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Summary . In this paper, we extend traditional methods of spatial statistics to study causal spatiotemporal

correlations between two different point processes. After developing the methodology, we apply this analysis

to a particular case study of interest in ecology, the interaction between damage by a particular forest pest

(western spruce budworm) and forest fires. Our analysis, which covers parts of British Columbia in the

25 year period from 1971-1995, indicates that areas affected by budworm infestation have a significantly

decreased risk of forest fire for the 9 years following the infestation. Conversely, forest fires increase the

risk of budworm infestation for the first year and then decrease the risk of infestation for a 2-5 year period

after the fire. These temporal correlations extend over a spatial range of at least 10 km. Our study rejects

the common assumption that insect infestation necessarily results in increased fire risk. This case study

illustrates the utility of this approach to understanding ecosystem dynamics extending over both space and

time.
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1. Introduction

Throughout history, insect outbreaks and forest fires have proven themselves powerful agents of for-

est disturbance and mortality. In 2002, in the United States alone, over 16.1 million acres of forest

(U.S.D.A., 2003) were damaged or destroyed by insect pests and another 6.9 million acres of forest

(N.I.F.C., 2003) were lost to forest fires despite widespread programs to control insect outbreaks and

to manage forest fires. It is often stated in the literature that insect outbreaks and forest fires are

non-independent forms of disturbance. The suggestions are that insect outbreaks may leave forests
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more (Knight, 1987) or less (Despain, 1990; Kulakowski et al., 2003) vulnerable to forest fires, that

forest fires may ‘inoculate’ forests against certain insect outbreaks (Kulakowski et al., 2003; Veblen

et al., 1994; Bebi et al., 2003) while leaving trees vulnerable to others (McHugh et al., 2003), and that

two-way interactions between forest fires and insect outbreaks may act synergistically to determine

forest composition (Schmid and Hinds, 1974; McCullough et al., 1998). Since both the sign and the

magnitude of potential correlations is still under debate and the mechanisms by which forest fires and

insect outbreaks interact are complex, it is important to study the empirical spatiotemporal correlations

of actual disturbances. In doing so, we can determine the net interaction between these two disturbance

modes and, from this, draw conclusions about the dominant mechanisms mediating these interactions.

Quantitative studies of the spatiotemporal dynamics between insect damage and forest fires have, how-

ever, been extremely limited (Fleming et al., 2002) due to a shortage of spatially-explicit, large-scale

datasets and techniques with which to analyze such data.

In this paper, we develop a technique to answer these types of ecological questions by extending a

traditional estimate of second-order properties, Ripley’s cross-K function K12(s) (Cressie, 1993) to a

space-time cross-K function K12(s,t). In addition, we modify the expressions for K12(s,t) and its variance

V12(s,t) to account for the causality inherent in having two different point processes interacting in time.

2. Description of the data

The data used in this analysis was drawn from the British Columbia Natural Disturbance Database

compiled by the Canadian Forest Service. The western spruce budworm (Choristoneura occidentalis)

is a major forest pest in British Columbia and at times has been the most destructive forest defoliator

in western North America (Furniss and Carolin, 1977). Its primary hosts are Douglas-fir and grand fir,

although it has a number of secondary hosts such as Engelmann spruce, western larch, and subalpine

fir. The western spruce budworm larvae will feed on older growth from previous seasons but prefer new

growth, damaging expanding needles and developing cones (U.S.D.A., 1982). Successive years of severe

defoliation can cause decreased growth, deformity and ultimately, mortality. Because the western

spruce budworm feeds on specific host species, in British Columbia the western spruce budworm is

primarily confined to the Interior Douglas Fir (IDF) biogeoclimatic zone. For this reason, and to
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minimize heterogeneity in disturbance risk, we limited the spatial scope of our analysis to fires and C.

occidentalis infestations falling within the IDF zone plotted in Figure 1A. Figures 1B and 1C show the

25 year dataset of western spruce budworm damage and forest fires used in this analysis. In the period

examined, 1971-1995, there were 21,042 fires events and 6,525 recorded regions of budworm infestation,

affecting up to 0.14% and 12.0% (respectively) of the IDF zone in any given year.

