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ABSTRACT 

Linear and quadratic discriminant analysis are considered in the small 

sample high-dimensional setting. Alternatives to the usual maximum like- 

lihood (plug-in) estimates for the covariance matrices are proposed. These 

alternatives are characterized by two parameters, the values of which are 

customized to individual situations by jointly minimizing a sample based 

estimate of future misclassification risk. Computationally fast implementa- 

tions are presented, and the efficacy of the approach is examined through 

simulation studies and application to data. These studies indicate that 

in many circumstances dramatic gains in classification accuracy can be 

achieved. 
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1.0 Classification 

The formal purpose of classification or discriminant analysis is to assign ob- 

jects to one of several (K) groups or classes based on a set of measurements 

x= (X1,X2,-, XP) obtained from each object or observation. Classification 

techniques are also used informally to study the separability of labeled groups 

of observations in the measurement space. In the formal setting, an object is 

assumed to be a member of one (and only one) class and an error is incurred if 

it is assigned to a different one. The cost or loss associated with such an error is 

defined to be 

where k is the correct group on class assignment, and i is the assignment that 

was actually made [L(k, k) is usually taken to be zero and L(k, k) 2 01. 

The vector valued measurements associated with all of the members of each 

class k (population) are seldom identical but comprise a distribution of values 

characterized by a probability density fk(X). The usual goal is to minimize the 

misclassification risk, which is defined to be the expected misclassification loss 

[Eq. (l)] over the sample to be classified. If the class conditional densities fk(X) 

are known, then it is possible to calculate misclassification risk and derive an 

assignment or classification rule to minimize it. The risk (expected loss) incurred 

in classifying an object with measurement vector X as i is 

where zk is the unconditional prior probability of observing a class k member. 

This can be minimized by choosing i to minimize the numerator in Eq. (2). For 

the special but commonly occurring case 

L(k, i) = 1 - 6(k,i) , (3) 

this reduces to the simple rule: choose i such that 

(4 
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The loss matrix [Eq. (3)] assigns a loss of one unit for each mistake irrespective 

of its type. The misclassification risk is then just the fraction of assignments that 

are incorrect. The rule resulting from choosing & to minimize R(i]X) [Eq. (2) 

or (4)] is known as the Bayes rule and it achieves minimal misclassification risk 

among all possible rules. 

The class conditional densities fk(X) are seldom known. More often we are 

able to obtain a sample of observations from each class that are correctly classi- 

fied by some external mechanism. The objective is to use these observations as a 

training sample to construct a classification rule by obtaining suitable estimates 

of the fk(X). S ince these estimates generally deviate from the true popula- 

tion densities, such a rule will not likely achieve minimal risk, except perhaps 

asymptotically. Sometimes the unconditional class (prior) probabilities are also 

unknown. If the pooled (over classes) training data can be regarded as a random 

sample from the pooled population distribution, then the prior probabilities can 

be estimated by the fraction of each class in the pooled sample 

wk 
iijrk = - , 

W 

with 

w, = c WV , 

c(v)=k 

(5) 

(64 

and 

Here v labels the observations in the training sample, C(V) is the class of the vth 

observation, and wv is a weight or mass assigned to each observation. 



2.0 Linear and Quadratic Discriminant Analysis 

The most often applied classification rules are based on the normal distribu- 

tion 

fk(x) = (24-4’ Ickl-1/2 ,-1i2(=~k)TC~1 (X-E,) , (7) 

where elk and Ck are the class k (1 5 k 5 K) population mean vector and 

covariance matrix. Assuming the simple loss structure [Eq. (3)] and substituting 

Eq. (7) into Eq. (4) leads to the classification rule 

with 

(8) 

This quantity is often called the discriminant score for the kth class, whereas 

dk(X) + 2& rk is referred to as the discriminant function. The first term on the 

right-hand side of Eq. (9) is the well-known Mahalonobis distance between X 

and &’ 

Using the classification rule [Eqs. (8) and (9)] is called quadratic discriminant 

analysis (QDA) since it separates the disjoint regions of the measurement space 

corresponding to each class assignment by quadratic boundaries. An important 

special case occurs when all of the class covariance matrices are presumed to be 

identical 

& =c l<k<K . (10) 

This is referred to as linear discriminant analysis (LDA) because the quadratic 

terms associated with Eqs. (8) and (9) cancel, resulting in linear decision 

boundaries. 

Quadratic and linear discriminant analysis can be expected to work well 

if the class conditional densities are approximately normal and good estimates 

(for classification purposes) can be obtained for the population parameters defin- 

ing the distributions (class mean vectors ~~ and covariance matrices ck). In 
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the classification context the ellipsoidal symmetry associated with the normal 

distribution appears to be the important aspect rather than its detailed shape 

[see Lachenbruch (1975) and James (1985)]. Cl assification rules based on QDA 

are known to require generally larger samples than those based on LDA [Wahl 

and Kronmal (1977)] and seem to be more sensitive to violations of the basic 

assumptions. 

In most applications of linear and quadratic discriminant analysis the param- 

eters associated with the class densities are estimated by their sample analogues 

i& = xk = & c wV XV 3 

c(v)=k 
(11) 

and 

kk = 2 = & c WV& -&)(&J -KkjT 9 
c(v)=k 

(12) 

with wk given by Eq. (6a). Th ese so-called “plug-in” estimates are straightfor- 

ward to compute and represent the corresponding maximum likelihood estimates. 

(Often the covariance matrix estimates are scaled by a factor to remove bias.) 

Although seemingly reasonable, this approach can be justified only on intuitive 

grounds, and it enjoys no optimality properties (except asymptotically) even 

when the population distributions are normal [Anderson (1958)]. Also, any sen- 

sible Bayesian rule will not lead to this approach, except either asymptotically 

or under very restrictive conditions [Enis and Geisser (1974)]. 

