
eZ Publish 4.0
Technical Manual

©1999 – 2007 eZ Systems AS

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License,Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license can be downloaded from http://www.gnu.org/copyleft/fdl.html.

Corrections and/or suggestions might be sent to info@ez.no.

This PDF file is generated automatically from the online documentation available at
http://doc.ez.no.

This version was generated on July 23, 2008.

Contents

1 Installation 26

1.1 Normal installation . 28

1.1.1 Requirements for doing a normal installation 29

1.1.2 Installing eZ Publish on a Linux/UNIX based system 33

1.1.3 Installing eZ Publish on Windows . 37

1.2 Manual installation . 41

1.2.1 Requirements for doing a manual installation 42

1.2.2 Manual installation on a Linux/UNIX based system 43

1.2.3 Manual installation on Windows . 44

1.2.4 Manual configuration of eZ Publish . 45

1.3 Automated installation . 51

1.3.1 Requirements for doing an automated installation 52

1.3.2 Automated installation of eZ Publish . 53

1.4 The setup wizard . 57

1.5 Virtual host setup . 73

1.5.1 Virtual host example . 76

1.6 Removing eZ Publish . 79

1.7 Extensions . 81

1.7.1 Extracting the files . 82

1.7.2 Activating the extension . 84

1.8 Troubleshooting . 86

2 Concepts and basics 88

2.1 The internal structure of eZ publish . 89

2.1.1 Directory structure . 91

2

Contents 3

2.2 Content and design . 93

2.2.1 Storage . 95

2.3 Content management . 96

2.3.1 Datatypes . 98

2.3.2 The content class . 99

2.3.3 Class attributes . 103

2.3.4 The content object . 106

2.3.5 Object versioning . 110

2.3.6 Multiple languages . 115

2.3.7 The content node . 119

2.3.8 The content node tree . 122

2.3.9 Top level nodes . 125

2.3.10 Node visibility . 127

2.3.11 Object relations . 130

2.3.12 Sections . 132

2.3.13 URL storage . 134

2.3.14 Information collection . 135

2.4 Configuration . 136

2.4.1 Site management . 138

2.4.2 Extension siteaccess settings . 141

2.4.3 Access methods . 142

2.5 Modules and views . 145

2.6 URL translation . 148

2.7 Designs . 152

2.7.1 Design combinations . 154

2.8 Access control . 156

2.9 Webshop . 160

2.10 Workflows . 165

3 Templates 167

3.1 Template basics . 168

3.1.1 Node templates . 171

3.1.2 System templates . 173

Contents 4

3.2 The pagelayout . 175

3.2.1 The page head . 179

3.2.2 Variables in pagelayout . 183

3.3 The template language . 191

3.3.1 Comments . 193

3.3.2 Variable types . 194

3.3.3 Variable usage . 199

3.3.4 Array and object inspection . 203

3.3.5 Control structures . 207

3.3.6 Functions and operators . 211

3.4 Basic template tasks . 213

3.4.1 URL handling . 216

3.5 Information extraction . 219

3.5.1 Outputting node and object data . 221

3.6 The template override system . 224

3.6.1 Template override example . 226

4 Features 229

4.1 Audit trailing . 230

4.2 Policy functions . 234

4.3 Multi-language . 238

4.3.1 Configuring your site locale . 242

4.3.2 Configuring the site languages . 245

4.3.3 Managing the translation languages . 250

4.3.4 Translatable class attributes . 252

4.3.5 Translatable country names . 257

4.3.6 Multilingual objects . 259

4.3.7 Working with translations . 262

4.3.8 The bit-field algorithm . 267

4.3.9 Language based permissions . 269

4.4 Multi-language support for URL aliases . 272

4.4.1 Managing URL aliases . 277

4.4.2 URL transformation rules . 282

Contents 5

4.4.3 Custom transformation commands . 285

4.5 Clustering . 287

4.5.1 Setting it up . 291

4.6 Packages . 294

4.6.1 Package types . 296

4.6.2 Creating new packages . 299

4.6.3 Exporting packages to files . 308

4.6.4 Importing packages to the system . 310

4.6.5 Removing packages from repository . 311

4.6.6 Installing packages . 312

4.6.7 Uninstalling packages . 317

4.6.8 package.xml format . 319

4.6.9 Custom install scripts . 322

4.7 Cronjobs . 326

4.7.1 The cronjob scripts . 327

4.7.2 Configuring cronjobs . 334

4.7.3 Running cronjobs . 337

4.8 Advanced redirection after login . 340

4.9 VAT charging system . 345

4.9.1 Assigning VAT types to products . 347

4.9.2 Three approaches to VAT charging . 349

4.9.3 Product category . 354

4.9.4 User country . 356

4.9.5 Displaying VATs on the actual site . 359

4.9.6 Managing VAT types . 361

4.9.7 Managing product categories . 364

4.9.8 Managing VAT rules . 367

4.9.9 VAT settings . 369

4.9.10 Creating new VAT handlers . 371

4.10 Improved shipping handling . 373

4.11 Multi-currency . 377

4.11.1 Custom prices and auto prices . 378

Contents 6

4.11.2 Rounding auto prices . 381

4.11.3 Currency rates . 383

4.11.4 Creating a new currency . 385

4.11.5 Editing a currency . 390

4.11.6 Removing a currency . 394

4.11.7 Preferred currency . 395

4.11.8 Multi-price products . 397

4.11.9 Products overview . 401

4.11.10Exchange rates update handlers . 402

4.11.11Upgrading your webshop . 405

4.12 View caching . 407

4.12.1 Configuring the view cache . 410

4.12.2 Clearing the view cache . 413

4.12.3 Smart view cache cleaning . 416

4.12.4 Pre-generation of view cache . 422

4.13 Notifications . 423

4.13.1 Using the admin interface . 425

4.13.2 Using an actual site . 431

4.13.3 Adding a ”Keep me updated” button . 434

4.13.4 Customizing the E-mails . 435

4.13.5 Granting access to notifications . 436

4.13.6 Notification events . 442

4.13.7 Notification handlers . 445

4.13.8 Frequently Asked Questions . 448

4.14 Search engine . 450

4.15 WebDAV . 453

4.15.1 Setting it up . 459

5 Reference 462

5.1 Datatypes . 463

5.1.1 Authors . 465

5.1.2 Checkbox . 467

5.1.3 Country . 469

Contents 7

5.1.4 Date . 471

5.1.5 Date and time . 473

5.1.6 E-mail . 475

5.1.7 Enum . 476

5.1.8 File . 477

5.1.9 Float . 481

5.1.10 Identifier . 483

5.1.11 Image . 485

5.1.12 Ini setting . 489

5.1.13 Integer . 490

5.1.14 ISBN . 492

5.1.15 Keywords . 497

5.1.16 Matrix . 499

5.1.17 Media . 501

5.1.18 Multi-option . 504

5.1.19 Multi-option2 . 506

5.1.20 Multi-price . 513

5.1.21 Object relation . 515

5.1.22 Object relations . 517

5.1.23 Option . 522

5.1.24 Package . 524

5.1.25 Price . 525

5.1.26 Product category . 527

5.1.27 Range option . 529

5.1.28 Selection . 531

5.1.29 Subtree subscription . 533

5.1.30 Text block . 534

5.1.31 Text line . 536

5.1.32 Time . 538

5.1.33 URL . 540

5.1.34 User account . 542

5.1.35 XML block . 544

Contents 8

5.2 Content classes . 561

5.2.1 Content . 562

5.2.2 Media . 578

5.2.3 Users . 585

5.3 Modules . 588

5.3.1 class . 590

5.3.2 collaboration . 609

5.3.3 content . 624

5.3.4 error . 761

5.3.5 ezinfo . 762

5.3.6 form . 767

5.3.7 infocollector . 770

5.3.8 layout . 775

5.3.9 notification . 780

5.3.10 package . 792

5.3.11 pdf . 815

5.3.12 reference . 819

5.3.13 role . 820

5.3.14 rss . 828

5.3.15 search . 834

5.3.16 section . 841

5.3.17 setup . 856

5.3.18 shop . 857

5.3.19 trigger . 900

5.3.20 url . 903

5.3.21 user . 912

5.3.22 workflow . 937

5.4 Views . 949

5.5 Objects . 950

5.5.1 ezauthor . 954

5.5.2 ezbasket . 955

5.5.3 ezbinaryfile . 958

Contents 9

5.5.4 ezcontentbrowsebookmark . 959

5.5.5 ezcontentbrowserecent . 960

5.5.6 ezcontentclass . 961

5.5.7 ezcontentclassattribute . 965

5.5.8 ezcontentclassclassgroup . 968

5.5.9 ezcontentclassgroup . 969

5.5.10 ezcontentlanguage . 970

5.5.11 ezcontentobject . 971

5.5.12 ezcontentobjectattribute . 981

5.5.13 ezcontentobjecttranslation . 985

5.5.14 ezcontentobjecttrashnode . 986

5.5.15 ezcontentobjecttreenode . 990

5.5.16 ezcontentobjectversion . 995

5.5.17 ezcurrencydata . 999

5.5.18 ezdate . 1001

5.5.19 ezdatetime . 1002

5.5.20 ezimagealiashandler . 1003

5.5.21 ezimagelayer . 1008

5.5.22 ezimageobject . 1009

5.5.23 ezinformationcollection . 1010

5.5.24 ezinformationcollectionattribute . 1012

5.5.25 ezkeyword . 1014

5.5.26 ezlocale . 1015

5.5.27 ezmatrix . 1019

5.5.28 ezmedia . 1022

5.5.29 ezmultioption . 1024

5.5.30 ezmultioption2 . 1026

5.5.31 ezmultiprice . 1031

5.5.32 eznodeassignment . 1033

5.5.33 ezoption . 1035

5.5.34 ezorder . 1036

5.5.35 ezorderitem . 1040

Contents 10

5.5.36 ezorderstatus . 1041

5.5.37 ezpolicy . 1042

5.5.38 ezprice . 1043

5.5.39 ezproductcategory . 1044

5.5.40 ezproductcollectionitem . 1045

5.5.41 ezrangeoption . 1046

5.5.42 ezrole . 1048

5.5.43 ezsection . 1050

5.5.44 ezsimplifiedxmlinput . 1051

5.5.45 ezsubtreenotificationrule . 1053

5.5.46 eztime . 1054

5.5.47 ezurl . 1055

5.5.48 ezuser . 1056

5.5.49 ezvatrule . 1058

5.5.50 ezvattype . 1060

5.5.51 ezxhtmlxmloutput . 1061

5.5.52 ezxmlinputhandler . 1062

5.5.53 ezxmloutputhandler . 1064

5.5.54 ezxmltext . 1065

5.6 Workflow events . 1066

5.6.1 Approve . 1067

5.6.2 Multiplexer . 1069

5.6.3 Payment gateway . 1070

5.6.4 Simple shipping . 1072

5.6.5 Wait until date . 1073

5.7 Template operators . 1074

5.7.1 Arrays . 1075

5.7.2 Data and information extraction . 1099

5.7.3 Formatting and internationalization . 1114

5.7.4 Images . 1127

5.7.5 Logical operations . 1137

5.7.6 Mathematics . 1165

Contents 11

5.7.7 Miscellaneous . 1192

5.7.8 Strings . 1219

5.7.9 URLs . 1264

5.7.10 Variable and type handling . 1272

5.8 Template functions . 1302

5.8.1 Debugging . 1303

5.8.2 Miscellaneous . 1308

5.8.3 Variables . 1321

5.8.4 Visualization . 1334

5.9 Template control structures . 1354

5.9.1 Conditional control . 1355

5.9.2 Looping . 1361

5.9.3 Deprecated . 1367

5.10 Template override conditions . 1369

5.10.1 node/view/*.tpl . 1371

5.10.2 content/search.tpl . 1372

5.10.3 content/edit.tpl . 1373

5.10.4 content/advancedsearch.tpl . 1374

5.10.5 content/versions.tpl . 1375

5.10.6 content/browse.tpl . 1376

5.10.7 content/versionview.tpl . 1377

5.10.8 node/view/pdf.tpl . 1378

5.10.9 content/collectedinfo/*.tpl . 1379

5.10.10content/collectedinfomail/*.tpl . 1380

5.10.11content/collectedinfo/*.tpl . 1381

5.10.12class/edit.tpl . 1382

5.10.13class/groupedit.tpl . 1383

5.10.14class/view.tpl . 1384

5.10.15workflow/edit.tpl . 1385

5.10.16workflow/groupedit.tpl . 1386

5.10.17workflow/view.tpl . 1387

5.10.18layout/set.tpl . 1388

Contents 12

5.10.19pagelayout.tpl . 1389

5.10.20content/datatype/edit/*.tpl . 1390

5.10.21content/datatype/view/*.tpl . 1391

5.10.22content/view/*.tpl . 1392

5.10.23content/tipafriend.tpl . 1393

5.10.24content/tipafriendmail.tpl . 1394

5.10.25content/history.tpl . 1395

5.11 Template fetch functions . 1396

5.12 Template PDF functions . 1397

5.12.1 anchor . 1399

5.12.2 create index . 1400

5.12.3 filled circle . 1401

5.12.4 filled rectangle . 1403

5.12.5 footer . 1405

5.12.6 footer block . 1407

5.12.7 frame header . 1408

5.12.8 frontpage . 1410

5.12.9 header . 1411

5.12.10header block . 1413

5.12.11image . 1414

5.12.12keyword . 1416

5.12.13line . 1417

5.12.14link . 1419

5.12.15new line . 1420

5.12.16new page . 1421

5.12.17page number . 1422

5.12.18set font . 1423

5.12.19set margin . 1425

5.12.20strike . 1426

5.12.21table . 1427

5.12.22text . 1429

5.12.23text box . 1432

Contents 13

5.12.24text frame . 1433

5.12.25toc . 1435

5.12.26ul . 1436

5.13 Configuration files . 1438

5.13.1 audit.ini . 1441

5.13.2 binaryfile.ini . 1447

5.13.3 browse.ini . 1448

5.13.4 collaboration.ini . 1449

5.13.5 collect.ini . 1450

5.13.6 content.ini . 1451

5.13.7 contentstructuremenu.ini . 1493

5.13.8 country.ini . 1499

5.13.9 cronjob.ini . 1505

5.13.10datatype.ini . 1514

5.13.11datetime.ini . 1515

5.13.12dbschema.ini . 1516

5.13.13debug.ini . 1517

5.13.14design.ini . 1518

5.13.15error.ini . 1527

5.13.16extendedattributefilter.ini . 1528

5.13.17ezxml.ini . 1529

5.13.18fetchalias.ini . 1532

5.13.19file.ini . 1533

5.13.20i18n.ini . 1534

5.13.21icon.ini . 1537

5.13.22image.ini . 1538

5.13.23layout.ini . 1539

5.13.24ldap.ini . 1540

5.13.25logfile.ini . 1542

5.13.26menu.ini . 1547

5.13.27module.ini . 1548

5.13.28notification.ini . 1549

Contents 14

5.13.29override.ini . 1550

5.13.30package.ini . 1551

5.13.31paymentgateways.ini . 1552

5.13.32setup.ini . 1553

5.13.33shopaccount.ini . 1554

5.13.34site.ini . 1559

5.13.35soap.ini . 1820

5.13.36staticcache.ini . 1821

5.13.37template.ini . 1828

5.13.38textfile.ini . 1829

5.13.39texttoimage.ini . 1830

5.13.40toolbar.ini . 1831

5.13.41transform.ini . 1832

5.13.42units.ini . 1833

5.13.43upload.ini . 1834

5.13.44viewcache.ini . 1835

5.13.45webdav.ini . 1846

5.13.46wordtoimage.ini . 1847

5.13.47workflow.ini . 1848

5.14 Libraries . 1858

5.14.1 ezdb . 1859

5.14.2 ezdbschema . 1860

5.14.3 ezfile . 1861

5.14.4 ezi18n . 1862

5.14.5 ezimage . 1863

5.14.6 ezlocale . 1864

5.14.7 ezpdf . 1865

5.14.8 ezsoap . 1866

5.14.9 eztemplate . 1867

5.14.10ezutils . 1868

5.14.11ezwebdav . 1869

5.14.12ezxml . 1870

Contents 15

5.15 XML tags . 1871

5.16 Scripts . 1872

5.16.1 Generic . 1873

5.16.2 Upgrade . 1934

5.16.3 Cronjobs . 1935

5.16.4 Miscellaneous . 1936

List of Figures

1.1 Step 1: Welcome page . 58

1.2 System finetuning . 59

1.3 Step 2: Issues . 59

1.4 Step 3: Outgoing E-mail . 60

1.5 Step 4: Database choice . 61

1.6 Step 5: Database initialization . 62

1.7 Step 6: Language support . 63

1.8 Step 7: Site selection . 64

1.9 The list of imported packages . 65

1.10 Package language options . 65

1.11 Step 8: Site access configuration . 68

1.12 Step 9: Site details . 69

1.13 Step 10: Site administrator . 70

1.14 Step 11: Site registration . 71

1.15 Step 12: Finished . 72

1.16 Screenshot of extension configuration in administration interface. 84

1.17 The debug output appears at the bottom of the page 87

2.1 Libraries, kernel and modules. 89

2.2 Content + Design = Web page . 94

2.3 Storage overview . 95

2.4 Example of a content class. 99

2.5 The class edit interface. 100

2.6 Datatypes, attributes, a content class and objects. 106

2.7 Example of a content object that consists of two versions. 110

16

List of Figures 17

2.8 Overview of the object states. 113

2.9 Content object structure (with versions and translations). 115

2.10 The list of existing languages for translation of content 116

2.11 Object - node relation . 119

2.12 Objects, nodes and the content node tree . 122

2.13 Content node tree . 123

2.14 Objects, node and the content node tree - multiple locations 123

2.15 Content node tree with multiple locations . 124

2.16 Top level nodes . 125

2.17 Hiding a visible node . 128

2.18 Hiding an invisible node . 128

2.19 Unhiding a node with a visible ancestor . 129

2.20 Unhiding a node with an invisible ancestor . 129

2.21 Example of sections. 133

2.22 Example of a setup with two siteaccesses. 138

2.23 Siteaccess directory example. 139

2.24 Configuration override example. 140

2.25 Objects, nodes and nice URLs. 150

2.26 The design fallback mechanism. 154

2.27 Users, groups, policies and roles. 156

2.28 The integrated e-commerce solution. 160

2.29 The workflow system. 165

3.1 Client - server cycle. 169

3.2 The module result as a part of the pagelayout. 169

3.3 Location of pagelayout and full view template in example design. 171

3.4 Pagelayout + node view full template. 172

3.5 The location of the pagelayout (main) template. 175

3.6 The structure of the ”ezdate” object. 197

3.7 Typical components of a function call. 211

3.8 Typical components of a template operator call. 212

3.9 The override system. 224

3.10 Template override example. 225

List of Figures 18

3.11 Example content node tree. 226

3.12 Pagelayout + override templates in example design. 227

3.13 Template override example. 228

4.1 The language selection step in the setup wizard. 246

4.2 The ”Create here” interface. 247

4.3 The list of translation languages. 250

4.4 Adding a new translation language. 251

4.5 Choose a language for a new content class. 253

4.6 The main window of the class view interface. 254

4.7 The language selection interface for class attribute names. 254

4.8 Enabling the translations window. 255

4.9 Translations window. 256

4.10 List of countries containing translated country names. 258

4.11 The ”Create here” interface. 259

4.12 The list of classes. 260

4.13 The class edit interface. 261

4.14 The language selection interface. 263

4.15 The context menu. 264

4.16 Selecting the language for editing. 264

4.17 The ”My drafts” interface. 265

4.18 The reduced language selection interface. 266

4.19 The policy edit interface. 269

4.20 The policy edit interface. 270

4.21 The role edit interface. 271

4.22 The interface for managing the URL aliases of a content node 277

4.23 The interface for global URL aliases managing 280

4.24 The interface for managing wildcard URL aliases 281

4.25 The ”Local” system repository is empty. 299

4.26 The package creation dialog. 300

4.27 The content class export dialog. 300

4.28 The package creation wizard: package information step. 301

4.29 The package creation wizard: information about the package maintainer. . . . 301

List of Figures 19

4.30 The package creation wizard: changelog. 302

4.31 The package creation dialog. 302

4.32 The content object export dialog (no objects selected). 303

4.33 Browse the content tree and select which nodes that will be exported. 303

4.34 Browse the content tree and select which subtrees that will be exported. 304

4.35 The content object export dialog (one node and one subtree selected). 304

4.36 The content object package creation wizard: export properties for content objects.305

4.37 The extension package creation wizard. 306

4.38 The site style package creation wizard: choose thumbnail. 306

4.39 The site style package creation wizard: select CSS files. 307

4.40 The site style package creation wizard: add images. 307

4.41 The list of packages. 308

4.42 The package summary view interface. 309

4.43 The list of packages. 310

4.44 The import package interface. 310

4.45 Removing a package. 311

4.46 The content class package summary. 312

4.47 The content class package installation wizard, step 1. 313

4.48 The content class package installation wizard, step 2. 313

4.49 The content object package installation wizard, step 1. 314

4.50 The content object package installation wizard, step 2. 314

4.51 The content object package installation wizard, step 3. 315

4.52 The content object package installation wizard, step 4. 315

4.53 The extension package installation wizard, step 1. 316

4.54 The extension package installation wizard, step 2. 316

4.55 The package uninstallation wizard, step 1. 317

4.56 The package uninstallation wizard, step 2. 318

4.57 The package uninstallation wizard, step 3. 318

4.58 Displaying a custom install script in the list of items during the package instal-
lation process . 323

4.59 Displaying a custom wizard step during the package installation process 324

4.60 Class attribute edit interface for the ”Date and time” datatype. 329

List of Figures 20

4.61 A fragment of the class edit interface. 341

4.62 Setting the redirection URI for the user John 342

4.63 A fragment of the class edit interface. 342

4.64 Setting the redirection URI for the ”Guest accounts” user group 343

4.65 A fragment of the object view interface for the user with two locations. 344

4.66 Setting the VAT type on the object level. 347

4.67 Setting the default VAT type on the class level. 348

4.68 Class attribute edit interface for the ”Product category” datatype. 354

4.69 A fragment of the product edit interface. 355

4.70 Class attribute edit interface for the ”Country” datatype. 356

4.71 The list of VAT types. 361

4.72 The newly added VAT type in the list of VAT types. 362

4.73 The confirmation dialog. 363

4.74 The list of product categories. 364

4.75 The newly added category in the list of product categories. 364

4.76 The confirmation dialog. 366

4.77 The list of VAT charging rules. 367

4.78 The VAT charging rule edit interface. 367

4.79 The newly created VAT rule in the list of VAT charging rules. 368

4.80 The base price in USD and two auto prices. 379

4.81 The base price in USD, non-base custom price in NOK and auto price in EUR. . 379

4.82 The results of removing the base custom price. 380

4.83 The list of available currencies. 385

4.84 The currency edit interface. 385

4.85 The list of available currencies. 386

4.86 The currency edit interface. 387

4.87 Unknown currency name in the list of currencies. 387

4.88 Displaying inactive currency in the list of currencies. 389

4.89 The list of currencies with disabled possibility to update auto rates. 391

4.90 The list of currencies with updated auto rates. 391

4.91 The list of currencies with removed custom rates. 392

4.92 The list of currencies with one custom rate. 393

List of Figures 21

4.93 The class edit interface for a product class. 398

4.94 Class attribute edit interface for the ”Multi-price” datatype. 398

4.95 The products overview interface. 401

4.96 The resulting prices after product upgrading. 405

4.97 Clearing the view cache using popup menu. 414

4.98 A part of the site content structure. 419

4.99 The notification filter interface. 424

4.100 Browsing the content tree. 426

4.101 Subscribing to subtree notifications using the context menu. 427

4.102 The ”notification added” confirmation for administrators. 427

4.103 Notification settings for administrators. 428

4.104 Browsing the content tree. 429

4.105 The ”Up” button . 429

4.106 Digest settings . 429

4.107 The list of items for subtree notifications. 430

4.108 Settings for collaboration notifications. 430

4.109 The ”keep me updated” button. 431

4.110 The ”notification added” confirmation for users. 431

4.111 Notification settings for users. 432

4.112 The usergroup view interface. 436

4.113 The list of roles. 437

4.114 Adding a new role. 437

4.115 The new policy wizard, step 1. 438

4.116 The new policy wizard, step 2. 439

4.117 The role edit interface. 439

4.118 The role view interface. 440

4.119 Assigning a role to a user group. 440

4.120 The role view interface. 441

4.121 Standard search interface . 450

4.122 Advanced search interface . 451

4.123 Search statistics . 452

4.124 WebDAV - Virtual top folder . 453

List of Figures 22

4.125 WebDAV - Login . 454

4.126 WebDAV - Top level nodes . 454

4.127 WebDAV - Content node tree . 455

4.128 WebDAV - IE open dialog . 460

4.129 WebDAV - Content node tree . 461

5.1 Class attribute edit interface for the ”Authors” datatype. 465

5.2 Object attribute edit interface for the ”Authors” datatype. 466

5.3 Class attribute edit interface for the ”Checkbox” datatype. 467

5.4 Object attribute edit interface for the ”Checkbox” datatype. 467

5.5 Class attribute edit interface for the ”Country” datatype. 469

5.6 Object attribute edit interface for the ”Country” datatype. 470

5.7 Class attribute edit interface for the ”Date” datatype. 471

5.8 Object attribute edit interface for the ”Date” datatype. 472

5.9 Class attribute edit interface for the ”Datetime” datatype. 473

5.10 Object attribute edit interface for the ”Date and time” datatype. 474

5.11 Class attribute edit interface for the ”Email” datatype. 475

5.12 Object attribute edit interface for the ”E-mail” datatype. 475

5.13 Class attribute edit interface for the ”File” datatype. 477

5.14 Object attribute edit interface for the ”File” datatype. 478

5.15 Object attribute edit interface for the ”File” datatype. 478

5.16 Complete directory structure with uploaded files. 479

5.17 Class edit interface for the ”Float” datatype. 481

5.18 Object attribute edit interface for the ”Float” datatype. 482

5.19 Class attribute edit interface for the ”Identifier” datatype. 484

5.20 Class attribute edit interface for the ”Image” datatype. 485

5.21 Object attribute edit interface for the ”Image” datatype. 486

5.22 Object attribute edit interface for the ”Image” datatype. 486

5.23 Example of image path on the filesystem. 487

5.24 Example of an image subdirectory. 487

5.25 Complete directory structure with uploaded image and generated variations. . 488

5.26 Class edit interface for the ”Integer” datatype. 490

5.27 Object attribute edit interface for the ”Integer” datatype. 491

List of Figures 23

5.28 Class attribute edit interface for the ”ISBN” datatype. 494

5.29 Class attribute edit interface for the ”ISBN” datatype if the range data for ISBN-
13 was not imported. 494

5.30 Object attribute edit interface for the ”ISBN” datatype. 495

5.31 Object attribute edit interface for the ”ISBN” datatype when in ISBN-10 mode. 495

5.32 Class attribute edit interface for the ”Keywords” datatype. 497

5.33 Object attribute edit interface for the ”Keywords” datatype. 498

5.34 Class attribute edit interface for the ”Matrix” datatype. 499

5.35 Object attribute edit interface for the ”Matrix” datatype. 500

5.36 Class attribute edit interface for the ”Media” datatype. 501

5.37 Object attribute edit interface for the ”Media” datatype (Flash). 502

5.38 Object attribute edit interface for the ”Media” datatype (QuickTime). 502

5.39 Object attribute edit interface for the ”Media” datatype (Real Media). 503

5.40 Object attribute edit interface for the ”Media” datatype (Windows media). . . . 503

5.41 Class attribute edit interface for the ”Multi-option” datatype. 504

5.42 Object attribute edit interface for the ”Multi-option” datatype. 505

5.43 Class attribute edit interface for the ”Multi-option2” datatype. 509

5.44 Object attribute edit interface for the ”Multi-option2” datatype. 510

5.45 A part of the object attribute edit interface for the ”Multi-option2” datatype. . . 511

5.46 Dependency rules in the object attribute edit interface for the ”Multi-option2”
datatype. 512

5.47 Class attribute edit interface for the ”Multi-price” datatype. 513

5.48 Object attribute edit interface for the ”Multi-price” datatype. 514

5.49 Class attribute edit interface for the ”Object relation” datatype. 515

5.50 Object attribute edit interface for the ”Object relation” datatype. 516

5.51 Class attribute edit interface for the ”Object relations” datatype. 517

5.52 Object attribute edit interface for the ”Object relations” datatype (default selec-
tion method). 519

5.53 Object attribute edit interface for the ”Object relations” datatype (list with
checkboxes). 520

5.54 Object attribute edit interface for the ”Object relations” datatype (multiple se-
lection list). 520

5.55 Object attribute edit interface for the ”Object relations” datatype (dropdown list).520

List of Figures 24

5.56 Object attribute edit interface for the ”Object relations” datatype (list with radio
buttons). 520

5.57 Class attribute edit interface for the ”Option” datatype. 522

5.58 Object attribute edit interface for the ”Option” datatype. 523

5.59 Class attribute edit interface for the ”Price” datatype. 525

5.60 Object attribute edit interface for the ”Price” datatype. 526

5.61 Class attribute edit interface for the ”Product category” datatype. 527

5.62 Object attribute edit interface for the ”Product category” datatype. 527

5.63 Class attribute edit interface for the ”Range option” datatype. 529

5.64 Object attribute edit interface for the ”Range option” datatype. 530

5.65 Class attribute edit interface for the ”Selection” datatype. 531

5.66 Object attribute interface for the ”Selection” datatype. 532

5.67 Class edit interface for the ”Text block” datatype. 534

5.68 Object attribute edit interface for the ”Text block” datatype. 535

5.69 Class edit interface for the ”Text line” datatype. 536

5.70 Object attribute interface for the ”Text line” datatype. 537

5.71 Class attribute edit interface for the ”Time” datatype. 538

5.72 Object attribute edit interface for the ”Time” datatype. 538

5.73 Class attribute edit interface for the ”URL” datatype. 540

5.74 Object attribute edit interface for the ”URL” datatype. 540

5.75 Class attribute edit interface for the ”User account” datatype. 542

5.76 Object attribute edit interface for the ”User account” datatype. 543

5.77 Settings interface for the ”User account” datatype. 543

5.78 Class attribute edit interface for the ”XML block” datatype. 545

5.79 Object attribute edit interface for the ”XML block” datatype. 545

5.80 Edit interface for the ”Approve” event. 1067

5.81 Edit interface for the ”Multiplexer” event. 1069

5.82 Edit interface for the ”Payment gateway” event. 1070

5.83 Edit interface for the ”Simple shipping” event. 1072

5.84 Edit interface for the ”Wait until date” event. 1073

5.85 Text rendered as image using the 1942 font. 1134

5.86 Text rendered as image using the a d mono font. 1134

List of Figures 25

5.87 Text rendered as image using the archtura font. 1134

5.88 Text rendered as image using the arial font. 1135

5.89 Text rendered as image using the gallery font. 1135

5.90 Text rendered as image using the object text font. 1135

5.91 Text rendered as image using the sketchy font. 1136

5.92 Text rendered as image using the smartie font. 1136

5.93 Text rendered as image using the a d mono font. 1136

5.94 The content tree . 1215

Chapter 1

Installation

This chapter explains how to obtain and install eZ Publish using the different installation meth-
ods. In addition, it also describes how to upgrade or remove an existing eZ Publish installation. If
you don’t want to install eZ Publish yourself, you can always hire eZ Systems to install and setup
the software for you. It is also possible to purchase a hosted eZ Publish solution from various
providers and partners.

There are three ways of installing eZ Publish:

1. Normal installation

2. Manual installation

3. Automated installation

Normal installation

This option is the most common and recommended way of installing eZ Publish. It requires a
system which already has the proper environment installed, most notably a web server and a
database. eZ Publish needs to be downloaded and unpacked. A web-based setup wizard is initi-
ated using a browser. The setup wizard asks a couple of questions and automatically configures
eZ Publish. The method is explained under the ”Normal installation” (page 28) section.

Manual installation

This option is for experienced users. No wizards or fancy dialogs, no bundled software, no
installers, no nothing. This method requires a system which already has a web-server and a
database set up and ready to go; eZ Publish needs to be downloaded and unpacked. The system
is then configured by manually altering various configuration files and making manual changes
to the database. This method is explained under the ”Manual installation” (page 41) section.

26

27

1
Automated installation

This installation method (also named kickstart) is for experienced users. It is designed for system
administrators who wish to do pre-configured installations of eZ Publish that require a mini-
mum of interaction with the web based setup wizard. It requires a system which already has the
proper environment installed, most notably a web server and a database. eZ Publish needs to be
downloaded and unpacked. Instead of clicking through the setup wizard and manually providing
configuration parameters, the system is installed based on a group of settings defined in a con-
figuration file. This method is explained under the ”Automated installation” (page 51) section.

1.1 Normal installation 28

1
1.1 Normal installation

The normal installation method is the most common and recommended way of deploying eZ
Publish. It requires a system which already has the proper environment installed, most notably
a web server and a database. The necessary requirements are explained in detail within the next
section (page 29). A typical normal installation process consists of the following steps:

• Setting up / creating a database

• Downloading a packaged eZ Publish distribution

• Unpacking the eZ Publish distribution

• Initiating and going through the web based setup wizard

Once the web based setup wizard has completed, eZ Publish will be ready for use.

The ”Installing eZ Publish on a Linux/UNIX based system (page 33)” and ”Installing eZ Publish on
Windows (page 37)” sections (depending on the target OS) will take you through the necessary
steps.

1.1.1 Normal installation / Requirements for doing a normal installation 29

1
1.1.1 Requirements for doing a normal installation

eZ Publish makes use of and depends on four important things:

1. A web server

2. A server-side PHP scripting engine

3. The eZ Components library

4. A database server

5. An image conversion system (optional)

The first three things should be in place before an eZ Publish installation is deployed. The
image conversion system is optional and is only needed if you’re planning to use eZ Publish with
images. The web server and the server-side PHP scripting engine has to run on the same machine.
The database server may run on a different computer. For the moment, the following software
solutions can be used:

Web server

Currently, only the Apache web server is supported. On Linux/UNIX based systems, it is rec-
ommended to use the latest version of the 2.x branch. Note that it must run in ”prefork” mode
instead of ”threaded” mode - the reason for this is because some of the libraries that PHP exten-
sions use might not be thread-safe.

On Windows, it is recommended to use the latest version of the 1.3 branch. (Apache 2.x for
Windows is not supported since it only exists in ”threaded” mode.)

The Apache web server is the most popular web server on the planet. It is free, open source and
can be downloaded from http://www.apache.org.

Server-side PHP scripting engine

Since most of the eZ Publish system is written using the PHP scripting language, a PHP (hypertext
preprocessor) server-side engine is needed. Make sure you have PHP 5.1.6 or later.

Note that it is strongly recommended to use the latest version of the 5.x branch, which is PHP
5.2.5 at the time of writing. The reason for this is that eZ Publish runs faster on PHP 5.2 than on
PHP 5.1. In addition, some extensions may require PHP 5.2 (for example, the eZ Flow extension
that comes together with eZ Publish). Make sure you use the PHP version that is required for
your specific eZ Components version.

PHP is free software and can be downloaded from http://www.php.net. The following table
reveals which functionality PHP needs to have compiled-in support for.

Name Description
MySQLi extension (recommended) Required if a MySQL database will be used.

http://www.apache.org
http://www.php.net
http://www.php.net/mysqli

1.1.1 Normal installation / Requirements for doing a normal installation 30

1
or MySQL functions
PostgreSQL functions Required if a PostgreSQL database will be

used.
Zlib compression functions Required (see below).
DOM functions Required (see below).
Session support Required (enabled in PHP by default).
PCRE functions Required (enabled in PHP by default).
GD2 support Required if ImageMagick is not installed.
CLI support Recommended (see below).
Client URL library functions Recommended (see below).
Multibyte string functions Recommended.
Exif functions Recommended.

Zlib extension

Make sure that zlib support in PHP is enabled, otherwise the setup wizard (page 57) will not be
able to unpack downloaded packages during the installation process.

DOM extension

In most cases, DOM functions are enabled by default as they are included in the PHP core.
However, some Linux distributions have PHP without compiled-in support for DOM. Instead,
they provide DOM as a shared module in a separate RPM package called ”php-xml”.

PHP CLI

It is strongly recommended to have PHP CLI installed, otherwise some features like notifica-
tions (page 423), delayed search indexing, upgrade scripts, the collaboration system (content
approval), clearing caches from within the command line, etc. will not work.

CURL

It is recommended to enable CURL support, otherwise some features like outbound connections
via proxy (page 1651) and SSL support for eZSoap will not work.

PHP memory limit issue

eZ Publish needs at least 64 MB in order to complete the setup wizard. If you are using PHP 5.2.0
or earlier version, you’ll have to increase the default ”memory limit” setting which is located in
the ”php.ini” configuration file. (Don’t forget to restart Apache after editing ”php.ini”.) Normal
operation requires about 16 MB. However, it is highly recommended that you keep the 64 MB
setting since eZ Publish consumes a lot more memory as soon as you reindex the search, execute
upgrade scripts, etc. Multilingual sites will also require at least 64 MB.

http://www.php.net/mysql
http://www.php.net/pgsql
http://www.php.net/zlib
http://www.php.net/dom
http://www.php.net/manual/en/ref.session.php
http://www.php.net/manual/en/ref.pcre.php
http://www.php.net/manual/en/ref.image.php
http://www.php.net/manual/en/features.commandline.php
http://www.php.net/curl
http://www.php.net/manual/en/ref.mbstring.php
http://www.php.net/exif
http://www.php.net/dom
http://www.php.net/manual/en/features.commandline.php
http://www.php.net/curl
http://pubsvn.ez.no/nextgen/trunk/doc/features/3.8/ssl_enhancement_with_ezsoapclient.txt

1.1.1 Normal installation / Requirements for doing a normal installation 31

1
If you are using PHP 5.2.1 or later, there is no need to change the default ”memory limit” setting
(it is set to 128 MB by default).

PHP timezone

You need to set the ”date.timezone” value in the ”php.ini” configuration file. If this setting is not
specified, you will most likely receive error messages like ”It is not safe to rely on the system’s
timezone settings” when running eZ Publish on PHP 5. The following example shows how the
corresponding line in ”php.ini” looks like:

date.timezone = <timezone>

Refer to the PHP documentation for the list of supported timezones. Don’t forget to restart
Apache after editing ”php.ini”.

eZ Components library

eZ Publish is an object-oriented application where each class definition is stored in a separate
PHP source file. Instead of having a list of needed includes at the beginning of each source
file, eZ Publish 4 makes use of the autoload() function. When eZ Publish is installed, all class
definitions of the eZ Publish kernel will have their paths listed in the ”autoload/ezp kernel.php”
file. In addition, the ”autoload/ezp extension.php” file will contain an array of paths for class
definitions that are a part of the extensions that come with eZ Publish. These arrays will most
likely need to be updated in the future (for example, when you install new extensions or configure
existing ones using the ”Setup - Extensions” part of the administration interface). This requires
eZ Components version 2007.1.1 or higher to be installed. In particular, you need to install the
File and Base components (”ezcBase” and ”ezcFile”), otherwise eZ Publish will not be able to
update autoload arrays.

eZ Components is an enterprise ready general purpose PHP components library used indepen-
dently or together for PHP application development. eZ Components can be downloaded from
http://ezcomponents.org/download. In the future, eZ Components will be bundled with eZ
Publish. Refer to http://ezcomponents.org/docs/install for information about how to install eZ
Components.

Important note

Starting from version 2008.1, the eZ Components library requires PHP version 5.2.1 or higher.

Database server

eZ Publish stores miscellaneous data structures and actual content using a database. This means
that a database server has to be available for eZ Publish at all times. By default, eZ Publish is
compatible with the following database solutions:

http://www.php.net/manual/en/ref.datetime.php#ini.date.timezone
http://www.php.net/timezones
http://www.php.net/autoload
http://ezcomponents.org/download
http://ezcomponents.org/docs/install

1.1.1 Normal installation / Requirements for doing a normal installation 32

1
• MySQL 4.1 or later, 5.x (recommended)

• PostgreSQL 7.3 or later

The setup wizard will automatically detect the database server as long as it is running on the same
computer that functions as the web server. Note that eZ Publish 4 requires a UTF-8 database.

Note that eZ Publish 4 does not support clustering (page 287) for PostgreSQL databases. The
clustering code is optimized for best performance and focused on MySQL databases using the
InnoDB storage engine. If you are not going to run eZ Publish in a clustered environment, the
use of InnoDB is not required but highly recommended. Contact your database administrator if
you are unsure about whether InnoDB is available on your server.

If you are going to use PostgreSQL, make sure the ”pgcrypto” module is installed. On Linux/UNIX,
you may need to install a separate package called ”postgresql-contrib” (refer to the PostgreSQL
documentation for more information), which contains the ”pgcrypto” module. The ”pgcrypto”
module provides cryptographic functions for PostgreSQL, including the ”digest” function, which
is needed for eZ Publish. When setting up a PostgreSQL database for eZ Publish, you will have
to register these functions in the database. Refer to the ”Setting up a database” part of the
”Installing eZ Publish on a Linux/UNIX based system” and ”Installing eZ Publish on Windows”
documentation pages (depending on the target OS) for more information.

Oracle compatibility

The upcoming version 1.8 of the eZ Publish Extension for Oracle Database will make it possible
to use Oracle as a database for eZ Publish 4.0.1 and higher. Note that earlier versions of the
extension are not compatible with eZ Publish 4.

Image conversion system (optional)

In order to scale, convert or modify images, eZ Publish needs to make use of an image conversion
system. One of the following software packages (both are free) can be used:

• GD2 (comes with PHP)

• ImageMagick (http://www.imagemagick.org)

ImageMagick supports more formats than GD and usually produces better results (better scaling,
etc.). The setup wizard will automatically detect the pre-installed image conversion system(s).

The installation and setup of required software solutions (outlined above) is far beyond the scope
of this document. Please refer to the homepage and documentation of the different software
solutions.

http://www.mysql.com
http://www.postgresql.org
http://dev.mysql.com/doc/refman/5.1/en/storage-engine-overview.html
http://www.postgresql.org/docs/8.3/static/pgcrypto.html
http://www.postgresql.org/docs/8.3/static/contrib.html
http://www.postgresql.org/docs/8.3/static/contrib.html
http://www.imagemagick.org

1.1.2 Normal installation / Installing eZ Publish on a Linux/UNIX based system 33

1
1.1.2 Installing eZ Publish on a Linux/UNIX based system

The requirements for doing a normal installation must be met! Read the ”Requirements for
doing a normal installation (page 29)” section first. Proceed only if you have access to a Linux/
UNIX based system with Apache, PHP, MySQL or PostgreSQL already installed and running. As
mentioned earlier, the database server may run on a different computer than the web server. This
section will guide you through the following steps:

• Setting up a database (MySQL or PostgreSQL)

• Downloading eZ Publish

• Unpacking eZ Publish

• Initiating the setup wizard

Setting up a database

A database must be created before running the setup wizard. The following text explains how to
set up a database using either MySQL or PostgreSQL.

MySQL

1. Log in as the root user (or any other MySQL user that has the CREATE, CREATE USER and
GRANT OPTION privileges):

$ mysql --host=<mysql_host> --port=<port> -u <mysql_user> -p<mysql_password>

Note that if MySQL is installed on the same server, the ”--host” parameter can be omitted.
If the ”--port” parameter is omitted, the default port for MySQL traffic will be used (port
3306).

The MySQL client should display a ”mysql>” prompt.

2. Create a new database:

mysql> CREATE DATABASE <database> CHARACTER SET utf8;

3. Grant access permissions:

mysql> GRANT ALL ON <database>.* TO <user>@<ezp_host> IDENTIFIED BY
’<password>’;

Note that if the specified user account does not exist, it will be created.

http://dev.mysql.com/doc/refman/5.1/en/privileges-provided.html

1.1.2 Normal installation / Installing eZ Publish on a Linux/UNIX based system 34

1<mysql host> The hostname of the MySQL database server.
<port> The port number that will be used to connect

to the MySQL database server.
<mysql user> The MySQL user (if no user is set up, use

”root”).
<mysql password> The password that belongs to the <mysql

user>.
<database> The name of the database, for example ”my

new database”.
<user> The username that will be used to access the

database.
<ezp host> The hostname of the server on which eZ Pub-

lish will be running. (may be ’localhost’ if
MySQL is installed on the same server).

<password> The password you wish to set in order to limit
access to the database.

PostgreSQL

1. Log in as the postgres user (or any other PostgreSQL user that has sufficient privileges to
create roles and databases):

$ psql -h <psql_host> -p <port> -U <psql_user> -W

Note that if PostgreSQL is installed on the same server, the ”-h” parameter can be omitted.
If the ”-p” parameter is omitted, the default port for PostgreSQL traffic will be used (in most
cases, port 5432).

The PostgreSQL client will ask you to specify the password that belongs to the <psql user>.
If the password is correct, the client should display a ”<psql user>=#” prompt.

2. Create a new database:

postgres=# CREATE DATABASE <database> ENCODING=’utf8’;

3. Create a new user:

postgres=# CREATE USER <user> PASSWORD ’<password>’;

4. Grant access permissions:

postgres=# GRANT ALL PRIVILEGES ON DATABASE <database> TO <user>;

5. Import the ”pgcrypto” module into the new database:

http://www.postgresql.org/docs/current/interactive/sql-grant.html
http://www.postgresql.org/docs/8.3/static/pgcrypto.html

1.1.2 Normal installation / Installing eZ Publish on a Linux/UNIX based system 35

1
postgres=# \c <database>
<database>=# \i ’<path_to_pgcrypto>’

<psql host> The hostname of the PostgreSQL database
server.

<port> The port number that will be used to connect
to the PostgreSQL database server.

<psql user> The PostgreSQL user (if no user is set up, use
”postgresql”).

<database> The name of the database, for example ”my
new database”.

<user> The username that will be used to access the
database.

<password> The password you wish to set in order to limit
access to the database.

<path to pgcrypto> The path to the ”pgcrypto.sql” file, for exam-
ple ”/usr/share/pgsql/contrib/pgcrypto.sql”.

Downloading eZ Publish

The latest stable version of eZ Publish can be downloaded from http://ez.no/download/ez
publish.

Unpacking eZ Publish

Use your favorite tool to unpack the downloaded eZ Publish distribution to a web-served direc-
tory (a directory that is reachable using a web browser). The following example shows how to
do this using the tar utility (to unpack a tar.gz file, assuming that the ”tar” and the ”gzip” utilities
are installed on the system):

$ tar zxvf ezpublish-<version_number>-gpl.tar.gz -C <web_served_directory>

<version number> The version number of eZ Publish that was
downloaded.

<web served directory> Full path to a directory that is served by the
web server. This can be the path to the doc-
ument root of the web server, or a personal
web-directory (usually called ”public html” or
”www”, and located inside a user’s home di-
rectory).

The extraction utility will unpack eZ Publish into a subdirectory called ”ezpublish-<version
number>”. Feel free to rename this directory to something more meaningful, for example ”my
site”.

http://ez.no/download/ez_publish
http://ez.no/download/ez_publish

1.1.2 Normal installation / Installing eZ Publish on a Linux/UNIX based system 36

1
Initiating the setup wizard

The setup wizard can be started using a web browser immediately after the previous steps (de-
scribed in this section) are completed. It will be automatically run the first time someone tries
to access/browse the index.php file located in the eZ Publish directory. Let’s assume that we are
using a server with the hostname ”www.example.com” and that after unpacking, the eZ Publish
directory was renamed to ”my site”.

Document root example

If eZ Publish was unpacked into a directory called ”my site” under the document root, the
setup wizard can be initiated by browsing the following URL: http://www.example.com/my
site/index.php.

Home directory example

If eZ Publish was unpacked to a web-served directory located inside the home directory of a user
with the username ”peter”, (usually called ”public html”, ”www”, ”http”, ”html” or ”web”), the
setup wizard can be initiated by browsing the following URL: http://www.example.com/˜peter/
my site/index.php.

Refer to ”The setup wizard (page 57)” section for a detailed description of the web based setup
wizard.

1.1.3 Normal installation / Installing eZ Publish on Windows 37

1
1.1.3 Installing eZ Publish on Windows

The requirements for doing a normal installation must be met! Read the ”Requirements for doing
a normal installation (page 29)” section first. Proceed only if you have access to a Windows
based system with Apache, PHP, MySQL or PostgreSQL already installed and running. (Do not
use Apache 2.x for Windows.) As mentioned earlier, the database server may run on a different
computer than the web server. This section will guide you through the following steps:

• Setting up a database (MySQL or PostgreSQL)

• Downloading eZ Publish

• Unpacking eZ Publish

• Initiating the setup wizard

Setting up a database

A database must be created before running the setup wizard. The following text explains how to
set up a database using either MySQL or PostgreSQL.

MySQL

1. Log in as the root user (or any other MySQL user that has the CREATE, CREATE USER and
GRANT OPTION privileges):

mysql --host=<mysql_host> --port=<port> -u <mysql_user> -p<mysql_password>

Note that if MySQL is installed on the same server, the ”--host” parameter can be omitted.
If the ”--port” parameter is omitted, the default port for MySQL traffic will be used (port
3306).

The MySQL client should display a ”mysql>” prompt.

2. Create a new database:

mysql> CREATE DATABASE <database> CHARACTER SET utf8;

3. Grant access permissions:

mysql> GRANT ALL ON <database>.* TO <user>@<ezp_host> IDENTIFIED BY
’<password>’;

Note that if the specified user account does not exist, it will be created.

http://dev.mysql.com/doc/refman/5.1/en/privileges-provided.html

1.1.3 Normal installation / Installing eZ Publish on Windows 38

1<mysql host> The hostname of the MySQL database server.
<port> The port number that will be used to connect

to the MySQL database server.
<mysql user> The MySQL user (if no user is set up, use

”root”).
<mysql password> The password that belongs to the <mysql

user>.
<database> The name of the database, for example ”my

new database”.
<user> The username that will be used to access the

database.
<ezp host> The hostname of the server on which eZ Pub-

lish will be running. (may be ’localhost’ if
MySQL is installed on the same server).

<password> The password you wish to set in order to limit
access to the database.

PostgreSQL

1. Log in as the postgres user (or any other PostgreSQL user that has sufficient privileges to
create roles and databases):

psql -h <psql_host> -p <port> -U <psql_user> -W

Note that if PostgreSQL is installed on the same server, the ”-h” parameter can be omitted.
If the ”-p” parameter is omitted, the default port for PostgreSQL traffic will be used (in most
cases, port 5432).

The PostgreSQL client will ask you to specify the password that belongs to the <psql user>.
If the password is correct, the client should display a ”<psql user>=#” prompt.

2. Create a new database:

postgres=# CREATE DATABASE <database> ENCODING=’utf8’;

3. Create a new user:

postgres=# CREATE USER <user> PASSWORD ’<password>’;

4. Grant access permissions:

postgres=# GRANT ALL PRIVILEGES ON DATABASE <database> TO <user>;

5. Import the ”pgcrypto” module into the new database:

http://www.postgresql.org/docs/current/interactive/sql-grant.html
http://www.postgresql.org/docs/8.3/static/pgcrypto.html

1.1.3 Normal installation / Installing eZ Publish on Windows 39

1
postgres=# \c <database>
<database>=# \i ’<path_to_pgcrypto>’

<psql host> The hostname of the PostgreSQL database
server.

<port> The port number that will be used to connect
to the PostgreSQL database server.

<psql user> The PostgreSQL user (if no user is set up, use
”postgresql”).

<database> The name of the database, for example ”my
new database”.

<user> The username that will be used to access the
database.

<password> The password you wish to set in order to limit
access to the database.

<path to pgcrypto> The path to the ”pgcrypto.sql”
file, for example ”C:\\Program
Files\\PostgreSQL\\8.2\\share\\contrib\\pgcrypto.sql”.

Downloading eZ Publish

The latest stable version of eZ Publish can be downloaded from http://ez.no/download/ez
publish. Windows users should download the ”.zip” archive.

Unpacking eZ Publish

Use your favorite utility to unpack the downloaded eZ Publish archive to a web-served directory
(a directory that is reachable using a web browser). The extraction utility will unpack eZ Publish
into a subdirectory called ”ezpublish-4.x.y”. Feel free to rename this directory to something more
meaningful, for example ”my site”.

Initiating the setup wizard

The setup wizard can be started using a web browser immediately after the previous steps (de-
scribed in this section) are completed. It will be automatically run the first time someone tries
to access/browse the index.php file located in the eZ Publish directory. Let’s assume that we are
using a server with the hostname ”www.example.com” and that after unpacking, the eZ Publish
directory was renamed to ”my site”.

Document root example

If eZ Publish was unpacked into a directory called ”my site” under the document root, the
setup wizard can be initiated by browsing the following URL: http://www.example.com/my

http://ez.no/download/ez_publish
http://ez.no/download/ez_publish

1.1.3 Normal installation / Installing eZ Publish on Windows 40

1
site/index.php.

Refer to ”The setup wizard (page 57)” section for a detailed description of the web based setup
wizard.

1.2 Manual installation 41

1
1.2 Manual installation

This installation method is for advanced users who know what they are doing, all other users
should use the ”Normal installation method” (page 28). The manual installation method requires
an environment which already has a web server, a database and etc. setup and ready to go;
eZ Publish needs to be downloaded and unpacked. Instead of running the setup wizard, all
configuration is done manually using the command line interface of the target operating system.
The following sections (depending on the target OS) will take you through the necessary steps.

1.2.1 Manual installation / Requirements for doing a manual installation 42

1
1.2.1 Requirements for doing a manual installation

The requirements for doing a manual installation are the same as for the normal installation.
Please refer to the ”Requirements for doing a normal installation” (page 29) section.

1.2.2 Manual installation / Manual installation on a Linux/UNIX based system 43

1
1.2.2 Manual installation on a Linux/UNIX based system

The requirements for doing a manual installation must be met. Please read the previous section
(page 42) if you’re not sure about the requirements. Proceed only if you have access to a UNIX
based environment with Apache, PHP, MySQL or PostgreSQL already installed and running. As
mentioned earlier, the database server may run on a different computer than the web server. A
manual installation consists of the following steps:

• Setting up a database (MySQL or PostgreSQL)

• Downloading eZ Publish

• Unpacking eZ Publish

• Manual configuration of eZ Publish

The only difference between a normal and a manual installation is the last step. Instead of
running the web based setup wizard, eZ Publish is manually configured by editing a couple of
files. The first three steps are explained under the ”Installing eZ Publish on a Linux/UNIX based
system” (page 33) section. The last step is explained under the ”Manual configuration of eZ
Publish” (page 45) section.

1.2.3 Manual installation / Manual installation on Windows 44

1
1.2.3 Manual installation on Windows

The requirements for doing a manual installation must be met. Please read the previous section
(page 42) if you’re not sure about the requirements. Proceed only if you have access to a Win-
dows based system with Apache, PHP, MySQL or PostgreSQL already installed and running. As
mentioned earlier, the database server may run on a different computer than the web server. A
manual installation consists of the following steps:

• Setting up a MySQL database

• Downloading eZ Publish

• Unpacking eZ Publish

• Manual configuration of eZ Publish

The only difference between a normal and a manual installation is the last step. Instead of
running the web based setup wizard, eZ Publish is manually configured by editing a couple of
files. The first three steps are explained under the ”Installing eZ Publish on Windows” (page 37)
section. The last step is explained under the ”Manual configuration of eZ Publish” (page 45)
section.

1.2.4 Manual installation / Manual configuration of eZ Publish 45

1
1.2.4 Manual configuration of eZ Publish

This section describes how to manually configure eZ Publish instead of using the setup wizard
to do all the work. Keep in mind that the manual installation method is for expert users only. It
should only be used by people who know what they are doing. The following steps will work on
both Linux/UNIX and Windows environments.

Database initialization

A clean eZ Publish database is created using two very important SQL scripts: ”kernel schema”
and ”cleandata” (note that an empty database should be created before launching these scripts).
The first of them initializes the necessary database structure and the second one imports the pre-
defined data to the database. While the ”kernel schema” script differs for each database engine,
the ”cleandata” script is the same for all solutions.

MySQL

Use the following command to run the MySQL specific ”kernel schema” script:

$ mysql -u USERNAME -pPASSWORD DATABASE < PATH/kernel/sql/mysql/
kernel_schema.sql

The script will use the InnoDB storage engine when creating new tables. Make sure that the
default storage engine is also set to InnoDB, otherwise future upgrades might leave you with
a mix of table types. Refer to the MySQL documentation for information about how to set the
default storage engine.

Use the following command to run the generic ”cleandata” script:

$ mysql -u USERNAME -pPASSWORD DATABASE < PATH/kernel/sql/common/cleandata.sql

USERNAME The MySQL user (if no user is set up, use
”root”).

PASSWORD The password that belongs to the username.
DATABASE The name of the database, for example ”my

database”.
PATH The full path to the root directory of your eZ

Publish installation, for example ”/opt/ezp”.

File permissions

Windows users can skip this part. If eZ Publish is installed on a Linux/UNIX based system, some
of the file permissions need to be changed. There is a shell script that takes care of this. This
script must be run, or else, eZ Publish will not function properly. The script needs to be run from
within the eZ Publish directory:

http://dev.mysql.com/doc/refman/5.1/en/storage-engines.html

1.2.4 Manual installation / Manual configuration of eZ Publish 46

1
$ cd /opt/ezp
$ bin/modfix.sh

Replace ”/opt/ezp” with the full path to the root directory of your eZ Publish installation.

The modfix script recursively alters the permission settings of the following directories inside the
eZ Publish installation:

• var/*

• settings/*

• design/*

Note that in eZ Publsh 4, there is one more directory that must have the permission settings
altered by the modfix script. The directory is called ”autoload” and the script will be updated to
handle it in the near future (refer to this page for more information).

If you know the user and group of the webserver it is recommended to use a different set of
permissions:

chown -R user.usergroup var/ settings/ design/ autoload/
chmod -R 770 var/ settings/ design/ autoload/

The ”user.usergroup” notation must be changed to user and group name that the webserver runs
as.

Configuring eZ Publish

The ”site.ini.append.php” configuration file located in the ”settings/override” directory of your
eZ Publish installation must be changed, or else eZ Publish will not function properly. This file is
the global override for the site.ini (page 1559) configuration file. There are a lot of things that
need to be configured (database, mail transport system, var directory, etc.). The following text
shows a generic example of a configuration that can be used:

<?php /* #?ini charset="utf-8"?

[DatabaseSettings]
DatabaseImplementation=ezmysql
Server=localhost
User=root
Password=
Database=my_database

[FileSettings]
VarDir=var/example

http://issues.ez.no/13367

1.2.4 Manual installation / Manual configuration of eZ Publish 47

1[Session]
SessionNameHandler=custom

[SiteSettings]
DefaultAccess=example
SiteList[]
SiteList[]=example

[SiteAccessSettings]
CheckValidity=false
AvailableSiteAccessList[]
AvailableSiteAccessList[]=example
AvailableSiteAccessList[]=example_admin
RelatedSiteAccessList[]
RelatedSiteAccessList[]=example
RelatedSiteAccessList[]=example_admin
MatchOrder=host;uri

Host matching
HostMatchMapItems[]=www.example.com;example
HostMatchMapItems[]=admin.example.com;example_admin

[InformationCollectionSettings]
EmailReceiver=webmaster@example.com

[MailSettings]
Transport=sendmail
AdminEmail=webmaster@example.com
EmailSender=test@example.com

[RegionalSettings]
Locale=eng-GB
ContentObjectLocale=eng-GB
TextTranslation=disabled

*/ ?>

In the example above the ”AvailableSiteAccessList[]” array located in the ”[SiteAccessSettings]”
section of this file determines the available siteaccesses (page 138) called ”example” and
”example admin”. The ”CheckValidity” setting located in the same section should be set to false,
otherwise the setup wizard will be initiated when trying to access the site.

In addition, two siteaccess configurations must be created, a public siteaccess (”example”) and
an administration siteaccess (”example admin”). The following subdirectories have to be created
in the root of your eZ Publish installation:

1.2.4 Manual installation / Manual configuration of eZ Publish 48

1
• settings/siteaccess/example

• settings/siteaccess/example admin

Both siteaccesses must have a file called ”site.ini.append.php”.

The public siteaccess

The following text shows a generic solution for the ”example” siteaccess:

<?php /* #?ini charset="utf-8"?

[SiteSettings]
SiteName=Example
SiteURL=www.example.com
LoginPage=embedded

[SiteAccessSettings]
RequireUserLogin=false
ShowHiddenNodes=false

[DesignSettings]
SiteDesign=example

[ContentSettings]
ViewCaching=disabled

[TemplateSettings]
TemplateCache=disabled
TemplateCompile=disabled
#ShowXHTMLCode=enabled
#Debug=enabled

[DebugSettings]
DebugOutput=enabled
Debug=inline
#DebugRedirection=enabled

[RegionalSettings]
SiteLanguageList[]
SiteLanguageList[]=eng-GB
ShowUntranslatedObjects=disabled

*/ ?>

1.2.4 Manual installation / Manual configuration of eZ Publish 49

1
The admin siteaccess

The following text shows a generic solution for the ”example admin” siteaccess:

<?php /* #?ini charset="utf-8"?

[SiteSettings]
SiteName=Example
SiteURL=admin.example.com
LoginPage=custom

[SiteAccessSettings]
RequireUserLogin=true
ShowHiddenNodes=true

[DesignSettings]
SiteDesign=admin

[ContentSettings]
CachedViewPreferences[full]=admin_navigation_content=0;
admin_navigation_details=0;admin_navigation_languages=0;
admin_navigation_locations=
0;admin_navigation_relations=0;admin_navigation_roles=0;
admin_navigation_policies=0;admin_navigation_content=0;
admin_navigation_translatio
ns=0;admin_children_viewmode=list;admin_list_limit=1;
admin_edit_show_locations=0;admin_url_list_limit=10;admin_url_view_limit=10;
admin_sec
tion_list_limit=1;admin_orderlist_sortfield=user_name;
admin_orderlist_sortorder=desc;admin_search_stats_limit=1;admin_treemenu=1;
admin_boo
kmarkmenu=1;admin_left_menu_width=13

[DebugSettings]
DebugOutput=disabled
Debug=inline

[RegionalSettings]
SiteLanguageList[]
SiteLanguageList[]=eng-GB
ShowUntranslatedObjects=enabled

*/ ?>

Note that database settings, mail settings, regional and other settings defined in ”settings/
override/site.ini.append.php” will be used for each siteaccess regardless of what is specified in

1.2.4 Manual installation / Manual configuration of eZ Publish 50

1
the siteaccess settings. In the example above, the ”Database=my database” is specified under
the ”[DatabaseSettings]” section of this file so this database will be used for both ”example” and
”example admin” siteaccesses. Refer to the ”Site management (page 138)” and ”Configuration
(page 136)” sections of the ”Concepts and basics” chapter for more information.