To study the interaction between insect and fire occurrence, we transformed the historical records

shown in Figure 1C into point data sets, digitizing the insect outbreak and fire areas onto a 250 m by

250 m grid according to majority rule. Since only fire sizes were reported in the dataset, each fire event

was assumed to have burned a circular area centered on the reported fire center with an area equal to

the reported fire area. Each affected grid cell was defined as an event indexed by its position (x,y) and

the year (t) in which the disturbance occurred.

3. Spatiotemporal Model

One commonly used method of estimating whether a single stochastic process is clustered in space and

time is Ripley’s K-function (Cressie, 1993), defined as

K(s, t) =
1
λ

E[# of further events occurring within distance s and time t of an arbitrary event] (1)

where the number of events (N) and the area (A) may be used, under the assumptions of homogeneity,

to estimate the intensity of the point process λ = N/A. Unlike the Knox test for spatial correlation,

Ripley’s K-function allows us to examine space-time clustering over a range of spatial and temporal

scales. As detailed in Appendix A, we extended the traditional K-function to examine space-time

correlations between two distinct, causally-related, stochastic point types (insect pest outbreaks (p)

and forest fires (f)). Specifically, we define a space-time cross K-function as

Kpf (s, t) =
1
λf

E[# of further fire events occurring within (s,t) of a given insect pest event] (2)

where λf ∼ Nf/A represents the intensity of the fire point process. The converse function, Kfp(s,t) is

defined analogously. Causality is inferred by considering only those point pairs which are causal. For



4 Paul R. Moorcroft

example, in calculating Eq.(2) we consider only those point pairs for which a fire event occurred t (years)

following an insect pest infestation event. Note that in this case, Kpf (s,t) 6=Kfp(s,t), and therefore, you

need all f×p functions to completely describe the second-order properties of the process.

Rather than analyzing the raw cross-correlations we calculated the derived function

Do,pf (s, t) =
Kpf (s, t)−Kpf (s) ·Kpf (t)

Kpf (s) ·Kpf (t)
(3)

where Kpf (s) and Kpf (t) are the cross K-functions in pure space or pure time respectively. This

function has been used by a number of authors in the analysis of geographical epidemiology (see, for

example, Diggle et al. (1995) and Gatrell et al. (1996)). In this context, Do,pf (s,t) may be interpreted

as representing the increased risk of a fire event due to an insect pest event at spatial distance s and

time lag t, and represents the portion of the total space-time correlation that remains after correcting

for purely spatial and purely temporal correlations.

A nice feature of the Do,pf function (Eq. 3) is that it eliminates correlations between the two

processes arising from purely spatial covariates such as elevational gradients and purely temporal co-

variates such as weather-related increases in fire frequency and insect outbreak frequency. In doing, we

isolate the effect of only those processes that are correlated in both space and time. It is important to

emphasize that our null hypothesis is that western spruce budworm outbreaks and forest fires exhibit

no space-time interactions. Purely spatial or purely temporal correlations may exist due to a variety of

ecology heterogeneities that are difficult to exclude. However, as discussed by Diggle et al. (1995), the

statistical tests used in this analysis remain valid even if the underlying process is non-stationary.

The statistical significance of the Do,pf (s,t) estimated was determined by calculating

Rpf (s, t) =
Do,pf (s, t)(Kpf (s) ·Kpf (t))√

Vpf (s, t)
(4)

where Rpf (s,t) is analogous to the standardized residuals of the Kpf (s,t) function once purely spatial and

purely temporal correlations have been accounted for (Diggle et al., 1995), and Vpf (s,t) is the variance of

Do,pf (s,t). The statistical significance of Do,fp(s,t) was calculated in a similar manner. If two processes

are space-time independent, ∼ 95% of Rpf (s,t) values should lie within ± 2. Rpf (s,t) values whose

absolute value is larger than 2 indicate Do,pf (s,t) values which are statistically significant. The results
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presented below are are based on calculations using a buffer edge correction method (Cressie, 1993)

in which all points falling within 10 km of the edge were excluded from consideration but were used

as neighbors to events lying in the interior. Estimating Do,pf (s,t) and Do,fp(s,t) using a re-weighting

edge-correction scheme (Cressie, 1993) gives similar results.

