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1 Simple connectedness and the logarithm

This is a second course in complex variable theory with an emphasis on
technique rather than theory. None the less I intend to be rigorous and you
should feel free to question any ‘hand waving’ that I indulge in.

But where should rigour start? It is neither necessary nor desirable to
start by reproving all the results of a first course. Instead I shall proceed on
the assumption that all the standard theorems (Cauchy’s theorem, Taylor’s
theorem, Laurent’s theorem and so on) have been proved rigourously for
analytic functions1 on an open disc and extend them as necessary.

Cambridge students are (or, at least ought to be) already familiar with
one sort of extension.

Definition 1 An open set U in C is called disconnected if we can find open
sets U1 and U2 such that

(i) U1 ∪ U2 = U ,
(ii) U1 ∩ U2 = ∅,
(iii) U1, U2 6= ∅.
An open set which is not disconnected is called connected.

Theorem 2 If U is an open connected set in C and f : U → C is analytic
and not identically zero then all the zeros of f are isolated that is, given
w ∈ U with f(w) = 0 we can find a δ > 0 such that D(w, δ) ⊆ U and
f(z) 6= 0 whenever z ∈ D(w, δ) and z 6= w.

Here and elsewhere

D(w, δ) = {z : |w − z| < δ}.

The hypothesis of connectedness is exactly what we need in Theorem 2.

Theorem 3 If U is an open set then U is connected if and only if the zeros
of every non-constant analytic function on U are isolated.

1Analytic functions are sometimes called ‘holomorphic functions’. We shall call a func-
tion which is ‘analytic except for poles’ a ‘meromorphic function’.
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If necessary, I shall quote results along the lines of Theorem 2 without proof
but I will be happy to give proofs in supplementary lectures if requested.

Exercise 4 (Maximum principle) (i) Suppose that a, b ∈ C with b 6= 0
and N is an integer with N ≥ 1. Show that there is a θ ∈ R such that

|a+ b(δ exp iθ)N | = |a|+ |b|δN

for all real δ with δ ≥ 0.
(ii) Suppose that f : D(0, 1)→ C is analytic. Show that

f(z) =
∞
∑

n=0

anz
n

where there is some constant M such that |an| ≤ M2n (we can make much
better estimates). Deduce that either f is constant or we can find N ≥ 1 and
aN 6= 0 such that

f(z) = a0 + (aN + η(z))zN

with ηz → 0 as z → 0.
(iii) If U is a connected open subset of C and f is a non-constant analytic

function on U , show that |f | has no maxima.
(iv) Does the result of (iii) mean that f is unbounded on U? Give reasons.
(v) Show that if is an open set which is not connected then there exists a

non-constant analytic function f on U such that |f | has a maximum.

Exercise 5 (i) Suppose f : D(0, 1)→ C is a non-constant analytic function
with f(0) = 0. Show that we can find a δ with 0 < δ < 1 such that f(z) 6= 0
for all |z| = δ and an ε > 0 such that |f(z)| ≥ ε for all |z| = δ. Use Rouché’s
theorem to deduce that f(D(0, 1)) ⊇ D(0, ε).

(ii) (Open mapping theorem) If U is a connected open subset of C
and f is a non-constant analytic function on U show that f(U) is open.

(iii) Deduce the result of Exercise 4. (Thus the maximum principle follows
from the open mapping theorem.)

It can be argued that much of complex analysis reduces to the study of
the logarithm and this course is no exception. We need a general condition
on an open set which allows us to define a logarithm. Recall that we write
T = R/2πZ.
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Definition 6 An open set U in C is said to be simply connected if it is
connected and given any continuous function γ : T → U we can find a
continuous function G : [0, 1]× T → U such that

G(0, t) = γ(t)

G(1, t) = G(1, 0)

for all t ∈ T.

In the language of elementary algebraic topology a connected open set is
simply connected if every loop can be homotoped to a point.

Theorem 7 If U is an open simply connected set in C that does not contain
0 we can find an analytic function log : U → C such that exp(log z) = z for
all z ∈ U . The function log is unique up to the addition of integer multiple
of 2πi.

From an elementary viewpoint, the most direct way of proving Theo-
rem 7 is to show that any piece wise smooth loop can be homotoped through
piecewise smooth loops to a point and then use the integral definition of the
logarithm. However, the proof is a little messy and we shall use a different
approach which is longer but introduces some useful ideas.

Theorem 8 (i) If 0 < r < |w| we can find an analytic function log :
D(w, r) → C such that exp(log z) = z for all z ∈ D(w, r). The function
log is unique up to the addition of integer multiple of 2πi.

(ii) If γ : [a, b]→ C\{0} is continuous we can find a continuous function
γ̃ : [a, b]→ C such that exp ◦γ̃ = γ for all

(iii) Under the hypotheses of (ii), if ˜̃γ : [a, b]→ C is a continuous function
such that exp ◦˜̃γ = γ then we can find an integer n such that ˜̃γ = γ̃ + 2πin.

(iv) If U is a simply connected open set not containing 0 then, if γ :
[a, b] → U is continuous, γ(a) = γ(b), and γ̃ : [a, b] → C is a continuous
function such that exp ◦γ̃ = γ then γ̃(a) = γ̃(b).

Theorem 7 is now relatively easy to prove.
It would be nice to show that simple connectedness is the correct condition

here. The following result, although not the best possible, is hard enough
and shows that this is effectively the case.

Lemma 9 Suppose that U is a non-empty open connected set in C with non-
empty complement. The following two conditions are equivalent.

(i) The set U is simply connected.
(ii) If f : U → C is a non-constant analytic function with no zeros then

we can find an analytic function log : f(U) → C with exp(log f(z)) = f(z)
for all z ∈ U
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(In looking at condition (ii), recall that the open mapping theorem given in
Exercise 5 tells us that f(U) is open.) The reader is invited to try and prove
this result directly but we shall obtain it only after a long chain of arguments
leading to the Riemann mapping theorem.

The following result is trivial but worth noting.

Lemma 10 If U and V are open subsets of C such that there exists a home-
omorphism f : U → V then if U is simply connected so is V .

Exercise 11 In the next two exercises we develop an alternative approach
to Theorem 7 along the lines suggested above.

(i) Suppose that U is an open set in C and that G : [0, 1] × T → U is
a continuous function. Show, by using compactness arguments or otherwise,
that there exists an ε > 0 such that N(G(s, t), ε) ⊆ U for all (s, t) ∈ [0, 1]×T,
and that we can find an integer N ≥ 1 such that if

(s1, t1), (s2, t2) ∈ [0, 1]× T and |s1 − s2| < 4N−1, |t1 − t2| < 8πN−1

then |G(s1, t1)−G(s2, t2)| < ε/4.
(ii) Continuing with the notation and hypotheses of of (i) show that if

γ1, γ2 : T → C are the piecewise linear functions2 with

γ0(2πr/N) = G(0, 2πr/N)

γ1(2πr/N) = G(1, 2πr/N)

for all integers r with 0 ≤ r ≤ N then there exists a constant λ and a
continuous function H : [0, 1]× T → U with

H(0, t) = γ0(0, t)

H(1, t) = γ1(1, t)

for all t ∈ [0, 1], such that, for each fixed t, H(s, t) is a piecewise linear
function of s and the curve H( , t) : T → U is of length less than λ.

(iii) Continuing with the notation and hypotheses of of (i) show that if
G(s, 1) and G(s, 0) are piecewise smooth functions of s then there exists a
constant λ and a continuous function F : [0, 1]× T → U with

F (0, t) = γ0(0, t)

F (1, t) = γ1(1, t)

for all t ∈ [0, 1], such that, for each fixed t, F (s, t) is a piecewise smooth
function of s and the curve F ( , t) : T → U is of length less than λ.

2Strictly speaking the simplest piecewise linear functions.
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(iv) Show that in any simply connected open set any piece wise smooth
loop can be homotoped through piecewise smooth loops of bounded length to a
point.

Exercise 12 (i) Suppose that U is an open set in C and F : [0, 1]× T → U
is a continuous function such that, for each fixed t, F (s, t) is a piecewise
smooth function of s and the curve F ( , t) : T → U is of length less than
λ. We write Γs for the contour defined by F ( , t). Show by a compactness
argument, or otherwise, that if f : U → C is continuous then

∫

Γs
f(z) dz is

a continuous function of s.
(ii) If 0 < δ < |w| show that if Γ is a contour lying entirely within N(w, δ)

joining z1 = r1e
iθ1 to z2 = r2e

iθ2 [r1, r2 > 0, θ1, θ2 ∈ R] show that

∫

Γ

1

z
dz = (log r2 − log r1) + i(θ1 − θ2) + 2nπi

for some integer n.
(iii) By using compactness arguments to split Γ into suitable bits, or oth-

erwise, show that if U is any open set not containing 0 and Γ is any closed
contour (i.e. loop) lying entirely within U then

∫

Γ

1

z
dz = 2Nπi

for some integer N .
(iv) Use results from this exercise and its predecessor to show that if U is

any simply connected open set not containing 0 and Γ is any closed contour
lying entirely within U then

∫

Γ

1

z
dz = 0.

