-the-shelf solutions.

In the end the main drivers behind the ontology based approach was:

! Flexibility: The RDFS data-model was found to be extremely versatile. The

ontology could easily be extended as needed

! Based on open standards: Basing the solution on an open standards would

eliminate vendor lock-in. Moreover, open standards would allow for interoperability

between the ontology and existing tools.

! Cost: The ontology could be developed and set up with very little capital

expenditure.93 Open source tools could be used in the mix.

! Semantics: RDFS is a natural language for describing semantics. This could

potentially provide reasoning capabilities. Moreover, because data and meta-data is

stored in the ontology language with the same formalism, it would be possible to

browse the ontology without advance knowledge of the data-model.

Viewpoints: Finally, using the SPARQL query language it would be possible to

perform queries or extract parts of the ontology. Exported graph could f. ex. be used

as documentation, which could be used by vendors.

93 The FEA-RMO is an ontology for representing the Federal Enterprise Architecture Reference Model. The
decision to use an ontology for expressing the reference model was based on the principle of parsimony,
i.e. an extreme unwillingness to spend money. [FEA-RMO]

Page 158 /217

7.2.2 Ontology Development

Before going on to demonstrate the ontology, I will give a brief description of how the

ontology was developed.

The Protégé ontology editor was selected as a front-end for developing and interacting

with the ontology. Protégé is a free and open-source program that “support the creation,

visualization, and manipulation of ontologies in various representation formats”. The

program is developed by the Stanford Center for Biomedical Informatics Research at the

Stanford University School of Medicine. Moreover, Protégé is rather extensible through its

plug-in architecture. The Protégé editor also supports SPARQL in current versions.94

The ontology has been created on basis of draft TOGAF 8 ontology, [OpenGroup] which

has been modified in two different ways. Firstly, the ontology was converted into an

OWL/RDF file from its original proprietary Protégé project format.95 It should be noted, that

although the ontology is stored in OWL/RDF format, only RDFS semantics will be

demonstrated in the use-cases. Secondly, work was done in order to modify the ontology

to fit with the meta-model described in chapter 5. Appendix H and appendix I details the

concepts and the relations that was added. All visual notation diagrams has been made

with the RDF-Gravity application, which is a free (but not open source) graph visualisation

tool.96 The map legend of the notation can be seen in appendix J. Finally, it should be

noted, that object properties (relations) has been restricted by use of rdfs:domain and

rdfs:range constructs, as properties are defined independently of classes.

94 The version used is 3.4 (Beta). It appears that support for SPARQL will disappear form version 4.0
(which is currently in Alpha). Protégé 4.0 internally relies on a native OWL format, instead of the
OWL/RDF format in the version 3.x series.

95 An issue occurred in the conversion process. The original file contained some proprietary “Protégé
Axiom Language” (PAL) constructs that were not compatible with OWL. Enabling PalConstraintsTab and
trying to remove the PAL constraints did not work, as phantom PAL-CONSTRAINT entries were still in the
OWL file. Removing the entries manually from the file solved the problem

96 RDF-Gravity does however support RDQL queries, instead of SPARQL queries. RDQL predates
SPARQL and only provides a limited subset of SPARQL. RDQL does f. ex. not support data-type
checking.

Page 159 /217

7.2.3 Use-Case Demonstration

The use-cases will be demonstrated through a simple business process. The purpose of

the business process is to register VAT Returns Registration documents. The business

process is very simple, and only contains three activities i.e. a register activity, a control

activity and a release activity.97 The process can be seen in figure 30.

There is a single business object associated with the business process, i.e. the VAT

Returns Declaration business object. The document is received in electronic form by

means of online self-service, with the VAT Returns Declaration schema providing the

logical structure of the interface data-type.

7.2.3.1 Line of Sight

The first use-case concerns demonstration of line-of-sight, i.e. traceability across all four

architectural domains, as well tracing environmental links (i.e. links to the strategy

domain). The central tenet of line-of-sight is that from any given node, it should be

possible to explore its relations to other nodes. Such a tenet would imply, that data can be

browsed without any advance knowledge of the data-model. This would f. ex. contrasts

that of the relational database model, in which one would need to know the right tables to

perform a query. Line-of-sight will especially be important in the context of impact analysis.

97 The process and related meta-data has been kept to an absolutely minimum for pedagogical reasons.
Thus, no exceptions, roles or decisions has been defined. The purpose is to provide just enough realism to
demonstrate the use cases.

Figure 30: Example Business Process [Own production]

Page 160 /217

Thus, key competence questions to be answered could be:

! What is the impact of de-commissioning system x?

! What is the impact of modifying service y?

! What happens if the semantics of business object z is changed?

It should be noted, that a point of departure of these questions is that at least one node in

the graph is known. The ontology would clearly be of help in answering the competence

questions, because the ontology provides generalisations about the architecture, which in

turn makes it easier to understand how things are interrelated. The ontology does however

not (nor does it attempt to) replace the need for human cognition in performing the impact

analysis. The ontology (as it is designed) describes structure, rather than behaviour.

Figure 31 provides a simple overview of the business process. At the top of the figure, the

type indicator for the process can be seen, which shows how data and meta-data can be

accessed at the same time. Below the VAT Returns Registration process, the three

activities have been associated, through the has_activity object property.

Figure 31: Simple Process Overview [Own production]

Page 161 /217

The figure does however not provide any information that could not have been gathered by

a glance at the business process diagram. Thus, the next step is to drill down through the

ontology. Rather, than trying to show all meta-data related to the business process, only

meta-data relevant to the Register VAT Returns activity will be shown. Figure 32 below

shows this selection.

The business process is once again found at the top of the diagram. Similarly, to the

previous figure, the Register VAT Returns activity is attached to the process via the

has_activity property. To the right side, the VAT Returns Declarations business object has

been related to the process through the has_object property. The business service

Register VAT Business Service is being consumed by the Register VAT Returns, through

the use of the has_service property. The service itself utilises a schema that defines the

structure of the VAT Returns Declarations. Moreover, the VAT Returns Declarations

business object is expressed by the VAT Returns Declaration schema (via has_schema).

Figure 32: Line-of-Sight - Architecture Domains [Own production]

Page 162 /217

At the bottom, it can be seen, that an entity service for VAT returns is a provider for the

business service (is_providerFor). The entity service shares schema with the business

service. Furthermore, the entity service is hosted on an IIS Dotnet platform, running on an

x86 based server-farm. So far, line-of-sight has been demonstrated within the four

architectural domains. It is now possible to trace the relations from business process and

all the way down to the hardware platform. The model could in theory include as many

concepts and attributes as would be desirable. Moreover, it appears evident, that the

model reduces complexity by focusing on the understanding of relations between the

components in the architecture. Understanding the relations between components,

provides a vital first step in being able to perform impact analysis.

Looking in the opposite direction, it is also possible to provide line-of-sight with the

strategic domain. Just as changes to components within the four architectural domains has

the ability to impact each other, so does the strategic domain interface with the

architecture. Whenever strategy elements are being changed, they potentially impact the

architecture. Understanding the relationship between the strategy and the four architecture

domains provides for improved strategic agility; only by understanding how strategy and

architecture components relates to each other, can the architecture be accommodated to

meet changed strategic needs. The link between the strategy domains and the

architecture domain is seen in figure 33.

Page 163 /217

Breaking down the figure from top to bottom, it starts with a digitisation strategy. As the

description tells, the strategy is aimed at digitising processes. A goal of the strategy is to

maximise the use of self-service. There are two drivers (has_driver) behind this goal; to

improve customer satisfaction through self-service and to reduce costs via automation.

The goal is measured by (is_measuredBy) an objective stating that 40% of the VAT returns

must be handled via self-service. The self-service objective is to be handled by the VAT

function (is_supportedBy), which is the owner of the VAT Returns Registration process

(has_process)

To summarise, the line-of-sight use-case has now been demonstrated. The discovery took

its beginning with the knowledge of a single node, which in this case was the business

process. From this node, it was possible to explore all the related nodes, thus ending up

with a topology of the architecture. Moreover, the use of a semantic network as notation

offered a huge reduction in complexity.

Figure 33: Line-of-sight - Strategy Domain [Own production]

Page 164 /217

7.2.3.2 Versioning

The second use-case concerns that of versioning. As it has been argued, a versioning

scheme is needed in order to manage and deploy multiple components at the same time.

Due to coupling, it is not always possible to unitarily change one component in the

architecture at a time, as this would break clients assumptions about a service.

Key competence questions for this use-case, would follow along the line of:

! What is the version history of service x?

! Which version of service x is deployed in Target Architecture version y?

In the example below (figure 34) a new version of the business process has been created.

Through the use of the is_newerVersionOf property, the two business processes has been

linked. In this way, it is possible to trace different versions of the business process back

and forth. The new business process has the changeLog dataproperty associated, stating

that an activity has been added to reject VAT returns. The new activity can further be seen

associated to the new process. Finally, the old and the new process shares same version

of the three existing activities, which can be seen by both the old and the new business

process being related to the activities.98

98 Whether an enterprise will engage in versioning activities is an entirely different question, but it is not the
point here.

Page 165 /217

Finally, the is_newerVersionOf property can be used to denote an updated version of an

artefact at any aggregation level. Figure 35 is similar to the previous figure, except that the

link between versions is now being shown on the level of the entire architecture, i.e.

Baseline Architecture vs. Target Architecture.

Figure 34: Business Process Versioning [Own production]

Page 166 /217

In larger architectures versioning solely on individual components and/or on architecture

level may be problematic. Versioning solely on the level of individual components is too

fine-grained, whereas versioning only on the level of architectures can be considered too

coarse-grained.99 It is however also possible to define arbitrary aggregate artefacts, such

as models and architecture building blocks (ABB), which are recognised by TOGAF. The

different levels of aggregation are not mutually exclusive.

It can thus be concluded, that it is possible to fulfil the simple requirements of the use-

case, i.e. to perform versioning on different aggregate levels and to explore their

relationships. This means that changes to different components in the architecture can be

treated as “blocks” of changes. This does provide some level of isolation, as the

architecture can be partitioned into different blocks. This can often be necessary in order

to avoid unilateral changes breaking clients assumptions.

99 There is however the issue of how to maintain versioning when elements of an aggregate is changed.

Figure 35: Architecture Versioning [Own production]

Page 167 /217

7.3 Personal Reflections

In this final part of the chapter, I will detail some of my personal reflections on the case

scenario and on the ontology implementation. This small-scale implementation of an

ontology does not constitute a full feasibility analysis in itself. But even this, I think there

are some important lessons to be learned. So in this section, I am going to be a little more

subjective than in the rest of the thesis.