Vpf (s,t) and Vfp(s,t) were calculated analytically (see Appendix A) and checked numerically using a

Monte Carlo method in which new data sets (consistent with the initial first-order properties of the orig-

inal data) were created by random permutations of the time ‘labels’. The Monte Carlo estimations for

the variance using N=50 simulations of the data are somewhat smaller that the theoretically calculated

estimate for the variance. This is likely due to the fact that the computation time required to calculate

the Do(s,t) function limited the number of simulations we could perform. In either case, however, there

was consistency between the two methods as to which data points were statistically significant. The

results discussed below, and represented in Figures 2 and 3, represent the more conservative (larger)

estimate for the variance obtained using the analytical calculation detailed in Appendix A.

4. Results

The results of our analysis are plotted in Figures 2 and 3. Figure 2 shows Do,pf (s,t), the additional

risk of forest fire following an C. occidentalis outbreak. The filled points indicate results which are

significant to 5% confidence levels. We see that budworm outbreaks lead to a significantly decreased

risk of forest fire. In the immediate vicinity of a spruce budworm outbreak, the risk of fire during the

first year following the outbreak is reduced by approximately 40%. This reduction in fire risk decreases

steadily over the next five to ten years following the budworm damage and also declines with increasing

distance from the infection center but remaining significant to at least 10 km, the longest length scale

examined in the study.

Figure 3 shows the effect of forest fire on future risk of C. occidentalis damage. In the year imme-

diately following a fire, there is a 10%-25% increase in the risk of C. occidentalis infestation in areas

within 5 km of the fire. This elevated risk declines over the next two years, and by the third year there

is up to a 12% lower risk of C. occidentalis infestation. This rises again to a small peak after the sixth

year following fire and then levels off to very small levels of additional risk.
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The result shown in Figure 2 directly contradicts the common assumption that insect damage nec-

essarily increases the risk of forest fire (McCullough et al., 1998; Dale, 2001; O’Driscoll, 2004; Robbins,

2004). While studies suggest that this may be the case for certain insects in particular forests (e.g. jack

pine budworm in jack pine forests (McCullough et al., 1998)), the overall situation is more complex.

Previous studies have suggested several mechanisms by which insect damage may promote or inhibit

fires via changes in the vertical distribution of fine fuels within the canopy (Knight, 1987; Despain,

1990) and changes in the light, temperature and humidity conditions within the forest (Kulakowski

et al., 2003; Reid, 1989). For example, insect-related damage can lead to extensive patches of dead

needles within the forest canopy. If these remain in the overstory, the resulting matrix of fine, dry fuels

may increase the risk of a stand-replacing canopy fire (Knight, 1987; McCullough et al., 1998). On the

other hand, if dead needles quickly fall off the trees, fuel in the canopy layer may decrease, reducing

the risk of canopy fire (Despain, 1990). Similarly, insect activity can alter the occurrence of surface

fires. If needle-drop occurs due to insect activity and dead needles accumulate on the forest floor, this

increases the availability of dry surface fuels, promoting the occurrence of surface fires (McCullough

et al., 1998). Conversely, defoliation following insect activity can lead to an opening of the canopy that

promotes growth of understory herbs and other ground cover (Reid, 1989), and the resulting increase in

understory moisture may lead to a decreased risk of surface fires following insect defoliation (Kulakowski

et al., 2003).

5. Discussion

Analyzing the empirical data on actual fire and insect outbreaks enables us to determine the net effect

of these competing factors on the probability of fire. While additional field studies will be required to

study the balance between the altered risks of surface and canopy fires due to insect activity in this

system, our analysis suggests that the net affect, on average, is that C. occidentalis outbreaks decrease

forest fire risk in the 5-10 years following an outbreak.