Hence, prove Theorem 7.

2 The Riemann mapping theorem

By using a very beautiful physical argument, Riemann obtained the following
result.

Theorem 13 (Riemann mapping theorem) If Ω is an non-empty, open,
simply connected subset of C with non-empty complement then there exists a
conformal map of Ω to the unit disc D(0, 1).
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Unfortunately his argument depended on the assumption of the existence of
a function which minimises a certain energy. Since Riemann was an intel-
lectual giant and his result is correct it is often suggested that all that was
needed was a little rigour to be produced by pygmies. However, Riemann’s
argument actually fails in the related three dimensional case so (in the lec-
turer’s opinion) although Riemann’s argument certainly showed that a very
wide class of sets could be conformally transformed into the unit disc the ex-
treme generality of the final result could not reasonably have been expected
from his argument alone.

In order to rescue the Riemann mapping theorem mathematicians em-
barked on two separate programmes. The first was to study conformal map-
ping in more detail and the second to find abstract principles to guarantee
the existence of minima in a wide range of general circumstances (in mod-
ern terms, to find appropriate compact spaces). The contents of this section
come from the first of these programmes, the contents of the next (on nor-
mal families) come from the second. (As a point of history, the first complete
proof of the Riemann mapping theorem was given by Poincaré.)

Theorem 14 (Schwarz’s inequality) If f : D(0, 1) → D(0, 1) is analytic
and f(0) = 0 then

(i) |f(z)| ≤ |z| for all |z| < 1 and |f ′(0)| ≤ 1.
(ii) If |f(w)| = |w| for some |w| < 1 with w 6= 0, or if |f ′(0)| = 1, then

we can find a θ ∈ R such that f(z) = eiθz for all |z| < 1.

Schwarz’s inequality enables us to classify the conformal maps of the unit
disc into itself. If a ∈ D(0, 1) and θ ∈ R let us write

Ta(z) =
z − a

1− a∗z

Rθ(z) = eiθz

Lemma 15 a ∈ D(0, 1) and θ ∈ R then Ta and Rθ map D(0, 1) conformally
into itself. Further T−1a = Ta.

Theorem 16 (i) If S maps D(0, 1) conformally into itself then we can find
a ∈ D(0, 1) and θ ∈ R such that S = RθTa. If S = Rθ′Ta′ with a

′ ∈ D(0, 1)
and θ′ ∈ R then a = a′ and θ − θ′ ∈ 2πZ.

(ii) Let U be a simply connected open set and a ∈ U . If there exists a
conformal map g : U → D(0, 1) then there exists precisely one conformal
map f : U → D(0, 1) with f(a) = 0 and f ′(a) real and positive.

7



Theorem 16 (ii) can be modified in various simple but useful ways.
We conclude this section with some results which are not needed for the

proof of the Riemann mapping theorem but which show that the ‘surrounding
scenery’ is also interesting and provide a useful revision of some results from
earlier courses on complex variable. (If these results are strange to you, the
lecturer can give a supplementary lecture.)

Example 17 If a, b ∈ D(0, 1) then there exists a conformal map

f : D(0, 1) \ {a} → D(0, 1) \ {b}.

Example 18 If a1, a2, b1, b2 ∈ D(0, 1) then there exists a conformal map

f : D(0, 1) \ {a1, a2} → D(0, 1) \ {b1, b2}

if and only if

∣

∣

∣

∣

a2 − a1
a∗1a2 − 1

∣

∣

∣

∣

=

∣

∣

∣

∣

b2 − b1
b∗1b2 − 1

∣

∣

∣

∣

.

In Example 18 we see the the ‘natural rigidity’ of complex analysis reassert
itself.

3 Normal families

Consider an open set U in C and the collection F of analytic functions
f : U → C. What is the ‘natural topology’ on F or, in the more old
fashioned language of this course, what is the ‘natural mode of convergence’
for F? Looking at the convergence of power series and at results like Morera’s
theorem suggests the following approach.

Definition 19 If U is an open set in C and fn : U → C we say that fn → f0
uniformly on compacta if, whenever K is a compact subset of U , fn|K →
f0|K uniformly on K.

We shall prove the chain of equivalences in the next lemma, but the proof
(and, sometimes, the explicit statement) of similar chains will be left to the
reader. Here and elsewhere E is the closure of E.

Lemma 20 Let U be an open set in C and fn : U → C a sequence of
functions. The following four statements are equivalent.

(i) fn → f0 uniformly on compacta.
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(ii) Whenever D(w, δ) ⊆ U then fn|D(w, δ) → f0|D(w, δ) uniformly on
D(w, δ).

(iii) Whenever D(w, δ) is an open disc with D(w, δ) ⊆ U then fn|D(w, δ)→
f0|D(w, δ) uniformly on D(w, δ).

(iv) If w ∈ U we can find a δ > 0 such that D(w, δ) ⊆ U and fn|D(w, δ)→
f0|D(w, δ) uniformly on D(w, δ).

We shall make use of the following result.

Lemma 21 If U is an open subset of C we can find compact sets K1 ⊆ K2 ⊆
K3 ⊆ . . . such that U =

⋃∞

j=1 IntKj =
⋃∞

j=1Kj.

Exercise 22 (i) If d1, d2, . . . are metrics on a space X show that

d(x, y) =
∞
∑

j=1

2−j min(1, dj(x, y))

defines a metric on X. Show that, if each dj is a complete metric and each
dj defines the same topology (i.e. has the same open sets) then d is complete.

(ii) If U is an open set in C show that there is a complete metric d on
the space C(U) of continuous functions f : U → C such that if fn ∈ C(U)
then d(fn, f0)→ 0 if and only if fn → f0 uniformly on compacta.

We also note the following simple but important consequence of Morera’s
theorem.

Lemma 23 Let U be an open set in C and fn : U → C a sequence of
functions with the property that fn → f0 uniformly on compacta. If fn is
analytic for each n ≥ 1 then f is analytic.

Exercise 24 If U is an open set in C show that there is a complete metric
d on the space A(U) of analytic functions f : U → C such that if fn ∈ A(U)
then d(fn, f0)→ 0 if and only if fn → f0 uniformly on compacta.

We now talk about what in modern terms would be called compactness.

Definition 25 Let U be an open set in C and let G be a collection of analytic
functions on U . We say that G is normal if given any sequence fn ∈ G we can
find a subsequence fn(j) which converges uniformly on compacta to a limit.

Note that we do not demand that the limit lies in G.
Fortunately normal families have a simpler characterisation.
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Definition 26 Let U be an open set in C and let G be a collection of func-
tions on U . We say that G is uniformly bounded on compacta if given any
compact subset K of U we can find a constant CK such that |f(z)| ≤ CK for
all f ∈ G and all z ∈ K.

Theorem 27 Let U be an open set in C and let G be a collection of analytic
functions on U . Then G is normal if and only if it is uniformly bounded on
compacta.

We shall prove Theorem 27 via the following lemma.

Lemma 28 Let G be a collection of analytic functions on the unit disc
D(0, 1) with the property that |f(z)| ≤ 1 for all z ∈ D(0, 1) and f ∈ G.
Then given any sequence fn ∈ G we can find a subsequence fn(j) which con-
verges uniformly on D(0, 1/2).

Exercise 29 The following is a slightly different treatment of Theorem 27.
Recall that that we call a metric space (X, d) sequentially compact if given
any sequence xn ∈ X we can find a convergent subsequence xn(j). (It can
be shown that, for a metric space, sequential compactness is equivalent to
compactness but we shall not need this.)

(i) Show that if we adopt the notation of Exercise 24 a subset G of A(U)
is normal if and only if its closure G is sequentially compact with respect to
the metric d.

(ii) (Arzeli-Ascoli theorem) Let K be a compact subset of C. Consider
the space C(K) of continuous functions f : K → C with the uniform norm.
If F is a subset of C(K) show that F is sequentially compact if and only if

(1) F is bounded, that is, there exists a constant λ such that ‖f‖ ≤ λ
for all f ∈ F .

(2) F is equicontinuous, that is, given any ε > 0 there exists a δ(ε) > 0
such that whenever z, w ∈ U , |z−w| < δ(ε) and f ∈ F then |f(z)−f(w)| < ε.

(iii) Let U be a compact subset of C. Consider the space C(U) of contin-
uous functions f : U → C under the metric d defined in Exercise 22. If F is
a subset of C(K) show that F is sequentially compact if and only if

(1) F is bounded on compacta, that is, whenever K is a compact subset
of U , there exists a constant λK such that |f(z)| ≤ λK for all z ∈ K and
f ∈ F .

(2) F is equicontinuous on compacta, that is, given any K is a compact
subset of U and any ε > 0 there exists a δ(ε,K) > 0 such that whenever
z, w ∈ K, |z − w| < δ(ε,K) and f ∈ F then |f(z)− f(w)| < ε.
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(iv) Suppose that F is a collection of analytic functions f : D(0, 1)→ C
with |f(z)| ≤ λ for all z ∈ D(0, 1). Show, by using Cauchy’s formula, or
otherwise that F is equicontinuous on D(0, 1− ε) for every ε with 1 > ε > 0.