The first conclusion I will draw from this scenario is, that there certainly is a need for a

common language to communicate about the components in an architecture. The scenario

examples given through the use-case demonstrations were very limited, both in number of

concepts defined, and in terms of number of instances defined. Still, even such simple

examples do produce a fair amount of meta-data, including the many different object

properties. It is apparent, that the amount of meta-data in a BPM-SOA environment,

containing many complex business processes and hundreds of services will be staggering.

Without having access to integrated meta-data, such architectures will be next to

impossible to govern. This highlights the paradox that was described earlier in the thesis;

BPM and SOA is supposed to make the architecture more flexible. But as the architecture

scales beyond what a small dedicated team of people can comprehend, a much more

systematic approach must be taken to enable the understanding of the architecture.

Otherwise, architectures that may be flexible from a technological point of view, may be

completely sedimented from a managing point of view. There is in my mind no doubt, that

initiatives such as BPM and SOA requires a sound grasp of meta-data management.

But if there is a need for a common architecture language is Semantic Web technologies

then the right tool? There are several observations that speaks for this. Firstly, as I think it

was clearly demonstrated, the data-model of RDFS is extremely versatile. It certainly

shows that RDFS was made for knowledge representation, and not for say transactional

processing of data. The triple structure is simple, yet powerful enough to express very

complex domains. Furthermore, expressing the triples through semantic networks,

provides a very efficient way to make generalisations about a domain, thus reducing

complexity.

Page 168 /217

The second observation concerns the way that data and meta-data stored in the same

way. This is really one of the strong features of RDFS. The ability to explore the data

without having to refer to an externally defined data-model is crucial, as it allows a user to

browse the ontology from a point of interest.

Lastly, the combination of integrated data/meta-data and RDFS being an open standard,

provides for an extremely high degree of portability. My (albeit limited experience) is that

there are few problems in moving the ontology around between different tools.100 One huge

benefit is that the entire ontology (or parts thereof) can be loaded into specialised tools, f.

ex. for analysis or visualisation. In this sense, Semantic Web technologies has been a

pleasure to work with.

But semantic web technologies are not perfect. It goes without saying, that since RDFS

and RDF has been out for some years now without reaching mainstream adoption, then

there must be some blind spots. The first major issue in regards to Semantic Seb

technologies concern the availability of tools. During the course of writing this thesis, I

have tried out a large number of different tools and in general found tools to be immature:

! Quite a few of these tools are more proof-of-concepts or beta versions than

production ready tools.

! Some tools with similar feature sets have been implemented using different

standards, with similar feature sets, but with different syntax's.101 In other cases,

only a subset of the capabilities of a standard has been implemented.

! Moreover, the feature set of f. ex. Protégé is in a flux with functionality being

removed (such as SPARQL queries) and some plug-ins not loading either in older

versions or in newer versions.102 This is of course a sign of fast-paced development,

but perhaps also a sign that ontology development tools has yet to mature.

100 Apart from the proprietary PAL constructs that I had to remove when converting the ontology to
OWL/RDF. See earlier comment.

101 Such as RDF-Gravity relying on RDQL instead of SPARQL
102 Protégé currently exists in a stable version 3.2, a beta-release of version 3.4 and an alpha version 4.0.

Page 169 /217

It does also seem that there is a clash of culture and terminology between the Semantic

Web people and the enterprise people.103 Ontologies and the Semantic Web originates

within the world of knowledge representation, philosophy and AI. This certainly shows.

Much of the literature and work being done is also still closer to research level, than

implementation level. So there is still quite a gap from theory to implementation.

Some movements may be underway to alleviate these issues. A recent report [Provost] on

the market for Semantic Web technologies concludes that the market is moving ahead and

approaching mainstream. The conclusion of the report states:

“As the Semantic Web industry continues to mature and targeted applications and

solutions emerge, the nature of the industry discourse will change. Instead of focusing on

extremely low level concepts and terminology used by researchers, a much higher level of

discussion will emerge and it will increasingly be driven by business managers.”

[Provost:9]

This change of discourse will be an important element in taking semantic web technologies

a step closer to mainstream. The author finally concludes:

“The Semantic Web industry is alive, well, and it's increasingly competitive as a

commercial technology. At this point there are too many success stories and too much

money being invested to dismiss the technology as non-viable.” [Provost:9]

One can only hope that this is true, and that the potent technologies originating from the

Semantic Web initiatives can be put to mainstream use.

103 Anyone who has ever followed the SOAP vs. REST debate would not be surprised if such a clash
existed.

Page 170 /217

Module 4 – Conclusion, Perspectives and Criticism

Page 171 /217

Chapter 8 – Conclusion, Perspectives and Criticism

This chapter marks the end of the thesis. I will start by making the conclusion based on the

thesis problem statement. From there, I will set the greater context for the thesis by

providing some perspectives. Finally, I will critically self-reflect on the way the research has

been done in the thesis.

8.1 Conclusion

The basic tenet of this thesis has been, that enterprises of today are operating in a fast-

paced and unpredictable environment. This environment requires enterprises to react

much more efficiently to changes. Moreover, I noted that EA, SOA and BPM are being

used as strategic initiatives, sometimes deployed as stand-alone initiative and sometimes

deployed in combination in order to cope with increasing demands. On basis of these

observations, I formulated the research problem as:

How can enterprises integrate EA, BPM and SOA for agility?

I then defined agility as the capability to continuously perform incremental improvements to

business processes and underlying systems.

I started out by investigating the relationship between BPM and SOA. Employing BPM and

SOA can in many ways be seen as an attempt to close the gap between business and IT. I

envisioned a situation in which a business analyst could manage the entire business

process life-cycle, with little or no intervention from IT. The business analyst would perform

business modelling and then pass on the business process model to the underlying

execution platform, which would then be able to execute the SOA services as needed.

Such a vision would imply, that it is possible to bridge the gap between business and IT.

Any semantic gap would be an impediment to continuous improvements.

Page 172 /217

Through the model-driven perspective I investigated this reality. During the analysis, I

found several semantic gaps. There are still semantic gaps between process modelling

and process execution to be found, but these gaps can be bridged with some caveats.

Proprietary mappings and extensions are likely to be needed for the foreseeable future. In

the future, mainstream unified process analysis and execution languages may solve this

problem. Moreover, it can be argued, that there will always be an inherent conflict between

modelling for understanding and communication, and modelling for execution.

An even more fundamental semantic gap exists between business modelling and service

modelling. An assumption of the BPM-SOA vision is that the business analyst has access

to discoverable and re-usable components. This is not the always the case. So human

cognition, in the form of co-operation between business analysts, solution architects and

business developers will still be needed. This is especially relevant in regards to identifying

and specifying services, as well as for managing service change. I positioned BPM as a

natural tool to be used for identifying and specifying services, however to be augmented

with existing asset analysis and identification of additional constraints and non-functional

requirements.

As for service change. I became concerned about the possible impact of residual coupling

in general, and the impact of semantic coupling in particular. I see the main focus in most

SOA work being directed at reducing syntactical coupling. While reducing syntactical

coupling is certainly essential to SOA success, it would be costly to ignore the effects of

semantic coupling. This would be a major impediment to flexibility. Classic disciplines like

impact analysis and change management will not disappear with SOA. On the contrary,

achieving agility can only be done with a sound practice of meta-data management and

with sound governance procedures.

Page 173 /217

BPM can be seen as the business case for SOA; by using loosely coupled services as an

abstraction layer between business and IT, it is possible to bridge the gap between

business and IT in a way that does not embed the business processes within IT-systems.

So the true value in combining BPM and SOA does not lie in automated software

development, but rather in decomposing business processes and implementation details.

The service description is an important abstraction layer between use and implementation.

Unfortunately, I see a risk that BPM-SOA will be sold as the next silver-bullet, but will end

up being regarded as Case Tools 2.0 due to unrealistic hype.

Caution should be given as to treating BPM and SOA as primarily tactical tools. Rather, to

provide sustainable value, adopting BPM and SOA must be based on a strategic fit; the

internal capabilities obtained by adopting BPM-SOA should match the strategy of the

enterprise. Only by taking the strategic view, can the commitment to such an

encompassing paradigm as BPM-SOA be obtained. In particular, I see EA as an important

tool for achieving this strategic fit, as it takes an integrated view on strategy, business and

technology. During my analysis, I used the TOGAF ADM as an example approach to EA

and found the ADM to be a practical methodology for alignment. But this focus on creating

alignment also has a downside; EA in general, and the TOGAF ADM in particular does not

appear to be very agile methodologies. Rather, the ADM rests on the assumption, that

architecture development can be performed on basis of a stable baseline. Changes to the

baselines are to be treated as exceptions. Such an approach does not fit well with the

need to react as an agile enterprise. I therefore modified the ADM in order to provide a

more balance approach. Especially, such an approach requires the architecture

governance model being kept separate from the architecture cycle.

This approach does however require full visibility through the architecture artefacts. As the

architecture gets decomposed into individual components, each component having its own

life-cycle, the ability for any human to comprehend the entire architecture gets lost.

Something must provide the bridge from the many domain specific models to a

consolidated view of the enterprise. I have argued, that a common language can connect

the architecture artefacts, thus providing visibility. Such a common language would help

stake-holders understand the relations between the components in the architecture,

providing the basis for disciplines such as impact analysis.

Page 174 /217

The first part of creating such a language would be the establishment of an enterprise

meta-model. The enterprise meta-model will be a vocabulary of the important abstract

concepts that makes up the enterprise, as well as the types of relations that can be drawn

between them. I devised a simple meta-model to illustrate the concept. The second part of

defining the language should include devising a way to implement one or more concrete

syntax's. Preferably, the concrete syntax's should be implemented in ways that promotes

both human understanding and machine-understanding.

I looked at ontologies and ontology representation languages for means to provide a

concrete syntax. Ontologies extends taxonomies by also including instances and their

relations. In general, I found Semantic Web technologies to have interesting perspectives

in relation to the topic of meta-data integration. In particular, I found that the Resource

Description Format (RDF) and its schema counterpart (RDFS) had interesting features,

making it a suitable lingua franca for meta-data integration. Through the implementation of

the simple meta-model, I demonstrated initial feasibility of using Semantic Web

technologies for this task.