There are several possible reasons for the initial increase in risk of C. occidentalis infestation in the

first year following forest fires seen in Figure 3. One often cited possibility is that trees that are damaged

but not killed by a forest fire may be less able to defend themselves against insect infestation and may act
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as epicenters for outbreak which then spread into surrounding healthy forest (Knight, 1987; McCullough

et al., 1998; Dale, 2001). However, these studies have focused on interactions between bark beetles and

forest fires, and there are several reasons to suggest that weakened tree defenses are unlikely to play a

major role in precipitating outbreaks of western spruce budworm. Previous work has demonstrated that

the primary mechanisms of Douglas-fir resistance to C. occidentalis are high growth rate and late bud

burst phenology as opposed to chemical defenses via secondary compounds (Chen et al., 2001, 2002)

and studies of the closely related C. fumiferana suggest that outbreaks are not initiated by a single

epicenter but occur in synchrony over large areas (Royama, 1984).

A second explanation for why fires may promote insect outbreaks is that forest fires perturb the

balance between C. occidentalis and its predators or parasites. It is believed that predation on C. occi-

dentalis larvae by ants and birds is effective in regulating budworm populations at endemic levels, but

are ineffective once populations have reached outbreak levels (Torgersen and Campbell, 1982; Torgersen

et al., 1990; Campbell et al., 1983). If the ecosystem disruption of a forest fire allows C. occidentalis

to escape from its predators long enough to reach outbreak levels, this may account for the increased

risk of insect outbreak in the year following a forest fire. This may occur due to post-fire changes

in diet selection among birds known to feed on both seeds, which become more prevalent following a

forest fire, and C. occidentalis larvae†. Finally, if low intensity forest fires reduce competition for light

and nutrients in the forest, unusually vigorous growth in the next growing season might increase the

carrying capacity for defoliators such as C. occidentalis, allowing the budworm populations to reach

outbreak levels.

In addition to the immediate effects of fire, Figure 3 also shows evidence of a delayed increase in

insect outbreak risk six years after a fire, indicating the existence of both long-term as well as short-

term spatiotemporal correlations between forest fires and subsequent insect outbreaks. A potential

explanation for this lagged response to fire may be insect infestation on young trees established following

fire related mortality.

†Of the five bird species known to feed on C. occidentalis (Hesperiphona vespertina, Spinus pinus, Spizella

passerina, Junco hyemalis and Piranga ludoviciana), four also feed on seeds (Torgersen and Campbell, 1982).
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6. Conclusion

The interactions between fires and C. occidentalis outbreaks found in this study have important impli-

cations for the management of forests in western North America. In particular, future climate change

and shifting policies regarding fire suppression are likely to have significant consequences for insect pop-

ulations, forest fires, and their interactions and an improved understanding of these complex feedbacks

has been cited as a research priority (Ayres and Lombardero, 2000). While our analysis has focused

exclusively on the interaction between C. occidentalis and forest fires, our approach provides a gen-

eral method for exploring for space-time interactions among different modes of disturbance wherever

long-term, spatially explicit, historical records are available.
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Figure 1: A. Shaded region represents the Interior Douglas Fir biogeoclimatic zone within the province

of British Columbia. B. Time series plot of the fraction of the Interior Douglas Fir biogeoclimatic zone

affected by forest fires (red) and western spruce budworm (black) during the period 1971-1995. C.

Interior Douglas Fir Zone overlayed with the fire (red) and western spruce budworm (black) disturbance

data for the period 1971-1995.
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Figure 2: A. Dpf (s,t) indicating increased (Dpf > 0) or decreased (Dpf < 0) risk of forest fire

following western spruce budworm infestation. B. Cross-section of Dpf (s,t) for the first 4 years following

western spruce budworm damage. Error bars represent 1σ error as calculated analytically according

to the expression derived in Appendix A. C. |Rpf (s,t)| values larger than 2 indicate Dpf (s,t) that are

significant; these points are indicated by solid circles in A.
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Figure 3: A. Dfp(s,t) indicating increased (Dfp > 0) or decreased (Dfp < 0) risk of western spruce

budworm outbreak following a forest fire. B. Cross-section of Dfp(s,t) for the first 4 years following a

forest fire. Error bars represent 1σ error as calculated analytically according to the expression derived

in Appendix A. C. |Rfp(s,t)| values larger than 2 indicate Dfp(s,t) that are significant; these points are

indicated by solid circles in A.
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Appendix A