When the class sample sizes Nk, 1 < k < K, are small compared to the di- 

mension of the measurement space p, the covariance matrix estimates, especially, 

become highly variable. Moreover, when hrk < p not all of their parameters are 

even identifiable. The effect this has on discriminant analysis can be seen by 

representing the class covariance matrices by their spectral decompositions 

5 



I 

- 
where f?ik is the jth eigenvalue of Ck (ordered in decreasing value) and cik the 

corresponding eigenvector. The inverse in this representation is 

c,l = 
P 

c 
i=l 

?!ik g:k 

eik 

and the discriminant score [Eq. (9)] becomes 

d (x) = e [Y:(x-Pk)12 - 
k- 

i=l e&k 

(13) 
nc;k - 2!hrk . 

i=l 
-. 

The discriminant score [Eq. (13)] is seen to be heavily weighted by the smallest 

eigenvalues and the directions associated with their eigenvectors. When sample 
-. 

based plug-in estimates are used, this becomes the eigenvalues and eigenvectors 

of 2, [Eq. (12)]. 

It is well known that the estimates based on Eq. (12) produce biased estimates 

of the eigenvalues; the largest ones are biased high and the smallest ones are 

biased towards values that are too low. This bias is most pronounced when 

the population eigenvalues tend towards equality, and is correspondingly less 

severe when their values are highly disparate. In all cases, this phenomenon 

becomes more pronounced as the sample size decreases. When Nk 5 p the 

sample covariance matrix is singular with rank 5 hrk and the smallest p - Nk + 1 

eigenvalues are estimated to be zero. The corresponding eigenvectors are then 

arbitrary subject perhaps to orthogonality constraints. 

The net effect of this biasing phenomenon on discriminant analysis is to 

(sometimes dramatically) exaggerate the importance associated with the low 

variance subspace spanned by the eigenvectors corresponding to the smallest 

sample eigenvalues. Therefore, most of the variance incurred in estimating the 

discriminant scores [Eqs. (9} and (13)] is associated with directions of low sample 

variance in the measurement space. 

6 



3.0 Regularization and Shrinkage 

One way to attempt to mitigate this problem is to try to obtain more reliable 

estimates of the eigenvalues by correcting the eigenvalue distortion in the sample 

covariance matrix. James and Stein (1961), Stein et al. (1972), Stein (1973), 

Stein (1975), Ef ron and Morris (1976), Olkin and Sellian (1977), Haff (1980), 

Lin and Perlman (1984), Takemara (1984) and Dey and Srmivasan (1985) have 

studied this approach by seeking estimates that minimize particular loss criteria 

(often some form of squared-error loss) on the eigenvalue estimates. None of these 

loss criteria that have been studied, however, are related to misclassification risk 

of a discriminant function. Also, they nearly all require that Ek be nonsingular. 

Another approach is to employ a regularization method.‘Regularization tech- 

niques have been highly successful in the solution of ill- and poorly-posed inverse 

problems. [See Titterington (1985) and O’Sullivan (1986) for reviews.] Roughly, 

a problem is poorly posed if the number of parameters to be estimated is com- 

parable to the number of observations and ill-posed if that number exceeds the 

sample size. In these cases the parameter estimates can be highly unstable, giv- 

ing rise to high variance. By employing a method of regularization, one attempts 

to improve the estimates by biasing them away from their sample based values 

towards values that are deemed to be more “physically plausible.” [Cornfield 

(1967) suggested applying James-Stein shrinkage to the individual class location 

estimates.] Regularization reduces the variance associated with the sample based 

estimate at the expense of potentially increased bias. This bias variance trade-off 

is generally regulated by one or more (degree-of-belief) parameters that control 

the strength of the biasing towards the “plausible” set of (population) parame- 

ter values. For given value(s) of the regularization parameter(s), the increase in 

bias will depend on how closely the plausible set of parameters actually represent 

those of the population. Therefore, if a bad guess were made, one would like to 

employ a small amount of regularization; whereas for a good guess, a high degree 

of regularization would be appropriate, dramatically decreasing the variance at 

the expense of low increase in bias. Since one seldom knows the accuracy of the 

guess, sample based methods are often used to try to estimate values for the 

regularization parameters as well. 
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Quadratic discriminant analysis is clearly ill-posed if Nk 5 p for any class, 

and poorly posed whenever Nk is not considerably larger than p. One method of 

regularization that is routinely applied in discriminant analysis is to replace the 

individual class sample covariance matrices by their average 

where 
K 

s=):sk, 
k=l 

(15) 

with W given by Eq. (6b) and Sk by Eq. (12). This aiplies a considerable 

degree of regularization by substantially reducing the number of parameters to 

. be estimated. Even if the population class covariance matrices are substantially 

different, the decrease in variance accomplished by using the pooled covariance 

estimate can sometimes lead to superior performance, especially in small sample 
_ settings. This is a large part of the reason for the success and popularity of linear 

discriminant analysis. 

The choice between linear and quadratic discriminant analysis represents a 

fairly restrictive set of regularization alternatives. A less limited set of alterna- 

tives is represented by 

E,(X) = sklx) 
wk(x) ’ 

(164 

where 

Sk(x) = (l-x)& +xs , ww 

and 

&(A) = (1 - x)wk + xw , (164 

with Sk given by Eq. (12)) S by Eq. (15), and wk and W by Eq. (6). The 

regularization parameter X takes on values 0 5 X 5 1. It controls the degree of 

shrinkage of the individual class covariance matrix estimates towards the pooled 

estimate. The value X = 0 gives rise to quadratic discriminant analysis (QDA), 
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whereas X = 1 yields linear discriminant analysis (LDA). Values between these 

limits represent degrees of regularization less severe than LDA. Since it is often 

the case that even small amounts of regularization can largely eliminate quite 

drastic instability [Titterington (1985)], smaller values of X (than X = 1) have the 

potential of superior performance when the population class covariance matrices 

substantially differ. 