(v) Prove Theorem 27 using the ideas of (iii) and (iv).

4 Proof of the Riemann mapping theorem

We now embark on a series of lemmas which together prove the Riemann
mapping theorem stated in Theorem 13.

Lemma 30 If Ω is an non-empty, open, simply connected subset of C with
non-empty complement then there exists a conformal map of Ω to a set Ω′

such that C \ Ω′ contains a disc D(w, δ) with δ > 0.

Lemma 31 If Ω is an non-empty, open, simply connected subset of C with
non-empty complement then there exists a conformal map of Ω to a set Ω′′

such that Ω′′ ⊆ D(0, 1).

It is worth remarking that the condition ‘Ω has non-empty complement’
cannot be removed.

Lemma 32 There does not exist a conformal map f : C → D(0, 1).

Thus the Riemann mapping theorem follows from the following slightly sim-
pler version.

Lemma 33 If Ω is an non-empty, open, simply connected subset of D(0, 1)
then there exists a conformal map of Ω to the unit disc D(0, 1).

We expect the proof of the Riemann mapping theorem to involve a max-
imisation argument and Theorem 16 (ii) suggests one possibility.

Lemma 34 Suppose Ω is a open, non-empty, simply connected subset of
D(0, 1). If a ∈ Ω then the set F of injective analytic functions f : Ω →
D(0, 1) with f(a) = 0, f ′(a) real and f ′(a) ≥ 0 then F is a non-empty
normal set.

Lemma 35 With the hypotheses and notation of Lemma 34 there exists a κ
such that f ′(a) ≤ κ for all f ∈ F .

Lemma 36 Suppose that U is an open connected subset of C and we have
a sequence of analytic functions fn on U with fN → f uniformly. If each fn
is injective then either f is constant or f is injective.
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Lemma 37 With the hypotheses and notation of Lemma 34 there exists a
g ∈ F such that g′(a) ≥ f ′(a) for all f ∈ F .

It may be worth remarking that though g is, in fact, unique we have not yet
proved this.

All we need now is a little ingenuity and this is supplied by an idea of
Koebe.

Lemma 38 (i) If U is an open simply connected subset of D(0, 1) containing
0 but with U 6= D(0, 1) then we can find a bijective analytic function h : U →
D(0, 1) such that h(0) = 0, h′(0) is real and h′(0) > 1.

(ii) With the hypotheses and notation of Lemma 34, if g ∈ F and g(Ω) 6=
D(0, 1) we can find an f ∈ F with f ′(0) > g′(0).

Theorem 13 now follows at once. Combining Theorem 13 with Theo-
rem 16 (ii) we obtain the following mild sharpening without further work.

Theorem 39 If U be a simply connected open set with U 6= C and a ∈ U .
then there exists precisely one conformal map f : U → D(0, 1) with f(a) = 0
and f ′(a) real and positive.

By reviewing the proof of the Riemann mapping theorem that we have
given it becomes clear that we have in fact proved Lemma 9.

Exercise 40 Check that we can prove Lemma 9 by the method used to prove
the Riemann mapping theorem.

It is important to realise that the intuition we gather from the use of
simple conformal transforms in physics and elsewhere may be an unreliable
guide in the more general context of the Riemann mapping theorem.

Example 41 There is a bounded non-empty simply connected open set U
such that if we have conformal map f : D(0, 1) → U there does not exist a
continuous bijective map f̃ : D(0, 1)→ U with f̃ |D(0, 1) = f .

Riemann’s mapping theorem is a beginning and not an end. Riemann
stated his result in a more general context than we have done here and the
continuation of Riemann’s ideas leads to Klein’s uniformisation theorem. On
the other hand, if we continued the development suggested here we would
look at topics like Green’s functions, boundary behaviour and the Picard
theorems. If time permits I shall look at some of these ideas later but I am
anxious not to hurry through the topics from number theory which will be
discussed in the next few lectures.

12



5 Infinite products

Our object in the next few lectures will be to prove the following remarkable
theorem of Dirichlet on primes in arithmetic progression.

Theorem 42 (Dirichlet) If a and d are strictly positive coprime integers
then there are infinitely many primes of the form a + nd with n a positive
integer.

(Obviously the result must fail if a and d are not coprime.)
There exist a variety of proofs of special cases when d has particular

values but, so far as I know, Dirichlet’s proof of his theorem remains, essen-
tially, the only approachable one. In particular there is no known reasonable3

elementary (in the technical sense of not using analysis) proof.
Dirichlet’s method starts from an observation of Euler.

Lemma 43 If s is real with s > 1 then

∏

p prime
p≤N

(

1− 1

ps

)−1

→
∞
∑

n=1

1

ns
.

Using this result, we get a new proof of the existence of an infinity of primes.

Theorem 44 (Euclid) There exist an infinity of primes.

This suggests that it may be worth investigating infinite products a bit
more.

Definition 45 Let aj ∈ C. If
∏N

n=1(1 + an) tends to a limit L as N → ∞
we say that the infinite product

∏∞

n=1(1 + an) converges to a value L and
write

∞
∏

n=1

(1 + an) = L.

If the infinite product
∏∞

n=1(1+ |an|) converges then we say that
∏∞

n=1(1+an)
is absolutely convergent.

The next result was removed from the first year of the Tripos a couple of
years before I took it.

3In the sense that most reasonable people would call reasonable. Selberg produced a
(technically) elementary proof which may be found in his collected works.
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Lemma 46 Let aj ∈ C.
(i)
∏∞

n=1(1 + an) is absolutely convergent if and only if
∑∞

n=1 an is.
(ii) If

∏∞

n=1(1 + an) is absolutely convergent and 1 + an 6= 0 for each n
then

∞
∏

n=1

(1 + an) 6= 0.

Exercise 47 Find aj ∈ C such that
∏∞

n=1(1+an) is not absolutely convergent
but is convergent to a non-zero value.

We shall only make use of absolute convergent infinite products.

Exercise 48 If
∏∞

n=1(1 + an) is absolutely convergent and σ : N → N is
a bijection (that is, σ is a permutation of N) show that

∏∞

n=1(1 + aσ(n)) is
absolutely convergent and

∞
∏

n=1

(1 + aσ(n)) =
∞
∏

n=1

(1 + an)

Whilst this is a useful result to know, we shall make no essential use of it.
When we write

∑

p prime or
∏

p prime we mean the primes p to be taken in
order of increasing size.

Using Lemma 46 we obtain the following strengthening of Euclid’s theo-
rem.

Theorem 49 (Euler)
∑

p prime

1

p
=∞.

Since we wish to consider infinite products of functions it is obvious that
we shall need an analogue of the Weierstrass M-test for products, obvious
what that analogue should be and obvious how to prove it.

Lemma 50 Suppose U is an open subset of C and that we have a sequence
of functions gn : U → C and a sequence of positive real numbers Mn such
that Mn ≥ |gn(z)| for all z ∈ U . If

∑∞

n=1Mn converges then
∏N

n=1(1+gn(z))
converges uniformly on U .

Later we shall need to consider
∑

n−s with s complex. To avoid ambiguity,
we shall take n−s = exp(−s log n) where log n is the real logarithm of n.
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Lemma 51 If <s > 1 we have

∏

p prime

(1− p−s)−1 =
∞
∑

n=1

n−s

both sides being absolutely convergent for each s and uniformly convergent
for <s > 1 + ε for each fixed ε > 0.

We now detour briefly from the main argument to show how infinite
products can be used to answer a very natural question. ‘Can we always find
an analytic function with specified zeros?’ (We count multiple zeros multiply
in the usual way.) Naturally we need to take account of the following fact.

Lemma 52 If z1, z2, . . . are distinct zeros of an analytic function which is
not identically zero then zn →∞ as n→∞.

A little thought suggests the path we ought to take though we may not
see how to reach it. A way to reach the path is provided by the Weierstrass
primary function E(z,m).

Definition 53 If m is a strictly positive integer

E(z,m) = (1− z)ez+z
2/2+z3/3+···+zm/m.

Lemma 54 The function E( ,m) : C → C is analytic with a unique zero at
1. If |z| ≤ 1 then

|1− E(z,m)| ≤ |z|m+1.

(It is nice to have such a neat result but for our purposes |1 − E(z,m)| ≤
A|z|m+1 for |z| ≤ R with any A and R would be just as good.)

Theorem 55 (Weierstrass) If k is a positive integer and z1, z2, . . . is a
sequence of non-zero complex numbers with zn →∞ then

F (z) = zk
∞
∏

j=1

E(z/zj, j)

is a well defined analytic function with a zero of order k at 0, and zeros at
the zj (multiple zeros counted multiply) and no others.