1. Calculation of K 12(s,t) and K 21(s,t) for causal point processes

Using Cressie’s notation (Cressie, 1993), we extend the cross-K function to include both space and time

as follows:

K̂12(s) =
1

λ̂1λ̂2ν(A)

n1∑

i=1

n2∑

j=1

w(s(1)
i , s

(2)
j )−1I(‖s(1)

i − s
(2)
j ‖ ≤ s)

K̂12(t) =
1

λ̂1λ̂2ν(T )

n1∑

i=1

n2∑

j=1

v(t(1)i , t
(2)
j )−1I(‖t(1)i − t

(2)
j ‖ ≤ t) (5)

K̂12(s, t) =
1

λ̂1λ̂2ν(A)ν(T )

n1∑

i=1

n2∑

j=1

w(s(1)
i , s

(2)
j )−1v(t(1)i , t

(2)
j )−1I(‖s(1)

i −s
(2)
j ‖ ≤ s)I(‖t(1)i −t

(2)
j ‖ ≤ t) (6)

where ν(X ⊂ Rn) is the n-dimensional volume of X. For homogeneous point processes, we can approx-

imate the intensity λ̂i as ni/ν(•). We can, therefore, simplify the above equations to get

K̂12(s) =
|A|

n1n2

n1∑

i=1

n2∑

j=1

w(s(1)
i , s

(2)
j )−1I(‖s(1)

i − s
(2)
j ‖ ≤ s) (7)

K̂12(t) =
T

n1n2

n1∑

i=1

n2∑

j=1

v(t(1)i , t
(2)
j )−1I(‖t(1)i − t

(2)
j ‖ ≤ t) (8)

K̂12(s, t) =
|A|T
n1n2

n1∑

i=1

n2∑

j=1

w(s(1)
i , s

(2)
j )−1v(t(1)i , t

(2)
j )−1I(‖s(1)

i − s
(2)
j ‖ ≤ s)I(‖t(1)i − t

(2)
j ‖ ≤ t) (9)

To consider only cross-correlations between two causal stationary point processes, we need to account

for the fact that there are no longer n1n2 pairs being considered, but only some fraction fn1n2 which

contribute to the K-function. This fraction f depends explicitly on the data sets being considered and

must be calculated in advance. Note that if the two point patterns were completely independently

homogenous over the space-time interval, f would equal 1/2.
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2. Calculation of V 12(s,t) and V 21(s,t)

To calculate the mean and variance of

K̂(s, t) ≡ |A|T
fn1n2

∑

i,j

wijvijI(dij ≤ s)I(uij ≤ t)I(ti − tj > 0) (10)

it suffices to consider the mean and variance of the rescaled function

Q(s, t) =
∑

i,j

wijvijI(dij ≤ s)I(uij ≤ t)I(ti − tj > 0). (11)

Note that dij = ‖s(1)
i − s

(2)
j ‖ and uij = ‖t(1)i − t

(2)
j ‖. The mean of Q(s,t) may be written as

E[Q] =
1

fn1!n2!

∑
π

n1∑

i

n2∑

j

WijVπ−1(i)π−1(j) (12)

where Wij = wijI(dij ≤ s), Vij = vijI(uij ≤ t), and π represents all possible permutations of the time

index and f represents the fraction of those permutations that obey causality. With i (point type 1)

fixed and j (point type 2) fixed, each permutation occurs f(n1-1)!(n2-1)! times. This may be expressed

as

1
fn1!n2!

∑
π

n1∑

i=1

n2∑

j=1

WijVπ−1(i)π−1(j) =
f(n1 − 1)!(n2 − 1)!

fn1!n2!

n1∑

i=1

n2∑

j=1

Wij

n1∑

k=1

n2∑

l=1

Vkl (13)

Using this and the new variables W1 and V1 as defined below, we can write E[Q] as

E[Q] =
f(n1 − 1)!(n2 − 1)!

fn1!n2!
W1V1 (14)

=
1

n1n2
W1V1 (15)

To calculate the variance of Q(s,t) we will calculate the full covariance matrix E[QQ′] = E[Q(s,t)Q(s′,t′)]

and simplify at the end setting s′=s and t′=t. Using the basic definitions of covariance
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Cov(Q,Q′) = E[(Q− Q̄)(Q′ − Q̄′)] (16)

= E[QQ′]− 1
n2

1n
2
2

W1V1W
′
1V

′
1 . (17)

To calculate E[QQ′], we consider the average of QQ′ over all possible permutations of the time index,

leaving the spatial index fixed. With π defined to be all possible permutations of the times, this becomes

E[QQ′] =
1

fn1!n2!