The regularization provided by Eqs. (16) is still fairly limited and is not the 

only natural way to regularize QDA. First of all it might not provide for enough 

regularization. If the total sample size 

K 

N=x Nk 

k=l 

is less than or comparable to p, then even LDA is ill- or poorly-posed. Secondly, 

biasing the sample class covariance matrices toward commonality may not be 

the most effective way to shrink them. For example, if the population class co- 

variance matrices were all (quite different) multiples of the identity matrix, then 

shrinkage towards LDA would introduce severe bias, whereas shrinking each sam- 

ple class covariance matrix towards the identity matrix multiplied by its average 

eigenvahe [trace (2,) /p] would introduce almost no bias. Ridge regression regu- 

larizes ordinary linear least squares regression by shrinking toward a multiple of 

the identity matrix. 

To these ends we further regularize the sample class covariance matrix esti- 

mates beyond that provided by Eqs. (16) through 

with gk(X) given by Eqs. (16) and I being the identity matrix. For a given value 

of X, the additional regularization parameter 7, 0 5 7 5 1, controls shrinkage 

toward a multiple of the identity matrix. The multiplier is just the average eigen- 

value of gk(X). Th’ 1s shrinkage has the effect of decreasing the larger eigenvalues 

and increasing the smaller ones, thereby counteracting the biasing inherent in 

sample based estimation of eigenvalues. 
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Equations (16) and (18) represent a two-parameter family of regularized sam- 

ple class covariance matrix estimators, to be used with the class discriminant 

scores 

dk(X) = (Is - xk)* 53X, 7)(x - xk) 

to perform discriminant analysis. Values for the two regularization parameters, 

0 5 X 5 1 and 0 5 7 2 1, are chosen so as to jointly minimize an unbiased 

estimate of future misclassification risk (see Section 4.0). We refer to this ap- 

proach as “regularized discriminant analysis” (RDA). 

Regularized discriminant analysis provides for a fairly rich class of regulariza- 

tion alternatives. The four corners defining the extremes of the X, 7 plane repre- 

sent fairly well-known classification procedures. The lower left corner (X = 0, 7 = 

0) represents quadratic discriminant analysis. The lower right (X = 1, 7 = 0) 

represents linear discriminant analysis. The upper-right corner (X = 1, 7 = 1) 

corresponds to the nearest means classifier well known in pattern recognition; an 

observation is assigned to the class with the closest (Euclidean distance) mean. 

The upper-left corner of the plane represents a weighted nearest means classifier 

with the class weights being inversely proportional to the average variance of the 

measurement variables within the class. Holding 7 fixed at zero and varying X 

produces models in between QDA and LDA. Holding X fixed at zero and increas- 

ing 7 attempts to unbias the sample based eigenvalue estimates. Holding X fixed 

at one and increasing 7 gives rise to a ridge regression analogue for LDA. 

4.0 Model Selection 

A good pair of values for X and 7 is not likely to be known in advance. We 

must, therefore, have a (training) sample based method to estimate them. This is 

a common objective associated with methods of regularization. For classification, 

two sample resuse methods, cross-validation [Lachenbruch (1975) and Geisser 

(1977)] and Bootstrapping [Efron (1983)] h ave been suggested. The computa- 

tional advantages associated with the cross-validation approach in this particular 

application (see below) make it the most attractive choice here. The basic idea of 

cross-validation is to obtain a (nearly) unbiased estimate of the future prediction 
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error associated with a particular observation Xv by removing it from the model 

building process. That is, the classification rule is developed on the N - 1 train- 

ing observations exclusive of Jf, and then it is used to classify Xv. Each of the 

training observations is in turn held out and then classified in this manner. The 

resulting misclassification loss averaged over the training sample is then used as 

an estimate of future misclassification risk. 

. 

Our approach to model selection is to choose values of the covariance matrix 

mixing parameter X, and the eigenvalue shrinkage parameter 7, that jointly min- 

imize this cross-validated estimate of future misclassification risk. This gives rise 

to a two-parameter numerical minimization problem. Our strategy is to choose 

a grid of points on the X, 7 plane, 0 5 X 5 1, 0 5 7 5 1, evaluate the cross- 

validated estimate of misclassification risk at each prescribed point on the grid, 

and then choose the point with the smallest estimated risk as our estimate for 

the optimal regularization parameter values, x and T. Typically, the size of the 

optimization grid Np is taken to be from 25 to 50 points. 

This strategy, if implemented in a straightforward manner, would require 

excessive computation. At each grid point, N [Eq. (17)] sets of discriminant scores 

[Eq. (19)] would have to be calculated. Thus, the increase in computation for the 

entire procedure would be Np x N times the computation required for a single 

discriminant analysis. Fortunately, however, it is possible to develop a strategy 

based on matrix updating formulae to dramatically reduce this computational 

burden and bring it to an acceptable level. 

In order to apply cross-validation it is necessary to compute the K discrimi- 

nant scores [Eq. (19)] with th e observation to be classified (say Xv) left out 

dk\v(Xv) = (xv - %,v)~ E$,O~ 7)& - %\v) 

Here the notation \V refers to the corresponding quantity computed with the 

yth observation removed. One could simply recompute the quantities involved 

from scratch using the N - 1 observations exclusive of Xv. However, as indi- 

cated above, this results in excessive total computation. In the case of linear 
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and quadratic discriminant analysis advantage can be taken of the fact that a 

covariance matrix with an observation removed differs from the complete covari- 

ante matrix by a rank one matrix. One can then express the covariance matrices 

through their Cholesky decompositions and take advantage of fast rank-one down 

dating formulae to compute dk\v [Eq. (20)] from dk [Eq. (19)] [see Golub and Van 

Loan (1983)]. 

Unfortunately, removing an observation does not result in a rank-one down- 

date of Ek(X,7) [Eqs. (16),(18)]. It can be shown that 

wk\&) f&,&7) = wk(x) gk(h) - (l - 7) ZVz: 

with wk(x) g iven by [Eq. (16c)], and 

wk\&,) = wk(x) -Sk(v) wV 3 

Sk(v) = 
1 if c(v) = k 

X otherwise, 

z, = drn (xv -x,(v)) 
and 

h(v) = 
sk(v) we(v) wv 

K(v) - WV 
. 