Unicode support

There is no need to override the ”i18n.ini” configuration file since Unicode support is enabled by
default in eZ Publish 4.

Languages

Available languages and their priorities can be controlled per siteaccess using the ”SiteLanguage-
List (page 1656)” configuration setting located under the ”[RegionalSettings]” section of the
siteaccess ”site.ini.append.php” file. If this setting is not specified, the system will use the old
”ContentObjectLocale (page 1664)” setting and thus only the default language will be shown.
Refer to the ”Configuring the site languages (page 245)” section for more information and exam-
ples.

The ”cleandata.sql” script creates only one language which is the British English (eng-GB). All
other languages should be added using the ”Setup - Languages” part of the administration inter-
face (http://admin.example.com in the example above).

Dynamic tree menu

If you have a large site with many nodes, it is strongly recommended to enable the ”Dynamic
(page 1495)” switch for your administration siteaccess. This will make the left tree menu in the
administration interface work much faster and decrease the usage of network bandwidth.

Administrator’s login and password

The following username and password are set by the ”creandata.sql” script and can be used for
logging in to the administration interface.

• Username: admin

• Password: publish

It is strongly recommended to change this password as soon as possible. Note that if you need
another username for site administrator, you can create a new administrator user, log in as this
user and remove the old one.

1.3 Automated installation 51

1
1.3 Automated installation

The automated installation method (also known as ”kickstart”) is for experienced users. It pro-
vides an automated version of the ”Normal installation method” and is designed for system ad-
ministrators who wish to roll out pre-configured installations of eZ Publish. This method requires
minimum interaction with the web based setup wizard and thus it can be used to rapidly deploy
eZ Publish on a massive scale. This method has the same requirements as the ”Normal installa-
tion” method. A typical automated installation process consists of the following steps:

• Setting up / creating a database

• Downloading a packaged eZ Publish distribution

• Unpacking the eZ Publish distribution

• Configuring the ”kickstart.ini” file

• Initiating the web based setup wizard

Once the web based setup wizard has completed, eZ Publish will be ready for use.

1.3.1 Automated installation / Requirements for doing an automated installation 52

1
1.3.1 Requirements for doing an automated installation

The requirements for an automated installation are the same as for the normal installation
method. Please refer to the ”Requirements for doing a normal installation” (page 29) page for
more information.

At the minimum, a web server, a PHP engine, and a database server must be installed. Addi-
tional server-side software is only necessary if the kickstart configuration file instructs the system
to make use of such software. For example, ”ImageMagick” has to be available if it has been
specified as the primary image manipulation solution.

The next section (page 53) explains how eZ Publish can be configured to do an automated
installation of itself.

1.3.2 Automated installation / Automated installation of eZ Publish 53

1
1.3.2 Automated installation of eZ Publish

The requirements for doing an automated installation must be met. Please read the previous sec-
tion if you’re not sure about the requirements. This section will guide you through the following
steps:

• Setting up a database (MySQL or PostgreSQL)

• Downloading eZ Publish

• Unpacking eZ Publish

• Configuring the kickstart system

• Starting the installation by initiating the web based setup wizard

Depending on the target system, please refer to either ”Installing eZ Publish on a Linux/UNIX
based system” (page 33) or ”Installing eZ Publish on Windows” (page 37) for information about
the first three steps (database setup, download and unpacking). The rest of the steps are ex-
plained below.

Configuring the kickstart system

The behavior of the automated installation is controlled by the ”kickstart.ini” configuration file.
This file makes it possible to specify parameters for each installation step of the web based setup
wizard. For example, by providing the database connection parameters, the corresponding setup
wizard step will have the input forms pre-filled. It is also possible to instruct the wizard to skip
certain steps.

Initialization

Create a copy of the ”kickstart.ini-dist” file (located in the root of your eZ Publish installation)
and make sure that the copy is named ”kickstart.ini” (located in the root of eZ Publish). The
following example shows how this can be done on a Linux/UNIX based system:

1. Navigate into the eZ Publish directory:

$ cd /path/to/ezpublish/

2. Copy and rename the configuration file:

$ cp kickstart.ini-dist kickstart.ini

1.3.2 Automated installation / Automated installation of eZ Publish 54

1
Security issues

The web server must have read access to the ”kickstart.ini” file during the installation process.
This might become a security problem at a later stage if the file contains usernames, passwords,
etc. To prevent this from happening, it is recommended to do one of the following:

• Remove the file when the installation has completed.

• Use rewrite rules to make sure that it is not readable from outside.

Configuration blocks

The ”kickstart.ini” file contains a configuration block for every step of the setup wizard. The
block names are encapsulated by square brackets. The following list shows an overview of the
available blocks.

• [email settings]

• [database choice]

• [database init]

• [language options]

• [site types]

• [site access]

• [site details]

• [site admin]

• [security]

• [registration]

In the default kickstart file, everything is commented out. The blocks and the corresponding
settings have to be uncommented in order to take effect. This can be done by removing the hash
(”#”) characters from the start of the lines that you should be activated. Make sure that there
are no leading whitespace characters at the start of the lines.

Configuration parameters

Each parameter takes a text string as an input value. Some parameters are able to handle an
array of strings. The following examples demonstrate the two parameter types.

• Single parameter:

1.3.2 Automated installation / Automated installation of eZ Publish 55

1
Server=www.example.com

• Array parameter:

Title[]
Title[news]=The news site
Title[forums]=The forum site

Documentation and examples

The ”kickstart.ini” file contains documentation in the file itself. Please refer to the embedded
instructions and examples for a detailed explanation of the steps. The following table shows how
the examples / inline instructions deal with required and optional parameters.

Syntax Description
<value> Angle brackets indicate that the parameter

value is required, example:
#Server=<hostname>

[value] Squared brackets indicate that the parameter
value is optional, example:
#FirstName=[string]

A parameter will only take effect if it has been uncommented. Remove the leading hash (”#”)
and make sure that there ar no whitespace characters at the start of the lines that include the
uncommented parameters.

Skipping steps

A step can be skipped by uncommenting and setting the ”Continue” parameter to ”true”. This
parameter can be used for each step / block. The following table shows the outcome for the
different configurations of the ”Continue” parameter.

Assignment Result
Continue=false The step will be shown and the input values

will be pre-filled with the values (if any) de-
fined in the ”kickstart.ini” configuration file.
This is the same as when the ”Continue” pa-
rameter is missing or if it has been commented
out.

Continue=true The system will automatically use the values
defined in the kickstart file and thus the step
will not be shown. However, if something
goes wrong (missing or wrong values, etc.),
the step will be shown.

1.3.2 Automated installation / Automated installation of eZ Publish 56

1
Starting the installation

The installation can be started by initiating the web based setup wizard. Please refer to the
”Initiating the setup wizard” part of the ”Normal installation” section.

1.4 The setup wizard 57

1
1.4 The setup wizard

This section contains a comprehensive guide through the web based setup wizard of eZ Publish.
The setup wizard is designed to ease the initial configuration of the system. It can be started using
a web browser when the necessary installation steps (described in the previous sections) are
completed. The setup wizard will automatically start the first time the ”index.php” file (located
in the root of the eZ Publish directory) is accessed/browsed.

The setup wizard does not store or modify any data before the final step; thus, it can be safely
restarted by reloading the URL containing only the ”index.php” part. The back button (located
at the bottom) can be used to jump back to previous steps in order to modify settings. A typical
setup cycle consists of 12 steps:

1. Welcome page

2. System check

3. Outgoing E-mail

4. Database choice (optional)

5. Database initialization

6. Language support

7. Site selection

8. Access method

9. Site details

10. Site security

11. Site registration

12. Finish

Note that some of the steps will be omitted when an eZ Publish bundle is being installed.

Welcome page

(see figure 1.1)

This is the initial page of the setup wizard. This step allows the user to select which language
that will be used during the installation process. In addition, the wizard also checks the system
configuration and displays a note if it is not optimal (in this case, an additional button called
”Finetune” will be available at the bottom of the page).

The system automatically pre-selects one of the languages according to your browser’s language
settings. You can choose another language by selecting the desired language using the dropdown

1.4 The setup wizard 58

1

Figure 1.1: Step 1: Welcome page

list. (The list of available languages is built using the INI files located in the ”share/locale”
directory).

After you click ”Finetune” (if available), the wizard will load the ”System finetuning” page, which
contains information about configuration issues. The following screenshot shows an example of
this page.

(see figure 1.2)

After you click ”Next”, the wizard will either load the ”System check” page (if some critical issues
need to be fixed) or the ”Outgoing E-mail” page (if everything is okay).

System check

(see figure 1.3)

This page usually appears if critical issues/problems are detected. The setup wizard will display
information about the issues that need to be fixed and suggestions describing how they can be
fixed.

Issues

There may be several issues/problems. A suggestion to each problem is presented below the
description of the problem itself. The setup wizard will probably suggest the execution of miscel-
laneous shell commands (in order to fix ownerships, permissions, etc.). These commands must

1.4 The setup wizard 59

1

Figure 1.2: System finetuning

Figure 1.3: Step 2: Issues

1.4 The setup wizard 60

1
be executed using a system shell. Simply copy the commands from the browser window and
paste them into an open shell. The setup wizard will run the system check again when the ”Next”
button is clicked. The ”System check” page will keep reappearing until all issues have been fixed
(or ignored, see the next section). Once everything is okay, the setup wizard will display the next
step.

Ignoring tests

Some issues/problems may be ignored using a checkbox labelled ”Ignore this test”. However, it
is recommended to fix all issues rather than ignoring them.

Outgoing E-mail

(see figure 1.4)

Figure 1.4: Step 3: Outgoing E-mail

eZ Publish uses E-mail to send out miscellaneous notices. This step is used to configure how eZ
Publish delivers outgoing E-mail. There are two options:

• Direct delivery through sendmail (must be available on the server)

• Indirect delivery using an SMTP (Simple Mail Transfer Protocol) relay server

On Linux/UNIX: try to use sendmail; use SMTP if sendmail is unavailable. On Windows: use the
SMTP setting.

1.4 The setup wizard 61

1
Sendmail

Mail is delivered directly using the sendmail transfer agent. The agent must be running on the
same host as the webserver is running on. The sendmail binary is usually available on most
Linux/UNIX systems. If sendmail is not available then SMTP should be used.

SMTP

Mail is delivered through an SMTP server. At the minimum, the hostname of the SMTP server
must be specified.

Database type

(see figure 1.5)

Figure 1.5: Step 4: Database choice

The setup will automatically detect database support that has been made available for the PHP
scripting engine. If both MySQL and PostgreSQL are supported, the database choice dialog will
appear. If PHP is setup only to support one type of database, eZ Publish will automatically use it
and thus the database choice dialog will not be displayed.

Note that if the MySQLi extension is enabled in PHP, the ”MySQL Improved” option will be avail-
able on the list. If you are going to use a MySQL database, it is recommended to select ”MySQL
Improved” instead of ”MySQL”.

Database initialization

(see figure 1.6)

http://php.net/mysqli

1.4 The setup wizard 62

1

Figure 1.6: Step 5: Database initialization

Information about the hostname of the server running the database engine, and a username/
password combination needs to be provided. After you click ”Next”, if MySQL or MySQL Im-
proved are used, the setup wizard will attempt to connect to the database. The setup will only
continue if it is able to connect to the specified MySQL server with the specified username/
password combination. PostgreSQL parameters are tested at a later stage during the setup wiz-
ard.

Language support

(see figure 1.7)

This step allows the user to choose a language configuration for the site that is being installed.
The setup wizard automatically pre-selects one of the languages according to your browser’s
language settings. Use the radio buttons to choose the default language (required), and the
checkboxes to choose the additional languages (optional). All the selected languages will be
added to the system and put on the list of prioritized languages. You will be able to use any of
these languages for creating and translating your content after the setup wizard is finished.

Note that choosing the default language at this step will determine default language, system
locale (page 242) and the most prioritized language for your site. If you select for example
”German” as default language, then both locale and default language will be set to ”ger-DE”,
your administration interface will be translated into German, and this language will be recorded
as the most prioritized one for your site. Languages can be reconfigured at any time (even when
a site is up and running) using the administration interface.

1.4 The setup wizard 63

1

Figure 1.7: Step 6: Language support

Note that regardless of the selected language configuration, the site will be created using UTF-8
as the character set.

Site selection

(see figure 1.8)

This step allows the user to select one of the standard site packages. These packages are intended
to provide basic examples mostly for the purpose of demonstration and learning. However, it is
possible to use them as a basic framework which you can extend/tweak in order to make it
suitable for a specific purpose. A demo site usually contains some artwork (images), CSS code,
actual content and template files. The plain type should be used when starting from scratch.

The setup wizard automatically fetches the list of available site packages from remote and
internal repositories and asks the user to choose one. The default remote repository is
http://packages.ez.no/ezpublish/4.0. Note that it only contains the following three site pack-
ages:

• Plain site

• Website Interface

http://packages.ez.no/ezpublish/4.0

1.4 The setup wizard 64

1

Figure 1.8: Step 7: Site selection

• eZ Flow

Older site packages such as ”News site”, ”Shop site” and ”Gallery site” are currently not available
for eZ Publish 4.

The wizard will automatically download the selected site package and all its dependent packages,
import them to the system and display a list of successfully imported packages as shown in the
following screenshot. (This step will be omitted if all these packages are already stored under
internal repositories.)

(see figure 1.9)

All dependent packages except for the site style package will be automatically installed.

Package language options

(see figure 1.10)

If the language configuration selected at the ”Language support” step doesn’t match the lan-
guages used in the packages being installed, the ”Package language options” interface will appear
as shown on the screenshot above. For example, the ”Website interface” site package makes it

1.4 The setup wizard 65

1

Figure 1.9: The list of imported packages

Figure 1.10: Package language options

possible to have demo content created in 2 languages: English (United Kingdom) and French. If
the same languages are selected at the ”Language support” step, the packages will be installed
silently. Otherwise, the user will need to specify how the system should act towards the ”su-
perfluous” languages (i.e. languages that exist in the package but aren’t present in the selected

1.4 The setup wizard 66

1
language configuration for the site). Possible actions are:

• Skip content in this language

• Create language (extend the language configuration of the site and create demo content in
this language)

• Map to another language (use demo data to create content in another language)

Dealing with possible problems

If the web server is not able to contact the remote repository (due to firewall rules for example),
the setup wizard will display an error message at the ”Site selection” step. To fix this, allow out-
bound connections to http://packages.ez.no in your firewall (port 80) or download the packages
manually.

Outbound connections via proxy

If you allow only outbound connections via a proxy server, then you need to configure eZ Publish
in the following way:

1. Create a file called ”site.ini.append.php” in the ”settings/override” directory and make sure
it contains the following lines:

[ProxySettings]
ProxyServer=proxy.example.com:3128
User=myuser
Password=secret

Replace ”proxy.example.com:3128” with the actual address and port number that can be
used to access the web through the proxy server. If the proxy server requires authentication,
you will also need to provide a valid username/password combination.

2. Restart the setup wizard.

Note that CURL support must be enabled in PHP, otherwise outbound connections via proxy will
not work.

Manual download of packages

If the wizard fails to connect the external packages repository, you can manually download the
desired site package and all the dependent packages it requires and then upload/import them
via the setup wizard. The following instructions reveal how this can be done.

http://www.php.net/curl

1.4 The setup wizard 67

1
1. Go to the packages download page. The ”Sites” section of this page contains the list of

available site packages including the following information for each of them:

• Name

• Description

• Dependencies (if any)

Click on the name of the desired site package to download it. (A package is downloaded as
an ”.ezpkg” file.)

2. Download all the dependent packages required by this site package (these are listed under
”Dependencies”). You can download a package by clicking on its name. The packages are
downloaded as ”.ezpkg” files.

3. Use the package import interface located at the bottom of the page in the setup wizard to
upload/import the downloaded site package (click the ”Choose” button, select the down-
loaded ”.ezpkg” file that contains the site package and click the ”Upload” button). The
imported site package will appear on the list.

4. Upload/import all the dependent packages using the same import interface.

Note: it is also possible to download packages manually from the remote repository. The follow-
ing instructions reveal how this can be done.

1. Go to the packages repository, find the desired site package and download it manually. (A
package is downloaded as an ”.ezpkg” file.)

2. Unpack the ”.ezpkg” file into a temporary folder and view the ”package.xml” file in or-
der to figure out which dependent packages are required (these are listed between the
<dependencies> and </dependencies> XML tags as described here). Download all the
dependent packages that are required.

Additional functionality

In eZ Publish 3.7 and earlier versions, the setup wizard included one more step called ”Site
functionality” that allowed to select additional features that should be installed. This step is
no longer used. Additional functionality can be added after the setup wizard is finished by
downloading the desired packages from the ”Content objects” section of the packages download
page, importing (page 310) the packages and installing (page 312) them.

Access method

(see figure 1.11)

This step allows the configuration of the access method that should be used when eZ Publish
receives a request. There are three options:

http://ez.no/download/ez_publish/ez_publish_4_stable_releases/4_0/packages/4_0_0
http://packages.ez.no/ezpublish/4.0
http://ez.no/download/ez_publish/ez_publish_4_stable_releases/4_0/packages/4_0_0
http://ez.no/download/ez_publish/ez_publish_4_stable_releases/4_0/packages/4_0_0

1.4 The setup wizard 68

1

Figure 1.11: Step 8: Site access configuration

• URL

• Port

• Hostname

URL

When the URL access method is used, eZ Publish selects the site that should be accessed based
on the contents of the URL (in particular the part that comes right after ”index.php”). This is the
default and most generic option. It doesn’t require any additional configuration. Use this setting
when installing eZ Publish for the first time.

Port

When the port access method is used, eZ Publish selects the site that should be accessed based on
a port number that is specified in the URL. The port number must be appended to the hostname
of the web server: ”http://www.example.com:81/index.php”. This option requires additional
web server and firewall configuration. Use this setting only if you know what you’re doing.

1.4 The setup wizard 69

1
Hostname

When this access method is used, each site is assigned a unique hostname. For example,
”www.example.com” and ”admin.example.com” can be assigned to the public and the adminis-
tration interface respectively. This option requires additional web and DNS server configuration.
Use this setting only if you know what you’re doing.

Site details

(see figure 1.12)

Figure 1.12: Step 9: Site details

This step allows the modification of settings related to the site that is being installed. Note that
the ”User path” and ”Admin path” access values depend on which access method you choose.
When the port access method is used these values are port numbers. If you use the URL access
method then ”User path” and ”Admin path” should only contain letters, digits and underscores.
If the hostname access method is used then some additional symbols like dashes, dots and colons
are allowed whereas underscores aren’t.

The available databases will be displayed in the database dropdown menu. The ”Refresh” button
can be used to update the list (if a database is being created at this point). It is required that the
database uses UTF-8 as character set.

If the selected database already contains data, the ”Site Details” page will reappear and ask what
to do. Possible actions are:

• Leave the data and add new

1.4 The setup wizard 70

1
• Remove existing data

• Leave the data and do nothing

• I’ve chosen a new database

Use the last option if another database has been chosen.

Site security

(see figure 1.13)

Figure 1.13: Step 10: Site administrator

This step suggests some basic modifications that should be carried out in order to secure the
site being installed. The suggested security tweak protects the configuration files from unwanted
access. Don’t worry about this unless you’re setting up a site for public use.

Note that the administrator’s username (login) is set to ”admin” by default and can not be
changed. If you need another username for site administrator, you can install eZ Publish, create
a new administrator user, log in as this user and remove the old one.

Site registration

(see figure 1.14)

1.4 The setup wizard 71

1

Figure 1.14: Step 11: Site registration

This step allows you to control whether the setup should send an information E-mail to eZ Sys-
tems or not. The information will be used internally for statistics and for improving eZ Publish.
No confidential data will be transmitted and eZ Systems will not misuse or sell these details. The
following information will be sent:

• System details (OS type, etc)

• The test results

• The type of database that is being used

• The name of the site

• The URL of the site

• The languages that were chosen

Finished

(see figure 1.15)

The setup wizard has finished, eZ Publish is ready for use. Click on one of the links to access the
various interfaces (public site, administration interface, etc.).

Note that it is possible to restart the installation wizard after its successful finishing by specifying
”CheckValidity=true” in the ”settings/override/site.ini.append.php” file so that the setup wizard
will be initiated when trying to access the site.

1.4 The setup wizard 72

1

Figure 1.15: Step 12: Finished

1.5 Virtual host setup 73

1
1.5 Virtual host setup

This section describes how to set up a virtual host for eZ Publish using the Apache webserver. A
virtual host setup is only needed if eZ Publish has been configured to use the host access method,
which is the most secure method.

By making use of virtual hosts, it is possible to have several sites running on the same server. The
sites are usually differentiated by the name they are accessed. Apache will look for a specified
set of domains and use different configuration settings based on the domain that is accessed.

Generic virtual host setup

Virtual hosts are usually defined at the end of ”httpd.conf”, which is the main configuration file
for Apache. Adding a virtual host for eZ Publish can be done by copying the following lines and
replacing the text encapsulated by the square brackets with actual values. Please refer to the next
section for a real life example of using virtual hosts.

NameVirtualHost [IP_ADDRESS]

<VirtualHost [IP_ADDRESS]:[PORT]>
<Directory [PATH_TO_EZPUBLISH]>

Options FollowSymLinks
AllowOverride None

</Directory>

<IfModule mod_php5.c>
php_admin_flag safe_mode Off
php_admin_value register_globals 0
php_value magic_quotes_gpc 0
php_value magic_quotes_runtime 0
php_value allow_call_time_pass_reference 0

</IfModule>

DirectoryIndex index.php

<IfModule mod_rewrite.c>
RewriteEngine On
RewriteRule content/treemenu/?$ /index_treemenu.php [L]
Rewriterule ^/var/storage/.* - [L]
Rewriterule ^/var/[^/]+/storage/.* - [L]
RewriteRule ^/var/cache/texttoimage/.* - [L]
RewriteRule ^/var/[^/]+/cache/texttoimage/.* - [L]
Rewriterule ^/design/[^/]+/(stylesheets|images|javascript)/.* - [L]
Rewriterule ^/share/icons/.* - [L]
Rewriterule ^/extension/[^/]+/design/[^/]+/

(stylesheets|images|javascripts?)/.* - [L]

1.5 Virtual host setup 74

1
Rewriterule ^/packages/styles/.+/(stylesheets|images|javascript)/[^/]+/

.* - [L]
RewriteRule ^/packages/styles/.+/thumbnail/.* - [L]
RewriteRule ^/favicon\.ico - [L]
RewriteRule ^/robots\.txt - [L]
Uncomment the following lines when using popup style debug.
RewriteRule ^/var/cache/debug\.html.* - [L]
RewriteRule ^/var/[^/]+/cache/debug\.html.* - [L]
RewriteRule .* /index.php

</IfModule>

DocumentRoot [PATH_TO_EZPUBLISH]
ServerName [SERVER_NAME]
ServerAlias [SERVER_ALIAS]

</VirtualHost>

[IP ADDRESS] The IP address of the virtual host, for example
”128.39.140.28”. Apache allows the usage of
a wildcards here (”*”).

[PORT] The port on which the webserver listens for
incoming requests. This is an optional setting,
the default port is 80. The combination of an
IP address and a port is often referred to as
a socket. Apache allows the usage of a wild-
cards here (”*”).

[PATH TO EZPUBLISH] Path to the directory that contains eZ Publish.
This must be the full path, for example ”/var/
www/ezpublish-3.6.0”.

[SERVER NAME] The host or the IP address that Apache should
look for. If a match is found, the virtual host
settings will be used.

[SERVER ALIAS] Additional hosts/IP addresses that Apache
should look for. If a match is found, the vir-
tual host settings will be used.

Please note that the ”mod rewrite” module must be enabled in ”httpd.conf” in order to use the
Rewrite Rules.

NameVirtualHost

The ”NameVirtualHost” setting might already exist in the default configuration. Defining a new
one will result in a conflict. If Apache reports errors such as ”NameVirtualHost [IP ADDRESS]
has no VirtualHosts” or ”Mixing * ports and non-* ports with a NameVirtualHost address is not
supported”, try skipping the NameVirtualHost line. For more info about the NameVirtualHost
directive, see http://httpd.apache.org/docs/1.3/mod/core.html#namevirtualhost.

http://httpd.apache.org/docs/1.3/mod/core.html#namevirtualhost

1.5 Virtual host setup 75

1
SOAP and WebDAV

If you would like to use the SOAP and/or the WebDAV features of eZ Publish, you’ll have to add
the following lines in the virtual host configuration:

RewriteCond %{HTTP_HOST} ^webdav\..*
RewriteRule ^(.*) /webdav.php [L]

RewriteCond %{HTTP_HOST} ^soap\..*
RewriteRule ^(.*) /soap.php [L]

ServerAlias soap.example.com
ServerAlias webdav.example.com

1.5.1 Virtual host setup / Virtual host example 76

1
1.5.1 Virtual host example

This example demonstrates how to set up a virtual host on the Apache web server for an eZ
Publish installation located in ”/var/www/example”. Let’s say that we want to access eZ Publish
by using the following URLs:

• http://www.example.com (actual website for public access)

• http://admin.example.com (administration interface for the webmaster)

In order to achieve this, we need to set up both eZ Publish and the web server so that they
respond correctly to the different requests.

eZ Publish configuration: siteaccess settings

eZ Publish needs to be configured to use the host access method. This can be done from within the
web based setup wizard or by manually editing the global override for the site.ini configuration
file: ”/settings/override/site.ini.append.php”. A typical configuration would look something like
this:

...
[SiteAccessSettings]
AvailableSiteAccessList[]
AvailableSiteAccessList[]=example
AvailableSiteAccessList[]=example_admin
MatchOrder=host

HostMatchMapItems[]=www.example.com;example
HostMatchMapItems[]=admin.example.com;example_admin
...

This configuration tells eZ Publish that it should use the ”example” siteaccess if a request starts
with ”www.example.com” and ”example admin” if the request starts with ”admin.example.com”.
For more information about site management in eZ Publish, please refer to the ”Site manage-
ment” (page 138) part of the ”Concepts and basics” chapter.

Apache configuration: virtual host settings

Assuming that...

• eZ Publish is located in ”/var/www/example”

• the server’s IP address is 128.39.140.28

• we wish to access eZ Publish using ”www.example.com” and ”admin.example.com”

1.5.1 Virtual host setup / Virtual host example 77

1
...the following virtual host configuration needs to be added at the end of ”http.conf”:

NameVirtualHost 128.39.140.28

<VirtualHost 128.39.140.28>
<Directory /var/www/example>

Options FollowSymLinks
AllowOverride None

</Directory>

<IfModule mod_php5.c>
php_admin_flag safe_mode Off
php_admin_value register_globals 0
php_value magic_quotes_gpc 0
php_value magic_quotes_runtime 0
php_value allow_call_time_pass_reference 0

</IfModule>

DirectoryIndex index.php

<IfModule mod_rewrite.c>
RewriteEngine On
RewriteRule content/treemenu/?$ /index_treemenu.php [L]
Rewriterule ^/var/storage/.* - [L]
Rewriterule ^/var/[^/]+/storage/.* - [L]
RewriteRule ^/var/cache/texttoimage/.* - [L]
RewriteRule ^/var/[^/]+/cache/texttoimage/.* - [L]
Rewriterule ^/design/[^/]+/(stylesheets|images|javascript)/.* - [L]
Rewriterule ^/share/icons/.* - [L]
Rewriterule ^/extension/[^/]+/design/[^/]+/

(stylesheets|images|javascripts?)/.* - [L]
Rewriterule ^/packages/styles/.+/(stylesheets|images|javascript)/[^/]+/

.* - [L]
RewriteRule ^/packages/styles/.+/thumbnail/.* - [L]
RewriteRule ^/favicon\.ico - [L]
RewriteRule ^/robots\.txt - [L]
Uncomment the following lines when using popup style debug.
RewriteRule ^/var/cache/debug\.html.* - [L]
RewriteRule ^/var/[^/]+/cache/debug\.html.* - [L]
RewriteRule .* /index.php

</IfModule>

DocumentRoot /var/www/example
ServerName www.example.com
ServerAlias admin.example.com

</VirtualHost>

1.5.1 Virtual host setup / Virtual host example 78

1
Note that it isn’t necessary to create a separate virtual host block for ”admin.example.com”, it
can be added to the existing block using the ”ServerAlias” directive.

You can have apache1 and apache2 part in the sample vhost. That way allows to use one vhost
for both servers.

<IfModule mod_php5.c>
If you are using Apache 2, you have to use <IfModule sapi_apache2.c>
instead of <IfModule mod_php5.c>.

some parts/addons might only run safe mode on
php_admin_flag safe_mode Off
security just in case
php_admin_value register_globals 0
performance
php_value magic_quotes_gpc 0
performance
php_value magic_quotes_runtime 0
#http://www.php.net/manual/en/

ini.core.php#ini.allow-call-time-pass-reference
php_value allow_call_time_pass_reference 0

</IfModule>

<IfModule sapi_apache2.c>
If you are using Apache 2, you have to use <IfModule sapi_apache2.c>
instead of <IfModule mod_php5.c>.

some parts/addons might only run safe mode on
php_admin_flag safe_mode Off
security just in case
php_admin_value register_globals 0
performance
php_value magic_quotes_gpc 0
performance
php_value magic_quotes_runtime 0
#http://www.php.net/manual/en/

ini.core.php#ini.allow-call-time-pass-reference
php_value allow_call_time_pass_reference 0

</IfModule>

1.6 Removing eZ Publish 79

1
1.6 Removing eZ Publish

This section describes how to completely remove an eZ Publish installation from a system.

Removing eZ Publish is done in four steps:

1. Deleting the eZ Publish directory

2. Removing the database

3. Reconfiguring Apache (optional)

4. Removing the cronjobs (optional)

WARNING! By following these steps, you will remove both eZ Publish and all the data/content
that you have put into the system. Everything will be lost.

Deleting the eZ Publish directory

Remove the eZ Publish directory using your favorite tool.

Linux/UNIX

On Linux/UNIX systems, the removal would most likely be carried out using the ”rm” command:

$ rm -Rf /path/to/ez_publish

Please note that some file/directory permissions might be messed up. If this is the case, it will
prevent a regular user from removing all eZ Publish files. You’ll probably have to gain root access
to solve this problem.

Windows

Windows users may simply delete the eZ Publish directory using the ”Explorer”.

Removing the database

MySQL

1. Start the MySQL client, log in using your username and password:

$ mysql -u <username> -p

If the username/password is correct, the client will then present a ”mysql>” prompt.

1.6 Removing eZ Publish 80

1
2. Delete/remove the database using the drop command followed by the name of the database

used by eZ Publish:

mysql> drop database <database-name>;

PostgreSQL

1. Remove the database by executing the PostgreSQL dropdb command from shell:

$ dropdb <database-name>

Reconfiguring Apache (optional)

If a virtual host setup was used, it is likely that the Apache configuration file contains eZ Publish
specific settings. These settings will not be needed anymore and thus they can be removed.
Open the ”httpd.conf” file using a text editor, scroll down to the bottom and remove the eZ
Publish specific virtual host settings. Remember to restart Apache after altering the configuration
file.

Removing the cronjobs (optional)

Windows users should skip this part. If cron was configured to run eZ Publish specific jobs, then
these will have to be removed. You may have to edit a global cron file (under ”/etc/cron*”) or
use the ”crontab” command with the -e (edit) parameter to edit a user’s private cron file. Remove
the eZ Publish specific entries.

1.7 Extensions 81

1
1.7 Extensions

Extensions are plugins to eZ Publish, providing additional custom functionality. Various exten-
sions are available for eZ Publish. All of them require the same basic steps for an installation.
This chapter will show how to perform the following:

1. Extract the compressed archive containing the extension

2. Activate the extension

Some extensions might require further action to make them fully functional, e.g. creating new
database tables, adding certain content classes to eZ Publish, etc. Such additional measures are
explained in the documentation for each extension.

As outlined before, this section deals with the basic steps only. For demonstration purposes, the
installation will be examplified by an imaginery extension called ”ezfoo”.

1.7.1 Extensions / Extracting the files 82

1
1.7.1 Extracting the files

Each extension is distributed as a compressed archive. The name of the archive file includes the
name of the extension and its release version. Furthermore, the compression type is indicated by
the file ending, either ”tgz”, ”tar.gz”, ”bz2”, or ”zip”. For example:

• ezfoo-extension-1.0.tgz

• ezfoo-extension-1.0.tar.gz

• ezfoo-extension-1.0.bz2

• ezfoo-extension-1.0.zip

Windows users should download the ”zip” archive. Linux/UNIX users may download any archive
format as long as the necessary unpacking tools are available.

Extension base directory

Copy the downloaded archive into the ”extension” directory of your eZ Publish installation. If this
directory does not exist yet, then create it. (Do not create the directory with the plural naming
”extensions” - this is a common error.)

The following shell commands can be used to create the ”extension” directory and copy the
archive on a Linux/UNIX system:

mkdir /opt/ezp/extension/
cp /home/myuser/download/ezfoo-extension-1.0.tar.gz /opt/ezp/extension/

Replace ”/opt/ezp/” with the actual path to your eZ Publish installation and ”/home/myuser/
download/ezfoo-extension-1.0.tar.gz” with the actual path to the downloaded archive.

Unpack the archive

The archive should be unpacked inside the ”extension” directory. When done correctly, an ”ezfoo”
directory will be created inside the ”extension” directory.

See the following table for the correct shell command to use on a Linux/UNIX system, depending
on the compression type:

Archive type Command to extract
tar.gz or tgz

tar -zxvf ezfoo-extension-1.0.tar.gz

or
tar -zxvf ezfoo-extension-1.0.tgz

bz2

1.7.1 Extensions / Extracting the files 83

1
tar -jxvf ezfoo-extension-1.0.bz2

zip
unzip ezfoo-extension-1.0.zip

On Windows, you can just unzip the ”zip” file using the built-in zip features.

At this point, the unpacked files should be available under ”extension/ezfoo”.

1.7.2 Extensions / Activating the extension 84

1
1.7.2 Activating the extension

Each extension needs to be activated, which means that it is being registered for eZ Publish to be
available from within the eZ Publish framework. Every extension can either be activated in the
eZ Publish administration interface or in a configuration file. Furthermore, the activation can be
done either for the whole eZ Publish installation or for only certain siteaccesses.

Administration interface

Log in to your eZ Publish administration interface, click on the ”Setup” tab, and then click ”Ex-
tensions” on the left. You will see the list of available extensions with checkboxes. To activate the
sample extension, select ”ezfoo” as shown in the screenshot below and click the ”Apply changes”
button.

(see figure 1.16)

Figure 1.16: Screenshot of extension configuration in administration interface.

This will activate the extension for all siteaccesses of your eZ Publish installation.

Configuration file

Alternatively, an extension can be enabled manually in the site.ini (page 1559) configuration file.

1.7.2 Extensions / Activating the extension 85

1
Activating for the whole installation

To enable the sample extension for all of your siteaccesses, edit the ”site.ini.append.php” file
located in the ”settings/override” directory of your eZ Publish installation. Add the following
line under the ”[ExtensionSettings]” configuration block (page 136):

ActiveExtensions[]=ezfoo

Multiple extensions can be present within the ”[ExtensionSettings]” block. You’ll have to manu-
ally create the file and/or the section if they do not exist.

Activating for a certain siteaccesses

To enable the sample extension for only a single siteaccess called ”example”, edit the
”site.ini.append.php” file located in the ”settings/siteaccess/example” directory of your eZ Pub-
lish installation. Add the following line under the ”[ExtensionSettings]” configuration block:

ActiveAccessExtensions[]=ezfoo

Note that the line registering the extension is not called ”ActiveExtensions”, but ”ActiveAccessEx-
tensions”. You’ll have to manually create the file and/or the section if they do not exist.

Updating the autoload arrays

After updating the configuration file(s), you need to run the ”ezpgenerateautoloads.php” script,
in order to add the information about all PHP class definitions of this extension to the ”autoload/
ezp extension.php” file, otherwise eZ Publish might not be able to execute the PHP code of the
newly added extension. The following example shows how to run the script.

1. Navigate into the eZ Publish directory.

2. Run the script using the following shell command:

bin/php/ezpgenerateautoloads.php --extension

The script will look for class definitions in the ”extensions” directory and update the ”autoload/
ezp extension.php” file accordingly.

1.8 Troubleshooting 86

1
1.8 Troubleshooting

This section will explain what can be done if installation fails because of some unknown reason.

First of all, make sure that all the requirements (page 29) without exception are met. The
requirements are strict and extremely important. Please read them very carefully.

If all the requirements are met but you still have problems, it is recommended to check the debug
information during the installation process. To enable the debug output, do the following:

1. Go to the ”settings/override” directory of your eZ Publish installation.

2. Create a new file called ”site.ini.append.php” and put the following lines to it:

[DebugSettings]
DebugOutput=enabled

The debug output will appear at the bottom of the page as shown in the following screenshot.

(see figure 1.17)

The debug output will be displayed in the setup wizard, in the administration interface and on
the actual site. This option can be disabled at any time by replacing ”enabled” with ”disabled” in
the same place of the configuration file.

Note that the ”CheckValidity (page 1717)” setting located in the ”[SiteAccessSettings]” section
of the same file controls if the setup wizard should automatically start the first time the site is
accessed/browsed. If you want to restart the wizard after its successful finishing, you can specify
”CheckValidity=true” in the ”settings/override/site.ini.append.php” file so that the setup wizard
will be initiated when trying to access the site.

1.8 Troubleshooting 87

1

Figure 1.17: The debug output appears at the bottom of the page

Chapter 2

Concepts and basics

The purpose of this chapter is to introduce and describe the most important concepts of eZ
publish. A rookie developer should definitively read through this chapter in order to understand
the basic terms, models, structures and building blocks of the system. This chapter is more
generic than technical, it is meant to teach the concepts rather than explaining details. People
previously unfamiliar with eZ publish should be able to collect enough information in order to
understand the following issues:

• The way eZ publish is built up

• The main directory structure

• The concept and necessity of separating content and design

• How eZ publish stores and manages content

• How eZ publish handles issues related to design

• How eZ publish manages different sites

• The concept of modules and views

• The way eZ publish works with URLs

• The configuration system

• The structure of the workflow system

• How the access/permission system works

• How the webshop works

• A typical page request cycle

88

2.1 The internal structure of eZ publish 89

2

2.1 The internal structure of eZ publish

This section describes the internal structure of eZ publish by presenting an brief overview of
the different software-layers of the system. eZ publish is a complex, object oriented application
written in the PHP language. The system consists of three major parts:

• Libraries

• Kernel

• Modules

The following illustration shows how the different parts of the system are connected.

(see figure 2.1)

Figure 2.1: Libraries, kernel and modules.

The libraries

The libraries are the main building blocks of the system. These are reuseable general purpose
PHP classes. The libraries are in no way dependent on the eZ publish kernel. However, some of
them are strongly interconnected and thus inseparable. People looking for general PHP libraries
should take a look in the ”lib” folder within the root directory of an eZ publish installation.
The reference chapter contains a complete list and a short description of the currently available
libraries (page 1858).

The kernel

The eZ publish kernel can be described as the system core. It takes care of all the low level
functionality like content handling, content versioning, access control, workflows, etc. The kernel
consists of various engines that build upon and make use of the general purpose libraries.

2.1 The internal structure of eZ publish 90

2

The modules

An eZ publish module offers an HTTP interface which can be used for web based interaction with
the system. While some modules offer an interface to kernel functionality, others are more or less
independent of the kernel. eZ publish comes with a collection of modules that cover the needs
of typical everyday tasks. For example, the content module provides an interface that makes it
possible to use a web browser to manage content. The reference chapter contains a complete
list and a short description of all the currently available modules (page 588). A module can be
broken down into the following components:

• Views

• Fetch functions

A view provides an actual web interface. For example, the ”search” (page 749) view of the
”content” (page 624) module provides a web interface to the built-in search engine. Every eZ
publish module provides at least one view. A fetch function makes it possible to extract data
through a module from within a template. For example, the ”current user” (page 915) fetch
function of the ”user” (page 912) module makes it possible to access information related to the
user who is currently logged in. Some modules provide fetch functions, some don’t.

2.1.1 The internal structure of eZ publish / Directory structure 91

2

2.1.1 Directory structure

The eZ publish root directory contains multiple subdirectories. Each subdirectory is dedicated
to a specific part of the system and contains a collection of logically related files. The following
table gives an overview of the main eZ publish directories.

Directory Description
bin The ”bin” directory contains various PHP, Perl

and shell scripts. For example, it contains
the ”ezcache.php” script which can be used
to clear all eZ publish caches from within a
system shell. The scripts are mainly used for
manual maintenance.

cronjobs The ”cronjobs” directory contains miscella-
neous scripts for automated periodical main-
tenance.

design The ”design” directory contains all design
related files such as templates, images,
stylesheets, etc.

doc The ”doc” directory contains documentation
and change logs.

extension The ”extension” directory contains eZ publish
plugins. The extension system of eZ pub-
lish allows external code to plug in and co-
exsit with the rest of the system. By using
extensions it is possible to create new mod-
ules, datatypes, template operators, workflow
events and so on.

kernel The ”kernel” directory contains all the kernel
files such as the core kernel classes, modules,
views, datatypes, etc. This is where the core of
the system resides. Only experts should tam-
per with this part.

lib The ”lib” directory contains the general pur-
pose libraries. These libraries are collections
of classes that perform various low level tasks.
The kernel makes use of these libraries.

packages The ”packages” directory contains the bun-
dled packages (themes, classes, templates,
etc.) that can be installed using either the
setup wizard or the administration interface.

settings The ”settings” directory contains dynamic, site
specific configuration files.

share The ”share” directory contains static configu-
ration files such as codepages, locale descrip-

2.1.1 The internal structure of eZ publish / Directory structure 92

2

tions, translations, icons, etc.
support The ”support” directory contains the source

code for additional applications that can be
used to do various advanced tasks. For exam-
ple, it contains the ”lupdate” program that can
be used to create and maintain eZ the transla-
tion files.

update The ”update” directory contains various
scripts that should be used when an eZ pub-
lish installation is being upgraded.

var The ”var” directory contains cache files and
logs. It also contains actual content that
doesn’t go into the database (images and
files). The size of this directory will most likely
increase as the system is being used.

2.2 Content and design 93

2

2.2 Content and design

This section explains the fundamental concepts of content and design. It is important to under-
stand what content and design actually are, how they interconnect and how the system handles
these fundamental elements.

Content

In the world of eZ publish, content and design are separated. By content we mean information
that is to be organized and stored using some structure. For example, it may be the actual
contents of a news article (title, intro, body, images), the properties of a car (make, model, year,
color) and so on. In other words, all custom information that is stored for the purpose of later
retrieval is referred to as content.

Design

The information stored in a content structure must be presented somehow, preferably in a way
that is easily understood by humans. While content means actual data, design is all about the
way the data is marked up and visually presented. When talking about design, we’re talking
about the things that make up a web interface: HTML, style sheets, images that are not a part of
the content, etc.

Templates

eZ publish uses templates as the fundamental unit of site design. For example, a template might
dictate that a page should appear with the site’s title bar on the top, and then main content in
the middle. When the page is accessed, it then becomes the content management system’s job to
”flow” the content into the appropriate places in the template. An eZ publish template is basically
a custom HTML file that describes how some particular type of content should be visualized. In
addition to standard HTML syntax, it is possible to use eZ publish specific code to for example
extract content from the system. The HTML syntax in the built-in/default templates follow the
XHTML 1.0 Transitional specification.

The separation of content and design

While content is all about storing and structuring custom/raw data, the purpose of the design is
to dictate how the content should be visualized. The result of a combination of these elements is
a complete interface, as illustrated in the following diagram.

(see figure 2.2)

This distinction, and the system’s ability to handle it is one of the key features of eZ publish.
The separation of content and design opens up an entire range of possibilities that simply cannot

2.2 Content and design 94

2
Figure 2.2: Content + Design = Web page

be achieved otherwise. The following list outlines some of the most important benefits of this
technique:

• Content authors and designers can work separately without conflicts

• Content can be published easily in multiple formats

• Content can easily be transferred and re-purposed

• Global redesigns/changes can be applied by simple modifications

2.2.1 Content and design / Storage 95

2

2.2.1 Storage

This section explains where eZ publish stores information that belongs to a site (not the system
itself). A typical eZ publish site consists of the following elements:

• Actual content

• Design related files

• Configuration files

Actual content is structured and stored inside a database. This is true for all content except
for images and files, which are stored on the filesystem. The main reason for this is because
the filesystem is much faster than the database when it comes to the storage and retrieval of
large data chunks. Having the files on the filesystem allows the webserver to serve them directly
without the need of going through the database. In addition, this technique makes it easier to
use external tools to manipulate/scan/index the contents of the uploaded files. For example, the
built in search engine is capable of using external utilities to index the contents of miscellaneous
files (PDF, Word documents, Excel sheets, etc.). Having the files on the filesystem dramatically
decreases the size of the database and thus makes it easier to copy and handle. Everything that is
related to design (template files, CSS files, non content specific images, etc.) and configuration
settings are also stored on the filesystem. A backup of an eZ publish site must therefore contain
both a dump of the database and a copy of the necessary files. The following illustration shows
an overview of how the system makes use of the database and the filesystem to store the different
elements of a site.

(see figure 2.3)

Figure 2.3: Storage overview

2.3 Content management 96

2

2.3 Content management

The role of a content management system is to organize and store content regardless of type
and complexity. The main goal of such a system is to provide a well structured, automated
yet flexible solution allowing information to be freely distributed and instantly updated across
various communication channels (such as the world wide web, intranets and miscellaneous front
and back-end systems). This section describes how eZ Publish actually handles content.

A typical example

Let’s consider a scenario at a university with a need of storing information about students. Most
off-the-shelf content management systems will offer a selection of built in content types. There
might for example exist a ”Person” type, consisting of fields like ”name”, ”birthdate”, ”phone
number” and so on. However, the custom student data will probably not fit perfectly into this
predefined model since it might consist of information that is specific for the university (for
example student ID, department, etc.). Even though some systems allow the creation of custom
structures, the solution is often a complicated and timeconsuming process that requires both
programming and manipulation of the database. In addition, once the solution is in use, future
alternation of the structure itself will most likely become a problem.

Content management in eZ Publish

Unlike other content management systems, eZ Publish does not make use of a predefined ”one-
size-fits-all” approach. Instead of desperately trying to fit data into predefined and rigid struc-
tures, the system allows the creation of custom structures by the way of a unique object oriented
approach. For example, the site developer can build custom structures that perfectly satisfies the
storage needs of the university. This is one of the key features that make eZ Publish a flexible
and successful system. In addition to offering the freedom of custom structures, it also allows the
modification of the content structures at runtime. In other words, if the custom student structure
used in the example above needs to be modified, then eZ Publish will automatically alter it based
on the administrator’s commands.

Although the possibility to create and modify content structures is a wonderful feature, there
isn’t always need for using it. This is why an eZ Publish distribution comes with a selection of
predefined content structures and thus allows the developer to choose between the following
scenarios:

• Use the standard/built-in structures

• Use modified versions of the standard/built-in structures

• Use only custom structures

• Use a combination of standard, modified and custom structures

2.3 Content management 97

2

An object oriented content structure

The eZ Publish content structure is based on ideas borrowed from the object oriented world of
popular programming languages like Smalltalk, C++, JAVA, etc. Superficially, object-oriented
means nothing more than looking at the world in terms of objects. In real life, people are sur-
rounded by several objects: furniture, cars, pets, humans, etc. Each of these objects have traits
that we use to identify them. This is also the way eZ Publish defines and manages content.

The system offers a selection of fundamental building blocks and mechanisms that together pro-
vide a flexible content management solution. An actual data structure is described using some-
thing called a content class. A content class is built up of attributes. An attribute can be thought
of as a field, for example the ”birthdate” field in a structure designed to store information about
students. The description of the entire structure would be refferred to as the ”student class”. The
characteristics of an attribute inside the class are determined by the datatype that was chosen to
represent that attribute.

It is important to understand that a content class is just a definition of an arbitrary structure. In
other words, the class itself describes the structure but it does not store any actual data. Once
a content class has been defined, it is possible to create instances of that class. An instance of a
content class is called a content object. Actual content is stored inside objects of different types.
A content object consists of one or more versions. The versioning layer makes it possible to have
different versions of the same content. Each version consists of one or more translations. The
translation layer makes it possible to represent the same version of the same content in multiple
languages. A translation consists of attributes. The attributes are the final elements in the content
structure chain, this is where actual data is stored.

The content objects are wrapped and organized by the way of nodes that are placed inside a
tree-like structure. This tree is often refferred to as the node tree. The following sections contain
comprehensive explanations related to the elements that were introduced above.

2.3.1 Content management / Datatypes 98

2

2.3.1 Datatypes

A datatype is the smallest possible entity of storage. It determines how a specific type of in-
formation should be validated, stored, retrieved, formatted and so on. eZ publish comes with
a collection of fundamental datatypes that can be used to build powerful and complex content
structures. In addition, it is possible to extend the system by creating custom datatypes for spe-
cial needs. Custom datatypes have to be programmed in PHP. However, the built in datatypes are
usually sufficient enough for typical scenarios. The following table gives an overview of the most
basic datatypes that come with eZ publish.

Datatype Description
Text line (page 536) Stores a single line of unformatted text
Text block (page 534) Stores multiple lines of unformatted text
XML block (page 544) Validates and stores multiple lines of format-

ted text
Integer (page 490) Validates and stores a numerical integer value
Float (page 481) Validates and stores a numerical floating point

value

Please refer to the ”Datatypes” (page 463) section of the reference chapter for a compre-
hensive list of all the built-in datatypes. Additional datatypes can be downloaded from
http://ez.no/community/contribs/datatypes; they are created by the members of the eZ pub-
lish community.

Input validation

As the list above indicates, some datatypes take care of more than just storing data. For example,
the ”XML block” datatype apparently supports validation. This means that the inputted XML will
be validated before it is actually stored in the database. In other words, the system will only
accept and store the data if it is a valid XML structure. Input validation is supported by most (but
not all) of the built in datatypes. The validation feature of a datatype can not be turned on or
off. In other words, if a datatype happens to support validation, it will always try to validate the
incoming data and thus the system will never allow the storage of incorrectly formatted input.

http://ez.no/community/contribs/datatypes

2.3.2 Content management / The content class 99

2

2.3.2 The content class

A content class is a definition of an arbitrary data structure. It does not store any actual data.
A content class is made up of attributes. The characteristics of an attribute are determined by
the datatype that is chosen for that specific attribute. By combining different datatypes, it is
possible to represent complex data structures. The following illustration shows the anatomy of a
content class called ”Article”, which defines a data structure for storing news articles. It consists
of attributes dedicated for storing the title, an introduction text and the actual body of an article.

(see figure 2.4)

Figure 2.4: Example of a content class.

An eZ publish distribution comes with a set of general purpose classes (page 561) that are de-
signed for typical web scenarios. For example, the default image class defines a structure for
storing image files. It consists of attributes for storing the name of the image, the actual image
file, the caption and an alternative image text. The built-in classes can be modified in order to
become more suitable for a specific case. In addition, it is possible to create completely new
and custom classes. Content classes can be created, modified and removed easily using the ad-
ministration interface. When a content class is removed, all instances of that class (containing
actual data) will also be removed from the system. The following screenshot shows the class edit
interface in action.

(see figure 2.5)

Class structure

A content class consists of the following elements:

• Name

• Identifier

• Object name pattern

• URL alias name pattern

• Container flag

• Default sorting of children

2.3.2 Content management / The content class 100

2

Figure 2.5: The class edit interface.

• Default object availability flag

• Attributes

Name

The name is for storing a user friendly name which describes the data structure that the class
defines. A class name can consist of letters, digits, spaces and special characters. The maximum
length is 255 characters. For example, if a class defines a data structure for storing information
about graduate students, the name of the class would most likely be ”Graduate student”. This
name will appear in various class lists throughout the administration interface, but it will not be
used internally by the system. If a blank name is provided, eZ publish will automatically generate
a unique name when the class definition is stored.

2.3.2 Content management / The content class 101

2

Identifier

The identifier is for internal use. In particular, class identifiers are used in configuration files,
templates and in PHP code. A class identifier can only consist of lowercase letters, digits and
underscores. The maximum length is 50 characters. For example, if a class defines a data struc-
ture for storing information about graduate students, the identifier of the class would probably
be ”graduate student”. If a blank identifier is provided, eZ publish will automatically generate a
unique identifier when the class definition is stored.

Object name pattern

The object name pattern controls how the name of an actual object (an instance of a class)
will be generated. A pattern usually consists of attribute identifiers (described later) that tell
eZ publish about which attributes it should use when generating the name of an object. Each
attribute identifier has to be encapsulated by angle brackets. Text outside the angle brackets will
be included directly. If a blank pattern is provided, eZ publish will automatically use the identifier
of the first attribute.

URL alias name pattern

The URL alias name pattern controls how the virtual URLs of the nodes will be generated when
the objects (instances of a class) are created. Note that only the last part of the virtual URL is
affected. The pattern works in the same way as the object name pattern. Text outside the angle
brackets will be converted using the selected method of URL transformation. If a blank pattern
is provided, eZ Publish will automatically use the name of the object itself.

Container flag

The container flag controls whether an instance of the class should be allowed to have sub items
(often called child nodes, children) or not. This setting only affects the administration interface,
it was added in order to provide a more convenient environment for administrators and content
authors. In other words, it doesn’t control any actual low level logic, it simply controls the way
the graphical user interface behaves.

Default sorting of children

From 3.9, it is possible to set the ”default sorting of children” while editing the classes. When new
objects are created and their corresponding nodes appear in the tree, they will use the sorting
settings that were specified at the class level. In other words, if you set the ”default sorting of
children” to priority/ascending for the ”Folder” class, the sub items of newly created folders will
be sorted by their priorities, starting with the lowest priority.

Note that sorting parameters can always be changed for each individual node by using the sorting
controls located in the ”Sub items” window. Modifying the default sorting parameters at the

2.3.2 Content management / The content class 102

2

class level will not affect the nodes that encapsulate existing objects of the class (only the nodes
of newly created objects will be affected). Refer to ”sort method” and ”sort order” for more
information about sorting parameters.

Default object availability flag

This flag is related to the multi-language features that were added in eZ publish 3.8. It simply
dictates the default value of the ”object availability” flag for new instances (objects) of the class.
This flag can be further controlled (on the object level) by a checkbox labelled ”Use the main
language if there is no prioritized translation” in the ”Languages” window of the administration
interface. In other words, the object availability can be modified individually for each object.
When the flag is set, an object that does not exist in one of the site/prioritized languages will be
shown using it’s initial/main language. If the flag isn’t set, the object will not be shown as long
as it does not exist in one of the prioritized languages.

Attributes

As pointed out earlier, it is the structure and type of the attributes that make up the actual data
structure that the class defines. A content class must at least have one attribute. On the other
hand, a class can contain virtually an unlimited number of attributes. Class attributes can be
added, removed and rearranged at any time using the administration interface. If an attribute
is added to a class, it will be added to all current and upcoming instances of that class. If an
attribute is removed, it will also be removed from all instances.

Although it is possible to remove and add attributes using the administration interface, in some
cases these operations may corrupt the database. This usually happens when there are too many
instances that need to be updated. If the required processing time exceeds the maximum exe-
cution time for PHP scripts, the sequence will be interrupted and thus the database will most
likely be left in an inconsistent state. At the time of writing, this problem can only be solved by
increasing the maximum execution time, which is defined in ”php.ini” as ”max execution time”.
The default value is 30 seconds, it should be increased to a couple of minutes. A more reliable
solution (a PHP script that takes care of adding/removing attributes and run it from within a
shell) will probably be added in the future.

2.3.3 Content management / Class attributes 103

2

2.3.3 Class attributes

A content class is made up of one or more attributes where each attribute is represented by a
datatype. The characteristics of an attribute are determined by the datatype that is chosen for
that specific attribute. An attribute is made up of the following elements:

• Name

• Identifier

• Generic controls

• Datatype specific controls

Name

The name is for storing a user friendly name for the attribute. For example, if the attribute is
supposed to store birthdates, the name of the attribute would most likely be ”Date of birth”.
This string will appear in various parts of the administration interface, but it will not be used
internally by the system. The name of an attribute can consist of letters, digits, spaces and special
characters. The maximum length is 255 characters. If a blank name is provided, eZ publish will
automatically generate a unique name for the attribute when the class definition is stored.

Identifier

The identifier of an attribute is for internal use. In particular, attribute identifiers are used in
configuration files, templates and in PHP code. An attribute identifier can only consist of low-
ercase letters, digits and underscores. The maximum length is 50 characters. For example, if
the attribute is supposed to store birthdates, the identifier of the attribute would probably be
”date of birth”. If a blank identifier is provided, eZ publish will automatically generate a unique
identifier when the class definition is stored.

Generic controls

Each attribute has a set of generic controls. These controls are the same for each attribute, re-
gardless (but not independent) of the datatype that represents the attribute. The generic controls
are a set of switches that can be turned on or off:

• Required

• Searchable

• Information collector

• Translatable

2.3.3 Content management / Class attributes 104

2

Required

The required switch controls the behavior of the storage procedure for content objects (instances
of a content class). It can be used regardless of the datatype that represents the attribute. When
the required flag of an attribute is set, the system will keep rejecting the inputted data until all
required information is provided. If the required flag is unset, eZ publish will not care whether
any actual data was provided or not. When an attribute is added, the required switch is off.
Please note that inputted data will be validated according to the chosen datatype’s validation
rules regardless of the state of the attribute’s required switch. Input validation is supported by
most (but not all) of the built in datatypes. The following example demonstrates how these
features actually work.

Let’s say that we have created a content class that defines a data structure for storing information
about prisoners. The class would typically consist of various attributes for storing different kinds
of data: name, identification number, date of birth, cell, block, etc. Having at least the name and
the birthdate attributes required will eliminate the possibility of storing convicts without names
and/or birthdates. If the birthdate attribute is represented by the built-in ”date” datatype, the
system will only accept the input if the birthdate is provided using a correct date format.

Searchable

The searchable switch can be used to control whether the actual data stored using the attribute
should be indexed by the search engine or if it should be left unindexed. Search indexing is
supported by the majority of the built-in datatypes. Please refer to the ”Datatypes” (page 463)
section of the reference chapter to see which datatypes that support search indexing.

Information collector

The information collector switch can be used to control the attribute’s behavior in view mode.
The default view mode behavior results in the display of the information that was provided in
edit mode. For example, when viewing a news article, the contents of the article are displayed
but can not be edited. However, if an attribute is marked as a collector, it will allow information
to be input in view mode. At first, this feature might seem a bit odd. However, it is actually
quite handy. For example, it can be used to quickly create simple feedback forms. The contents
of a form created using this technique will be e-mailed to the site administrator (or to a specified
address) once the form is submitted. Information collection is only supported by a small set of
the built in datatypes. The following example demonstrates how this feature could be used to
create a basic feedback form.

Let’s say that we have created a content class called ”Feedback form” using the following at-
tributes: name, subject and message. The subject and the message attributes would be marked
as information collectors. When an instance of this class is viewed, the subject and the message
attributes will be displayed as input fields along with a ”Send” button.

2.3.3 Content management / Class attributes 105

2

Translatable

The translatable switch controls whether actual data stored using the attribute should exist in
only one language (the default language) or if it should be possible to translate it using the
additional languages. The translation mechanism is completely independent of the datatype
layer. In other words, this switch can be used regardless of the datatype that was chosen to
represent the attribute.

When an attribute is added, the translation switch is ”on”. Turning it off is typically useful
when the attribute is supposed to store non-translatable input. For example, translating dates,
numerical values, prices, email addresses, etc. doesn’t make much sense.

Datatype specific controls

An attribute can have a set of additional controls that are specific for the datatype that was
chosen to represent that attribute. Some datatypes allow fine grained customization, some not.
For example, the built-in ”Text line” datatype provides two settings: default value and maximum
length.

2.3.4 Content management / The content object 106

2

2.3.4 The content object

A content object is an instance of a content class. While the class only defines the data structure,
it is the content objects themselves that contain actual data. Once a content class is defined,
several content objects / instances of that class can be created. For example, if a class for storing
news articles is created, several article objects (each containing a different story) can then be
instantiated. The following illustration summarizes and shows the relation between datatypes,
attributes, a content class and content objects.

(see figure 2.6)

Figure 2.6: Datatypes, attributes, a content class and objects.

Please note that the illustration above is a simplified version of the reality. It doesn’t show the
exact structure of the objects since the versioning and the translation layers have been left out.
The following text gives a more in-depth explanation of the object structure. The versioning and
the translation layers will be explained in the upcoming sections.

Object structure

A content object consists of the following elements:

• Object ID

• Name

• Type

• Owner

• Creation time

2.3.4 Content management / The content object 107

2

• Modification time

• Status

• Section ID

• Versions

• Current version

Object ID

Every object has a unique identification number. The ID numbers are used by the system to
organize and keep track of different objects. These ID numbers are not recycled. In other words,
if an object is deleted, the ID number of that object will not be reused when a new object is
created.

Name

The name of an object is nothing more than a friendly name that appears in various lists through-
out the administration interface. It helps the user to identify different objects by their names in-
stead of having to deal with identification numbers. An object’s name is generated automatically
by the system when the object is published. It is the object name pattern definition of a class
that dictates how objects of that class should be named. This mechanism makes it possible to
automatically generate names based on the object’s attributes. Since the object name is not used
by the system, different objects can have the exact same name.

