
ECE 209: Circuits and Electronics Laboratory

Review of Circuits as LTI Systems∗

Math Background: ODE’s, LTI Systems, and Laplace Transforms

Engineers must have analytical machinery to understand how systems change over time. For example,
springs and dampers in car suspension systems absorb kinetic energy after road disturbances and dissipate
the energy gently over time. Electronic filters protect circuits from large input transients in a similar way.
Hence, engineers need to know how to choose components in dynamical systems.

LTI Systems and ODEs: The motion of many physical systems can be modeled knowing only a few
of its derivatives. For example, a car’s position over time can be described well knowing its velocity or
acceleration. So we focus on the linear time-invariant (LTI) system

x(t) LTI System y(t)

which has input x(t) (e.g., height of terrain under the car) and output y(t) (e.g., height of passenger’s seat).
By our assumption that all we need are a few derivatives of the input and the output, then a typical ordinary
differential equation (ODE) that might model such a system is

y′′ + 3y′ + 2y = x′′ − x (1)

where y′ and y′′ are the first and second derivatives of signal y(t). Given a known input x(t), we would like
to integrate this differential equation to find an expression of y(t) that is only in terms of t. Then we can see
how to adjust our design parameters so that y(t) has a desirable shape (e.g., even with a bumpy x(t) road
surface, the car seat y(t) stays in one place). So we need a convenient way to solve this differential equation.

Linear Decomposition: Assume that x can be broken into two parts so that x(t) = x1(t) + x2(t). By
inspection, if I can solve Equation (1) for the response y1 to x1 alone and the response y2 to x2 alone, then
the response y to x would be y1 + y2. Further, imagine that I could find a set of functions such that:

• When a function in the set is an input to Equation (1), the output is simple to find.

• Every useful input x(t) can be expressed as a sum (or integral) of functions from this set.

In this case, solving ODE’s like Equation (1) would be trivial. Before even knowing the input x, I could find
the solution to the ODE for every function in this special set. Then when I finally do know my input, I just
sum up the relevant prototypical solutions.

Consider functions of the form t 7→ est where s = σ + jω is a complex number with real part σ and
imaginary part ω. Notice that for a function f(t) = Aest (where A is any constant complex number),

f ′(t) = sAest = sf(t) and

∫

f(t) dt =
1

s
Aest =

1

s
f(t). (2)

That is, for a complex exponential, differentiation is identical to multiplication by s and integration is identical
to division by s. So complex exponentials turn ODE calculus into simple algebra.

Stability and the Characteristic Response: Because every x(t) = x(t) + 0, then the zero-input case
is important to us, and we should handle it first. These zero-input effects will be a part of every solution
regardless of the input, and so the output trajectory for zero input is called the characteristic or intrinsic
or transient response of the system. We will assume that this output is made up of complex exponentials,
and so we let y(t) , Aest and x(t) , 0, which turns Equation (1) into

Aest
(

s2 + 3s + 2
)

= 0, (3)

and so we must solve for values of s that make this equation true. Fortunately, |Aest| 6= 0 for all s, and so
the roots of the characteristic polynomial s2 + 3s + 2,

s = −1 and s = −2, (4)
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both solve Equation (3). Hence, the zero-input transient response of Equation (1) is

y0(t) = Ae−1t + Be−2t

where A and B are complex numbers that correspond to different initial conditions. Because eσt → 0 as
t → ∞ for all σ < 0, then y0(t) → 0 as t → ∞. So, as long as the roots in Equation (4) are very negative,
then y0(t) will decay quickly, and we can usually ignore its effect. In general, the roots of the characteristic
polynomial are called eigenvalues (i.e., “intrinsic values” or “characteristic values”). When the real part
of the eigenvalues are negative, then the characteristic response will continuously decay. Such LTI systems
are called STABLE because aspects of the output that are not due to the input will always decay to zero.
Unstable systems have components that grow and eventually dominate the output.