- - ; lZv12 .I , (214 

cw 
(214 

, (2 14 

(214 
Thus, removing an observation is equivalent to downdating gk(X,7) by a rank- 

one matrix plus a multiple of the identity matrix. The only matrix representation 

for which it is easy to obtain the inverse of a matrix downdated by a multiple of 

I, from its original inverse, is the spectral decomposition: 

W,‘(X) E,l(A,7) = f: $ . 
i=l 

Then 

(224 

Pb) 

where ei is the jth eigenvalue of wk (A) $?k (A, 7)) g i its corresponding eigenvec- 

tor, and a is a real valued scalar. Once this downdate has been performed, 
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the remaining rank-one downdate can be accomplished through the Sherman- 

Morrison formula [ Golub and Van Loan (1983)]: 

(AyT)-l = A--‘+ fy;y;; , 
- - 

(23) 

where A is a nonsingular matrix and r is a vector. In our case A-’ is given by 

[Eq. (22)] with 

u = 7 l~v12 
P ’ 

and 

r.=dFG, w4 
-. 

with z, given by Eq. (21). 

In addition to the downdated inverse class covariance matrix, we still need 

to. downdate its determinant and the class mean vector, in order to obtain the 

downdated discriminant score [Eq. (20)]. It is easily verified that 

Kk\v = 

Kk if c(v) # k 

w otherwise , 
(25) 

and 

h-4 Iwk\,(x) &~&w)l = kencei - ) ’ 
i=l 

u + n[l-g -&I (26) 

with e; given by Eq. (22) and a and r given by Eq. (24). 

These quantities [Eqs. (21)-(26)] can be substituted into Eq. (20) to obtain 

the K class cross-validated discriminant scores with computation proportional to 

p2 for each observation. The corresponding average misclassification loss over the 

training sample using these cross-validated scores is then taken to be an estimate 

of the future misclassification risk for the corresponding values of X and 7. 
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A substantial amount of additional computation can be saved by taking ad- 

vantage of the fact that for a fixed value of X the eigenvectors vi [Eq. (22a)] 

are independent of 7. Changing 7 is equivalent to an update by a multiple of 

the identity matrix. Thus, the K spectral decompositions and the corresponding 

rotations v z(Xv - X - -k) (1 5 a i p, 1 5 k 5 K, 1 5 v 5 N) need only be 

recalculated when the value of X changes. For each distinct value of X on the 

optimization grid, the set of points corresponding to different values of 7 can 

each be cross-validated in time proportional to pN. Therefore, the grid points 

should be visited in an order that causes X to change as few times as possible. 

5.0 Discussion 

The potential for RDA to improve misclassification risk over that of QDA 

or LDA will depend on the situation (class population distributions and sample 

size). In situations for which the class sample sizes Nk are all much larger than 

the dimension of the measurement space p, no regularization is needed, and 

the model selection procedure should tend to produce small values of Xand 7. 

However, the estimates of the optimal regularization parameters themselves have 

an associated bias and variance, so that one would expect the performance of 

RDA to be slightly worse than QDA. In these large sample settings, however, 

one might question the use of procedures based on normality, and favor more 

nonparametrically oriented methods such as nearest neighbors [see Lachenbruch 

(1975)] or recursive partitioning [Breiman et al. (1984)]. 

In small sample settings where QDA is either ill- or poorly-posed, it is not 

likely to be competitive with either LDA or RDA. Situations in which the popula- 

tion class covariance matrices are either very different and/or not too ellipsoidal 

should favor RDA. (It should be noted that in these settings the sample class 

covariance matrices are nearly always highly ellipsoidal.) 

Another situation that favors RDA is when the (standardized) differences 

between the class means project mainly on the high variance subspaces. The 

most difficult situation for RDA is when the population class covariance matrices 

are all equal and highly ellipsoidal, and the differences between the class means 

project mostly on the low variance subspace. In this case any regularization away 

from LDA (X = 1,7 = 0) will be highly counterproductive. Again, owing to the 
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bias and variance associated with the regularization parameter estimates, RDA 

should be slightly worse than LDA. When the sample size is small enough so 

that even LDA is ill- or poorly-posed then, in any situation, the regularization 

afforded by RDA is the only hope. 

It is the goal of the model selection procedure to pick appropriate values for 

the regularization parameters for each particular situation. For those that are 

favorable to RDA it should choose a high degree of regularization substantially 

reducing the variance, while introducing little extra bias, thereby dramatically 

reducing misclassification risk. On the other hand, when the situation is unfa- 

vorable to RDA, the hope is that the model selection procedure will (on average) 

produce a small degree of regulariztion so that the performance of RDA will be 

only slightly worse than that of LDA or QDA. All of this depends of course upon 

the performance of the model selection procedure. This is investigated in the 

next section. 

6.0 Simulation Studies 

In this section we use computer simulation to investigate the performance 

of RDA compared to LDA and QDA in a variety of settings (class population 

distributions and ratios of variables to observations). The goal is to study the 

overall effectiveness of RDA and to identify some situations where one would (and 

would not) expect substantial improvement with RDA. In all cases the population 

class conditional distributions were normal [Eq. (7)] and the total sample size was 

N = 40 [Eq. (17)]. A fairly wide spectrum of situations was chosen in terms of 

the mean and covariance structure of the class populations, some of which would 

be suspected to be highly favorable, and others highly unfavorable, to RDA. For 
each situation, simulation experiments were performed for p = 6, 10, 20 and 40. 

In all cases there were K = 3 groups or classes. The optimization grid of (X,7) 

values was defined by the outer product of X = (0, .125, .354, .650, l.O), and 

7 = (0, .25, .5, .75, 1.0). (Wh en the class covariance matrix estimates associated 

with QDA or LDA happened to be singular, the zero eigenvalues were replaced 

with a small number just large enough to permit numerically stable inversion. 