For example, when dealing with news articles, the title of the article would most likely be used
to generate the object names. When an article object is published, its name will be a copy of the
object’s title attribute. The name of the object will be updated every time the object is published.
In other words, if the title is changed, the object’s name will automatically also be changed.

Type

The type information indicates which class that was used to create the object.

Owner

The object’s owner contains a reference to the user who initially created the object. At any time,
an object can only be owned by one user. This reference is set by the system the first time the
object is published. The ownership of an object can not be manipulated and will not change even
if the owner the object is removed from the system.

2.3.4 Content management / The content object 108

2

Creation time

The published field contains a timestamp pinpointing the exact date and time when the object
was published for the first time. This information is set by the system and it can not be modified.
The published timestamp will remain the same regardless of what happens to the object.

Modification time

The modified field contains a timestamp revealing the exact date and time when the object was
modified. This information is set by the system and it can not be modified. The modified times-
tamp will change every time the object is published.

Status

The status indicates the current state of the object. There are three possibilities:

• (0) Draft

• (1) Published

• (2) Archived

When initially created, the object’s status is set to draft. This status will remain until the object is
published and thus the status will be set to published. Once published, the object can not become
a draft. When a published object is moved to the trash, the status will be set to archived. If a
published object is removed from the trash (or removed without being put in the trash first), it
will be permanently deleted.

Section

The section ID of an object denotes which section that object belongs to. Each object can belong
to one section. By assigning different sections to objects, it is possible to have different groups of
objects. The section mechanism is explained under ”Sections” (page 132).

Versions

The actual contents of an object is stored inside different versions. A version can be thought of
as a timestamped collection of data (the object’s attributes) that belongs to a specific user. Every
time the contents of an object is edited, a new version is created. It is always the new version that
will be edited. The current / published version along with earlier versions will remain untouched.
This makes it possible to revert unwanted or accidental changes. An object always has at least one
version of its content. Each version is identified by a number which is automatically increased
for every new version that is created. The structure and logic of the versioning mechanism is
explained in the next section.

2.3.4 Content management / The content object 109

2

Current version

The current version is a number that pinpoints the currently published version of the object. As
described above, the contents of an object may exist in several versions. However, only one of
them can be the current version (also referred to as the published version). The current/published
version is the version that will be displayed when the object is viewed.

2.3.5 Content management / Object versioning 110

2

2.3.5 Object versioning

eZ publish comes with a built in versioning system which is implemented at the object level. This
mechanism makes it possible to have several versions of the contents (attributes) of an object.
It basically provides a generic, out-of-the-box version control framework that can be used with
any kind of content. The different versions are encapsulated by the object itself. The following
illustration shows a more detailed example of the object structure seen from the outside world.

(see figure 2.7)

Figure 2.7: Example of a content object that consists of two versions.

Every time an object is edited, a new version of the object’s contents will be created. It is always
the new version that will be edited, the old version(s) remains untouched. This is how eZ publish
keeps track of changes made by various users. An accidental or unwanted change can thus be
undone by simply reverting an object back to the previous version.

Version limitations

Since every edit procedure results in the creation of a new version (unless the new version is dis-
carded), the database can be quickly filled up by different versions of the same content. In order
to prevent this problem, the versioning system can be limited to a certain number of versions
per object. It is possible to assign different version limitations for different object types (differ-
ent classes). The default limitation is 10, which means that every object can have a maximum
number of 10 versions of its content. If the maximum count is reached, the oldest version will be
automatically deleted and thus a free slot will be available for the new one. This is the default
behavior. An alternative setting can be used to disallow the creation of new versions until an

2.3.5 Content management / Object versioning 111

2

existing version is manually deleted by a user.

Version structure

A version consist of the following elements:

• Version number

• Creation time

• Modification time

• Creator

• Status

• Translations

Version number

Every version has a unique version number. This number is used by the system to organize and
keep track of the different versions of an object. The version number is automatically increased
for each version that is created inside an object.

Creation time

The creation time contains a timestamp pinpointing the exact date and time when the version
was initially created. This information is set by the system and will remain the same regardless
of what happens to the version.

Modification time

The modification time contains a timestamp revealing the exact date and time when the version
was last modified. This information is set by the system every time the version is stored and
when the version is finally published. When a version is published, the modification time of the
object itself will be updated (it will simply be set to the same value as modification time of the
version that was published).

Creator

The version’s creator contains a reference to the user that created the version. Although a content
object can only belong to a single user (revealed by the ”Owner” field), each version may belong
different users. The creator reference is set by the system when the version is created. It can not
be manipulated and will not change even if the user who created the version is removed from
the system.

2.3.5 Content management / Object versioning 112

2

Status

The state of a version is determined by its status. There are five possibilities:

• Draft (0)

• Published (1)

• Pending (2)

• Archived (3)

• Rejected (4)

In eZ Publish versions 3.8 and later, there is an additional possibility: if a version of a content
object is created but not modified (for example, if someone clicked an ”Add comments” button
but didn’t actually post anything), the status of the version will be ”Internal draft (5)”. In the
administration interface, status ”5” drafts are called ”untouched drafts”. From 3.9, you can set
the number of days, hours, minutes and seconds before an internal draft is considered old and
removed by the ”internal drafts cleanup.php” cronjob script. Another cronjob script called ”old
drafts cleanup.php” can be configured to remove status ”0” drafts that have been in the system
for a specified period of time.

A newly created version is a draft. This status will remain until that version becomes published.
Although an object can have many versions, there can only be one published version (the others
are usually drafts and archived versions). The published version can be considered as the ”cur-
rent” version and it is the one that is accessed when the object is viewed. A published version can
not become a draft. However, it will become archived as soon as another version is published.
The following illustration shows how the versioning system actually works.

(see figure 2.8)

The illustration above shows the most common states of a content object. When a new object
is created (step 1), eZ publish will also create a new draft version. Because the object has not
been published yet, its status is set to draft and the current version is unknown. Storing the draft
(steps 2a and 2b) will not change the state of the object. The only thing that will happen is
that the contents of the draft will be stored in version 1. If the draft (which is the only existing
version) is discarded, the object is completely removed from the system (step 2c). When the
draft is published (step 2), both the draft and the object’s states will be set to published. In
addition, the current version will be set to 1, which reveals the currently published version of
the object. When published, the contents of the object can be viewed by others. A published
object can be removed/deleted from the system (step 3a). When removed, the object’s state will
be set to ”Archived” and thus it will be in the trash. The object can be recovered from the trash
to its previous state. Among other things, this involves the status field being set to ”Published”
again. When a published object is edited (step 4), the current version (version 1 in this case) will
remain untouched and a completely new version will be created. The contents of the new version
(version 2 in this case) will be a copy of the contents of the current version. Again, storing the
draft (steps 4b and 4c) will not change the state of the object. If the draft is discarded (step 4a),
it will be completely removed from the system and thus the object will be in the exact same state

2.3.5 Content management / Object versioning 113

2

Figure 2.8: Overview of the object states.

as it was in before it was edited. If the newly created and edited draft is published, it will become
the current version of the object and thus the previous version (version 1 in this case) will be
set to ”Archived”. Step 5a illustrates what would happen if the object (now with two versions)
would be removed.

The pending and the rejected states are used by the collaboration system. When a version is
waiting to be approved by an editor, the status is set to pending. If the version is approved, it will
be automatically published and thus the status will be set to published. On the other hand, if a
pending version is rejected by the editor, the status will be set to rejected.

A version can only be edited if it is a draft and it can only be edited by the same user who initially
created it. In addition, rejected versions can also be edited. When a rejected version is edited, it
will become a draft. Published and archived versions can not be edited. However, it is possible
to make copies of them. When a published or an archived version is copied, the status of the
copy is set to draft and thus it becomes editable. When/if the new draft is published, the system
automatically sets the status of the previously published version to archived and the new draft
will become the published version.

2.3.5 Content management / Object versioning 114

2

Translations

The actual contents of a version is stored inside different translations. A translation is a repre-
sentation of the information in a specific language. In other words, the translation layer allows a
version of the object’s actual contents to exist in different languages. A version always has at least
one translation of the content (which represents the data in the default/standard language).

2.3.6 Content management / Multiple languages 115

2

2.3.6 Multiple languages

In addition to the versioning system, the content model of eZ publish also provides a built-in
multilanguage framework. This feature allows an object’s contents to exist in several languages.
The system is able to support up to 30 different languages at the same time.

The multi-language feature provides a generic one-to-one translation mechanism that can be used
to translate any kind of content. A one-to-one translation solution makes it possible to represent
the exact same content in multiple languages. For example, when a news article is available in
English, Norwegian and Hungarian (same content in all three cases), we say that we have one-
to-one translation of the content. The translation mechanism is completely independent of the
datatypes. In other words, any kind of content can be translated regardless of the datatypes that
are used to realize the content’s structure. It is possible to start with only one language and when
time comes, add translations and thus extend the spectrum of the target audience.

The following illustration shows a simplified example of an object with two versions where each
version exists in several languages. A language in this case is often referred to as a translation.

(see figure 2.9)

Figure 2.9: Content object structure (with versions and translations).

As the illustration indicates, each version can have a different set of translations. At minimum,
a version always has one translation which by default is the initial/main translation. The initial/
main translation can not be removed. However, if the object exists in several languages, it is
possible to select which of the translations that should be initial/main and thus the previous
initial/main translation can be removed.

2.3.6 Content management / Multiple languages 116

2

It is important to note that from 3.8, when a user edits an object, it is no longer the entire
version that gets edited. Instead, a combination of a version and a translation that is edited. This
approach avoids the locking of entire versions (along with all the translations) and thus it allows
multiple translators to work with the same content in several languages at the same time.

The global translation list

An object can only be edited/translated using languages that exist in the global translation list.
Initially, this list contains the languages that were selected during step six of the setup wizard.
Additional languages can be added at any time while the site is up and running. The following
screenshot shows the global translation list as it appears in the administration interface (under
”Setup” and ”Languages”).

(see figure 2.10)

Figure 2.10: The list of existing languages for translation of content

The global translation list simply keeps track of the languages that users are allowed to use when
editing/translating content. A translation added to the list will immediately become available for
use. Note that from 3.8, it is no longer possible to remove languages from the global translation
list unless they are not used by any objects. The global translation list is capable of handling up
to 30 languages.

Differences between 3.8 and earlier versions

In eZ publish 3.7 and earlier versions, objects had to be created in the primary language before
they could be translated to additional languages. Multiple translators could not work simultane-
ously because the edit process locked the entire version which also contained the translations.

In eZ publish 3.8, the primary language concept is gone and thus objects can be created using
different languages. This means that you can for example have an article available only in English
and another article available only in Norwegian. Multiple translators can work on the same
object because when editing, they actually edit the translation itself instead of the entire version.
This means that if you have written an article in English, different translators can go ahead and
add translations (for example Hungarian, Norwegian and Russian) to the object simultaneously.
They no longer have to wait for eachother because they can work with different translations at
the same time on the same object. However, this also means that a user can no longer work with

2.3.6 Content management / Multiple languages 117

2

multiple translations at the same time. The problem is that the user must leave the edit interface
in order to be able to add (and then edit) new translations for an object. There are some other
drawbacks as well. For example, unless a user is editing the very first version of an object, it is no
longer possible to change the object’s locations from the edit interface. However, the locations
can still be changed using the ”Locations” window when the object isn’t being edited.

Whenever an object is published, the system automatically collects all the latest translations that
the previous version(s) of the object contains and puts them into the version being published.
The result is a version that contains all the up-to-date translations. The contents of an object can
be translated to a maximum number of 30 languages.

Please refer to the ”Updating INI settings for multi-language” part of the ”Upgrading from 3.6.x
(3.7.x) to 3.8.0” page for information about multi-language related INI settings.

Multilingual classes

From 3.9, it is possible to translate the class names and the attribute names. In other words, you
can for example have ”Car” and ”Bil” as class names in English and Norwegian along with ”Top
speed” and ”Topphastighet” as attribute names. Refer to the ”Translatable class attributes (page
252)” documentation page for more information.

Non-translatable attributes

The data structure defined by a class is built up of attributes where each attribute is represented
by a datatype. Among other things, an attribute of a class can be made translatable or not. If an
attribute is translatable, the system will allow the translation of its contents when an object of
that class is being edited. This is typically convenient when the attribute contains actual text. For
example, the written part of a news article can be translated into different languages. However,
some attributes are non-translatable by nature. This is typical for images without text, numbers,
dates, e-mail addresses and so on. Such attributes can be made non-translatable and thus their
contents will simply be copied from the initial/main translation. The copied values can not be
edited.

For example, let’s say that we need to store information about furniture in multiple languages.
We could build a furniture class using the following attributes: name, photo, description, height,
width, depth and weight. Allowing the translation of anything else then the description attribute
would be pointless since the values stored by the other attributes are the same regardless of the
language used to describe the furniture. In other words, the name, photo, height, width, depth
and weight would be the same in for example both English and Norwegian. Conversion between
different measuring units would have to be done within the template that is used to display the
information.

Access control

It is possible to control whether a user (or a group of users) should be able to translate content
or not. This policy can be controlled on a class, section, language and owner basis. In particular,

2.3.6 Content management / Multiple languages 118

2

the language limitation makes it possible to control which user (or user groups) should be able
to edit and/or translate different parts of the content using different languages. In addition, it is
also possible to control access to the global translation list. This makes it possible to allow users
other than the site administrator to add and remove translations on a global basis.

Please refer to the multi-language (page 238) part of the features section for further details.

2.3.7 Content management / The content node 119

2

2.3.7 The content node

When the system is in use, new content objects are created on the fly. For example, when a news
article is composed, a new article object is created. Obviously, the content objects can’t just hover
around in space, they have to be organized in some way. This is where the nodes and the content
node tree comes in. A content node is nothing more than an encapsulation of a content object. In
eZ publish, every object is usually represented by one or more nodes. The following illustration
shows a simplified example of a node and a corresponding object (which is referenced by the
node) as it would have been represented inside the system.

(see figure 2.11)

Figure 2.11: Object - node relation

The content node tree is built up of nodes. A node is simply a location of an object within the
tree structure. The tree is the actual mechanism used to hierarchically organize the objects that
are present on the system. The content node tree is explained in the next section.

Node structure

A content node consists of the following elements:

• Node ID

• Parent node ID

• Object ID

• Sort method

• Sort order

• Priority

Node ID

Every node has a unique identification number. The ID numbers are used by the system to
organize and keep track of the different nodes. These ID numbers are not recycled. In other
words, if a node is deleted, the ID number of that node will not be reused when a new node is
created.

2.3.7 Content management / The content node 120

2

Parent node ID

The parent node ID of a node reveals the node’s superior node in the tree.

Object ID

Every object that exists in the system has a unique identification number. The object ID of a node
pinpoints the actual object that the node encapsulates.

Sort method

The sorting method of a node determines how the children of the node should be sorted. The
following sorting methods are possible:

Method ID Description
Class identifier 6 The nodes are sorted by the

class identifiers of the ob-
jects.

Class name 7 The nodes are sorted by the
class names of the objects.

Depth 5 The nodes are sorted by their
depth in the tree. A node fur-
ther down in the three has
a higher level of depth. The
root node has a depth of 1.

Modified 3 The nodes are sorted by the
modification time of the ob-
jects.

Modified subnode 10 The nodes are sorted based
on the modification time of
their children.

Name 9 The nodes are sorted by the
names of the objects.

Path 1 The nodes are sorted by their
path strings.

Priority 8 The nodes are sorted by their
priority. Every node has a
priority field that can be set
by the user. This solution al-
lows the nodes to be sorted
in a custom order. The prior-
ity field is described below.

Published 2 The nodes are sorted by the
creation time of the objects’

2.3.7 Content management / The content node 121

2

current/published versions.
Section 4 The nodes are sorted by the

section IDs of the objects.

Please note that it is possible to combine the available sort methods in order to sort nodes in a
more complex way. However, since a node is incapable of ”remembering” a combination (you
can only set one method and one order for each node), this has to be done in the templates.

Sort order

The sorting order determines the order in which the children of the node should be sorted. There
are two possibilities:

• Descending (0 / FALSE)

• Ascending (1 / TRUE)

For example, if the sorting method is set to ”Name” and the sort method is set to ”Ascending”,
the underlying nodes will be alphabetically sorted from A to Z. If the sort method is set to ”De-
scending”, the underlying nodes will be sorted from Z to A.

Priority

The priority field allows a user to assign both positive and negative integer values to a node (zero
is also allowed). This field makes it possible to sort nodes in a custom way. If the sorting method
of a node is set to ”Priority”, the children of that node will be sorted by their priorities.

2.3.8 Content management / The content node tree 122

2

2.3.8 The content node tree

The content node tree is a hierarchical organization of the objects. Each leaf in the tree is a node
(also known as a location). Each node refers to one object. The usual case is that an object is
referenced by only one node. Because of the node-encapsulation of objects, any type of content
object can be placed anywhere in the tree. At the minimum, the tree consists of one node, called
the root node. The identification number of the root node is 1. The root node is a virtual node,
it does not encapsulate an actual object. A node that is directly below the root node is called a
top level node (the top level nodes are described in the next section). The depth and width of the
tree is virtually unlimited. The following illustration shows a simplified example of how objects
are referenced by nodes which together make up the content node tree.

(see figure 2.12)

Figure 2.12: Objects, nodes and the content node tree

The following illustration shows the same node structure seen from the outside world.

(see figure 2.13)

Multiple locations

An object may be referenced by several nodes, which means that the same object can appear at
different locations within the tree. This feature can for example be used to place a specific news
article at two locations: the frontpage and the archive. In the case of multiple nodes/locations,
only one node can be considered as the main node of an object. The main node usually represents
the object’s original location in the tree. The other nodes can be thought of as additional nodes /
locations. If an object is referenced by a single node then of course that node would be the main
node. Among other things, the main node is used to avoid multiple search hits, infinite recursive
loops, smart filtering, etc. The following illustration shows an example of a structure where an
object has multiple locations in the tree. It will simply be empty and will have the possibility to
contain a different set of sub items.

(see figure 2.14)

2.3.8 Content management / The content node tree 123

2

Figure 2.13: Content node tree

Figure 2.14: Objects, node and the content node tree - multiple locations

The following illustration shows the same node structure seen from the outside world.

(see figure 2.15)

Pitfall

A very common mistake when planning the structure of a site is thinking of multiple locations
as shortcuts/links on a filesystem. Unfortunately, this is not how the node tree works. When
a new location is added to an object, eZ publish will not go through and create replica of the
node structure below the object’s original location. For example, if a folder containing several
subfolders with articles, images, etc. is assigned a secondary location, the subfolders with articles,
images, etc. will not be automatically available below the new location of the folder.

2.3.8 Content management / The content node tree 124

2
Figure 2.15: Content node tree with multiple locations

Additional notes

Only published objects appear in the tree. A newly created object (status set to draft) does not
get a node assignment until the object is published for the first time. An object is considered
to be deleted (status set to archived) when all nodes referencing that object are removed from
the tree. A deleted object will appear in the system trash. It is important to understand that
the trash in eZ publish is a flat structure. This is different from what people are used to from
the trash implementation in modern operating systems. Objects in the trash can be recovered
to their original locations. However, this is only possible if their original parent nodes have not
been deleted. Otherwise, the user must specify a new/alternate location for the objects during
recovery. Note that specifying an alternate/new location can be done regardless if the system is
able to restore a deleted object at its original location or not.

Furthermore, if a folder containing some news articles is deleted, both the folder and the articles
will appear on the same level within the trash. Recovering the folder itself will not bring back the
articles since the links between the folder and the articles got lost when the nodes were deleted.
In this case, the folder needs to be recovered first. After that, each article has to be manually
recovered and given a location.

2.3.9 Content management / Top level nodes 125

2

2.3.9 Top level nodes

A typical eZ publish installation comes with the following set of top level nodes:

• Content

• Media

• Users

• Setup

• Design

The top level nodes can not be deleted. However, they can be swapped with other nodes. The
swap function can be used to change the type of a top level node. For example, the ”Content”
node references a folder object. By swapping it with another node which refers to a different kind
of object, it is possible to change the type of the top level node itself. The following illustration
shows the virtual root node and the standard top level nodes:

(see figure 2.16)

Figure 2.16: Top level nodes

Content

The actual contents of a site is placed under the ”Content” node. This node is typically used for
organizing folders, articles, information pages, etc. and thus defines the actual content structure
of the site. A sitemap can be easily created by traversing the contents of this top level node.
The default identification number of the ”Content” node is 2. The contents of this node can be
viewed by selecting the ”Content structure” tab in the administration interface. By default, this
node references a ”Folder” object.

Media

The ”Media” node is typically used for storing and organizing information that is frequently
used by the nodes located below the ”Content” node. It usually contains images, animations,
documents and other files. For example, it can be used to create an image gallery containing

2.3.9 Content management / Top level nodes 126

2

images that are used in different news articles. The default identification number of the ”Media”
node is 43. The contents of this node can be viewed by selecting the ”Media library” tab in the
administration interface. By default, this node references a ”Folder” object.

Users

The built-in multiuser solution makes use of the native content structure of eZ publish. An actual
user is just an instance of a class that contains the ”User account” (page 542) datatype. The user
nodes are organized within ”User group” nodes below the ”Users” top level node. In other words,
this node contains the actual users and user groups. The default identification number of the
”Users” node is 5. The contents of this node can be viewed by selecting the ”User accounts” tab
in the administration interface. By default, this node references a ”User group” object.

Setup

The ”Setup” node contains miscellaneous nodes related to configuration and is used internally.
The default identification number of the ”Setup” node is 48. By default, this node references a
”Folder” object.

Design

The ”Design” node contains miscellaneous nodes related to design issues and is used internally.
The default identification number of the ”Design” node is 58. By default, this node references a
”Folder” object.

2.3.10 Content management / Node visibility 127

2

2.3.10 Node visibility

Since publishing means adding an object (by the way of a node) to the content tree, unpublishing
would imply the removal of the object from the tree. Once an object is published, it can not be
unpublished because eZ publish does not provide such a feature. Instead, the system provides a
hiding mechanism which can be used to change the visibility of nodes. The hide feature makes it
possible to prevent the system from displaying the contents of published objects. This is achieved
by denying access to the nodes. A single node or a subtree of nodes can be hidden either by a
user or by the system. A node can have one of the following visibility statuses:

• Visible

• Hidden

• Hidden by superior

All nodes are visible by default and thus the objects they reference can be accessed. A user
can hide or unhide a node using the administration interface. Once a node is hidden, all its
descendants will automatically be marked ”Hidden by superior” and thus the descendants will
also become hidden. A node can not become visible if its parent is hidden.

A hidden node will not be available unless the ”ShowHiddenNodes” directive within the ”[SiteAc-
cessSettings]” block of a configuration override for ”site.ini” is set to true. The most common way
to use this setting is to disallow all but the administration interface to show hidden nodes.

Implementation

Each node has two flags: ”H” and ”X”. While ”H” means ”hidden”, ”X” means ”invisible”. The
hidden flag reveals whether the node has been hidden by a user or not. A raised invisibility flag
means that the node is invisible either because it was hidden by a user or by the system. Together,
the flags represent the three visibility statuses that were described above:

H X Status
- - The node is visible.
1 1 The node is invisible. It was

hidden by a user.
- 1 The node is invisible. It

was hidden by the system be-
cause its ancestor is hidden/
invisible.

If a user tries to hide an already invisible node then the node’s hidden flag will be set in addition
to the invisible flag. If a node is hidden and its parent becomes visible, the node will remain
hidden while the descendants will remain invisible. The following illustrations show how the
node hiding algorithm works.

2.3.10 Content management / Node visibility 128

2

Case 1: Hiding a visible node

The following illustration shows what happens when a visible node is hidden by a user. The node
will be marked hidden. Underlying nodes will be marked invisible (hidden by superior). The
visibility status of underlying nodes already marked hidden or invisible will not be changed.

(see figure 2.17)

Figure 2.17: Hiding a visible node

Case 2: Hiding an invisible node

The following illustration shows what happens when an invisible node (hidden by superior) is
explicitly hidden by a user. The node will be marked as hidden. Since the underlying nodes are
already either hidden or invisible, their visibility status will not be changed.

(see figure 2.18)

Figure 2.18: Hiding an invisible node

2.3.10 Content management / Node visibility 129

2

Case 3: Unhiding a node with a visible ancestor

The following illustration shows what happens when a user unhides a node that has a visible
ancestor. Underlying invisible nodes will become visible. An underlying node that was explicitly
hidden by a user will remain hidden (and its children will be remain invisible).

(see figure 2.19)

Figure 2.19: Unhiding a node with a visible ancestor

Case 4: Unhiding a node with an invisible ancestor

The following illustration shows what happens when a user unhides a node that has an invisible
ancestor. Since the target node is unhided in a subtree that is currently invisible (because a node
further up in the hierarchy has been explicitly hidden), the node will not become visible. Instead,
it will be marked as invisible and will become visible when the hidden superior node is unhided.

(see figure 2.20)

Figure 2.20: Unhiding a node with an invisible ancestor

2.3.11 Content management / Object relations 130

2

2.3.11 Object relations

The content model of eZ publish makes it possible to create relations between different objects.
Any type of object can be connected to any other type of object. This feature is typically useful in
situations when there is a need to bind and/or reuse information that is scattered around in the
system.

For example, the concept of related objects makes it possible to add images to news articles.
Instead of using a fixed set of image attributes, the images are stored as separate objects outside
the article. These objects can then be related to the article and used directly in attributes repre-
sented by the ”XML block” (page 544) datatype. This approach is quite flexible because it does
not enforce any limitations when it comes to the amount and the type of information that is to
be included.

Relation types

A relation between two objects can be created either at the object level or at the object attribute
level. The system stores the different types of relations using the same database table. An object
can not have a relation to itself.

Relations at the object level

In eZ Publish 3.8 and earlier versions, the relations at the object level were generic and could not
be grouped in any way. From 3.9, there are three types of relations at the object level:

• Common

• XML linked

• XML embedded

Common

A relation of the ”common” type is created when a user manually adds a content object to the
related object list of another object. (In most cases, this is done by using the ”Related objects”
window in the object edit interface.) This method is always available for use.

XML linked

Whenever an internal link (a link to other node or object) is inserted into an attribute represented
by the ”XML block (page 544)” datatype, the system will automatically create a relation of the
”XML linked” type. Note that a relation of this type is automatically removed from the system
when the corresponding ”link” tag is removed from the content.

2.3.11 Content management / Object relations 131

2

XML embedded

Whenever an ”embed” tag is inserted into an attribute of the ”XML block (page 544)” datatype,
the system will automatically create a relation of the ”XML embedded” type, i.e. relate the
embedded object to the one that is being edited. Note that a relation of this type is automatically
removed from the system when the corresponding ”embed” tag is removed.

Relations at the attribute level

Relations of this type will be automatically generated whenever the ”Object relation” (page 515)
or the ”Object relations” (page 517) datatypes are used. While the first one allows only a single
relation, the second allows multiple relations. There is no grouping of the relations. However, by
making use of several attributes that are represented by one of these datatypes, it is possible to
create a custom structure with grouped relations.

2.3.12 Content management / Sections 132

2

2.3.12 Sections

A section is a number that can be assigned to an object. The section ID of an object denotes
which section the object belongs to. Each object can belong to one section. By assigning different
sections to objects, it is possible to have different groups of objects. Although the sectioning
mechanism is implemented at the object level, it is more likely to be used in conjunction with the
content node tree. This is why the administration interface makes it possible to manage sections
on the node level. Using sections makes it possible to:

• Segment the node tree into different subtrees

• Set up custom template override rules

• Limit and control access to content

• Assign discount rules to a group of products

A default eZ publish installation comes with the following sections:

ID Name Description
1 Standard The ”Standard” section is the

default section. The ”Con-
tent” top level node makes
use of this section.

2 Users The ”Users” section is dedi-
cated for user accounts and
user groups that exist on the
system. The ”Users” top level
node makes use of this sec-
tion.

3 Media The ”Media” section is used
by the ”Media” top level
node.

4 Setup The ”Setup” section is used
by the ”Setup” top level
node.

Section definitions can be added, modified and removed using the administration interface. The
following illustration shows an example of how the section feature can be used to segment the
content node tree.

(see figure 2.21)

Behavior

When a new object is created, its section ID will be set to the default section (which is usually
the standard section). When the object is published, it will automatically inherit the section that
is assigned to the object encapsulated by the parent node. For example, if an object is created in

2.3.12 Content management / Sections 133

2

Figure 2.21: Example of sections.

a folder that belongs to section 13, the section ID of the newly created object will be set to 13. If
an object has multiple node assignments then it is always the section ID of the object referenced
by the parent of the main node that will be used. In addition, if the main node of an object with
multiple node assignments is changed then the section ID of that object will be updated.

The administration interface makes it possible to assign sections to objects using the node tree.
When a section is assigned to a node, the section ID of the object referenced by that node will be
updated. In addition, the section assignment of all subsequent children of that node will also be
changed. For example, if the section ID of a folder containing news articles is changed, then the
section ID of the articles in that folder will also be changed.

The removal of sections may corrupt permission settings, template output and other things in the
system. In other words, a section should only be removed if it is completely unused. When a
section is removed, it is only the section definition itself that will be removed. Other references
to the section will remain and thus the system will most likely be in an inconsistent state. The
section ID numbers are not recycled. If a section is removed, the ID number of that section will
not be reused when a new section is created.

2.3.13 Content management / URL storage 134

2

2.3.13 URL storage

Every address that is input as a link into an attribute using the ”XML block” (page 544) or the
”URL” (page 540) datatype is stored in a separate part of the database. Actual data stored using
these datatypes only contain references to entries in the separate URL table. This feature makes
it possible to inspect and edit the published URLs without having to interact with the content
objects. The addresses in the URL table can be checked by running the ”linkcheck.php” script
(which is also executed by the cronjob script) that comes with eZ publish. This script will simply
check if the links in the table actually work by accessing them one by one. If the target server
of a URL returns an invalid response (404 Page not found, 500 Internal Server Error, 403 Access
Denied, etc.) or if there is simply no response, the URL will be marked invalid. Invalid URLs and
the objects that are using them can be easily filtered out and edited using the ”URL management”
part of the administration interface. An entry in the URL table consists of the following data:

• ID

• Address

• Creation time

• Modification time

• Last checked

• Status

Every URL has a unique identification number. The address contains the actual link. The creation
time is the exact date/time when the object containing that URL was published. The modification
time is updated every time the URL is changed using the URL management part of the admin-
istration interface (and not when the object containing that URL is edited). Whenever a URL
is checked by the script, the last checked field will be updated. The status of a URL can be ei-
ther valid or invalid. By default, all URLs are valid. When the cronjob script is running, it will
automatically update the status of the URLs. If a broken link is found, its status will be set to
”invalid”. Whenever an already existing URL is stored, the system will simply reuse the existing
entry in the table.

Please note that the link check script must be able to contact the outside world through port 80.
In other words, the firewall must be opened for outgoing HTTP traffic from the web server that
is running eZ publish.

2.3.14 Content management / Information collection 135

2

2.3.14 Information collection

The information collection feature makes it possible to gather user input when a node referencing
an information collector object is viewed. It is typically useful when it comes to the creation of
feedback forms, polls, etc.

An object can collect information if at least one of the class attributes is marked as an information
collector. When the object is viewed, each collector attribute will be displayed using the chosen
datatype’s data collector template. Instead of just outputting the attributes’ contents, the collec-
tor templates provide interfaces for data input. The generated input interface depends on the
datatype that represents the attribute. The following table reveals the datatypes that are capable
of collecting information.

Datatype Input interface Input validation
Checkbox (page 467) Checkbox. No.
E-Mail (page 475) Single line of text. Yes.
Option (page 522) Radio buttons or a dropdown No.

menu.
Text block (page 534) Multiple lines of unformatted No.

text.
Text line (page 536) Single line of unformatted No.

text.

The input interfaces must be encapsulated by an HTML form that posts the data using a submit
button named ”ActionCollectInformation” to ”/content/action” (the ”action” (page 724) view of
the ”content” (page 624) module). The submitted data will be stored in a dedicated part of the
database, separated from but related to the object itself. In addition, whenever the object collects
any data, the information can be sent to a specified E-mail address. The ”Collected information”
section within the ”Setup” part of the administration interface can be used to view and delete
information that was collected through content objects.

2.4 Configuration 136

2

2.4 Configuration

This section explains the configuration model of eZ publish. The default configuration files end
with a ”.ini” extension and are located in the ”/settings” directory. Each file controls the behavior
of a specific part of the system. For example, the ”content.ini” file controls the behavior of the
content engine, the ”webdav.ini” file controls the behavior of the WebDAV subsystem, and so
on. The main and most important configuration file is called ”site.ini”. Among other things, it
tells eZ publish which database, design, etc. that should be used. The default configuration files
contain all the possible directives (with default settings) along with brief explanations. These
files files should only be used for reference. In other words, they should never be modified.
The ”Configuration files” (page 1438) section of the reference chapter contains a comprehensive
explanation of the different configuration files and their settings.

File structure

An eZ publish configuration file is divided into blocks, each block contains a collection of settings.
The following example shows a part of the main (site.ini) configuration file.

...
This line contains a comment.
[DatabaseSettings]
Server=localhost
User=allman
Password=qwerty
Socket=disabled
SQLOutput=enabled

This line contains another comment.
[ExtensionSettings]
ActiveExtensions[]=ezdhtml
ActiveExtensions[]=ezpaypal
...

The example above shows two blocks: ”DatabaseSettings” and ”ExtensionSettings”. Each block
has several settings which control the behavior of the system. A setting can usually be set to
enabled/disabled, a string of text or an array of strings. If the name of a setting ends with a pair
of square brackets, it means that the setting accepts an array of values. In the example above,
the ”ActiveExtensions” setting tells eZ publish to use two different extensions: ”ezdhtml” and
”paypal”. Lines starting with a hash are treated as comments.

Configuration overrides

As pointed out earlier, the default configuration files should never be modified because they will
most likely be overwritten by a new set of files during an upgrade. Making a backup will still
not be sufficient because the configuration settings change over time. For example, a previous

2.4 Configuration 137

2

version of the files will not contain settings that were recently added. Because of these issues,
custom configuration settings must be placed elsewhere. Global configuration overrides can be
placed in the ”/settings/override” directory . The settings of the configuration files located in this
directory will override the default settings. The name of the configuration files in the override
directory must end with one of the following extensions:

• .ini.append

• .ini.append.php

If an override configuration file exist with both ”.ini.append” and ”.ini.append.php” extensions,
eZ publish will process the one which ends with ”.php”. Because of possible security issues, the
latter (.ini.append.php) should be used; specially if eZ publish is running in a non virtual host
environment. The ”.php” extension will trick the web server into handling the configuration file
as a PHP script. If someone attempts to read it using a browser, the server will not display the
contents. Instead, it will attempt to process it as PHP, which again will not produce any output
since the configuration settings are commented out (see below). This method makes it more dif-
ficult for a hacker to get access to the configuration settings (for example the database password)
by attempting to access one of the configuration files from outside. In order for this to work,
the contents of the configuration file must be encapsulated by a pair of PHP comment markers:
/* and */. The following example shows how an override (for example ”test.ini.append.php”)
should be set up:

<?php /* #?ini charset="utf-8"?

These are my example settings
[ExampleSettings]
ExampleSettingOne=enabled
ExampleSettingTwo=disabled
...

*/ ?>

The ”charset” directive reveals the character set that was used to construct the ini file (usually
UTF-8).

2.4.1 Configuration / Site management 138

2

2.4.1 Site management

A single eZ publish installation is capable of hosting multiple sites by making use of something
called the siteaccess system. This system makes it possible to use different configuration settings
based on a set of rules. The rules control which group of settings that should be used in a
particular case. The siteaccess rules must be specified in the global override for the site.ini
configuration file (”/settings/override/site.ini.append.php”).

Siteaccess

A collection of configuration settings is called a siteaccess. When a siteaccess is in use, the de-
fault configuration settings will be overridden by the settings that are defined for the siteaccess.
Among other things, a siteaccess dictates which database, design and var directory that should
be used (these are sometime referred to as ”resources”). By making use of different siteaccesses,
it is possible to combine different content and designs. A typical eZ publish site consists of two
siteaccesses: a public interface for visitors and a restricted interface for administrators. Both
siteaccesses use the same content (same database and same var directory) but they use different
designs. While the administration siteaccess would most likely use the built in administration
design, the public siteaccess would use a custom design. The following illustration shows this
scenario.

(see figure 2.22)

Figure 2.22: Example of a setup with two siteaccesses.

A siteaccess is nothing more than a set of configuration files that override the default settings
when the siteaccess is used. A single eZ publish installation can virtually host an unlimited
number of sites by the way of siteaccesses. The configuration settings for a siteaccess are lo-
cated inside a dedicated subdirectory within the ”/settings/siteaccess” directory. The name of

2.4.1 Configuration / Site management 139

2

the subdirectory is the actual name of the siteaccess. (Please note that siteaccess name should
only contain letters, digits and underscores.) The following illustration shows a setup with two
siteaccesses: admin and public.

(see figure 2.23)

Figure 2.23: Siteaccess directory example.

When a siteaccess is in use, eZ publish reads the configuration files using the following sequence:

1. Default configuration settings (/settings/*.ini)

2. Siteaccess settings (/settings/siteaccess/[name of siteaccess]/*.ini.append.php)

3. Global overrides (/settings/override/*.ini.append.php)

In other words, eZ publish will first read the default configuration settings. Secondly, it will
determine which siteaccess to use based on the rules that are defined in the global override for
”site.ini” (”/settings/override/site.ini.append.php”). When it knows which siteaccess to use, it
will go into the directory of that siteaccess and read the configuration files that belong to that
siteaccess. The settings of the siteaccess will override the default configuration settings. For ex-
ample, if the siteaccess uses a database called ”Amiga”, the system will see this and automatically
use the specified database when an incoming request is processed. Finally, eZ publish reads the
configuration files in the global override directory. The settings in the global override directory
will override all other settings. In other words, if a database called ”CD32” is specified in the
global override for ”site.ini” then eZ publish will attempt to use that database regardless of what
is specified in the siteaccess settings. If a setting is not overridden by either the siteaccess or from
within a global override then the default setting will be used. The default settings are set by
the ini files located in the ”/settings” directory. The following figure illustrates how the system
reads the configuration files using the ”site.ini” file as an example. As already mentioned, settings
placed in the override files will be used instead of the default ones.

(see figure 2.24)

2.4.1 Configuration / Site management 140

2

Figure 2.24: Configuration override example.

2.4.2 Configuration / Extension siteaccess settings 141

2

2.4.2 Extension siteaccess settings

The extension siteaccess settings makes it possible to place siteaccess specific settings in the
extensions.

The directory structure must be as follows :
extension/<my extension>/settings/siteaccess/<my siteaccess>/<file.ini.append.php>

Example:
extension/ezno/settings/siteaccess/ezno/override.ini.append.php :

<?php /*

[article_full_ezno]
Source=node/view/full.tpl
MatchFile=article/full.tpl
Match[class_identifier]=article
Subdir=templates

*/ ?>

Note:
All settings except debug settings and including/activating extensions can be set this way.

2.4.3 Configuration / Access methods 142

2

2.4.3 Access methods

Based on a set of rules, eZ publish determines which siteaccess it should use every time it pro-
cesses an incoming request. The rules must be set up in the global override for the site.ini
configuration file: ”/settings/override/site.ini.append.php”. The behavior of the siteaccess sys-
tem is controlled by the ”MatchOrder” setting within the [SiteAccessSettings] block. This setting
controls the way eZ publish interprets the incoming requests. There are three possible methods:

• URI

• Host

• Port

The following text gives a brief explanation of the different access methods. Please note that the
access methods can be combined. The documentation page of the ”MatchOrder” (page 1729)
directive reveals how this can be done.

URI

This is the default setting for the ”MatchOrder” directive. When the URI access method is used,
the name of the target siteaccess will be the first parameter that comes after the ”index.php” part
of the requested URL. For example, the following URL will tell eZ publish to use the ”admin”
siteaccess: http://www.example.com/index.php/admin. If another siteaccess by the name of
”public” exists, then it would be possible to reach it by pointing the browser to the following
address: http://www.example.com/index.php/public. If the last part of the URL is omitted then
the default siteaccess will be used. The default siteaccess is defined by the ”DefaultAccess (page
1753)” setting within the [SiteSettings] block. The following example shows how to set up ”/
settings/override/site.ini.append.php” in order to make eZ publish use the URI access method
and to use a siteaccess called ”public” by default:

...
[SiteSettings]
DefaultAccess=public

[SiteAccessSettings]
MatchOrder=uri
...

The URI access method is typically useful for testing / demonstration purposes. In addition it is
quite handy because it doesn’t require any configuration of the web server and the DNS server.

Host

The host access method makes it possible to map different host/domain combinations to different
siteaccesses. This access method requires configuration outside eZ publish. First of all, the DNS

2.4.3 Configuration / Access methods 143

2

server must be configured to resolve the desired host/domain combinations to the IP address of
the web server. Secondly, the web server must be configured to trigger a virtual host configuration
(unless eZ publish is located in the main document root). Please refer to the ”Virtual Host Setup”
(page 73) part of the installation chapter for information about how to set up a virtual host for
eZ publish. Once the DNS and the web server is configured properly, eZ publish can be set up
to use different siteaccesses based on the host/domain combinations of the incoming requests.
The following example shows how to set up ”/settings/override/site.ini.append.php” in order to
make eZ publish use the host access method. In addition, it reveals the basic usage of the host
matching mechanism.

...
[SiteAccessSettings]
MatchOrder=host
HostMatchType=map
HostMatchMapItems[]=www.example.com;public
HostMatchMapItems[]=admin.example.com;admin
...

The example above tells eZ publish to use the ”public” siteaccess if the requested URL starts with
”www.example.com”. In other words, the configuration files in ”/settings/siteaccess/public” will
be used. If the requested URL starts with ”admin.example.com”, then the admin siteaccess will
be used. The example above demonstrates only a fragment of the host matching capabilities
of eZ publish. Please refer to the reference documentation for a full explanation of the ”Host-
MatchType” (page 1727) directive.

Port

The port access method makes it possible to map different ports to different siteaccesses. This
access method requires configuration outside eZ publish. The web server must be configured to
listen to the desired ports (by default, a web server typically listens for requests on port 80, which
is the standard port for HTTP traffic). In addition, the firewall will most likely have to be opened
so that the traffic on port 81 actually reaches the web server. The following example shows how
to set up ”/settings/override/site.ini.append.php” in order to make eZ publish use the port access
method. It also shows how to map different ports to different siteaccesses.

...
[SiteAccessSettings]
MatchOrder=port

[PortAccessSettings]
80=public
81=admin
...

The example above tells eZ publish to use the ”public” siteaccess if the requested URL is sent to
the web server using port 80. In other words, the configuration files inside ”/settings/siteaccess/

2.4.3 Configuration / Access methods 144

2

public” will be used. If the URL is requested on port 81 (usually by appending a :81 to the URL,
like this: http://www.example.com:81), then the admin siteaccess will be used.

2.5 Modules and views 145

2

2.5 Modules and views

A module offers an HTTP interface which can be used for web based interaction with eZ publish.
While some modules offer an interface to kernel functionality, others are more or less indepen-
dent of the kernel. The system comes with a collection of modules that cover the needs of typical
everyday tasks. For example, the content module provides an interface that makes it possible to
use a web browser to manage actual content. It is possible to extend the system by creating cus-
tom modules for special needs. Custom modules have to be programmed in PHP. The following
table gives an overview of some of the most commonly used modules that come with eZ publish.

Module Description
Content (page 624) The ”Content” module provides an interface

to the content engine in the eZ publish kernel.
This module makes it possible to display, edit,
search and translate the contents of objects,
manage the node tree and so on.

User (page 912) The ”User” module provides an interface to
the user management system in the kernel.
This module makes it possible to log users in
and out of the system. In addition, it also pro-
vides functionality related to user registration,
user activation, password changing, etc.

Role (page 820) The ”Role” module provides an interface to
the access control system in the kernel. This
module makes it possible to create, modify
and delete roles and policies. In addition, it
provides functionality for assigning roles to
different users and user groups.

Please refer to the ”Modules” (page 588) section of the reference chapter for a comprehensive
list of all the built-in modules.

Module execution

Every time eZ publish is accessed using a web browser, the client application indirectly interacts
with one of the modules that are present in the system. The requested URL tells eZ publish about
which module it should execute in order to process the request. In particular, the first part of the
URL reveals the name of the module. This is usually the part that comes directly after ”index.php”
unless the URI access method is used. The following example shows a typical eZ publish URL:

http://www.example.com/index.php/content/edit/13/03

A quick glance at this URL reveals that the request is directed at the content module. Another
typical example of an eZ publish URL could be something like this:

2.5 Modules and views 146

2

http://www.example.com/index.php/user/login

By looking at the URL, we can immediately tell that eZ publish will attempt to execute the user
module when processing this request. Obviously, some additional information is also specified
in the URLs. In the first example, the name of the module is followed by ”/edit/13/03”. In the
second example, the name of module is followed by ”/login”. These additional strings control
the behavior of the requested module and are explained below.

Module views

A module consists of a set views. A view can be thought of as an interface to a module. By using
views, it is possible to reach various functions that a module provides. For example, among other
things, the content module provides views for displaying, editing, searching and translating the
contents of objects. The name of the view that should be accessed appears after the name of the
module (separated by a slash) in the URL. In the first example above, eZ publish is instructed to
access the ”edit” view within the content module. In the second example, eZ publish is instructed
to access the ”login” view within the user module.

When a view is called, eZ publish starts up the program code that is associated with that view.
Upon completion, the view returns a result to the module, which in turn returns it to the rest
of the system. The result is put inside a template variable called $module result.content which
is available from the main template, the pagelayout. Please refer to the ”Template generation”
section of the ”Templates” chapter for more information about this part of the system.

View parameters

Some views support on one or more parameters. A view parameter makes it possible to pass in-
formation to the view itself and thus allows the view to be controlled from within the requested
URL. The view parameters are appended after the name of the view in the URL. In the first ex-
ample above, the following parameters are passed to the view: ”13” and ”03”. These parameters
will instruct the edit view of the content module to provide an interface for editing the third
version of the thirteenth content object in the system. The URL given in the second example does
not make use of any view parameters. The view mechanism supports two types of parameters:

• Ordered parameters

• Unordered parameters

The ordered parameters have to be separated by slashes and they must come after the name of
the view. In addition, they have to be provided in the same order as it is specified in the module’s
definition. For example, if the view parameters in the first example get mixed up, eZ publish will
attempt to edit the thirteenth version of object number three (instead of version number three of
object number thirteen).

As the name suggests, the unordered parameters can be provided in an arbitrary order. If the view
supports ordered parameters, the unordered parameters must come after the ordered parameters

2.5 Modules and views 147

2

If the view doesn’t support ordered parameters, the unordered parameters will come directly after
the name of the view in the URL. The unordered parameters must be provided in pairs. A pair
consists of the parameter’s name and value separated by a slash. The following example shows
an imaginary eZ publish URL with unordered parameters passed to the requested view:

http://www.example.com/index.php/video/dvd/button/play

The address in the example above tells eZ publish to run the imaginary ”video” module and
execute the ”dvd” view. A variable called ”button” will be created and made available for the
view code. The value of the variable will be set to ”play”. It is up to the PHP code of the view to
discover this variable and to carry out a necessary sequence of actions.

POST variables

Some views make use of parameters that are submitted by the way of forms through the HTTP
POST method. For example, the action view of the content module makes an extensive use of
POST variables.

GET variables

Views can also make use of parameters that are submitted through the HTTP GET method. For
example, parameters of the treemenu view within the content module are transferred using GET
variables.

The default request

In order to be able to produce proper output, eZ publish must know which module it should
run and which view that should be executed. In other words, every URL has to contain at least
the name of an existing module and a view. If an incomplete or mistyped URL is provided, eZ
publish will display an error page revealing what’s wrong (missing/mistyped module or view).
If the requested URL doesn’t contain anything after ”index.php” (except maybe a slash), the
default module/view combination will be executed. The default module/view combination can
be configured using the ”IndexPage” setting under ”[SiteSettings]” in an override for ”site.ini”.
The default setting is ”/content/view/full/2”. It instructs eZ publish to show a full view of node
2, the content top level node. In other words, if the following request is made:

http://www.example.com/index.php

...eZ publish will behave as if the following URL was requested:

http://www.example.com/index.php/content/view/full/2

No redirection or page reload will be made, which means that the address field of the browser
will remain unchanged.

2.6 URL translation 148

2

2.6 URL translation

This section explains the different URL types that can be used with eZ Publish and how the URL
translator works. By default, eZ Publish is capable of handling two types of URLs:

• System URLs

• Virtual URLs

System URLs

A system URL tells eZ Publish about which module that should be run and which view that should
be executed. It may contain additional parameters/values that are passed to the view itself. Every
system URL follows the same structure and can be broken down into the following components:

• Module name

• View name

• View parameters

The view parameters are optional and may consist of ordered and/or unordered values. A com-
prehensive description of the view parameters can be found in the ”Modules and views” (page
145) section. The following model shows the required sequence of the different URL compo-
nents:

http://www.example.com/index.php/<module>/<view>/[<ordered_view_parameters>]/
[<unordered_view_parameters>]

URL component Description
Module The name of the module that should be run.
View The name of the view that should be executed.
Ordered view parameters Some views make use of ordered parameters.
Unordered view parameters Some views make use of unordered parame-

ters.

The following example shows a typical system URL:

http://www.example.com/index.php/content/edit/13/3

By looking at the URL, we can tell that it will instruct eZ Publish to run the ”content” module and
execute the ”edit” view. The values ”13” and ”3” are parameters that will be passed to the view
itself. Please note that the exact style of the URLs depend on the access method (page 142) that
is used and the way the web server is configured. For example, the web server can be configured
to hide away the ”index.php” part of the address.

2.6 URL translation 149

2

Virtual URLs

A virtual URL (also known as URL alias or nice URL) is nothing more than an alias for an existing
system URL. Virtual URLs are nicer, easier to remember and sometimes shorter than system URLs.
While system URLs reveal a great deal about what eZ Publish is instructed to do, virtual URLs
do not reveal any system specific information at all. A virtual URL can not be broken down to
components in the same way as a system URL. The following example shows a typical virtual
URL:

http://www.example.com/company/about

There are actually two types of virtual URLs, ones that are automatically generated and main-
tained by eZ Publish and ones that are created and maintained by the site administrator. How-
ever, all virtual URLs are treated equally and thus they are handled in the same way.

From 3.10, multilingual virtual URLs (page 272) are supported. The system keeps track of the
URLs in a table which basically consists of three columns:

Virtual address Action Language mask
company/about eznode:46 2

An actual URL using the virtual address in the table above could be the following:

http://www.example.com/company/about

According to the table above, the virtual URL will be translated internally to the following system
URL:

http://www.example.com/content/view/full/46

Both URLs are perfectly valid and will produce the exact same output, in this case a full view of
node number 46. When the virtual URL is used, the redirection/mapping will be done internally
and thus the user will reach the target node without any glitches in form of redirections, page
reloads, etc. The language mask field is used internally by the system to identify which languages
the alias is associated with (based on the same bit-field algorithm (page 267) as for content
objects).

If the site administrator creates a virtual URL for accessing the ”content/search” interface, the
system will add a new entry to the table:

Virtual address Action Language mask
findme module:content/search 4

An actual URL using the virtual address in the table above could be the following:

http://www.example.com/findme

According to the table above, the virtual URL will be translated internally to the following system
URL:

2.6 URL translation 150

2

http://www.example.com/content/search

Automated virtual URL generation and maintenance

Every time an object is published, the system will automatically generate a virtual URL for each
of the object’s node assignments. If an object exists in several languages, the system will generate
virtual URLs for all translations. The generated URL for a node is based on the node’s location in
the tree and the name of the object that the node encapsulates. The virtual URLs generated for
the nodes are handled completely by the system and can not be changed using the administration
interface. The following illustration shows an example of objects, nodes and corresponding URLs.

(see figure 2.25)

Figure 2.25: Objects, nodes and nice URLs.

The example above clearly demonstrates how the virtual URLs are generated. For each node, the
system generates a path of strings separated by slashes. The strings in the path are the names of
the objects that are referenced by the nodes up to and including the target node.

In eZ Publish 3.9 and earlier versions, URL transformation rules were more restrictive and only
supported some ASCII characters (lowercase Latin letters from ”a” to ”z”, digits and underscores).
Special symbols were converted to underscores and special characters were converted using the
built in transliteration feature. For example, the Norwegian characters ”æ”, ”ø” and ”å” were
converted to ”ae”, ”oe” and ”aa”. If the system was about to generate a virtual URL that already
existed, it would simply append an underscore at the end of the newly generated address and
thus the risk of having duplicate URLs was eliminated.

From 3.10, it is possible to enable Unicode support for the URLs and thus no transliteration
needs to be performed since most characters are allowed. If there are two nodes with identical

2.6 URL translation 151

2

or almost identical names within the same location, the system will generate unique URL aliases
for newly introduced conflicting nodes by attaching numbers to their URL aliases (for example,
”Company”, ”Company2”, ”Company3” and so on).

When the name of an object is changed, the system will take care of changing the virtual URLs
for the involved nodes. In addition, an internal redirection will be created, which will make sure
that the old URL still works. The old virtual URL will keep working until the exact same URL
needs to be generated for a node. In this case, the old virtual URL will be deleted.

Manual virtual URLs

It is possible to manually add, edit and remove virtual URLs using the administration interface
(both global aliases and node URL aliases). Refer to ”Managing URL aliases (page 272)” for
more information. In addition, wildcard based URL forwarding is supported. (This feature was
removed when implementing the multilingual URLs functionality for eZ Publish 3.10.0 and then
re-added in later versions.)

2.7 Designs 152

2

2.7 Designs

This section explains the concept of designs and how eZ publish handles different designs. As
mentioned in the beginning of this chapter, design is all about the way actual content is marked
up and visually presented. When talking about a design, we’re talking about the things that
make up a web interface: HTML, style sheets, images that are not a part of the content, etc. All
files that are related to appearance reside in the ”design” directory. An eZ publish installation is
capable of handling a virtually unlimited number of designs. Each design has its own dedicated
subdirectory within the main design directory. The name of a subdirectory also functions as the
actual name of a design. A typical eZ publish design consists of the following components:

• CSS files

• Image files

• Font files

• Template files

Among other things, a siteaccess dictates which design that should be used. By making use
of different siteaccesses, it is possible to combine different content and designs. A typical eZ
publish site consists of two siteaccesses: a public interface for visitors and a restricted interface
for administrators. Both siteaccesses use the same content (database and var directory) but they
use different designs. In particular, the administration siteaccess would most likely use the built
in administration design. The public siteaccess would use a custom design.

Default designs

An eZ publish distribution comes with at least two default designs:

• admin

• standard

The ”admin” directory contains all design related files that make up the built in administration
interface. The ”standard” directory contains a set of standard/default design related files such
as the default/standard templates, images, etc. The contents of these directories should not be
tampered with. Instead, custom designs should be used (if/when necessary). A custom design
can be added by creating a new subdirectory within the main ”/design” directory.

Design directory structure

All files that belong to a specific design are located inside the directory of that design. The name
of the directory also functions as the name for the design itself. A eZ publish design directory
typically contains the following subdirectories:

2.7 Designs 153

2

Subdirectory Description
fonts Font files used by the ”texttoimage” (page

1132) template operator which is capable of
visualizing text using truetype fonts.

images Non-content specific images (banners, logos,
graphical layout elements, etc.).

override Custom templates that will be used by instead
of the default/standard templates. These files
will be triggered by template override rules
that are specified in a configuration override
for ”override.ini”. Please refer to ”The tem-
plate override system” (page 224) section of
the ”Templates” chapter for more information
about this feature.

stylesheets CSS files.
templates Main template(s) (for example the pagelay-

out, header, footer, etc.) and custom tem-
plates that will be used instead of the stan-
dard/default templates.

2.7.1 Designs / Design combinations 154

2

2.7.1 Design combinations

A siteaccess may make use of several designs. This means that the final result generated by eZ
publish (the actual HTML) can be a combination of files originating from various designs. A
siteaccess is capable of using a combination of the following:

• One main design

• None or several additional designs

• One standard design

A siteaccess should always have at least a main design and a standard design. While the main
design can be set to anything, the standard design should not be modified. The default configu-
ration is to use the built-in standard design. It ensures that eZ publish always finds the necessary
templates and thus any kind of content can be rendered without problems. A more in-depth
explanation is presented below.

Automatic fallback

If eZ publish is unable to find a design specific file (a stylesheet, a template, an image, etc.)
within the main design, it will automatically attempt to locate the file elsewhere. The system will
sequentially go through all the additional designs (if specified), looking for the requested file. At
last, if the requested file still hasn’t been found, eZ publish will attempt to locate the missing file
within the standard design. The following diagram illustrates this functionality.

(see figure 2.26)

Figure 2.26: The design fallback mechanism.

2.7.1 Designs / Design combinations 155

2

Configuration

The different designs to be used by must be defined in the ”[DesignSettings]” block within an
override for the ”site.ini” configuration file. The following directives can be used:

• SiteDesign

• AdditionalSiteDesignList

• StandardDesign

The ”SiteDesign” directive specifies the main design. The ”AdditionalSiteDesignList” directive
specifies an array of additional site designs. The ”StandardDesign” directive specifies the standard
design. Even though it is possible to change the standard fallback design, it is not a good idea to
do so. The ”StandardDesign” directive should always be set to the built-in standard design. This
is already defined in the default ”site.ini” file and thus there is no need to set the standard design
from within an override. If there is a need for a custom fallback design, it should be specified
using the ”AdditionalSiteDesignList” setting. The automatic fallback mechanism opens up for a
lot of possibilities and flexibility. For example, it makes the reuse and combination of designs an
easy matter.

Example

The following example shows how to configure the following design settings in an override for
the ”site.ini” configuration file:

• ”my design” should be the main design

• ”fallback one” should be the first additional design

• ”fallback two” should be the second additional design

• ”standard” should be the standard fallback design

...
[DesignSettings]
SiteDesign=my_design
AdditionalSiteDesignList[]=fallback_one
AdditionalSiteDesignList[]=fallback_two
StandardDesign=standard
...

In this particular case, if eZ publish is unable to find the requested file within the main design
”my design”, it will automatically fallback to the additional designs. At first, the system will look
for the requested file within the ”fallback one” design directory. If the requested file is not found,
the system will look in the ”fallback two” design directory. If the file still hasn’t been found, the
system will attempt to locate it within the ”standard” design directory. The standard directory
will most likely contain the requested file (unless a custom template/override is requested).

2.8 Access control 156

2

2.8 Access control

This section explains how eZ publish manages user accounts and access permissions. The system
comes with a built-in access control mechanism that can be used to limit access to content or to
certain functions. The access control system is based on the following elements:

• User

• User group

• Policy

• Role

The following illustration shows the relations between the elements in the list above.

(see figure 2.27)

Figure 2.27: Users, groups, policies and roles.

A user defines a valid user account on the system. A user group consists of users and other
user groups. A policy is a rule that grants access to content or a certain system function. For
example, a policy may grant read access to a collection of nodes. A role is a named collection
of policies. A role can be assigned to users and user groups. The following text gives a more
in-depth explanation of the user/group/policy/role elements.

User

An actual user account is represented by a content object (with at least one node assignment)
that contains information about a specific user. The default ”User” (page 586) class allows the

2.8 Access control 157

2

storage of the following elements: first name, last name, E-mail, username and password. The
last three elements (E-mail, username and password) are provided by the ”User account” (page
542) datatype. This is a special datatype which plugs more deeply into the system. Instances
of any content class containing the ”User account” datatype will function as valid users on the
system. In other words, if there is a need to store additional information about users, it is possible
to either modify the default user class or to create a custom class that contains the datatype.

Enabled and disabled user accounts

The user accounts can be enabled or disabled from within the administration interface. When
disabled, an account will continue to exist, but the user will not be able to log in until the account
is enabled. Newly created accounts are enabled by default.

Locked and unlocked user accounts

In addition to being enabled and disabled, user accounts can be locked and unlocked. An account
will be automatically locked by the system if the maximum number of failed login attempts (page
1797) is exceeded. A failed login attempt is a combination of a valid username and an invalid
password. Once an account is locked, its owner will not be allowed to log in until the account
is either unlocked by another user with administrator privileges or if the login request is coming
from a trusted IP address / range.

The number of failed login attempts are stored in a database table called ”ezuservisit”. An ac-
count’s failed login counter is automatically reset upon a successful login. In other words, as
long as you log in with a valid username/password combination, the failed login attempt counter
associated with your account will be zero.

E-mail

Note that the default configuration does not allow different users to be registered with the exact
same E-mail address. This is just a built-in precaution mechanism which can be easily turned off
by setting the ”RequireUniqueEmail” directive within the [UserSettings] block of a configuration
override for ”site.ini” to ”false”.

User ID

Every user has a unique identification number which is the same as the ID number of the actual
object that represents the user account. Among other things, the user IDs are used by other
objects on the system. In particular, an object contains references (by the way of user IDs) to
the initial creator and to all users who have created versions within that object. Removing a
user account might lead to an inconsistent state where objects have owner/modifier references
to nonexisting user accounts. Because of this, it is not recommended to remove users from the
system, the accounts to be removed should be disabled instead.

2.8 Access control 158

2

User group

A user group is a content object (with at least one node assignment) that contains user accounts
and other user groups. In other words, a user group is just a collection of users (similar to a
directory containing files and subdirectories on a filesystem).

Policy

A policy is a rule that grants access to a specific function or all functions of a module. A policy
consists of the following elements:

• Module name

• Function name

• Function limitation

The module name reveals the actual module that the policy grants access to. The function name
specifies which function the policy should be limited to. A policy can either be restricted to a
single function or grant access to all functions of a module. A module can have none or several
functions. The functions are assigned to the module’s views and thus the access requirements
for a view are controlled by the functions that are assigned to that view. The function-view
assignments can not be tampered with from within the administration interface. A policy granting
access to a module’s function can be further restricted by the way of function limitations. This
can only be done if the function itself supports limitations. A function may support none, one or
several limitations. The following table shows an overview of the available function limitations.