To finally conclude on this thesis, I see meta-data integration, achieved through the use of

a common architecture language, as absolutely vital in integrating BPM, SOA and EA

around the theme of agility.

Page 175 /217

8.2 Perspectives

The purpose of this section is to set the greater context for the thesis, as well as making

some forward looking statements.

One of the most interesting areas in this thesis has been the schism between alignment

and agility. The relationship between them is not very well understood and during this

thesis it has become evident, that the two concepts are very hard to keep separate. An

enterprise cannot decide to manage either for agility or for alignment alone; instead a more

balanced approach is called for. The schism between agility and alignment is especially

interesting in the context of EA. Until now, EA has primarily been a tool for alignment. But I

see EA must become more balanced in this regard. This is similar to the idea of

Coherency Management, as put forward by [Doucet et al.] The concept of Coherency

Management is defined as: “a logical, orderly and consistent relation of parts to the whole”

[Doucet et. al:2]. The three outcomes of Coherency Management are alignment, agility

and assurance. The need to balance agility and alignment is both a threat and an

opportunity to EA. To stay relevant in a fast paced world, it is vital that EA becomes better

suited at managing for agility also. But this is also a promise; because EA has progressed

from information systems architecture to including all domains of the enterprise, EA is now

uniquely positioned as a tool for the coherent management of the enterprise. [Doucet et.

al:1]

In similar vein, it is quite appropriate to discuss the relationship between the TOGAF ADM

and SOA. A fundamental question remains; how fit for SOA is the ADM really? It is quite

obvious, that the ADM does not support SOA very well “out-of-the-box”. The ADM can, as

seen in chapter 5, be customised to better meet the demands of SOA. But having to make

rather sweeping modifications to the ADM, just in order to make it fit for SOA, seems more

like a work-around than a solution. As of writing this, we should be pretty close to the

release of TOGAF version 9. Little is currently known about what it will look like, except

that it should better able to cope with SOA. This is long overdue to say the least.

Page 176 /217

In particular, I see three things that the next edition of TOGAF should address:

! Improve business architecture: The Open Group should work on improving the

business architecture. The business architecture was added to TOGAF 8 and in

some ways it shows; the business architecture feels “bolted” on top of the three

other architecture domains. In particular, the business architecture does not appear

to be too well integrated with the other domains.

! Relax the top-down approach: The ADM is primarily a top-down approach.

Ideally, the ADM should become better at supporting notions such as Service

Oriented Analysis and Design (SOAD). In SOAD, the four architecture domains are

developed through a mix of top-down and bottom-up approaches, almost as the

domains were developed in parallel. This is very much in contrast to the sequential

way that the ADM prescribes. A more mixed approach would lead to better

opportunities for developing the right requirements in the first place.

! Establish separate governance: Finally, in the current incarnation of TOGAF, the

governance is too closely linked to the architecture development cycle. Moreover,

the governance seems to prioritise the integrity of the ADM cycle. These are

elements that needs to be relaxed in the next iteration of TOGAF.

Another general theme in this thesis, came to evolve around the subject of meta-data

management and meta-data integration. I fully expect to see a growing awareness in this

field the coming years. I demonstrated initial feasibility of using Semantic Web

technologies for this task. But it is evident, that much more work is needed in this area,

both in terms of tool maturity, and understanding the benefits and challenges of adopting

Semantic Web technologies. Performing case studies of early-adopters of Semantic Web

technologies would be fruitful.

Page 177 /217

It is also obvious that The Open Group is attempting to position their MDA framework as

an ambitious attempt at defining a coherent framework for managing meta-data. If the

Semantic Web approach is lightweight, then the MDA approach can be considered heavy

weight. But with ambition also comes complexity and it will be interesting to see if MDA

takes off outside the developer community.

If indeed using MDA for EA takes off, then it will open up completely new avenues to

explore. One opportunity lies in the Archimate architecture language, which at this time is

primarily a graphical notation (concrete syntax) for modelling service oriented enterprise

architectures. Archimate is to be aligned with MDA/MOF, which would mean that

Archimate could provide both a graphical notation, a serialisation format and a meta-

model. This could potentially be a very compelling set-up. The people behind Archimate

predicts that in few years time, the MDA will be as important for enterprise architecture as

it is for software development. [Lankhorst et al.:29] At this point however, I do not consider

MDA prime time for EA. There are also issues with the QVT standard, which is the

standard to be used for defining model-to-model relations between MOF-based models.

The QVT standard has turned out to be extremely complex and voluminous. In [Stahl &

Völter:221] the authors wonders if the QVT standard will survive, and further speculates,

that revisions and follow-ups to the standard will appear in the near future, unless the QVT

standard is bypassed by the emergence of a de-facto model-to-model standard. [Stahl &

Völter:222] The future role of MDA is clearly an area that needs to be followed closely.

In any case, I see the field of meta-data management and integration will start moving

towards commoditisation during the next years.

Page 178 /217

8.3 Criticism

Making a decision as to the research design at the beginning of a thesis, naturally has

profound implications on the way the research is being done. In this section, I will reflect

critically on my choice of research design. I will perform the critique by addressing these

questions:

! Was the research done fairly and objectively?

! Should a case study have been included?

! Was the de-limitation of the thesis too narrow?

! Did the use of TOGAF for EA affect my ability to draw conclusions?

Was the research done fairly and objectively?

In order to produce research that would be regarded as objective as possible, I decided to

embed the hermeneutic circle into my research design. This meant, that I would have to

continuously shift between looking at the parts and looking at the whole. The concern was

that I, as a researcher, already have pre-conceived notions about the subject-matter. This

could lead to faulty interpretations, blind spots etc.

Overall, I think I was guided very well by the hermeneutic circle. I was already at the onset

of the thesis process aware, that the field I was about to study was characterised by a lack

of stringent definitions and interpretations. Moreover, the field is moving forward at a fast

pace. I think this awareness has in some ways been a help; I knew I would to contrast

different understandings and interpretations of each of the three thesis subject areas, and I

knew I would have to understand them as a whole also. In many cases, I have been able

to contrast several definitions or interpretations of key concepts to discover its “essence”.

Page 179 /217

My interpretations of some of the key concepts in this thesis has also changed. during the

writing process (especially that of EA and SOA). This at least indicates, that the use of the

hermeneutic circle has allowed me to modify some of my previous held assumptions.

But given the nature of the field of study, it would be naïve to believe, that pre-conceived

notions, opinions and biases has not at least to some degree affected this thesis. But

given the way I have worked with the hermeneutical circle, and given that my interpretation

of several key concepts has changed, I think there are reasons to believe, that the bias

has had a rather insignificant effect on the research result.

Should a case study have been included?

The second problem concerns my approach to studying the subject; I decided to not

include a case study. There are several reasons for this, the primary being that I felt a

more theoretical grounded thesis was required. The challenge was to see the three main

areas of this thesis as an integrated whole, rather than just as individual parts. In this

sense, the purpose was to create a “meta-theory” of the three “sub-theories”. This, I

believe, has been a worthwhile goal to strive for.

The risk is however, that through an entirely theoretical study, the thesis becomes too

detached from reality, and becomes an example of what mockingly could be called

“academic ivory thinking”. There are two problems in this regard. The first problem being,

that the research produced here has not been validated by practice. The solutions put forth

here, will undoubtedly have to be moderated by practice. I have however tried to at least

alleviate this problem by performing interviews with domain experts (some of who were

also practitioners). These interviews has both been a tremendous inspiration, as well they

have helped me moderate some of my views.

Page 180 /217

The second problem is related to the first; even if the theories put forward here may be

“correct”, they may have become too abstract or too idealistic to be implemented in real-

life. This is a delicate balance to strive for: on one hand, highly abstract and highly codified

knowledge as seen in this thesis, will be easier to diffuse. On the other hand, such

knowledge can be too detached from its context. There is no doubt, that the integrated

approach to EA, SOA and BPM provided in this thesis, represents a best-case scenario,

and an abstract one at that.

But as the purpose of this thesis was to create a meta-theory, I do not see the lack of a

case as a deficient. Rather, I see case studies seeking to validate, invalidate or modify the

theories put forward in this thesis as the next logical step.

Was the de-limitation of the thesis too narrow?

To ensure focus in this thesis, I decided to focus on agility in relation to business

processes and IT-systems. This would leave organisational structure and people out of the

equation. This has had some consequences.

The perhaps greatest impact of this decision is seen on the role BPM plays in this thesis.

BPM here, is primarily focused on digitisation of business processes (automatisation) or

digitisation of the business process management process itself. This is arguably only a

subset of what a real-world approach to BPM would include, as an approach to BPM

would typically include the human aspects as well. Business processes and IT-systems

are however so closely intertwined, that I found it necessary and compelling to treat them

together and separately from the two other agility elements.

The selection was necessary to ensure a focus in this thesis, but it is also given that the

analysis and suggestions in this thesis only concern a subset of enterprise agility.

Page 181 /217

Did the use of TOGAF for EA affect my ability to draw valid conclusions?

One of the goals of this thesis was to investigate the role of EA. In this context, I selected

the TOGAF framework as the basis for my research. This naturally has consequences.

The problem is perhaps not just about selecting one framework versus another; as it has

been shown, there are many different takes on EA, and some of these takes are very

different from others. From a hermeneutical angle, it would seem that there are in fact

multiple valid interpretations of EA. This is also why I sought to identify some common

principles of modern EA in chapter 3.

I believe that the conclusions drawn as to EA in this thesis are valid on a general level, i.e.

since there are certain commonalities as to EA, it is also possible to make conclusions as

to EA in general. On a more specific level however, some of my observations are of

course only applicable to TOGAF and must be seen in that context.

Page 182 /217

Appendix

List of Appendices

A - Notice on Changed Problem Statement...183
B - Indicators of BPM-SOA Interest...184
C - Thesis Interviews...186
D - The Zachman Framework ...187
E - The TOGAF Architecture Development Method ...188
F - Note on Model-driven Architecture (MOF & XMI)..189
G - The Enterprise Meta-model...194
H - Meta-model Concepts (Class hierarchy)..195
I - Meta-model Relations (Object properties)...200
J - The RDF-Gravity Legend Map..201
K - Bibliography..202

Page 183 /217

A - Notice on Changed Problem Statement

The original problem statement contained two problems:

! How can enterprises achieve greater agility by having an integrated and

coordinated approach to EA, SOA and BPM?

! How can emerging standards and technologies help enterprises achieve an

integrated model of the enterprise?