This has the effect of producing a classification rule based on Euclidean distance 

in the zero variance subspace.) 
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Each experiment consisted of one hundred replications of the following proce- 

dure. First N = 40 class identity labels were randomly drawn. Then, conditioned 

on each label, measurement vectors were drawn from the appropriate class distri- 

bution. The prior probability of each of the three classes was taken to be equal 

so that the expected number of observations in each class was 13.3. However, the 

actual number in any particular replication was itself a (multinomial) random 

variable. Each such training data set was used to construct the linear, quadratic 

and estimated optimal regularized discriminant rules. An additional (test) data 

set of size N = 100 was then randomly generated from the same population and 

classified with the three rules derived from the training set, thereby obtaining 

an estimate of the misclassification risk, using the misclassification loss given by 

Es. (3). 

The tables, summarizing the results for each situation, present the average 

test misclassification risk (with standard deviations) over the one hundred repli- 

cations for each of the three classification rules. Also presented are the average 

(minimizing) cross-validated estimate for the RDA rule, its correlation with the 

actual test set estimate for the RDA rule, and the mean and standard devia- 

tions of the selected regularization parameter (i,?) values over the one hundred 

replications. 

6.1 Equal Spherical Covariance Matrices 

This is a situation that might somewhat favor RDA. Each of the three classes 

was generated from a population with the identity covariance matrix. The pop- 

ulation mean of the first class was the origin. The means of the other two classes 

were taken to be 3.0 in two orthogonal directions. Table 1 summarizes the results. 

The quantities in parantheses are the standard deviations of the respective 

quantities over the 100 replications. The standard deviations of the corresponding 

averages are one tenth these amounts. 

As suspected, RDA gives uniformally lower misclassification risk than LDA 

or QDA. As the dimension of the measurement space increases (relative to sample 

size) its advantage increases, becoming dramatic for the higher dimensionalities. 

(It should be noted that the risk estimates for the three methods are not inde- 

pendent when studying uncertainty estimates.) The cross-validated estimate of 
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RDA risk at its minimum is seen to underestimate the actual risk by about 20% 
on average. The correlation between them is seen to be surprisingly small. As 

would be hoped for, RDA is choosing a high degree of regularization for both X 

and 7 on average. 

Table 1. Equal spherical covariance matrices. 

P=6 p = 10 p = 20 p = 40 

MISCLASSIFICATION RISK: 
RDA .ll (.03) .12 (.04) .16 (.05) .19 (.05) 

’ LDA .13 (.04) .16 (.05) .26 (.05) .58 (.08) 

QDA .26 (.08) .49 (.lO) .57 (.07) .49 (.06) 
. 

MINIMIZING CROSS-VALIDATED ESTIMATE FOR RDA: 
.09 (.05) .lO (.05) .12 (.06) .15 (.06) 

CORRELATION (TEST SET, CROSS-VALIDATION): 

-.ll -.lO .17 .15 

AVERAGE REGULARIZATION PARAMETER VALUES: 
5; .77 (.37) .79 (.35) .75 (.37) .78 (.34) 

7 .74 (.34) .72 (.32) .74 (.28) .80 (.22) 

6.2 Unequal Spherical Covariance Matrices 

This situation should favor RDA even more than the previous example since, 

unlike the previous one, here LDA is biased. Each of the three classes was gen- 

erated with covariance matrix kI, where k is the class number (1 5 k 5 3). 
As before the population mean for the first class is at the origin; the means 

for classes two and three are shifted in orthogonal directions, class two by a 

distance of 3.0, and class three by a distance of 4.0. Table 2 summarizes the 
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results. As conjectured, RDA strongly dominates with smaller risk at all di- 

mensionalities, the relative improvement again increasing with dimension. The 

cross-validated estimate for RDA is as before about 20% below its actual risk and 

essentially uncorrelated with it. The model selection procedure behaved quite 

reasonably, choosing small values of the covariance matrix mixing parameter X, 

and very large values for the eigenvalue shrinkage parameter 7. 

Table 2. Unequal spherical covariance matrices. 

P=6 p = 10 p = 20 p = 40 

MISCLASSIFICATION RISK: 
' RDA .17 (.04) .13 (.05) .lO (.05) .05 (.04) 

LDA .29 (.06) .32 (.06) .41 (.07) .59 (.07) 
-. 

QDA .33 (.07) .53 (.09) .60 (.07) .53 (.06) 

MINIMIZING CROSS-VALIDATED ESTIMATE FOR RDA: 
.14 (.05) .ll (.04) .07 (.04) .04 (.03) 

CORRELATION (TEST SET, CROSS-VALIDATION) : 

-.03 .05 .05 -08 

AVERAGE REGULARIZATION PARAMETER VALUES: 
.I x .lO (.13) .06 (.12) .04 (.08) .04 (.03) 

7 .81 (.26) .88 (.20) .93 (.16) .97 (.ll) 

6.3 Equal Highly Ellipsoidal Covariance Matrices 

i. 

Here we consider two situations that ought to prove difficult for RDA. The 

covariance matrices of all three class populations are the same and highly ellip- 

soidal. The first case is constructed so that the location differences between the 

classes are concentrated in the low variance subspace, whereas in the second they 
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are concentrated in the high variance subspace. The eigenvalues of the common 

population covariance matrices are given by 

ei = [ 
9(i- 1) 2 

P-l 
+ 1 1 , 1lilP , (27) 

so that the ratio of the largest to smallest eigenvalues is one hundred. 

We first consider the case where the class mean differences project mainly 

on the low variance subspace. This represents the most difficult problem from 

the point of view of RDA. The mean of the first class is again located at the 

origin. The mean vectors for the class two and three populations in terms of the 

population eigenvectors are 

= 25 5 P--i 
Pai * - 

\i p E-1 ’ 

with ei given by Eq. (27). The results are given in Table 3. 

Linear discriminant analysis performs slightly better in all but the highest di- 

mension where no method does particularly well. This situation, as constructed, 

is ideal for LDA since any shrinkage away from the point (X = 1, 7 = 0) is 

strongly counterproductive. The regularization parameter values selected by the 

cross-validation procedure are seen to be concentrated in this corner of the X, 7 

plane. Note the increase in 7 as the dimension increases. At the highest dimen- 

sions considerable shrinkage is needed to damp the variance even though this 

introduces substantial bias. Overall the average increased loss in using RDA in 

this most unfavorable circumstance is slight. 

.’ 

. 