Stable Response to an Input: Now we assume that the LTI system is stable (i.e., its eigenvalues have
negative real parts) so that we can focus on the system after its transient response has decayed out. So we
consider the input x(t) , Xest where X is some complex number. It seems reasonable to guess that the
output y(t) = Y est where Y is some complex number. If our guess is wrong, there will be no solution, and
we will try something else. So under these assumptions, Equation (1) becomes

Y est(s2 + 3s + 2) = Xest(s2 − 1).

Again because |est| 6= 0 for all s,
Y

X
=

s2 − 1

s2 + 3s + 2
. (5)

That is, for a given input Xest, we can find the output Y est by scaling X by the ratio in Equation (5).
This transfer function represents the impact of the system on any individual complex exponential. The
denominator of the transfer function is the characteristic polynomial of the system. The system’s eigenvalues
are called poles because the transfer function’s denominator is zero there, and so the transfer function’s
magnitude is like a tent being pulled toward the sky by each of its “poles.” So, given a transfer function, we
must make sure its denominator roots (i.e., poles) have negative real parts.

For example, if x(t) , e−2t cos(3t), then the input can easily be expressed as a sum of complex exponen-
tials using Euler’s formula. That is,

x(t) = e−2t cos(3t) = e−2t e
j3t + e−j3t

2
=

1

2
e(−2+j3)t +

1

2
e(−2−j3)t,

which is a kind of “generalized Fourier series” of the signal. So the response to x(t) is the sum of (1/2)e(−2+j3)t

and (1/2)e(−2−j3)t scaled by the transfer function evaluated at s = (−2 + j3) and s = (−2 − j3).

Laplace Transforms and the Frequency Domain: All that is left is representing any input x as a sum
or integral of complex exponentials. If x can be expressed this way, then mathematical theory states

x(t) =
1

2πj

∫ σ+j∞

σ−j∞

X(s)est ds where X(s) =

∫ ∞

0−

x(t)e−st dt. (6)

That is, the Laplace transform X(s) of signal x provides the coefficient for the est part of the signal, and we
can scale X(s) by the transfer function to find how much of est contributes to our output. Luckily,

(i) Most inputs interesting to engineers do have Laplace transforms.

(ii) Many common signals have well-documented Laplace transforms.

(iii) Operations on Laplace transforms form other Laplace transforms. For example, the signal g(t) + h(t)
has the Laplace transform G(s) + H(s). More importantly, the signal dg(t)/dt = sG(s).

(iv) As long as each of the poles of a real system’s transfer function has a negative real part, the input
X(s) and transfer function only need to be evaluated at s = jω for all ω > 0.

Because of item (iv), design work on filters focuses on the frequency (or Fourier) spectrum. That is, we
think of the frequency content (e.g., “fast changing” or “slow changing”) of inputs and the ability of systems
to shape that content (e.g., “slows the signal” or “removes slow changes”). Because of Euler’s formula, we
can think of sinusoids with angular frequency ω rather than ejωt complex exponentials. Transfer functions
then have a gain magnitude (e.g., from dissipative attenuation) and phase shift (e.g., from delay) for each ω.
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Laplace Representations of Circuit Elements

Resistors, capacitors, and inductors are important tools in electronic design. The following summary assumes
zero initial conditions.

iC
+ vC −

C

iC(t) = Cv′C(t)

IC(s) = sCVC(s)

ZC(s) ,
VC(s)

IC(s)
=

1

sC

iL
+ vL −

L

vL(t) = Li′L(t)

VL(s) = sLIL(s)

ZL(s) ,
VL(s)

IL(s)
= sL

iR
+ vR −

R

vR(t) = RiR(t)

VR(s) = RIR(s)

ZR(s) ,
VR(s)

IR(s)
= R

The Laplace transformations of the voltage-to-current equations use the fact that derivatives in the time
domain correspond to multiplication by s in the Laplace domain. The impedance of a circuit element is its
voltage-to-current ratio at a given frequency. For example, assume that the voltage driving a capacitor is
vC , sin(2t). Then the current iC = Cv′ = 2C cos(2t). Hence, max{vC}/ max{iC} = 1/(2C) which matches
|ZC(j2)| = |1/(j2C)| = 1/(2C). The larger the capacitance, the larger the current, and so bigger capacitors
provide less impedance to high frequency current.