Lemma 56 If f1 and f2 are analytic functions on C with the same zeros
(multiple zeros counted multiply) then there exists an analytic function g
such that

f1(z) = eg(z)f2(z).
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Lemma 57 If z1, z2, . . . and w1, w2, . . . are sequences of complex numbers
with zj, wj → ∞ as j → ∞ and zj 6= wk for all j, k then there exists a
meromorphic function with zeros at the zj and poles at the wk (observing the
usual multiplicity conventions).

Exercise 58 (It may be helpful to attack parts of this question non-rigourously
first and then tighten up the argument second.)

(i) If CN is the contour consisting of the square with vertices ±(N+1/2)±
(N +1/2)i described anti-clockwise show that there is a constant K such that

| cot πz| ≤ K

for all z ∈ CN and all integers N ≥ 1.
(ii) By integrating an appropriate function round the contour CN , or

otherwise, show that, if w /∈ Z,
n=N
∑

n=−N

1

w − n
→ π cot πw.

(iii) Is it true that, if w /∈ Z,
n=N
∑

n=−M

1

w − n
→ π cot πw,

as M,N →∞? Give reasons.
(iv) Show that

P (z) = z

∞
∏

n=1

(

1− z2

n2

)

is a well defined analytic function and that there exists an analytic function
g such that

sinπz = eg(z)P (z).

(v) Find a simple expression for P ′(z)/P (z). [Hint: If p(z) =
∏N

j=1(z −
αj), what is p

′(z)/p(z)?] Find a related expression for d
dz

sinπz/ sin πz.
(vi) Show that

sin πz = πz
∞
∏

n=1

(

1− z2

n2

)

.

(vii) Find a similar expression for cos πz. (These results are due to Eu-
ler.)
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Exercise 59 (This makes use of some of the techniques of the previous ex-
ercise.) (i) Show that the infinite product

g(z) =
∞
∏

n=1

(

1− z

n

)

exists and is analytic on the whole complex plane.
(ii) Show that

g′(z) = g(z)
∞
∑

n=1

(

1

z − n
+

1

n

)

.

Explain why
∑∞

n=1(
1

z−n
+ 1

n
) is indeed a well defined everywhere analytic

function.
(iii) By using (ii), or otherwise, show that

g(z + 1) = −Azg(z) (*)

for some constant A.
(iv) By considering a particular value of z, or otherwise, show that A is

real and positive and

N
∑

n=1

1

n
− logN → logA

as N →∞. Deduce the existence of Euler’s constant γ = i(limN→∞

∑N
n=1 n

−1−
logN) and rewrite (∗) as

g(z + 1) = −eγzg(z)
(v) Find a simple expression for zg(z)g(−z). Use (∗) to show that sinπz

is periodic.

6 Fourier analysis on finite Abelian groups

One of Dirichlet’s main ideas is a clever extension of Fourier analysis from
its classical frame. Recall that classical Fourier analysis deals with formulae
like

f(t) =
∞
∑

n=−∞

f̂(n)en(t)

where en(t) = exp(int). The clue to further extension lies in the following
observation.

17



Lemma 60 Consider the Abelian group T = R/(2πZ) and the subgroup S =
{z : |z| = 1} of (C \ {0},×). The continuous homomorphisms θ : T → S are
precisely the functions en : T → S given by en(t) = exp(int) with n ∈ Z.

Exercise 61 (i) Find (with proof) all the continuous homomorphisms θ :
(R,+)→ (S,×). What is the connection with Fourier transforms?

(ii) (Only for those who know Zorn’s lemma4.) Assuming Zorn’s lemma
show that any linearly independent set in a vector space can be extended to
a basis. If we consider R as a vector space over Q show that there exists
a linear map T : R → R such that T (1) = 1, T (

√
2) = 0. Deduce the

existence of a function T : R → R such that T (x+ y) = T (x) + T (y) for all
x, y ∈ R which is not continuous (with respect to the usual metric). Show
that, if we accept Zorn’s lemma, there exist discontinuous homomorphisms
θ : (R,+)→ (S,×).

This suggests the following definition.

Definition 62 If G is a finite Abelian group we say that a homomorphism
χ : G→ S is a character. We write Ĝ for the collection of such characters.

In this section we shall accumulate a substantial amount of information about
Ĝ by a succession of small steps.

Lemma 63 Let G be a finite Abelian group.
(i) If x ∈ G has order m and χ ∈ Ĝ then χ(x) is an mth root of unity.
(ii) Ĝ is a finite Abelian group under pointwise multiplication.

To go further we consider for each finite Abelian group G the collection
C(G) of functions f : G→ C. If G has order |G| then C(G) is a vector space
of dimension N which can be made into a complex inner product space by
means of the inner product

〈f, g〉 = 1

|G|
∑

x∈G

f(x)g(x)∗.

Exercise 64 Verify the statements just made.

Lemma 65 Let G be a finite Abelian group. The elements of Ĝ form an
orthonormal system in C(G).

Does Ĝ form an orthonormal basis of C(G)? The next lemma tells us how
we may hope to resolve this question.

4And, particularly, those who only know Zorn’s lemma.
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Lemma 66 Let G be a finite Abelian group. The elements of Ĝ form an
orthonormal basis if an only if given an element x ∈ G which is not the
identity we can find a character χ with χ(x) 6= 1.

The way forward is now clear.

Lemma 67 Suppose that H is a subgroup of a finite Abelian group G and
that χ ∈ Ĥ. If K is a subgroup of G generated by H and an element a ∈ G
then we can find a χ̃ ∈ K̂ such that χ̃|H = χ.

Lemma 68 Let G be a finite Abelian group and x an element of G of order
m. Then we can find a χ ∈ Ĝ with χ(x) = exp 2πi/m.

Theorem 69 If G is a finite Abelian group then Ĝ has the same number of
elements as G and they form an orthonormal basis for C(G).

Lemma 70 If G is a finite Abelian group and f ∈ C(G) then

f =
∑

χ∈Ĝ

f̂(χ)χ

where f̂(χ) = 〈f, χ〉.

Exercise 71 Suppose that G is a finite Abelian group. Show that if we define

θx : Ĝ → C by θx(χ) = χ(x) for χ ∈ Ĝ, x ∈ G then the map Θ : G → ˆ̂
G

given by Θ(x) = θx is an isomorphism.

If we now identify x with θx (and, so, G with
ˆ̂
G) show that

ˆ̂
f(x) = |G|f(x−1)

for all f ∈ C(G) and x ∈ G.

We have now done all that that is required to understand Dirichlet’s
motivation. However, it seems worthwhile to make a slight detour to put
‘computational’ bones on this section by exhibiting the structure of G and
Ĝ.

Lemma 72 Let (G,×) be an Abelian group.
(i) Suppose that x, y ∈ G have order r and s with r and s coprime. Then

xy has order rs.
(ii) If G contains elements of order n and m then G contains an element

of order the least common multiple of n and m.
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Lemma 73 Let (G,×) be a finite Abelian group. Then there exists an integer
N and an element k such that k has order N and, whenever x ∈ G we have
xN = e.

Lemma 74 With the hypotheses and notation of Lemma 73 we can write
G = K × H where K is the cyclic group generated by x and H is another
subgroup of K.

As usual we write Cn for the cyclic group of order n.

Theorem 75 If G is a finite Abelian group we can find n(1), n(2), . . . n(m)
with n(j + 1)|n(j) such that G is isomorphic to

Cn(1) × Cn(2) × . . . Cn(m).

Lemma 76 If we have two sequences n(1), n(2), . . . n(m) with n(j+1)|n(j)
and n′(1), n′(2), . . . n′(m′) with n′(j + 1)|n′(j) then

Cn(1) × Cn(2) × . . . Cn(m) is isomorphic to Cn′(1) × Cn′(2) × . . . Cn′(m′)

if and only if m = m′ and n(j) = n′(j) for each 1 ≤ j ≤ m.

It is easy to identify Ĝ.

Lemma 77 Suppose that

G = Cn(1) × Cn(2) × . . . Cn(m)

with Cn(j) a cyclic group of order n(j) generated by xj. Then the elements

of Ĝ have the form χ
ω

r(1)
n(1)

,ω
r(2)
n(2)

, . . . ω
r(m)
n(m) with ωn(j) = exp(2πi/n(j) and

χ
ω

r(1)
n(1)

,ω
r(2)
n(2)

, . . . ω
r(m)
n(m)(x

s(1)
1 x

s(2)
2 . . . xs(m)m ) = ω

r(1)s(1)
n(1) ω

r(2)s(2)
n(2) . . . ω

r(m)s(m)
n(m) .

My readers will see that Ĝ is isomorphic to G but the more sophisticated
algebraists will also see that this is not a natural isomorphism (whereasG and
ˆ̂
G are naturally isomorphic). Fortunately such matters are of no importance
for the present course.
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7 The Euler-Dirichlet formula

Dirichlet was interested in a particular group. If d is a positive integer con-
sider Z/(n) the set of equivalence classes

[m] = {r : r ≡ m mod d}

under the usual multiplication modulo n. We set

Gd = {[m] : m and d coprime}

and write φ(d) for the order of Gd (φ is called Euler’s totient function).

Lemma 78 The set Gd forms a finite Abelian group under standard multi-
plication.