We next modify this problem slightly. The same (unfavorable) covariance 

structure [Eq. (27)] is used for each class population, but the mean differences 

are concentrated in the high variance subspace. This provides the shrinkage 

strategy with at least a chance at accomplishing some improvement. For this 

case the class two and class three means are given by 
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Table 3. Equal, highly ellipsodial covariance matrices - mean differences in 
low-variance subspace. 

P=6 p = 10 p= 20 p = 40 

MISCLASSIFICATION RISK: 

RDA .07 (.04) .07 (.04) .27 (.07) .39 (.06) 

LDA .06 (.03) .06 (.03) .24 (.06) .59 (.07) 

QDA .17 (.08) .14 (.12) .60 (.07) .60 (.06) 

MINIMIZING CROSS-VALIDATED ESTIMATE FOR RDA: 
.05 (.04) .06 (.04) .21 (.07) * .34 (.08) 

CORRELATION (TEST SET, CROSS-VALIDATION) : 
. 

.19 0.0 0.0 .16 

AVERAGE REGULARIZATION PARAMETER VALUES: 

x .77 (.33) .83 (.27) .75 (.30) .72 (.32) 

r .02 (.08) .07 (.16) .19 (.27) .45 (.25) 

= 2.5 
\i 

5 - i-l P2i pi-1 ' 

while the class one mean is again located at the origin. Table 4 summarizes the 

results. 

Even though the class population covariance matrices are highly ellipsoidal, 

the rather high degree of shrinkage towards the identity matrix does not increase 

the bias of the classification rule very much. The population class means differ 

here mostly in the high variance subspace, so deemphasizing the low variance 

subspace has little consequence in terms of biasing the discriminant rule, even 
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though it highly biases the covariance matrix estimates. The corresponding de- 

crease in variance, however, allows RDA to outperform LDA, again especially 

in the high-dimensional settings. Note that here, where the RDA misclassifica- 

tion risk is quite small, the minimizing cross-validated estimate seems to more 

seriously underestimate the actual risk (11 30%). 

Table 4. Equal, highly eillipsodial covariance matrices - mean differences in 
high variance subspace. 

P=6 p = 10 p = 20 p = 40 

MISCLASSIFICATION RISK: 

RDA .06 (.03) .05 (.02) .14 (.04) .18 (.05) 
. 

LDA .07 (.03) .07 (.03) .24 (.06) .58 (.08) 

QDA .19 (.08) .43 (.12) .57 (.08) .48 (.07) 

MINIMIZING CROSS-VALIDATED ESTIMATE FOR RDA: 
.04 (.03) .03 (.03) .ll (.05) .14 (.06) 

CORRELATION (TEST SET, CROSS-VALIDATION) : 

.16 -.20 -.07 .13 

AVERAGE REGULARIZATION PARAMETER VALUES: 

x .92 (.24) .86 (.30) .72 (.38) .76 (.36) 

7 .71 (.36) .66 (.36) .70 (.29) .79 (.23) 

6.4 Unequal Highly Ellipsoidal Covariance Matrices 

Our last two examples complete the sequence by considering cases where the 

class population covariance matrices are highly ellipsoidal and very unequal. The 
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eigenvalues for class one are given by Eq. (27). Those for class two are given by 

ei2 = [ 
9(P - 4 2 

P-1 
+ 1 1 , 1Glp , 

while those for class three are 

The population eigenvectors for all three classes are the same. For the first two 

classes the ratio of the largest to smallest eigenvalues is one hundred, 

but their high and low variance subspaces are complementary to each other. 

This ratio for the third class is (p + 1) 2. It has low variance in the subspace of 

intermediate variance for the first two classes, and high variance where they have 

their complementary high/l ow variances. The first case we consider is where the 

population means are all identical so that the class distributions differ only in 

their covariance matrices. Table 5 presents the results. 

As would be expected, LDA does very poorly because the population class 

means are all the same. For the lowest dimension, RDA is slightly worse than 

QDA, but for the rest RDA is substantially better. Again the model selection 

procedure is tending to do the right thing. Very little covariance matrix mix- 

ing is selected at any dimension, while the eigenvalue shrinkage increases with 

dimension. 

The final simulation example uses the same covariance structure as the pre- 

vious one. The population class means, however, are different. The class one 

mean is at the origin. The class two and class three mean vectors are given by 

p2i = 14 
fi ’ 

P3i = (-1)” P2i , 

along the respective eigenvectors. The results of this experiment are presented 

in Table 6. 
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Table 5. Unequal, highly ellipsoidal covariance matrices - zero mean differ- 
ences . 

P=6 p = 10 p = 20 p = 40 

MISCLASSIFICATION RISK: 
RDA .21 (.06) -15 (.06) .12 (.05) .12 (.06) 

LDA .61 (.06) .58 (.06) .58 (.06) .63 (.06) 

QDA .19 (.06) .35 (.13) .44 (.lO) .43 (.07) 

MINIMIZING CROSS-VALIDATED ESTIMATE FOR RDA: 
.17 (.06) .13 (.05) .ll (.05) L .12 (.06) 

CORRELATION (TEST SET, CROSS-VALIDATION) : 
. 

.03 -.03 .09 .25 

AVERAGE REGULARIZATION PARAMETER VALUES: 

x .03 (.05) .04 (.06) .06 (.07) .05 (.07) 

7 .17 (.16) .27 (.18) .46 (.17) .60 (.15) 

The presence of the differing class means improves the risk associated with 

all three methods. Again, RDA substantially dominates the others except at the 

lowest dimension, where it has comparable risk to QDA. 