Limitation Description
Class The ”Class” limitation makes it possible to

limit a policy to objects of certain types.
Language The ”Language” limitation makes it possible

to limit a policy to object versions in specific
languages.

Node The ”Node” limitation makes it possible to
limit a policy to a specific node.

Owner The ”Owner” limitation makes it possible to
limit a policy to objects that are owned by the
user who is logged in.

Parent class The ”Parent class” limitation makes it possible
to limit a policy based on the type of the object
referenced by the parent node.

Section The ”Section” limitation makes it possible to
limit a policy to objects that are assigned to
certain sections.

Siteaccess The ”Siteaccess” limitation makes it possible

2.8 Access control 159

2

to limit a policy to a certain siteaccess.
Status The ”Status” limitation makes it possible to

limit a policy to a certain version status (pub-
lished, archived, etc.).

Subtree The ”Subtree” limitation makes it possible to
limit a policy to a certain part of the content
node tree.

Role

A role is a named collection of policies. A role can be assigned to users and user groups. It is
possible to assign a role with additional limitations. The role limitation feature is typically useful
in a case where multiple users with similar permissions have to manipulate different parts of the
content node tree. Instead of creating a role for each user, the site administrator can create a
generic role and assign it with different limitations to the different users. The role limitations
will override the limitations of the role’s policies. The following table shows an overview of the
available role limitations.

Limitation Description
Section The ”Section” limitation makes it possible to

limit a role to objects that are assigned to cer-
tain sections.

Subtree The ”Subtree” limitation makes it possible to
limit a role to a certain part of the content
node tree.

2.9 Webshop 160

2

2.9 Webshop

This section explains the e-commerce capabilities of eZ publish. The system comes with an
integrated shop mechanism that plugs directly into the object / node tree model. The webshop
functionality is built around the following components:

• Products

• Value Added Taxes (VATs)

• Discount rules

• Wishlist

• Basket

• Orders

The following illustration shows how the different components interconnect and work together.

(see figure 2.28)

Figure 2.28: The integrated e-commerce solution.

An actual product is represented by a content object (with at least one node assignment) that
contains information about the product itself along with a price. The price must be represented

2.9 Webshop 161

2

by an attribute that makes use of the built-in price or multi-price datatype. These are special
datatypes which plug more deeply into the system. The main difference is that the price datatype
allows to specify only one price value for each object (simple price product) whereas the multi-
price datatype makes it possible to specify several price values in different currencies for each
object (multi-price product). A content class can only contain one price attribute or one multi-
price attribute. There is no way to have a simple price product and a multi-price one in the
shopping basket at the same time and it is not recommended to use both price and multi-price
datatype on your site.

The price can be affected by a value added tax and/or a discount rule. A discount rule can be
configured to reduce the price of certain products by a percentage. The products can be put into
a user’s wishlist and/or shopping basket. A user’s wishlist and basket can be modified at any
time. The contents of the shopping basket can be purchased by initiating the checkout process.
Once the checkout process is completed, an order will be created. The system will automatically
notify the site administrator and the user who placed the order by sending out E-mails. A list
of placed orders and sales statistics can be viewed using the administration interface. An order
is assigned a status which may be changed by a user with sufficient permissions. A status log is
kept for each order.

Value added taxes

The system allows the site administrator to set up different kinds of value added taxes (VAT
types). A VAT type consists of a name and a percentage. The administration interface makes it
possible to add, remove and modify VAT types. The VAT types are used by the price and multi-
price datatype. There is an additional possibility to create VAT charging rules which instruct the
system to charge VATs according to the product category and the buyer’s country. (Please refer to
the ”VAT charging system (page 345)” section of the ”Features” chapter for more information.)

The price datatype

As pointed out above, a product is nothing more than a content object with a price. The price
can be represented by an attribute that makes use of the built-in price datatype. Instances of any
class containing the price datatype will automatically be treated as simple price products. A class
attribute represented by the price datatype makes use of one of the predefined VATs. There are
two ways in which the selected VAT can be used. This configuration depends on how the product
prices are entered when the objects are created. The first alternative (Price inc. VAT) is to be
used if the prices that are entered already include the value added tax. The second alternative
(Price ex. VAT) should be used if the prices that are entered do not contain the value added tax.
When the first alternative is used and the product is viewed, the price that was entered will be
shown. When the second alternative is used and the product is viewed, the price will be the price
that was entered plus the VAT. When the object is in the basket and the basket is viewed, it is
possible to see the price of the products with and without the VATs (regardless of which approach
that was used).

Please note that the price datatype allows to set only one price value for each product (the system
will use your locale currency for when displaying this price). This datatype does not work with

2.9 Webshop 162

2

multiple currencies.

The multi-price datatype

The price can be represented by an attribute that makes use of the built-in multi-price datatype.
This datatype allows you to set several prices in different currencies for each product indepen-
dently of your locale currency. Instances of any class containing the multi-price price datatype are
automatically treated as multi-price products. (Please refer to the ”Multi-currency (page 377)”
section of the ”Features” chapter for more information.) This datatype interacts with VATs in the
same way as the price datatype.

Discount rules

The final price of a product can be affected by a discount rule. A discount rule can be configured
to reduce the price of certain products by a percentage. The discount rules can be placed in
different discount rule groups and are always active (there is no way to turn them on/off). The
discount rule groups make it possible to choose which group(s) of customers will be affected.
This can be done by assigning a discount rule group to the target user group(s).

By default, a newly created discount rule affects all the products that are in the system. However,
a discount rule can be easily limited to a group of products. A discount rule can be limited in two
ways, which are mutually exclusive. The first alternative is to use a combination of the ”Product
type” and the ”Section” limitations, which are described in the table below.

Limitation Description
Product type The ”Product type” limitation makes it possi-

ble to limit a policy to products/objects of cer-
tain types (only classes that make use of the
price datatype will be shown). The default
setting is ”Any”, which means that it will af-
fect all kinds of product objects.

Section The ”Section” limitation makes it possible to
limit a policy to products/objects that are as-
signed to certain sections. The default setting
is ”Any”, which means that the discount rule
will affect product objects in all sections.

The second alternative is to add individual products to the discount rule’s product list. When the
individual product list is used, the ”Product type” and ”Section” limitations will be omitted and
thus only the products that are in the list will be affected.

Shop related datatypes

The following table shows the datatypes that plug in to the e-commerce subsystem of eZ publish.

2.9 Webshop 163

2

Datatype Description
Price (page 525) When used as an attribute in a content class,

the ”Price” datatype connects the instances
(objects) of that class to the webshop system.
As soon as an object has a price attribute,
users can put the object in their baskets and/
or wishlists. This datatype allows to set only
one price value for each product (the system
will use your locale currency for this price).

Multi-price (page 513) When used as an attribute in a content class,
the ”Multi-price” datatype also connects the
instances (objects) of that class to the web-
shop system. As soon as an object has a multi-
price attribute, users can view its price in dif-
ferent currencies, put the object in their bas-
kets and/or wishlists. Objects without a price
or multi-price attribute can not be put into
a user’s basket and/or wishlist and thus they
are not connected to the e-commerce subsys-
tem. The multi-price datatype allows you to
set several prices in different currencies for
each product.

Option (page 522) The ”Option” datatype makes it possible to
create a single group of options for each con-
tent object. Each option can be assigned a
short text and an additional price. For exam-
ple, it can be used to sell T-shirts in different
colors where the price is different for some (or
all) colors.

Multi-option (page 504) Note that this datatype should no longer be
used. It was deprecated in eZ Publish 3.10 and
is replaced by the ”Multi-option2” datatype
(see below).
The ”Multi-option” datatype makes it possi-
ble to create multiple groups of options for
each content object. Each option can be as-
signed a short text and an additional price.
This datatype works in the same way as the
”Option” datatype. The only difference is that
instead of supporting only one group of op-
tions, it allows the creation of multiple groups
of options for each content object.

Multi-option2 (page 506) The ”Multi-option2” datatype makes it possi-
ble to create multiple and distinctive groups
of multi-options for each content object. The

2.9 Webshop 164

2

multi-options can be nested. For each op-
tion, you can specify an additional price, an
image, whether the option should be the de-
fault selection and if it should be possible to
select it (sometimes you wish to force the se-
lection of a set of options without providing
a default selection for the user; in that case,
the first option can be set to something like
”Make a choice”). In addition, this datatype
makes it is possible to set up rules for allow-
ing/disallowing certain combinations of op-
tions.

Range-option (page 529) The ”Range-option” datatype makes it possi-
ble to create a single group of enumerated op-
tions for each content object. For example, it
can be used in a scenario where the goal is to
sell shoes of different sizes and the size does
not affect the price. For each content object,
the administrator needs to set up the available
range (if any).

2.10 Workflows 165

2

2.10 Workflows

This section explains the workflow capabilities of eZ publish. The system comes with an inte-
grated workflow mechanism that makes it possible to perform different tasks with or without
user interaction. The workflow implementation is based on the following components:

• Events

• Workflows

• Workflow groups

• Triggers

The following illustration shows the relations between the elements in the list above.

(see figure 2.29)

Figure 2.29: The workflow system.

An event is the smallest entity of the workflow system, it carries out a specific task. eZ publish
comes with a collection of events that cover the needs of typical everyday tasks. For example, the
built-in approve event makes it possible to have the contents of an object approved by an editor
(a user) before it is published. The built-in events are documented in the ”Workflow events”
(page 1066) section of the ”Reference” chapter. It is possible to extend the system by creating
custom events for special needs. Custom workflow events have to be programmed in PHP.

A workflow is a collection of events. In other words, it defines an ordered sequence of actions
that will be executed when the workflow is running. The workflows can be placed in different
groups. A workflow group is nothing more than a collection of workflows. A workflow is initiated
by a trigger. Although a trigger is only capable of initiating a single workflow, several other
workflows can be started through the built-in multiplexer event (from within the workflow that
was originally initiated by the trigger). A trigger is associated with a function of a module. It will
start the specified workflow either before or after that the function has completed. The following
table gives an overview of the standard/built-in triggers.

2.10 Workflows 166

2

ID Module Function Connection type
1 content publish before
2 content publish after
3 shop confirmorder before
4 shop checkout before
5 shop checkout after

Chapter 3

Templates

The purpose of this chapter is to reveal and teach everything there is to know about the template
system. It describes both the template language and the way the system handles the template
files. People previously unfamiliar with eZ publish templates should be able to collect enough
information in order to understand the following issues:

• What a template is and what it is not

• Template types (pagelayout, node and system templates)

• Template structure

• The template language

• The main template (the pagelayout)

• Template variables available in the pagelayout

• How basic template tasks can be done

• How information can be retrieved from the CMS

• The template override system

167

3.1 Template basics 168

3

3.1 Template basics

This section explains the concepts behind templates and the template system. eZ publish uses
templates as the fundamental unit of site design. A template is basically a custom HTML file that
describes how some particular type of content should be visualized. A template file always ends
with a ”.tpl” extension. Actual HTML code in the built-in/default templates follow the XHTML
1.0 Transitional specification. In addition to standard HTML syntax, a template consists of eZ
publish specific code. The eZ publish specific code makes it possible to extract information from
the system and to solve common programmatic issues like for example conditional branching,
looping, etc. All eZ publish specific code must be placed inside a set of curly brackets, ”{” and
”}”. The following example shows a part of a template that prints out the current time:

...
<h1>Time machine</h1>
<p>

The current time is: {currentdate()|l10n(time)}
</p>
...

The example above demonstrates how standard HTML is mixed with eZ publish specific code. It
shows the usage of the ”currentdate” (page 1100) and the ”l10n” (page 1120) template operators.
Since ”currentdate” returns a UNIX timestamp, it must be formatted using the ”l10n” localization
operator (or else the output would not make any sense to humans). This is done by piping the
output from the ”currentdate” operator into the ”l10n” operator, which will output the requested
information according to the current locale settings. The ”time” parameter tells the operator to
output only the time (it could have been ”date”, ”shortdate”, ”datetime” and so on).

Template generation

The template system is component based. In other words, an actual HTML page is usually made
up of several templates. At the minimum, eZ publish always renders the main template, which
is called pagelayout. The pagelayout contains the HTML, HEAD and BODY tags; it dictates the
overall look of a site. Among other things, it describes the visual structure (main layout, logo,
main menu, footer, etc.) that will be presented for each HTML page that the system generates.

Every incoming request tells eZ publish to run a specific module and to execute one of the mod-
ule’s views. When finished, the requested module/view combination will generate a result. The
result can be accessed through the $module result array which is available in the pagelayout
template. The following illustration shows a simplified 3-step explanation of how eZ publish
responds to an HTTP request.

(see figure 3.1)

Every view generates a chunk of HTML code by making use of a template. Templates that are
used by views are often referred to as view templates. Whenever a view has finished running, it
will issue an internal template request. The requested template will be interpreted, processed
and thus converted to HTML. After processing, the system will put the resulting HTML in the

http://www.w3.org/TR/xhtml1/dtds.html#a_dtd_XHTML-1.0-Transitional
http://www.w3.org/TR/xhtml1/dtds.html#a_dtd_XHTML-1.0-Transitional

3.1 Template basics 169

3

Figure 3.1: Client - server cycle.

module’s result array. The module/view’s result can be accessed through the ”.content” extension:
{$module result.content}. By printing out the contents of this variable, it is possible to include
the HTML code that was generated by the view in the pagelayout. The following illustration
shows how the module/view result (generated by different modules/views - depending on the
request) is included in the pagelayout:

(see figure 3.2)

Figure 3.2: The module result as a part of the pagelayout.

View templates

A template used by a view can either be a node template or a system template. A node template
will only be used when a node is being viewed, for example when a system URL containing ”/
content/view” or the virtual URL of a node is requested. A system template typically provides an
HTML interface to a specific eZ publish feature. For example, the template used by the ”search”
view of the ”content” module provides an interface to the built-in search engine.

The difference between the template types mentioned above is the available variables and the
combination of override rules that can be used. A node template (page 171) gives access to a vari-

3.1 Template basics 170

3

able ($node) which contains information about the actual node that is being viewed. Depending
on the view that was called, a system template (page 173) typically gives access to several vari-
ables. A template override rule makes it possible to display custom templates in specific cases.
The override rules for node templates are much more flexible than the override rules for system
templates. For example, it is possible to set up complex rule combinations that depend on the
type of the node being viewed, the depth of the node in the tree, the section which the node’s
object is assigned to and so on. Please refer to the ”The template override system” (page 224)
section for a detailed description of the template override mechanism.

3.1.1 Template basics / Node templates 171

3

3.1.1 Node templates

Whenever eZ publish is requested to output information about a node (either by a system URL
or a virtual URL), it executes the ”view” (page 760) view of the ”content” (page 624) module.
If a system URL is used, both the desired view mode and the target node must be specified in
the URL. If a virtual URL is used, eZ publish will automatically know which node that should be
accessed by looking up the corresponding system URL in the internal URL table. When a virtual
URL is used, the system will always use the full view mode.

The templates for the different view modes must be placed inside the ”/templates/node/view/”
directory of a design. If the requested file is not found within the main design of the siteaccess,
the system will search for it in the additional designs and the standard design. Please refer to
the documentation of the automatic fallback system for more information about this feature.
The ”/templates/node/view” directory of the standard design contains templates for different
view modes. A basic custom design typically contains a pagelayout and a full view template. The
following illustration shows the locations of these templates in a custom design called ”example”.

(see figure 3.3)

Figure 3.3: Location of pagelayout and full view template in example design.

When a node is requested (and there are no template override rules for node templates), eZ
publish will generate a page that is built up of the following templates:

(see figure 3.4)

Custom node templates

A typical eZ publish site always makes use of custom node templates. The main reason for this
is because there is almost always a need for displaying the various types of nodes in different
ways. For example, information pages need to look different than news articles; the welcome
page has to be formatted in a special way, and so on. Unlike custom system templates (which
are mostly just modified copies of the standard templates placed in a custom design), custom
node templates are created as override templates. The override templates are triggered by the
template override system. This system offers a flexible mechanism that can be programmed to
use different templates based on various conditions. For example, it can be programmed to
use a template called ”article.tpl” when the system is requested to show the contents of nodes
referencing article objects and at the same time show ”special article.tpl” when a specific article
is accessed. Note that override templates (in this case ”article.tpl” and ”special article.tpl”) must
be placed in the ”override/templates” directory of the main design used by the siteaccess. Please

3.1.1 Template basics / Node templates 172

3

Figure 3.4: Pagelayout + node view full template.

refer to the documentation of the template override system (page 224) for more information
about how this mechanism actually works and how it can be used to trigger override templates.

The $node variable

Whenever the system makes use of a node template (regardless of the view mode, the target
node and if the template is an override or not), a variable called $node will be available in
the template that is used. This variable is automatically set by the system and it contains an
ezcontentobjecttreenode (page 990) object that represents the requested node. This variable
allows the extraction and display of various information about the node and the object that it
encapsulates. Please refer to ”Outputting node and object data” (page 221) for information
about how to display node/object data.

3.1.2 Template basics / System templates 173

3

3.1.2 System templates

Whenever eZ publish is requested to do something else than displaying a node (in other words
the URL does not contain ”/content/view” or isn’t the virtual URL of a node), it will use a system
template. There are two main differences between system templates and node templates:

• System templates provide access to various variables (depending on the view that was
requested). A node template only provides access to a $node variable representing the
node that was requested.

• The override rules for node templates are much more flexible than the override rules for
system templates.

An eZ publish distribution provides default templates for all views. These templates are located
in the ”templates” directory of the standard design. A view typically uses a template that is
located in a subdirectory that has the same name as the module which the view belongs to. The
name of the template is usually the same as the name of the view (with a ”.tpl” extension). For
example, the ”login” view of the ”user” module is looks for a template called ”login.tpl” inside a
directory called ”user”. Another example would be the ”basket” view of the ”shop” module. This
view looks for a template called ”basket.tpl” within the ”shop” directory.

Custom system templates

Although eZ publish provides all the necessary system templates (by the way of the standard
design), a typical eZ publish site always makes use of customized system templates. The main
reason for this is because the default templates usually need to be tailored in order to fit perfectly
in with the style of a custom design. Unlike custom node templates which are mostly provided
using the template override system, custom system templates are usually just modified copies of
the standard templates located in the custom design. These are not connected with the override
system and must be placed in the ”templates” directory of a custom design (not in the ”override/
templates” directory). For example, a custom template for the ”login” view of the ”user” module
in a design called ”example” would be ”/design/example/templates/user/login.tpl”. A custom
template for the ”search” view of the ”content” module would be ”/design/example/templates/
content/search.tpl”.

Design combinations

As mentioned in the text above, a custom design typically contains a set of customized system
templates. However, creating a custom design that provides templates for all possible scenarios
would be too much / unnecessary work. This is why the standard design always should be used
as the last fallback resort. The automatic fallback system makes it possible to combine several
designs so that the main design (which is usually a custom design) does not have to provide
all the necessary templates. Whenever eZ publish is unable to find a template within the main
design of the siteaccess, the system will look for it in the additional designs and the standard
design.

3.1.2 Template basics / System templates 174

3

Commonly used system templates

The following table shows some of the most commonly used system templates.

Request URL Module View Template
Search /content/ content search /templates/
interface search content/

search.tpl
Shopping bas- /shop/basket shop basket /templates/
ket shop/basket.tpl
Login page /user/login user login /templates/

user/login.tpl
User /user/register user register /templates/
registration user/

register.tpl

3.2 The pagelayout 175

3

3.2 The pagelayout

The pagelayout is the main template. Among other things, it dictates the overall look of a site.
The filename of the pagelayout template must be ”pagelayout.tpl”. It has to be placed inside
the ”templates” directory of a design. If eZ publish is unable to find a pagelayout within the
current design (specified by the siteaccess), it will attempt to use the pagelayout template that
is provided by one of the fallback designs. The following illustration shows the location of the
pagelayout template located in a design called ”example”.

(see figure 3.5)

Figure 3.5: The location of the pagelayout (main) template.

The pagelayout contains the HTML, HEAD and BODY tags (the outher HTML framework). In
addition, it dictates the overall look of a site. Among other things, it is used to describe the
visual structure (main layout, logo, main menu, footer, etc.) that will be presented for every
page request. The following example shows what is considered to be the most basic pagelayout:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://
www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<style type="text/css">
@import url({’stylesheets/core.css’|ezdesign});
@import url({’stylesheets/debug.css’|ezdesign});

</style>

{include uri=’design:page_head.tpl’}

</head>

<body>

{$module_result.content}

</body>
</html>

3.2 The pagelayout 176

3

The document type

The very first line in the pagelayout is used to decalare the document type of the pages that
are generated by eZ publish. Per HTML and XHTML standards, a DOCTYPE (short for ”docu-
ment type declaration”) informs browsers and syntax validation engines about which version of
(X)HTML that is used. This information should be included at the very top of in every web page,
this is why it is the first part of the pagelayout.

The DOCTYPE declaration is one of the key components when it comes to proper rendering and
compliant web pages. A DOCTYPE that includes a full URL tells the browser to render the page
in standards-compliant mode, treating the (X)HTML, CSS, and DOM structures as they should
be treated according to the standards. A missing, incomplete or outdated DOCTYPE throws
most browsers into something called ”Quirks” mode. In this mode, the browser assumes that
the document was written using old-fashioned, invalid markup and code per the chaotic industry
norms of the late 1990s. In other words, the page will most likely not be rendered according to
the standards and it will certainly not validate.

The HTML tag

The HTML tags encapsulate the marked up contents of an actual web page. In addition to the tag
itself, the HTML tag in the example above includes a URL to the XHTML specification. XHTML is
a family of current and future document types and modules that reproduce, subset, and extend
HTML 4. The XHTML family document types are XML based, which means that they are designed
to work in conjunction with XML-based user agents.

In document processing, it is often useful to identify the natural or formal language in which the
content is written. The ”lang” and ”xml:lang” attributes specify the language of the entire HTML
element. The value of the xml:lang attribute takes precedence. The language values should be
set to the language that is used throughout the site. The values of the attributes are language
identifiers as defined by ISO 3166-1 (and the corresponding ISO 3166-1-alpha-2) standards.

The head tag

The head tag contains information about the document itself. The information contained here
doesn’t show up on the page displayed in a web browser. Only the contents of the title tag will be
made visible (as the title of the browser window). The head tag typically contains information
about which CSS files that should be used, a description of the document itself, keywords and so
on.

Cascading Style Sheets

The pagelayout in the example above makes use of two CSS files: ”core.css” and ”debugs.css”.
The code encapsulated by curly brackets is eZ publish specific code. What happens here is that
the text within the quotes are being piped into a template operator called ”ezdesign” (page 1266).
The operator prepends the text with the path to the current design directory (the one which is

3.2 The pagelayout 177

3

specified using the ”SiteDesign” configuration directive). This technique assures that the path to
the CSS files are always correct, regardless of the access method (page 142) that is being used.
For example, if the name of the current design is ”my design” and it includes a CSS file called
”example.css”, the following output will be produced:

@import url("/design/my_design/stylesheets/example.css");

The ”core.css” and ”debug.ss” files are a part of the standard design that comes with eZ publish.
It is not necessary to have these CSS files in the ”stylesheets” directory of a custom design. If
eZ publish is unable to find the files within the current/custom design, it will automatically use
the ones that are in the standard design. Please refer to the description of the automatic fallback
system for a detailed description of the fallback mechanism. Because of the fallback system, the
style-part of the pagelayout presented above will most likely result in the following output:

...
<style type="text/css">

@import url("/design/standard/stylesheets/core.css");
@import url("/design/standard/stylesheets/debug.css");

</style>
...

The core stylesheet

The ”core.css” file defines a standard set of basic styles (font styles, sizes, margins, etc.) for both
general HTML elements and some eZ publish specific classes. The eZ publish specific classes
are used by the standard templates. A site that makes an extensive use of the default templates
should always have the ”core.css” file included in the pagelayout. Otherwise, the missing styles
may cause the unexpected rendering of various elements.

The standard ”core.css” file should never be changed. If there are basic styles in core.css that
doesn’t fit the visual environment of a site, a modified version of ”core.css” may be placed in the
custom design that the site uses. However, the recommended solution is to create a completely
new CSS file that contains both custom classes and overrides for elements defined in ”core.css”.

The debug stylesheet

The ”debug.css” file contains styles that are used to format the debug output which appears at
the bottom of the page when debug output is enabled. The usage of the ”debug.css” file is only
necessary during the development of the site (typically when debug information is needed) and
thus it can be removed or commented out before the site is launched.

Document information

The system is capable of automatically generating information about the page itself (title, meta
tags, keywords, etc.). This can be done by the inclusion of the page head (page 179) template

3.2 The pagelayout 178

3

(”page head.tpl”), which is located in the templates directory of the standard design. If eZ publish
is unable to find the requested file in current/custom design, it will automatically fallback and
use the file located in the standard design.

The body tag

The body tag defines the document’s body, which contains the actual contents of the web page
(text, images, etc.) marked up in an orderly fashion. At the minimum, an eZ publish pagelayout
should contain the result from the requested modules.

Module result

Upon every request, eZ publish automatically generates an array called ”module result”. This
array is available only in the pagelayout template. It contains all the necessary information
about which module that was run, which view that was called, the output that was produced
and so on. The actual output (for example the contents of a news article) can be included in the
pagelayout by accessing the ”content” element of the $module result array, the syntax is:

{$module_result.content}

When the pagelayout is rendered, the {$module result.content} part will be replaced with the
actual output that the requested module produced. Please refer to the ”Variables in pagelayout”
(page 183) page for an overview of the template variables that can be accessed from within the
pagelayout.

Debug information

The last part of a typical eZ publish pagelayout is an HTML comment that looks like this:

<!--DEBUG_REPORT-->

If the debug information is turned on, eZ publish will replace this comment with the actual de-
bug report when the pagelayout is processed. In other words, the debug report will be included
as a part of the generated page and thus it will not cause invalid output by breaking the HTML
structure. The debug reports that eZ publish generates follow the XHTML 1.0 Transitional speci-
fication and thus the debug information validates.

3.2.1 The pagelayout / The page head 179

3

3.2.1 The page head

The standard design contains a page head template that can be used to automatically generate
important tags that should be included in the head section of every HTML response. The output
of the standard head template (/design/standard/template/page head.tpl) can be broken down
into the following group of tags:

• Title tag

• Meta tags

• Link tags

The following HTML dump shows an example of the output from the standard page head tem-
plate.

<title>Current / Parent / Top - Site name</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<meta http-equiv="Content-language" content="eng-GB" />
<meta name="author" content="eZ Systems" />
<meta name="copyright" content="eZ Systems" />
<meta name="description" content="Content Management System" />
<meta name="keywords" content="cms, publish, e-commerce, content management,
development framework" /
>
<meta name="MSSmartTagsPreventParsing" content="TRUE" />
<meta name="generator" content="eZ publish" />

<link rel="Home" href="/" title="Front page" />
<link rel="Index" href="/" />
<link rel="Top" href="/" title="Current / Parent / Top - Site name" />
<link rel="Search" href="/content/advancedsearch" title="Search Site name" />
<link rel="Shortcut icon" href="/design/standard/images/
favicon.ico" type="image/x-icon" />
<link rel="Copyright" href="/ezinfo/copyright" />
<link rel="Author" href="/ezinfo/about" />
<link rel="Alternate" href="/layout/set/print/content/view/full/
64" media="print" title="Printable version" />

Title

The contents of the title tag is based on the location being viewed (the location within either the
content node tree or the system itself) and the actual name of the site. The path to the element
being viewed is reversed and thus the current element becomes the first component of the title.
The components of the path are separated by slashes. When a node is viewed, the path elements

3.2.1 The pagelayout / The page head 180

3

will be the actual names of the objects which are encapsulated by the nodes that make up the
path up to and including the target node. When a system function is being accessed (for example
the login view of the user module: ”/user/login”), the path will most likely be a reversed version
of the module/view combination that was used. The name of the site is appended at the end of
the path, separated by a dash. The site name can be configured using the ”SiteName” directive
in a configuration override for ”site.ini”.

The example above demonstrates the output of the page head template when a node is being
viewed. The name of the object encapsulating the node is ”Current”. The name of the other
objects (encapsulated by the parent node and so on) are ”Parent” and ”Top”. The name of the
site is ”Site name”.

Meta tags

In addition to the actual information contained on a web page, the HTML of the page may also
include information about the document itself. This is achieved by making use of so called meta
tags. The information given by meta tags is usually not visible when the web page is viewed.
However, the meta tags are used by the web browser and miscellaneous search engines that
index and rank the contents of web pages. The standard page head template outputs the most
commonly used meta tags. It can be broken down into three types of tags:

• HTTP-EQUIV meta tags

• Generic meta tags

• Additional meta tags

HTTP-EQUIV meta tags

Meta tags with an HTTP-EQUIV attribute are equivalent to HTTP headers. These tags usually
control the way a browser interprets the document. Tags using this form should have an equiv-
alent effect when specified as an HTTP header. Some web servers automatically translate the
contents of these tags to actual HTTP headers. The HTTP-EQUIV meta tags in the page head
make sure that the browser (and also search engines) know which character set and language
the document uses. The languageand character set values are automatically set by eZ publish
based on the language and character set that the site uses.

Generic meta tags

The generic meta tags make it possible to reveal meta information about the document itself.
Although the specification of meta tags does not define a set of legal meta data properties, it is
a common practice to include generic information such as the name of the author, description of
the site, copyright notices, keywords, etc. By making use of the ”MetaDataArray[...]” directive in
a configuration override for ”site.ini”, the site administrator can set up a custom set of generic
meta tags. eZ publish will loop through and display the name and value of the specified tags. The

3.2.1 The pagelayout / The page head 181

3

example above shows the default meta tags that will be used if no custom meta tag configuration
is present.

Additional meta tags

The last meta tags set by the standard page head template prevent the usage of smart tags and
reveal the name of the software that was used to generate the output.

Link tags

Link tags in the HTML head make it possible to relate the document to other documents. This is
done by the way of REL and REV attributes. While REL links are used to establish relationships,
REV links are used to establish reverse relationships. Some browsers make use of the link tags
in order to produce a navigation bar that can be used to quickly navigate the site. The links tags
generated by eZ publish are specified in the ”link.tpl” file within the templates directory of the
standard design. The standard page head makes use of the ”links.tpl” file. The default output
of the standard page head template produces a basic set of links that can be used to navigate to
different parts of the site. The following list shows the link tags that the page head generates:

Link Description
Home The ”Home” link points to the root/start

of the site. It will always bring the user
back to the front page (for example http://
www.example.com).

Index The ”Index” link points to the root/start
of the site. It will always bring the user
back to the front page (for example http://
www.example.com).

Top The ”Top” link points to the root/start of
the site. It will always bring the user
back to the front page (for example http://
www.example.com).

Search The ”Search” link points to the ”advanced
search” view of the ”content” module.
It will bring the user to the advanced
search interface (http://www.example.com/
content/advancedsearch).

Shortcut icon The ”Shortcut icon” defines the location of
the favorite/shortcut icon. Most browsers will
display this icon in front of URLs in the ad-
dress field and in the bookmark list. The de-
fault shortcut icon is the double square white-
orange eZ Systems logo. It can be easily re-
placed by putting a 16x16 pixel icon file (16
color BMP/Windows Icon Format) called ”fav-

3.2.1 The pagelayout / The page head 182

3

icon.ico” in the images folder of a site design.
Copyright The ”Copyright” link points to the ”copy-

right” view of the ”ezinfo” module. The de-
fault copyright page of eZ publish will be
displayed (http://www.example.com/ezinfo/
copyright.).

Author The ”Author” link points to the ”about” view
of the ”ezinfo” module. The default about
page of eZ publish will be displayed (http:/
/www.example.com/ezinfo/about).

Alternate The ”Alternate” link points to a alternate/
printerfriendly version of the page. The print-
erfriendly version of a page is achieved by
making use of the ”set” view of the ”layout”
module. This technique makes it possible to
use an alternative pagelayout which is usually
stripped for everything (menus, logos, etc.)
except the actual content that is being pre-
sented.

Link parameters

The links can be completely turned off by passing ”enable link=false()” when including the page
head template:

{include uri=’design:page_head.tpl’ enable_link=false()}

The link to the alternate/print layout can be turned off by passing ”enable print=false()” when
including the page head template:

{include uri=’design:page_head.tpl’ enable_print=false()}

3.2.2 The pagelayout / Variables in pagelayout 183

3

3.2.2 Variables in pagelayout

The pagelayout template contains miscellaneous variables that can be used to display informa-
tion about the state of the system and/or to control the output. The following table shows the
available variables along with a brief description.

Variable Type Description
$access type array The name of the siteaccess

(as ”name”) and the ID num-
ber (as ”type”) of the ac-
cess method (page 142) that
was used (1=URL, 2=Host,
3=Port).

$anonymous user id integer The ID number of the con-
tent object that represents
the anonymous user account
(the default/standard value
is 10).

$current user object The ezuser (page 1056) ob-
ject of the user who is cur-
rently logged in. If no user
is logged in, the anonymous
user account will be used.

$ezinfo array An array of three strings:
”version”, ”version alias” and
”revision”. These strings re-
veal basic information about
the eZ publish release that is
being used.

$module result array Contains information about
the result (and the result it-
self) generated by the mod-
ule/view that was executed.

$navigation part array A hash containing the name
and the identifier (the keys
are ”name” and ”identifier”)
of the current navigation
part; for example: ”Content
structure” and ”ezcontent-
navigationpart”. The naviga-
tion part is used by the ad-
ministration interface to de-
termine which part the user
interacts with.

$requested uri string string Contains the site specific part
of the requested URL, for ex-

3.2.2 The pagelayout / Variables in pagelayout 184

3

ample: ”content/view/full/
44” (system URL) or ”com-
pany/about” (virtual URL).

$site array Contains miscellaneous in-
formation about the siteac-
cess that is being used (site
name, design resource, meta
tags, etc.)

$ui component string The user interface compo-
nent which eZ publish uses
while the current page is be-
ing shown. This variable is
used by the administration
interface.

$ui context string The user interface context
in which eZ publish is in
while the current page is be-
ing shown. This variable is
used by the administration
interface to distinguish be-
tween different modes (for
example ”navigation”, ”edit”,
”browse”, etc.).

$uri string string The system version of the re-
quested URL (for example ”/
content/view/full/13”).

$warning list array An array of warnings related
to problems that were dis-
covered when the page was
rendered.

$module result

The $module result array contains the result that was generated by the module/view which was
executed. If eZ publish was instructed to display the contents of a node, the variable will contain
additional information about the node that was requested. If eZ publish was instructed to do
something else (practically anything that is not an actual node view), the result will not contain
additional information. The following tables show the contents of the $module result variable in
the different scenarios.

The default $module result

Element Type Description
content string The actual content (result of

3.2.2 The pagelayout / Variables in pagelayout 185

3

templates) that was gener-
ated by the requested view.

path array An array of hashes contain-
ing information about the
path which leads to the
page that is currently being
viewed. Each hash contains
the following keys: ”text”,
”url”. The ”text” element
usually contains the name of
the module/view (for exam-
ple ”Collected information”).
The ”url” element contains
the address. The ”url” key of
the last element in the array
is usually set to false.
The standard page head
(page 179) template uses the
path array to build the TITLE
component of the HEAD sec-
tion. In addition, the path ar-
ray can for example be used
to build breadcrumbs (a path
with names (as hyperlinks)
of pages/views that lead to
the current page/view).

is default navigation part boolean Returns TRUE if the default
navigation part is being used
(the one which is set in PHP
code). Returns FALSE if the
navigation part of the cur-
rent module/view has been
reconfigured by the site ad-
ministrator. This can be
done by making use of the
”NavigationPart” directive of
the ”[ModuleSettings]” sec-
tion within a configuration
override for ”module.ini”.

navigation part string The identifier of the cur-
rent navigation part (for ex-
ample ”ezcontentnavigation-
part”). This variable is used
by the administration inter-
face to determine which part

3.2.2 The pagelayout / Variables in pagelayout 186

3

the user interacts with.
ui context string The user interface context in

which eZ publish is in while
the current page is being
shown. This variable is used
by the administration inter-
face to distinguish between
different modes (navigation,
edit, browse, etc.)

ui component string The user interface compo-
nent which eZ publish uses
while the current page is be-
ing shown. This variable is
used by the administration
interface.

uri string Contains the site specific part
of the requested URL, for ex-
ample: ”content/view/full/
44” (system URL) or ”com-
pany/about” (virtual URL).

The $module result when a node is being viewed

Element Type Description
content string The actual content (result of

templates) that was gener-
ated by the requested view.

view parameters array An array of the parameters
that were sent to the view
(for example ”limit”, ”offset”,
etc.).

path array An array of hashes contain-
ing information about the
path of nodes which lead to
the node that is currently be-
ing viewed. Each hash con-
tains the following compo-
nents:
Key: text
Description: The name of
the object referenced by the
node.

Key: url
Description: The system

3.2.2 The pagelayout / Variables in pagelayout 187

3

URL of the node (for ex-
ample ”/content/view/full/
44”).

Key: url alias
Description: The virtual
URL of the node (for exam-
ple ”company/about us”).

Key: node id
Description: The ID number
of the node.

The node being viewed will
have its ”url” and ”url alias”
components set to false. In
addition, the ”node id” will
not be available. The path ar-
ray can for example be used
to build breadcrumbs (a path
with names (as hyperlinks)
of the objects referenced by
the nodes that lead to the tar-
get/current node).

title path array Almost
the same as the ”path” array
(see above). When a node
is being viewed, the standard
page head (page 179) tem-
plate uses the ”title path” ar-
ray to build the TITLE com-
ponent of the HEAD section.

section id string The ID number of the section
which the object referenced
by the node being viewed be-
longs to.

node id string The ID number of the node
that is being viewed.

navigation part string Contains the name identifier
of the current navigation part
(for example ”ezcontentnav-
igationpart”). This variable
is used by the administration
interface to determine which
part the user interacts with.

content info array Contains miscellaneous in-

3.2.2 The pagelayout / Variables in pagelayout 188

3

formation about the node
that is being viewed:
Variable: node id
Type: string
Description: The ID number
of the node.

Variable: parent node id
Type: string
Description: The ID number
of the parent node.

Variable: object id
Type: string
Description: The ID number
of the object referenced by
the node.

Variable: class id
Type: string
Description: The ID number
of the class which the object
is an instance of.

Variable: class identifier
Type: string
Description: The identifier
of the class which the object
is an instance of (for example
”forum message”).

Variable: offset
Type: integer
Description: The offset view
parameter.

Variable: viewmode
Type: string
Description: The view mode
that was used to display
the node (for example ”full”,
”line”, etc.).

Variable: node depth
Type: string
Description: The depth of

3.2.2 The pagelayout / Variables in pagelayout 189

3

the node in the content tree.

Variable: url alias
Type: string
Description: The virtual
URL of the node (for exam-
ple ”company/about us”).

Variable: persistent variable
Type: n/a
Description: A variable set
in one of the templates used
by the view that was ex-
ecuted. Regardless of the
caching mechanisms used,
this variable will be available
in the pagelayout. The type
of the persistent variable de-
pends on the value it con-
tains. If the variable is not
set, it will simply return a
boolean FALSE.

Variable: class group
Type: array
Description: The ID num-
bers of the class groups that
the class (which the object
being viewed is an instance
of) belongs to. This variable
is connected with a feature
that makes it possible to cre-
ate template overrides based
on class groups.
By default the ”class group”
always returns a boolean
FALSE value because the
class group override feature
is turned off. It can be
turned on by setting the ”En-
ableClassGroupOverride” di-
rective in the [ContentOver-
rideSettings] block of a con-
figuration override for ”con-
tent.ini” to ”true”.

3.2.2 The pagelayout / Variables in pagelayout 190

3

cache ttl integer The TTL (Time To Live) value
of the result that was gen-
erated by the module’s view
(as seconds). A TTL of mi-
nus one means that the view
cache should never expire.
A TTL of zero means that
the result should never be
cached.

is default navigation part boolean Returns TRUE if the default
navigation part is being used
(the one which is set in PHP
code). Returns FALSE if the
navigation part of the cur-
rent module/view has been
reconfigured by the site ad-
ministrator. This can be
done by making use of the
”NavigationPart” directive of
the ”[ModuleSettings]” sec-
tion within a configuration
override for ”module.ini”.

ui context string The user interface context in
which eZ publish is in while
the current page is being
shown. This variable is used
by the administration inter-
face to distinguish between
different modes (navigation,
edit, browse, etc.)

ui component string The user interface compo-
nent used by eZ publish
while the current page is be-
ing shown. This variable is
used by the administration
interface.

uri string The site specific part of the
requested URL, for exam-
ple: ”content/view/full/44”
(system URL) or ”company/
about” (virtual URL).

3.3 The template language 191

3

3.3 The template language

The eZ Publish template language makes it possible to extract information from the system and
to solve common programmatic issues like for example conditional branching, looping, etc. All
eZ Publish specific code must be placed inside a set of curly brackets, ”{” and ”}”. A template file
is a combination of HTML and eZ Publish template code. Everything that is encapsulated by curly
brackets will be interpreted by the template parser when the template is processed. Everything
outside the curly brackets will be ignored and thus it will be sent to the browser without any
changes.

Curly bracket issues

Since curly brackets are reserved for defining blocks of eZ Publish template code, these characters
can not be used directly in a template. For example, JavaScript code can not be inserted directly
into a template file because it makes an extensive use of curly brackets. All non template specific
code/text that uses curly brackets must be put inside a ”literal” section. The contents of a literal
section will be ignored by the template parser. The following example demonstrates the usage of
the literal tags:

...
{literal}
<script language="JavaScript" type="text/javascript">
<!--

window.onload=function()
{

document.getElementById(’sectionName’).select();
document.getElementById(’sectionName’).focus();

}
-->
</script>
{/literal}
...

Outputting curly brackets

It is possible to output curly brackets using two template functions called ”ldelim” (page 1317)
and ”rdelim” (page 1319) (short for left delimiter and right delimiter). The following example
demonstrates the usage of these functions:

...
This is the left curly bracket: {ldelim}

This is the right curly bracket: {rdelim}

...

The following output will be produced:

3.3 The template language 192

3

This is the left curly bracket: {
This is the right curly bracket: }

3.3.1 The template language / Comments 193

3

3.3.1 Comments

Just like in almost any programming language, comments can be used to add explanations,
descriptions, etc. Template comments are ignored by the parser and will not be displayed in the
resulting HTML output.

There is only one way to add template comments, and that is by encapsulating a block of code by
a matching pair of the ”{*” and ”*}” sequence of characters (left curly bracket + asterisk and as-
terisk + right curly bracket). In other words, a template comment is just like any other template
code except that the curly brackets are accompanied by adjacent asterisks. It is possible to com-
ment both single and multiple lines of code. However, nesting of comments is not supported (it
is not possible to comment a chunk of code that already is a comment). The following examples
demonstrate the use of comments.

Single line comment

{* This is a single line comment. *}

The example above will not produce any output.

Multi-line comment

{* This is a long comment that
spans across several lines
within the template file. *}

The example above will not produce any output.

Nested comments (illegal)

{* {* Nested comments are not supported! *}
This text will be displayed. *}

The example above will produce the following output:

This text will be displayed.

3.3.2 The template language / Variable types 194

3

3.3.2 Variable types

The eZ Publish template language supports the following variable types:

• Numbers

• Strings

• Booleans

• Arrays

• Objects

While some variable types can be created on the fly, others need to be created using an operator.
Types that may be created directly are numbers and strings. Booleans and arrays must be created
using operators, objects may be created using miscellaneous functions and operators. In addition
to the types listed above, it is also possible to create and use custom variables. Custom variable
types must be represented as objects.

Numbers

Numbers are numerical values. A number can be a positive or a negative integer or a floating
point value. The following example demonstrates how different numbers can be used directly
within template code:

{13}
{1986}
{3.1415}
{102.5}
{-1024}
{-273.16}

Strings

A string is an arbitrary sequence of characters (text) that is encapsulated by a matching pair of
either single or double quotes, ’ or ”. If the quotes are omitted, the string will most likely be
interpreted as a function name. Strings are usually defined in the following way:

{’This is a string.’}
{"This is another string."}

The output of the example above would be:

3.3.2 The template language / Variable types 195

3

This is a string.
This is another a string.

Using quotes

It is possible to use quotes inside strings. This can be done by either using a different kind of
quote or by making use of the escape character (backslash). The following examples demonstrate
the use of quotes inside strings:

{’The following text is double quoted: "Rock and roll!" ’}
{"The following text is single quoted: ’Rock and roll!’ "}
{’Using both single and double quotes: "Rock\’n roll!" ’}
{’Using both single and double quotes: \’Rock\’n roll!\’ ’}
{"Using both single and double quotes: ’Rock’n roll!’ "}
{"Using both single and double quotes: \"Rock’n roll\" "}

The output of the example above will be:

The following text is double quoted: ”Rock and roll!”
The following text is single quoted: ’Rock and roll!’
Using both single and double quotes: ”Rock’n roll!”
Using both single and double quotes: ’Rock’n roll!’
Using both single and double quotes: ’Rock’n roll!’
Using both single and double quotes: ”Rock’n roll!”

Because of the way template code is defined (encapsulated in a matching pair of curly brackets),
the right curly bracket, ”}”, must also be prepended by the backslash escape character. The
following example demonstrates this.

{’{ This text is inside curly brackets.\}’}

The output of the template code above will be:

{This text is inside curly brackets.}

Template strings do not support inline expansion of variables (as in Perl and PHP). In other
words, it is not possible to mix variables into strings. However, the concat (page 1228) operator
can be used to append the contents of some variable to a string; which means that this operator
can be used to build strings consisting of other strings and/or miscellaneous variables.

Booleans

Booleans are binary, they are either TRUE (1) or FALSE (0). A boolean must be created using
either the ”true” (page 1164) or the ”false” (page 1146) template operator. Example:

3.3.2 The template language / Variable types 196

3

{true()}
{false()}

For some operators and functions, it is possible to use integers as booleans. However, these are
not ”real” booleans. Zero means FALSE; all non-zero values mean TRUE. Some operators are able
to treat an array as if it were a boolean value. While an empty array means FALSE, a non-empty
array means TRUE.

Arrays

Arrays are containers that are capable of holding a collection of any other variable type including
other arrays. An array can be a simple vector or a hash map (associative array). An element of a
vector can be accessed using an index number. The number denotes the position of the element
inside the array (the first element is zero, the second element is one, and so on). An element
of an associative array can be accessed using an identifier. Regular arrays can be created with
the ”array” (page 1078) operator. Associative arrays can be created with the hash (page 1090)
operator. The following examples demonstrate the creation of arrays and hashes.

Example 1: Array of numbers

{array(2, 4, 8, 16)}

This example creates an array containing four numbers. The array will consist of the following
elements:

Index Value of element
0 2
1 4
2 8
3 16

Example 2: Array of strings

{array(’This’, ’is’, ’a’, ’test’)}

This example creates an array containing four strings. The array will consist of the following
elements:

Index Value
0 ’This’
1 ’is’
2 ’a’
3 ’test’

3.3.2 The template language / Variable types 197

3

Example 3: Associative array

{hash(’Red’, 16, ’Green’, 24, ’Blue’, 32)}

This example creates an associative array containing three key-value pairs. The array will consist
of the following elements:

Key Value
Red 16
Green 24
Blue 32

Objects

Template objects are created by PHP code or by special template operators. The system uses
objects to represent data structures of different kinds and sizes. For example, objects are used to
represent information about content nodes, translations, webshop orders, user accounts, roles,
policies and so on. Refer to the ”Objects” (page 950) section of the ”Reference” chapter for a
complete overview of the objects and their contents.

Object attributes

Objects consist of named attributes where each attribute can be a different type. The attributes
may represent any type of data (numbers, strings, arrays, etc.) and even other objects. Since
the attributes are named (each one has an identifier associated to it), their contents can be easily
accessed using the different identifiers. This is done in the same way as when accessing the
values of associative arrays using identifiers.

The following illustration shows the structure (with example values) of an object (”ezdate” (page
1001)) that contains information about a date.

(see figure 3.6)

Figure 3.6: The structure of the ”ezdate” object.

The illustration above reveals that the ”ezdate” object consists of five attributes (”timestamp”, ”is
valid”, ”year”, ”month” and ”day”). All attributes are represented as strings except the ”is valid”
attribute, which is a boolean. The values are the actual data that the object contains.

3.3.2 The template language / Variable types 198

3

Attribute availability

It is worth noting that while some attributes are pre-fetched/calculated when an object itself is
fetched, others are not. This means that accessing the contents of attributes may require addi-
tional processing (usually in the form of database queries). The ”static” column in the reference
documentation for objects indicates whether the different attributes provide pre-fetched values
or if they need to be computed upon request. This information should be helpful when it comes
to optimizing your templates.

3.3.3 The template language / Variable usage 199

3

3.3.3 Variable usage

Template variables must be referenced using dollar ($) notation, for example: $my variable,
$object array, etc. An eZ publish template variable is case sensitive. In other words, $lollipop
is not the same variable as $LolliPop. Template variables can be created by the system (from
PHP code) or by the author of the template (from within template code). Regardless of where
a variable was created, it can be changed using the ”set” (page 1329) function. Some templates
have preset variables, for example, the main template (pagelayout) provides access to a collection
of variables (page 183).

Creating and destroying variables

All variables used in a template must be declared and defined by the ”def” (page 1324) function
(short for define) before they can be used. A variable exists until the ”undef” (page 1333)
function (short for undefine) is used in order to destroy it. A previously declared variable will
be automatically destroyed at the end of the template file in which it was created. The following
example demonstrates the most basic use of the ”def” and ”undef” functions.

{def $temperature=32}

{$temperature}

{undef}

The output of the example will be ”32”. After the {undef} function is called, the $temperature
variable will not be available. Both the ”def” and the ”undef” function can be used with multiple
variables at the same time. In addition, the ”undef” function can be used without any parameters.
When called without parameters the ”undef” function automatically destroys all variables that
were previously created within the template. The following example demonstrates how the ”def”
and ”undef” functions can be used to create and destroy multiple variables at the same time.

{def $weather=’warm’ $celsius=32 $fahrenheit=90}

The weather is {$weather}: {$celsius} C / {$fahrenheit} F

{undef $celsius $fahrenheit}

The weather is still {$weather}.

{undef}

The output of this example will be:

The weather is warm: 32 C / 90 F
The weather is still warm.

3.3.3 The template language / Variable usage 200

3

In the example above, the ”def” function is used to create three new variables: $temperature,
$celsius and $fahrenheit. The ”undef” function is used twice. The first time, it is used to de-
stroy the $celsius and $fahrenheit variables. The second is time it is called without parameters
and thus the remaining variables (in this case only $temperature) will be destroyed. For more
information, please refer to the documentation page of the ”def” (page 1324) and ”undef” (page
1333) functions.

Changing the contents of variables

The contents/value of a variable can be changed at any time using the ”set” (page 1329) function.
Please note that this function can be used to change the value of any variable, regardless of if it
was created by the system or inside a template. No warning will be given if a system variable
is changed. The ”set” function can be used to change the value of any variable regardless of the
variable’s current type and the type of the new value. In other words, this function is capable
of changing the type of a variable. The ”set” function can not be used to change the value of an
element/attribute of an array, hash or an object. In fact, the elements/attributes of arrays, hashes
and objects can not be changed from within template code. The following example demonstrates
the usage of the ”set” function.

{def $weather=’warm’}

The weather is {$weather}.

{set $weather=’cold’}

The weather is {$weather}.

{undef}

The output of the example will be:

The weather is warm.
The weather is cold.

Just like the ”def” and ”undef” functions, the ”set” function can work with multiple variables at
the same time. For more information, please refer to the documentation page of the ”set” (page
1329) function.

Accessing array elements

The elements of a simple/vector array can only be accessed using numerical indexes. This method
is called ”index lookup”. The elements of an associative array can be accessed by using the key
identifiers. This method is called ”identifier lookup”. The following example demonstrates the
different lookup methods.

3.3.3 The template language / Variable usage 201

3

Index lookup

Index lookup is carried out by appending a period/dot and an index number to the name of a
simple/vector or associative array. Index lookup may also be carried out by appending a matching
pair of brackets that encapsulate the desired index value. The following example demonstrates
how to access the elements of a simple array using index lookup. Please note the different
syntaxes (dot and brackets).

{def $sentence=array(’Life’, ’is’, ’very’, ’good!’)}

The 1st element is: {$sentence.0}

The 2nd element is: {$sentence.1}

The 3rd element is: {$sentence[2]}

The 4th element is: {$sentence[3]}

{undef}

The code above will output the following:

The 1st element is: Life
The 2nd element is: is
The 3rd element is: very
The 4th element is: good!

Identifier lookup

Identifier lookup can be carried out by appending a period/dot and an identifier name to the
name of an associative array. Identifier lookup may also be carried out by appending a matching
pair of brackets that encapsulate the desired index value. The following example demonstrates
how to access the elements of an associative array using the identifier lookup method. Notice the
different syntax (use of dot and brackets).

{def $sentence=hash(’first’, ’Life’,
’second’, ’is’,
’third’, ’very’,
’fourth’, ’good!’)}

The 1st element is: {$sentence.first}

The 2nd element is: {$sentence.second}

The 3rd element is: {$sentence[third]}

The 4th element is: {$sentence[fourth]}

{undef}

The following output will be produced:

3.3.3 The template language / Variable usage 202

3

The 1st element is: Life
The 2nd element is: is
The 3rd element is: very
The 4th element is: good!

Accessing object attributes

The attributes of an object can only be accessed using the attributes’ identifiers. An identifier
is just the name of an attribute (similar to the keys of an associative array). The following
example demonstrates how the different attributes of a node object can be accessed from within
a template.

The ID of the node: {$node.node_id}

The ID of the object encapsulated by the node: {$node.object.id}

The name of the object: {$node.object.name}

First time the object was published: {$node.object.published|l10n(shortdate
)} <br /
>

If the $node variable contains a node that has ID number 44 and encapsulates object number 13
named ”Birthday” published on the first of April in 2003, the following output will be produced:

The ID of the node: 44
The ID of the object encapsulated by the node: 13
The name of the object: Birthday
First time the object was published: 01/04/2003

3.3.4 The template language / Array and object inspection 203

3

3.3.4 Array and object inspection

By using the ”attribute” (page 1194) template operator, it is possible to quickly inspect the con-
tents of arrays and template objects. The operator creates an overview of available keys, attribute
names and/or methods in an object or an array. By default, only the array keys and object at-
tribute names (also called identifiers) are shown. By passing ”show” as the first parameter, the
operator will also display the values. The second parameter can be used to control the number
of levels/children that will be explored (the default setting is 2). The following example demon-
strates how the operator can be used to inspect the contents of an ”ezcontentobjecttreenode”
(page 990) object.

{$node|attribute(show, 1)}

The following output will be produced:

3.3.4 The template language / Array and object inspection 204

3

Attribute Type Value
node id string 2
parent node id string 1
main node id string 2
contentobject id string 1
contentobject version string 10
contentobject is published string 1
depth string 1
sort field string 8
sort order string 1
priority string 0
modified subnode string 1108118324
path string string ’/1/2/’
path identification string string ”
is hidden string 0
is invisible string 0
name string ’eZ publish’
data map array Array(6)
object object[ezcontentobject] Object
subtree array Array(114)
children array Array(44)
children count string 44
contentobject version object object[ezcontentobjectversion] Object
sort array array Array(1)
can read boolean true
can create boolean false
can edit boolean false
can hide boolean false
can remove boolean false
can move boolean false
creator object[ezcontentobject] Object
path array Array(0)
path array array Array(2)
parent object[ezcontentobjecttreenode]Object
url string ”
url alias string ”
class identifier string ’folder’
class name string ’Folder’
hidden invisible string string ’-/-’
hidden status string string ’Visible’

As the output shows, there is a lot of information that can be extracted from a node object. In
addition to strings and numbers the object also consists of other objects. For example, the creator
of the node is a ”ezcontentobject” (page 971) object. The creator object can be further inspected

3.3.4 The template language / Array and object inspection 205

3

by doing the following:

{$node.creator|attribute(show, 1)}

The following output will be produced:

Attribute Type Value
id string 14
section id string 2
owner id string 14
contentclass id string 4
name string ’Administrator User’
is published string 0
published string 1033920830
modified string 1033920830
current version string 1
status string 1
current object[ezcontentobjectversion] Object
versions array Array(1)
author array array Array(1)
class name string ’User’
content class object[ezcontentclass] Object
contentobject attributes array Array(5)
owner object[ezcontentobject] Object
related contentobject array array Array(0)
related contentobject count string 0
reverse related array Array(0)
contentobject array
reverse related string 0

3.3.4 The template language / Array and object inspection 206

3

contentobject count
can read boolean false
can create boolean false
can create class list array Array(0)
can edit boolean false
can translate boolean false
can remove boolean false
can move boolean false
data map array Array(5)
main parent node id string 13
assigned nodes array Array(1)
parent nodes array Array(1)
main node id string 15
main node object[ezcontentobjecttreenode]Object
default language string ’eng-GB’
content action list boolean false
class identifier string ’user’
class group id list array Array(1)
name string ’Administrator User’
match ingroup id list boolean false

Again, this object consists of a lot of information. As mentioned above, the ”attribute” (page
1194) operator can be used on both objects and arrays. The following example demonstrates
how to inspect the ”data map” array (which reveals the object’s attributes) of the node’s creator
object.

{$node.creator.data_map|attribute(show, 1)}

The following output will be produced:

Attribute Type Value
first name object[ezcontentobjectattribute]Object
last name object[ezcontentobjectattribute]Object
user account object[ezcontentobjectattribute]Object
signature object[ezcontentobjectattribute]Object
image object[ezcontentobjectattribute]Object

3.3.5 The template language / Control structures 207

3

3.3.5 Control structures

The eZ publish template language offers a selection of mechanisms that can be used to solve
common programmatic issues like for example condition control, looping, etc. The following list
shows an overview of the available mechanisms:

• IF-THEN-ELSE

• SWITCH

• WHILE

• DO...WHILE

• FOR

• FOREACH

IF-THEN-ELSE

The IF (page 1356) construct allows for conditional execution of code fragments. It is one of
the most important features of many programming languages. The eZ publish implementation
makes it possible to do conditional branching by the way of the following elements: IF, ELSE and
ELSEIF. The ELSE and ELSEIF elements are optional. The following examples demonstrate the
use of this construct.

Example 1

{if eq($var, 128)}
Hello world

{else}
No world here, move along.

{/if}

Example 2

{if eq($fruit, ’apples’)}
Apples

{elseif eq($fruit, ’oranges’)}
Oranges

{else}
Bananas

{/if}

3.3.5 The template language / Control structures 208

3

SWITCH

The SWITCH (page 1358) mechanism is similar to a series of IF statements used on the same
expression. This construct is typically useful when the same variable needs to be compared to
different values. It executes a piece of code depending on which value that matched a given
criteria. The following example demonstrates basic use of this construct.

{switch match=$fruits}

{case match=’apples’}
Apples

{/case}

{case match=’oranges’}
Oranges

{/case}

{case}
Unidentified fruit!

{/case}

{/switch}

If the value of the $fruits variable is ”oranges”, the following output will be produced:

Oranges

WHILE

The WHILE (page 1366) construct is the simplest loop mechanism that the template language
offers. It tells eZ publish to execute the nested statement(s) repeatedly, as long as a given expres-
sion evaluates to TRUE. The value of the expression is checked for every loop iteration (at the
beginning of the iteration). If the given expression evaluates to FALSE from the very beginning,
the nested statement(s) will not be executed. The following example demonstrates basic use of
this construct.

{while ne($counter, 8)}

Print this line eight times ({$counter})

{set $counter=inc($counter)}

{/while}

If the initial value of $counter is zero, the following output will be produced:

3.3.5 The template language / Control structures 209

3

Print this line eight times (0)
Print this line eight times (1)
Print this line eight times (2)
Print this line eight times (3)
Print this line eight times (4)
Print this line eight times (5)
Print this line eight times (6)
Print this line eight times (7)

DO...WHILE

A DO...WHILE (page 1362) loop is very similar to WHILE loops, except that the expression is
checked at the end of each iteration instead of in the beginning. The main difference is that this
construct will always execute the first iteration (regardless of how the test expression evaluates).
The following example demonstrates basic use of this construct.

{do}

Keep printing this line ({$counter})

{set $counter=inc($counter)}

{/do while ne($counter, 8)}

If the initial value of $counter is 0, the following output will be produced:

Keep printing this line (0)
Keep printing this line (1)
Keep printing this line (2)
Keep printing this line (3)
Keep printing this line (4)
Keep printing this line (5)
Keep printing this line (6)
Keep printing this line (7)
Keep printing this line (8)

FOR

Generic looping may be achieved using FOR (page 1363) loops. This construct supports looping
over numerical ranges in both directions. In addition it also supports breaking, continual and
skipping. The following example demonstrates basic use of this construct.

{for 0 to 7 as $counter}

3.3.5 The template language / Control structures 210

3

Value of counter: {$counter}

{/for}

The following output will be produced:

Value of counter: 0
Value of counter: 1
Value of counter: 2
Value of counter: 3
Value of counter: 4
Value of counter: 5
Value of counter: 6
Value of counter: 7

FOREACH

The FOREACH (page 1364) construct can be used to iterate over arrays in different ways. The
loop can be tweaked using miscellaneous techniques. The following example demonstrates basic
use of this construct.

{foreach $objects as $object}

{$object.name}

{/foreach}

The example above will print out the names of the objects that are stored in the $objects array. If
this array stores 4 objects with the following names: ”Emmett Brown”, ”Marty McFly”, ”Lorraine
Baines” and ”Biff Tannen”, the following output will be produced:

Emmett Brown
Marty McFly
Lorraine Baines
Biff Tannen

3.3.6 The template language / Functions and operators 211

3

3.3.6 Functions and operators

The eZ publish template language offers a collection of various functions (page 1302) and op-
erators (page 1074) that can be used to carry out different tasks. In addition, it is possible to
extend the system by creating custom operators for special needs. Custom operators have to be
programmed in PHP.

Template functions

A function takes a set of named parameters, carries out a specific task and returns a result. It can
be called anywhere in a template using the following syntax:

{function_name parameter1=value1 parameter2=value2 ...}

A function may take none, one or several parameters. The parameters must be specified after
the function name, separated by spaces. Since each parameter is specified using the parameter’s
name, the parameters can be provided in any order. Each parameter must be assigned a value
using the equal sign. The following illustration shows the typical usage of a commonly used
function.