The results of the previous section show that, if [a] ∈ Gn and we define
δa : Gd → C by

δa([a]) = 1

δa([m]) = 0 if [m] 6= [a],

then

δa = φ(d)−1
∑

χ∈Gd

χ([a])∗χ

We now take up the proof of Dirichlet’s theorem in earnest. We shall
operate under the standing assumption that a and d are positive coprime
integers and our object is to show that the sequence

a, a+ d, a+ 2d, . . . , a+ nd, . . .

contains infinitely many primes. Following Euler’s proof that there exist
infinitely many primes we shall seek to prove this by showing that

∑

p prime
p=a+nd for some n

1

p
=∞.

Henceforward, at least in the number theory part of the course p will be a
prime,

∑

p will mean the sum over all primes and so on.
In order to simplify our notation it will also be convenient to modify the

definition of a character. From now on, we say that χ is a character if χ is a
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map from N to C such that there exists a character (in the old sense) χ̃ ∈ Ĝd

such that

χ(m) = χ̃([m]) if m and d are coprime

χ(m) = 0 otherwise.

We write
∑

χ to mean the sum over all characters and take χ0 to be the
character with χ0([m]) = 1 whenever m and d are coprime.

Lemma 79 (i) If χ is a character then χ(m1m2) = χ(m1)χ(m2) for all
m1,m2 ≥ 0.

(ii) If χ 6= χ0 then
∑k+d

m=k+1 χ(m) = 0.
(iii) If δa(m) = φ(d)−1

∑

χ χ(a)
∗χ(m) then δa(m) = 1 when m = a + nd

and δa(m) = 0 otherwise.

(iv)
∑

p=a+nd

p−s = φ(d)−1
∑

χ

χ(a)∗
∑

p

χ(p)p−s.

Lemma 80 The sum
∑

p=a+nd p
−1 diverges if

∑

p χ(p)p
−s remains bounded

as s tends to 1 through real values of s > 1 for all χ 6= χ0.

We now prove a new version of Euler’s formula.

Theorem 81 (Euler-Dirichlet formula) With the notation of this sec-
tion,

∞
∏

n=1

(1− χ(p)p−s)−1 =
∞
∑

n=1

χ(n)n−s,

both sides being absolutely convergent for <s > 1.

To link
∏∞

n=1(1− χ(p)p−s)−1 with
∑

p χ(p)p
−s we use logarithms. (If you go

back to our discussion of infinite products you will see that this is not unex-
pected.) However, we must, as usual, use care when choosing our logarithm
function. For the rest of the argument log will be the function on

C \ {x : x real and x ≤ 0}

defined by log(reiθ) = log r + iθ [r > 0, −π < θ < π].

Lemma 82 (i) If |z| ≤ 1/2 then | log(1− z) + z| ≤ |z|2.
(ii) If ε > 0 then

∑

p log(1−χ(p)p−s) and
∑

p χ(p)p
−s converge uniformly

in <s ≥ 1 + ε, whilst
∣

∣

∣

∣

∣

∑

p

log(1− χ(p)p−s) +
∑

p

χ(p)p−s

∣

∣

∣

∣

∣

≤
∞
∑

n=1

n−2.
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We have thus shown that if
∑

p log(1 − χ(p)p−s) remains bounded as
s→ 1+ then

∑

p χ(p)p
−s does. Unfortunately we can not equate

∑

p log(1−
χ(p)p−s) with log(

∏∞

n=1(1− χ(p)p−s)−1).
However we can refresh our spirits by proving Dirichlet’s theorem in some

special cases.

Example 83 There are an infinity of primes of the form 3n+1 and 3n+2.

Exercise 84 Use the same techniques to show that there are an infinity of
primes of the form 4n+ 1 and 4n+ 3.

8 Analytic continuation of the Dirichlet func-

tions

Dirichlet completed his argument without having to consider
∑∞

n=1 χ(n)n
−s

for anything other than real s with s > 1. However, as we have already seen,
∑∞

n=1 χ(n)n
−s = L(s, χ) is defined and well behaved in <s > 1. Riemann

showed that it is advantageous to extend the definition of analytic functions
like L(s, χ) to larger domains.

There are many ways of obtaining such analytic continuations. Here is
one.

Lemma 85 If f : R → R is bounded on R and locally integrable5 then

F (s) =

∫ ∞

1

f(x)x−s dx

is a well defined analytic function on the set of s with <s > 1.

Lemma 86 (i) If χ 6= χ0 and S(x) =
∑

1≤m≤x χ(m) then S : R → R is
bounded and locally integrable. We have

N
∑

n=1

χ(n)n−s → s

∫ ∞

1

S(x)x−s−1 dx

as N →∞ for all s with <s > 1.
(ii) If S0(x) = 0 for x ≤ 0 and S0(x) =

∑

1≤m≤x χ0(m) then, writing
T0(x) = S0(x)− d−1φ(d)x, T0 : R → R is bounded and locally integrable. We
have

N
∑

n=1

χ(n)n−s → s

∫ ∞

1

T0(x)x
−s−1 dx+

φ(d)s

d(s− 1)

as N →∞ for all s with <s > 1.

5Riemann or Lebesgue at the reader’s choice
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Lemma 87 (i) If χ 6= χ0 then
∑∞

n=1 χ(n)n
−s converges to an analytic func-

tion L(s, χ), say, on {s ∈ C : <s > 0}.
(ii) There exists an meromorphic function L(s, χ0) analytic on {s ∈ C :

<s > 0} except for a simple pole, residue φ(d)/d at 1 such that
∑∞

n=1 χ0(n)n
−s

converges to L(s, χ) for <s > 1.

Exercise 88 (i) Explain carefully why L( , χ0) is defined uniquely by the
conditions given.

(ii) Show that
∑∞

n=1 χ0(n)n
−s diverges for s real and 1 ≥ s > 0.

We now take up from where we left off at the end of the previous section.

Lemma 89 (i) If <s > 1 then exp(−∑p log(1− χ(p)p−s) = L(s, χ).
(ii) If <s > 1 then L(s, χ) 6= 0.
(iii) There exists a function LogL(s, χ) analytic on {s : <s > 1} such

that exp(LogL(s, χ)) = L(s, χ) for all s with <s > 1.
(iv) If χ 6= χ0 and L(1, χ) 6= 0 then LogL(s, χ)) tends to a finite limit as

s→ 1 through real values with s > 1.
(v) There is a fixed integer Mχ such that

LogL(s, χ) +
∑

p

log(1− χ(p)p−s) = 2πMχ

for all <s > 1.
(vi) If χ 6= χ0 and L(1, χ) 6= 0 then

∑

p χ(p)p
−s remains bounded as

s→ 1 through real values with s > 1.

We mark our progress with a theorem.

Theorem 90 If L(1, χ) 6= 0 for all χ 6= χ0 then there are an infinity of
primes of the form a+ nd.

Since it is easy to find the characters χ in any given case and since it is
then easy to compute

∑N
n=1 χ(n)n

−1 and to estimate the error
∑∞

n=N+1 χ(n)n
−1

to sufficient accuracy to prove that L(1, χ) =
∑∞

n=1 χ(n)n
−1 6= 0, it now be-

comes possible to prove Dirichlet’s theorem for any particular coprime a and
d.

Exercise 91 Choose a and d and carry out the program just suggested.

However, we still need to show that the theorem holds in all cases.
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9 L(1, χ) is not zero

Our first steps are easy.

Lemma 92 (i) If s is real and s > 1 then

∏

χ

L(s, χ) = exp(−
∑

p

∑

χ

log(1− χ(p)p−s).

(ii) If s is real and s > 1 then
∏

χ L(s, χ) is real and
∏

χ L(s, χ) ≥ 1.
(iii)

∏

χ L(s, χ) 9 0 as s→ 1.

Lemma 93 (i) There can be at most one character χ with L(1, χ) = 0.
(ii) If a character χ takes non-real values then L(1, χ) 6= 0.

We have thus reduced the proof of Dirichlet’s theorem to showing that if
χ is a character with χ 6= χ0 which only takes the values 1, −1 and 0 then
L(1, χ) 6= 0. There are several approaches to this problem but none are short
and transparent. We use a proof of de la Vallée Poussin which is quite short
but not, I think, transparent.

Lemma 94 Suppose that the character χ 6= χ0 and only takes the values 1,
−1 and 0. Set

ψ(s) =
L(s, χ)L(s, χ0)

L(2s, χ0)
.

(i) The function ψ is well defined and meromorphic for <s > 1
2
. It

analytic except, possibly for a simple pole at 1.
(ii) If L(1, χ) = 0 then 1 is a removable singularity and ψ is analytic

everywhere on {s : <s > 1
2
}.

(iii) We have ψ(s)→ 0 as s→ 1
2
through real values of s with s ≥ 1

2
.

Lemma 95 We adopt the hypotheses and notation of Lemma 94. If <s > 1
then the following is true.

(i) ψ(s) =
∏

χ(p)=1

1 + p−s

1− p−s
.