0.5 Remarks on the Simulation Results 

The model selection procedure based on cross-validatory choice seems to per- 

form surprisingly well. In each of the simulated examples the best joint values 

for the covariance matrix mixing parameter X, and eigenvalue shrinkage param- 

eter 7, are roughly known. The distributions of the sample based estimates are 

in each case seen to concentrate near these optimal values. This is why RDA 

seems to loose so little in situations unfavorable to it and gain so much in favor- 

able ones. It is also surprising how small the observation to variable ratio can 

be and still permit fairly accurate classification with RDA. It is not surprising 
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that the cross-validated estimate of misclassification risk for RDA somewhat 

underestimates the actual risk (- 20%) on average, since this quantity is mini- 

mized with respect to the regularization parameters for each individual training 

sample. What is surprising is its low correlation with the actual misclassifica- 

tion risk. This means that when an especially favorable or unfavorable training 

sample is realized (from the population), the minimized cross-validation estimate 

provides no apparent reflection of this. Cross-validation provides an estimate of 

the average performance of a procedure but not necessarily its performance with 

a particular training sample. 

Table 6. Unequal, highly ellipsodial covariance matrices - nonzero mean dif- 
ferences. 

. P=6 p = 10 p= 20 p=40 

MISCLASSIFICATION RISK: 
RDA .07 (.04) .07 (.03) .06 (.04) .07 (.06) 

LDA .17 (.04) .20 (.05) .28 (.06) .54 (.09) 

QDA .06 (.05) .28 (.16) .35 (.13) .28 (.08) 

MINIMIZING CROSS-VALIDATED ESTIMATE FOR RDA: 
.04 (.03) .04 (.03) .05 (.03) .06 (.04) 

CORRELATION f TEST SET. CROSS-VALIDATION): 

.ll .06 .05 .35 

AVERAGE REGULARIZATION PARAMETER VALUES: 

x .09 (.12) .lO (.ll) .lO (.12) .lO (.12) 

r .25 (.25) .38 (.28) .54 (.20) .62 (.18) 

The minimal Bayes risk for all of the simulated situations is quite low, but 

the class means were not widely separated with respect to their covariances. 
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When the means are widely separated, any (reasonable) classification procedure 

will provide good results and regularization will not be particularly beneficial, 

although it won’t hurt either. In well-posed situations where the class sample 

sizes are all very large compared to the number of measurement variables, there 

is usually little benefit to be derived from regularization, and as the simulations 

indicate, sometimes there is a small degradation in performance when employing 

regularization in these settings. 

7.0 Wine Tasting Data 

. 

This data set consists of 38 different wine samples made from the Pinot Noir 

(Burgundy) grape [Kwan and Kowalski (1980)). The wines were subjected to 

taste tests by 16 judges and graded with numerical scores on 14 sensory char- 

acteristics. These characteristics were: clarity, color, aroma intensity, aroma 

character, undesirable odor, acidity, sugar, body, flavor intensity, flavor char- 

acter, oakiness, astringency, undesirable taste and overall quality. These wines 

originate from three different geographical regions: 9 from California, 17 from the 

Pacific Northwest and 12 from France. The purpose is to classify the geographical 

origins of the wine samples from the 14 sensory characteristics. 

For this example, the prior probabilities were taken to be equal, rk = l/3, for 

all classes. The optimization grid point values for X were the same as for the simu- 

lation examples. The values for 7 were taken to be 7 = (0.0, .037, .105, .192, .30, 

.414, .544, .686, .838, 1.0). The intent here is to use these data to study the ef- 

fect of regularization on misclassification risk, and not to present a complete or 

definitive analysis of these data. 

Two studies were performed. In the first RDA, LDA and QDA were applied 

to the entire data set. In the second the data were divided into two samples 

each of size 19. Each half sample was then used as a training set and the three 

classification rules so obtained were validated on the other sample. In the first 

analysis there is no validation sample, so we must use a sample reuse technique 

to estimate the future misclassification risk of the classification rules. We use the 

632 bootstrap [Efron (1983)] which h as shown superior performance over other 

sample reuse techniques for this purpose in several simulation studies [Efron 

(1983), Gong (1982) and Crawford (1986)]. 0 ne hundred bootstrap replications 

were employed. 
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Applying RDA to the entire sample (N = 38) gave a minimizing cross- 

validated misclassification risk of 0.14 at X = 0.35 and 7 = 0.04. The 632 

bootstrap estimates for RDA, LDA and QDA were respectively 0.18, 0.26, 

and 0.36. The distribution of X over the 100 bootstrap replications had a mean of 

5; = 0.49 and a standard deviation of a(x) = 0.37. The corresponding quantities 

for the distribution of 7 were 7 = 0.40 and a(7) = 0.31. 

The results for RDA averaged over the two half sample runs (N = 19) gave 

x = 0.56,~ = 0.48, with an averaged minimizing cross-validated risk of 0.19. The 

average misclassification risks of RDA, LDA and QDA, obtained from the half 

sample complementary to the corresponding training sample, were respectively 

0.21, 0.50 and 0.59. 

. 

Judging from the chosen values of the regularization parameters, this does 

not appear to be a situation favorable to LDA. This is also indicated by the 

substantially superior performance of RDA for the larger (N = 38) sample where 

LDA is fairly well-posed for p = 14. When the sample size is reduced to N = 19 

the performance of RDA seems to be degraded surprisingly little while LDA 

appears to completely collapse. 

8.0 Invariance Properties 

The regularization method presented here is rotationally invariant. That is, if 

the measurement variables of the training data and future test data are subjected 

to the same orthonormal rotation, the RDA classification rule would not change. 

The same is of course true for LDA and QDA. Unlike LDA and QDA, however, 

RDA is not generally scale invariant. That is, changing the relative scales of the 

measurement variables, or their linear combinations, can change the classification 

rule. This lack of scale invariance results from the introduction of the eigenvalue 

shrinkage parameter 7. If 7 = 0 then RDA is scale invariant. This lack of scale 

invariance is a common property of many regularization methods that shrink 

eigenvalues, such as ridge and principal components regression. 