The problem statements in its final incarnation is:

! How can enterprises integrate EA, BPM and SOA for agility?

The problem statement was changed for a number of reasons. Firstly, because the first

part of the original statements [....greater agility... by having...] was not formulated very

clearly. The second reason was that I found the two thesis questions somewhat

disconnected. Lastly, I found a single thesis problem to fit better with the way the analysis

was to be performed.

Page 184 /217

B - Indicators of BPM-SOA Interest

BPM and SOA can and will be pursued as independent initiatives. Some success has

been achieved with BPM relying on proprietary middle-ware, whereas large scale SOA

success stories seems harder to come by. [Manes]

Customer interest

There are obvious sample and bias problems in using vendor survey as empirical material.

The surveys do however show a rather large customer interest in BPM-SOA. Estimates do

however vary from survey to survey. According to a BEA report on BPM a “survey of BEA

AquaLogic BPM customers in November 2007 revealed that 68 percent of respondents

are connecting BPM and SOA” [BEA:16] A more modest estimate comes from BPTrends

which suggest that 34% of the respondents were utilising BPM and SOA together on

projects. [Harmon & Wolf:26]

Vendor consolidation

BPM and SOA vendors are increasingly consolidating in order to provide merged product

offerings. Examples of significant deals include:*

! IBM's acquisition of Holosofx

! Oracle's acquisition of Collaxa

! Tibco's purchase of Staffware,

! BEA's acquisition of Plumtree and Fuego

! Tibco's purchase of Staffware

! IBM's acquisition of Telelogic

! Oracle's acquisistion of BEA

* In parts based on [Kamoun:1]

Page 185 /217

Awareness

The final indicator of interest is the increasing level of awareness around BPM and SOA.

Examples are Gartner's prediction that SOA and BPM are converging and that BPM will

the driver for SOA implementations. [Seeley, 2006] Prolific bloggers on process

management and service-oriented architecture such as Ismael Ghalimi hails BPM as “the

killer application for SOA” [Ghalimi]

The body of scholarly research and academic literature on this topic is however scarce.

Much of the knowledge about BPM-SOA is rooted among practitioners (adopters,

consultancies or vendors) among . Furthermore, the existing literature often takes either

the BPM or the SOA approach, while just touching on the opposite angle of research.

Page 186 /217

C - Thesis Interviews

Name Employer Title Date

Rasmus Knippel Danske Bank Enterprise Architect 08/04-2008

Anders Mortensen Bizcon CEO & CSO 05/05-2008

Henrik Søgaard Bizcon COO & CIO 05/05-2008

Kuno Brodersen Qualiware CEO 18/03-2008

Frank Carvalho Skat Chief Architect 28/04-2008

Page 187 /217

D - The Zachman Framework

Page 188 /217

E - The TOGAF Architecture Development Method

Page 189 /217

F - Note on Model-driven Architecture (MOF & XMI)

Standards for modelling are necessary to ensure not only the interoperability across tools,

applications, and repositories, but also across modelling artefacts. Until now, modelling

practices have been characterised by a low degree of interoperability of modelling

languages. MDA in general, and the Meta-object Facility (MOF) is set to change that.

MOF is an OMG standard related to MDA, which claims to be “an extensible model driven

integration framework for defining, manipulating and integrating metadata and data in a

platform independent manner.” [OMG, 2008] The MOF specification defines an abstract

language, and a framework for specifying, constructing, and managing technology neutral

meta-models. Meta-models models are used to model the modelling languages

themselves [MOF:29] So the MOF language is a minimal set of constructs, that can be

used to model other modelling languages. [Gasevic, Djuric & Devedzic:114] The MOF

language is essentially a language, that can be used to define the abstract syntax (or

meta-models) of modelling languages. Examples of modelling languages that has meta-

models that conforms to MOF, are the UML, the Common Warehouse Model (CWM), and

the MOF language itself104. The MOF language is a subset of UML, and in MOF 2.0 the

modelling concepts have been unified with UML2.105 [MOF:7] This also means that UML

based models are in themselves MOF compliant.

By establishing MOF as a single language for the specification of meta-models, MOF

becomes a bridge that ensures a modest degree of commonalities between these

languages. This provides the opportunity to map model elements in a model, to model

elements in other model types.106 This even if the languages involved are very different in

purpose. This is a critically important feature in achieving the ability to perform

transformations. MOF seems to pave a critical path in creating a modelling value-chain.

104 The relationship is recursive as MOF is self-described
105 The MOF 2.0 standard is adopted, but pending pre-finalisation
106 Assuming the mappings are performed on meta-model level, rather than model-instance level.

Page 190 /217

MOF based meta-models, do however only specify the abstract syntax of a model

language. To create a usable DSML, it is necessary to devise some way of defining the

concrete syntax. UML Profiles provides such opportunity; UML Profiles work by supporting

the adaption or extension of UML to fit professional or technical domains. UML Profiles

consists of three different types of artefacts; stereotypes, tagged values and constraints.

[Stahl & Völter:93] An example of an UML profile is the “UML Profile and Metamodel for

Services” (UPMS), which seeks to define both the abstract, and the concrete syntax of a

modelling language for services in SOA. [UPMS] A further advantage of UML profiles is,

that UML profiles can be loaded in UML tools as plug-ins.

The MOF standard is not only interesting as a meta-language for defining modelling

languages. By defining a set of standard interfaces (APIs), the MOF also becomes a

framework for implementing repositories that can be used to hold, and manage models.

models. Figure zz illustrates the MOF repository.

Page 191 /217

The three API interfaces are:

! CORBA Meta-data Interface (CMI): Defines how to manage MOF models as
CORBA objects

! Java Meta-data Interface (JMI): Defines how to manage MOF models as Java
objects. Provided by SUN systems.

! XML Meta-data Interchange (XMI): XMI provides mapping from MOF to XML.
This makes MOF interoperable, by allowing a standardised way to persist MOF-
based models to XML. 107

By providing mappings to transform MOF meta-models into APIs (standard interfaces), the

APIs allows for interoperable repositories, despite differences in underlying implementation

technologies. The three APIs do however not result in the same set of opportunities. The

CMI and the JMI interfaces are APIs in the classical sense, as they provide access to

certain functionality at the back-end. Despite the well-thought intentions behind the MOF

APIs, there are some issues with the way the have been designed. As [Blanc, Bouzitouna

& Gervais] points out, the APIs are too low level, and the APIs generally needs to be

extended, in order to provide the appropriate functionality. The MOF APIs does f. ex. not

concern non-functional issues, such as persistence, security, and performance. [Blanc,

Bouzitouna & Gervais: 120] It is clear, that the repository interfaces only provides a

starting point, and that more work needs to be done, f. ex. by defining higher-level APIs.

Of the three API's, XMI seems by far the most interesting. XMI in contrast, could be

considered a serialisation format for MOF based models. The XMI standard describes the

XMI document structure, called the XMI model. The XMI model is essentially an instance

of MOF, described in a way that allows MOF meta-models108 to be serialised into the XMI

document format. [XMI:8] This is an important feature, as it allows MOF to leverage the

dominant position of XML.

107 Since the release of version 2, XMI has included support for serialising diagram layout which is essential
for tool-to-tool transfer [Stahl & Völter:292]

108 And MOF-based models

Page 192 /217

Another interesting feature is that XMI allows for the creation of XML Schemas for the

meta-models. XMI also holds the distinct feature, that is defines the permissible structures

for each language (meta-model) An XML Schema would only be able to constrain syntax,

but cannot define all possible structures and their relationships. [Borenstein & Fox] As

such, the XMI becomes a standard for exchanging MOF based meta-models and models

in XML. This allows XMI to leverage the ubiquitousness of XML, rather than to rely on Java

or Corba interfaces. Any tool being able to read and write XML, would in theory be capable

of working with XMI files.

Unfortunately, the ability to use XMI as a serialisation format has some problems. [Lundell

et al.] has made an empirical study as to the interchange of XMI models in an

heterogenous tool environment. The study consisted of two tests. The first test was made

to investigate the issues around working with different version of XMI. As of writing this,

there are several versions of XMI recognised by OMG; 1.0, 1.1, 1.2, 2.0, 2.01, and 2.1.

[Lundell et al.:621] A simple UML Class diagram was tested for interoperability between

five tools that supported XM version 2.0 or later, and another set of legacy tools supporting

only earlier versions of XMI. The result can be seen in figure 36 The non-coloured cells are

combinations where tools supports same versions of XMI. Grey cells are combinations

where round-tripping is not expected to work, since XMI versions differ.

Figure 36: UML Model Exchange [Lundell et al.:626]

Page 193 /217

The second test concerns one-way exchange between the tools that supports XMI version

2 and above. Figure 37 depicts the result of the second test. In general, results were found

to be much better, as only MagicDraw, and UModel exhibited import problems.

Furthermore, a round-tripping test done with the tools supporting one-way exchange did

show, that tools supporting one-way exchange, did also successfully interexchange

models two-way. An important caveat however was, that no success was a (for the tools

that did support XMI 2.1)109 and XMI 2.0. This indicates, that backwards compatibility has

been lost, between XMI 2.0 and 2.1, at least at test time.

It should also be noted, that these tests were only attempts at exchanging simple UML

class diagrams. No attempts at exchanging DSML's was attempted, and one can only

speculate the result of such test would So as can be concluded from these test,

compatibility between tools and XMI versions leaves much to desired. The matter of

integrating information via XMI is further complicated by the fact, that much information will

not be stored MOF based languages.110 A heterogeneous information environment is likely

to be the default. One such example is the BPMN standard, which of writing this, still does

not have standardised serialisation format (let alone a MOF meta-model).

109 For the tools that supported XMI 2.1
110 And thus be persisted to XMI files or a MOF based repository.

Figure 37: UML Model Exchange XMI 2.0+ [Lundell et al.:628]

Page 194 /217

G - The Enterprise Meta-model

Page 195 /217

H - Meta-model Concepts (Class hierarchy)

* Indicates that the concept has been added to the Ontology

** The term is used in a different way in TOGAF

Strategy

Concept/Class Description

Business Driver Drives business goals

Business Goal What the enterprise plans to accomplish

Business Strategy How the enterprise plans to achieve goals and

objectives

Business Objective What the enterprise plans to accomplish
(usually identified by metrics)

Business Function A decomposition of the major functional
areas of the enterprise into functions.