(see figure 3.7)

Figure 3.7: Typical components of a function call.

The example above calls the ”node view gui” (page 1350) function. This function displays a node
by including the template that is associated with the view mode. The node is specified using the
”content node” parameter. The desired view mode is specified using the ”view” parameter.

Template operators

An operator takes unnamed parameters, carries out a specific task and returns a result. In addi-
tion, an operator is capable of handling a parameter which is passed to it using a pipe. It can be
called anywhere in a template using the following syntax:

{$input_parameter|operator_name(parameter1, parameter2 ...)}

Because the operator only takes unnamed parameters, the parameters must be specified in the
order dictated by the operator’s documentation page. In addition, the parameters must be sepa-
rated by commas. The following illustration shows the typical usage of a commonly used opera-
tor.

3.3.6 The template language / Functions and operators 212

3

(see figure 3.8)

Figure 3.8: Typical components of a template operator call.

The example above demonstrates the usage of the ”datetime” (page 1115) operator. This oper-
ator can be used to convert a UNIX timestamp to a human readable format. The timestamp is
provided by the $yesterday evening variable as the input parameter. The first parameter tells the
operator that the output should be formatted using a custom schema. The schema is defined by
the second parameter (hours : minutes).

Piping

An operator takes input on the left hand side and produces output on the right hand side. A
collection of operators can be glued together using pipes. A pipes makes sure that the output from
one operator is presented as the input parameter to another operator. The following example
demonstrates how pipes and operators can be used to create a string.

{concat(’To ’, ’The ’)|prepend(’Back ’)|append(’Future’)}

The following output will be produced:

Back To The Future

3.4 Basic template tasks 213

3

3.4 Basic template tasks

This section sheds light on some common issues related to template development.

Template inclusion

A template file can be included using the ”include” (page 1316) function. Since this function
makes it possible to include any file from any location within the eZ publish directory, it must be
told that it should look for the file within the design directory. This can be done by prefixing the
path/filename with ”design:”. The following example demonstrates how the include function can
be used to include a template file called ”footer.tpl”, which is located in the templates directory
of a design.

{include uri=’design:footer.tpl’}

If the requested file is not found within the main design of the siteaccess, the system will search
for it in the additional designs and the standard design. Please refer to the documentation of the
automatic fallback system for more information about this feature.

Output washing

Variables that may contain bogus strings should always be washed using the ”wash” (page 1259)
operator. This operator makes sure that the output does not contain any elements that may
mess up the HTML generated by eZ publish. The following example demonstrates how the wash
operator works.

{def $bogus_string=’hello < world’}
{$bogus_string|wash()}

The following output will be produced:

hello < world

E-mail address obfuscation

In addition to securing proper output, the wash operator can also be used to obfuscate E-mail
addresses on a web page. An obfuscated E-mail address has a less chance of getting picked up
by a robot searching for E-mail addresses to put on a spammer’s list. The following example
demonstrates how the wash operator can be used with an E-mail address.

{def $email_address=’allman@example.com’}
{$email_address|wash(’email’)}

3.4 Basic template tasks 214

3

The following output will be produced:

allman[at]example[dot]com

String concatenation

The ”concat” (page 1228) operator makes it possible to glue several strings together in order to
produce a single string. The following example demonstrates how this operator works.

{def $my_string=’sausage’}
{concat(’Liver ’, $my_string, ’ sandwitch’)}

The following output will be produced:

Liver sausage sandwitch

Custom view parameters

The URL of a node view request may contain custom parameters. The custom view parameters
must be specified at the very end of the URL using a special notation. For each parameter, a name
and a value must be specified. The name must be encapsulated by parenthesis. Each element
must be separated by slashes. The following example demonstrates how custom parameters can
be used (in addition to the view parameters) in a system URL that requests a node.

http://www.example.com/content/view/full/13/(color)/green/(amount)/34

The same parameters can be appended to the virtual URL of the node:

http://www.example.com/company/about_us/(color)/green/(amount)/34

When custom view parameters are used, the system will create an associative array using the
name of the provided parameters as the keys. All parameter values will be treated as strings.
The array will be represented by the $view parameters variable in the template. The parameters
given in the examples above will produce an associative array with the following contents:

Key Type Value
color string green
amount string 34

The following example demonstrates how the custom view parameters can be accessed in the
template that is used to display the node.

3.4 Basic template tasks 215

3

The color is: {$view_parameters.color}

The amount is: {$view_parameters.amount}

The following output will be produced:

The color is: green
The amount is: 34

Custom view parameters in ”edit.tpl” templates

In eZ Publish versions prior to 3.9, you cannot pass custom view parameters to the ”edit” view of
the ”content” module. From 3.9, it is possible and thus you can use custom view parameters in
the ”edit.tpl” templates. The following example demonstrates a typical system URL in this case:

http://www.example.com/content/edit/13/03/eng-GB/(color)/green/(amount)/34

This will instruct eZ Publish to use custom view parameters, specified in the link above, when
editing the ”eng-GB” translation of the third version of the thirteenth content object in the system.

3.4.1 Basic template tasks / URL handling 216

3

3.4.1 URL handling

Whenever a link, a non-content specific image, a stylesheet, etc. is to be included, a suitable
template operator must be used in order to ensure that the path to the included file is correct. At
any time, one of the following operators should be used:

• ezurl

• ezimage

• ezdesign

ezurl

The ”ezurl” (page 1270) operator makes sure that a URL works regardless of the location of the
eZ Publish folder, the access method (page 142) and the environment that eZ Publish is running
in (non virtual host, virtual host (page 73), etc.). It is only the eZ Publish specific part of the URL
that needs to be provided. The rest (http://, host, domain, directory, siteaccess, port, etc.) will
be generated by the operator. The final output will be a valid address. This approach makes it
possible to use generic URLs in template without the risk of having to modify every address when
the site is moved and/or when the access method is changed. By default, the ”ezurl” operator
outputs an address that is already encapsulated by two double quotes. In other words, the
output can be fed directly to an hyperlink reference in the HTML code. The following examples
demonstrate the usage of this operator.

Link to a module/view (using a system URL)

Login

The example above demonstrates how to create a link to the login view of the user module. The
”/user/login” is just an example, another example would be a link to a node: ”/content/view/
full/34”. If eZ Publish is running in a directory called ”ezpublish” on www.example.com using the
URL access method and the name of the siteaccess is ”my company”, the operator will produce
the following output:

”http://www.example.com/ezpublish/index.php/my company/user/login”

If eZ Publish is running in a virtual host mode (page 73) and uses the host access method, the
following URL will be produced:

”http://www.example.com/user/login”

3.4.1 Basic template tasks / URL handling 217

3

Link to a node (using the node’s virtual URL)

When a link to a node (using the node’s virtual URL, also known as URL alias) is created, the
address must be piped through the ”ezurl” operator. The reason for this is that the internal URL
table only contains the eZ Publish specific part of the URLs. The following example demonstrates
how to use the ”ezurl” operator to create a valid virtual URL for a node.

Link to a node

If the URL alias of the node is ”company/about us” and eZ Publish is running in a virtual host
environment using the host access method, the following URL will be produced:

”http://www.example.com/company/about us”

For information about how eZ Publish treats URLs, please refer to the ”URL translation” (page
148) section of the ”Concepts and basics” chapter.

ezimage

The ”ezimage” (page 1267) operator works in the same way as the ”ezurl” operator (described
above), except that it does not include the ”index.php” part. This operator must be used every
time a non content specific image is included in a template. The image must be placed in the
”images” directory of one of the designs that are used by the siteaccess. The operator produces a
valid link to the image regardless of the directory, access method and/or the environment that eZ
Publish is running in. The following example demonstrates how the ”ezimage” operator should
be used.

If eZ Publish is using the host access method and the siteaccess is using a design called ”my
design”, the operator will produce the following output:

”http://www.example.com/design/my design/images/women.jpg”

If the image is placed inside a subdirectory within the ”images” directory, the name of the sub-
directory must be specified in the template. If the requested file is not found within the main
design of the siteaccess, the system will search for it in the additional designs and the standard
design. Please refer to the documentation of the automatic fallback system for more information
about this feature.

ezdesign

The ”ezdesign” (page 1266) operator works in the same way as the ”ezurl” operator (described
above), except that it does not include the ”index.php” part. This operator must be used every

3.4.1 Basic template tasks / URL handling 218

3

time a design element (style sheets, JavaScript, etc.) is included in a template. The operator
takes care of producing a valid link for the given design component by providing the root to the
design directory which contains the target file. The following example demonstrates the proper
way of including a CSS file using this operator.

...
<style type="text/css">

@import url({’stylesheets/my_stuff.css’|ezdesign()});
</style>
...

If eZ Publish is using the host access method and the siteaccess is using a design called ”my
design”, the operator will produce the following output:

”http://www.example.com/design/my design/stylesheets/my stuff.css”

If the requested file is not found within the main design of the siteaccess, the system will search
for it in the additional designs and the standard design. Please refer to the documentation of the
automatic fallback system for more information about this feature.

3.5 Information extraction 219

3

3.5 Information extraction

Information that is stored by eZ publish can be extracted using the ”fetch” (page 1112) template
operator. This operator gives access to the fetch functions that a module provides. It is typically
used to extract nodes, objects, etc. using the content module. The fetch operator can only be
used with modules that provide support for data fetching. Please refer to the ”Fetch functions”
(page 1396) section of the reference chapter for a complete overview of the fetch functions. The
following model and table shows the usage and the parameters of the fetch operator.

fetch(<module>, <function>, <parameters>)

Parameter Description
module The name of the target module.
function The name of the fetch function within the tar-

get module.
parameters An associative array containing the function

parameters.

A module’s fetch functions and parameters are defined in the ”function definition.php” file within
the directory of the module.

Fetching a single node

The following example demonstrates how the fetch operator can be used to extract a single node
from the database.

{def $my_node=fetch(content, node, hash(node_id, 13))}

...

{undef}

The example above instructs eZ publish to fetch a single node from the content module. Only one
parameter is given, which is the ID number of the node that should be fetched. The operator
will return an ”ezcontentobjecttreenode” (page 990) object which will be stored in the $my node
variable. This variable can then be used to extract information about the node and the object
that it encapsulates. For example, it is possible to extract the name, attributes and the time when
the object was published. If the node is unavailable / non-existing or the currently logged in user
doesn’t have read access to it, the operator will return a FALSE boolean value.

Fetching multiple nodes

It is possible to fetch all the nodes that are directly below a specific node. This can be done by
using list instead of node as the second parameter to the ”fetch” operator. The following example

3.5 Information extraction 220

3

demonstrates how the fetch operator can be used to extract all the nodes that are directly below
node number 13.

{def $my_node=fetch(content, list, hash(parent_node_id, 13))}

...

{undef}

The operator will return an array of ”ezcontentobjecttreenode” (page 990) objects. The list fetch
function of the content module can take several parameters. These parameters are optional and
can be used to finetune the fetch for example by filtering out specific nodes. The following table
gives an overview of the most commonly used parameters.

Parameter Description
sort by The method and direction that should be used

when the nodes are sorted (must be specified
as an array).

limit The number of nodes that should be fetched.
offset The offset at which the fetch should start.
class filter type The type of filter that should be used, either

”include” or ”exclude”.
class filter array The type of nodes that should be included or

excluded by the filter (must be specified as an
array).

The following example demonstrates how to fetch an alphabetically sorted array of the ten latest
articles that are directly below node number 13.

{def $my_node=fetch(content,
list,
hash(parent_node_id, 13,

limit, 10,
class_filter_type, include,
class_filter_array, array(’article’)))}

...

{undef}

Please refer to the documentation page of the ”list” (page 657) fetch function for a complete
overview of the available parameters and examples of usage.

3.5.1 Information extraction / Outputting node and object data 221

3

3.5.1 Outputting node and object data

Once an ”ezcontentobjecttreenode” (page 990) object representing a node is available in a tem-
plate variable, it can be used to output information about the node and the contents of the object
that the node encapsulates. The following text demonstrates the extraction of the most common
elements.

General information

The name of the object

{$node.name|wash}

The name of the object is directly available through the node (in other words it is possible to
reach it by $node.name instead of $node.object.name). The ”wash” (page 1259) operator is
used for making sure that the output doesn’t contain any bogus characters and/or sequences that
may mess up the HTML.

The date/time when the object was first published

{$node.object.published|l10n(’shortdatetime’)}

Since the publishing value is stored as a UNIX timestamp, it must be properly formatted for
output. This can be done by using the ”l10n” (page 1120) operator, which makes it possible to
format different types of values according to the current locale settings.

The date/time when the object was last modified

{$node.object.modified|l10n(’shortdatetime’)}

Since the modification value is stored as a UNIX timestamp, it must be properly formatted for
output. This can be done by using the ”l10n” (page 1120) operator, which makes it possible to
format different types of values according to the current locale settings.

The name of the user who initially created the object

{$node.object.owner.name|wash}

The name of the user who last modified the object

3.5.1 Information extraction / Outputting node and object data 222

3

{$node.object.current.creator.name|wash()}

The name of the class which the object is an instance of

{$node.object.class_name|wash()}

Object attributes

The attributes of the object can be reached by the way of the ”data map” method. This method
returns an associative array of ”ezcontentobjectattribute” (page 981) objects where each object
represents one of the attributes. The keys of the array are the class attribute identifiers. The
following example demonstrates how an attribute called ”first name” can be reached using the
object’s data map.

{$node.object.data_map.first_name}

The example above will not produce any valuable output because the requested data needs to be
formatted. There are two ways of outputting the contents of attributes:

• Raw output (the ”.output” extension)

• Formatted output (the ”attribute view gui” function)

The main difference between raw and formatted output is that formatted output makes use of a
template which in turn outputs the requested data. Raw output simply outputs the data within
the same template where the request for output was issued. Output should always be presented
through the ”attribute view gui” (page 1339) function. The raw output method should only
be used when/if necessary (for example when checking the value of an attribute using an IF
statement).

Raw output

Raw output is exactly what the definition indicates: a raw dump of the contents that are stored
by the attribute. The actual syntax depends on the datatype that represents the attribute. In most
cases, it is possible to generate the output by appending ”.output” to the identifier.

Generic solution

The following example demonstrates how to output the contents of an attribute called ”my
attribute”.

3.5.1 Information extraction / Outputting node and object data 223

3

{$node.object.data_map.my_attribute.content}

XML block

The following example demonstrates how to output the contents of an XML block called ”my
xml”.

{$node.object.data_map.my_xml.content.output.output_text}

Image

The following example demonstrates how to output an image stored by an attribute called ”my
image”.

<img src="{$node.object.data_map.my_image.content[image_size].full_path}" ... /
>

Formatted output

Each datatype has a set of templates which are used to display the contents in different contexts.
There are at least two templates for each datatype: a view template and an edit template. While
the view template is used to display information, the edit template is used when the data is being
edited. The default templates for the datatypes are located within the standard design: ”/design/
standard/templates/content/datatype”.

The ”attribute view gui” (page 1339) function makes it possible to display the contents of an
attribute by inserting the view template of the datatype that the attribute uses. The following
example demonstrates how this function can be used.

{attribute_view_gui attribute=$node.object.data_map.name_of_any_attribute}

The example above will generate proper output for any attribute (regardless of the datatype).

3.6 The template override system 224

3

3.6 The template override system

The template override system makes it possible to use other templates than the default ones
(specified in the code for the different views and templates). This mechanism allows the creation
of template overrides for virtually any template that is used by eZ publish (including templates
that are requested by the ”include” (page 1316) template function using the ”design:” prefix).
In particular, template overrides are typically useful for displaying different types of nodes in
different ways.

An override for a view template is usually activated by a set of conditions. If the conditions
match, the alternate template will be used. Different views provide different conditions, some
views do not provide any conditions at all. Please refer to the ”Template override conditions”
(page 1369) section of the ”Reference” chapter for a complete overview of the available match
rules. The most flexible set of conditions are provided by the ”view” view of the ”content” module
(used when a node is displayed). The following illustration shows how the override mechanism
plugs into the rest of the system.

(see figure 3.9)

Figure 3.9: The override system.

The template overrides must be defined in the ”override.ini.append.php” file of a siteaccess. This
file consists of override blocks. A block is a named set of rules that tells eZ publish to use an
alternate template in a specific situation. For each block, the following information must be
specified:

• A unique name for the override.

• The template that should be overridden.

• The template that should be used instead of the one being overridden.

• The name of the directory in which the override template resides (usually ”templates”).

• A set of conditions/rules that control when the override should be activated.

Please note that the rules/conditions are optional. If no rules are specified, the override will
always be active. The following illustration shows a typical example of a template override with
additional explanations.

(see figure 3.10)

3.6 The template override system 225

3

Figure 3.10: Template override example.

The example above defines an override called ”special folders”. This override will be used when
the system is requested to display a node using the full view mode. The override will only be
activated if the object referenced by the node is an instance of the folder class and if it belongs to
section number 34. When the override is activated, the system will attempt to use the alternate
template (”/override/templates/special folder.tpl”, located in the main design). If eZ publish is
unable to find the alternate template, it will look for it in the additional designs and the standard
design. Please refer to the documentation page of the ”Automatic fallback system” for more
information about this feature.

Multiple / conflicting overrides

The priorities of the overrides are determined by their positions in the file. If there are several
overrides with similar/equal rules, eZ publish will use the first override that matches and thus
the rest of the overrides will be omitted. Because of this, overrides that are for example activated
on a node ID or an object ID basis should always be placed first; otherwise they might never be
triggered because of the presence of a more generic override with a higher priority.

3.6.1 The template override system / Template override example 226

3

3.6.1 Template override example

The following example demonstrates how the template override system can be used to display
alternate templates in different situations.

Let’s say that we have a simple content tree made up of two folders: ”News” and ”Products”. The
”News” folder contains news articles and the ”Products” folder contains products. The following
illustration shows an example of such a tree.

(see figure 3.11)

Figure 3.11: Example content node tree.

Without any overrides, eZ publish will most likely display all the nodes using the same template.
This would probably be the default full view template located in the standard design. However,
what if we wish to display custom/alternate templates for the different nodes? We would perhaps
like the system to behave in the following way:

• Display a special ”welcome” template when the ”My site” node is accessed.

• Display a custom folder template when a folder is accessed.

• Display a custom article template when a news article is accessed.

• Display a custom product template when a product is accessed.

The requests in the list above can be easily achieved by creating a couple of overrides. The
welcome page should be solved using an override that is triggered by the identification number
of the ”My site” node. The rest of the requests can be solved using the class identifier key, which
allows an override to be triggered when an object of a certain class is accessed. The following
example shows the contents of an ”override.ini.append.php” file that makes this possible:

Override for welcome page
[welcome_page]
Source=node/view/full.tpl
MatchFile=my_welcome.tpl

3.6.1 The template override system / Template override example 227

3

Subdir=templates
Match[node]=2

Override for folders
[my_folder]
Source=node/view/full.tpl
MatchFile=my_folder.tpl
Subdir=templates
Match[class_identifier]=folder

Override for articles
[news_articles]
Source=node/view/full.tpl
MatchFile=my_article.tpl
Subdir=templates
Match[class_identifier]=article

Override for products
[products]
Source=node/view/full.tpl
MatchFile=my_product.tpl
Subdir=templates
Match[class_identifier]=product

The alternate templates must be placed in the ”override/templates” subdirectory of the main
design used by the siteaccess. The following illustration shows where the templates would be
located in a design called ”example”.

(see figure 3.12)

Figure 3.12: Pagelayout + override templates in example design.

When the system is in use, the different overrides would be activated based on the given condi-
tions. The following illustration shows where/when the different alternate templates would be
used.

(see figure 3.13)

Every time a node referencing a folder object is viewed, the system will use the ”my folder.tpl”

3.6.1 The template override system / Template override example 228

3

Figure 3.13: Template override example.

template. When an article is viewed, the ”my article.tpl” template will be used. When a product
is viewed, the ”my product.tpl” template will be used. When node number 2 (the ”My site” node)
is viewed, the ”my welcome.tpl” will be used.

Chapter 4

Features

This chapter contains information about miscellaneous eZ Publish features along with instruc-
tions revealing how to configure and use them.

229

4.1 Audit trailing 230

4

4.1 Audit trailing

It is possible to automatically generate audit logs based on what the users are doing with the
system. This feature can be useful for big sites with many administrators and editors where
information about various operations should be logged and stored. For example, auditing makes
it possible to find out which user that removed content, from which IP address the request came
from and so on.

The system provides a set of built-in audit functions that make it possible to generate audit logs
for different types of activities. At minimum, for every operation, the system logs the following
information:

• When it happened (timestamp)

• Where the request came from (IP address)

• Which user that did it (username and ID number)

Note that most audit functions provide additional information. The following example shows
how a record in one of the log files look like after a node has been moved.

[May 23 2007 14:47:58] [127.0.0.1] [editor:16]
Node ID: 124
Old parent node ID: 2
New parent node ID: 59
Object ID: 114
Content Name: Folder
Comment: Moved the node to the given node: eZContentObjectTreeNode::move()

The following table shows the available built-in audit functions along with when they are trig-
gered, what kind of information that is actually logged and the default log file where the infor-
mation is stored.

Audit function Activity Logged Default log file
information

user-login Successful login at- login.log
tempts • Timestamp

• IP address
• User

(name:ID)
user-failed-login Failed login failed login.log

attempts • Timestamp
• IP address
• User

(name:ID)
content-move Location change of content move.log

content • Timestamp

4.1 Audit trailing 231

4

• IP address
• User

(name:ID)
• Old parent

node ID
• New parent

node ID
• Object ID
• Object name
• Comment

content-delete Removal of content content delete.log
• Timestamp
• IP address
• User

(name:ID)
• Node ID
• Object ID
• Object name
• Comment

role-change Role and policy role change.log
changes • Timestamp

• IP address
• User

(name:ID)
• Role ID
• Role name
• Comment

role-assign Role assignment to role assign.log
users and groups • Timestamp

• IP address
• User

(name:ID)
• Role ID
• Role name
• Object name
• Comment

section-assign Section assignments section assign.log
• Timestamp
• IP address
• User

(name:ID)
• Section ID
• Section name
• Node ID
• Object ID
• Object name

4.1 Audit trailing 232

4

• Comment
order-delete Removal of webshop order delete.log

orders • Timestamp
• IP address
• User

(name:ID)
• Order ID
• Comment

Configuration

By default, the auditing feature is turned off. In order to use audit trailing on your site, en-
able the ”Audit (page 1445)” setting located in the ”[AuditSettings]” section of an override for
the ”audit.ini” configuration file. Using the ”AuditFileNames (page 1443)” configuration array
located in the same file, you can specify which types of activities that should be logged (which
audit functions that should be used) and to which files they should be logged. The audit function
names must be the array keys and the log file names should be the values. Note that the default
configuration logs everything to a collection of files (refer to the table in the previous section for
details).

The ”LogDir (page 1446)” setting can be used to specify where the audit log files should be
stored. The default directory is ”var/log/audit”.

Example

Let’s say that you wish to audit successful login attempts and changes to roles and policies while
ignoring all other activities. Start by creating an override for ”audit.ini” and making sure that it
contains the following lines:

[AuditSettings]
Audit=enabled
LogDir=var/log/my_audit
AuditFileNames[]
AuditFileNames[user-login]=login.log
AuditFileNames[role-change]=role_change.log

Information about successful login attempts will end up in the ”login.log” file. Information about
role and policy changes will be put in the ”role change.log” file. Both files will be located in
the ”var/log/my audit” directory. Each record in these files will contain a timestamp pointing to
the exact date and time when an operation was performed, which user that is associated with it
(username and ID number) and which IP address the request came from. Records related to role
and policy changes will have additional information.

4.1 Audit trailing 233

4

Creating new audit functions

This section provides tips for PHP developers who want to create their own audit functions.

Sometimes you may need to create a new audit function, i.e. to make the system log information
about a specific operation to a particular audit log file. For example, if you wish to create a
new audit function called ”my-new-audit” and store information about operations to a file called
”info.log”, you can do the following:

1. Make sure that the ”Audit (page 1445)” setting located in the [AuditSettings] section of
an override for ”audit.ini” is enabled and add a new element to the ”AuditFileNames (page
1443)” configuration array by inserting the following line:

AuditFileNames[my-new-audit]=info.log

2. In the PHP code which defines the operation that should be logged, you can do something
like this:

include_once("kernel/classes/ezaudit.php");
eZAudit::writeAudit(’my-new-audit’, array(’User id’ => $userID,

’Comment’ => ’The operation XYZ was performed.’));

Elements like ’Name of something’ => <valueOfSomething> define which information
that should be written to the ”info.log” file when the operation is performed.

For example, a record in the log file can look like this:

[May 23 2007 14:44:04] [127.0.0.1] [anonymous:10]
User id: 10
Comment: The operation XYZ was performed.

4.2 Policy functions 234

4

4.2 Policy functions

The built-in access control mechanism (page 156) of eZ Publish is based on roles and policies. A
policy is a rule that grants access to a specific function or all functions of a module (page 145).
The functions are assigned to the module’s views and thus the access requirements for a view are
controlled by the functions that are assigned to it.

The following code (taken from the eZ Publish source) shows how the function-view assignments
of the ”notification (page 780)” module are specified in ”kernel/notification/module.php”.

<?php

$Module = array("name" => "eZNotification",
"variable_params" => true);

$ViewList = array();
$ViewList["settings"] = array(

"functions" => array(’use’),
"script" => "settings.php",
’ui_context’ => ’administration’,
"default_navigation_part" => ’ezmynavigationpart’,
"params" => array(),
’unordered_params’ => array(’offset’ => ’Offset’));

$ViewList["runfilter"] = array(
"functions" => array(’administrate’),
"script" => "runfilter.php",
’ui_context’ => ’administration’,
"default_navigation_part" => ’ezsetupnavigationpart’,
"params" => array());

$ViewList["addtonotification"] = array(
"functions" => array(’use’),
"script" => "addtonotification.php",
’ui_context’ => ’administration’,
"default_navigation_part" => ’ezcontentnavigationpart’,
"params" => array(’ContentNodeID’));

$FunctionList[’use’] = array();
$FunctionList[’administrate’] = array();

?>

As the code shows, there are three views and two functions assigned to them. While the ”ad-
ministrate” function is assigned to the ”runfilter” view, the ”use” function is assigned to the ”ad-
dtonotification” and ”settings” views.

4.2 Policy functions 235

4

Multiple function assignments

A view can have several functions assigned to it. From version 3.9.3, the system makes use of
logical operators (”and”, ”or”) within the function-view assignments. The following examples
show how this works.

Example 1

The ”tipafriend (page 750)” view of the ”content” module has two functions assigned. The fol-
lowing code is taken from ”kernel/content/module.php”.

$ViewList[’tipafriend’] = array(
’functions’ => array(’tipafriend’, ’read’),
’default_navigation_part’ => ’ezcontentnavigationpart’,
’script’ => ’tipafriend.php’,
’params’ => array(’NodeID’));

The code in this example specifies that a user must be granted access to both the ”tipafriend” and
”read” functions in order to use the ”tipafriend” view (which is a part of the ”content” module).
Note that there is an alternate way of specifying this, refer to the example below.

...
’functions’ => array(’tipafriend and read’),
...

Also, note that the ”and” operator can be either ”and” or ”&&”.

Example 2

The ”list (page 853)” view of the ”section” module has three functions assigned. The following
code is taken from ”kernel/section/module.php”.

$ViewList[’list’] = array(
’functions’ => array(’view or edit or assign’),
’script’ => ’list.php’,
’default_navigation_part’ => ’ezsetupnavigationpart’,
"unordered_params" => array("offset" => "Offset"),
’params’ => array());

The code above specifies that a user must be granted access to either the ”view” or the ”edit” or
the ”assign” function in order to use the ”list” view (which is a part of the ”section” module).
Note that that the ”or” operator can be either ”or” or ”||”.

4.2 Policy functions 236

4

Missing functions

Some modules do not have functions (for example, this is true for the ”search” and ”collabora-
tion” modules). In this case, granting access to a module means that the user(s) will get access
to all of its views.

If a module has both functions and views that have no functions assigned, only users that have
access to the entire module will get access to the functionless views.

Additional notes for earlier versions

In eZ Publish versions prior to 3.9.3 (except 3.8.9 and later versions of the 3.8 branch), granting
access to a function of a module means that the user(s) will get access to the following:

• Views that have the function assigned.

• Views that do not have any functions assigned.

For example, in eZ Publish version 3.9.2, there are no functions assigned to the ”discount-
groupview (page 884)” view of the ”shop” module. Anonymous users that have access to the
”buy” function of the ”shop” module can access the ”discountgroupview” view (along with other
views of the ”shop” module that do not have any functions assigned to them). This was changed
in versions 3.10.0 beta1, 3.9.3 and 3.8.9 because of security reasons. Refer to the release an-
nouncement for more information.

Custom modules that contain functions should not have views that do not have any functions
assigned to them.

Function limitations

A policy (which grants access to a module’s function) can be further restricted by function limi-
tations. This can only be done if the function itself supports limitations. A function may support
none, one or several limitations. The following code shows how the available limitations for the
”diff”, ”hide” and ”tipafriend” functions of the ”content” module are specified in ”kernel/content/
module.php”.

...
$FunctionList[’diff’] = array(’Class’ => $ClassID,
’Section’ => $SectionID,
’Owner’ => $Assigned,
’Node’ => $Node,
’Subtree’ => $Subtree);
...
$FunctionList[’hide’] = array(’Subtree’ => $Subtree);
...
$FunctionList[’tipafriend’] = array();
...

http://ez.no/community/news/ez_publish_security_fixes_3_9_3_and_3_8_9
http://ez.no/community/news/ez_publish_security_fixes_3_9_3_and_3_8_9

4.2 Policy functions 237

4

As the code shows, the ”diff” function supports five limitations, the ”hide” function supports one
limitation and the ”tipafriend” function supports no limitations. Refer to the ”Access control”
section of the ”Concept and basics” chapter for an overview of the available function limitations.

4.3 Multi-language 238

4

4.3 Multi-language

In eZ publish 3.7 and earlier versions, you have to specify one primary / main language that
affects every content object (i.e. each object must exist at least in this language). In addition,
you are allowed to specify additional languages which the content objects can be translated
to. The multi-language functionality is implemented at the version level and allows an object’s
version to exist in several languages (a language in this case is referred to as a translation). One
disadvantage of the old solution is that when several translations are needed, only one translator
can work on the object. In other words, the translators must work sequentially and thus wait
for eachother because only one user is allowed to edit an object’s version. This functionality has
been changed.

From 3.8, there is no need for primary / main language anymore. You can have for example one
article which is only available in English and another article which is only available in French.
After choosing the languages for your content objects, it is possible to translate them to any
of these languages. The translations of the same object can be created and edited separately
and simultaneously by multiple users (a user only edits one version and translation at a time).
The next subsections will briefly explain some main principles and terms that will be used when
describing the multi-language functionality.

Translatable class attributes

From 3.9, it is possible to translate the class names and the attribute names. In other words, you
can for example have ”Car” and ”Bil” as class names in English and Norwegian along with ”Top
speed” and ”Topphastighet” as attribute names. Refer to the ”Translatable class attributes (page
252)” documentation page for more information.

Locales

A locale is a set of country specific settings i.e. language, character sets, number formats, currency
format, date and time format, abbreviations of months and weekdays etc. eZ publish provides
many default locale settings where each locale is described in an INI file located in the ”share/
locale” directory. These configuration files are named according to locale identifiers.

A locale identifier consists of a three-letter language code and a two-letter uppercase country
code e.g. ”eng-US” (English, USA) or ”nor-NO” (Norwegian, Norway). Language and country
codes are specified by ISO 639 and ISO 3166-1 alpha-2 standards accordingly.

eZ publish uses the ”eng-GB” locale by default. Please refer to the ”Configuring your site locale
(page 242)” section for information about setting locale for your site, translating the administra-
tion interface, creating custom locales etc.

Default language

From 3.8, the ”ContentObjectLocale (page 1664)” INI setting does not specify the primary /
main language but the default language. This language will be used as the default value in PHP

http://en.wikipedia.org/wiki/ISO_639
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

4.3 Multi-language 239

4

functions that support an optional parameter for language. The default value of this INI setting
is ”eng-GB”.

Example

Let’s say that you have specified ”nor-NO” in the ”ContentObjectLocale” setting. In this case, if
you try to instantiate an object of some class using the ”eZContentClass::instantiate()” function
and do not explicitly specify the language to use then the Norwegian language will be used.

Translatable country names

From 3.9, it is possible to translate the names of countries to different languages. For example,
you can instruct the system to use ”Frankrike” instead of ”France” and ”Norge” instead of ”Nor-
way” whenever the list of countries is displayed on a siteaccess where Norwegian locale is used.
Refer to the ”Translatable country names (page 257)” documentation page for more information.

Translation languages

It is possible to choose the languages that you wish your content to be created in and/or trans-
lated to. This set of languages is referred to as translation languages. These can be managed via
the administration interface (page 250). The maximum number of languages that can be used
simultaneously is 30.

Initial/main language

An object can be created in any of the languages that have been added either using the setup
wizard or the ”Languages” part of the ”Setup” tab in the administration interface. When an object
is created, it’s initial/main language will be set to the language that was used during creation.
For example, if an article is created in Hungarian, it’s initial/main language will of course be set
to Hungarian.

Content that is in the initial/main language can not be removed from the object. However, if
the contents of the object exists in several languages, the initial/main language can be changed
and thus content that is not in the initial/main language can be removed. Changing the initial/
main language and removing languages/translations from an object can be done from within the
”Languages” window (in the first three tabs) in the administration interface.

Important note

Please note that the terms ”initial language” and ”main language” refer to the same thing. While
the code and database tables use ”initial language”, the administration interface uses ”main lan-
guage”. This inconsistency will hopefully be fixed in a future release.

4.3 Multi-language 240

4

Site languages

From 3.8, you can specify which languages the contents of a site should be displayed in. This
set of languages is referred to as site languages. These languages can be controlled per siteac-
cess using the ”SiteLanguageList[]” configuration setting located under the ”[RegionalSettings]”
section of the siteaccess ”site.ini.append.php” file. You can specify the site languages and their
priorities by adding the corresponding locale identifiers to this array. The languages that appear
at the top will get higher priority than the others. The first element in this array determines
the most prioritized language. The system will try to display content in this language first. If an
object is not translated to this language then the second prioritized language (specified as the
second element of the array) will be displayed. If an object does not exist in this language, the
third prioritized language will be used and so on. If an object does not exist in any of the site
languages, it will not be shown unless it is always available or if you configure the siteaccess to
display untranslated content.

Please note that if the ”SiteLanguageList” setting is not specified, the system will use the old
”ContentObjectLocale” setting and thus only the default language will be shown.

Example

Let’s say that your translation languages are English, French and Norwegian. If you specify two
of them as site languages for your public siteaccess (for example English as the most prioritized
language and French as the second prioritized one), the system will display content in these two
languages to your visitors while Norwegian content will not be shown. If you create one article
in English, another one in French and the third one in Norwegian, then only first and second
article will be displayed. If you translate the third article from Norwegian into one of the site
languages, the translated version of the article will be displayed on your site while the original
Norwegian version will still not be shown. If an article is available in both English and French, it
will be displayed in English (since English is the most prioritized language for the siteaccess).

Please refer to the ”Configuring the site languages (page 245)” section for more information
about site languages.

Objects which are always available

Some objects always need to be available even if they do not exist in any of the languages that
are configured for a sitaccess. For example, the system must be able to fetch user objects no
matter which siteaccess is used. Because of this, a new flag called ”always available” has been
introduced at the object level. It makes it possible to individually control the availability of the
different objects. When an object doesn’t exist in any of the site/prioritized languages and it is
always available, the system will use the object’s initial/main language to display its contents.

The default object availability can be controlled on the class level. By default this setting is
enabled for the ”Folder”, ”User”, ”User group”, ”Image”, ”File” etc. classes, so that objects of
these classes will be marked as ”always available” when created. Changing the default setting at
the class level will not affect the existing objects because it simply dictates the initial value for

4.3 Multi-language 241

4

the ”always available” flag which is stored for each object.

Example

Let’s say that one of your folders only exists in Norwegian, is marked as always available and
contains several articles (the articles are in English, French and Norwegian and none of them are
marked as always available). If you specify English and French as site languages for your public
siteaccess, this folder will still be displayed since it’s always available. Your visitors will thus be
able to view the articles that are in it. If the folder is not marked as always available then it will
not be displayed and thus your visitors will not be able to read the articles located under it until
you translate the folder itself into English or French.

4.3.1 Multi-language / Configuring your site locale 242

4

4.3.1 Configuring your site locale

eZ publish uses the ”eng-GB” locale by default. This behavior is determined by the ”Locale” INI
setting located in the ”[RegionalSettings]” block of the ”settings/site.ini” configuration file. If
you wish to use another locale for your site then you have to override this setting. Please note
that the specified locale will be used as the default value for the ”l10n (page 1120)” operator
unless you explicitly specify the desired locale when using this operator in your templates. The
following examples demonstrate how you can set the site locale.

Example 1

Let’s say that you need to use ”nor-NO” as system locale for all your siteaccesses. The following
instructions reveal how this can be done.

1. Open the ”site.ini.append.php” configuration file located in the ”settings/override” direc-
tory and edit it (if the file does not exist, create it).

2. Add the following lines under the ”[RegionalSettings]” block:

Locale=nor-NO

3. Clear the caches.

The system will start to use the locale settings specified in the ”share/locale/nor-NO.ini” file for
all your siteaccesses.

Example 2

Let’s say that you need to use the ”nor-NO” locale for one of your siteaccesses. To do this,
edit the ”site.ini.append.php” file located in the ”settings/siteaccess/example/” directory (where
”example” is the name of your siteaccess) as described in the previous example and make sure
that no locale is specified in the ”settings/override/site.ini.append.php” file. After clearing the
caches, the ”example” siteaccess will start to use the ”nor-NO” locale. However, this may not
result in the translation of all parts of the interface for this siteaccess (like ”Login” and ”Sign
up” links/buttons etc.) into Norwegian. To do this, you should add the following line under the
”[RegionalSettings]” block of the siteaccess ”site.ini.append.php” file:

TextTranslation=enabled

This will instruct the system that the strings marked with ”i18n (page 1118)” in the templates
should be translated according to the current locale. This means that if you set the ”nor-NO”
locale for your admin siteaccess and enable the ”TextTranslation (page 1662)” setting then ev-
erything in the administration interface will be translated into Norwegian. (The ”TextTranslation”
configuration setting is disabled by default.)

You can also specify different locales for the remaining siteaccesses in the same way, otherwise
the default ”eng-GB” locale will be used for them.

4.3.1 Multi-language / Configuring your site locale 243

4

Adding missing locales

eZ publish provides many default locale settings where each locale is described in an INI file
named by the locale identifier and placed in the ”share/locale” directory. If you cannot find the
desired locale there, look at http://ez.no/community/contribs/internationalization. The follow-
ing example demonstrates how to add a missing locale.

Example

Let’s say that you need to use the ”ell-GR” locale on your site. To do this, download Greek trans-
lation for eZ publish from http://ez.no/community/contribs/internationalization and unpack it
into a temporary location. You should see there a subdirectory called ”share” which contains the
locale configuration file (share/locale/ell-GR.ini) and the translation file for eZ publish (share/
translations/ell-GR/translation.ts). In addition, the downloaded package may contain a flag icon
(share/icons/flags/ell-GR.gif) and/or translation file(s) for some extensions located in the ”ex-
tension” subdirectory.

Please note that the ”translation.ts” file contains eZ publish specific strings translated into Greek
language (the strings that are used in the templates and PHP code). If the ”TextTranslation”
setting is enabled, the strings from this file will be used for translating different parts of the
interface, system messages, warnings etc.

If you copy the ”share” subdirectory to the root directory of your eZ publish installation, set the
”ell-GR” locale (as described in the previous two examples) and clear the caches, the system will
start to use Greek locale.

Custom locales

In addition to the default locale settings that come with eZ publish, it is possible to create custom
locales. The following examples demonstrate how this can be done.

Example 1

Let’s say that you wish to use Icelandic locale on your site. You can create a custom locale
configuration file for this based on the ”eng-GB” locale settings. To do this, do the following:

1. Go to the ”share/locale” directory and copy the ”eng-GB.ini” configuration file to a new file
called ”ice-IS.ini”.

2. Open this file and edit the locale settings.

3. Set your site locale to ”ice-IS”.

http://ez.no/community/contribs/internationalization
http://ez.no/community/contribs/internationalization

4.3.1 Multi-language / Configuring your site locale 244

4

Example 2

Let’s say that you wish to modify the Norwegian locale. The original locale file should not be
changed because it will be overwritten next time you upgrade eZ Publish. Instead, you should
create a custom locale file based on the original ”nor-NO” locale settings. The following text
reveals how this can be done.

1. Go to the ”share/locale” directory and copy the ”nor-NO.ini” configuration file to a new file
called ”nor-NO@custom.ini”.

2. Open the newly copied file and edit the locale settings.

3. Make sure that your siteaccess uses the ”nor-NO@custom” locale.

4. Clear the caches.

4.3.2 Multi-language / Configuring the site languages 245

4

4.3.2 Configuring the site languages

No site languages are specified by default (i.e. after downloading and unpacking the eZ publish
distribution). During the installation process, the setup wizard (page 57) allows the user to
choose the languages that should be used on the site which is being created. The list of available
languages displayed at this step is built using the INI files located in the ”share/locale” directory.
Use the radio buttons to choose the default language (required), and the checkboxes to choose
the additional languages (optional).

Please note that choosing the default language at this step will affect both default language and
system locale. Please note that one of the radio buttons will be pre-selected i.e. the default
language will be specified according to the language settings of your browser . However, you
can choose another language instead. If you select for example ”German”, then both locale and
default language will be set to ”ger-DE” and your administration interface will be translated into
German (in addition, the ”TextTranslation” setting will be enabled).

All the selected languages will be added to the system as translation languages and recorded as
site languages for both public and admin siteaccesses. The default language will be recorded as
the most prioritized language. You will be able to use any of these languages for creating and
translating your content after the setup wizard is finished. It is also possible to add new trans-
lation languages (page 250) using the administration interface and to change the site languages
configuration by editing your configuration settings.

Displaying untranslated content

Since it may be useful to display all translation languages, an additional configuration setting
called ”ShowUntranslatedObjects” has been added. It can be set to either ”enabled” or ”disabled”.
If this setting is enabled, the system will still use the language priorities determined by the
”SiteLanguageList[]” array, but it will not filter away languages that are not on the list. In other
words, all objects will be displayed regardless of which language they exist in - and objects that
exist in a language specified in the priority list will be displayed using the prioritized language.

The ”ShowUntranslatedObjects” setting is disabled by default. However, the setup wizard usually
enables it for the admin siteaccess. This allows the site administrator to create and edit objects in
any of the translation languages even if some of these languages are not listed as site languages.

Example

Let’s say that you have selected British English as default language, French and Norwegian as
additional languages (look at the following screenshot).

(see figure 4.1)

In this case, you will have the following settings for locale, default language and site languages
after the setup wizard is finished:

4.3.2 Multi-language / Configuring the site languages 246

4

Figure 4.1: The language selection step in the setup wizard.

[RegionalSettings]
Locale=eng-GB
ContentObjectLocale=eng-GB
SiteLanguageList[]=eng-GB
SiteLanguageList[]=fre-FR
SiteLanguageList[]=nor-NO

This means that the site locale is set to ”eng-GB”, the default language is English, the most
prioritized language is English, the second prioritized language is French and the third prioritized
language is Norwegian. The setup wizard will put these settings into the ”site.ini.append.php”
files for both public and admin siteaccesses. The ”TextTranslation (page 1662)” setting will be
disabled for both siteaccesses because the ”eng-GB” locale is used.

4.3.2 Multi-language / Configuring the site languages 247

4

Any of these three languages can be used for creating and translating your content. You can
change the site language configuration later by editing the ”site.ini.append.php” file for the de-
sired siteaccess.

The setup wizard will add one more line in the ”site.ini.append.php” file for the admin siteaccess:

ShowUntranslatedObjects=enabled

This will tell the system to make all the translation languages available when working with
content objects in the administration interface.

You can add new translation languages using the admin interface. Let’s go to ”Setup - Languages”
and add German. This language will not be displayed on your site (public siteaccess) because it
is not included in the list of site languages (i.e. not specified in the ”SiteLanguageList[]” array).
However, after clearing the caches German will be displayed as the last item in the drop-down
list of available languages for object creation in the administration interface (look at the next
screenshot) because the ”ShowUntranslatedObjects” setting is enabled for the admin siteaccess.

(see figure 4.2)

Figure 4.2: The ”Create here” interface.

Changing the language priorities

The ”SiteLanguageList[]” setting specified in the siteaccess ”site.ini.append.php” file contains the
prioritized list of site languages where items appearing at the top get higher priority than the
others. The system will try to display content in the most prioritized language first. If an object
is not translated to this language then the second prioritized language will be displayed. If an
object does not exist in this language then the third prioritized language will be used and so on.
If an object does not exist in any of the site languages, it will not be shown unless it is always
available or if you configure the siteaccess to display untranslated content.

To change the site language priorities, open the configuration file, edit it and re-arrange the
elements of this array in the desired way.

Example

Let’s say that the following settings are specified in the ”site.ini.append.php” file for your public
siteaccess:

4.3.2 Multi-language / Configuring the site languages 248

4

[RegionalSettings]
SiteLanguageList[]
SiteLanguageList[]=eng-GB
SiteLanguageList[]=fre-FR
SiteLanguageList[]=ger-DE
SiteLanguageList[]=nor-NO

If an article exists in French and Norwegian languages, the system will follow the prioritized list
of site languages and display the article in French which is the second prioritized language. This
behavior will not change if you translate this article into German (the third prioritized language).
However, if you translate the article into English (which is the most prioritized language), then
it will be displayed in English.

If you move the line ”SiteLanguageList[]=nor-NO” to the top of the list, then Norwegian will be-
come the most prioritized language. This will instruct the system to display content in Norwegian
and use other site languages only when a Norwegian translation is not available.

Using several public siteaccesses

In the previous example only one public siteaccess was used. A multi-language site typically uses
several public siteaccesses. If your site content exists in for example English and French then it
is recommended to have two public siteaccesses with the following language configuration:

Siteaccess ”gb” Siteaccess ”fr”

[RegionalSettings]
SiteLanguageList[]
SiteLanguageList[]=eng-GB

[RegionalSettings]
SiteLanguageList[]
SiteLanguageList[]=fre-FR
SiteLanguageList[]=eng-GB

If an article exists only in English, it will be displayed to the visitors of both siteaccesses (because
English is the only site language for the ”gb” siteaccess and the second prioritized language for
the ”fr” siteaccess). If you translate this article into French, it will be shown in French when
viewing the ”fr” siteaccess (since French is the most prioritized language for this siteaccess). If
an article exists only in French, it will be available for the visitors of the ”fr” siteaccess but it will
not show up in the ”gb” siteaccess.

Now, let’s say that you wish to start using for example Norwegian language on your site. In this
case, you will probably add Norwegian as a new translation language, create a new siteaccess
called ”no” and specify the following settings in the ”site.ini.append.php” file of the newly created
siteaccess:

[RegionalSettings]
SiteLanguageList[]
SiteLanguageList[]=nor-NO

4.3.2 Multi-language / Configuring the site languages 249

4

This will tell the system to use Norwegian as the only site language for this siteaccess. In other
words, if an article does not exist in Norwegian, it will not be displayed.

Of course, it is possible to add the following line to these settings:

SiteLanguageList[]=eng-GB

In this case Norwegian will be the most prioritized language for the ”no” siteaccess and English
will be the second prioritized one (look at the next table).

Siteaccess ”gb” Siteaccess ”fr” Siteaccess ”no”
The most prioritized eng-GB fre-FR nor-NO
language
The second priori- - eng-GB eng-GB
tized language
The third prioritized - - -
language

Articles that exist only in English will be displayed in English to the visitors of all three siteac-
cesses. If an article exists only in Norwegian, it will be shown only on the ”no” siteaccess.

Let’s create a new article called ”Lundi” (Monday) in French. This article will be displayed to
the visitors of the ”fr” siteaccess but not to the visitors of the ”gb” and ”no” siteaccesses (because
French is not listed as site language for these siteaccesses). If you translate this article into
Norwegian then it will become available as ”Mandag” (Monday) when viewing the ”no” siteaccess
but still invisible for the users of the ”gb” siteaccess. If you add English translation for this article,
it will become available as ”Monday” for the visitors of the ”gb” siteaccess. However, nothing will
change for the ”fr” and ”no” siteaccesses because English is their second prioritized language.

4.3.3 Multi-language / Managing the translation languages 250

4

4.3.3 Managing the translation languages

The administration interface allows you to manage the translation languages for your site. This
can be done by manipulating the global translation list. To access the list of translation lan-
guages, click the ”Setup” tab in the administration interface and select the ”Languages” link on
the left. (This interface can also be accessed by requesting ”/content/translations” in the URL.)
The following screenshot shows how this list looks like.

(see figure 4.3)

Figure 4.3: The list of translation languages.

The last column of the list contains information about the number of translations i.e. how many
content objects are translated into each language. The screenshot shows a situation when all the
objects exist in English but they are not translated to French and Norwegian. If you click on a
language name, the system will display information about this language and its locale settings.

The next subsections explain how the translation languages can be added and/or removed using
this interface.

Adding a new language

You can add a new translation language by clicking the ”Add language” button and selecting
the desired language from the drop-down list called ”Translation” (look at the next screenshot).
Please note that the contents of this list depends on the available locales represented by the INI
files in the ”share/locale” directory. If you wish to use a language which is not available here
then you need to add the missing locale first.

(see figure 4.4)

Click ”OK” to save your changes. After clearing the caches, you will be able to use this language
for your content objects.

Removing a language

You can only remove a language if there are no content objects using it (when the ”Translations”
column contains ”0” for a language).

4.3.3 Multi-language / Managing the translation languages 251

4

Figure 4.4: Adding a new translation language.

To remove one or more languages from the system, select the languages that you wish to remove
(use the checkboxes located in the first column) and click the ”Remove selected” button.

4.3.4 Multi-language / Translatable class attributes 252

4

4.3.4 Translatable class attributes

In eZ Publish 3.9.0 and later versions, it is possible to translate the names of the attributes when
editing the different classes. This allows the system to display the attribute labels in the correct
language when users are working with (both editing or viewing) the different translations. For
example, if a class is being used to store information about cars in both English and Norwegian,
it is a good idea to translate the names of the class attributes so that the ”Color” attribute of
the cars would appear as ”Color” or ”Farge” depending on whether the object is being edited in
English or Norwegian.

A class can be created using any of the languages that have been added either using the setup
wizard or the ”Languages” part of the ”Setup” tab in the administration interface. When a class
is created, it’s main language will be set to the language that was used during creation. The class
name and the names of the class attributes that are in the main language can not be removed from
the class. However, if the class exists in several languages, the main language can be changed
and thus the class name and the names of the class attributes that are not in the main language
can be removed. Changing the main language and removing languages/translations from a class
can be done from within the ”Translations” window in the class view interface.

Creating classes in different languages

The administration interface allows you to create content classes from scratch using any of the
translation languages. The following text reveals how this can be done.

1. Access the ”Setup” tab in the administration interface, click ”Classes” on the left and select
the class group that you wish to add a new class to. You should see the list of classes
assigned to this group.

2. Use the drop-down list of languages located in the bottom of the ”Classes inside <group
name>” window to choose the desired language for the class that you wish to create. Click
the ”New class” button (see the following screenshot). (see figure 4.5)

If the desired language is not listed in the drop-down list, make sure it exists in the global
translation list. You can add new languages to this list as described in the ”Managing
the translation languages (page 250)” section. Note that the newly added languages will
become available after the caches have been cleared.

3. You will be taken to the class edit interface, where the language that the class is being edited
in will be shown in the top right corner. Specify name, identifier, object name pattern and
container flag for the newly created class and add the desired attributes using the drop-
down list located in the bottom of the class edit interface. After adding the attributes, click
”OK” to save the class.

Translating classes to different languages

The administration interface allows you to translate the names of content classes and their at-
tributes to any of the translation languages. The following text reveals how this can be done.

4.3.4 Multi-language / Translatable class attributes 253

4

Figure 4.5: Choose a language for a new content class.

1. In the administration interface, locate the class that you wish to edit and click on the name
of the class. You will be taken to the class view interface.

2. Select the ”Another language” item from the drop-down list and click the ”Edit” button as
shown in the following screenshot. (see figure 4.6)

The system will display the language selection interface for content classes (see the follow-
ing screenshot).
(see figure 4.7)

Use the language selection radio buttons to select the language that you wish to translate
the names of the class attributes (in the screenshot above, Norwegian is selected). It is also
possible to choose which existing language the newly translated names should be based
on. You can select one of the existing languages or ”None”. When a language is chosen
instead of ”None”, the system will copy the existing class attribute names from the selected
language and allow them to be modified/translated (otherwise, you will have to type in
everything from scratch into empty fields).

3. After clicking the ”Edit” button, the system will bring up the class edit interface where you
should specify the class name and the names of the class attributes in the selected language.
When finished, click ”OK” to save your changes.

4.3.4 Multi-language / Translatable class attributes 254

4

Figure 4.6: The main window of the class view interface.

Figure 4.7: The language selection interface for class attribute names.

4.3.4 Multi-language / Translatable class attributes 255

4

Editing classes in different languages

You can edit a content class in any of the languages that it exists in. The following text reveals
how this can be done.

Using the ”Edit” button

1. In the administration interface, locate the class that you wish to edit and click on the name
of the class. You will be taken to the class view interface.

2. Select the desired language from the drop-down list and click the ”Edit” button. The system
will bring up the class edit interface where you can change the class name and the names
of the class attributes in the selected language. When finished, click ”OK” to save your
changes.

Using the translations window

1. In the administration interface, locate the class that you wish to edit and click on the name
of the class. You will be taken to the class view interface.

2. The horizontally aligned switches in the upper area control the visibility of the different
windows. Click on the ”Translation” switch to enable the translations window (see the
following screenshot). (see figure 4.8)

Figure 4.8: Enabling the translations window.

A bluish background indicates that the switch is on and thus the ”Translations” window will
be active/visible. The following screenshot shows how this window looks like for a class
that exists in three languages. (see figure 4.9)

Locate the language that you wish to edit and click on the language’s corresponding edit
icon (on the right hand side). The system will bring up the class edit interface.

Changing the main language

If a class exists in several languages then you can choose which of them will be the main language.

4.3.4 Multi-language / Translatable class attributes 256

4

Figure 4.9: Translations window.

1. In the administration interface, locate the class that you wish to edit and click on the name
of the class. You will be taken to the class view interface.

2. Enable the translations window, select the desired language using the radio buttons and
click the ”Set main” button.

Removing languages

It is possible to remove languages/translations from a class (except the main language). This
can be done from within the ”Translations” window in the class view interface. When either
one or several languages are selected using the checkboxes (on the left hand side), the ”Remove
selected” button can be used to carry out the actual removal of the selected translations.

4.3.5 Multi-language / Translatable country names 257

4

4.3.5 Translatable country names

From 3.9, it is possible to translate the names of countries to different languages. For example,
you can instruct the system to use ”Frankrike” instead of ”France” and ”Norge” instead of ”Nor-
way” whenever the list of countries is displayed on a siteaccess where Norwegian locale is used.
The following example demonstrates how this can be done.

Example

If you wish to replace the English country names of France and Norway with the Norwegian ones
on a siteaccess that uses the Norwegian locale, you can do the following.

1. Go to the ”share/locale” directory and copy the ”nor-NO.ini” configuration file to a new file
called ”nor-NO@custom.ini”.

2. Add the following lines under the ”[RegionalSettings]” block:

[CountryNames]
Countries[]
Countries[FR]=Frankrike
Countries[NO]=Norge

3. Set your site locale to ”nor-NO@custom” (refer to the ”Configuring your site locale (page
242)” documentation page for more information about setting the site locale).

After clearing the caches, the system will use Norwegian country names for France and Norway
whenever the list of countries is displayed. The following screenshot shows how a translated
country name will appear in the ”Default selection” drop-down list when an attribute of the
”ezcountry (page 469)” datatype is being edited.

(see figure 4.10)

4.3.5 Multi-language / Translatable country names 258

4

Figure 4.10: List of countries containing translated country names.

4.3.6 Multi-language / Multilingual objects 259

4

4.3.6 Multilingual objects

The following text describes how you can create new multilingual objects, make an object always
available, set the initial/main language for an object and so on.

Creating new objects

The administration interface allows you to create content objects in any of the translation lan-
guages. Use the drop-down list of languages located in the ”Create here” interface to choose the
desired initial/main language for the object that you wish to create and click the ”Create here”
button (look at the next screenshot).

(see figure 4.11)

Figure 4.11: The ”Create here” interface.

If the desired language is not listed in the drop-down box, do the following:

1. Go to the list of translation languages and add the desired language if it is not listed there
as described in the ”Managing the translation languages (page 250)” section.

2. Make sure that the ”site.ini.append.php” file of your admin siteaccess contains the following
line under the ”[RegionalSettings]” block:

ShowUntranslatedObjects=enabled

The language will become available after clearing the caches.

Changing the initial/main language

If an object exists in several languages then you can choose which of them will be the initial/
main language. Select the desired translation in the translations window using the radio buttons
and click the ”Set main” button.

Changing the object availability

To make an object always available, select the ”Use the main language if there is no prioritized
translation” checkbox located in the translations window of the object view interface and click
the ”Update” button.

4.3.6 Multi-language / Multilingual objects 260

4

Default object availability for a class

It is possible to set the default object availability on the class level. By default this setting is
enabled for the ”Folder”, ”User”, ”User group”, ”Image”, ”File” etc. classes, so that the new
objects of these classes will be marked as ”always available” when created. Note that this can
be reconfigured for each individual object regardless of the class setting. The following example
demonstrates how this can be done.

Example

Let’s say that you are going to create a set of articles in English that should be displayed on any
siteaccess no matter which site languages are specified for these siteaccesses. You can enable the
default object availability setting for your ”Article” class so that each newly created article will
become ”always available” by default. The following instructions reveal how to do this.

1. Access the ”Setup” tab in the administration interface, click ”Classes” on the left and select
the ”Content” class group. You should see the list of classes assigned to this group as shown
in the following screenshot.

(see figure 4.12)

Figure 4.12: The list of classes.

Find the ”Article” class there and click on the edit icon located in the same line of the list.
You will be taken to the class edit interface.

2. Select the ”Default object availability” checkbox as shown in the screenshot below and click
the ”OK” button to save your changes.
(see figure 4.13)

Please note that the changes will not affect any of the existing articles. Only new articles will be
affected.

4.3.6 Multi-language / Multilingual objects 261

4

Figure 4.13: The class edit interface.

4.3.7 Multi-language / Working with translations 262

4

4.3.7 Working with translations

You can use the translations window to view the languages that the object exists in. The following
text reveals how you can create, edit and remove the object translations.

Editing a translation

All content editing is done through the object edit interface. This interface will automatically be
displayed whenever you’re editing existing or creating new objects. If an object exists in several
languages then you can choose which translation to edit. The following text reveals how you can
edit a translation using different approaches.

Using the translations window

1. Use the administration interface to navigate to the object that you wish to edit. In other
words, make sure that the object is being displayed.

2. Enable the translations window and locate the language that you wish to edit. Click on the
language’s corresponding edit icon (on the right hand side). The system will bring up the
edit interface.

Using the ”Sub items” window

1. Use the administration interface to navigate to the node/object which contains the one that
you wish to edit. In other words, make sure that the parent node is being displayed.

2. Look at the ”Sub items” window and locate the node/object that you wish to edit. Click
on the node’s corresponding edit icon (on the right hand side). You will be taken to the
language selection interface which is described below.

3. Use the radio buttons located in the ”Existing languages” frame to select the language that
you wish to edit and click the ”Edit” button. The system will bring up the edit interface.

The language selection interface

The language selection interface (full or reduced) appears when you have to choose which trans-
lation you wish to edit or create. The following screenshot shows the language selection interface
for a folder that exists in English and French languages.

(see figure 4.14)

As you can see from the screenshot above, the language selection radio buttons are divided into
two groups. The ”Existing languages” group contains the languages that are already used by
the object. This list makes it possible to select an existing translation for editing. The ”New
languages” group contains a list of the translation languages that are not used by the object. The
latter makes it possible to translate the contents of the object into a language that it does not

4.3.7 Multi-language / Working with translations 263

4

Figure 4.14: The language selection interface.

exist in yet. When adding a new translation, it is possible to choose which existing translation it
should be based on. You can select one of the existing languages or ”None”. When a language is
chosen instead of ”None”, the main part of the edit page will contain translation interface instead
of the standard edit interface.

Using the tree menu and the context menu

1. Use the tree menu on the left to locate the object that you wish to edit.

2. Click on the object’s icon in order to bring up the context menu.

3. Access the ”Edit in” submenu and select the language that you wish to edit as shown in the
following screenshot.

(see figure 4.15)
The screenshot above shows the content structure pop-up menu for a folder that exists in
English and French. After selecting a language, the system will display the edit interface.

Using the ”Edit” button

1. Use the administration interface to navigate to the node (page) that you wish to edit. In
other words, make sure that the node is being displayed.

2. Use the drop-down list of languages located in the preview window to select the language
that you wish to edit and click the ”Edit” button (look at the next screenshot).

(see figure 4.16)
The system will bring up the edit interface.

4.3.7 Multi-language / Working with translations 264

4

Figure 4.15: The context menu.

Figure 4.16: Selecting the language for editing.

Using the bookmarks

1. Make sure that your bookmarks are being displayed (use the ”+” sign to open the window).

2. Locate the object that you wish to edit and click on its icon to bring up the context menu.

3. Access the ”Edit in” submenu and select the language that you wish to edit. The system will
bring up the edit interface.