(ii) We can find subsets Q1 and Q2 of Z such that

∏

χ(p)=1

(1 + p−s) =
∑

n∈Q1

n−s

∏

χ(p)=1

(1− p−s)−1 =
∑

n∈Q2

n−s.
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(iii) There is a sequence of real positive numbers an with a1 = 1 such that

ψ(s) =
∞
∑

n=1

ann
−s.

Lemma 96 We adopt the hypotheses and notation of Lemmas 94 and 95.
(i) If <s > 1 then

ψ(m)(s) =
∞
∑

n=1

an(− log n)mn−s.

(ii) If <s > 1 then (−1)mψ(m)(s) > 0.
(iii) If ψ has no pole at 1 then if <s0 > 1 and |s − s0| < <s0 − 1/2 we

have

ψ(s) =
∞
∑

m=0

ψ(m)(s0)

m!
(s− s0)

m.

(iv) If ψ has no pole at 1 then ψ(s) 9 0 as s→ 1
2
through real values of

s with s ≥ 1
2
.

We have proved the result we set out to obtain.

Lemma 97 If a character χ 6= χ0 only takes real values then L(1, χ) 6= 0.

Theorem 98 If χ 6= χ0 then L(1, χ) 6= 0.

We have thus proved Theorem 42, If a and d are strictly positive coprime
integers then there are infinitely many primes of the form a + nd with n a
positive integer.

10 Natural boundaries

This section is included partly for light relief between two long and tough
topics and partly to remind the reader that analytic continuation is not quite
as simple as it looks.

Lemma 99 If

f(z) =
∞
∑

n=0

zn!

for |z| < 1 then f : D(0, 1) → C is analytic but if U is any connected open
set with U ∩ D(0, 1) 6= ∅ and U \ D(0, 1) 6= ∅ then there does not exist an
analytic function g : U → C with g(z) = f(z) for all z ∈ U ∩D(0, 1).
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More briefly we say that the unit circle is a natural boundary for f .
Here is a much more subtle result whose central idea goes back to Borel.

Theorem 100 Suppose
∑∞

n=0 anz
n has radius of convergence 1 and suppose

Z1, Z2, . . . is a sequence of independent random variables with each Zj uni-
formly distributed over {z ∈ C : |z| = 1}. Then, with probability 1, the unit
circle is a natural boundary for

∞
∑

n=1

Znanz
n.

Our proof will require the following result due to Kolmogorov.

Theorem 101 (Kolmogorov zero-one law) Let P be a reasonable prop-
erty which any sequence of complex numbers wn either does or does not have
and such that any two sequences wn and w′n with wn = w′n for n sufficiently
large either both have or both do not have. Then if Wn is a sequence of in-
dependent complex valued random variables, it follows that Wn has property
P with probability 0 or has property P with probability 1.

I will try to explain why this result is plausible but for the purposes of the
exam this result may be assumed without discussion.

We remark the following simple consequence.

Lemma 102 There exists a power series f(z) =
∑∞

n=0 anz
n with the unit

circle as natural boundary having the property that f and all its derivatives
can be extended to continuous functions on D(0, 1).

Exercise 103 Obtain Lemma 102 by non-probabilistic means. One possibil-
ity is to consider f(z) =

∑∞

n=1 εng((1− n−1)zn!) where g(z) = (1− z)−1 and
εn is a very rapidly decreasing sequence of positive numbers.

Finally we remark that whilst it is easy to define a natural boundary for
a power series the notion does not easily extend.

Lemma 104 Let Ω = C \ {x ∈ R : x ≥ 0} We can find an analytic function
f : Ω→ C with the following properties.

(i) There exists an analytic function F : {z : <z > 0} → C such that
F (z) = f(z) whenever <z > 0, =z < 0.

(2) If D is an open disc which contains z1, z2 with <z1 > 0, =z1 > 0 and
<z2 > 0, =z2 < 0 there exists no analytic function g on D with g(z) = f(z)
for all z ∈ D with <z > 0, =z > 0.

27



11 Chebychev and the distribution of primes

On the strength of numerical evidence, Gauss was lead to conjecture that the
number π(n) of primes less than n was approximately n/ log n. The theorem
which confirms this conjecture is known as the prime number theorem. The
first real progress in this direction was due to Chebychev6 We give his results,
not out of historical piety, but because we shall make use of them in our
proof of the prime number theorem. (Note the obvious conventions that n
is an integer with n ≥ 1,

∏

n<p≤2n means the product over all primes p with
n < p ≤ 2n and so on. It is sometimes useful to exclude small values of n.)

Lemma 105 (i) 2n <

(

2n

n

)

< 22n.

(ii)

(

2n

n

)

divides
∏

p<2n

p[(log 2n)/(log p)] and
∏

n<p≤2n

p divides

(

2n

n

)

.

(iii) We have π(2n) > (log 2)n/(log 2n).
(iv) There exists a constant A > 0 such that π(n) ≥ An(log n)−1.
(v) There exists a constant B ′ such that

∑

p≤n log p ≤ B′n.

(vi)There exists a constant B such that π(n) ≤ Bn(log n)−1.

We restate the main conclusions of Lemma 105.

Theorem 106 (Chebychev) There exist constants A and B with 0 < A ≤
B such that

An(log n)−1 ≤ π(n) ≤ Bn(log n)−1.

Riemann’s approach to the prime number theorem involves considering
θ(n) =

∑

p≤n log p rather than π(n).

Lemma 107 Let Q be a set of positive integers and write α(n) =
∑

q∈Q,q≤n 1
and β(n) =

∑

q∈Q,q≤n log q. If there exist constants A and B with 0 < A ≤ B
such that

An(log n)−1 ≤ α(n) ≤ Bn(log n)−1,

then n−1(log n)α(n)→ 1 as n→∞ if and only if n−1β(n)→ 1 as n→∞.

Lemma 108 If n−1θ(n)→ 1 as n→∞ then n−1(log n)π(n)→ 1 as n→∞.

6His prefered transliteration seems to have been Tchebycheff, but he has been over-
ruled.
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12 The prime number theorem

We start by recalling various facts about the Laplace transform.

Exercise 109 If a is a real number let us write Ea for the collection of locally
integrable7 functions F : R → C such that F (t) = 0 for all t < 0 and
F (t)e−at → 0 as t→∞.

(i) If F ∈ Ea explain why the Laplace transform

f(z) = LF (z) =
∫ ∞

−∞

F (t) exp(−zt) dt

is well defined and analytic on {z ∈ C : <z > a}.
(ii) We define the Heaviside function H by writing H(t) = 0 for t < 0

and H(t) = 1 for t ≥ 0. If a ∈ R and b ≥ 0 consider Ha,b(t) = H(t − b)eat.
Show that Ha,b ∈ Ea and that LHa,b(z) can be extended to a meromorphic
function on C with a simple pole at a.

Engineers are convinced that the converse to Exercise 109 (i) holds in the
sense that if F ∈ Ea has a Laplace transform f which can be extended to
a function f̃ analytic on {z ∈ C : <z > b} [a, b real, a ≥ b] then F ∈ Eb.
Unfortunately, this is not true but it represents a good heuristic principle to
bear in mind in what follows. Number theorists use the Mellin transform

MF (z) =

∫ ∞

0

F (t)tz−1 dt

in preference to the Laplace transform but the two transforms are simply
related.

Exercise 110 Give the relation explicitly.

Riemann considered the two functions

Φ(s) =
∑

p

p−s log p

and the Riemann zeta function

ζ(s) =
∞
∑

n=1

n−s.

Both of these functions are defined for <s > 1 but Riemann saw that they
could be extended to analytic functions over a larger domain.

The next lemma is essentially a repeat of Lemmas 86 (ii) and 87 (ii).

7Use your favourite definition of this or replace by ‘well behaved’.

29



Lemma 111 (i) Let S0(x) = 0 for x ≤ 0 and S0(x) =
∑

1≤m≤x 1. If S0 :
R → R and T0(x) = S0(x)− x then T0 is bounded and locally integrable. We
have

N
∑

n=1

n−s → s

∫ ∞

1

T0(x)x
−s−1 dx+

s

s− 1

as N →∞ for all s with <s > 1.
(ii) There exists an meromorphic function ζ analytic on {s ∈ C : <s > 0}

except for a simple pole, residue 1 at 1 such that
∑∞

n=1 n
−s converges to ζ(s)

for <s > 1.

The use of s rather than z goes back to Riemann. Riemann showed that ζ
can be extended to a meromorphic function over C but we shall not need
this.

How does this help us study Φ?

Lemma 112 (i) We have
∏

p < N(1 − ps)−1 → ζ(s) uniformly for <s >
1 + δ whenever δ > 0.

(ii) We have

ζ ′(s)

ζ(s)
= −

∑

p

log p

ps − 1

for all <s > 1.
(iii) We have

Φ(s) = −ζ
′(s)

ζ(s)
−
∑

p

log p

(ps − 1)ps

for all <s > 1.
(iv) The function Φ can be analytically extended to a meromorphic func-

tion on {s : <s > 1
2
}. It has a simple pole at 1 with residue 1 and simple

poles at the zeros of ζ but nowhere else.