Figure 38: Strategy Class Hierarchy [Own production]

Page 196 /217

Business Architecture

Concept/Class Description

Business Process * A set of one or more linked procedures or

activities which collectively realise a business
objective or policy goal

Business Process Activity * Collections of tasks, that contributes or adds

value to process goals.

Business Object * Abstract or conceptual models of real world
entities in the business domain

Figure 39: Business Architecture Class Hierarchy [Own production]

Page 197 /217

Application Architecture

Concept/Class Description

Service* Collection of capabilities

Business Service** Collections of capabilities used to support

business processes

Entity Service* Collections of capabilities used to manage
date

Figure 40: Application Architecture
Class Hierarchy

Page 198 /217

Data Architecture

Concept/Class Description

Logical Data Model Logical views of the actual data of interest
from the application point of view. Expressed

by the use of a schema.

Physical Data Model Physical views of the actual data of interest
from the application point of view (f. ex.

physical database schema)

Figure 41: Data Architecture Class
Hierarchy [Own production]

Page 199 /217

Technical Architecture

Concept/Class Description

Hardware platform Physical hosting platform

Software platform Software hosting platform

Page 200 /217

I - Meta-model Relations (Object properties)

Name Description Domain Range

is_measuredBy Objectives are goals
quantified by a metric

Business Objective Business Goal

is_physicalModelOf The physical model
implements the logical
model

Logical Model Physical Model

is_providerOf Entity services
provides data services
to business services

Business Service Entity Service

is_supportedBy
Business functions
supports the realisation
of business objectives

Business Function Business Objective

has_driver Indicates drivers that
contributes to a goal

Business Driver Business Goal

has_hwPlatform Physical platform
hosting a software
platform

Software Platform Hardware Platform

has_object Business object is
related to a business
process

Business Object Business Process

has_process Indicates that a
business function is
being served by a
business process

Business Process Business Function

has_schema A business object can
have logical
representations in form
of a schema (f. ex. xsd)

Business Object Logical Model

has_service A business process
activity consumes a
business service

Service Business Process
Activity

has_strategy Business goals are
linked to strategy /
strategic initiatives

Business Strategy Business Goal

has_swPlatform Represents a software
platform hosting
services

Software Platform Hardware Platform

has_type Service relies on
schemas for the
definition of
input/output types

Logical Model Service

Page 201 /217

J - The RDF-Gravity Legend Map

Reproduced from: http://semweb.salzburgresearch.at/apps/rdf-gravity/user_doc.html

http://semweb.salzburgresearch.at/apps/rdf-gravity/user_doc.html
http://semweb.salzburgresearch.at/apps/rdf-gravity/user_doc.html
http://semweb.salzburgresearch.at/apps/rdf-gravity/user_doc.html

Page 202 /217

K - Bibliography

Books

[Bernard]: ”An Introduction To Enterprise Architecture” / Scott A. Bernard / 2005 / 2nd

Edition / AuthorHouse

[Bloomberg & Schmelzer]: ”Service Orient or Be Doomed!: How Service Orientation
Will Change Your Business” / Jason Bloomberg & Ronald Schmelzer / 2006 / Wiley

[Denzin & Lincoln]: “The Sage Handbook of Qualitative Research” / N.K. Denzin & Y. S.
Lincoln / 2005 / Sage Publications / 3rd Edition

[Dietz]: “Enterprise Ontology” / Jan L. G. Dietz / 2006 / Springer

[EABOK], “Guide to the (Evolving) Enterprise Architecture Body of Knowledge“ /
Mitre Corporation / 2004 / Mitre Corporation

[Gasevic, Djuric & Devedzic]: “Model Driven Architecture and Ontology Development”
/ Dragan Gasevic, Dragan Juric & Vladan Devedzic / 2006 / Springer-Verlag

[Erl, 2005]: “Service-Oriented Architecture (SOA): Concepts, Technology, and
Design” / Thomas Erl / 2005 / Prentice Hall

[Erl, 2008]: “SOA Principles of Service Design” / Thomas Erl / 2008 / Prentice Hall

[Friedman]: ”The World Is Flat: A Brief History of the Twenty-first Century” / Thomas
L. Friedman / 2005 / Farrar, Straus and Giroux

[Harrison-Broninski]: ”Human Interactions: The Heart And Soul Of Business Process
Management: How People Reallly Work And How They Can Be Helped To Work
Better” / 2005 / Keith Harrison-Broninski / Meghan-Kiffer Press

Page 203 /217

[Jeston & Nelis, 2008, 1], ”Business Process Management – Practical Guidelines to
Successful Implementations” / John Jeston & Johan Nelis / 2008 / 2nd Edition / Elsevier
Ltd.

[Juric & Pant]: ”Business Process Driven SOA using BPMN and BPEL” / Matjaz B.
Juric & Kapil Pant / 2008 / Packt Publishing

[Kaye]: ”Loosely Coupled” / Doug Kaye / 2003 / RDS Press

[Khoshafian, 2007]: ”Service Oriented Enterprises” / 2007 / Setrag Khoshafian /
Auerbach Publications

[Lankhorst et al.]: “Enterprise Architecture at Work: Modelling, Communication and
Analysis” / Marc Lankhorst et al. / 2005 / Springer

[Larman]: “Applying UML and Patterns” / Craig Larman / 2004 / Prentice Hall / 3rd Edition

[Passin]: “Explorers Guide to the Semantic Web” / Thomas B. Passin / 2004 / Manning
Publications

[Rossberg & Redler]: "Pro Scalable .NET 2.0 Application Designs" / Joachim Rossberg
& Rickard Redler / 2006 / Apress

[Schekkerman]:”How to survive in the jungle of Enterprise Architecture Frameworks“
/ Jaap Schekkerman, 2004 / 2nd Edition / Trafford

[Smith & Fingar]: ”Business Process Management – The Third Wave” / Howard Smith &
Peter Fingar / 2006 / Meghan Kiffer Press

[Swebok]: “Guide to the Software Engineering Body of Knowledge” / IEEE / 2004 /
IEEE

[Stahl & Völter]: “Model-Driven Software Development” / Thomas Stahl & Markus Völter
/ 2006 / John Wiley & Sons

[Weill, Ross & Robertson]: “Enterprise Architecture as Strategy” / Jeanne W. Ross,
Peter Weill & David C. Robertson / 2006 / Harvard Business School Press

Page 204 /217

Websites and Blogposts

[Arsanjani]: “Service-oriented modeling and architecture” / Ali Arsanjani /
http://www.ibm.com/developerworks/library/ws-soa-design1 / Last accessed 22/07-2008

[Baurmann]: ”Why OWL triples matter: The Portable Ontology Revolution in Domain
Knowledge Representation” / Stu Baurmann / 2005 /
http://www.xmlexpertise.com/392.html / Last access 22/09-2008

[Borenstein & Fox]: ”XMI and the Many Metamodels of Enterprise Metadata” / Joram
Borenstein & Joshua Fox /
http://www.idealliance.org/proceedings/xml05/ship/39/XMIAndMetamodels.HTML / Last
access 22/07-2008

[BPMN, 2005]: ”Business Process Modeling Notation (BPMN) Information” /
BPMN.org / http://www.bpmn.org/Documents/FAQ.htm#Technical /

Last access 22/10-2008

[EMF]: ”Eclipse Modeling framework (EMF)” / http://www.eclipse.org/modeling/emf /
Last access 22/07-2008

[ESW]: ”LargeTripleStores” / http://esw.w3.org/topic/LargeTripleStores / Last access
21/10-2008

[FEA-RMO]: ”Federal Enterprise Architecture Reference Model Ontology (FEA-RMO)”
/ http://web-services.gov/fea-rmo.html / Last access 22/07-2008

[Fowler, 2006]: “Semantic Diffusion” / Martin Fowler /
http://martinfowler.com/bliki/SemanticDiffusion.html / Last access 22/07-2008

[Gartner, 2007]: “Gartner EXP Survey of More than 1,400 CIOs Shows CIOs Must
Create Leverage to Remain Relevant to the Business” / Gartner /
http://www.gartner.com/it/page.jsp?id=501189 / Last access 22/07-2008

[Gartner, 2008]: ”Gartner EXP Worldwide Survey of 1,500 CIOs Shows 85 Percent of
CIOs Expect "Significant Change" Over Next Three Years” /
http://www.gartner.com/it/page.jsp?id=587309 / Last access 22/07-2008

http://www.ibm.com/developerworks/library/ws-soa-design1/
http://www.gartner.com/it/page.jsp?id=587309
http://www.gartner.com/it/page.jsp?id=587309
http://www.gartner.com/it/page.jsp?id=587309
http://www.gartner.com/it/page.jsp?id=501189
http://www.gartner.com/it/page.jsp?id=501189
http://www.gartner.com/it/page.jsp?id=501189
http://martinfowler.com/bliki/SemanticDiffusion.html
http://martinfowler.com/bliki/SemanticDiffusion.html
http://martinfowler.com/bliki/SemanticDiffusion.html
http://web-services.gov/fea-rmo.html
http://web-services.gov/fea-rmo.html
http://web-services.gov/fea-rmo.html
http://esw.w3.org/topic/LargeTripleStores
http://esw.w3.org/topic/LargeTripleStores
http://esw.w3.org/topic/LargeTripleStores
http://www.eclipse.org/modeling/emf
http://www.eclipse.org/modeling/emf
http://www.eclipse.org/modeling/emf
http://www.bpmn.org/Documents/FAQ.htm#Technical
http://www.bpmn.org/Documents/FAQ.htm#Technical
http://www.bpmn.org/Documents/FAQ.htm#Technical
http://www.idealliance.org/proceedings/xml05/ship/39/XMIAndMetamodels.HTML
http://www.idealliance.org/proceedings/xml05/ship/39/XMIAndMetamodels.HTML
http://www.idealliance.org/proceedings/xml05/ship/39/XMIAndMetamodels.HTML
http://www.xmlexpertise.com/392.html
http://www.xmlexpertise.com/392.html
http://www.xmlexpertise.com/392.html
http://www.ibm.com/developerworks/library/ws-soa-design1/
http://www.ibm.com/developerworks/library/ws-soa-design1/

Page 205 /217

[Ghalimi]: ”BPM is SOA's Killer Application” / Ismael Ghalimi /
http://itredux.com/2006/08/13/bpm-is-soas-killer-application /Last access 23/07-2008

[Guttman]: ”Linking BPM and SOA - It Shouldn't Just Be Magic” / Michael Guttman /
http://mda-soa.blogspot.com/2006/06/linking-bpm-and-soa-it-shouldnt-just.html / Last
access 22/10-2008