Editing multiple languages

It is possible to edit two or more translations/languages of the same object. Internally the system
actually edits two or more versions of the same object. A draft only contains object attribute data
for one language. When the draft is published, the system will copy all other languages from the

4.3.7 Multi-language / Working with translations 265

4

previously published version. The following screenshot shows how the draft list interface looks
like when the user is editing three translations of the same article (this interface can be accessed
by clicking the ”My account” tab and selecting the ”My drafts” link on the left).

(see figure 4.17)

Figure 4.17: The ”My drafts” interface.

The translations of the same object can be created and edited separately and simultaneously by
multiple users (a user only edits one version and language at a time).

Adding a new translation

You can translate the objects into any of the translation languages using the administration in-
terface. The following text reveals how you can translate an object using different approaches.

Using the ”Sub items” window

1. Use the administration interface to navigate to the node/object which contains the one that
you wish to edit. In other words, make sure that the parent node is being displayed.

2. Look at the ”Sub items” window and locate the node/object that you wish to edit. Click
on the node’s corresponding edit icon (on the right hand side). You will be taken to the
language selection interface. Select the desired parameters in the ”New languages” frame
and click the ”Edit” button. The system will bring up the edit interface.

Using the tree menu and the context menu

1. Use the tree menu on the left to locate the object that you wish to edit.

2. Click on the object’s icon in order to bring up the context menu.

3. Access the ”Edit in” submenu and select the ”Another language” item. You will be taken
to the reduced language selection interface. It contains a list of languages in which the
object does not exist (look at the following screenshot) and a list of languages that the new
translation can be based on.

4.3.7 Multi-language / Working with translations 266

4

Figure 4.18: The reduced language selection interface.

(see figure 4.18)
Select the language that you wish to add and optionally one of the existing languages to be
used as original text during translation. After the ”Edit” button is clicked, the system will
bring up the edit interface.

Using the ”Edit” button

1. Use the administration interface to navigate to the object that you wish to edit. In other
words, make sure that the object is being displayed.

2. Select the ”Another language” item from the drop-down list of languages which is located
in the preview window and click the ”Edit” button. The system will display the reduced
language selection interface (described above). Select the desired parameters and click the
”Edit” button. The system will bring up the edit interface.

Using the bookmarks

1. Make sure that your bookmarks are being displayed (use the ”+” sign to open the window).

2. Locate the object that you wish to edit and click on its icon to bring up the context menu.

3. Access the ”Edit in” submenu and select the ”Another language” item. The system will
display the reduced language selection interface (described above). Select the desired pa-
rameters and click the ”Edit” button. The system will bring up the edit interface.

4.3.8 Multi-language / The bit-field algorithm 267

4

4.3.8 The bit-field algorithm

The following text reveals some technical details related to the bit-field algorithm that is used for
language filtering and prioritizing.

The system stores information about all the translation languages in the ”ezcontent language”
database table. These languages are identified by powers of 2 i.e. their ID numbers are 2, 4, 8,
16, 32 etc. The value 1 (2ˆ0) is used for marking the objects always available. When an object
is marked always available, it will be shown even though it does not exist in a language that is
specified using the prioritized language list (the ”SiteLanguageList” configuration array).

The ”always available” field

The ”ezcontentclass” table in the database includes the ”always available” field (0 by default)
which controls whether new instances (objects) of a class should be set to ”always available” or
not. If this value is set to 1 for a class, then all newly created instances of that class will be
always available. Note that this can be changed on the object level later on. The class setting
only controls the initial value of the ”always available” flag of the objects.

The ”language mask” field

When storing information about a content object in the ”ezcontentobject” database table, the
system uses a special bit-field called ”language mask” to identify languages in which the last
published version of an object exist. This field contains the sum of the ID numbers of these
languages plus 1 if an object is always available. When a new object is created, the sum of
the initial language ID and the default ”always available” value (specified in the class) will be
recorded to the object’s ”language mask” field.

The ”language mask” bit-field is updated every time an object’s language configuration changes.
This typically happens when a translation is added or removed to/from an object.

Example

Let’s say that you have two translation languages with the following ID numbers:

Language name ID
English (United Kingdom) 2
French (France) 4

This allows the following possible values of ”language mask” for your content objects:

Language mask Bitmap Languages
2 00010 The object exists in English.
3 00011 The object exists in English

4.3.8 Multi-language / The bit-field algorithm 268

4

and is always available.
4 00100 The object exists in French.
5 00101 The object exists in French

and is always available.
6 00110 The object exists in English

and French.
7 00111 The object exists in English

and French and is always
available.

When storing information about an object’s version in the ”ezcontentobject version” database
table, the ”language mask” bit-field contains the sum of the ID numbers of the languages in
which a version exists plus 1.

The ”initial language id” field

The ”ezcontentobject” table in the database includes the ”initial language id” field which is used
for storing the ID number of the object’s initial language.

When storing information about an object’s version in the ”ezcontentobject version” database
table, the system records the ID number of the language which the version was edited in to a
special bit-field called ”initial language id”.

The ”language id” field

When storing information about an object attribute in the ”ezcontentobject attribute” database
table, the system uses the ”language code” field to store the language code of the translation
that the attribute belongs to (for example ”eng-GB”). The ”language id” bit-field represents the
same information in terms of language ID numbers i.e. this field contains the ID number of the
translation language.

4.3.9 Multi-language / Language based permissions 269

4

4.3.9 Language based permissions

The ”create” and ”edit” functions of the ”content” module support limitation on the language
level. For example, it is possible to configure the system so that a group of users are allowed to
create and translate objects using English and Norwegian while another group of users are only
allowed to translate existing content into French. The ”read” function does not support limitation
on the language level and thus all translations of an object can be viewed by users who have read
access to it.

Content/create

The ”language” limitation of the ”create” function controls which languages that are allowed to
be used when objects are created. The following screenshot shows the edit interface for a policy
that only allows the creation of French articles within the standard section.

(see figure 4.19)

Figure 4.19: The policy edit interface.

Content/edit

The ”language” limitation of the ”edit” function controls which translations of objects that can be
edited. It also controls which translations that can be added to objects. The following screenshot

4.3.9 Multi-language / Language based permissions 270

4

shows the edit interface of a policy that only allows editing French content (articles) or adding a
French translation to existing articles.

(see figure 4.20)

Figure 4.20: The policy edit interface.

Combined with the ”content/read” function (which does not support any language limitations),
the policy used in the example above will provide a configuration that allows any article to be
translated from any language to French. The combination is shown in the following screenshot.
Note that users who only do translation work do not need to have access to the ”create” function
of the ”content” module.

(see figure 4.21)

4.3.9 Multi-language / Language based permissions 271

4
Figure 4.21: The role edit interface.

4.4 Multi-language support for URL aliases 272

4

4.4 Multi-language support for URL aliases

In eZ Publish 3.10, a new feature that makes it possible to use multilingual virtual URLs (also
known as nice URLs or URL aliases) has been introduced. This feature allows URL aliases to exist
in several translation languages.

Auto-generated aliases

From 3.10, the automated virtual URL generation mechanism allows URL aliases to exist in
several languages, depending on which languages the actual objects exist in. In other words,
the URL aliases for nodes are now created in accordance with the existing translations of the
objects encapsulated by the nodes. When a new translation is added to an object, the system will
automatically generate a new set of URL aliases (based on the translations) for the node(s) that
encapsulate that object.

A new field ”URL alias name pattern” has been added to the class edit interface. It controls how
the virtual URLs of the nodes will be generated when the objects (instances of the classes) are
created.

It is not possible to create, edit or remove auto-generated aliases using the administration inter-
face. They are updated automatically when objects are changed. The only way to change an
auto-generated alias is to edit the object itself in the corresponding language.

Manual/user-defined aliases

The following two types of virtual URLs can be managed using the administration interface (page
277):

• Global URL aliases

• Node URL aliases

The list of global URL aliases contains all user-defined virtual URLs, except from those that are
created for destinations (system URLs) like ”content/view/full/node id”, where ”node id” is the
ID number of a node. These are called node URL aliases and can be managed separately for
individual nodes.

While global aliases always start from the root of the site, an alias of a node can either start from
the parent node or from the root of the site. This is controlled by the ”Relative to parent” flag.

Node URL aliases do not operate transparently: a user-defined URL alias of a node cannot be
used as a part of URLs that point to the children of that node. Refer to the example below for
more information.

4.4 Multi-language support for URL aliases 273

4

Example

Let’s say that a folder called ”norway” contains two articles that can be accessed using the fol-
lowing URLs:

• http://www.example.com/norway/oslo

• http://www.example.com/norway/bergen

and you have created a new URL alias ”kingdom” for this folder. In this case, the ”norway” folder
will be accessible through any of the following URLs:

• http://www.example.com/norway

• http://www.example.com/kingdom

However, the following two URLs will bring up a ”Module not found” error:

• http://www.example.com/kingdom/oslo

• http://www.example.com/kingdom/bergen

Wildcard based URL forwarding

eZ Publish supports wildcard based URL forwarding. This means that you can create a URL
alias that contains one or more asterisks (*) and the system will automatically replace the cor-
responding parts in URLs according to the destination URL specified. For example, you can
create a URL alias called ”pictures/*/*” and specify ”media/images/{1}/{2}” as a destination.
In this case, a URL like ”http://www.example.com/pictures/home/photo/” will load ”http://
www.example.com/media/images/home/photo/”. In other words, you will be able to use ”pic-
tures” instead of ”media/images” in the URLs when accessing content nodes that are located two
or more levels beneath the ”media/images” node.
It is possible to choose whether an alias will work as a ”direct” or ”forward” one. In the example
above, a ”direct” alias means that when someone enters ”http://www.example.com/pictures/
home/photo/” in the address bar of a browser, the entered address will stay the same while the
actual node will be displayed. If the alias is of the ”forward” type, the system will redirect to
”http://www.example.com/media/images/home/photo/” instead.

Wildcard URL aliases can be managed using the administration interface.

Availability

An alias is only available for a siteaccess if the language of the alias matches one of the site lan-
guages specified for this siteaccess. If a siteaccess is configured to display untranslated content,
then aliases in all languages will be available.

If an object is always available, the URL aliases for the object’s node assignments will be available
for all siteaccesses. This is true for both auto-generated and user-defined aliases.

4.4 Multi-language support for URL aliases 274

4

Aliases which are always available

Some global aliases always need to be available regardless of which languages that are config-
ured for a siteaccess. Because of this, a new flag called ”Include in other languages” has been
introduced for global aliases. It makes it possible to individually control the availability of the
different aliases.

Languages

Multilingual URL aliases do not control which languages the requested pages will be displayed
in. When a virtual URL of a node is requested, the system will figure out the correct language
based on the language configuration of the current siteaccess (refer to the example below).

Example

If you create an article called ”Company” and translate it into French, there will be two auto-
generated URL aliases called ”Company” and ”Compagnie”.

Let’s say that you have two public siteaccesses called ”gb” and ”fr” with the following language
configuration:

Siteaccess ”gb” Siteaccess ”fr”

[RegionalSettings]
SiteLanguageList[]
SiteLanguageList[]=eng-GB
SiteLanguageList[]=fre-FR

[RegionalSettings]
SiteLanguageList[]
SiteLanguageList[]=fre-FR
SiteLanguageList[]=eng-GB

As the table shows, the ”gb” siteaccess is configured to use English as the most prioritized lan-
guage and French as a second one. This means that both ”Company” and ”Compagnie” aliases
will work. The system will bring up the English version of the article when one of the following
URLs is requested:

• http://www.example.com/gb/Company

• http://www.example.com/gb/Compagnie

Note that if you configure only one language (English) for this siteaccess, the French alias will
not be available.

While the most prioritized language for the ”fr” siteaccess is French, the second one is English.
This means that both aliases will work and the corresponding URLs will bring up the French
version:

• http://www.example.com/fr/Company

• http://www.example.com/fr/Compagnie

4.4 Multi-language support for URL aliases 275

4

Character transformation

The multilingual URL aliases feature uses 3 types/methods of character transformation for URLs.
Their usage is controlled by the ”TransformationGroup (page 1788)” directive located in the
[URLTranslator] section of an override for ”site.ini”. The following table reveals the available
transformation methods.

Name Description
urlalias compat This method supports lowercase Latin letters

from ”a” to ”z”, digits and underscores in
URLs. It provides the same behavior as in
eZ Publish 3.9.x and earlier versions. Capital
characters are not preserved.

urlalias This method supports more characters, but
the URLs are still restricted to the ASCII ta-
ble (with a few exceptions). Capital charac-
ters are preserved.

urlalias iri This method allows all Unicode characters in
the URLs (with a few exceptions). It preserves
the original text as much as possible, which
results in more user-friendly URLs. Multiple
whitespaces are converted to one. Capital
characters are preserved. This is the recom-
mended method for both single- and multi-
language sites.

If you use the ”urlalias iri” type of transformation for URL aliases, be aware of the fact that some
web browsers use percent encoding for Unicode characters in the URLs. For example, if a visitor
enters a URL like ”http://www.example.no/Ostehovel” in the address bar of a browser, it might
be automatically converted to ”http://www.example.no/Osteh

Refer to the following example to learn how the multilingual URL alias feature actually works.

Example

Let’s say that we have the following site structure:

• Company (node ID: 10)

– About us (node ID: 11)

– Contacts (node ID: 12)

If node 10 (”Company”) gets translated into French, it will get the second alias ”Compagnie”.
The structure of the site will look like this:

• Company|Compagnie (node ID: 10)

– About us (node ID: 11)

http://en.wikipedia.org/wiki/Percent-encoding

4.4 Multi-language support for URL aliases 276

4

– Contacts (node ID: 12)

At this point, node 10 can be accessed by using both aliases for all siteaccesses that have both
English and French on the list of site languages. If a siteaccess is configured to use English as the
most prioritized language, both aliases will bring up the English version. If the most prioritized
language is French, both aliases will bring up the French version of the company page for this
siteaccess.

The ”About” page (node 11) can be accessed using either ”Company/About” or ”Compagnie/
About” as the URL. The ”Company/About” alias will work for any siteaccess that has English
on the list of site languages. The ”Compagnie/About” alias will only work for the siteaccesses
that are configured to use both English and French languages. In both cases, it is the English
translation that will be displayed (since the object only exists in English). If you edit the ”About”
page and enable the ”Always available” flag, the page will be accessible through both aliases
for all siteaccesses regardless of their language configuration (even if a siteaccess does not have
English on the list of site languages).

If the ”Contacts” page (node 12) is translated into German, it will get the second alias ”Kontak-
ten”. In this case, the structure of the site will look like this:

• Company|Compagnie (node - id 10)

– About us (node - id 11)

– Contacts|Kontakten (node - id 12)

At this point, it will be possible to access the page ”Contacts|Kontakten” (node 12) by using one
of the four URL aliases listed below. The following table shows which language configuration of
a siteaccess is required for each alias to work.

URL alias Site languages that must be enabled
”Company/Contacts” English
”Compagnie/Contacts” English and French
”Company/Kontakten” English and German
”Compagnie/Kontakten” French and German

4.4.1 Multi-language support for URL aliases / Managing URL aliases 277

4

4.4.1 Managing URL aliases

The administration interface makes it possible to easily manage the virtual URLs that belong to
a site. Management happens through the manipulation of two lists. While one of them is related
to node URL aliases, the other deals with global aliases. In addition, it is possible to manage
rules of wildcard based URL forwarding (so-called ”wildcard aliases”) using the URL wildcards
interface.

Managing node aliases

The interface for managing the URL aliases of content nodes can be accessed by selecting the
”Manage URL aliases” item from the ”Advanced” section of the context sensitive menu for each
content node. It can also be accessed by requesting ”content/urlalias/<node id>” directly (where
”node id” must be replaced with the actual ID number of the desired node). The following
screenshot reveals how the interface for managing a node’s URL aliases looks like.

(see figure 4.22)

Figure 4.22: The interface for managing the URL aliases of a content node

This interface provides an overview of all URL aliases that belong to the selected node. In addi-
tion, it can be used to create new and remove the existing aliases. The example shows a list of
virtual URLs for the ”Company” node. There are three manual aliases: ”articles/company info”,
”MaCompagnie” and ”mycompany”. While the ”MaCompagnie” alias is associated with French
language, the ”articles/company info” and ”mycompany” aliases are in English. This means that
the same page (node) can be accessed using any of these aliases if both French and English
languages are configured for a siteaccess.

The drop-down list can be used to select the site language that the alias should be associated

4.4.1 Multi-language support for URL aliases / Managing URL aliases 278

4

with. For example, if ”Spanish” is selected, the alias will be available for all siteaccesses that
have Spanish on the list of site languages. The drop-down list contains all the languages that
are configured for the admin siteaccess. If the ”ShowUntranslatedObjects (page 1654)” setting is
enabled, then all translation languages will be listed. For example, it will be possible to create an
alias associated with Spanish even though the actual object does not exist in this language. Note
that multilingual aliases do not control which language the requested page will be displayed in
(this depends on the language configuration of the current siteaccess).

The ”Relative to parent” checkbox can be used to specify where the alias/URL to be added should
start. If checked, it will start from the parent node. Otherwise, the provided alias is created from
the root of the site. For example, if you are adding a new URL alias called ”test” to a node ”City”
located at ”/country/state/city”, the new URL alias will either be ”/country/state/test” or just ”/
test” depending on whether the ”Relative to parent” checkbox was checked or unchecked.

The ”Generated aliases” window

In the example above, the ”Company” node exists in both English and French languages and
thus it has two auto-generated aliases ”Company” and ”Compagnie”. These are automatically
created by the system based on the existing translations of the actual object. The list of auto-
generated aliases is shown in the ”Generated aliases” window located towards the bottom of the
interface. The ”Company” page can be accessed using any of these aliases if both French and
English languages are configured for a siteaccess.

Note that the ”Generated aliases” window displays only one URL for each language that the
actual object exists in even though the parent node has several aliases in different languages. In
other words, it can happen that not all the possible combinations are shown. For example, if a
new node ”Employees” is created beneath the ”Company” node, it can be accessed using one of
the following URL aliases:

• Company/Employees

• Compagnie/Employees

• articles/company info/Employees

• MaCompagnie/Employees

• mycompany/Employees

However, only one of these URLs will be displayed in the list of auto-generated aliases for the
”Employees” node. The system will pick one of the auto-generated aliases of the parent node
(either ”Company” or ”Compagnie”), depending of the siteaccess’ language configuration. If the
most prioritized language for the admin siteaccess is English, only the ”Company/Employees”
alias will be displayed in the ”Generated aliases” section for the ”About” node. If the most pri-
oritized language is French, then ”Compagnie/Employees” will be displayed. The corresponding
alias will be displayed using bold characters in the list of auto-generated aliases for the parent
node. The screenshot above shows a situation when English is configured as the most priori-
tized language for the admin siteaccess and thus the ”Company” alias is displayed using bold
characters.

4.4.1 Multi-language support for URL aliases / Managing URL aliases 279

4

Creating a new node alias

To create a new alias, first select which site language that the alias should be associated with.
Type in the desired text for the new alias into the input field and click the ”Create” button. It is
possible to create virtual URLs that make it look like if a node is situated at a different location
in the tree. For example, you can create a URL alias ”my dummy folder/my article” for a node
called ”Article” which in reality is located inside a folder called ”Articles”. Note that in this case,
the ”Relative to parent” checkbox must be unchecked.

Further notes

Let’s say that you have a node (somewhere in the tree, the location does not matter) called
”About us”. As previously mentioned, you can create an imaginary URL (with bogus / non-
existing parent(s)) for it. For example, you can create ”company/about us” and it will work (the
system will bring up the ”About us” node). Assuming that the ”Company” node does not exist
from before, if someone requests only ”company”, the system will return an ”Object not found”
page. However, if a node called ”Company” is created, the system will automatically make a URL
alias for it (most likely ”company”) and thus the ”company” alias will work (it will bring up the
”Company” node).

Managing global aliases

The interface for managing global aliases was introduced a long time ago. However, it was
changed in eZ Publish 3.10. This interface can be reached by clicking the ”URL translator” link
under the ”Setup” tab in the Administration interface. The following image shows how the URL
translator interface looks like.

(see figure 4.23)

As the screenshot shows, it is similar to the interface used to manipulate the URL aliases for
individual nodes. The list displays all aliases in the system. The list is sorted by the text of the
aliases (not the actual path that the alias is created for).

In the example above, two global aliases for the ”search” view of the ”content” module have
been added. While the first alias is associated with the English language, the second one is in
French. This makes it possible to access the ”search” view using the ”findme” or ”trouve-moi”
aliases if the current siteaccess is configured to use both English and French. In other words
”http://www.example.com/content/search”, ”http://www.example.com/findme” and ”http://
www.example.com/trouve-moi” will bring up the search interface. The ”Always available” col-
umn indicates whether the alias is always available or not. In the screenshot above, the ”findme”
alias is always available (it will work for all siteaccesses regardless of their language configura-
tion).

Note that unlike before 3.10, this list does no longer show aliases for nodes. The node aliases can
be viewed and edited (individually, for every node) from within the node alias interface which
was described earlier.

4.4.1 Multi-language support for URL aliases / Managing URL aliases 280

4

Figure 4.23: The interface for global URL aliases managing

Creating a new global alias

To create a new global alias, input the desired virtual URL and the path to existing functionality
or resource; this can be a module/view-combination or the address of a node. The specified alias
will always start at the root of the site. The language drop-down list can be used to select which
site language the alias should be associated with. If the ”Include in other languages” checkbox
is selected, the newly created alias will work for all siteaccesses regardless of their language
configuration.

Note that it is possible to use the global aliases interface to create aliases to nodes (to for example
”content/view/full/<node id>” or a virtual URL). However, such aliases will not appear in the
global list. They will automatically appear in the node aliases interface for the corresponding
node.

Managing wildcard URL aliases

The interface for managing wildcard aliases can be reached by clicking the ”URL wildcards” link
under the ”Setup” tab in the administration interface. The following image shows how the URL
wildcards interface looks like.

(see figure 4.24)

The interface displays all wildcard aliases in the system and enables you to create new ones. In
the example above, three wildcard aliases have been added. While the first two aliases are in
English, the third one is in German.

4.4.1 Multi-language support for URL aliases / Managing URL aliases 281

4

Figure 4.24: The interface for managing wildcard URL aliases

When someone enters a URL in the browser address bar, the system will search for a node that
matches this URL according to the specified rules of wildcard based URL forwarding. In eZ
Publish, the only wildcard character that can be used in aliases is asterisk (*). It can be repeated
several times within one alias. Note that all wildcard characters within one alias are automatically
assigned numbers: 1, 2, 3, ... These are used when you specify a destination for this alias: {1},
{2}, {3}, ...

The ”Type” column indicates whether the alias is a ”direct” or ”forward” one. In the screenshot
above, the first alias is of the ”forward” type, which means the system will redirect users to
the original URL of the node that is being accessed (destination). In other words, when some-
one enters a URL like ”http://www.example.com/pictures/home/photo/” in the address bar of
a browser, the system will redirect the user to ”http://www.example.com/media/images/home/
photo/”.

Creating wildcard aliases

To create a new wildcard alias, input the desired text of the alias and the destination address into
the corresponding fields. If the ”Redirecting URL” checkbox is selected, the newly created alias
will work as ”forward” one. After you click the Create button, the newly added alias will appear
on the list.

4.4.2 Multi-language support for URL aliases / URL transformation rules 282

4

4.4.2 URL transformation rules

When a site administrator enters a value for a new virtual URL, the system will perform cleanup
of the input by using so-called URL transformation rules. This is done in order to avoid problems
with certain characters and to ensure that the alias conforms the standards and the other URLs
of the site. If an inputted alias is modified, the user will be notified.

Note that in eZ Publish 3.10, the transformation of entered/generated aliases has changed.

Unicode support

In versions prior to 3.10, URL transformation rules were more restrictive and only supported
some ASCII characters (lowercase Latin letters from ”a” to ”z”, digits and underscores). This
caused problems for many non-western languages that use different alphabets, some of them
which are difficult to transliterate.

From eZ Publish 3.10, it is possible to enable Unicode support for the URLs and thus no translit-
eration needs to be performed since most characters are allowed. The following characters are
not allowed: ampersand, semi-colon, forward slash, colon, equal sign, question mark, square
brackets, parenthesis and the plus sign. Note that spaces are only allowed as word separators.
These characters are not allowed in order to avoid miscellaneous problems (related to the HTTP
protocol).

The Unicode characters are encoded using the IRI standard. The text is encoded using UTF-8
before further encoding is performed. The resulting URL will contain characters that are com-
patible with the HTTP protocol and which will work in all existing browsers/clients. Note that
modern browsers will decode the URL and display the characters using Unicode.

Dash/underscore/space

In versions prior to 3.10, only underscores were allowed as separators of words. From 3.10, it is
possible to choose which word separator that should be used. This can be done by changing the
value of the ”WordSeparator (page 1787)” configuration directive located in the [URLTranslator]
section of an override for ”site.ini”. It can be set to either ”dash”, ”underscore” or ”space”. Note
that this setting will be ignored when the ”urlalias compat” transformation method is used (since
it only supports underscores as separators).

Case sensitivity

When the ”urlalias” or ”urlalias iri” transformation method is used, the URLs will consist of mixed
cases (uppercase and lowercase characters). This is different from the traditional/old behavior
where every letter was converted to lowercase. Instead, the system will preserve the cases and
store the URL aliases accordingly. However, the URLs themselves will not be case sensitive. For
example, the URL alias for a node called ”About Us” will be ”About-Us” (assuming that the word
separator is a dash). The ”About Us” node will be accessible regardless of how the URL is specified
when it comes to lowercase and uppercase letters. In other words, the node will be accessible

http://www.ietf.org/rfc/rfc3987.txt
http://en.wikipedia.org/wiki/UTF-8

4.4.2 Multi-language support for URL aliases / URL transformation rules 283

4

through all of the following URLs: ”www.example.com/about-us”, ”www.example.com/About-
us”, ”www.example.com/ABOUT-US”; and so on.

Note that if there are two nodes with (almost) identical names within the same location (for
example ”My article” and ”My Article” inside a folder called ”News”), the system will generate
unique URL aliases for newly introduced conflicting nodes by attaching numbers to their URL
aliases. For example, if a node called ”My article” already exits and ”My Article” is created at the
same location, the URL alias of the second (”My Article”) node will be ”My-Article2”. If a third
”MY Article” node is introduced, it’s URL alias will be ”MY-Article3”; and so on.

Alias text filtering

Support for filtering was implemented in order to introduce more flexibility when it comes to the
generation of the aliases. The filters are performed by the system on the URLs before the result is
transformed to a valid alias. The filters can be created as extensions. The following text explains
how to create a new filter.

• Open the ”site.ini” override and add a new extension (f.ex. ”myfilters”) under the [URL-
Translator] section.

Extensions[]
Extensions[]=myfilters

• Add a new filter in the ”Filters[]” array (f.ex. ”StripWords”) under the [URLTranslator]
section..

Extensions[]
Extensions[]=myfilters

Filters[]
Filters[]=StripWords

The system will search for the ”stripwords.php” file containing the ”StripWords” filter class.

• Create a file called ”stripwords.php” located in the ”extension/myfilters/urlfilters” direc-
tory. Note that all filters must be placed inside the ”urlfilters” directory located within an
extension’s directory. Make sure that the newly created file contains the following lines:

<?php
class StripWords
{

function process($text, $languageObject, $caller)
{

return str_replace("hell", "", $text);
}

}
?>

4.4.2 Multi-language support for URL aliases / URL transformation rules 284

4

The filter class ”StripWords” implements a method called ”process” which has three param-
eters: the text to filter, the language object (eZContentLanguage (page 970)) and the object
which called the filter process. The method returns a filtered version of the text. In this
example, all occurrences of the word ”hell” are removed (replaced with nothing). In other
words, after this filter is introduced, newly created URLs will not contain the word ”hell”.

Refer to the ”[URLTranslator] (page 1785)” section of the ”site.ini” for more information about
the ”Filters” setting.

4.4.3 Multi-language support for URL aliases / Custom transformation commands 285

4

4.4.3 Custom transformation commands

In order to transform the URLs according to specific needs, it is possible to create and use so-
called custom commands. The commands can be created as extensions and added to the system
using an override of the ”transform.ini” configuration file. The following text explains how to
create a custom transformation command for URLs.

Let’s say that for some reason, we would like all URLs to be reversed. This can be achieved by
creating a custom transformation command.

1. Creating a new extension

A new file must be create and placed inside the directory of an extension. The file must con-
tain a class that has a static method called ”executeCommand” with three parameters: ”$text”,
”$command” and ”$charsetName”.

• $text - The input text to transform

• $command - The name of the command to execute, this can be used to keep multiple
commands in one function

• $charsetName - The name of the charset in use for $text, usually not needed

In this example, we will create a ”myreverse.php” file under the ”extension/myextension/
transformation” directory and put the following lines of code into it:

<?php
class MyReverse
{

function executeCommand($text, $command, $charsetName)
{

$text = strrev($text);
return $text;

}
}

?>

As the code shows, the function will return a reversed version of the inputted text.

2. Registering a new transformation command in the ”transform.ini” file

The command must be registered in the ”transform.ini” configuration file.
To do that, you need to add a new line into the ”Commands[]” array located under the ”[Exten-
sions]” section. The line must contain the path to the PHP file, a colon (used for separation) and
the class name that should be used. The following example demonstrates how this can be done.

4.4.3 Multi-language support for URL aliases / Custom transformation commands 286

4

[Extensions]
Commands[]
Commands[my_reverse]=extension/myextension/transformation/
myreverse.php:MyReverse

3. Adding a new command to the corresponding transformation group

The newly created command must be added in the ”transform.ini” file to one of the groups that
will be used for URL text transformation. In the example below, the custom command ”my
reverse” is added to the ”urlalias iri” transformation group.

[urlalias_iri]

Commands[]
Commands[]=url_cleanup_iri
Commands[]=my_reverse

From now on, newly generated URLs will be reversed because they will be processed by the
custom ”my reverse” command that we added to the list of commands to be performed when the
”urlalias iri” transformation method is used.

4.5 Clustering 287

4

4.5 Clustering

The clustering feature makes it possible to run an eZ Publish site on several web servers. A site
that is running on a cluster of servers will have better performance and will be able to handle
more traffic.

It is possible to store all content related caches, images and binary files in the database. A
technique called database transaction is used to ensure that all the cluster nodes use the same
cache files and have access to the same image and binary files. In other words, when content
is updated, changes automatically become available for all the web servers in the cluster. This
functionality was significantly improved in 3.10.

Note that when clustering is used, it is recommended to run the site in a Virtual Host environment
on the different servers.

Changes introduced in 3.10

In eZ Publish versions prior to 3.10, clearing the caches lead to physical removal of the cache
files. This operation can be quite time consuming.

From 3.10, the system will mark the cache files invalid instead of removing them physically from
the database or file system. This can be done by either marking each particular cache file expired
or setting the global expiry (the latter typically happens when a significant amount of changes is
needed, e.g. when clearing all the caches of a specific type). The global expiry is a timestamp
that is used as an expiry value for all the caches in the system. If the global expiry is set to a
certain date, all cache files that are older than this date will not be used. Note that the system
will re-use old/expired cache file entries when re-creating the caches.

In order to physically remove the cache files from the database, the ”bin/php/ezcache.php” script
needs to be run with the ”--purge” option. The following example shows how to remove the
content caches that are more than two days old:

php bin/php/ezcache.php --clear-id=content --purge --expiry=’-2 days’

For more information about the available parameters, run the script with the ”--help” option:

php bin/php/ezcache.php --help

Note that 3.10 does not support clustering for PostgreSQL and Oracle databases. The code is
optimized for best performance and focused on MySQL databases using the InnoDB engine. The
number of database connections in MySQL must be increased by 30-50%. The reason for this is
because the new cluster code performs an extra connection when writing content to the database
(this connection checks if the file has been modified since the write lock was acquired to remove
the need to write). If persistent connections are enabled, the cluster code will no longer share
connections with normal database calls so the number of connections previously used will have
to be doubled.

http://en.wikipedia.org/wiki/Database_transaction

4.5 Clustering 288

4

Changes introduced in 3.9

From 3.9, an additional HTTP header called ”Served-by” is supported. This feature has been
added for the purpose of testing and debugging. It is typically useful when you need to check
from the client side which server that has handled the request. The following example shows a
part of a server response that contains this header:

...
Last-Modified: Fri, 29 Jun 2007 09:35:54 GMT
Served-by: 62.70.12.230
Content-Language: en-GB
...

How it works

Data that must be synchronized between the different servers is stored using the database:

• Binary files

• Image and image alias files

• Caches related to content:

– Content view cache

– Template block cache

– Expiry cache

– URL alias cache

– RSS cache

– User info cache

– Class identifier cache

– Sort key cache

Other files are stored using the filesystem, including (but not limited to):

• INI files

• Template files

• Compiled templates

• PHP files

• Log files

• Caches that are not related to content:

4.5 Clustering 289

4

– Global INI cache

– INI cache

– Codepage cache

– Character transformation cache

– Template cache

– Template override cache

Content view cache

When eZ publish is displaying a page (a content node), it will execute the ”view” view of the
”content” module and include the output in the pagelayout. If the output is cached (page 407),
the cache file(s) will be read and served. If not, the system will fetch the content stored in the
eZ publish object database (page 106), render the necessary templates, generate a web page and
store the resulting XHTML on the filesystem before serving it. As previously mentioned, these
files can now (from 3.8) be stored in the database and thus the files (along with changes) are
easily and immediately available to all servers in the cluster.

Images and image aliases

The approach described above is also used when it comes to images and image aliases (image
variations). However, the solution is a bit more complicated because until now (3.8), images
have been served directly by Apache. Since the web server isn’t able to communicate with the
database, the images need to be served using a PHP script called ”index image.php”. This is
true for all content images, but not for images that are related to design. Please note that you’ll
need to add new rewrite rules in order to instruct Apache to use ”index image.php” when serving
images.

Cluster file handlers

A new cluster file handler mechanism was added in 3.8. It makes it possible to store, retrieve,
rename, delete, etc. files using the database. The cluster file handlers are located in the ”kernel/
classes/clusterfilehandlers” directory of the eZ publish installation. The following cluster file
handlers are known to the system by default:

• ezfs (eZFSFileHandler)

• ezdb (eZDBFileHandler)

eZFSFileHandler

This handler makes it possible to use the filesystem when dealing with files.

4.5 Clustering 290

4

eZDBFileHandler

This handler makes it possible to use the database when dealing with files (in a cluster environ-
ment, this would typically be images, uploaded binary files and content-related caches, etc.). It
is split into different back-ends that are compatible with the supported database engines (note:
currently only MySQL is supported).

Custom handlers

It is possible to extend the system by implementing your own handlers and/or back-ends. This
should be done using the extension system (and not by modifying the original eZ publish kernel
files).

The ”ExtensionDirectories[]” array located under the ”[ClusteringSettings]” block of the ”file.ini”
configuration file specifies the extension directories where eZ publish should search for additional
cluster file handlers. By default, eZ publish will search in the ”clusterfilehandlers” subdirectory
inside your extension.

Example

If you have an extension ”myExtension” that includes a cluster file handler ”cfh”, you should add
the following lines under the ”[ClusteringSettings]” block in your ”file.ini.append.php” file:

FileHandler=cfh
ExtensionDirectories[]=myExtension

These settings will instruct eZ publish to use your custom cluster file handler located in ”exten-
sion/myExtension/clusterfilehandlers/cfhfilehandler.php”.

4.5.1 Clustering / Setting it up 291

4

4.5.1 Setting it up

The following instructions reveal how you can configure eZ Publish to store images, binary files
and content-related caches in the database.

1. Modifying the ”file.ini” settings

Add the following lines to an override for the ”file.ini” configuration file (”settings/override/
file.ini.append.php” or ”settings/siteaccess/shop site/file.ini.append.php” where ”shop site” is
the name of your siteaccess):

[ClusteringSettings]
FileHandler=ezdb
DBBackend=mysql
DBHost=localhost
DBPort=3306
DBSocket=
DBName=name
DBUser=user
DBPassword=pass
DBChunkSize=65535

Replace ”localhost”, ”name”, ”user” and ”pass” by actual host name, database name, user
name and password (in most cases these values will be the same as ”Server”, ”Database”,
”User”, ”Password” settings specified under the ”[DatabaseSettings] (page 1575)” block of your
”site.ini.append.php” configuration file). Make sure that the ”DBSocket” setting value is cor-
rect (leave it empty if you have ”Socket=disabled” under the ”[DatabaseSettings]” block in
”site.ini.append.php”).

Specifying ”ezdb” in the ”FileHandler” configuration setting will instruct eZ Publish to use the
specified database for storing images, binary files and content-related caches. The ”DBBackend”
setting specifies which back-end that should be used by the ”ezdb” file handler (currently, only
”mysql” is supported). The ”DBChunkSize” setting determines the size of the blocks (in bytes)
into which files are split when they are fetched from the database.

2. Creating a new script for serving images

All images (except design images) will be served by PHP. Apache will be instructed to use a
specific PHP script called ”index cluster.php” for handling images. The script must include ”index
image.php” along with a collection of configuration settings. This trick makes the serving of
images faster because the system does not have to read the configuration from the database.
Create the ”index cluster.php” inside the eZ Publish root directory and make sure that it contains
the following lines:

4.5.1 Clustering / Setting it up 292

4

<?php
define(’STORAGE_BACKEND’, ’mysql’);
define(’STORAGE_HOST’, ’localhost’);
define(’STORAGE_PORT’, 3306);
define(’STORAGE_SOCKET’, ’’);
define(’STORAGE_USER’, ’user’);
define(’STORAGE_PASS’, ’pass’);
define(’STORAGE_DB’, ’name’);
define(’STORAGE_CHUNK_SIZE’, 65535);

include_once(’index_image.php’);
?>

Make sure you specify the same database settings as indicated under the ”[ClusteringSettings]”
block in your ”file.ini.append.php” configuration file.

3. Creating new database tables

You have to create some tables in the database manually. You’ll find the table definitions in
the ”mysql.php” file located in the ”kernel/classes/clusterfilehandlers/dbbackends” subdirectory.
The definitions are placed inside comment blocks in the beginning of the files.

4. Importing files to the database

You need to copy the files stored in the ”var” directory to the database. To do this, go to the root
directory of eZ Publish and launch the following script (replace ”shop site” by the actual name of
your siteaccess):

$ php bin/php/clusterize.php -s shop_site

The script will import your files, images and image aliases (image variations) that are stored
under the ”var” directory to the database.

5. Compiling the templates (optional)

Since all caches now are empty, you should re-compile the templates. Note that this step can be
skipped and thus the templates will be compiled on-demand when the site is browsed. Go to the
root directory of eZ Publish and launch the script:

$ php bin/php/eztc.php -s shop_site

Repeat this step for all siteaccesses that are in use.

4.5.1 Clustering / Setting it up 293

4

6. Updating Apache virtual host configuration

Apache needs to know which PHP script to use when serving images. The script simply fetches
the images from the database and serves them. Add the following rewrite rules to your Apache
configuration file before the other/existing rules:

Rewriterule ^/var/([^/]+/)?storage/images-versioned/.* /index_cluster.php [L]
Rewriterule ^/var/([^/]+/)?storage/images/.* /index_cluster.php [L]

7. Restarting Apache

You need to restart the Apache web server and then the system should be up and running in
cluster mode.

4.6 Packages 294

4

4.6 Packages

From 3.8, the standard packages are not included in the eZ publish distribution itself. They are
distributed separately as ”.ezpkg” files. The files can be downloaded automatically by the setup
wizard from the remote repository or manually from packages download page.

A package is a collection of items grouped together and stored in the specific format for the
purpose of easy installation and removal. The system makes it possible to create packages and
export them to ”.ezpkg” files. This is the common way of how the packages are distributed.
When an ”.ezpkg” file is imported, it will become available under the system repository part of
the eZ publish installation. Most of the packages can be installed and uninstalled. The following
table reveals the complete list of package operations that can are supported in the administration
interface.

Operation Description
Create new package It is possible to export your class definitions,

content objects, settings, design styles etc. by
creating new packages of different types. The
newly created packages will be stored under
the ”Local” system repository.

Import new package To import a new package, you need to select
the desired ”.ezpkg” file locally. The system
will then upload the file, unpack it and place
the resulting package under an appropriate in-
ternal repository within the installation.

Remove selected You can remove packages from the system
repository. Please note that the package itself
will not be removed. Only the package files
will be removed from the internal repository.

Install It is possible to install packages that are lo-
cated under internal repositories. When you
install a package, the system will create con-
tent classes and content objects, apply the set-
tings specified in it and so on. (Please note
that installing site packages and design pack-
ages is not supported.)

Export to file A package located under the system repository
can be exported to ”.ezpkg” file. The system
will ask you where to store the newly created
file.

Uninstall When you uninstall a package, all the changes
made during its installation will be reverted.

http://ez.no/download/ez_publish/ez_publish_4_stable_releases/4_0/packages/4_0_0

4.6 Packages 295

4

Remote repository

Packages from remote repository can be downloaded by the setup wizard during the system in-
stallation process. However, the administration interface is unable to download packages from
this repository.

The system will use the eZ Systems packages repository as the default remote repository. If you
wish to use another remote repository, you need to specify its corresponding address using the
”RemotePackagesIndexURL” configuration setting located in the ”[RepositorySettings]” section of
the ”settings/override/package.ini.append.php” file.

System / internal repository

The default behavior is that all packages are stored in the ”var/storage/packages” directory. This
directory is the main system repository and its subdirectories are called ”system repositories”
or ”internal repositories”. The name of a subdirectory also functions as the actual name of a
repository. The packages are sorted by their vendor. For example, the packages downloaded
from ez.no will be stored under the ”ez systems” internal repository (var/storage/packages/ez
systems). Packages that have no vendor and packages created locally will reside under the ”Local”
repository (var/storage/packages/local).

It is possible to choose another location of the main system repository inside the ”var/
storage” directory. The following example shows how to change ”settings/override/
package.ini.append.php” in order to force the system to use ”var/storage/importedpackages” as
the main system repository:

RepositoryDirectory=importedpackages

http://packages.ez.no/ezpublish/4.0
http://ez.no

4.6.1 Packages / Package types 296

4

4.6.1 Package types

The following package types are supported:

• content class packages

• content object packages

• extension packages

• site style packages (design packages)

• site packages

Content class and content object packages

A content class package allows the storage of class definitions. If you create several classes and
need to use them on other installations, you can export these class definitions into a content
class package. The package itself can be then exported into ”.ezpkg” file. This file can be then
imported and installed on other eZ publish installations.

Content object packages are used for storing actual content objects. If you create some objects
and need to use them on other installations, you can export these objects into a content object
package.

The package creation wizard will ask you to select nodes and/or subtrees that will be included
to the content object package that is being created. It is possible to include class definitions for
the objects being exported and related templates from one or several siteaccesses to the package.
The selected objects can be exported together with all their versions and languages or you can
specify custom parameters. You may choose to keep all node assignments or only main nodes for
the objects being imported and specify what to do with related objects.

Datatypes serialization support

In eZ publish 3.8 all the built-in datatypes are compatible with the package system. Both object
and class serialization are supported. If you use an additional datatype that does not support
serialization then you will see a warning when trying to export/import class definitions and/or
content objects containing attributes of this datatype.

Extension packages

These packages store extension files. If you create an extension and need to use it on other
installations, you can export it into an extension package. The administration interface makes it
possible to create extension packages.

4.6.1 Packages / Package types 297

4

Design / site style packages

Site style packages store site design themes. Such packages make it possible to change the
look and feel of the site easily. A site style package includes non-content specific images (logos,
banners, graphical layout elements etc.) and two CSS files (”site-colors.css” containing styles like
color codes and background image details for the pagelayout (page 175) and ”classes-colors.css”
that determines styles for class templates).

Please note that site style packages can not be installed or uninstalled. If you import several
design packages, you will be able to switch between them using the administration interface.
The next subsection explains how this can be done.

Changing the site style theme

Let’s say that you have imported a new site style package. To change the look and feel of your
site according to the imported design theme, do the following:

1. Click the ”Design” tab in the administration interface and select ”Look and Feel” from the
menu on the left.

2. Select the desired site style from the ”Sitestyle” list.

3. Click the ”Send for publishing” button to save your changes.

4. Go to the actual site and refresh the page. If you can’t see any changes then you should
clear eZ publish caches.

Site packages

The special packages provide basic site examples like ”News”, ”Shop”, ”Gallery” etc. mostly for
the purpose of demonstration and learning. Site packages do not contain any objects. However,
they contain dependencies to other packages plus specific settings and scripts. These packages
can not be installed or uninstalled. Site packages can be thought of as ”meta packages” that are
used only in the setup wizard (page 57) when you are installing eZ Publish. (If you remove a
site package from internal repository, this will not affect the behavior of the installed system.) It
is not possible to create site packages using the administration interface.

The setup wizard automatically fetches the list of available site packages from remote and in-
ternal repositories and asks the user to choose one. It will automatically download the selected
site package and all its dependent packages, import them to the system and display a list of suc-
cessfully imported packages. (This step will be omitted if all these packages are already stored
under internal repositories.) All dependent packages except for the site style package will be
automatically installed.

Example

The ”Shop site” package v.2.0.6 contains dependencies to the following packages:

4.6.1 Packages / Package types 298

4

• Three content object packages called ”Products”, ”Multi-price products”, ”Dynamic VAT
products”.

• A site style package called ”Theme 04”.

• An extension package called ”ezpaypal extension”.

Choosing the ”Shop site” package in the setup wizard will result in downloading this package and
five dependent packages from http://packages.ez.no/ezpublish/4.0. The downloaded ”.ezpkg”
files will be unpacked into the ”var/storage/packages/ez systems” directory (i.e. these packages
will be imported to the system). The wizard will then automatically install the ”Products”, ”Multi-
price products”, ”Dynamic VAT products” and ”ezpaypal extension” packages. The ”Shop site”
and ”Theme 04” packages will not be installed (as site package and site style package). When
the setup wizard is finished, you can safely remove the ”shop site” package manually or using
the administration interface. The removal of a site package will not affect any of its dependent
packages.

http://packages.ez.no/ezpublish/4.0

4.6.2 Packages / Creating new packages 299

4

4.6.2 Creating new packages

The administration interface allows you to export your class definitions, content objects, settings,
design styles etc. into packages of different types. This functionality is implemented using the
built-in package creation handlers for the following types of packages:

• Content class packages

• Content object packages

• Extension packages

• Site style packages (design packages)

The built-in package creation handlers are stored in the ”kernel/classes/packagecreators” direc-
tory. Please note that there is no package creation handler for site packages and thus it is not
possible to create such packages using the administration interface. The packages created locally
are stored under the ”Local” system repository.

The next subsections explain how to create packages of different types.

Content class packages

The following example demonstrates how to create a content class package.

1. Click the ”Setup” tab in the administration interface and access the ”Packages” link on the
left. You will be taken to the list of packages located under the ”Local” system repository.
(This interface can also be accessed by requesting ”/package/list” in the URL.) (see figure
4.25)

Figure 4.25: The ”Local” system repository is empty.

2. Click the ”Create new package” button located under the list of packages. The system will
bring up the package creation dialog where you can choose between four available package
creation wizards. (This interface can also be accessed by requesting ”/package/create” in
the URL.) (see figure 4.26)

Choose the ”Content class export” wizard as shown in the screenshot and click the ”Create
package” button.

4.6.2 Packages / Creating new packages 300

4

Figure 4.26: The package creation dialog.

3. The package wizard starts from asking what classes to include to the package being created
(look at the next screenshot). (see figure 4.27)

Figure 4.27: The content class export dialog.

Select the desired class(es) from the list and click the ”Next” button.

4. Now, it’s time to enter some information about the content class package. Give it a name
and enter some text to describe the package as shown below. Click the ”Next” button. (see
figure 4.28)

5. The system also needs some information about the package maintainer. Enter this informa-
tion and click the ”Next” button. (see figure 4.29)

6. In the last step, you can optionally enter some information about the changes you applied
to this version of the package (look at the next screenshot). (see figure 4.30)

After clicking the ”Continue” button the wizard will create the package and display its
summary.

Content object packages

The following example demonstrates how to create a content object package.

4.6.2 Packages / Creating new packages 301

4

Figure 4.28: The package creation wizard: package information step.

Figure 4.29: The package creation wizard: information about the package maintainer.

1. Click the ”Setup” tab in the administration interface, select the ”Packages” link on the left
and access the ”Create new package” button located under the list of packages. In the pack-
age creation dialog choose the ”Content object export” wizard as shown in the screenshot
below and click the ”Create package” button. (see figure 4.31)

2. The package wizard starts from asking which objects to include to the package being cre-

4.6.2 Packages / Creating new packages 302

4

Figure 4.30: The package creation wizard: changelog.

Figure 4.31: The package creation dialog.

ated (look at the next screenshot). (see figure 4.32)

The following text describes how you can use the ”Add node”, ”Add subtree” and ”Remove
selected” buttons for choosing the desired objects.

• The ”Add node” button makes it possible to add individual objects to the package
which is being created. When you click this button, you will see a dialog called
”Choose node for export”. This dialog will display the nodes that are located inside
the ”Content structure” tree. Use the list to select the nodes (which encapsulate the
objects) that you want to include in the package. The following screenshot shows
this dialog where the node which encapsulates an article node called ”New article” is
selected. (see figure 4.33)
Please note that it is possible to select multiple nodes/objects at the same time. You

4.6.2 Packages / Creating new packages 303

4

Figure 4.32: The content object export dialog (no objects selected).

Figure 4.33: Browse the content tree and select which nodes that will be exported.

can navigate the list by clicking on the names of the nodes. If the desired node is
located outside the ”Content structure” tree, click the up arrow icon/button until it
brings you to the root of the tree. (This operation will allow you to for example
switch to the ”Media library” tree and select image objects that are located there.) It is
possible to reconfigure how the list is displayed. For example, you can set the quantity
of objects per page by clicking the ”10” / ”25” and ”50” links. If you wish to browse
image objects as thumbnails, simply click the ”Thumbnail” button. After selecting the
desired node(s) click the ”OK” button to save your choice.

• The ”Add subtree” button makes it possible to add whole subtrees to the package
which is being created. When you click this button, you will see a dialog called
”Choose subtree for export”. This dialog is very similar to the node choosing dia-
log described above. The only difference is that selecting a node here means that the
whole subtree located under it will be included in the package. Let’s select for exam-
ple a subtree located under one of the folders (look at the next screenshot). (see figure
4.34)
After selecting the desired subtree(s), click ”OK”.

• The wizard will display the selected objects/nodes and subtrees as shown in the fol-
lowing screenshot. (see figure 4.35)
If you have mistakenly chosen item(s) that you don’t want to be included to the pack-
age, use the checkboxes to select these items and click the ”Remove selected” button.

4.6.2 Packages / Creating new packages 304

4

Figure 4.34: Browse the content tree and select which subtrees that will be exported.

Figure 4.35: The content object export dialog (one node and one subtree selected).

If everything is correct, click the ”Next” button.

3. In the next dialog you should specify the desired export properties for the objects being
added to the package. It is possible to include not only the actual objects but also their
class definitions and related templates (the templates can be taken from one or several
siteaccesses). The selected objects can be included together with all their versions and
languages or you can specify custom parameters. You may choose to keep all node as-
signments or only main nodes for the objects being imported and specify what to do with
related objects. The following screenshot shows how this dialog looks like. (see figure 4.36)

Choose the desired properties and click the ”Next” button.

4. The rest three steps of the ”Content object export” wizard allow you to enter information
about the package itself, its maintainer and changes made in the current version. These are
already described above for ”Content class export” wizard.

4.6.2 Packages / Creating new packages 305

4
Figure 4.36: The content object package creation wizard: export properties for content objects.

Extension packages

The following example demonstrates how to create an extension package.

1. Go to ”Setup - Packages” in the administration interface and click the ”Create new pack-
age” button located under the list of packages. In the package creation dialog choose the
”Extension export” wizard and click the ”Create package” button.

2. The wizard will display the list of existing extensions. Select the extension that you wish to
export to the package (as shown in the following screenshot) and click the ”Next” button.
(see figure 4.37)

3. The rest three steps of the ”Extension export” wizard allow you to enter information about
the package itself, its maintainer and changes made in the current version. These are
already described above for ”Content class export” wizard.

Design / site style packages

The following example demonstrates how to create a site style package.

4.6.2 Packages / Creating new packages 306

4

Figure 4.37: The extension package creation wizard.

1. Go to ”Setup - Packages” in the administration interface and click the ”Create new package”
button located under the list of packages. In the package creation dialog choose the ”Site
style” wizard and click the ”Create package” button.

2. The wizard will ask you for a thumbnail image, which should be a screenshot or an icon
that depicts the look and feel of your theme. The image should be 120px wide and 103px
high. The following screenshot shows this dialog. (see figure 4.38)

Figure 4.38: The site style package creation wizard: choose thumbnail.

Choose the image file and click the ”Next” button.

3. The next dialog requests that you provide two CSS files: the ”site-colors.css” file containing
styles like color codes and background image details for the pagelayout (page 175) and
”classes-colors.css” that determines styles for class templates. Choose these files as shown
in the screenshot below (the actual file names do not matter) and click the ”Next” button.
(see figure 4.39)

4. If you use images in your theme, you can upload them in the next screen (look at the
screenshot). (see figure 4.40)

Click ”Next” when you finish adding images.

5. The rest three steps of the ”Site style” wizard allow you to enter information about the
package itself, its maintainer and changes made in the current version. These are already
described above for ”Content class export” wizard.

4.6.2 Packages / Creating new packages 307

4

Figure 4.39: The site style package creation wizard: select CSS files.

Figure 4.40: The site style package creation wizard: add images.

Site packages

It is impossible to create site packages using the administration interface (i.e. there is no package
creation handler for these package types). They can only be created manually, which means that
a package creator will have to edit the ”package.xml” file.

4.6.3 Packages / Exporting packages to files 308

4

4.6.3 Exporting packages to files

A package located under an internal repository can be exported to an ”.ezpkg” file. The following
list reveals how this can be done.

1. Select the ”Setup” tab in the administration interface and click the ”Packages” link on the
left. You will be taken to the list of packages located under the ”Local” system repository
(look at the next screenshot). (see figure 4.41)

Figure 4.41: The list of packages.

This interface can also be accessed by requesting ”/package/list” in the URL. If you wish
to view packages from another internal repository, select the name of repository from the
drop-down list and click the ”Change repository” button.

2. Find the package you wish to export and click on its name. The system will display the
package summary as shown in the following screenshot. (see figure 4.42)

Click the ”Export to file” button in order to download the ”.ezpkg” file.

4.6.3 Packages / Exporting packages to files 309

4

Figure 4.42: The package summary view interface.

4.6.4 Packages / Importing packages to the system 310

4

4.6.4 Importing packages to the system

A package that is stored as an ”.ezpkg” file can be imported to the system - i.e. uploaded, un-
packed and placed under an appropriate internal repository within the installation. The following
example demonstrates how to import a site style package.

1. Go to ”Setup - Packages” in the administration interface and click the ”Import new package”
button located under the list of packages (look at the next screenshot). (see figure 4.43)

Figure 4.43: The list of packages.

2. Choose the desired ”.ezpkg” file on your local computer (as shown in the following screen-
shot) and click the ”Import package” button. (see figure 4.44)

Figure 4.44: The import package interface.

The system will import the package from the ”.ezpkg” file and show you the package sum-
mary.

Please refer to the ”Changing the site style theme” subsection to learn how the design theme from
the imported site style package can be applied to your site.

4.6.5 Packages / Removing packages from repository 311

4

4.6.5 Removing packages from repository

The following instructions reveal how you can remove packages from the system repository.

1. Go to ”Setup - Packages” in your administration interface, select an internal repository and
click the ”Change repository” button.

2. Select the package(s) you that wish to remove (as shown in the screenshot below) and click
the ”Remove selected” button. (see figure 4.45)

Figure 4.45: Removing a package.

The selected package(s) will be removed from the repository.

Please note that if you remove an installed package, it will not be uninstalled. Only the package
files will be removed from the internal repository.

4.6.6 Packages / Installing packages 312

4

4.6.6 Installing packages

It is possible to install packages that are located under internal repositories. Note that this is not
true for site packages and design packages. When you install a package, the system will create
content classes and content objects, apply configuration settings and so on. Please note that from
eZ publish 3.8, information about installed packages is stored in the ”ezpackage” table within the
database.

The following subsections explain how to install packages of different types.

Content class packages

The following example demonstrates how to install a content class package.

1. Go to ”Setup - Packages” in your administration interface, select the internal repository
containing the package you wish to install and click the ”Change repository” button. Find
the desired package and click on its name. The system will display the package summary
as shown in the following screenshot. (see figure 4.46)

Figure 4.46: The content class package summary.

Click the ”Install” button.

2. The system starts by showing a list of items that will be created during the package instal-
lation (look at the next screenshot). (see figure 4.47)

Read this information carefully and click the ”Install package” button to continue. Use the
”Skip installation” button to abort the operation.

4.6.6 Packages / Installing packages 313

4

Figure 4.47: The content class package installation wizard, step 1.

3. If some of the classes being installed already exist, the system will ask the user how this
installation conflict should be handled (as shown in the screenshot below). (see figure 4.48)

Figure 4.48: The content class package installation wizard, step 2.

If you wish to replace the existing class with the new one, note that all the content objects
of the existing class will be removed as well. Use this option only if you know what you’re
doing. The remaining options make it possible to skip installing the class or create a new
one (in both cases, the existing class and its objects will stay untouched).
After clicking the ”Continue” button, the system will install the package and display a sum-
mary.

Content object packages

The following example demonstrates how to install a content object package. (Since handling
the class installation conflicts is already described in the previous subsection, let’s suppose that
no class definitions are included in the package that is being installed.)

1. Go to ”Setup - Packages” in your administration interface, select the internal repository
containing the package you wish to install and click the ”Change repository” button. Find
the package you wish to install, click on its name and then click the ”Install” button.

4.6.6 Packages / Installing packages 314

4

2. The system will display a list of items that will be created during the package installation
(look at the next screenshot). (see figure 4.49)

Figure 4.49: The content object package installation wizard, step 1.

Read this information carefully click the ”Install package” button. Use the ”Skip installa-
tion” to abort the operation.

3. If the package contains not only actual content objects but also templates related to these
objects, the system will ask which siteaccess these templates should be added to (look at
the next screenshot). (see figure 4.50)

Figure 4.50: The content object package installation wizard, step 2.

Make your choice and click the ”Next” button.

4. The next dialog reveals where the installed objects will be located and allow to choose
another location if needed. (see figure 4.51)

Choose the desired location and click the ”Continue” button.

5. If some of the objects being installed already exist (i.e. there is another object with the
same remote id (page 971)), the system will ask how this installation conflict should be
handled (see the screenshot below). (see figure 4.52)

After clicking the ”Continue” button, the system will install the package and display a sum-
mary.

4.6.6 Packages / Installing packages 315

4

Figure 4.51: The content object package installation wizard, step 3.

Figure 4.52: The content object package installation wizard, step 4.

Extension packages

The following example demonstrates how to install an extension package.

1. Go to ”Setup - Packages” in your administration interface, select the internal repository
containing the package you wish to install and click the ”Change repository” button. Find
the package you wish to install, click on its name and then click the ”Install” button.

2. The system will show a list of items that will be created during the package installation
(look at the next screenshot). (see figure 4.53)

Click the ”Install package” button to continue. Use the ”Skip installation” button to abort
the operation.

3. If some of the items being installed already exist, the system will ask how this installation
conflict should be handled as shown in the screenshot below. (see figure 4.54)

After clicking the ”Continue” button, the system will install the package and display a sum-
mary.

4.6.6 Packages / Installing packages 316

4

Figure 4.53: The extension package installation wizard, step 1.

Figure 4.54: The extension package installation wizard, step 2.

4.6.7 Packages / Uninstalling packages 317

4

4.6.7 Uninstalling packages

Installed packages can be uninstalled. For example, let’s say that you have chosen the ”Shop”
standard site package in the setup wizard while installing eZ publish and then you decided to use
only multi-price products (page 397), not simple price ones. In this case, you can safely uninstall
one of the dependent packages which is called ”Products” (this content object package contains
simple price products needed for the ”Shop” site). The following instructions reveal how this can
be done.

1. Go to ”Setup - Packages” in your administration interface, select the ”ez systems” repository
from the drop-down list and click the ”Change repository” button. Find the installed pack-
age that you wish to uninstall and click on its name. The system will display the package
summary as shown in the following screenshot. (see figure 4.55)

Figure 4.55: The package uninstallation wizard, step 1.

Click the ”Uninstall” button.

2. The system will display a list of items that will be removed (look at the next screenshot).
(see figure 4.56)

Click the ”Uninstall package” button to continue or use ”Skip installation” to abort the
operation. If one of the listed content classes can not be removed, it will be skipped auto-
matically. For example, the ”Folder” content class will not be removed if it is used by one
of the top level nodes (page 125).

3. If some of the items being removed have been modified after the package installation,
the system will ask for confirmation before removing them (as shown in the following
screenshot). (see figure 4.57)

4.6.7 Packages / Uninstalling packages 318

4

Figure 4.56: The package uninstallation wizard, step 2.

Figure 4.57: The package uninstallation wizard, step 3.

You can choose to keep or remove these items. Make your choice and click the ”Continue”
button.

4. The system will display a summary. Please note that uninstalled packages will still be
available under the system repository (they will be marked as ”Imported”) and can be
installed later if needed.

4.6.8 Packages / package.xml format 319

4

4.6.8 package.xml format

This section describes important XML tags that are used by the packages system. These tags are
used in a ”package.xml” file that is located in a package directory.

Items to be installed

The package installation process is determined by the list of items to install. This list is always
specified between the <install> and </install> XML tags. (Please note that using two <install>
tags inside one ”package.xml” file is not allowed.)

An item to install is specified using the <item> XML tag. The following table reveals the list of
the tag’s attributes.

Attribute Value
type The type of

the item (”ezcontentclass”, ”ezcontentobject”,
”ezextension”, ”ezinstallscript”, etc.)

filename The name of the ”.xml” file that contains in-
formation about the item (without the file ex-
tension).

sub-directory The name of the subdirectory which contains
the item’s ”.xml” file.