Series Impedance

Reducing a complicated network of impedances to a few equivalent impedances is a common circuit analysis
task. Consider the equivalent impedance of n impedances in series. Apply the (Laplace-domain) loop rule.

Z1

I
Z2

I
Zn

I
· · · VoutVin = Zseries VoutVin

The equivalent impedance Zseries is the total voltage drop divided by the series current. That is,

Zseries(s) =
Vin(s) − Vout(s)

I(s)
=

I(s)Z1(s) + I(s)Z2(s) + · · · + I(s)Zn(s)

I(s)
= Z1(s) + Z2(s) + · · · + Zn(s),

and so the equivalent series impedance is the simple sum of the constituent impedances.

Parallel Impedance

Next, consider the equivalent impedance of n impedances in parallel, which is often denoted Z1‖Z2‖ · · · ‖Zn.

Z1

Z2

Zn

...
Vin Vout = Zpar VoutVin

The equivalent impedance Zparallel is the voltage drop divided by the total current. That is,

Zpar(s) =
Vin(s) − Vout(s)

Vin(s)−Vout(s)
Z1(s)

+ Vin(s)−Vout(s)
Z2(s)

+ · · · + Vin(s)−Vout(s)
Zn(s)

=

(

1

Z1(s)
+

1

Z2(s)
+ · · · +

1

Zn(s)

)−1

.

In the special but very common case of only two branches (i.e., n = 2),

Z1‖2(s) , Z1(s)‖Z2(s) =

(

1

Z1(s)
+

1

Z2(s)

)−1

=

(

Z2(s) + Z1(s)

Z1(s)Z2(s)

)−1

=
Z1(s)Z2(s)

Z1(s) + Z2(s)
.
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The Voltage Divider

Most passive electronic circuits can be reduced to a voltage divider which splits a driving signal between two
impedances.

0 V

ZA

I

ZB

I
Vin Vout

The (Laplace-domain) current through the entire circuit is

I(s) =
Vin(s)

ZA(s) + ZB(s)
,

and the output Vout(s) = I(s) × ZB(s), and

Vout(s)

Vin(s)
=

ZB(s)

ZA(s) + ZB(s)
.

So at each frequency ω, the output is the same proportion of the input as ZB is of the total ZA + ZB.
However, the value of impedances ZA and ZB vary with frequency.

Example: An RC Low-Pass Filter

0 V

R

C

Vin Vout
Vout(s)

Vin(s)
=

1
sC

R + 1
sC

=
1

sRC + 1

The DC (i.e., constant) parts of Vin are passed
directly through the filter and show up at the output.

Faster components of the input induce displacement current
within the capacitor, and so they get attenuated through

the resistor. So Vout is a “slower” version of Vin.

First-Order Filters: Shortcut via Thévenin Equivalent Source

When an RC circuit contains only one capacitor and an output across that capacitor, it’s helpful to convert
the rest of the circuit into its Thévenin equivalent; the result is a simple voltage divider. That is,

1. Remove the capacitor C from the system (i.e., replace it with an open circuit).

2. Find the constant gain from input to output. Call it K.

3. Place a short circuit on the input and find the equivalent resistance across the output. Call it Req.

Then the transfer function will then be

K

sReqC + 1
(compare to RC divider low-pass example above).

For example,

0 V

Vin

R1 R2

R3 C

R4

+
Vout

−

Vout(s)

Vin(s)
=

R3

R1+R2+R3+R4

s (R3‖(R1 + R2 + R4)) C + 1

=
R3

sR3 (R1 + R2 + R4)C + R1 + R2 + R3 + R4

Simplifying circuits this way (i.e., by using Thévenin equivalents) is useful in many situations.
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