[Guttman & Matthews]: ”Forrester Research Claims MDA is DOA!” / Michael Guttman
and Jason Matthews / http://mda-soa.blogspot.com/2006/03/forrester-research-claims-
mda-is-doa.html / Last access 22/07-2008

[Hendler]: ”Agents and the Semantic Web” / James Hendler /
http://www.cs.umd.edu/~hendler/AgentWeb.html / Last access 22/07-2008

[ISO42010]: ”Recommended Practice for Architectural Description of Software-
Intensive Systems” / http://www.iso-architecture.org/ieee-1471/index.html / Last access
22/07-2008

[Jones]: ”Why BPM Screws up SOA” / Steve Jones / http://service-
architecture.blogspot.com/2007/06/why-bpm-screws-up-soa.html / Last access 28/08-2008

[Lhotka]: ”Semantic coupling: the elephant in the SOA room ” / Rockford Lhotka /
http://www.lhotka.net/weblog/SemanticCouplingTheElephantInTheSOARoom.aspx / Last
access 22/09-2008

[Malik]: “SOA and the CISR Operating Models” / Nick Malik /

http://blogs.msdn.com/nickmalik/archive/2007/10/12/soa-and-the-cisr-operating-
models.aspx / Last access 22/09-2008

[Manes]: “Looking for SOA success stories” / Anne Thomas Manes /
http://apsblog.burtongroup.com/2008/03/looking-for-soa.html

 / Last access 19/04-2008

[Manifesto]: ”Principles behind the Agile Manifesto” / http://agilemanifesto.org / Last
access 27/07-2007

[McComb]: “The Enterprise Ontology” / James McComb / http://www.tdan.com/view-
articles/5016 / Last access 22/07-2008

[OMG, 2008]: “Catalog of OMG Modeling and Metadata Specifications“ / Object
Management Group /

http://itredux.com/2006/08/13/bpm-is-soas-killer-application/
http://www.tdan.com/view-articles/5016
http://www.tdan.com/view-articles/5016
http://www.tdan.com/view-articles/5016
http://www.tdan.com/view-articles/5016
http://www.tdan.com/view-articles/5016
http://www.tdan.com/view-articles/5016
http://agilemanifesto.org/
http://agilemanifesto.org/
http://agilemanifesto.org/
http://apsblog.burtongroup.com/2008/03/looking-for-soa.html
http://apsblog.burtongroup.com/2008/03/looking-for-soa.html
http://apsblog.burtongroup.com/2008/03/looking-for-soa.html
http://blogs.msdn.com/nickmalik/archive/2007/10/12/soa-and-the-cisr-operating-models.aspx
http://blogs.msdn.com/nickmalik/archive/2007/10/12/soa-and-the-cisr-operating-models.aspx
http://blogs.msdn.com/nickmalik/archive/2007/10/12/soa-and-the-cisr-operating-models.aspx
http://blogs.msdn.com/nickmalik/archive/2007/10/12/soa-and-the-cisr-operating-models.aspx
http://blogs.msdn.com/nickmalik/archive/2007/10/12/soa-and-the-cisr-operating-models.aspx
http://blogs.msdn.com/nickmalik/archive/2007/10/12/soa-and-the-cisr-operating-models.aspx
http://www.lhotka.net/weblog/SemanticCouplingTheElephantInTheSOARoom.aspx
http://www.lhotka.net/weblog/SemanticCouplingTheElephantInTheSOARoom.aspx
http://www.lhotka.net/weblog/SemanticCouplingTheElephantInTheSOARoom.aspx
http://service-architecture.blogspot.com/2007/06/why-bpm-screws-up-soa.html
http://service-architecture.blogspot.com/2007/06/why-bpm-screws-up-soa.html
http://service-architecture.blogspot.com/2007/06/why-bpm-screws-up-soa.html
http://service-architecture.blogspot.com/2007/06/why-bpm-screws-up-soa.html
http://service-architecture.blogspot.com/2007/06/why-bpm-screws-up-soa.html
http://service-architecture.blogspot.com/2007/06/why-bpm-screws-up-soa.html
http://www.iso-architecture.org/ieee-1471/index.html
http://www.iso-architecture.org/ieee-1471/index.html
http://www.iso-architecture.org/ieee-1471/index.html
http://www.cs.umd.edu/~hendler/AgentWeb.html
http://www.cs.umd.edu/~hendler/AgentWeb.html
http://www.cs.umd.edu/~hendler/AgentWeb.html
http://mda-soa.blogspot.com/2006/03/forrester-research-claims-mda-is-doa.html
http://mda-soa.blogspot.com/2006/03/forrester-research-claims-mda-is-doa.html
http://mda-soa.blogspot.com/2006/03/forrester-research-claims-mda-is-doa.html
http://mda-soa.blogspot.com/2006/03/forrester-research-claims-mda-is-doa.html
http://mda-soa.blogspot.com/2006/03/forrester-research-claims-mda-is-doa.html
http://mda-soa.blogspot.com/2006/03/forrester-research-claims-mda-is-doa.html
http://mda-soa.blogspot.com/2006/06/linking-bpm-and-soa-it-shouldnt-just.html
http://mda-soa.blogspot.com/2006/06/linking-bpm-and-soa-it-shouldnt-just.html
http://mda-soa.blogspot.com/2006/06/linking-bpm-and-soa-it-shouldnt-just.html
http://itredux.com/2006/08/13/bpm-is-soas-killer-application/
http://itredux.com/2006/08/13/bpm-is-soas-killer-application/

Page 206 /217

http://www.omg.org/technology/documents/modeling_spec_catalog.htm / Last acces
2308/2008

http://www.omg.org/technology/documents/modeling_spec_catalog.htm
http://www.omg.org/technology/documents/modeling_spec_catalog.htm
http://www.omg.org/technology/documents/modeling_spec_catalog.htm

Page 207 /217

[OpenGroup]: ”TOGAF 8 Ontology draft” / The Open Group /

http://www.opengroup.org/projects/soa-ontology/doc.tpl?CALLER=index.tpl&gdid=11367 /

Last access 17/09-2008

[Rugg]: “SOA: The New Tower of Babel” / Ken Rugg / 2008

http://blogs.progress.com/soa_infrastructure/2008/07/soa-the-new-tow.html / Last access
10/08-2008

[SAP]: ”Process Management Lifecycle (PML)” / SAP /
https://www.sdn.sap.com/irj/sdn/bpx-cycle / Last access 21/09-2008

[Seeley, 2006]: “SOA and BPM headed for convergence, says Gartner” / Rich Seeley
“http://searchsoa.techtarget.com/news/article/0,289142,sid26_gci1235127,00.html / Last
access 19/04-2008

[Seeley, 2008]: ”SOA lifecycle: What are we talking about?” / Rich Seeley /
http://searchsoa.techtarget.com/news/article/0,289142,sid26_gci1213362,00.html / Last
access 28/08-2008

[Silver, 2006]: ”Thoughts on BPMN 2.0” / Bruce Silver /
http://www.brsilver.com/wordpress/2006/07/06/thoughts-on-bpmn-20 / Last access 22-07-
2008

[Silver, 2008]: ”Which Way for BPMN?” / Bruce Silver /
http://www.bpminstitute.org/articles/article/article/bpms-watch-which-way-for-bpmn.html /

Last access 22/10-2008

[Sowa]: ”Semantic Networks” / John F. Sowa / http://www.jfsowa.com/pubs/semnet.htm /
Last access 22/07-2008

[Temnenco]: ”TOGAF or not TOGAF: Extending Enterprise Architecture beyond RUP”
/ Vitalie Temnenco /
http://www.ibm.com/developerworks/rational/library/jan07/temnenco/index.html /

Last access 22/07-2008

[W3C, 2004,1]: ”Loose Coupling” / W3C /
http://www.w3.org/2003/glossary/keyword/All/?keywords=loose%20coupling / Last access
22/07-2008

http://www.opengroup.org/projects/soa-ontology/doc.tpl?CALLER=index.tpl&gdid=11367
http://www.w3.org/2003/glossary/keyword/All/?keywords=loose%20coupling
http://www.w3.org/2003/glossary/keyword/All/?keywords=loose%20coupling
http://www.w3.org/2003/glossary/keyword/All/?keywords=loose%20coupling
http://www.ibm.com/developerworks/rational/library/jan07/temnenco/index.html
http://www.ibm.com/developerworks/rational/library/jan07/temnenco/index.html
http://www.ibm.com/developerworks/rational/library/jan07/temnenco/index.html
http://www.jfsowa.com/pubs/semnet.htm
http://www.jfsowa.com/pubs/semnet.htm
http://www.jfsowa.com/pubs/semnet.htm
http://www.bpminstitute.org/articles/article/article/bpms-watch-which-way-for-bpmn.html
http://www.bpminstitute.org/articles/article/article/bpms-watch-which-way-for-bpmn.html
http://www.bpminstitute.org/articles/article/article/bpms-watch-which-way-for-bpmn.html
http://www.brsilver.com/wordpress/2006/07/06/thoughts-on-bpmn-20
http://www.brsilver.com/wordpress/2006/07/06/thoughts-on-bpmn-20
http://www.brsilver.com/wordpress/2006/07/06/thoughts-on-bpmn-20
http://searchsoa.techtarget.com/news/article/0,289142,sid26_gci1213362,00.html
http://searchsoa.techtarget.com/news/article/0,289142,sid26_gci1213362,00.html
http://searchsoa.techtarget.com/news/article/0,289142,sid26_gci1213362,00.html
http://searchsoa.techtarget.com/news/article/0,289142,sid26_gci1235127,00.html
http://searchsoa.techtarget.com/news/article/0,289142,sid26_gci1235127,00.html
http://searchsoa.techtarget.com/news/article/0,289142,sid26_gci1235127,00.html
https://www.sdn.sap.com/irj/sdn/bpx-cycle
https://www.sdn.sap.com/irj/sdn/bpx-cycle
https://www.sdn.sap.com/irj/sdn/bpx-cycle
http://blogs.progress.com/soa_infrastructure/2008/07/soa-the-new-tow.html
http://blogs.progress.com/soa_infrastructure/2008/07/soa-the-new-tow.html
http://blogs.progress.com/soa_infrastructure/2008/07/soa-the-new-tow.html
http://www.opengroup.org/projects/soa-ontology/doc.tpl?CALLER=index.tpl&gdid=11367
http://www.opengroup.org/projects/soa-ontology/doc.tpl?CALLER=index.tpl&gdid=11367