∑
π

((
n1∑

i=1

n2∑

j=1

WijVπ−1(i)π−1(j))(
n1∑

k=1

n2∑

l=1

WklVπ−1(k)π−1(l))). (18)

The most general term in this expression may be written WijVxyW ′
klV

′
rs where π(x) = i, π(y) =

j, π(r) = k, π(s) = l. That is, that the same permutation π takes x → i, y → j etc. Throughout, we

assume that i and k indicate points of type 1, and that j and l indicate points of type 2. In general,

in considering the space-time interaction between two different point types, we would want to consider

clustering of type 1 ‘around’ type 2, and clustering of type 2 ‘around’ type 1. In what follows we will

consider clustering of type 2 ‘around’ type 1 in order to calculate the covariance structure appropriate

to normalize the function

D̂12(s, t) = K̂12(s, t)−KS(s) ·KT (t). (19)

There are, in Eq. (17), four important indices: i, j, k, and l. These four indices can either be all

four distinct, have three distinct members or only two distinct members. (There need to be at least

two distinct indices since there are two different point types to be summed over.) Most generally, if γ1

indices for point type 1 are fixed and γ2 indices for point type 2 are fixed, there are f(n1-γ1)!(n2-γ2)!

possible permutations of the remaining ‘free’ indices where, again, f is the fraction of all point 1/point

2 combinations which are causal. (Because we only permute the existing time indices and we do not

change the number of points in each year bin, this fraction is the same for all permutations.)
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Lets start with the case of 4 distinct indices i, j, k, and l. This is the case when we are considering

pairs between type 1 and type 2 points and make the restriction that i6=k and j 6=l. There is only one

way to generate such a set, written as

n1∑

i=1

n2∑

j=1

n1∑

k=1,k 6=i

n2∑

l=1,l 6=j

WijVπ−1(i)π−1(j)W
′
klV

′
π−1(k)π−1(l) (20)

and it occurs f(n1-2)!(n2-2)! times.

We can have three distinct indices in two different ways. Either the same type 1 point can be paired

with two different type 2 points, or the same type 2 point can be paired with two different type 1

points. In the first case, only one type 1 index is fixed and two type 2 indices are fixed, so this occurs

f(n1-1)!(n2-2)! times in the permutation of all time indices. Analogously, the second case happens

f(n1-2)!(n2-1)! times. These two terms may be written

n1∑

i=1

n2∑

j=1

n2∑

l=1,l 6=j

WijVπ−1(i)π−1(j)W
′
ilV

′
π−1(i)π−1(l) (21)

n1∑

i=1

n2∑

j=1

n1∑

k=1,k 6=i

WijVπ−1(i)π−1(j)W
′
kjV

′
π−1(k)π−1(j) (22)

Finally, if there are only two distinct values among i, j, k, and l, this is associated with two identical

pairings between a point in type 1 and a point in type 2. These occur f(n1-1)!(n2-1)! times.

n1∑

i=1

n2∑

j=1

WijVπ−1(i)π−1(j)W
′
ijV

′
π−1(i)π−1(j) (23)

Considering only the W terms for now (the V terms fall out in exactly the same way), we can

simplify the
∑

π of equation Eq. (18) by taking each term (where each term represents one of the four

possible permutations considered above) and simplifying them as follows.