Example

Let’s say that a content class package contains three content classes called ”myarticle”, ”myfolder”
and ”myproduct”. These classes are described in the files called ”class-myarticle.xml”, ”class-
myfolder.xml” and ”class-myproduct.xml” that are located in the ”myclassdir” subdirectory under
the package directory. In this case, the ”package.xml” file located in the package directory may
contain the following lines:

<install>
<item type="ezcontentclass"

filename="class-myarticle"
sub-directory="myclassdir" />

<item type="ezcontentclass"
filename="class-myfolder"
sub-directory="myclassdir" />

<item type="ezcontentclass"
filename="class-myproduct"
sub-directory="myclassdir" />

</install>

This will instruct the system to install three items of the ”ezcontentclass” type in the following
order:

4.6.8 Packages / package.xml format 320

4

• myarticle

• myfolder

• myproduct

Items to be uninstalled

The package uninstallation process is determined by the list of items to uninstall. This list is
always specified between the <uninstall> and </uninstall> XML tags. (Please note that using
two <uninstall> tags inside one ”package.xml” file is not allowed.)

An item to uninstall is specified using the <item> XML tag (as described above).

Dependent packages that are required

A site package usually contains dependencies to other packages. Choosing a site package in the
setup wizard will result in downloading, importing and installing its dependent packages. The list
of dependent packages that the site package requires is always specified between the <requires>
and </requires> XML tags located within the <dependencies> and </dependencies> pair.

Dependent packages are specified using the <require> XML tag. The following table reveals the
list of the tag’s attributes.

Attribute Value
type The type of the package (usually ”ezpack-

age”).
name The internal name of the package.
min-version The minimal version of the package that can

be used.

Example

The ”package.xml” file of the ”News” site package may contain the following lines:

<dependencies>
<provides />
<requires>

<require type="ezpackage"
name="news"
min-version="1.0" />

<require type="ezpackage"
name="media"
min-version="1.0-3" />

<require type="ezpackage"
name="t01"

4.6.8 Packages / package.xml format 321

4

min-version="1.0" />
</requires>
<obsoletes />
<conflicts />

</dependencies>

This means that the ”News” site package requires the following three dependent packages:

• news (version 1.0 or higher)

• media (version 1.0-3 or higher)

• t01 (version 1.0 or higher)

Choosing the ”News” site package in the setup wizard will result in downloading the site package
itself and all its dependent packages. All dependent packages except from the site style package
will be automatically installed.

4.6.9 Packages / Custom install scripts 322

4

4.6.9 Custom install scripts

Packages that can be installed via the administration interface may include specific custom install
and uninstall scripts. A custom script can be called at any stage during the package installation/
uninstallation process. These scripts can be interactive and are capable of displaying extra wiz-
ard steps. Interactive scripts are based on a ”wizard step” mechanism provided by the class
”eZPackageInstallationHandler”.

The following example demonstrates how to implement a custom install script for a package.

Example

Let’s say that you need to add some additional post-install step(s) to a content object package
called ”Products” which is located under the ”ez systems” internal repository (in the ”var/storage/
packages/ez systems/products” directory). To implement a post-install interactive script for this
package, do the following:

1. Create the following new subdirectories in the package directory:

• post-install

• post-install/templates

2. Open the ”package.xml” file located in the package directory and edit it. Find the list of
items to install which is specified between the <install> and </install> XML tags and add
the following item in the end of this list:

<item type="ezinstallscript"
filename="myinstallscript"
sub-directory="post-install" />

3. Create a file called ”myinstallscript.xml” in the ”post-install” directory (this file must contain
a description of your install script) and add the following lines to it:

<?xml version="1.0" encoding="UTF-8"?>
<install-script filename="myinstallscript.php"

classname="myInstallScript"
description="This is my custom install step" />

This will tell the system that additional install step(s) is implemented in a PHP class called
”myInstallScript” located in the ”post-install/myinstallscript.php” file. The text description
of the install script will be displayed in the beginning of the package installation process
(as shown in the following screenshot). (see figure 4.58)

4. Create a file called ”myownstep.tpl” in the ”post-install/templates” directory (this file will
contain a template for the additional install step implemented by your install script) and
add the following lines to it:

4.6.9 Packages / Custom install scripts 323

4

Figure 4.58: Displaying a custom install script in the list of items during the package installation
process

<form method="post" action={’package/install’|ezurl}>

{include uri="design:package/install/error.tpl"}
{include uri="design:package/install_header.tpl"}

<p>This is my custom step</p>

<label>You may even click the checkbox if you want</label>

<div class="block">
<input class="button" type="checkbox" name="MyCheckBox" />

</div>

{include uri="design:package/navigator.tpl"}

</form>

The last step of the package installation will be displayed according to this template (look
at the next screenshot). (see figure 4.59)

5. Create a new file called ”myinstallscript.php” in the ”post-install” directory. This file must
contain a PHP class called ”myInstallScript” where all the steps are implemented (according
to the description given in the ”post-install/myinstallscript.xml” file). Add the following
lines to the ”myinstallscript.php” file:

4.6.9 Packages / Custom install scripts 324

4

Figure 4.59: Displaying a custom wizard step during the package installation process

<?php
class myInstallScript extends eZInstallScriptPackageInstaller
{

function myInstallScript(&$package, $type, $installItem)
{

eZDebug::writeDebug($installItem, "Hello from myInstallScript");

$steps = array();
$steps[] = array(

’id’ => ’my_own_step’,
’name’ => ’My own step’,
’methods’ => array(’initialize’ => ’initializeMyOwnStep’,

’validate’ => ’validateMyOwnStep’,
’commit’ => ’commitMyOwnStep’),

’template’ => ’myownstep.tpl’);
$this->eZPackageInstallationHandler($package,

$type,
$installItem,
’My own custom step’,
$steps);

}

// Function that is called before the step is displayed.
// You can use it to set variables for your template.

function initializeMyOwnStep(&$package, &$http, $step, &$persistentData,
&$tpl, &$module)

{
eZDebug::writeDebug("Hello from initializeMyOwnStep()");
return true;

}

// This function is called after user has submitted the form.
// If this function returns "false", the step will be

4.6.9 Packages / Custom install scripts 325

4

// displayed again.

function validateMyOwnStep(&$package, &$http, $currentStepID, &$stepMap,
&$persistentData, &$errorList)

{
eZDebug::writeDebug("Hello from validateMyOwnStep()");
return true;

}

// This function is called after the form is submitted
// and validated.

function commitMyOwnStep(&$package, &$http, $step, &$persistentData, &$tpl)
{

eZDebug::writeDebug("Hello from commitMyOwnStep()");
return true;

}
}
?>

4.7 Cronjobs 326

4

4.7 Cronjobs

Some features of eZ Publish depend on a maintenance script that takes care of various tasks
behind the scenes. This script is located in the root of the eZ Publish directory and should be
executed at regular intervals. The script is called ”runcronjobs.php”. Among other things, it
processes workflows (page 165), checks / validates URLs, sends out notification e-mails, etc.
Although eZ Publish works without a periodical execution of ”runcronjobs.php”, it is still rec-
ommended to have it running in the background. Some features, for example the notification
system (page 423), will not work if the script is not running.

The most common practice is to instruct the operating system to automatically run the script
every 30-60 minutes. However, some tasks should be executed more frequently than others and
thus it is a good idea to divide the cronjobs into groups/sets and run them separately. Please
refer to the ”Configuring cronjobs (page 334)” and ”Running cronjobs (page 337)” sections for
further details.

4.7.1 Cronjobs / The cronjob scripts 327

4

4.7.1 The cronjob scripts

The ”cronjobs” directory contains miscellaneous cronjob scripts used for automated periodic and
scheduled maintenance. These are described below.

Name Description Frequency Default status
basket cleanup.php Cleans up shopping Once a week. Enabled

baskets for removed
user sessions.

hide.php Hides nodes when Not less than once a Enabled
a specified date and day.
time is reached.

indexcontent.php Performs de- Not less than once a Enabled
layed search index- day.
ing of newly added
content objects.

old drafts Removes old/ Once a month. Disabled
cleanup.php unused drafts.
internal drafts Removes unused in- Once a day. Enabled
cleanup.php ternal drafts.
ldapusermanage.php Synchronizes user Not less than once a Disabled

account information day.
with an LDAP server.

linkcheck.php Validates published Once a week. Enabled
URLs.

notification.php Sends notifications Every 15-30 Enabled
to subscribed users. minutes.

rssimport.php Imports RSS feeds. Not less than once a Enabled
day.

subtreeexpirycleanup.phpRemoves Not less than once a Enabled
expired cache blocks day.
with the ”subtree
expiry” parameter.

unpublish.php Removes content ob- Not less than once a Enabled
jects when a speci- day.
fied date and time is
reached.

updateviewcount.php Updates Not less than once a Disabled
the page view statis- day.
tics by parsing the
Apache log files.

workflow.php Processes the work- Every 15-30 Enabled
flows. minutes.

4.7.1 Cronjobs / The cronjob scripts 328

4

Cleaning up expired data for webshop

The eZ Publish webshop (page 160) functionality allows your customers to put products into
their shopping baskets. The items in the basket can then be purchased by initiating the checkout
process. The system stores information about a user’s shopping basket in a database table called
”ezbasket”. Information about sessions is stored in the ”ezsession” table.

If a user adds products to his basket and then stops shopping (for example closes the browser
window) without initiating the checkout process, the session of that user will expire after a
while. Expired sessions can be removed either automatically by eZ Publish or manually by the
site administrator. When a user’s session is removed from the database, the system will not take
care of the shopping basket that was created during this session. In other words, the system will
remove an entry from the ”ezsession” table, but the corresponding entry in the ”ezbasket” table
(if any) will remain untouched. This behavior is controlled by the ”BasketCleanup (page 1694)”
setting located in the ”[Session]” section of the ”site.ini” configuration file (or its override). If it
is set to ”cronjob” (default), you will have to remove unused baskets periodically by running the
”basket cleanup.php” cronjob script.

Please note that removing unused baskets usually takes a lot of time on sites with many visi-
tors. It is recommended to run the basket cleanup cronjob once a week. If you wish to run it
together with other (more frequent) cronjobs, use the ”BasketCleanupAverageFrequency (page
1695)” setting located at the same place to specify how often the baskets will actually be cleaned
up when the ”basket cleanup.php” cronjob is executed. If you wish to run ”basket cleanup.php”
separately from other cronjobs, add the following line to the ”[Session]” section of your ”cron-
job.ini.append.php” file:

BasketCleanupAverageFrequency=1

Please note that there is no need to run this cronjob if your site does not use the webshop
functionality (or if it does but the ”BasketCleanup” setting is set to ”pageload”).

Hiding nodes at specific times

The system can automatically hide a node when a specified date is reached. For example, you
may wish that an article published on your site should become invisible within a couple of days/
weeks/months. However, you are not interested in removing the article, you just want to hide it.
In this case, you will have to add a new attribute using the ”Date and time (page 473)” datatype
to your article class and configure the hide cronjob. The following text describes how this can be
done.

Adding an attribute to the ”Article” class

Go to ”Setup - Classes” in the administration interface and select the ”Content” class group to
view the list of classes assigned to this group. Find the article class and click it’s corresponding
edit icon/button. You will be taken to the class edit interface. Select the ”Date and time” datatype

4.7.1 Cronjobs / The cronjob scripts 329

4

from the drop-down list located in the bottom, click the ”Add attribute” button and edit the newly
added attribute as shown in the following screenshot.

(see figure 4.60)

Figure 4.60: Class attribute edit interface for the ”Date and time” datatype.

Note that both the name and the identifier can be set to anything (you specify what to use in the
ini file - see further below) and click ”OK”. The system will add a new field called ”Hide date”
(the name of the newly added attribute in the example above) to the class and thus it will appear
in the edit interface for the objects (in this case articles). When the articles are edited, this field
can be used to specify when the cronjob should hide the nodes. If the attribute is left blank, the
article will not be affected by the hide cronjob. Please note that the ”hide.php” cronjob must be
run periodically for this to work.

Configuring the ”hide” cronjob

Add the following lines to your ”content.ini.append.php” configuration file:

[HideSettings]
RootNodeList[]=2
HideDateAttributeList[article]=hide_date

You should specify the identifier of the newly added attribute in the ”HideDateAttributeList (page
1461)” configuration array using the class identifier as a key. In addition, you need to specify the
ID number of the parent node for the articles using the ”RootNodeList (page 1462)” configuration
directive.

Delayed search indexing

If the delayed indexing (page 1682) feature is enabled, newly and re-published objects will not be
indexed immediately. In other words, eZ Publish will not index the content during the publishing

4.7.1 Cronjobs / The cronjob scripts 330

4

process. Instead, the indexing cronjob will take care of this in the background and thus publishing
will go a bit faster (since you don’t have to wait for the content to be indexed). In order for
this to work, the ”indexcontent.php” cronjob must be executed periodically in the background
(otherwise the content will be published but not indexed).

Please note that you do not need to run this script unless you have ”DelayedIndexing=enabled”
in the ”[SearchSettings]” section of the ”site.ini” configuration file (or an override).

Cleaning up old/unneeded drafts

Regular drafts (status ”0”)

The purpose of the ”old drafts cleanup.php” cronjob script is to remove old drafts from the
database. If enabled, this script will remove drafts that have been in the system for over 90
days. To set the number of days, hours, minutes and seconds before a draft is considered old and
can be removed, specify the desired values in the ”DraftsDuration[]” configuration array located
in the ”[VersionManagement]” block of an override for ”content.ini”. The maximal number of
drafts to remove at one call of the script (100 by default) is controlled by the ”DraftsCleanU-
pLimit” setting located at the same place.

Internal/untouched drafts (status ”5”)

The purpose of the ”internal drafts cleanup.php” cronjob script is to remove drafts that probably
will never be published. If a version of a content object is created but not modified (for example,
if someone clicked an ”Add comments” button but didn’t actually post anything), the status of
the version will be ”5”. The ”internal drafts cleanup.php” script will remove status ”5” drafts that
have been in the system for over 24 hours (1 day). To set the number of days, hours, minutes and
seconds before an internal draft is considered old and can be removed, specify the desired val-
ues in the ”InternalDraftsDuration[]” configuration array located in the ”[VersionManagement]”
block of an override for ”content.ini”. The maximal number of internal drafts to remove at one
call of the script (100 by default) is controlled by the ”InternalDraftsCleanUpLimit” setting lo-
cated at the same place.

Synchronizing user data with LDAP server

If the users are authenticated through an LDAP server, eZ Publish will fetch user account infor-
mation from the external source and store it in the database. What happens is that it creates
local accounts when the users are logging in.

The ”ldapusermanage.php” cronjob script can be used to synchronize local user account informa-
tion with the external source in the background. It is recommended to run this script periodically
when the site is connected to an LDAP server. The script will take care of typical maintenance
tasks. For example, if a user is deleted from the LDAP directory, it will disable (but not remove)
the local account.

http://en.wikipedia.org/wiki/LDAP

4.7.1 Cronjobs / The cronjob scripts 331

4

Please note that the script will only update the eZ Publish database. Modification of external
data (stored on an LDAP server) is not supported.

Checking URLs

In eZ Publish, every address that is input as a link into an attribute using the ”XML block” (page
544) or the ”URL” (page 540) datatype is stored in the URL table (page 134) and thus the pub-
lished URLs can be inspected and edited without having to interact with the content objects. This
means that you don’t have to edit and re-publish your content if you just want to change/update
a link.

The URL table contains all the necessary information about each address including its status
(valid or invalid) and the time it was last checked (when the system attempted to validate the
URL). By default, all URLs are valid. The ”linkcheck.php” cronjob script is intended to check all
the addresses stored in the URL table by accessing the links one by one. If a broken link is found,
its status will be set to ”invalid”. The last checked field will always be updated.

You will have to specify your site URLs using the ”SiteURL (page 1509)” configuration directive
located in the ”[linkCheckSettings]” section of the ”crobjob.ini.append.php” file. This will make
sure that the ”linkcheck.php” cronjob handles relative URLs (internal links) properly.

Please note that the link check script must be able to contact the outside world through port 80.
In other words, the firewall must be opened for outgoing HTTP traffic from the web server that
is running eZ Publish. From 3.9, it is possible to fetch data using a HTTP proxy specified in the
”[ProxySettings] (page 1649)” section of ”site.ini” (requires CURL support in PHP).

Sending notifications

eZ Publish has a built-in notification system (page 423) that allows users to receive information
about miscellaneous happenings. It is possible to be notified by email when objects are updated
or published, when workflows are executed and so on. If you are going to use notifications
on your site, you will have to run the ”notification.php” cronjob script periodically. It will take
care of sending notifications to subscribed users (this is done by launching the main notification
processing script ”kernel/classes/notification/eznotificationeventfilter.php”).

If you are using the notification system, it is recommended to run this cronjob script every 15-30
minutes.

RSS import

The RSS import functionality makes it possible to receive feeds from various sites, for example,
the latest community news from www.ez.no (http://ez.no/rss/feed/communitynews). You will
have to configure this using the ”Setup - RSS” part of the administration interface and run the
”rssimport.php” cronjob periodically. This script will get new items for all your active RSS imports
and publish them on your site (if an item already exists, it will be skipped).

Please note that the RSS import script must be able to contact the outside world through port 80.

http://php.net/curl
http://www.ez.no/
http://ez.no/rss/feed/communitynews

4.7.1 Cronjobs / The cronjob scripts 332

4

In other words, the firewall must be opened for outgoing HTTP traffic from the web server that
is running eZ Publish. From 3.9, it is possible to fetch data using a HTTP proxy specified in the
”[ProxySettings] (page 1649)” section of ”site.ini” (requires CURL support in PHP).

Clearing expired template block caches

If you are using the ”cache-block (page 1309)” template function with the ”subtree expiry” pa-
rameter to cache the contents of a template block, this cache block will only expire if an object
is published below the given subtree (instead of the entire content node tree). The ”Delayed-
CacheBlockCleanup” setting located in the ”[TemplateSettings]” section of the ”site.ini” config-
uration file controls whether expired cache blocks with the ”subtree expiry” parameter will be
removed immediately or not. If this setting is enabled, the expired cache blocks must be re-
moved manually or using the ”subtreeexpirycleanup.php” cronjob script.

Removing objects at specific times

The ”unpublish.php” script makes it possible to remove content objects when a specified date is
reached. For example, you may wish to delete some articles (move them to the trash) within a
couple of days/weeks/months. The following list reveals how this can be done.

1. Add a new attribute of the ”Date and time (page 473)” datatype to your article class us-
ing the ”Setup - Classes” part of the administration interface. Specify ”unpublish date” as
the attribute’s identifier; a new field will become available when the objects (in this case
articles) are edited. This field can be used to specify when the cronjob should remove the
object. If the attribute is left blank, the object will not be affected by the unpublish cronjob.

2. Configure the ”unpublish.php” cronjob by adding the following lines to your ”con-
tent.ini.append.php” configuration file:

[UnpublishSettings]
RootNodeList[]=2
ClassList[]=2

You should specify the ID number of your article class in the ”ClassList (page 1478)” con-
figuration array and put the ID number of the parent node for your articles to the ”RootN-
odeList (page 1479)” setting.

Analyzing the Apache log files

It is possible to have the view statistics for your site pages stored in the eZ Publish database. To
do this, you will have to run the ”updateviewcount.php” cronjob script periodically. The script
will update the view counters of the nodes by analyzing the Apache log file (the view counters
are stored in a database table called ”ezview counter”). When executed, the script will update a
log file called ”updateview.log” located in the ”var/example/log/” directory (where ”example” is

http://php.net/curl

4.7.1 Cronjobs / The cronjob scripts 333

4

usually the name of the siteaccess that is being used - it is set by the ”VarDir” directive in ”site.ini”
or an override). This file contains information about which line in the Apache log file the script
should start from the next time it is run.

You will also have to create an override for the ”logfile.ini” configuration file and add the follow-
ing lines there:

[AccessLogFileSettings]
StorageDir=/var/log/httpd/
LogFileName=access_log
SitePrefix[]=example
SitePrefix[]=example_admin

Replace ”/var/log/httpd” with the full path of the directory where the Apache log file is stored,
specify the actual name of this file instead of ”access log”, replace ”example” and ”example
admin” with the names of your siteaccesses (if you have more than two siteaccesses, list all of
them).

Once the correct settings are specified and the ”updateviewcount.php” cronjob script is run peri-
odically, you will be able to fetch the most popular (most viewed) nodes using the ”view top list
(page 719)” template fetch function and/or check how many times a node has been viewed (as
described in this example).

Processing workflows

In order to use workflows (page 165), you will have to run the ”workflow.php” cronjob script
periodically. The script will take care of processing the workflows. For example, let’s say you are
using the collaboration system and all the changes made in the ”Standard” section (page 132)
can not be published without your approval. (This can be done by creating a new ”Approve”
event (page 1067) within a new workflow initiated by the ”content-publish-before” trigger func-
tion.) If somebody (except the administrator) changes article ”A”, the system will generate a new
collaboration message ”article A awaits your approval” for you and another collaboration mes-
sage ”article A awaits approval by editor” for the user who changed it. (Run ”notification.php”
periodically in order to make it possible for users to be notified by E-mail about new collaboration
messages.) You will be able to view your collaboration messages and review/approve/reject the
changes using the ”My Account - Collaboration” part of the administration interface. However,
the changes will not be applied to article A immediately after getting your approval. This will be
done next time the ”workflow.php” cronjob script is executed.

4.7.2 Cronjobs / Configuring cronjobs 334

4

4.7.2 Configuring cronjobs

You can configure which cronjob that will be enabled (can be executed by the ”runcronjobs.php”
script) from within an override for the ”settings/cronjob.ini” configuration file. The following list
reveals which settings that can be specified in the ”[CronjobSettings]” section of this file.

• The ScriptDirectories (page 1513) configuration array specifies the directories where eZ
Publish will search for built-in cronjob scripts (the ”cronjobs” directory is used by default).

• The ExtensionDirectories (page 1511) directive specifies the extension directories where eZ
Publish will search for additional/custom cronjob scripts. By default, eZ Publish will search
in the ”cronjobs” subdirectory inside your extension(s).

• The Scripts (page 1512) array contains a list of cronjob scripts that will be run when the
main ”runcronjobs.php” script is executed without specifying the ”group of tasks” option.
The tasks specified in this configuration array is called the main set of cronjobs.

Cronjob parts

Some cronjobs must be executed more frequently than others. It is possible to configure addi-
tional sets of cronjobs by adding specific sections (cronjob parts) to an override for ”cronjob.ini”.

The next examples demonstrate how the cronjobs can be configured.

Example 1 (default settings)

The following settings are specified in the ”[CronjobSettings]” section of ”cronjob.ini” by default:

[CronjobSettings]
ScriptDirectories[]=cronjobs
Scripts[]=unpublish.php
Scripts[]=rssimport.php
Scripts[]=indexcontent.php
Scripts[]=hide.php
Scripts[]=subtreeexpirycleanup.php
Scripts[]=internal_drafts_cleanup.php
ExtensionDirectories[]

This means that the main set of cronjobs contains the following six tasks:

• unpublish.php

• rssimport.php

• indexcontent.php

• hide.php

4.7.2 Cronjobs / Configuring cronjobs 335

4

• subtreeexpirycleanup.php

• internal drafts cleanup.php

These scripts will be run each time the ”runcronjobs.php” script is executed without the ”group
of tasks” option. The system will expect these scripts to be located in the ”cronjobs” directory.

The following configuration blocks (cronjob parts) located in the ”settings/cronjob.ini” configu-
ration file specify two additional sets of cronjobs called ”infrequent” and ”frequent”:

[CronjobPart-infrequent]
Scripts[]=basket_cleanup.php
Scripts[]=linkcheck.php

[CronjobPart-frequent]
Scripts[]=notification.php
Scripts[]=workflow.php

The settings located in the ”[CronjobPart-infrequent]” section instruct the system to run the
”basket cleanup.php” and ”linkcheck.php” scripts when the ”runcronjobs.php” script is executed
in the following way:

php runcronjobs.php infrequent

The ”frequent” set of tasks only includes the notification and workflow cronjobs. These scripts
will be run when the ”runcronjobs.php” script is executed in the following way:

php runcronjobs.php frequent

With this configuration, it is possible to run each set of cronjobs separately, e.g.:

• Workflow.php and notification.php - every 15 minutes.

• The basket cleanup and link check cronjobs - once a week.

• The main set of cronjobs - once a day.

Example 2

If you wish to run the ”old drafts cleanup.php” cronjob once a month, you can add the following
settings to the ”cronjob.ini.append.php” file located in the ”settings/siteaccess/example” direc-
tory (replace ”example” by the actual name of the siteaccess):

[CronjobPart-monthly]
Scripts[]=old_drafts_cleanup.php

4.7.2 Cronjobs / Configuring cronjobs 336

4

The settings located in the ”[CronjobPart-monthly]” section will instruct the system to run the
”old drafts cleanup.php” cronjob script when the ”runcronjobs.php” script is executed in the fol-
lowing way:

php runcronjobs.php monthly -s example

Example 3

It is possible to extend the system by creating custom cronjob scripts. For example, if you have
an extension ”nExt” that includes a cronjob script ”myjob.php”, you’ll need to put the following
lines into an override for the ”cronjob.ini” configuration file:

[CronjobSettings]
ExtensionDirectories[]=nExt
Scripts[]=myjob.php

or

[CronjobSettings]
ScriptDirectories[]=extension/nExt/cronjobs
Scripts[]=myjob.php

These settings will make eZ Publish expect the additional cronjob script to be located at ”exten-
sion/nExt/cronjobs/myjob.php”. This script will be added to the main set of cronjobs and thus
it will be run each time the ”runcronjobs.php” script is executed without the ”group of tasks”
option.

4.7.3 Cronjobs / Running cronjobs 337

4

4.7.3 Running cronjobs

The ”runcronjobs.php” script located in the root of the eZ Publish directory takes care of pro-
cessing your cronjobs in the background. This script should be executed periodically. The most
common practice is to instruct the operating system (or some application) to automatically run
the script at regular intervals. On UNIX/Linux systems, this can be done by making use of ”cron”.
On Windows, the script can be run by the ”Scheduled Tasks” service. The following text describe
how this script can be executed.

Running cronjobs from the shell

It is possible to execute the ”runcronjobs.php” script manually from within a system shell:

1. Navigate into the eZ Publish directory.

2. Run the script (replace ”example” with the actual name of the siteaccess):

php runcronjobs.php group_of_tasks -s example

The ”group of tasks” option indicates that only scripts listed in the ”[CronjobPart-group of tasks]”
section of the ”cronjob.ini” configuration file (or its override) will be executed. This parameter is
optional. If omitted, the list of scripts will be taken from the ”[CronjobSettings]” section of the
”cronjob.ini” configuration file. (Please refer to the ”Configuring cronjobs (page 334)” section for
more information.)

The ”-s example” indicates which siteaccess configuration the script should use. If you do not
specify a siteaccess when running the script, then the default siteaccess (page 1753) will be
used.

It is also possible to use the ”-d” parameter that instructs the script to display the debug output
at the end of execution, e.g.:

php runcronjobs.php group_of_tasks -d -s example

You can use this parameter with the ”all” option to get more detailed information:

php runcronjobs.php group_of_tasks -dall -s example

The following options are also available: ”accumulator”, ”debug”, ”error”, ”include”, ”notice”,
”timing”, ”warning”. Please note when provided, they must be separated using commas. The in-
structions given in the following example will tell the script to display debug notices and produce
a list of includes:

php runcronjobs.php group_of_tasks -dinclude,notice -s example

The script will not make any changes to log files by default (the ones located in the ”var/log”
directory of your eZ Publish installation). If you need this functionality, you’ll have to run the
script using both ”-d” and ”--logfiles” parameters:

4.7.3 Cronjobs / Running cronjobs 338

4

php runcronjobs.php group_of_tasks -d -s example --logfiles

Cronjobs on UNIX/Linux

”Cron” is the name of a utility that allows the automatic execution of tasks in the background. It is
typically used for periodic system administration and maintenance tasks (for example, creating
a weekly backup). A program often referred to as the ”cron daemon” is running silently in
the background, spending its time waiting and executing cronjobs. A ”cronjob” is a script or a
command that is run at specified intervals by the daemon. The cronjobs must be set up in a
crontab. A crontab is a text file that contains information about the intervals and the tasks that
should be executed. The crontab files are not intended to be edited directly. The following table
reveals which shell commands that can be used for maintaining crontabs:

Shell command Description
Install a new crontab from the ”ezpub-

crontab /var/www/ezpublish/
ezpublish.cron lish.cron” file (replace ”/var/www/ezpublish”

by the actual path to your eZ Publish direc-
tory).
Display the current crontab.

crontab -l

Edit the current crontab. The modified
crontab -e crontab will be installed automatically.

Remove the current crontab.
crontab -r

The following example shows how a cronjob for eZ Publish can be set up in the crontab. It
assumes that eZ Publish is located in ”/var/www/ezpublish/”, that the PHP command line in-
terface program is located at ”/usr/local/bin/php” and that the name of the target siteaccess is
”example”.

The path to the eZ Publish directory.
EZPUBLISH=/var/www/ezpublish

Location of the PHP command line interface binary.
PHPCLI=/usr/local/bin/php

Instruct cron to run the main set of cronjobs
at 6:35am every day
35 6 * * * cd $EZPUBLISH && $PHPCLI runcronjobs.php -q -s example 2>&1

Instruct cron to run the "infrequent" set of cronjobs
at 5:20am every Monday
20 5 * * 1 cd $EZPUBLISH && $PHPCLI runcronjobs.php infrequent -q -s example

http://en.wikipedia.org/wiki/Crontab

4.7.3 Cronjobs / Running cronjobs 339

4

2>&1

Instruct cron to run the "frequent" set of cronjobs
every 15 minutes
0,15,30,45 * * * * cd $EZPUBLISH && $PHPCLI runcronjobs.php frequent -q -s
example 2>&1

Instruct cron to run the "monthly" set of cronjobs
at 4:10am the first day of every month
10 4 1 * * cd $EZPUBLISH && $PHPCLI runcronjobs.php monthly -q -s example 2>&1

When added to the crontab, the cron daemon will run the ”runcronjobs.php” script using the
PHP command line interface binary at the specified time. With this configuration, the main set
of cronjobs will be run at 6:35am every day. This means that all the scripts listed in the ”[Cron-
jobSettings]” section of the ”cronjob.ini” configuration file (or its override) will be executed once
a day.

The ”infrequent” set of cronjobs will be run at 5:20am every Monday, i.e. the scripts listed in
the ”[CronjobPart-infrequent]” section of ”cronjob.ini” (or its override) will be executed once a
week.

The ”frequent” set of cronjobs will be run every 15 minutes. Only the scripts that are listed in the
”[CronjobPart-frequent]” section of ”cronjob.ini” (or its override) will be executed.

The ”monthly” set of cronjobs will be run at 4:10am the first day of every month, i.e. the script(s)
listed in the ”[CronjobPart-monthly]” section of ”cronjob.ini” (or its override) will be executed
once a week.

The ”-q” parameter instructs the script to run in quiet/silent mode (suppressing unnecessary
output). The ”-s example” indicates which siteaccess configuration the script should use. The
”2>&1” notation instructs the system to combine standard output and error messages into one
stream.

Scheduled tasks on Windows

Unlike UNIX/Linux systems, Windows does not provide access to cron. Instead, Windows has its
own solution called ”Scheduled Tasks”. A scheduled task can be set up by selecting ”Scheduled
Tasks” from the Control Panel. This will bring up a wizard that asks what should be executed,
when and so on. It should be configured to run a batch (.bat) file at regular intervals. The batch
file should navigate into the eZ Publish directory and run the ”runcronjobs.php” script.

4.8 Advanced redirection after login 340

4

4.8 Advanced redirection after login

In eZ publish 3.8 you can configure where to redirect a user when he/she logs in to the system.
To enable this possibility for users, do the following:

1. Add an attribute of the ”Text line (page 536)” datatype to your user class. If you have
several user classes and wish to enable advanced redirection for all of them then you should
add this attribute to each of your user classes (make sure you enter the same attribute
identifier for all of them).

2. Specify the identifier of the newly added attribute in the ”LoginRedirectionUriAt-
tribute” setting located in the ”[UserSettings]” section of the ”settings/siteaccess/example/
site.ini.append.php” configuration file (replace ”example” with the actual name of your
siteaccess) like this:

LoginRedirectionUriAttribute[key]=attribute_id

key There are two keys that can be used: ”user”
for user class(es) or ”group” for user group
class(es).

attribute id The identifier of the newly added attribute
(not ID number of the attribute).

Now you can specify the redirection URI in the text line field when creating/editing a user.

This possibility can be also enabled for user groups in the same way as for users. This means that
you should add an attribute of the ”Text line (page 536)” datatype to your user group class(es)
and specify its identifier in the ”LoginRedirectionUriAttribute” setting using ”group” as a key.

Example 1

Let’s say that user John must be redirected to the ”News” folder after login. The following list
reveals how this could be done:

1. Access the ”Setup” tab in the administration interface, click ”Classes” on the left and select
the ”Users” class group. You should see the list of classes assigned to this group. Find your
user class there and click the ”Edit” button located in the same line of the list. You will be
taken to the class edit interface. Select the ”Text line” datatype from the drop-down list
located in the bottom, click the ”Add attribute” button and edit the newly added attribute
as shown below. (see figure 4.61)

Click ”OK” to save your changes.

2. Specify the identifier of the newly added attribute in the ”LoginRedirectionUriAttribute”
setting located under the ”[UserSettings]” section of an override for the ”settings/site.ini”
configuration file. To do this, you should add the following line:

4.8 Advanced redirection after login 341

4

Figure 4.61: A fragment of the class edit interface.

LoginRedirectionUriAttribute[user]=redirection_uri

where ”redirection uri” is the attribute identifier.

3. Access the ”User accounts” tab in the administration interface, use the ”Sub items” list to
find the user John and click the ”Edit” button located in the same line of the list. You will be
taken to the user edit interface. Specify ”/news” in the text field called ”Redirection URI”
(the name of the newly added class attribute) as shown below. (see figure 4.62)

Click the ”Send for publishing” button to save your changes and the user ”John” will be
always redirected to the ”News” folder after login.

Example 2

Let’s say that you wish to redirect all users that belong to the ”Guest accounts” group to the
”News” folder after login. The following list reveals how this could be done:

1. Edit your user group class and add an attribute of the ”Text line” datatype as shown below:
(see figure 4.63)

2. Add the following line into the ”[UserSettings]” section of an override for the ”settings/
site.ini” configuration file:

LoginRedirectionUriAttribute[group]=start_page

where ”start page” is the attribute identifier.

4.8 Advanced redirection after login 342

4
Figure 4.62: Setting the redirection URI for the user John

Figure 4.63: A fragment of the class edit interface.

3. Edit the ”Guest accounts” user group and specify ”/news” in the text field called ”Start
page” (the name of the newly added class attribute) as shown below. (see figure 4.64)

Click the ”Send for publishing” button to save your changes and all the users that belong to

4.8 Advanced redirection after login 343

4

Figure 4.64: Setting the redirection URI for the ”Guest accounts” user group

the ”Guest accounts” group will be always redirected to the ”News” folder after login.

Important notes

If a user is a member of several groups (a child of several ”User group” nodes), the system
will use the redirection URI that is specified for the ”main” group (main parent node). The
following screenshot shows the user view interface for the user John that belongs to both ”Guest
accounts” and ”Editors” user groups. The ”Locations” list located under user preview allows to
view and manage locations for the user object that is currently being viewed. The main location
is displayed in a bold type (”Users / Guest accounts / John Doe” in our example).

(see figure 4.65)

Please note that the advanced redirection feature will get disabled if the redirection URI is already
specified (e.g. via the ”LastAccessesURI” session variable. Let’s say that you have specified ”/
news” as the redirection URI for user John (see Example 1). If John launches a browser and goes
directly to for example ”http://yoursite.com/media files” then he will not be redirected to ”http:/
/yoursite.com/news”.

4.8 Advanced redirection after login 344

4

Figure 4.65: A fragment of the object view interface for the user with two locations.

4.9 VAT charging system 345

4

4.9 VAT charging system

Charging the value added taxes in your webshop system is based on the VAT types. A VAT type
consists of a name and a fixed rate, for example: ”Std, 0%”. The administration interface makes
it possible to add, remove and modify VAT types as described in the ”Managing VAT types (page
361)” section. Although the quantity of the VAT types is not limited, there must be at least one
VAT type in your webshop system. The only purpose of these VAT types is to store some fixed
rates of VAT in percent and thus you can call them ”static VAT types” or ”fixed VAT types”.

If you assign a static VAT type to a product then the system will always charge the fixed rate of
VAT specified by this VAT type for this product. (This is how the ”VAT per product” approach
works.)

Price inc. VAT / Price ex. VAT

There are two ways in which the assigned VAT type can be used. This configuration depends on
how the product prices are entered when the objects are created. The ”Price inc. VAT” alternative
is to be used if the prices that are entered already include the value added tax. The ”Price ex.
VAT” alternative should be used if the prices that are entered do not contain the value added tax.
When the first alternative is used and the product is viewed, the price that was entered will be
shown. When the second alternative is used and the product is viewed, the price will be the price
that was entered plus the amount of VAT.

Dynamic VAT type

The dynamic VAT type does not store any fixed rate of VAT and is not configurable from the ad-
ministration interface. This VAT type is represented by an additional alternative that is displayed
in the list of VAT types when you edit your products. This alternative is called ”Determined by
VAT charging rules” by default. (The name is specified by the ”DynamicVatTypeName” INI set-
ting described in the ”VAT settings (page 369)” section). Choosing this alternative (assigning the
dynamic VAT type to a product) will tell the system that no fixed VAT percentage is assigned to
this product and thus the amount of VAT should be determined dynamically using some complex
VAT charging logic. For example, the amount of VAT can be changed dynamically depending on
where the customer lives.

The dynamic VAT type is incompatible with the ”Price inc. VAT” configuration. You should set the
”Price ex. VAT” configuration for your products and specify prices that do not contain the value
added tax. Please note that this VAT type is connected with the VAT handlers mechanism and is
disabled if no handler is used.

VAT handlers

If you wish to use some complex VAT charging logic, it must be implemented in a VAT handler i.e.
PHP class providing a mechanism that determines the rate of VAT for a product dynamically in
accordance with the implemented logic. You can either use the built-in default VAT handler that

4.9 VAT charging system 346

4

supports the ”Country dependent VAT” approach or extend the system by creating your own VAT
handler (the ”Extended VAT” approach). Using two or more VAT handlers at the same time is not
supported.

The VAT handler to use must be specified in the ”Handler” INI setting described in the ”VAT set-
tings (page 369)” section. To enable the built-in default VAT handler, you will have to add the
following line to the ”[VATSettings]” section in an override for the ”settings/shop.ini” configura-
tion file:

Handler=ezdefault

The system will start to use the default VAT handler and add the dynamic VAT type to the list of
VAT types that is displayed when you create/edit a product or product class.

Please note that dynamic VAT type is a kind of virtual structure that comes into being after
enabling a VAT handler. If no VAT handler is enabled, the dynamic VAT type is not displayed and
can not be used.

4.9.1 VAT charging system / Assigning VAT types to products 347

4

4.9.1 Assigning VAT types to products

To assign a VAT type to a product, edit this product and select the desired VAT type from the
drop-down list called ”VAT type” as shown in the following screenshot. This can be done for both
simple price and multi-price products (supported by both price (page 525) and multi-price (page
513) datatypes).

(see figure 4.66)

Figure 4.66: Setting the VAT type on the object level.

The screenshot above shows a part of the object edit interface for a simple price product called
”Persian”. Since the price value is set to $1,250 and the ”Price inc. VAT” configuration is selected,
the actual product price displayed to a customer will be $1,250. If you assign the 25% static VAT
to this product then the amount of VAT will be $250.

If you then select the ”Price ex. VAT”configuration then the amount of VAT will be calculated like
this:
1,250.00 * 25 / 100 = 312.50

The actual product price for customers will be calculated like this:
1,250.00 + 312.50 = 1,562.50

If you select the last item called ”Determined by VAT charging rules” then the dynamic VAT type
will be assigned to this product. This VAT type is only compatible with the ”Price ex. VAT”
configuration.

Default VAT type for a product class

It is possible to choose the default VAT type on the class level (when you create a new product
class or edit an existing one). This VAT type will be used by default when a new object of this
class is created. However, it will be still possible to choose another VAT type for each individual
product.

The following list reveals how you can set the default VAT type for a product class.

4.9.1 VAT charging system / Assigning VAT types to products 348

4

1. Access the ”Setup” tab in the administration interface, click ”Classes” on the left and select
the ”Content” class group. You should see the list of classes assigned to this group. Find
your product class there and click the ”Edit” button located in the same line of the list. You
will be taken to the class edit interface.

2. Find the class attribute of the price or multi-price datatype. You should see a drop-down
list called ”Default VAT type” there. Select the desired VAT type from this list as shown in
the following screenshot and click the ”OK” button to save your changes. (see figure 4.67)

Figure 4.67: Setting the default VAT type on the class level.

The screenshot above shows a part of the class edit interface for a simple price product
class called ”Carpet”. Here you can select ”Price inc. VAT” or ”Price ex. VAT” as default
configuration for all newly created carpets and choose for example ”Norway general, 25%”
as the default VAT type for them. Please note that you will be able to change these default
settings on the object level (for each particular carpet). If you select the last item called
”Determined by VAT charging rules” then the dynamic VAT type will be assigned by default
to all newly created carpets. This VAT type can only be used with the ”Price ex. VAT”
configuration.

4.9.2 VAT charging system / Three approaches to VAT charging 349

4

4.9.2 Three approaches to VAT charging

The webshop system (page 160) supports the following three approaches to VAT charging:

1. VAT per product

2. Country dependent VAT

3. Extended VAT

The next subsections explain the difference between these approaches.

VAT per product

The primitive ”VAT per product” approach allows to choose one of the predefined static VAT types
when you create a new product or edit an existing one. Thus you can specify a fixed VAT rate for
each product. It is also possible to specify the default VAT type for a product class so that this
VAT type will be used by default when a new object of this class is created.

Example

Let’s say that you sell various products to Norwegian customers and need to charge the following
rates of VAT depending on the type of goods:

• A general rate, 25% for most of the products.

• A reduced rate, 11% for food.

• A low rate, 7% for personal transport.

You will have to create these three VAT types (as described in the ”Creating a VAT type” section)
so that you can assign (page 347) an appropriate VAT type to each product.

It is also possible to create several product classes and specify different default VAT types for
them. The value specified for a product class will be selected by default for a new object of this
class.

For example, let’s say that you have created the following three product classes:

• ”Carpet” with default VAT type set to 25%

• ”Food product” with default VAT type set to 11%

• ”Motorcycle” with default VAT type set to 7%

In this case, the system will assign the 25% fixed VAT type to each newly created carpet, the 11%
fixed VAT type to each newly created food product, and the 7% fixed VAT type to each newly
created motorcycle.

4.9.2 VAT charging system / Three approaches to VAT charging 350

4

Country dependent VAT

In most cases, the amount of the VAT depends on where the customer lives. The ”Country depen-
dent VAT” approach allows to charge different VAT percentage depending on the product category
(if specified) and the country the customer is from. This can be done by using the dynamic VAT
type and the built-in default VAT handler. This handler uses the VAT charging rules to determine
the appropriate VAT percentage for a product.

VAT charging rules

A VAT charging rule consists of the following components:

• User country (page 356)

• Product category (page 354) (one or more)

• VAT type

and determines which static VAT type to use in case when the customer is from the specified coun-
try and the product belongs to one of specified categories. The administration interface makes
it possible to add, remove and modify VAT charging rules as described in the ”Managing VAT
rules (page 367)” section. The default VAT rule specified for ”Any” country and ”Any” category
determines which rate of VAT to use in case if all other VAT rules do not match.

The more exact match a rule provides for given ”country-category” pair, the higher priority it
has. In other words, the default VAT handler tries to choose the best matching VAT percentage.
To understand how this VAT choosing algorithm works, look at possible match cases and their
priorities described in the following table:

Country Category Example Priority
exact match exact match Norway-Food 4
exact match weak match Norway-Any 3
weak match exact match Any-Food 2
weak match weak match Any-Any 1

If there is no match on country and/or no match on category then the lowest (zero) priority will
be used.

Setting up country dependent VATs

If you sell for example carpets and need to levy the 16% VAT on purchases made by German
customers and 25% on purchases made from Norway then the ”VAT per product” approach is not
applicable. The following text explains how the ”country dependent VAT” approach can be used
in this particular case.

1. Enable the built-in default VAT handler as described in the ”VAT handlers” section.

4.9.2 VAT charging system / Three approaches to VAT charging 351

4

2. Create the following two VAT types as described in the ”Creating a VAT type” section:

• Norway general, 25%

• Germany general, 16%

3. Add an attribute of the country (page 469) datatype to your user class and specify its
identifier in the ”UserCountryAttribute” INI setting as described in the ”Adding a country
attribute to a user class” section.

4. Create the following two VAT rules as described in the ”Creating a VAT rule” section:

User country Product category VAT type
Norway Any Norway general, 25%
Germany Any Germany general, 16%

The system will also ask you to create the default VAT rule that will be applied to customers
from all other countries.
Since you sell only one type of goods, there is no need to create product categories. The
VAT rules specified for ”Any” product category will be applied to all your products.

5. To make your products affected by the VAT charging rules, you should assign the dynamic
VAT type to them as described in the ”Assigning VAT types to products (page 347)” section.

Setting up country and category dependent VATs

If your webshop sells various types of products with different rates of VAT then the rate of VAT
will depend on both user country and product category. This means that you will have to cre-
ate product categories, assign them to your products and specify VAT rules for these product
categories (not for ”Any” category as described in the previous section).

For example, let’s say that you sell various products to Norwegian and German customers and
need to charge the following rates of VAT depending on the type of goods:

• Germany

– A general rate, 16% for most of the products.

– A reduced rate, 7% for food.

• Norway

– A general rate, 25% for most of the products.

– A reduced rate, 11% for food.

– A low rate, 7% for personal transport.

The following text explains how the ”country dependent VAT” approach can be used in this
particular case.

1. Enable the built-in default VAT handler as described in the ”VAT handlers” section.

4.9.2 VAT charging system / Three approaches to VAT charging 352

4

2. Create the following four VAT types as described in the ”Creating a VAT type” section:

• Norway general, 25%

• Germany general, 16%

• Norway reduced, 11%

• Norway low, Germany reduced, 7%

3. Add an attribute of the country (page 469) datatype to your user class and specify its
identifier in the ”UserCountryAttribute” INI setting as described in the ”Adding a country
attribute to a user class” section.

4. Add an attribute of the product category (page 527) datatype to your product class and
specify its identifier in the ”ProductCategoryAttribute” INI setting as described in the
”Adding a product category attribute to a product class” section.

5. Create the following two product categories as described in the ”Creating a product cate-
gory” section:

• Food

• Personal transport

6. Create the following five VAT rules as described in the ”Creating a VAT rule” section:

User country Product category VAT type
Germany Food Norway low, Germany re-

duced, 7%
Germany Any Germany general, 16%
Norway Personal transport Norway low, Germany re-

duced, 7%
Norway Food Norway reduced, 11%
Norway Any Norway general, 25%

The system will also ask you to create the default VAT rule for any category and any country
(this VAT rule will be used in case if none of the other VAT rules is applicable).

7. Assign the dynamic VAT type to your products (as described in the ”Assigning VAT types to
products (page 347)” section) and assign the appropriate product category to each of them
(as described in the ”Assigning a category to a product” section).

Extended VAT

If you need more complicated VAT charging logic for your webshop, you can extend the system by
creating your own VAT handler for special needs. This approach is incompatible with the previous
one because using two or more VAT handlers at the same time is not supported. The ”Handler”
INI setting described in the ”VAT settings (page 369)” section determines the VAT handler to use.

The VAT charging logic implemented by your handler will be applied to all products that have
the dynamic VAT type assigned. Keep in mind that dynamic VAT type does not work with ”Price
inc. VAT” configuration.

4.9.2 VAT charging system / Three approaches to VAT charging 353

4

Please refer to the ”Creating new VAT handlers (page 371)” section for more information.

4.9.3 VAT charging system / Product category 354

4

4.9.3 Product category

The ”Country dependent VAT” approach supposes that each of your products can be assigned
a product category. The next subsections reveal how this can be achieved. The administration
interface makes it possible to add, remove and rename product categories as described in the
”Managing product categories (page 364)” section.

Adding new attribute to a product class

It is necessary to add an attribute of the product category (page 527) datatype to your product
class otherwise it will be impossible to assign a category to a product. The following text reveals
how this can be done.

1. Access the ”Setup” tab in the administration interface, click ”Classes” on the left and select
the ”Content” class group. You should see the list of classes assigned to this group. Find
your product class there and click the ”Edit” button located in the same line of the list. You
will be taken to the class edit interface.

2. Select the ”Product category” datatype from the drop-down list located in the bottom, click
the ”Add attribute” button and edit the newly added attribute as shown below. The follow-
ing screenshot shows the fragment of the class edit interface with newly added attribute of
the product category (page 527) datatype. (see figure 4.68)

Figure 4.68: Class attribute edit interface for the ”Product category” datatype.

The system will add a drop-down list called ”Category” (the name of the newly added
attribute) in the object edit interface for products. You can assign a category to the product
that is being edited by selecting the desired category from this list.

3. Specify the identifier of the newly added attribute in the ”ProductCategoryAttribute” set-
ting located under the ”[VATSettings]” section of an override for the ”settings/shop.ini”
configuration file.

4.9.3 VAT charging system / Product category 355

4

Assigning a category to a product

If your product class contains an attribute of the product category (page 527) datatype then you
can assign a category to a product when editing this product. To do this, edit this product and
select the desired category from the drop-down list called ”Category” as shown in the following
screenshot.

(see figure 4.69)

Figure 4.69: A fragment of the product edit interface.

Please note that product categories are always used together with the dynamic VAT type (as
you can see in the screenshot above the last item called ”Determined by VAT charging rules” is
selected). There is no point to select a category for a product with fixed VAT rate.

4.9.4 VAT charging system / User country 356

4

4.9.4 User country

The ”Country dependent VAT” approach supposes that each of your users can be assigned a
country. The next subsections reveal how this can be achieved. Note that the list of available
countries and their properties (calling codes, etc.) can be configured from within an override for
the ”country.ini (page 1499)” configuration file.

Adding new attribute to a user class

It is necessary to add an attribute of the country (page 469) datatype to your user class otherwise
it will be impossible to assign a country to a user. The following text reveals how this can be
done.

1. Access the ”Setup” tab in the administration interface, click ”Classes” on the left and select
the ”Users” class group. You should see the list of classes assigned to this group. Find your
user class there and click the ”Edit” button located in the same line of the list. You will be
taken to the class edit interface.

2. Select the ”Country” datatype from the drop-down list located in the bottom, click the
”Add attribute” button and edit the newly added attribute as shown below. The following
screenshot shows the fragment of the class edit interface with newly added attribute of the
country (page 469) datatype. (see figure 4.70)

Figure 4.70: Class attribute edit interface for the ”Country” datatype.

The system will add a drop-down list called ”Country” (the name of the newly added at-
tribute) in the object edit interface for users. You can assign a country to the user that is
being edited by selecting the desired country from this list.

4.9.4 VAT charging system / User country 357

4

3. Specify the identifier of the newly added attribute in the ”UserCountryAttribute” setting
located under the ”[VATSettings]” section of an override for the ”settings/shop.ini” config-
uration file.

Assigning a country to a user

If your user class contains an attribute of the country datatype then a country can be assigned to
a user in one of the following ways:

• A new user will be asked to specify his/her country when filling in the registration form.

• A site administrator will be able to assign a country to a user when editing a user’s details
(as described in the ”Managing users” section of the ”User manual”).

• A site administrator can add a toolbar that allows a user to change his country ”on-the-fly”.

Adding a toolbar for customers

It is recommended that you add a possibility for a user to choose his/her country ”on-the-fly”
using the ”User country” toolbar. To do this, add the following line into the ”[Toolbar right]”
section of the ”settings/siteaccess/example/toolbar.ini.append.php” file where ”example” is your
siteaccess name:

Tool[]=user_country

This setting instructs the system to display the country selection toolbar on the right. When a
user selects a country, the system will immediately update product prices according to the VAT
rules specified for the selected country.

In order to avoid problems with content caching, you will have to specify ”user preferred country”
in the ”CachedViewPreferences (page 1571)[full]” setting for all siteaccesses. To do this, open
the ”site.ini.append.php” configuration file located in the ”settings/siteaccess/example” directory
(replace ”example” with the actual name of the siteaccess) and edit it. If the ”[ContentSettings]”
section of the configuration file already contains something like

CachedViewPreferences[full]=<list_of_user_preferences>

then you will have to append a semicolon and ”user preferred country” at the end of the line, for
example:

CachedViewPreferences[full]=admin_navigation_content=0;
admin_navigation_details=0;<...>;admin_bookmarkmenu=1;
admin_left_menu_width=13;user_preferred_country=’’

4.9.4 VAT charging system / User country 358

4

Note that this configuration line tends to be very long. It is simplified in the example above (a
lot of settings were replaced with <...> in order to keep things short).

If the ”[ContentSettings]” section does not contain a line that starts from ”CachedViewPrefer-
ences[full]”, create it:

CachedViewPreferences[full]=user_preferred_country=’’

If this setting is not specified, your customers will have problems when changing the country (the
interface will not be updated because of the cache problem).

Using alternative country datatypes

There is an additional possibility to use an alternative country datatype instead of the built-in
country (page 469) datatype. This means that you can integrate an alternative datatype to the
system so that the user’s country will be stored in the same way by the datatype, by the VAT
rules management interface and by the shop user registration module (shop/userregister). The
following list reveals how this can be achieved.

1. Make sure your datatype’s content is either a hash having ”value” key or an object capable
of getting and setting ”value” attribute (like eZPersistentObject). It doesn’t matter how the
content is actually stored to database, but objectAttributeContent() method must return an
array/object. The returned value (usually a country code) is then compared to VAT rules’
countries.

2. Override the ”view.tpl” and ”edit.tpl” templates located in the ”templates/shop/country” di-
rectory of the standard design in your datatype extension so that countries can be displayed
and edited in the VAT rules management interface and the shop user registration module.

4.9.5 VAT charging system / Displaying VATs on the actual site 359

4

4.9.5 Displaying VATs on the actual site

The next subsections explain the way in which the VATs are displayed on the actual site in case
of using the ”VAT per product” and/or ”Country dependent VAT” approach.

VAT per product

Let’s say that a fixed rate of VAT is assigned to each product. When a user is viewing a product
page, the system displays price including VAT for this product. A user can add products to his
shopping basket where the VAT percentage will be displayed for each product. A user should
click the ”Checkout” button to make an order.

After clicking the ”Checkout” button a user will be asked to specify his/her name, email, country
and other details needed for customer account and this particular order. This information is
handled by the shop account handler that is specified under the ”[AccountSettings]” section of
the ”settings/shopaccount.ini” configuration file. Choosing a country is usually required (this
behavior does not depend on the ”RequireUserCountry” INI setting described in the ”VAT settings
(page 369)” section).

Information about the specified country will be stored in the system together with the customer’s
order. A customer is determined by his unique email, i.e. orders with different emails will belong
to different customers. The customer’s account contains information about the country that was
specified in the first order made by this customer. Please note that a customer account is a
special data structure that is used in the webshop system and is not connected with the actual
user object.

If you have added an attribute of the country (page 469) datatype to your user class then it is
possible to assign a country to a user. This can be done automatically when the user makes his
first order if the attribute identifier is specified it in the ”UserCountryAttribute” INI setting. Please
note that this functionality is generally unneeded for ”VAT per product” approach and thus it is
disabled if no VAT handler is enabled. Moreover, the system will not automatically change the
user’s country if it is already set (the user’s country can be set when filling in the user registration
form, editing the user object or choosing a country from the toolbar).

Country dependent VAT

Let’s say that you use the ”country dependent VAT” approach, your user class contains an attribute
of the country (page 469) datatype and its identifier is specified in the ”UserCountryAttribute”
INI setting.

When a user is viewing a product page, the system will display price including VAT for this
product. A user can add products to his shopping basket where the VAT percentage will be
displayed for each product. After clicking the ”Checkout” button a user will be asked to specify
his/her name, email, country and other details needed for customer account and this particular
order. The system will automatically re-calculate VATs using the best matching VAT rules for the
specified country and include these VATs into the final product prices that are displayed on the
”Confirm order” page.

4.9.5 VAT charging system / Displaying VATs on the actual site 360

4

If a country is assigned to a user, the system will calculate the amount of VAT for a product being
viewed using the best matching VAT rule for user country and product category. If a user selects
another country after clicking the ”Checkout” button (not the country assigned to this user), this
country will not be assigned to the user but will be used only for this particular order.

If no country is assigned to a user then the amount of VAT for a product being viewed will be
calculated using the default VAT rule. The country specified by user after clicking the ”Checkout”
button will be automatically assigned to this user.

4.9.6 VAT charging system / Managing VAT types 361

4

4.9.6 Managing VAT types

This section describes how you can add, remove and modify static VAT types (page 345) using
the administration interface.

Creating a VAT type

It is necessary to create the VAT types in order to use value added taxes in your webshop system.
The following list reveals how this can be done.

1. Click the ”Webshop” tab in the administration interface and select the ”VAT types” link
on the left. You will be taken to the interface displaying the list of existing VAT types as
shown in the following screenshot. This interface can also be accessed by requesting ”/
shop/vattype” in the URL. (see figure 4.71)

Figure 4.71: The list of VAT types.

Click the ”New VAT type” button. The system will add a new list item called ”VAT type 1”
with default percentage 0%.

2. Specify the desired name and percentage for this VAT type (see the next screenshot). (see
figure 4.72)

3. Click the ”Apply changes” button to save your changes or click the ”New VAT type” button
to continue adding new VAT types.

Editing a VAT type

If you wish to modify one of your VAT types, do the following:

1. Open the list of VAT types by clicking the ”Webshop” tab in the administration interface and
selecting the ”VAT types” link on the left.

2. Specify the desired percentage and/or name for the VAT type you wish to modify (this can
be done for several VAT types at the same time).

4.9.6 VAT charging system / Managing VAT types 362

4

Figure 4.72: The newly added VAT type in the list of VAT types.

3. Click the ”Apply changes” button to save your changes.

Removing a VAT type

You are not allowed to remove a VAT type that is used as ”default VAT type” for your product
class. Removing a VAT type that is assigned to your products and/or used by your VAT rules is
possible but not recommended. (These VAT rules will be removed and the default VAT type will
be assigned to the products.) In most cases, you should change the name and/or percentage of
the VAT type instead of removing it from the system.

Please note that you are not allowed to remove all the VAT types. If you do not wish to charge
any VAT for your products then just leave one VAT type and set its percentage to zero.

The following text reveals how to remove one or more VAT types from the webshop system.

1. Open the list of VAT types by clicking the ”Webshop” tab in the administration interface and
selecting the ”VAT types” link on the left.

2. Use the checkboxes to select the VAT types that you wish to remove. Do not select all the
VAT types.

3. Click the ”Remove selected” button.

4. If some of your products use this VAT type and/or some of your VAT rules are based on
this VAT type, the system will display a confirmation dialog as shown in the following
screenshot.

(see figure 4.73)

4.9.6 VAT charging system / Managing VAT types 363

4Figure 4.73: The confirmation dialog.

4.9.7 VAT charging system / Managing product categories 364

4

4.9.7 Managing product categories

This section describes how you can add, remove and modify product categories (page 354) using
the administration interface.

Creating a product category

The administration interface allows you to add new product categories to the webshop system.
The following text reveals how this can be done.

1. Click the ”Webshop” tab in the administration interface and select the ”Product categories”
link on the left. You will be taken to the interface displaying the list of existing product
categories as shown in the following screenshot. This interface can also be accessed by
requesting ”/shop/productcategories” in the URL. (see figure 4.74)

Figure 4.74: The list of product categories.

Click the ”New product category” button. The system will add a new list item called ”Prod-
uct category 1”.

2. Specify the desired name for this category (see the next screenshot). (see figure 4.75)

Figure 4.75: The newly added category in the list of product categories.

3. Click the ”Apply changes” button to save your changes or click the ”New product category”
button to continue adding new categories.

4.9.7 VAT charging system / Managing product categories 365

4

Editing a product category

If you wish to change the name of a product category, do the following:

1. Open the list of categories by clicking the ”Webshop” tab in the administration interface
and selecting the ”Product categories” link on the left.

2. Edit the name of the product category (this can be done for several categories at the same
time).

3. Click the ”Apply changes” button to save your changes.

Removing a product category

Removing a category that is assigned to your products and/or used by your VAT rules is possible
but not recommended. In most cases, you should change the name of the category or VAT rules
specified for this category instead of removing it from the system. Removing a category will not
result in removing all products that belong to this category. The system will unset the ”category”
attribute for these products and modify or remove the VAT rules specified for this category.

Example

Let’s say that you have the following VAT rules (see the next table).

User country Product category VAT type
Any Chocolate, Coffee, Juice Norway reduced, 7%
Any Shampoo Norway general, 25%

If you remove the ”Shampoo” category, the last VAT rule will be removed. If you remove the
”Chocolate” category, the first VAT rule will be modified as shown in the following table:

User country Product category VAT type
Any Coffee, Juice Norway reduced, 7%

The following text reveals how you can remove the product category.

1. Open the list of categories by clicking the ”Webshop” tab in the administration interface
and selecting the ”Product categories” link on the left.

2. Use the checkboxes to select the categories that you wish to remove.

3. Click the ”Remove selected” button. If there are products and/or VAT rules assigned to this
category, the system will display the removal confirmation dialog as shown in the following
screenshot. Click ”OK” to confirm the removal. (see figure 4.76)

4.9.7 VAT charging system / Managing product categories 366

4
Figure 4.76: The confirmation dialog.

4.9.8 VAT charging system / Managing VAT rules 367

4

4.9.8 Managing VAT rules

The next subsections describe how you can add, remove and modify the VAT charging rules from
the administration interface.

Creating a VAT rule

The administration interface allows you to add new VAT charging rules to the webshop system.
The following text reveals how this can be done.

Please note that it is recommended (but not required) to create static VAT types (page 345) and
product categories (page 354) (if needed) before creating your VAT charging rules.