Page 208 /217

[Wikipedia]: “Chinese whispers” / Wikipedia /
http://en.wikipedia.org/wiki/Chinese_whispers / Last access 22/09-2008

[WfMC]: “XPDL Implementations] / Workflow Management Coalition /
http://www.wfmc.org/xpdl-implementations.html / Last access 22/20-2008

[ZIFA]: “The Zachman Institite for Framework Advancement” / The Zachman Institute

[Zimmermann, Krogdahl & Gee]: “Elements of Service-Oriented Analysis and Design” /
Olaf Zimmermann, Pal Krogdahl & Clive Gee /
http://www.ibm.com/developerworks/webservices/library/ws-soad1 / Last access 24/08-
2008

Articles, Essays & Whitepapers & Reports

[BEA]: “The State of the BPM Market - Business and IT: Solving Process Problems
Together” BEA Whitepapers / 2008 / BEA Systems Inc

[Bézivin, 2005]: ”On the Unification Power of Models” / Jean Bézivin / 2005 / Software
and System Modeling (SoSym) 4(2)

[Blanc, Bouzitouna & Gervais]: ”A Critical Analysis of MDA Standards through an
Implementation: the ModFact Tool ” / Xavier Blanc, Salim Bouzitouna & Marie-Pierre
Gervais / 2006 / Proceedings of the 2006 ACM symposium on Applied computing

[Brahe & Bordbar]: ”A Pattern-based Approach to Business Process Modeling and
Implementation in Web Services” / Steen Brahe & Behzad Bordbar / 2007 / Service-
Oriented Computing ICSOC 2006, Volume 4652/2007

[Byrd, Lewis & Bryan]: ”The leveraging influence of strategic alignment on IT
investment: An empirical examination” / Terry Anthony Byrd Bruce, R. Lewis, & Robert
W. Bryan / 2006 / Information & Management 43 (2006) 308–321

[Carvallo & Franch]: “Extending the ISO/IEC 9126 quality model with non technical
factors for COTS components selection" / Juan Pablo Carvallo & Xavier Franch / 2006 /
Proceedings of the 2006 International workshop on Software quality

[Chan & Reich]:”IT alignment: an annotated bibliography” / Yolande E Chan & Blaize
Horner Reich / 2007 / Journal of Information Technology (2007) 22

[Chan et al.]:“Business Strategic Orientation, Information System Strategic
Orientation, and Strategic Alignment”, Yolande E. Chan, Sid Huff, Duncan Copeland &
Donald W. Barclay / 1997 / Information Systems Research / Volume 8, Issue 2, June 1997

http://en.wikipedia.org/wiki/Chinese_whispers
http://www.ibm.com/developerworks/webservices/library/ws-soad1
http://www.ibm.com/developerworks/webservices/library/ws-soad1
http://www.ibm.com/developerworks/webservices/library/ws-soad1
http://www.wfmc.org/xpdl-implementations.html
http://www.wfmc.org/xpdl-implementations.html
http://www.wfmc.org/xpdl-implementations.html
http://en.wikipedia.org/wiki/Chinese_whispers
http://en.wikipedia.org/wiki/Chinese_whispers

Page 209 /217

[Chan, Huff & Copeland]:”Assessing realized information systems strategy” / Yolande
E. Chan Sid L. Huff & Duncan G. Copeland / 1998 / Journal of Strategic Information
Systems 6 (1998) 273-298

[Dico]: “Delivering SOA with TOGAF” / Awel Dico / 2008 / The Open Group

[Doucet et. al]: “Coherency Management: Using Enterprise Architecture for
Alignment, Agility, and Assurance” / Gary Doucet, John Gøtze, Pallab Saha & Scott
Bernard / 2008 / Journal of Enterprise Architecture, May 2008 / Association of Enterprise
Architects

[Dursum & Perakath]: “Towards a truly integrated enterprise modeling and and
analysis environment” / Delen Dursum & Benjamin C. Perakath / 2003 / Computer in
Industry, Vol. 51

[Erche, Wagner & Hein]: ”Mapping Visual Notatianons to MOF Compliant Models with
QVT Relations” / Michael Erche, Michael Wagner & Christian Hein / 2007 / Proceedings
of the 2007 ACM symposium on Applied computing

[Emig et al.]: ”Model-Driven Development of SOA Services” / Christian Emig, Karsten
Krutz, Stefan Link, Christof Momm & Sebastian Abeck / 2007 / Forschungsbericht

[Fitzgerald & Murphy]: “Business process reengineering: Putting theory into practice”
/ Brian Fitzgerald & Ciaran Murphy / 1996 / INFOR / Feb 1996

[Fowler, 2005]: “The New Methodology” / Martin Fowler / 2005 /
(http://martinfowler.com/articles/newMethodology.ht9ml)

[Gartner, 2006]: “Defining, Cultivating and Measuring Enterprise Agility” / David W.
McCoy & Daryl C. Plummer / 2006 / Gartner

[Gómez-Pérez & Corcho]: ”Ontology Languages for the Semantic Web” / Asunción
Gómez-Pérez and Oscar Corcho / 2002 / IEEE Intelligent Systems, Volume 17, Issue 1,
Jan/Feb 2002

[Gruber]: “A Translation Approach to Portable Ontology Specifications” / Thomas R.
Gruber / 1993 / Knowledge Acquisition, 5(2):199-220, 1993

[Harmon & Wolf]: “Business Process Management and Service Oriented Architecture”
/ Paul Harmon & Celia Wolf / 2007 / BPTrends

[Heflin & Hendler]: ”A Portrait of the Semantic Web in Action” / Jeff Heflin & James
Hendler / 2001 / IEEE Intelligent Systems 16(2), 2001

[Huang & Nof]: “Enterprise agility: a view from the PRISM lab” Chin-Yin Huang &
Shimon Y. Nof / 1999 / International Journal of Agile Management Systems, Volume 1,
Number 1

http://martinfowler.com/articles/newMethodology.html
http://martinfowler.com/articles/newMethodology.html
http://martinfowler.com/articles/newMethodology.html

Page 210 /217

[Hunton et al.]: “Enterprise Resource Planning Systems: Comparing Firm
Performance of Adopters and Non-adopters” / James E. Hunton, Barbara Lippincottb &
Jacqueline L. Reckb / 2003 / Journal of Accounting Information Systems vol. 4, 2003

[Jeston & Nelis, 2008, 2]: “Re-inventing Business Process Management” / John Jeston
& Jason Nelis / 2008 / BPTrends

[Kellen]: “Strategic Agility: Beyond IT” / Vince Kellen / 2006 / Business-IT
Strategies Vol. 9, No. 3 / Cutter Consortium

[Kamoun]:“The Convergence of Business Process Management and Service Oriented
Architecture“ / Faouzi Kamoun / 2007 Association of Computing Machinery, Volume 8 ,
Issue 24 (June 19, 2007 - June 25, 2007)

[Kleppe]: “A Language Description is More than a Metamodel” / Anneke Kleppe / 2007 /
Fourth International Workshop on Software Language Engineering, 1 Oct 2007

[Lublinsky & Tyomkin]: “Dissecting Service-Oriented Architectures” / Boris Lublinsky &
Dmitry Tyomkin / 2003 / Business Integration Journal, October 2003

[Henderson & Venkatraman]: ”Strategic alignment: leveraging information technology
for transforming organizations” / John C. Henderson & N. Venkatraman / 1993 / IBM
Systems Journal, March, 1993

[Jenz]: ”Business Process Ontologies: Speeding Up Business Process
Implementation” / Dieter E. Jenz / 2003

[Lundell et al.]: ”UML Model Interchange in Heterogeneous Tool Environments: An
Analysis of Adoptions of XMI 2” / Björn Lundell, Brian Lings, Anna Persson & Anders
Mattsson / 2006 / Model Driven Engineering Languages and Systems, Volume 4199/2006

[Joergensen]: ”You can serialize BPMN into BPEL, but BPEL should not be the
serialization standard” / Jesper Joergensen /
http://jesperatwork.blogspot.com/2008/04/you-can-serialize-bpmn-into-bpel-but.html / Last
access 22/10-2008

[Khoshafian, 2005]: “Narrowing the Semantic Gap between Business Process
Analysis and Business Process Execution” / 2005 / Setrag Khoshafian / Workflow
Management Handbook 2005 / Edited by Layna Fisher / Workflow Management Coalition

[McCabe]: ”What’s up at OMG” / Francis McCabe /
http://frankmccabe.wordpress.com/2006/07/01/whats-up-at-omg / Last access 22/07-2008

[Missikoff]: ”Harmonise: An Ontology-Based Approach for Semantic Interoperability” /
Michele Missikoff / 2002 / ERCIM News No. 51, October 2002

[OEM]: ”Vækst gennem Globalisering” / Økonomi & Erhvervsministeriet / 2003 /
Økonomi & Erhvervsministeriet

http://jesperatwork.blogspot.com/2008/04/you-can-serialize-bpmn-into-bpel-but.html
http://frankmccabe.wordpress.com/2006/07/01/whats-up-at-omg
http://frankmccabe.wordpress.com/2006/07/01/whats-up-at-omg
http://frankmccabe.wordpress.com/2006/07/01/whats-up-at-omg
http://jesperatwork.blogspot.com/2008/04/you-can-serialize-bpmn-into-bpel-but.html
http://jesperatwork.blogspot.com/2008/04/you-can-serialize-bpmn-into-bpel-but.html

Page 211 /217

[OMG, 2003]: ”MDA Guide V1.0 .1” / Object Management Group / 2003

[Palmer]: ”Understanding the BPMN-XPDL-BPEL Value Chain” / Nathaniel Palmer /
2006 / Business Integration Journal November/December 2006

[Parreiras, Staab & Winter]: ”Marrying Ontological and Metamodelling Technical
Spaces” / Fernando Silvas Parreiras, Steffen Staab & Andreas Winter / 2007 / ESEC/ACM
FSE-2007 – Proceedings of the 6th joint meeting of the European software engineering
conference and the 14th ACM SIGSOFT symposium on Foundations of software
engineering, September 03 - 07, 2007, Dubrovnik, Croatia. ACM 2007, pp. 439 – 448

[Provost]: ”On the Cusp: A Global review of the Semantic Web Industry” / David
Provost / 2008 /

[Rambøll]: ”IT i praksis – Executive Summary” / Rambøll Management / 2003/ Rambøll
Management