The next exercise is long and will not be used later but is, I think, in-
structive.

Exercise 113 (i) Show by grouping in pairs that
∑∞

n=1(−1)n−1n−s converges
to an analytic function g(s) in the region {s : <s > 0}.

(ii) Find A and B such that g(s) = Aζ(s)+B2−sζ(s) for all <s > 1. Why
does this give another proof that ζ can be extended to an analytic function on
{s : <s > 0}.
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(iii) Show that g(1/2) 6= 0 and deduce that ζ(1/2) 6= 0.
(iv) By imitating the arguments of Lemma 112 show that we we can find

an analytic function G defined on {s : <s > 1/3} such that

Φ(s) = −ζ
′(s)

ζ(s)
− Φ(2s)−G(s).

Deduce that Φ can be extended to a meromorphic function on {s : <s > 1/3}.
(v) Show, using (iii), that Φ has a pole at 1/2.
(vi) Show that the assumption that |∑p<N log p−N | ≤ AN 1/2−ε for some

ε > 0 and A > 0 and all large enough N leads to the conclusion that Φ can be
analytically extended from {s : <s > 1} to an everywhere analytic function
on {s : <s > 1/2− ε}.

(vii) Deduce that if ε > 0 and A > 0

|
∑

p<N

log p−N | ≥ AN 1/2−ε for infinitely many values of N .

It is well known that Riemann conjectured that ζ has no zeros in {s :
<s > 1/2} and that his conjecture is the most famous open problem in
mathematics. The best we can do is to follow Hadamard and de la Vallée
Poussin and show that ζ has no zero on {s : <s = 1}. Our proof makes
use of the slightly unconventional convention that if h and g are analytic in
a neighbourhood of w, g(w) 6= 0 and and h(z) = (z − w)kg(z) then we say
that h has a zero of order k at w. (The mild unconventionality arises when
k = 0.)

Lemma 114 Suppose that ζ has a zero of order µ at 1 + iα and a zero of
order ν at 1 + 2iα with α real and α > 0. Then

(i) ζ has a zero of order µ at 1− iα and a zero of order ν at 1− 2iα.
(ii) As ε→ 0 through real positive values of ε

εΦ(1 + ε± iα)→ −µ
εΦ(1 + ε± 2iα)→ −ν

εΦ(1 + ε)→ 1.

(iii) If s = 1 + ε with ε real and positive then

0 ≤
∑

p

p−s log p(e(iα log p)/2 + e−(iα log p)/2)4

= Φ(s+ 2iα) + Φ(s− 2iα) + 4(Φ(s+ iα) + Φ(s− iα)) + 6Φ(s).

(iv) We have 0 ≤ −2ν − 8µ+ 6.

31



Theorem 115 If <s = 1 then ζ(s) 6= 0.

We note the following trivial consequence.

Lemma 116 If we write

T (s) =
ζ ′(s)

ζ(s)
− (s− 1)−1,

then given any R > 0 we can find a δ(R) such that T has no poles in {z :
<z ≥ 1− δ(R), Imz ≤ R}

We shall show that the results we have obtained on the behaviour of ζ
suffice to show that

∫ X

1

θ(x)− x

x2
dx

tends to a finite limit asX →∞. The next lemma shows that this is sufficient
to give the prime number theorem.

Lemma 117 Suppose that β : [1,∞) → R is an increasing (so integrable)
function.

(i) If λ > 1, y > 1 and y−1β(y) > λ then

∫ λy

y

β(x)− x

x2
dx ≥ A(λ)

where A(λ) is a strictly positive number depending only on λ.

(ii) If
∫ X

1
β(x)−x
x2 dx tends to limit as X → ∞ then x−1β(x) → 1 as

x→∞.

We need a couple of further preliminaries. First we note a simple conse-
quence of the Chebychev estimates (Theorem 106).

Lemma 118 There exists a constant K such that

|θ(x)− x|
x

≤ K

for all x ≥ 1.

Our second step is to translate our results into the language of Laplace trans-
forms. (It is just a matter of taste whether to work with Laplace transforms
or Mellin transforms.)
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Lemma 119 Let f(t) = θ(et)e−t−1 for t ≥ 0 and f(t) = 0 otherwise. Then

Lf(z) =
∫ ∞

−∞

f(t)e−tz dt

is well defined and

Lf(z) = Φ(z − 1)

z
− 1

z

for all <z > 0.
The statement

∫

1
∞(θ(x)−x)/x2 dx convergent is equivalent to the state-

ment that
∫∞

−∞
f(t) dt converges.

We have reduced the proof of the prime number theorem to the proof of
the following lemma.

Lemma 120 Suppose Ω is an open set with Ω ⊇ {z : <z ≥ 0}, F : Ω→ C is
an analytic function and f : [0,∞]→ R is bounded locally integrable function
such that

F (z) = Lf(z) =
∫ ∞

0

f(t)e−tz dt

for <z > 0. Then
∫∞

0
f(t) dt converges.

This lemma and its use to prove the prime number theorem are due to
D. Newman. (A version will be found in [1].)

13 Boundary behaviour of conformal maps

We now return to the boundary behaviour of the Riemann mapping. (Strictly
speaking we should say, a Riemann mapping but we have seen that it is
‘essentially unique’. We saw in Example 41 that there is no general theorem
but the following result is very satisfactory.

Theorem 121 If Ω is a simply connected open set in C with boundary a
Jordan curve then any bijective analytic map f : D(0, 1)→ Ω can be extended
to a bijective continuous map from D(0, 1)→ Ω.

Recall8 that a Jordan curve is a continuous injective map γ : T → C. We
say that γ is the boundary of Ω if the image of γ is Ω \ Ω.

8In the normal weasel-worded mathematical sense.
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I shall use the proof in Zygmund’s magnificent treatise [10] (see Theo-
rem 10.9 of Chapter VII) which has the advantage of minimising the topol-
ogy but the minor disadvantage of using measure theory (students who do
not know measure theory may take the results on trust) and the slightly
greater disadvantage of using an idea from Fourier analysis (the conjugate
trigonometric sum S̃N(f, t)) which can not be properly placed in context
here.

Definition 122 If f : T → C is an integrable9 function we define

f̂(n) =
1

2π

∫

T
f(t) exp(−int) dt.

We set

SN(f, t) =
N
∑

n=−N

f̂(n) exp(int)

S̃N(f, t) = −i
N
∑

n=−N

sgn(n)f̂(n) exp(int)

σN(f, t) = (N + 1)−1
N
∑

n=0

Sn(f, t)

Recall that

f ∗ g(x) = 1

2π

∫

T
f(t)g(x− t) dt.

Lemma 123 We have

SN(f) = DN ∗ f, S̃N(f) = D̃N ∗ f, σN(f) = KN ∗ f,

with

DN(t) =
N
∑

n=−N

exp int =
sin(N + 1

2
)t

t
2

D̃N(t) = 2
N
∑

n=1

sinnt =
cos 1

2
t− cos(N + 1

2
)t

sin 1
2
t

KN(t) =
1

N + 1

(

sin N+1
2

t

sin
1
2
t

)2

.

9Use whichever integral you are happiest with.
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(Formally speaking, we have not definedDN(t),KN(t) and D̃N(t) when t = 0.
By inspection DN(0) = 2N + 1, KN(0) = N + 1, D̃N(0) = 0.)

By looking at the properties of the kernels KN(t) and D̃N(t) we obtain
results about the associated sums.

Lemma 124 We have

KN(t) > 0 for all t

KN(t)→ 0 uniformly for |t| ≥ δ whenever δ > 0

1

2π

∫

T
KN(t) dt = 1.

Theorem 125 (Féjer) If f : T → C is integrable and f is continuous at x
then

σN(f, x)→ f(x) as N →∞.

We shall only use the following simple consequence.

Lemma 126 If f : T → R is integrable but SN(f, x)→∞ as N →∞ then
f can not be continuous at x.

Exercise 127 If f : T → R is integrable and there exist δ > 0 and M > 0
such that |f(t)| ≤ M for all |t| < δ show that it is not possible to have
SN(f, 0)→∞ as N →∞.

Lemma 128 (i) If f : T → C is integrable and f is continuous at x then

S̃N(f, x)

logN
→ 0

as N → 0.
(ii) If h(t) = sgn(t)− t/π then there is a non-zero constant L such that

S̃N(h, 0)

logN
→ L

as N →∞.
(iii) If f : T → C is integrable and f(x+ η)→ f(x+), f(x− η)→ f(x−)

as η → 0 through positive values then

S̃N(f, x)

logN
→ L(f(x+)− f(x−))

2

as N → 0.
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We now come to the object of our Fourier analysis.

Lemma 129 If f : T → C is integrable with f̂(n) = 0 for n < 0. If
f(x+ η)→ f(x+), f(x− η)→ f(x−) as η → 0 through positive values then
f(x+) = f(x−).

In other words, power series cannot have ‘discontinuities of the first kind’.