Changing the scales of the measurement variables or their linear combinations 

is equivalent to changing the regularization matrix for ck (A, 7) in Eq. (18). There 

%O) [Eq- (WI was regularized by shrinking it toward a multiple of the identity 
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matrix I. There is clearly nothing special about this particular choice and one 

could consider more general regularizations of the form 

E&,7) = (l-7) %(A) + 7tM 3 

with M a prespecified positive definite symmetric matrix and 

t = ~=m41 
trace(M) ’ 

(28) 

(29) 

One can implement this generalized approach, using the techniques outlined 

in Sections 3 and 4, by first applying a transformation to the data (rotation and 

scaling) that takes M to the identity matrix. Let 

M = LLT 

be the Cholesky factorization of M, where L is a lower triangular matrix. Then 

applying the transformation 

II, = L--l & , l<v<N , (30) 

performs a rotation and scaling such that the matrix M is represented by the 

identity matrix in the transformed coordinate system. Then applying RDA to 

the transformed data [Eq. (30)] is equivalent to specifying M as the regularizing 

matrix [Eqs. (28) and (29)] in the original coordinate system. 

A common procedure is to standardize or “auto-scale” the data so that all 

variables have the same variance. This is equivalent to using the diagonal matrix 

M = diag (a:, i?;, . . . , G;) , 

for regularization, where Zi is the sample standard deviation of the jth measure- 

ment variable. A more natural choice might be to auto-scale the data using the 

global within class standard deviations. Another approach would be to shrink in 
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a way that preserves large correlations at the expense of the smaller ones [De- 

vlin et al. (1975)]. Note that if the regularizing matrix M [Eq. (28)] depends 

on the data, then the matrix updating formulae for cross-validation derived in 

Section 4.0 are only approximate in that they do not account for the sampling 

variability associated with the estimate of M. Choice of a particular matrix M 
is analogous to choosing a metric (M-l) f or a nearest means classification pro- 

cedure. In the absence of any prior information, there is no clear best choice and 

one might experiment with several choices using the minimized cross-validated 

risk estimate as a guide. 

. 

There can be situations, however, where particular regularizations are sug- 

gested. When the data measurement vectors & arise from a signal or image, 

there is a natural distance measure between variables or, ‘more precisely, their 

indices. Each signal digitization point, or each image pixel, corresponds to a 

measurement variable. If one believes that in the absence of error, close mea- 

surement variables ought to have similar values, then a natural regularization 

matrix to try would be 

M = HT 

with H being the matrix representation of 

H , 

some smoothing kernel 

(314 

tw 
Here h is (usually) a positive monotonically decreasing function such that 

P 

c Hij = 1 , (314 
j=l 

dij is a distance between the indices i and j, and s is the bandwidth parameter 

for the smoothing kernal. In the case of a signal this will produce a banded 

regularizing matrix with large values only near the diagonal. Using M [Eq. (31)] 

for regularization tends to deemphasize directions in the measurement variable 

space dominated by differences of those variables that correspond to close pixels 

or digitization points. This approach attempts to use to advantage the spatial 

nature of the problem in suggesting a particular regularization matrix M. 
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9.0 Variable Subset Selection 

A common method of regularization used with LDA and QDA is measure- 

ment variable subset selection. One attempts to reduce variance while not in- 

troducing excessive bias by the judicious selection of a small subset of the orig- 

inal set of variables. Stepwise and “all subsets” strategies are often employed. 

(Note that, unlike squared-error loss, there is no fast branch-and-bound algo- 

rithm for all subset selection using misclassification risk.) Subset selection is 

scale invariant, but clearly not rotationally invariant. If the mean vector and 

covariance matrix differences between the class populations happen to align 

principally along a very small number of the original measurement variables, 

then subset selection strategies can be effective. Variable, subset selection can 

be used in addition to, or in conjunction with, the regularization methods 

presented here. It should be kept in mind, however, that although variable 

subset selection seems very natural and readily understandable, it can be fairly 

ineffective in these settings where variance dominates the prediction error. A 

heuristic explanation for this is as follows. 

The bias of a prediction rule depends largely on the true underlying (pop- 

ulation) means and covariance matrices, about which there is often little prior 

knowledge. The variance, on the other hand, depends mostly on the particular 

estimation method being used, about which there is considerable knowledge. Co- 

variance matrix shrinkage techniques basically use this information to attempt 

to achieve maximal reduction in variance (for a given level of regularization) by 

preferentially damping the influence of those directions (eigenvectors) associated 

with the smallest eigenvalues. These are the directions (linear combinations of 

the variables) that contribute most strongly to the variance, and are of course 

obtainable from the sample covariance matrix. Therefore, in the absence of any 

prior knowledge of how one is affecting the bias, it makes sense to regularize 

in a way that achieves the largest reduction in variance for a given level of 

regularization. 

Variable subset selection, on the other hand, assumes fairly specific prior 

knowledge concerning the population class means and covariance matrices. 

Namely, that the (standardized) class means and covariance matrices differ mostly 
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in a small subset of the measurement variables. If this is true and if one can reli- 

ably identify the small subset, then by damping the influence of the complement 

subset of variables, one introduces very little bias while achieving some reduction 

in variance. 

The relative efficacy of the two approaches in particular situations depends 

on the degree to which the assumption inherent in the subset selection method is 

valid. The size of the influential subset must be surprisingly small, however, for 

subset selection techniques to be competitive with other regularization methods, 

or even no regularization at all [see Copas (1983)]. 

10.0 Concluding Remarks 

The simulation studies and the data example indicate that the method of 

regularization applied here has the potential to (sometimes dramatically) increase 

the power of discriminant analysis in settings for which sample sizes are small 

and the number of measurement variables is large. There appears to be at most a 

small loss in applying RDA in situations unfavorable to it, and often substantial 

gains in favorable circumstances. Of course, one does not generally know the 

type of situation in advance when confronted with a particular data set. 

As the examples indicate (and as is well known) QDA is only viable in situ- 

ations where the ratio of sample size to variable count is large. For these situa- 

tions nonparametric classification techniques are generally more appropriate [see 

Lachenbruch (1975) and Breiman et al. (1983)j. For the situations that we have 

been considering here (small samples and high variable count) LDA has been the 

method of choice in the past. The additional regularization alternatives provided 

by RDA can substantially improve misclassification risk when the population 

class covariance matrices are not close to being equal and/or the sample size is 

too small for even LDA to be viable. 

A FORTRAN program implementing the RDA procedure is available from 

the author. 
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