[Recker & Mendling]: ”On the Translation between BPMN and BPEL: Conceptual
Mismatch between Process Modeling Languages” / Jan Recker & Jan Mendling / 2006
/ Proceedings 18th International Conference on Advanced Information Systems
Engineering. Proceedings of Workshops and Doctoral Consortiums

[Sheth]: ”Changing focus on interoperability in information systems: From system,
syntax, structure to semantics” / Amit P. Sheth / 1998 / Conference on Interoperating
Geographic Information Systems

[Snowden]: ”Complex Acts of Knowing: Paradox and Descriptive Self-awareness” /
Dave Snowden, 2002 / Journal of Knowledge Management - Vol 6, No. 2, 2002 (May)

[Sousa, Pereira & Marques]: ”Enterprise Architecture Alignment Heuristics” / Pedro
Sousa, Carlos Marques Pereira & José Alves Marques / 2005 / Microsoft Architect Journal,
Journal 4

[Sprott]: “SOA: An Introduction for Managers” / David Sprott / 2004 / CBDI Forum /
(http://www-1.ibm.com/services/us/bcs/pdf/soa-cbdi-report-2004-july.pdf)

[Sundblad & Sundblad]: “Serviceorienterad arkitektur—En översikt” / Sten Sundblad &
Per Sundblad / 2004 [Swenson]: “A Format for a Process Design Ecosystem” / Keith
Swenson / 2007 / BPTrends January 2007vi

[Terrasse et al.]: “Do we need metamodels AND ontologies for engineering
platforms?” / Marie-Noölle Terrasse, Marinette Savonnet, Eric Leclercq, Thierry Grison &
George Becker / 2006 / Proceedings of the 2006 international workshop on Global
integrated model management

http://www-1.ibm.com/services/us/bcs/pdf/soa-cbdi-report-2004-july.pdf
http://www-1.ibm.com/services/us/bcs/pdf/soa-cbdi-report-2004-july.pdf
http://www-1.ibm.com/services/us/bcs/pdf/soa-cbdi-report-2004-july.pdf

Page 212 /217

[TOGAF, 2006]: “SOA/TOGAF Practical Guide Project” / The Open Group / 2006 / The
Open Group

[Uschold, Jasper & Clark]: “Three Approaches for Knowledge Sharing: A Comparative
Analysis” / Mike Uschold, Rob Jasper & Peter Clark / 1999 / Proc 12th Workshop on
Knowledge Acquisition, Modeling, and Management (KAW'99)

[Vdovjak & Houben]: “RDF Based Architecture for Semantic Integration of
Heterogeneous Information Sources” / Richard Vdovjak & Gert-Jan Houben / 2001 /
International Workshop on Information Integration on the Web, ed. E. Simon, A. Tanaka,
Proceedings of the WIIW'2001

[Zachman, 1987]: “A framework for information systems architecture” / John A.
Zachman / 1987 / IBM Systems Journal, VOL 26. NO 3, International Business Machines
Corporation

[Zachman, 2000]: "Architecture Artifacts Vs Application Development Artifacts" / John
A. Zachman, 2000 / Zachman International

[Zachman & Sowa]: "Extending and Formalizing the Framework for Information
Systems Architecture" / John A. Zachman & John F. Sowa / 1992 / IBM Systems Journal,
Vol 31, No 3

Standards

[BPEL]: ”Web Services Business Process Execution Language Version 2.0” / OASIS /
2007

[BPMN, 2006]: ”Business Process Modelling Notation 2.0 RFP” / Object Management
Group / 2006

[BPMN, 2008]: ”Business Process Modelling Notation 1.1” / Object Management Group
/ 2008

[IEEE1471]: ”Recommended Practice for Architecture Description of Software-
Intensive Systems” / IEEE / 2000

[MOF]: ”Meta Object Facility (MOF) Core Specification” / Object Management Group /
2006 / OMG Available Specification Version 2.0

[OSM]: ”Organizational Structure Metamodel ” / Object Management Group / 2004 /
Request For Proposal

Page 213 /217

[OWL]:”OWL Web Ontology Language Guide” / W3C / 2003

[QVT]: “MOF QVT” / The Open Group / 2007 / Final Adopted Specification

[SBVR]: “Semantics of Business Vocabulary” / Object Management Group / 2008 /
OMG Available Specification Version 1.0

[SOA-RM]: "Reference Model for Service Oriented Architecture 1.0" / OASIS / 2006

[TOGAF]: ”The Open Group Architecture Framework” / The Open Group / 2007 /
Version 8.1.1, Enterprise Edition

[UPMS]: ”UML Profile and Metamodel for Services RFP” / The Open Group / 2006 /
Work in Progress

[WSDL]: ”Web Services Description Language (WSDL) 1.1” / W3C / 2001

[XSD]: ”XML Schema definition 1.0” / W3C / 2001

Encyclopaedia

[Britannica]: ”Architecture” / Encyclopaedia Britannica / 22/08-2008 /
(http://www.britannica.com/EBchecked/topic/32876/architecture)

Presentations

[Beckett]: “Introduction to RDF Query with SPARQL” / Dave Beckett / 2006 / Yahoo Inc.

http://www.britannica.com/EBchecked/topic/32876/architecture
http://www.britannica.com/EBchecked/topic/32876/architecture
http://www.britannica.com/EBchecked/topic/32876/architecture

	Thesis Problem and Methodology
	1.1 Motivation
	1.2 Thesis problem
	1.3 Delimitation
	1.4 Clarification of Problem Definition
	1.5 Methodology
	1.5.1 Research Design
	1.5.2 Hermeneutics

	1.6 Thesis structure

	Module 1 – Background and Concepts
	Chapter 2 – Enterprise Agility
	2.1 Definition of Enterprise
	2.2 Definition of Enterprise Agility
	2.3 Enterprise Agility and Information Technology
	2.4 Agility versus Alignment
	2.5 Enterprise Agility and Agile Software Development
	2.6 Chapter Summary

	Chapter 3 – Understanding the parts
	3.1 Enterprise Architecture
	3.1.1 What is Enterprise Architecture?
	3.1.2 Elements of Enterprise Architecture
	3.1.3 Enterprise Architecture Frameworks
	3.1.3.1 The Zachman Framework
	3.1.3.2 The Open Group Architecture Framework

	3.2 Business Process Management
	3.2.1 What is Business Process Management?
	3.2.2 The Business Process Life-Cycle
	3.2.3 Digitisation of Business Processes Management
	3.2.4 Elements of Business Process Management

	3.3 Service-oriented Architecture
	3.3.1 What is Service Oriented Architecture?
	3.3.2 What are Services?
	3.3.3 Loose Coupling
	3.3.4 The Effects of Service-Oriented Architecture

	3.4 Chapter Summary

	Module 2 – The Sum of the Parts
	Chapter 4 – BPM and SOA
	4.1 The Vision of BPM-SOA
	4.2 The Model-driven View
	4.2.1 Semantic Gaps in BPM-SOA
	4.2.1.1 The Modelling Value-chain for BPM-SOA
	4.2.1.2 Elements of Domain Specific Modelling Languages
	4.2.1.3 Semantic Gap – From Process Modelling to Process Execution
	4.2.1.4 From Business Modelling to Service Modelling

	4.3 The Methodology-driven View
	4.3.1 Introduction
	4.3.2 Design-time (Service Identification and Service Specification)
	4.3.2.1 Using Business Process Management for Service Design

	4.3.3 Service Change
	4.3.3.1 Behavioural Coupling
	4.3.3.2 Information Coupling
	4.3.3.3 The Impact of Coupling on Agility

	4.4 Is BPM the Business Case for SOA?
	4.5 Chapter Summary

	Chapter 5 – Contribution of Enterprise architecture
	5.1 Architecture Development in the Context of BPM-SOA
	5.2 Enterprise Architecture and Agility
	5.2.1 TOGAF and Alignment
	5.2.2 TOGAF and Agility
	5.2.3 Architecture Change Governance
	5.2.4 Discussion: TOGAf for Agility?

	5.3 Building a Foundation for Execution
	5.3.1 The Operating Model
	5.3.2 Enterprise Architecture
	5.3.3 IT Engagement Model
	5.3.4 Is the Foundation of Execution the Better Model??

	5.4 The Integrated Approach
	5.5 Challenges of Integrated Enterprise Modelling
	Managing this complexity is however a major challenge. To manage the complexity, it would be necessary to have visibility through the architecture artefacts. In EA, documentation in form of EA artefacts is typically used to reduce complexity. EA artefacts are highly abstract and codified representations of “physical” things in the architecture. Often the artefacts are modelled using DSML's, which encapsulates the domain knowledge. So having the individual components in the architecture documented will not be enough. Unless the enterprise can understand the relations between components in the enterprise with relative ease, then an inordinate amount of resources would have to be used to understand the impact of introducing changes in the architecture. Traceability thus becomes a critical capability; it should be possible to understand the enterprise architecture as a coherent system, instead of just as individual components. This sentiment is much in line with the IEEE 1471:2000 definition of architecture, which emphasises the relations between components.
	The purpose of this part of the chapter is to understand the obstacles to such a language, but also to build a foundation for a solution.
	5.5.1 Characteristics of Enterprise Modelling
	5.5.2 Strategies for Information Integration
	5.5.3 The Enterprise Meta-model
	5.5.4 Requirements for a Concrete Syntax

	5.6 Chapter Summary

	Module 3 – Connecting the Dots
	Chapter 6 – Implementing a Common Language
	6.1 Ontologies
	6.1.1 What are Ontologies?

	6.2 Ontology Representation
	6.2.1 Ontologies and the Semantic Web
	6.2.1.1 Resource Description Framework (RDF)
	6.2.1.2 RDF Vocabulary Description Language (RDFS)
	6.2.1.3 Simple Protocol and RDF Query Language (SPARQL)

	6.3 Using RDFS to Implement the Meta-model
	6.4 Chapter Summary

	Chapter 7 – The Project Scenario
	7.1 Project Scenario – T.A.X
	7.2 The Common Language
	7.2.1 Technology Choice
	7.2.2 Ontology Development
	7.2.3 Use-Case Demonstration
	7.2.3.1 Line of Sight
	7.2.3.2 Versioning

	7.3 Personal Reflections

	Module 4 – Conclusion, Perspectives and Criticism
	Chapter 8 – Conclusion, Perspectives and Criticism
	8.1 Conclusion
	8.2 Perspectives
	8.3 Criticism