Equation (20) may be simplified as

n1∑

i=1

n2∑

j=1

n1∑

k=1,k 6=i

n2∑

l=1,l 6=j

WijW
′
kl =

n1∑

i=1

n2∑

j=1

n1∑

k=1

n2∑

l=1

WijW
′
kl −

n1∑

i=1

n2∑

j=1

n1∑

k=1,k 6=i

WijW
′
kj (24)
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−
n1∑

i=1

n2∑

j=1

n2∑

l=1,l 6=j

WijW
′
il −

n1∑

i=1

n2∑

j=1

WijW
′
ij (25)

where the second term may be rewritten as

n1∑

i=1

n2∑

j=1

n1∑

k=1,k 6=i

WijW
′
kj =

n1∑

i=1

n2∑

j=1

n1∑

k=1

WijW
′
kj −

n1∑

i=1

n2∑

j=1

WijW
′
ij (26)

and the third term may be rewritten analogously. In the end, we can write Eq. (20) as

n1∑

i=1

n2∑

j=1

n1∑

k=1

n2∑

l=1

WijW
′
kl −

n1∑

i=1

n2∑

j=1

n1∑

k=1

WijW
′
kj −

n1∑

i=1

n2∑

j=1

n2∑

l=1

WijW
′
il +

n1∑

i=1

n2∑

j=1

WijW
′
ij (27)

Equation (21) may be simplified as

n1∑

i=1

n2∑

j=1

n2∑

l=1,l 6=j

WijW
′
il =

n1∑

i=1




n2∑

j=1

n2∑

l=1

WijW
′
il


−

n1∑

i=1

n2∑

j=1

WijW
′
ij (28)

=
n1∑

i=1




n2∑

j=1

Wij




(
n2∑

l=1

W ′
il

)
−

n1∑

i=1

n2∑

j=1

WijW
′
ij (29)

(30)

Likewise, Equation (22) may be simplified as

n1∑

i=1

n2∑

j=1

n1∑

k=1,k 6=i

WijW
′
kj =

n2∑

j=1

(
n1∑

i=1

Wij

)(
n1∑

k=1

W ′
kj

)
−

n1∑

i=1

n2∑

j=1

WijW
′
ij (31)

We can greatly simplify the problem by defining a few new variables:

W1 ≡
n1∑

i=1

n2∑

j=1

Wij (32)

W ′
1 ≡

n1∑

i=1

n2∑

j=1

W ′
ij (33)

W2 ≡
n1∑

i=1

((
n2∑

j=1

Wij)(
n2∑

l=1

W ′
il)) (34)
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W̃2 ≡
n2∑

j=1

((
n1∑

i=1

Wij)(
n1∑

k=1

W ′
kj)) (35)

W3 ≡
n1∑

i=1

n2∑

j=1

WijW
′
ij (36)

with corresponding definitions for V1,V′1,V2,Ṽ2, and V3.

With these new variables in hand, we can write the following expression for the covariance matrix

for Q.

E[QQ′] =
1

fn1!n2!
[f(n1 − 2)!(n2 − 2)![(W1W

′
1 −W2 − W̃2 + W 3)(V1V

′
1 − V2 − Ṽ2 + V 3)]

+f(n1 − 1)!(n2 − 2)![(W2 −W3)(V2 − V3)]

+f(n1 − 2)!(n2 − 1)![(W̃2 −W3)(Ṽ2 − V3)]

+f(n1 − 1)!(n2 − 1)!W3V3].

Note the analogous structure as derived for the single point type analysis in Diggle et al. (1995). This

may be plugged back into Eq. (17) to give the final expression

Cov(K̂(s, t), K̂(s′, t′)) =
(

A|T |
fn1n2

)2 1
n1!n2!

[(n1 − 2)!(n2 − 2)![(W1W
′
1 −W2 − W̃2 + W 3) ∗

(V1V
′
1 − V2 − Ṽ2 + V 3)] + (n1 − 1)!(n2 − 2)![(W2 −W3)(V2 − V3)]

+(n1 − 2)!(n2 − 1)![(W̃2 −W3)(Ṽ2 − V3)] + (n1 − 1)!(n2 − 1)!W3V3]

− 1
n2

1n
2
2

W1V1W
′
1V

′
1 . (37)

Note that the fraction f, which accounts for the restriction to causal point pairs, cancels everywhere

except for in the overall scale factor in the front. The variance can be calculated directly from the

covariance in Equation (37).