Exercise 130 Give an example of a discontinuous function with no discon-
tinuities of the first kind.

Once Lemma 129 has been got out of the way we can return to the proof
of Theorem 121 on the boundary behaviour of the Riemann mapping. The
proof turns out to be long but reasonably clear. We start with a very general
result.

Lemma 131 If Ω is a simply connected open set in C and f : D(0, 1)→ Ω
is a bijective bicontinuous map then given any compact subset K of Ω we can
find an 1 > rK > 0 such that, whenever 1 > |z| > rK, f(z) /∈ K.

Any bounded open set Ω has an area |Ω| and a simple application of the
Cauchy-Riemann equations yields the following result.

Lemma 132 Suppose that Ω is a simply connected bounded open set in C
and f : D(0, 1)→ Ω is a bijective analytic map. Then

|Ω| =
∫

0≤r<1

∫ 2π

0

|f ′(reiθ)|2r dθ dr.

Lemma 133 Suppose that Ω is a simply connected bounded open set in C
and f : D(0, 1) → Ω is a bijective analytic map. The set X of θ[0, 2π) such
that f(reiθ) tends to a limit as r → 1 from below has complement of Lebesgue
measure 0.

From now on until the end of the section we operate under the stand-
ing hypothesis that Ω is a simply connected open set in C with boundary a
Jordan curve. This means that Ω is bounded (we shall accept this as a topo-
logical fact). We take X as in Lemma 133 and write f(eiθ) = limr→1− f(re

iθ)
whenever θ ∈ X. We shall assume (as we may without loss of generality)
that 0 ∈ X.
Lemma 134 Under our standing hypotheses we can find a continuous bijec-
tive map g : T → C such that g(0) = f(1) and such that, if x1, x2 ∈ X with
0 ≤ x1 ≤ x2 < 2π and t1, t2 satisfy g(t1) = x1, g(t2) = x2 and 0 ≤ t1, t2 < 2π
then t1 ≤ t2.
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(The reader will, I hope, either excuse or correct the slight abuse of notation.)
We now need a simple lemma.

Lemma 135 Suppose G : D(0, 1) → C is a bounded analytic function such
that G(reiθ)→ 0 as r → 1− for all |θ| < δ and some δ > 0. Then G = 0.

Using this we can strengthen Lemma 134
Lemma 136 Under our standing hypotheses we can find a continuous bijec-
tive map γ : T → C such that γ(0) = f(1) and such that, if x1, x2 ∈ X with
0 ≤ x1 < x2 < 2π and t1, t2 satisfy g(t1) = x1, g(t2) = x2 and 0 ≤ t1, t2 < 2π
then t1 < t2.

From now on we add to our standing hypotheses the condition that γ satisfies
the conclusions of Lemma 136.

We now ‘fill in the gaps’.

Lemma 137 We can find a strictly increasing function w : [0, 2π]→ [0, 2π]
with w(0) = 0 and w(2π) = 2π, such that γ(w(θ)) = f(eiθ) for all θ ∈ X.

We now set f(eiθ) = γ(w(θ)) and F (θ) = f(eiθ) for all θ. A simple use of
dominated convergence gives us the next lemma.

Lemma 138 If f(z) =
∑∞

n=1 cnz
n for |z| < 1 then, we have F̂ (n) = cn for

n ≥ 0 and γ̂(n) = 0 for n < 0.

However increasing functions can only have discontinuities of the first kind.
Thus w and so F can only have discontinuities of the first kind. But, using
our investment in Fourier analysis (Lemma 129) we see that F can have no
discontinuities of the first kind..

Lemma 139 The function F : T → C is continuous.

Using the density of X in T we have the required result.

Lemma 140 The function f : D(0, 1)→ Ω is continuous and bijective.

This completes the proof of Theorem121.
Using a little analytic topology we may restate Theorem121 as follows.

is very satisfactory.

Theorem 141 If Ω is a simply connected open set in C with boundary a
Jordan curve then any bijective analytic map f : D(0, 1)→ Ω can be extended
to a bijective continuous map from D(0, 1) → Ω. The map f−1Ω → D(0, 1)
is continuous on Ω.

.
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14 Picard’s little theorem

The object of this section is to prove the following remarkable result.

Theorem 142 (Picard’s little theorem) If f : C → C is analytic then
C \ f(C) contains at most one point.

The example of exp shows that C \ f(C) may contain one point.
The key to Picard’s theorem is the following result.

Theorem 143 There exists an analytic map λ : D(0, 1) → C \ {0, 1} with
the property that given z0 ∈ C \ {0, 1}, w0 ∈ D(0, 1) and δ > 0 such that
λ(w0) = z0 and D(z0, δ) ⊆ C \ {0, 1} we can find an analytic function g :
D(z0, δ)→ D(0, 1) such that λ(g(z)) = z for all z ∈ D(z0, δ).

We combine this with a result whose proof differs hardly at all from that
of Theorem 7.

Lemma 144 Suppose that U and V are open sets and that τ : U → V is
a analytic map with the following property. Given u0 ∈ U and v0 ∈ V such
that τ(u0) = v0 then, given any δ > 0 with D(v0, δ) ⊆ V , we can find an
analytic function g : D(v0, δ)→ U such that λ(g(z)) = z for all z ∈ D(v0, δ).
Then if W is an open simply connected set and f : W → U is analytic we
can find an analytic function F : W → U such that τ(F (z)) = f(z) for all
zinW .

(The key words here are ‘lifting’ and ‘monodromy’. It is at points like this
that the resolutely ‘practical’ nature of the presentation shows its weaknesses.
A little more theory about analytic continuation for its own sake would turn
a ‘technique’ into a theorem.)

In the case that we require, Lemma 144 gives the following result.

Lemma 145 If λ is as in Theorem 143 and f : C → C \ {0, 1} is analytic
we can find F : C → D(0, 1) such that λ(F (z)) = f(z).

Picard’s little theorem follows on considering Louiville’s theorem that a
bounded analytic function on C is constant. The proof of Picard’s theo-
rem thus reduces to the construction of the function λ of Theorem 143. We
make use ideas concerning reflection which I assume the reader has already
met.

Definition 146 (i) Let p and q are orthonormal vectors in R2. If a is a
vector in R2 and x, y ∈ R the reflection of a+ xp+ yq in the line through a
parallel to p is a+ xp− yq.

(ii) If a and are vectors in R2 and R, r > 0 then the reflection of a+ rb
in the circle centre a and radius R is a+ r−1R2b.
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Lemma 147 (Schwarz reflection principle) Let Σ1 and Σ2 be two cir-
cles (or straight lines). Suppose G is an open set which is taken to itself
by reflection in Σ1. Write G+ for that part of G on one side10 of Σ1 and
G0 = G ∩ Σ1. If f : G+ ∪ G0 is a continuous function, analytic on G+

with f(G0) ⊆ Σ2 then we can find an analytic function f̃ : G → C with
f̃(z) = f(z) for all z ∈ G+ ∪ G0. If f(G+) lies on one side of Σ2 then we
can ensure that f̃(G−) lies on the other.

We first prove the result when Σ1 and Σ2 are the real axis and then use
Möbius transforms to get the full result.

We now use the work of section 13 on boundary behaviour.

Lemma 148 Let H be the upper half plane {z : =z > 0 and V the region
bounded by the lines C1 = {iy : y ≥ 0}, C3 = {1 + iy : y ≥ 0}, and the arc
C2 = {z : |z − 1

2
| = 1

2
, =z ≥ 0} and containing the point 1

2
+ i. There is a

continuous bijective map f : V → H which is analytic on V , takes 0 to 0, 1
to 1, C1 to {x : x ≤ 0}, C2 to {x : 0 ≤ x ≤ 1}, and C3 to {x : x ≥ 1}.
By repeated use of the Schwarz reflection principle we continue f analytically
to the whole of H.

Lemma 149 Let H be the upper half plane. There exists an analytic map
τ : H → C \ {0, 1} with the property that given z0 ∈ C \ {0, 1} and w0 ∈ H
such that τ(w0) = z0 we can find δ > 0 with D(z0, δ) ⊆ C \ {0, 1} and an
analytic function g : D(z0, δ)→ H such that τ(g(z)) = z for all z ∈ D(z0, δ).

Since H can be mapped conformally to D(0, 1) Theorem 143 follows at once
and we have proved Picard’s little theorem.

15 References and further reading

There exist many good books on advanced classical complex variable theory
which cover what is in this course and much more. I particularly like [9]
and [3]. For those who wish to study from the masters there are Hille’s two
volumes [4] and the elegant text of Nevanlinna [7]. There is an excellent
treatment of Dirichlet’s theorem and much more in Davenport’s Multiplica-
tive Number Theory [2] [The changes between the first and second editions
are substantial but do not affect that part which deals with material in this
course.] If you wish to know more about the Riemann zeta-function you can
start with [8]. In preparing this course I have also used [5] and [6] since I
find the author sympathetic.

10There are no topological difficulties here. The two sides of |z−a| = r are {z : |z−a| <
r} and {z : |z − a| > r}.
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