1. Click the ”Webshop” tab in the administration interface and select the ”VAT rules” link on
the left. You will be taken to the interface displaying the list of existing VAT rules as shown
in the following screenshot. This interface can also be accessed by requesting ”/shop/
vatrules” in the URL. (see figure 4.77)

Figure 4.77: The list of VAT charging rules.

Click the ”New rule” button. The system will bring up the VAT rule edit interface (look at
the next screenshot). (see figure 4.78)

Figure 4.78: The VAT charging rule edit interface.

2. Specify the desired parameters in the following way:

4.9.8 VAT charging system / Managing VAT rules 368

4

• Choose the desired country from the drop-down list. The VAT rule will be used for
customers from this country.

• Select one or more product categories that will be affected by the VAT rule.
• Choose one of the static VAT types from the drop-down list in the bottom. The selected

VAT type determines the actual VAT percentage that will be used.
• Click the ”Create” button.

The new VAT rule will appear in the list as shown in the screenshot below. (see figure 4.79)

Figure 4.79: The newly created VAT rule in the list of VAT charging rules.

Editing a VAT rule

The following text reveals how you can edit a VAT charging rule.

1. Open the list of VAT charging rules by clicking the ”Webshop” tab in the administration
interface and selecting the ”VAT rules” link on the left.

2. Find the desired VAT rule and click the ”Edit rule” button located in the same table row.

3. The system will bring up the VAT rule edit interface. Specify the desired parameters and
click the ”Store changes” button.

Removing a VAT rule

The following text reveals how you can remove a VAT rule.

1. Open the list of VAT rules by clicking the ”Webshop” tab in the administration interface and
selecting the ”VAT rules” link on the left.

2. Use the checkboxes to select the VAT rules that you wish to remove.

3. Click the ”Remove selected” button.

4.9.9 VAT charging system / VAT settings 369

4

4.9.9 VAT settings

The ”[VATSettings]” section of the ”settings/shop.ini” configuration file defines the VAT handler
that will be used for assigning the value added taxes to your products. Under this section, the
following settings can be specified:

• The ”Handler” setting specifies the VAT handler that will be used.

• The ”RepositoryDirectories[]” array specifies the directories where eZ publish will search
for built-in VAT handlers.

• The ”ExtensionDirectories[]” array specifies the extension directories where eZ publish will
search for additional VAT handlers. By default eZ publish will search in the ”vathandlers”
subdirectory inside your extension.

• The ”UserCountryAttribute” setting specifies the identifier of the user country content at-
tribute.

• The ”ProductCategoryAttribute” setting specifies the identifier of the product category con-
tent attribute.

• The ”RequireUserCountry” setting is set to true by default so that the system will always
require a user country. If set to false, no error messages will be displayed in case if user
country is not specified.

• The ”DynamicVatTypeName” setting specifies how the system will display the name of the
dynamic VAT type. This alternative is called ”Determined by VAT charging rules” by default.
You can specify for example ”Dynamic VAT”, ”Country dependent VAT”, ”Extended VAT” or
”My own VAT” in this setting. The system will use this name for the last item in the drop-
down list of VAT types located in the class/object view and edit interfaces.

Example 1

The following lines can be specified under the ”[VATSettings]” section of the ”shop.ini” configu-
ration file:

[VATSettings]
Handler=ezdefault
RepositoryDirectories[]=kernel/classes/vathandlers

These settings will instruct eZ publish to use the built-in update handler located at ”kernel/
classes/vathandlers/ezdefaultvathandler.php”.

Example 2

You can extend the system by creating custom VAT handlers for special needs. For example, if you
have an extension ”myextension” that includes a VAT handler ”myrule”, you can put the following
lines into an override for the ”shop.ini” configuration file:

4.9.9 VAT charging system / VAT settings 370

4

[VATSettings]
Handler=myrule
ExtensionDirectories[]=myextension

or

[VATSettings]
Handler=myrule
RepositoryDirectories[]=extension/myextension/vathandlers

These settings will instruct eZ publish to use the VAT handler located at ”extension/myextension/
vathandlers/myrulevathandler.php”.

4.9.10 VAT charging system / Creating new VAT handlers 371

4

4.9.10 Creating new VAT handlers

This section reveals some helpful tips for those developers who want to create a new VAT handler
(only for people who are familiar with PHP). Please note that it is not recommended to modify
the eZ publish kernel and thus you should implement it as an extension.

Handler interface

This section describes some implementation details that can be useful for PHP developers.

A VAT handler is a file that contains a class implementing the following method:

/**
*
* \public
* \static
* \param $object The product content object.
* \param $country Country the buyer is from, or false if not specified.
* \return VAT percent (integer), or null in case of an error.
*/
mixed function getVatPercent(eZContentObject $object, mixed $country);

A handler is not called directly but via eZVATManager class. Method getVAT() of that class returns
the VAT percentage that should be charged for a given product:

$vatPercent = eZVATManager::getVAT($object, $country);

All that getVAT() method does is invoking getVatPercent() method of the handler specified in the
”Handler” INI setting.

The next subsection explains how you can implement your own VAT handler.

Creating your own handler

Let’s say that you need to determine the VAT percentage for a product depending on the sec-
tion this product belongs to. You can create your own VAT handler called ”mysectionbased” as
described below.

1. Create the following subdirectories in the ”extension” directory of your eZ publish installa-
tion:

• myextension

• myextension/settings

• myextension/vathandlers

4.9.10 VAT charging system / Creating new VAT handlers 372

4

2. Create a file called ”mysectionbasedvathandler.php” in the ”myextension/vathandlers/” di-
rectory (this file must contain a PHP class called ”MySectionBasedVATHandler”) and add
the following lines into it:

<?php
class MySectionBasedVATHandler
{

/**
* \public
* \static
*/
function getVatPercent($object, $country)
{

$section = $object->attribute(’section_id’);
if ($section == 1)

$percentage = 10;
else

$percentage = 20;
return $percentage;

}
}
?>

3. Create a file called ”shop.ini.append.php” in the ”myextension/settings” directory and add
the following lines into it:

[VATSettings]
ExtensionDirectories[]=myextension
Handler=mysectionbased
RequireUserCountry=false
DynamicVatTypeName=Section based VAT

This will instruct eZ publish to use the VAT handler located at ”extension/myextension/
vathandlers/mysectionbasedvathandler.php”. Since the VAT percentage determined by this
handler does not depend on user country, the ”RequireUserCountry” setting must be set to
false. Since this handler does not use the VAT rules, it is reasonable to display the name
of the dynamic VAT type as ”Section based VAT” (not ”Determined by VAT charging rules”).
This is done by using the ”DynamicVatTypeName” setting.

4. To activate your extension in eZ publish, log in to your eZ publish administration interface,
click on the ”Setup” tab, and then click ”Extensions” on the left. You will see the list of
available extensions. Select the ”myextension” item and click the ”Apply changes” button.

4.10 Improved shipping handling 373

4

4.10 Improved shipping handling

eZ publish 3.8 makes it possible to define custom shipping options for your webshop (e.g. the
cost of shipping may depend on the product properties). This could be done by implementing
a shipping handler i.e. PHP class providing a mechanism that keeps shipping information for a
product collection (basket or order) and calculates the cost of shipping for it. eZ publish does not
include any built-in shipping handlers so you will need to extend the system by creating your own
shipping handler in order to add shipping options for your webshop. Using two or more shipping
handlers at the same time is not supported (within one siteaccess). The shipping handler to use
must be specified in the ”Handler” INI setting described in the ”INI settings” subsection.

When a user is viewing a product page, no shipping cost will be displayed and included into
product price. After adding some products to the basket the system will calculate their shipping
cost that will be shown under the list of items and included into order total. A shipping handler
returns not only shipping cost but also shipping options summary and a link to the shipping man-
agement interface where shipping options can be modified. This information will be displayed in
the basket together with the shipping cost. The system will also show shipping cost and shipping
options summary when asking a user to confirm his/her order and in the order view interface for
site administrators.

INI settings

The ”[ShippingSettings]” section of the ”settings/shop.ini” configuration file defines the shipping
handler that will be used for calculating the cost of shipping for your products. Under this section,
the following settings can be specified:

• The ”Handler” setting specifies the shipping handler that will be used.

• The ”RepositoryDirectories[]” array specifies the directories where eZ publish will search
for built-in shipping handlers.

• The ”ExtensionDirectories[]” array specifies the extension directories where eZ publish will
search for additional shipping handlers. By default eZ publish will search in the ”shipping-
handlers” subdirectory inside your extension.

Example 1

The following lines can be specified under the ”[ShippingSettings]” section of the ”shop.ini”
configuration file:

[ShippingSettings]
Handler=ezcustom
RepositoryDirectories[]=kernel/classes/shippinghandlers

These settings will instruct eZ publish to use the shipping handler located at ”kernel/classes/
shippinghandlers/ezcustomshippinghandler.php”.

4.10 Improved shipping handling 374

4

Example 2

If you have an extension ”myextension” that includes a shipping handler ”mycost”, you can put
the following lines into an override for the ”shop.ini” configuration file:

[ShippingSettings]
Handler=mycost
ExtensionDirectories[]=myextension

or

[ShippingSettings]
Handler=mycost
RepositoryDirectories[]=extension/myextension/shippinghandlers

These settings will instruct eZ publish to use the VAT handler located at ”extension/myextension/
shippinghandlers/mycostshippinghandler.php”.

Creating new shipping handlers

This section reveals some helpful tips for those developers who want to create a new shipping
handler (only for people who are familiar with PHP). Please note that it is not recommended to
modify the eZ publish kernel and thus you should implement it as an extension.

Implementation details

A shipping handler is a file that contains a class implementing the following methods:

/**
* Invoked to get shipping information for given product collection.
* \public
* \static
*/
function getShippingInfo($productCollectionID);

/*
* Invoked when shopping basket contents is changed
* to update shipping info/cost appropriately.
* \public
* \static
*/
function updateShippingInfo($productCollectionID);

/**

4.10 Improved shipping handling 375

4

* Invoked when the associated product collection is removed
* to clean up shipping information.
* \public
* \static
*/
function purgeShippingInfo($productCollectionID);

A handler is called via eZShippingManager class that has the same methods.

$shippingInfo = eZShippingManager::getShippingInfo($productCollection);

All that getShippingInfo() method does is invoking getShippingInfo() method of the shipping
handler that is specified in the ”Handler” INI setting. This method returns shipping information
for a given product collection as a hash containing the following elements:

Name Type Description
description string Shipping options summary.
cost integer Shipping cost for given set of

products.
management link string Link to the shipping manage-

ment interface where ship-
ping options can be modi-
fied.

The next subsection explains how you can implement your own shipping handler.

Creating your own handler

The following text describes the implementation of a trivial shipping handler for demonstration
purposes.

1. Create the following subdirectories in the ”extension” directory of your eZ publish installa-
tion:

• myextension

• myextension/settings

• myextension/shippinghandlers

2. Create a file called ”mycostshippinghandler.php” in the ”myextension/shippinghandlers/”
directory (this file must contain a PHP class called ”MyCostShippingHandler”) and add the
following lines into it:

<?php
class MyCostShippingHandler
{

4.10 Improved shipping handling 376

4

function getShippingInfo($productCollectionID)
{

return array(
’description’ => ’Manual’,
’cost’ => 10,
’management_link’ => ’/shop/basket/’ // dummy
);

}
function purgeShippingInfo($productCollectionID)
{

// nothing to purge
}
function updateShippingInfo($productCollectionID)
{

// nothing to update
}

}
?>

3. Create a file called ”shop.ini.append.php” in the ”myextension/settings” directory and add
the following lines into it:

[ShippingSettings]
Handler=mycost
ExtensionDirectories[]=myextension

4. To activate your extension in eZ publish, log in to your eZ publish administration interface,
click on the ”Setup” tab, and then click ”Extensions” on the left. You will see the list of
available extensions. Select the ”myextension” item and click the ”Apply changes” button.

This will make the system add the fixed cost of shipping to any set of products being purchased
from your site.

If you need more complicated shipping options, you can try to use the advanced example from
http://ez.no/community/contribs/examples/sample shipping handler or develop your own ship-
ping handler.

http://ez.no/community/contribs/examples/sample_shipping_handler

4.11 Multi-currency 377

4

4.11 Multi-currency

The purpose of this section is to introduce and describe the multi-currency feature available in
eZ Publish 3.8. People previously unfamiliar with eZ Publish webshop subsystem should read the
”Webshop (page 160)” section of the ”Concepts and basics” chapter first. The next sections will
help you to understand the following issues:

• The concept of custom prices and auto prices

• What the base custom price is

• How to specify your own price rounding criteria for auto prices

• How the currency rates can be used (auto rates and custom rates)

• What the base currency is

• How to manage your currencies

• What the preferred currency is

• How to use additional view templates for multi-price products

• The purpose of the ”Products overview” interface

• How to use the default exchange rates update handler

• How to create your own handler for rates updating

• How to convert all your products to multi-price format

4.11.1 Multi-currency / Custom prices and auto prices 378

4

4.11.1 Custom prices and auto prices

The multi-price datatype (page 513) allows you to set prices in multiple currencies for each
product. If you use for example five currencies then a product will always have five prices.
However, you don’t have to enter all these prices manually although it is possible. It is required
that you specify at least one price per product which is called base custom price (base price for
short). The system will automatically convert it using the appropriate rates (page 383) in order
to calculate prices in other currencies (the rest four prices in our example). These are called auto
prices. In contrast to these, prices that are specified manually are called custom prices.

Custom prices are fully independent of the currency rates (page 383). By saying ”base custom
price” we mean a special custom price that is used for calculating the auto prices. All other
custom prices will be called non-base. Please note that non-base custom prices are independent
of the base price. If you change the base price, the system will automatically update all the auto
prices for this product but not the custom prices. If you change a non-base custom price, no
automatic updates will be done.

The auto prices are usually marked as ”(Auto)” in the object edit interface while the custom
prices aren’t. There is no special mark for a base custom price because this value usually comes
right after the auto prices and right before the non-base custom prices (if there are any).

If you are not satisfied with the auto price value in some particular currency, you can set a non-
base custom price instead. This value will be independent of the base price.

If you remove a non-base custom price, the system will create an auto price in this currency.

If you remove the base price, the system will do the following:

• Set the earliest non-base custom price as a new base price.

• Remove the old base price and create a new auto price instead.

• Update all the auto prices in accordance with the new base price.

It is recommended that each product has at least one custom price. If you remove all the custom
prices for a product, the system will use zero auto prices in all currencies for this product.

Example

Let’s say that you use three currencies with the rates indicated in the following table.

Currency code Currency rate
NOK 1.32015
EUR 0.16380
USD 0.19500

If you specify for example $50 as the base price, the system will automatically calculate two auto
prices for this product (look at the next screenshot). (see figure 4.80)

These auto prices are calculated by converting $50 to Euro and Norwegian krone:

4.11.1 Multi-currency / Custom prices and auto prices 379

4

Figure 4.80: The base price in USD and two auto prices.

• EUR/USD cross rate = 0.16380 / 0.19500 = 0.84000

• price in EUR = 50*0.84=42.00

• NOK/USD cross rate = 1.32015 / 0.19500 = 6.77000

• price in NOK = 50*6.77=338.50

If you think that this product costs much more in some particular countries, for example in
Norway, you can set the desired price by creating a custom price in NOK. The result is shown in
the following screenshot.

(see figure 4.81)

Figure 4.81: The base price in USD, non-base custom price in NOK and auto price in EUR.

As you can see from the screenshot above, there are two custom prices (base $50 and non-base
600nok) and one auto price (42). Please note that you can always remove non-base custom
prices, so that the system will automatically set auto prices instead.

If you remove the base price ($50), the non-base custom price (600 nok) will become new base
price so the system will automatically update the auto prices as shown in the screenshot below.
(see figure 4.82)

These auto prices are calculated by converting 600 nok to Euro and US Dollars:

• EUR/NOK cross rate = 0.16380 / 1.32015 = 0.12408

• price in EUR = 600*0.12408 = 74.45

• USD/NOK cross rate = 0.19500 /1.32015 = 0.15

• price in NOK = 600*0.15 = 88.63

4.11.1 Multi-currency / Custom prices and auto prices 380

4
Figure 4.82: The results of removing the base custom price.

4.11.2 Multi-currency / Rounding auto prices 381

4

4.11.2 Rounding auto prices

The price rounding process is affected by settings which are specified in the ”[MathSettings]”
section of the ”settings/shop.ini” configuration file such as:

• RoundingPrecision

• RoundingType

• RoundingTarget

You can specify your own price rounding criteria for auto prices calculation by creating an over-
ride for this configuration file.

RoundingPrecision

This setting specifies how many significant digits after the decimal point should be kept while
rounding. By default, the precision is set to 2. Normally, there is no need to set for example
”RoundingPrecision=3” because only two decimal digits are stored in the database for each price.

RoundingType

This setting defines which rounding method should be used. The possible values are described
in the following table.

Setting Description Actual value Rounded value
RoundingType=round returns the closest 0.124 0.12

value
RoundingType=round returns the closest 0.125 0.13

value
RoundingType=ceil returns the 0.121 0.13

next highest value
by rounding up

RoundingType=floor returns the next low- 0.129 0.12
est value by round-
ing down

RoundingType=none rounding is not used 1/3 *0.333333...

* as long as only two decimal digits are stored in the database for each price, the result will be
0.33

Please note that the examples above are calculated supposing that RoundingPrecision is set to 2.

The default value of the ”RoundingType” setting is ”round”.

4.11.2 Multi-currency / Rounding auto prices 382

4

RoundingTarget

This setting allows you to force rounding to the specified target. For example, if you prefer
”retail” prices like $2.49 instead of $2.50, you can instruct the system to use 9 as the end digit
for all your auto prices.

The default value of the ”RoundingTarget” is ”false”.

Please refer to the following table for examples of usage.

Setting Actual value Rounded value
RoundingTarget=false 89.468543 89.47
RoundingTarget=5 89.468543 89.45
RoundingTarget=99 89.468543 89.99

Please note that the examples above are calculated supposing that RoundingPrecision is set to 2
and RoundingType is set to ”round”.

Don’t forget to update auto prices for existing products after changing the rounding settings.

4.11.3 Multi-currency / Currency rates 383

4

4.11.3 Currency rates

There are two types of currency rates:

• Auto rates

• Custom rates

Auto rates

Auto rates are retrieved via automatic update of the exchange rates from the external source.
It is possible to get these rates from the website of the European Central Bank using the built-
in ”eZECB” handler or to extend the system by creating your own update handler. Please note
that you should specify the desired handler in the ”ExchangeRatesUpdateHandler” INI setting
described in the ”Exchange rates update handlers (page 402)” section, otherwise the system will
not be able to update auto rates.

An auto rate of the currency is nothing more than the amount of this currency that must be
given up in order to obtain one unit of the base currency. The base currency is determined by
the ”BaseCurrency” INI setting described in the ”Exchange rates update handlers (page 402)”
section. It is recommended (but not required) that you specify one of the existing currencies in
this setting.

The website of the European Central Bank allows to get the currency exchange rates relative to
EUR. If you use the ”eZECB” handler and set for example USD as the base currency, the system
will retrieve the exchange rates relative to EUR and then calculate the auto rates relative to USD.
Please note that you will get an error if the exchange rate for USD was not retrieved.

Example

Let’s say that the following rates relative to EUR are indicated on the website of the European
Central Bank:

Currency Rate
NOK 7.85620
USD 1.20940
UAH not available

If you specify EUR as the base currency, the system will set the following auto rates:

Currency Auto rate
EUR 1.00000
NOK 7.85620
USD 1.20940
UAH N/A

If you do not specify the base currency, the result will be the same.

4.11.3 Multi-currency / Currency rates 384

4

If you specify USD as the base currency, the system will calculate the auto rates relative to USD
as shown in the following table:

Currency Auto rate
EUR 0.82685 (1 / 1.20940)
NOK 6.49594 (7.85620 / 1.20940)
USD 1.00000
UAH N/A

If you specify UAH as the base currency, the system will display the following error message:
”Unable to calculate cross-rate for currency-pair EUR/UAH” when trying to update the auto rates.
Since the exchange rate for UAH was not retrieved from the website of the European Central
Bank, the system will not be able to calculate the rates relative to UAH.

Custom rates

You can specify a fixed custom rate for a currency so that this value will be used instead of the
auto rate value (the auto rate will not be used and thus it will be displayed in gray color). Please
note that the custom rates must be relative to the same base currency as the auto rates. If you
have for example five currencies with auto rates relative to EUR and you wish to specify a custom
rate for one of them, make sure this rate is also relative to EUR.

If you are going to specify custom rates for all your currencies without exception, you may use
some other currency as the base one. It is recommended (but not required) that you use one of
the existing currencies as the base currency.

Example

Let’s say that you have four currencies: USD, EUR, NOK and UAH. You can consider USD as the
base currency and specify the custom rates relative to this currency, for example:

• 1 for USD

• 0.84 for EUR

• 6.52 for NOK

• 5.05 for UAH

If you then remove the ”USD” currency, the custom rates for EUR, NOK and UAH will not be
changed.

4.11.4 Multi-currency / Creating a new currency 385

4

4.11.4 Creating a new currency

The administration interface allows you to add new currencies to the webshop system. Let’s say
that you already have three currencies (USD, UAH and NOK) and you wish to add another one
(EUR). The following example demonstrates how to add EUR when you already have USD, UAH,
NOK.

1. Click the ”Webshop” tab in the administration interface, select the ”Currencies” link on the
left and click the ”New currency” button located under the list of existing currencies. (This
interface can also be accessed by requesting ”/shop/currencylist” in the URL.) (see figure
4.83)

Figure 4.83: The list of available currencies.

The system will bring up the currency edit interface where you can specify the desired
properties for a new currency (look at the next screenshot). (see figure 4.84)

Figure 4.84: The currency edit interface.

2. Specify the currency attributes (these are described below) and click the ”Create” button.
The system will add a new currency as shown in the screenshot below. (see figure 4.85)

Please note that after creating a new currency the system will automatically create zero auto
prices in this currency for all your products. It is recommended to click the ”Update autoprices”
button when you have finished managing your currencies. This will instruct the system to update
auto prices for all products.

4.11.4 Multi-currency / Creating a new currency 386

4

Figure 4.85: The list of available currencies.

Currency code

The three-character currency code which is generally used to represent this currency (”USD”,
”EUR” and so on). This parameter is required. This code can be thought of as an unique identifier
of the currency. You can not use two currencies with the same codes. The currency code consists
of three English capital letters and often (but not always) corresponds to the ISO 4217 standard.

Once the currency code is specified, the system will be able to display the currency name (”Eu-
ropean euro”, ”U.S. dollar” and so on). These currency names can be changed by providing a
custom version of the ”currencynames.tpl” template which is located in the ”templates/shop/” di-
rectory of the standard design. This template does not have any effect on the shop functionality
available for site visitors. The currency names are displayed only in the administration interface.
If you have created a new currency with unknown code for example ”ABC” which is not listed
in the ”currencynames.tpl” template, the system will display the currency name as ”Unknown
currency name”.

Currency symbol

A currency symbol is a string that will be displayed near the numerical price value (”$”, ” ” and
so on). Currency symbols are used in everyday life to denote that a number is a monetary value.
This parameter is not required. If the currency symbol is not defined, the visitors who prefer
using this currency will see the numerical price values without any additional symbols. Please
note that if you are not able to type in the desired symbol then you can copy and paste it from
your browser or text editor.

Formatting locale

A formatting locale is a locale which is used for price formatting. This parameter is required.
You can choose the desired locale from the drop-down list of available locales. By default, the
current system locale is selected (this locale is determined by the ”Locale” setting located in
the ”[RegionalSettings]” section of the ”settings/site.ini” configuration file or its override). The

4.11.4 Multi-currency / Creating a new currency 387

4

available locales and their settings are defined by the locale INI files located in the ”share/locale”
directory of your eZ Publish installation.

Once the formatting locale is specified, the system will automatically format the prices using the
”DecimalSymbol”, ”ThousandsSeparator”, ”FractDigits” and ”PositiveFormat” settings specified
in the ”[Currency]” section of the locale’s INI file. Please note that the ”Symbol”, ”Name” and
”ShortName” settings defined in the same section will not have any effect in this case.

Example

Let’s create a new currency ”ABC” and specify its properties as shown in the following screenshot.

(see figure 4.86)

Figure 4.86: The currency edit interface.

Since the ”ABC” code is not listed in the ”currencynames.tpl” template, the system will display
the currency name as ”Unknown currency name” (look at the next screenshot).

(see figure 4.87)

Figure 4.87: Unknown currency name in the list of currencies.

4.11.4 Multi-currency / Creating a new currency 388

4

This problem can be solved by creating a custom version of the ”currencynames.tpl” which is
located in the ”templates/shop/” directory of the standard design. To do this, copy the ”curren-
cynames.tpl” template into the ”templates/shop/” directory of the admin design and edit it. Add
a new key/value pair to the list of pairs that are passed to the ”hash” template operator which
creates the ”set currency names” associative array as shown below:

{set currency_names = hash(’ABC’, ’AB-Currency’,
’AUD’, ’Australian dollar’,
...
’USD’, ’U.S.dollar’) }

After clearing the eZ Publish caches, the system will display the currency name as ”AB-Currency”.

The ”eng-US.ini” configuration file located in the ”share/locale” directory contains the following
section:

[Currency]
Symbol=$
Name=US Dollar
ShortName=USD
DecimalSymbol=.
ThousandsSeparator=,
FractDigits=2
PositiveSymbol=
NegativeSymbol=-
PositiveFormat=%c%p%q
NegativeFormat=%c%p%q

Since the ”eng-US” locale is selected for the ”ABC” currency, the system will use ”.” as a decimal
symbol and ”,” as thousands separator, with 2 digits after decimal point and the currency symbol
placed before the numeric value as specified in the ”DecimalSymbol”, ”ThousandsSeparator”,
”FractDigits” and ”PositiveFormat” settings. (The ”Symbol”, ”Name” and ”ShortName” settings
will not be used.)

Let’s say that some product costs for example 550 units in this currency. In this case, the visitors
who prefer using this currency will see the price of this product like this:

abc550.00

Custom rate

This required parameter tells the system about which rate to use for calculating auto prices (page
378) for/in this currency. By default, the custom rate is set to 0 so the system will use auto rate
for this currency. However, it is possible to specify a non-zero fixed custom rate value that will
be used for calculating auto prices in this currency.

4.11.4 Multi-currency / Creating a new currency 389

4

Rate factor

This required parameter is intended for supporting a kind of virtual rate that can be used for
calculating auto prices (page 378) in this currency. If a non-zero custom rate is specified, the
system will multiply it by rate factor in order to calculate the final rate, otherwise the system will
multiply the auto rate by this factor. The default value of the rate factor is 1. The following table
reveals how the final rate is calculated according to the auto rate, custom rate and rate factor
values.

Custom rate Rate factor Auto rate Final rate
0 1 0.85 0.85
0 1.4 0.85 0.85*1.4=1.19
0.75 1 0.85 0.75
0.75 1.4 0.85 0.75*1.4=1.05

Status

The status of the currency can be either ”active or ”inactive”. When you create a new currency,
the status will be automatically set to ”Active”. Inactive currencies will be invisible for the site
visitors. In other words, you can hide a currency from your customers if you don’t wish them to
use this currency.

Inactive currencies are displayed in red color in the list of currencies as shown in the following
screenshot.

(see figure 4.88)

Figure 4.88: Displaying inactive currency in the list of currencies.

4.11.5 Multi-currency / Editing a currency 390

4

4.11.5 Editing a currency

The administration interface allows you to edit currencies. The following text reveals how this
can be done.

1. Open the list of currencies by clicking the ”Webshop” tab in the administration interface
and selecting the ”Currencies” link on the left. Find the target currency in the list and click
the ”Edit” button for this currency. You will be taken to the currency edit interface that
allows to modify the following attributes (these are described in the previous section):

• Currency code

• Currency symbol

• Formatting locale

• Custom rate

• Rate factor

2. Specify the desired currency attributes.

3. Click the ”Store changes” button.

Changing the currency status

The currency edit interface does not support changing the statuses of the currencies. The follow-
ing text reveals how you can change the status for one or more currencies.

1. Open the list of currencies by clicking the ”Webshop” tab in the admin interface and select-
ing the ”Currencies” link on the left.

2. Choose the desired status value from the drop-down list in the ”Status” column (this can
be done for several currencies).

3. Click the ”Apply changes” button to save your changes.

Changing rates for multiple currencies

You can update currency rates and/or rate factors for several currencies at the same time using
the list of currencies.

Updating auto rates

To update auto rates, do the following:

1. Open the list of currencies by clicking the ”Webshop” tab in the administration interface
and selecting the ”Currencies” link on the left.

4.11.5 Multi-currency / Editing a currency 391

4

2. If the ”Update auto rates” button is inactive, this means that the system can not update auto
rates because no update handler is specified. The following screenshot shows the situation
when the custom rates are specified for all currencies and therefore the system will not use
the auto rates. In this case, the auto rates are displayed in gray color. Since no updates
were performed, the ”N/A” marks are displayed in the ”Auto rate” column. (see figure 4.89)

Figure 4.89: The list of currencies with disabled possibility to update auto rates.

3. Since no update handler is specified, the ”Update auto rates” button is inactive. To activate
this button, you should choose the desired handler as described in the ”Exchange rates
update handlers (page 402)” section and clear the eZ publish caches. The ”Update auto
rates” button will become active.

4. Click the ”Update auto rates” button. The auto rates will be automatically updated. (see
figure 4.90)

Figure 4.90: The list of currencies with updated auto rates.

This screenshot shows the situation when the auto rates are updated using EUR as the base
currency (the EUR auto rate value is 1.00000). As you can see, the retrieved auto rates
are still displayed in gray color because the custom rates are available. However, you can
remove the custom rates in order to enable the auto rates.

4.11.5 Multi-currency / Editing a currency 392

4

Enabling auto rates

An auto rate for a currency will not be used if a non-zero custom rate is specified. If you remove
the custom rate or set it to 0, the auto rate will be enabled. For example, if you remove all the
values from the ”Custom rate” column and click the ”Apply changes” button, the system will start
to use auto rates (look at the next screenshot).

(see figure 4.91)

Figure 4.91: The list of currencies with removed custom rates.

Please note that changing the rates will not result in updating auto prices for your products. It
is recommended to click the ”Update autoprices” button when you have finished managing your
currencies. This will instruct the system to update auto prices for all products.

Changing custom rates and/or rate factors

It is possible to change custom rates and/or rate factors for several currencies at the same time.
The following text reveals how this can be done.

1. Open the list of currencies by clicking the ”Webshop” tab in the administration interface
and selecting the ”Currencies” link on the left.

2. Set the desired custom rate in the ”Custom rate” column and/or specify the desired rate
factor value in the ”Factor” column (this can be done for several currencies).

3. Click the ”Apply changes” button to save your changes. The system will automatically
re-calculate the final rates indicated in the ”Rate” column. (see figure 4.92)

The screenshot above shows the list of currencies after changing the NOK custom rate and
the USD rate factor.

Please note that clicking the ”Apply changes” button will not result in updating auto prices for
your products. It is recommended to click the ”Update autoprices” button when you have finished
managing your currencies. This will instruct the system to update auto prices for all products.

4.11.5 Multi-currency / Editing a currency 393

4Figure 4.92: The list of currencies with one custom rate.

4.11.6 Multi-currency / Removing a currency 394

4

4.11.6 Removing a currency

It is possible (but not recommended) to remove currencies from the webshop system. If you
need to hide some currency from your customers, you should set its status to ”inactive” instead
of removing it from the system.

Please note that removing a currency will result in removing prices in this currency for all prod-
ucts. This may cause problems if some of your products have a base price in this currency.

Example

Let’s say that some of your products have base prices in USD as shown in the following table.

Product 1 Product 2
USD 50.00 Base custom 50.00 Base custom

price price
NOK 338.50 Auto price 600.00 Non-base cus-

tom price
EUR 42.00 Auto price 42.00 Auto price

These base prices will be deleted if you remove the USD currency (see the next table).

Product 1 Product 2
NOK 0.00 Auto price 600.00 Base custom

price
EUR 0.00 Auto price 74.45 Auto price

As you can see from the table above, removing the base price may result in unwanted behavior
like setting all the product prices to zero. That is why removing currencies is not recommended.

The following text reveals how you can remove one or more currencies from the webshop system.

1. Open the list of currencies by clicking the ”Webshop” tab in the administration interface
and selecting the ”Currencies” link on the left.

2. Use the checkboxes to select the currencies that you wish to remove.

3. Click the ”Remove selected” button.

4.11.7 Multi-currency / Preferred currency 395

4

4.11.7 Preferred currency

A user can select one of the active currencies as ”preferred currency”. The system will then
use this currency for the user. This can be done by requesting ”shop/preferredcurrency” in the
URL, choosing the desired currency from drop-down list and clicking the ”Set” button. There
is an additional possibility to set preferred currency by requesting ”shop/setpreferredcurrency/
(currency)/NOK” in the URL (you should replace ”NOK” with the desired currency code). You
can either create links for different currencies on your site or add a special toolbar as described
below.

If the preferred currency is not specified, the system will use the default value specified by the
”PreferredCurrency” setting in the ”[CurrencySettings]” section of the ”settings/shop.ini” con-
figuration file. It is strongly recommended that you specify one of the active currencies in this
setting.

It is possible to display only price in preferred currency to your customers when they are viewing
multi-price products (please refer to the ”Templates for viewing multi-price products” section
for more information). Note that if you do not specify one of the existing currencies in the
”PreferredCurrency” INI setting, the system will display zero prices to the first-time visitors of
your site.

Example

Let’s say that you have two currencies: EUR, NOK and the ”settings/shop.ini” configuration file
(or an override configuration file) contains the following lines:

[CurrencySettings]
PreferredCurrency=USD

If a user visits your site for the first time, the system knows nothing about his preferred currency
and thus it will try to use the default value. However, the ”USD” currency is not defined in your
webshop system so there are no prices in this currency. The system will display zero prices using
the currency symbol taken from your locale settings.

Adding a toolbar for customers

You can add a possibility for site visitors to change their preferred currency ”on-the-fly” using
the ”Preferred currency” toolbar. To do this, add the following line into the ”[Toolbar right]”
section of the ”settings/siteaccess/example/toolbar.ini.append.php” file where ”example” is your
siteaccess name:

Tool[]=preferred_currency

This setting instructs the system to display the toolbar which is determined by the ”preferred
currency.tpl” template located in the ”templates/toolbar/full” directory of the standard design.

4.11.7 Multi-currency / Preferred currency 396

4

Preferred currency for site administrators

A site administrator can choose the preferred currency by requesting ”shop/preferredcurrency”
in the URL, choosing the desired currency from drop-down list and clicking the ”Set” button.
This interface can also be accessed by clicking the ”Webshop” tab and selecting the ”Preferred
currency” link on the left. The selected currency will be used for displaying prices in the products
overview (page 401) interface.

4.11.8 Multi-currency / Multi-price products 397

4

4.11.8 Multi-price products

An actual product is represented by a content object (with at least one node assignment) that
contains information about the product itself along with a price. The price can be represented by
an attribute that makes use of the built-in price (page 525) or multi-price (page 513) datatype.
These are special datatypes which plug more deeply into the system and connect content objects
with the webshop system. The main difference is that the price datatype allows to specify only
one price value for each object (simple price product) whereas the multi-price datatype makes it
possible to specify several price values in different currencies for each object (multi-price prod-
uct). Please note that simple price products are incompatible with multi-currency feature.

A content class can only contain one price attribute or one multi-price attribute. There is no way
to have a simple price product and a multi-price one in the shopping basket at the same time and
it is not recommended to use both price and multi-price datatype on your site.

If you are going to use multi-price products, you should create at least one content class con-
taining an attribute of the multi-price (page 513) datatype as described in the next subsections.
Instances/objects of this class will be treated as multi-price products. If you already have simple
price products, you can automatically convert these to multi-price products as described in the
”Upgrading your webshop (page 405)” section.

Creating a product class

Access the ”Setup” tab in the administration interface, click ”Classes” on the left, select the ”Con-
tent” class group and click the ”New class” button located in the bottom of the list. You will be
taken to the class edit interface as shown in the screenshot below.

(see figure 4.93)

Specify name, identifier, object name pattern and container flag for the newly created class and
add the desired attributes using the drop-down list located in the bottom of the class edit inter-
face.

Multi-price attribute

To add an attribute of the multi-price datatype, select the desired datatype from this list, click the
”Add attribute” button and edit the newly added attribute (see the screenshot below).

(see figure 4.94)

It is recommended to specify ”price” as the identifier (this value is used in the additional view
templates). You have to select one of the predefined currencies as ”default currency”. This
currency will be used for custom prices (page 378) by default.

Example

Let’s say that there are four predefined currencies: NOK, EUR, USD, UAH, and you are creating
a class called ”Products” with a multi-price attribute. If you set EUR as ”default currency”, the

4.11.8 Multi-currency / Multi-price products 398

4

Figure 4.93: The class edit interface for a product class.

Figure 4.94: Class attribute edit interface for the ”Multi-price” datatype.

system will create a base price (page 378) in EUR and auto prices in NOK, USD, UAH for each
new object of this class. When a new product is created, the system will set this base price to 0.00
but you can specify the desired value instead (for example 50). It is also possible to remove
this price and create a new base price in some other currency (for example $60).

After adding the attributes, click ”OK” to save the class.

Please note that if you need several different structures for storing info about your products, you
can create several multi-product classes. If you sell for example computer hardware, you may
need several content classes called ”Monitors”, ”Printers”, ”Scanners” and so on. In this case, you
will be able to filter products by class name in the products overview (page 401) interface.

4.11.8 Multi-currency / Multi-price products 399

4

Creating a product

If you have a content class with multi-price datatype, you can create objects of this class i.e. your
multi-price products. Please refer to the ”Adding content” chapter of the ”User manual” for more
information about adding content objects.

Templates for viewing multi-price products

By default, the system will display prices in all currencies to a user. This is determined by the
default ”ezmultiprice.tpl” template located in the ”templates/content/datatype/view/” directory
of the standard design.

If you wish to display only price in the preferred currency, you can use the ”multiprice.tpl” tem-
plate located in the ”override/templates/datatype/” directory of the base design. To do this,
add the following lines to the ”override.ini.append.php” file located in the ”settings/siteaccess/
example” directory where ”example” is the name of your siteaccess (actual site but not the ad-
ministration interface):

[multiprice]
Source=content/datatype/view/ezmultiprice.tpl
MatchFile=datatype/multiprice.tpl
Subdir=templates

It is also recommended to add a possibility for site visitors to change their preferred currency
”on-the-fly” as described in the ”Adding a toolbar for customers” section.

The following templates for viewing multi-price products are also available:

• design/base/override/templates/full/multiprice product.tpl

• design/base/override/templates/line/multiprice product.tpl

• design/base/override/templates/embed/multiprice product.tpl

• design/base/override/templates/listitem/multiprice product.tpl

To use these templates, add the following lines to the ”override.ini.append.php” file:

[multiprice_product_full]
Source=node/view/full.tpl
MatchFile=full/multiprice_product.tpl
Subdir=templates
Match[class_identifier]=myproduct

[multiprice_product_line]
Source=node/view/line.tpl
MatchFile=line/multiprice_product.tpl

4.11.8 Multi-currency / Multi-price products 400

4

Subdir=templates
Match[class_identifier]=myproduct

[multiprice_product_embed]
Source=content/view/embed.tpl
MatchFile=embed/multiprice_product.tpl
Subdir=templates
Match[class_identifier]=myproduct

[multiprice_product_listitem]
Source=node/view/listitem.tpl
MatchFile=listitem/multiprice_product.tpl
Subdir=templates
Match[class_identifier]=myproduct

and replace ”myproduct” with the actual class identifier of your multi-price products. (To check
the class identifier, access the ”Setup” tab in the administration interface, click ”Classes” on the
left, select the ”Content” class group and find your multi-price product class.)

If you are going to use these templates, you will have to specify ”user preferred currency” in
the ”CachedViewPreferences (page 1571)[full]” setting for all siteaccesses. To do this, open
the ”site.ini.append.php” configuration file located in the ”settings/siteaccess/example” directory
(replace ”example” with the actual name of the siteaccess) and edit it. If the ”[ContentSettings]”
section of the configuration file already contains something like

CachedViewPreferences[full]=<list_of_user_preferences>

then you will have to append a semicolon and ”user preferred currency” at the end of the line,
for example:

CachedViewPreferences[full]=admin_navigation_content=0;
admin_navigation_details=0;<...>;admin_bookmarkmenu=1;
admin_left_menu_width=13;user_preferred_currency=’’

Note that this configuration line tends to be very long. It is simplified in the example above (a
lot of settings were replaced with <...> in order to keep things short).

If the ”[ContentSettings]” section does not contain a line that starts from ”CachedViewPrefer-
ences[full]”, create it:

CachedViewPreferences[full]=user_preferred_currency=’’

If this setting is not specified, your customers will have problems when changing the preferred
currency setting (the interface will not be updated because of the cache problem).

4.11.9 Multi-currency / Products overview 401

4

4.11.9 Products overview

A user/administrator can view all products grouped by class and sorted either by price or name by
requesting ”shop/productsoverview” in the URL. Site administrators can also access this interface
by clicking the ”Webshop” tab and selecting the ”Products overview” link on the left.

The following screenshot shows how this interface looks like when a site administrator is viewing
products. Please note that only prices in the admin’s preferred currency (page 395) are displayed
for multi-price products.

(see figure 4.95)

Figure 4.95: The products overview interface.

Filtering by class

The screenshot above shows the situation when the products from the ”mobile phone” class are
displayed. If you wish to view products from another product class, select the desired class name
from the drop-down list and click the ”Show products” button.

Choosing the sorting order

The screenshot above shows the situation when the products are sorted alphabetically by name.
If you wish to sort products in some other order (for example by price), choose the desired sorting
parameters and click the ”Sort products” button.

4.11.10 Multi-currency / Exchange rates update handlers 402

4

4.11.10 Exchange rates update handlers

The exchange rates update handlers make it possible to retrieve the latest exchange rates from
external sources and thus update the auto rates. You should specify the desired handler in the
”ExchangeRatesUpdateHandler” setting described in the next subsection, otherwise the system
will not be able to update the auto rates. You can either use the built-in ”eZECB” handler for
getting the exchange rates from the website of the European Central Bank or extend the system
by creating your own update handler.

Settings

The ”[ExchangeRatesSettings]” section of the ”settings/shop.ini” configuration file defines the
update handler that will be used for updating auto rates. Under this section, the following
settings can be specified:

• The ”RepositoryDirectories[]” array specifies the directories where eZ publish will search
for built-in update handlers. The exact location of the handler in the directory is specified
using the ”ExchangeRatesUpdateHandler” setting.

• The ”ExtensionDirectories[]” array specifies the extension directories where eZ publish will
search for additional update handlers. By default eZ publish will search in the ”exchang-
eratehandlers” subdirectory inside your extension. The exact location of the handler in the
directory is specified using the ”ExchangeRatesUpdateHandler” setting.

• The ”ExchangeRatesUpdateHandler” setting specifies the update handler that will be used.

• The ”BaseCurrency” setting specifies the base currency for auto rates. The default value
of this setting is ”EUR”. It is recommended (but not required) that you specify one of the
existing currencies in this setting.

The ”[ECBExchangeRatesSettings]” section of the ”settings/shop.ini” configuration file defines
the specific settings for the ”eZECB” update handler. The combination of the ”ServerName”,
”ServerPort” and ”RatesURI” settings allows to specify the exact address of the XML file containing
the currency rates.

Example 1

The following lines can be specified in the ”[ExchangeRatesSettings]” section of the ”shop.ini”
configuration file:

ExchangeRatesUpdateHandler=eZECB
RepositoryDirectories[]=kernel/shop/classes/exchangeratehandlers
ExtensionDirectories[]
BaseCurrency=EUR

4.11.10 Multi-currency / Exchange rates update handlers 403

4

These settings will instruct eZ publish to use the built-in update handler located at”kernel/shop/
classes/exchangeratehandlers/ezecb/ezecbhandler.php” and use EUR as the base currency for
auto rates.

Example 2

You can extend the system by creating custom update handlers for special needs. For example,
if you have an extension ”myshop” that includes an update handler ”mybank”, you can put the
following lines into an override for the ”shop.ini” configuration file:

[ExchangeRatesSettings]
ExchangeRatesUpdateHandler=mybank
ExtensionDirectories[]=myshop/classes

or

[ExchangeRatesSettings]
ExchangeRatesUpdateHandler=mybank
RepositoryDirectories[]=extension/myshop/classes/exchangeratehandlers/

These settings will instruct eZ publish to use the update handler located at”extension/myshop/
classes/exchangeratehandlers/mybank/mybankhandler.php”

Example 3

The following lines can be specified in the ”[ECBExchangeRatesSettings]” section of the
”shop.ini” configuration file:

ServerName=http://www.ecb.int
ServerPort=80
RatesURI=stats/eurofxref/eurofxref-daily.xml

These settings will instruct the eZECB handler to import the currency exchange rates from http:/
/www.ecb.int:80/stats/eurofxref/eurofxref-daily.xml.

Creating new handlers

This section reveals some helpful tips for those developers who want to create a new exchange
rates update handler (only for people who are familiar with PHP). Please note that it is not
recommended to modify the eZ publish kernel and thus you implement it as an extension. The
following list reveals how you can implement your own handler for rates updating.

1. Create the following subdirectories in the ”extension” directory of your eZ publish installa-
tion:

4.11.10 Multi-currency / Exchange rates update handlers 404

4

• myextension

• myextension/settings

• myextension/exchangeratehandlers

• myextension/exchangeratehandlers/mybank

2. Create a file called ”mybankhandler.php” in the ”myextension/exchangeratehandlers/
mybank” directory. This file must contain a PHP class called ”MyBankHandler”. You should
extend your class from the ”eZExchangeRatesUpdateHandler” class (kernel/shop/classes/
exchangeratehandlers/ezexchangeratesupdatehandler.php) and reimplement the ”initial-
ize” and ”requestRates” functions. The ”initialize” function is called while creating a
handler-object. It allows to initialize your handler with some preset values (for example
from INI file). The ”requestRates” function performs the actual update of the rates. This
function will assign an array of the retrieved rate values to the ”$RateList” member variable
in the following format:

$RateList = array(’currencyCode1’ => ’rateValue1’,
.....
’currencyCodeN’ => ’rateValueN’);

3. Create a file called ”shop.ini.append.php” in the ”myextension/settings” directory and add
the following lines into it:

[ExchangeRatesSettings]
ExchangeRatesUpdateHandler=mybank
ExtensionDirectories[]=myextension

This will instruct eZ publish to use the update handler located at”extension/myextension/
exchangeratehandlers/mybank/mybankhandler.php”.

4. To activate your extension in eZ publish, log in to your eZ publish administration interface,
click on the ”Setup” tab, and then click ”Extensions” on the left. You will see the list of
available extensions. Select the ”myextension” item and click the ”Apply changes” button.

4.11.11 Multi-currency / Upgrading your webshop 405

4

4.11.11 Upgrading your webshop

If you have just upgraded your eZ publish installation in order to start using multiple currencies,
you will need to create currencies (page 385) and convert all your products to multi-price format
using the ”convertprice2multiprice.php” script located in the ”bin/php/” directory. Please note
that you should launch this script from the root of your eZ publish installation.

The script will go through all classes and objects containing an attribute of the price (page 525)
datatype and create an attribute of the multi-price (page 513) datatype instead without changing
the identifiers of the attributes, objects and classes. This means that your overrides will still
be applied to converted objects (please refer to the ”Templates for viewing multiple products”
section if you wish to display only price in the preferred currency to a customer).

It is recommended to create all the currencies (including your locale currency) and check their
exchange rates before launching the script.

Example

If your locale currency is USD, one of your simple price products costs for example $100 and you
wish to start using the multi-currency feature, you can create for example the following three
currencies:

Currency code Currency rate
EUR 1
NOK 7.9675
USD 1.2104

These rates can be for example auto rates retrieved from the website of the European central
bank.

After successful execution of the ”convertprice2multiprice.php” script the product with $100 sim-
ple price will be automatically converted to a multi-price product with one custom price (base
price) and two auto prices as shown in the following screenshot.

(see figure 4.96)

Figure 4.96: The resulting prices after product upgrading.

As you can see, the script converts the base price from USD to EUR and NOK using the existing
currency exchange rates.

If you have forgotten to create your locale currency, the script will automatically create it with
custom rate set to 1. The table of currencies will then look like this:

4.11.11 Multi-currency / Upgrading your webshop 406

4

Currency code Currency rate
EUR 1
NOK 7.9675
USD 1

These rates are incorrect (1 USD does not cost 1 EUR). The auto prices for all converted products
will be also incorrect since generated according to incorrect currency rates.

4.12 View caching 407

4

4.12 View caching

Caching is a widely used technique supposing that frequently used information is retained in
a temporary storage area for rapid access. It is extremely effective when the original data is
expensive (usually in terms of access time) to fetch or compute/generate relative to reading the
cache. Once the data is stored in the cache, future use can be made by accessing the cached
copy rather than re-fetching or re-computing the original data, so that the average access time is
lower.

eZ Publish includes a powerful caching mechanism that allows to improve system performance.
This chapter describes a fundamental part of the cache systems in eZ Publish, called content view
caching (”view caching” for short). This mechanism only works for ”view (page 760)” and ”pdf
(page 741)” views of the ”content (page 624)” module.

Node view cache

This subsection describes how the view caches are generated when the nodes are accessed.

Whenever eZ Publish is requested to output information about a node (either by a system URL
or a virtual URL), it executes the program code that is associated with the ”view” view of the
”content” module. Upon completion, the view returns a result to the module, which in turn
returns it to the rest of the system. eZ Publish automatically generates an array called ”module
result” containing information about which module that was run, which view that was called,
the output that was produced and so on. The actual output of the view (i.e. the XHTML code
generated using one of the node templates (page 171)) is put to ”$module result.content” and is
included in the pagelayout (page 175) by accessing this template variable:

{$module_result.content}

When the pagelayout is rendered, the {$module result.content} part will be replaced with the
actual output. If view caching is enabled, the entire result of the module will be cached. This
means that the contents of the ”module result” variable will be put into a cache file located in the
”var/example/cache/content” directory (where ”example” is usually the name of the siteaccess
that is being used - it is set by the ”VarDir” directive in ”site.ini” or an override).

Please note that eZ Publish creates multiple view caches for the nodes based on roles and user
preferences. This means that for example different users (who are logged in, with different
permissions/preferences) will be served different caches while anonymous users and users with
the same type of permissions/preferences will be served the same file. In other words, when view
caching is on, the ”view” view of the ”content” module will only be run if the system is unable
to locate a view-cached version of the result - otherwise a cached version will be inserted in the
pagelayout. Please note that the pagelayout itself is not cached by default.

Another thing worth noticing is that the view caches are also depending on some other parame-
ters. For example:

• View mode

4.12 View caching 408

4

• Language

• View parameters in the URL

• Layout (for example print will be in different cache files)

• etc.

Example

Let’s say that node 46 is the company about page and the custom template ”aboutpage.tpl”
overrides the default ”node/view/full.tpl” template for this particular node.

Both the virtual URL ”http://www.mysite.com/company/about” and the system URL ”http://
www.mysite.com/content/view/full/46” point to this page. When one of these URLs is requested,
the system will execute the ”view” view of the ”content” module using ”46” as the ID number of
the node and ”full” as the view mode (page 171). The resulting XHTML code containing the
company about information will be generated using the ”aboutpage.tpl” template. The output
will be put to ”$module result.content” and then will be included in the pagelayout.

If view caching is enabled for the ”full” view mode, the entire result of the mod-
ule will be cached in a file. The cache files get long names like for example ”46-
122bc591bf62e87a4e9ddcb5ba352bc4.cache”. Next time the company about page is being ac-
cessed, the system will not go through the burden of executing the ”view” view of the ”content”
module (generating the result, etc.) but load the cache file instead.

The $node variable

In eZ Publish versions prior to 3.9, the ”$node” variable might be present in the pagelayout when
view caching is disabled. From 3.9, this variable is not available in the pagelayout, regardless of
whether view caching is enabled or not. It is recommended to use $module result for fetching
the necessary information (for example, ”$module result.node id” outputs the ID number of the
node that is being viewed).

PDF cache

The following text explains how the view cache is generated when a PDF version of a site page
(a content node) is being accessed. Note that the PDF export mechanism has been deprecated in
eZ Publish 4.0 and will be removed in future releases.

Whenever eZ Publish is requested to generate a PDF version of a node, it executes the program
code that is associated with the ”pdf” view of the ”content” module. Instead of inserting the
output into the pagelayout via $module result.content, the system will fetch the actual page
content (i.e. the attributes of the object that is encapsulated by the specified node) using the
”pdf.tpl” template and generate a PDF file using ”execute pdf.tpl”. These default templates are
located in the ”templates/node/view” directory of the standard design.

4.12 View caching 409

4

If view caching is enabled for the ”pdf” view, the resulting PDF file will be cached. This means
that the system will save a copy of the actual PDF document into a cache file located in the ”var/
example/cache/content” directory (where ”example” is usually the name of the siteaccess that is
being accessed - it is controlled by the ”VarDir” directive in ”site.ini” or an override).

Example

If node 46 is the company about page, then accessing the URL ”http://www.mysite.com/content/
pdf/46” will lead to executing the ”pdf” view of the ”content” module. The system will generate
a PDF version of the company about page and display it to the user.

If view caching is enabled for the ”pdf” view, the resulting PDF document will be cached in a file,
for example called ”46-3579d18de31e99fc84d2d9a5f113c3be.cache”. Please note that this file
can be opened using a PDF reader (in some cases it would have to be renamed to .pdf).

4.12.1 View caching / Configuring the view cache 410

4

4.12.1 Configuring the view cache

The view caching mechanism is enabled by default. However, you probably want to turn it off
during site development (otherwise any changes being made in your custom node templates
(page 171) will not be visible on the site until you clear the caches). This can be done by adding
the following line under the ”[ContentSettings]” section in the ”site.ini.append.php” file of your
siteaccess:

ViewCaching=disabled

Please note that it is strongly recommended to re-enable the view caching when development
has finished. This can be done by changing it from ”disabled” to ”enabled”:

ViewCaching=enabled

The CachedViewModes (page 1572) setting located in the ”[ContentSettings]” section of the
”site.ini” configuration file (or an override) controls which view modes the caching will be en-
abled for. The default value of this setting defines that view cache should be stored for ”full”,
”sitemap” view modes and for the ”pdf” view:

CachedViewModes=full;sitemap;pdf

However, note that the ”pdf” view of the content module is deprecated.

If you need to disable view caching for a specific page, add the following line in the beginning of
the template that is used:

{set-block scope=root variable=cache_ttl}0{/set-block}

This will set the global variable ”cache ttl” to zero for the current template. The ”cache ttl”
variable contains the TTL (Time To Live) value as seconds. A value of 0 means that the result
should not be changed. A value of -1 means that the view cache should never expire, see the
example below.

{set-block scope=root variable=cache_ttl}-1{/set-block}

Roles

The cache files are different for dissimilar role combinations. This means that the templates can
have conditions based on roles (page 156) even when view caching is on.

User preferences

The following text describes handling of user preferences (page 1109) and the way the prefer-
ences of the current user are taken into account when generating content view cache.

4.12.1 View caching / Configuring the view cache 411

4

For example, whenever the user performs the following actions using the administration inter-
face:

• Enabling or disabling the bookmark menu (+/-)

• Adjusting the horizontal size of the content structure menu (small / medium / large)

• Choosing the view mode (list / thumbnail / detailed) and ”items per page” limitation (10
/ 25 / 50) for the sub items window

• Changing the visibility of different windows (Preview / Details / Translations / Locations /
Relations)

...or sets any other user preference, the system executes the ”preferences (page 933)” view of
the ”user (page 912)” module in order to save the selected value. The information about which
preference has been changed is passed using view parameters:

.../user/preferences/set/<name_of_preference>/<value>

for example

http://my.com/myadmin/user/preferences/set/admin_left_menu_width/medium

After saving the selected value, the ”preference” view of the ”user” module will redirect the user
back to the last accessed page.

If your templates of cached view modes have conditions based on user preferences, you should
specify which preferences that are used together with the different view modes - this can be done
using the CachedViewPreferences (page 1571) setting located under the ”[ContentSettings]” sec-
tion of the ”site.ini.append.php” configuration file.

Example

Let’s say that you are using prices in several currencies for your products and the ”node/view/
full.tpl” template is overridden for products in order to display prices in the user’s preferred
currency (page 395). If view caching is enabled for the ”full” view mode, the system will store
view cache files for the product view pages. If the cache is generated regardless of the preferred
currency, when another preferred currency is chosen, the same product page that is being viewed
will be returned (in other words, it will not change).

In order to avoid this, you need to specify the ”user preferred currency” preference in the
”CachedViewPreferences[]” array using ”full” as an array key so that the cache will be stored
for each possible preferred currency on your site. To do this, open the ”site.ini.append.php” con-
figuration file located in the ”settings/siteaccess/example” directory (replace ”example” with the
actual name of the siteaccess) and edit it. If the ”[ContentSettings]” section of the configuration
file already contains something like

4.12.1 View caching / Configuring the view cache 412

4

CachedViewPreferences[full]=<list_of_user_preferences>

then you will have to append a semicolon and ”user preferred currency” at the end of the line,
for example:

CachedViewPreferences[full]=admin_navigation_content=0;
admin_navigation_details=0;<...>;admin_bookmarkmenu=1;
admin_left_menu_width=13;user_preferred_currency=’’

Note that this configuration line tends to be very long. It is simplified in the example above (a
lot of settings were replaced with <...> in order to keep things short).

If the ”[ContentSettings]” section does not contain a line that starts from ”CachedViewPrefer-
ences[full]”, create it:

CachedViewPreferences[full]=user_preferred_currency=’’

Related siteaccesses

The RelatedSiteAccessList (page 1737) setting located under the ”[SiteAccessSettings]” section
of the ”site.ini.append.php” configuration file controls which other siteaccesses the view cache
should be cleared for when it is cleared for the current siteaccess. If this setting is not specified,
the cache subsystem will use the AvailableSiteAccessList (page 1716) setting instead.

Please note that the AvailableSiteDesignList (page 1492) setting located under the ”[Version-
View]” section of the ”content.ini” configuration file is no longer (from eZ Publish 3.8) used by
the cache system. In 3.7 and earlier versions, it could contain an array of designs that would be
touched when the caches were cleared.

4.12.2 View caching / Clearing the view cache 413

4

4.12.2 Clearing the view cache

When a new version (also the first version) of an object is published, the system will automatically
clear the view cache for the following items:

• All published nodes of the object

• The parent nodes

• Nodes of other objects that have the same keyword as the object (if the ”Keywords (page
497)” datatype is used by at least one of the attributes).

In addition, the view caches of the following nodes will also be cleared:

• Nodes of related and reverse related objects that have relations of the ”common” type

• Nodes of reverse related objects that have relations of the ”XML embedded” type

This is controlled by the ”ClearRelationTypes (page 1838)” configuration setting.

This default behavior can be extended by configuring the smart viewcache cleaning system (page
416).

Please note that clearing the view caches for a set of nodes within a certain siteaccess means that
caches for the same nodes will also be cleared on all the related siteaccesses (page 1737).

Using the administration interface

The administration interface allows you to clear the view cache for a node that is being viewed:

1. Navigate to the node that you wish to clear the view cache for. In other words, make sure
that the target node is being displayed.

2. In the title bar of the preview window, click on an icon that indicates the node type and
select the ”Delete the view cache” item from the popup menu (shown in the following
screenshot):(see figure 4.97)

You can also clear the view cache for the entire subtree (together with the node itself) by selecting
the ”Delete the view cache from here” item from the popup menu.

Using the script

It is possible to clear the view cache for a specific node or subtree using the ”ezcontentcache.php”
script located in the ”bin/php” directory of the eZ Publish installation. The following examples
demonstrate how this can be done.

4.12.2 View caching / Clearing the view cache 414

4

Figure 4.97: Clearing the view cache using popup menu.

Example 1

Let’s say that node 46 is the company about page (http://www.mysite.com/company/about) and
you have made some changes to a custom template that is used for this node. If view caching is
enabled, your changes will not be seen until you clear the view cache for node 46:

1. Navigate into the eZ Publish directory.

2. Run the script using the following command:

./bin/php/ezcontentcache.php --clear-node=46

or

./bin/php/ezcontentcache.php --clear-node=/company/about

This will clear the view cache for node 46 (and for other locations of the same object, if any),
their parent nodes, nodes of objects containing the same keywords, nodes of related and reverse
related objects that have relations of the ”common” type and nodes of reverse related objects that
have relations of the ”XML embedded” type. If you need to clear view caches for several nodes,
specify their ID numbers (or nice URLs) separated by commas:

./bin/php/ezcontentcache.php --clear-node=46,59,63

The script will clear all content caches related to each of the given nodes.

Example 2

Let’s say that node 72 is the company news folder (http://www.mysite.com/company/news)
containing a lot of news articles. To clear the view caches for this folder and the nodes below it,
do the following:

4.12.2 View caching / Clearing the view cache 415

4

1. Navigate into the eZ Publish directory.

2. Run the script using the following command:

./bin/php/ezcontentcache.php --clear-subtree=72

or

./bin/php/ezcontentcache.php --clear-subtree=/company/news

If you need to clear view caches for several subtrees, specify the nice URLs (or ID numbers) of
their root nodes separated by commas:

./bin/php/ezcontentcache.php --clear-subtree=/company/news,/partners

The script will then clear view caches for the specified subtrees.

4.12.3 View caching / Smart view cache cleaning 416

4

4.12.3 Smart view cache cleaning

The smart viewcache cleaning system (referred to as ”svcs” on this page) makes it possible to set
up custom rules that control which nodes the view cache should be cleared for when a published
object is changed. This feature is turned off by default and thus the system will only clear the
view cache for the following nodes when a new version of an object (also the first version) is
published:

• All published nodes of the object

• The parent nodes

• Nodes of other objects that have the same keyword as the object (if the ”Keywords (page
497)” datatype is used by at least one of the attributes).

In addition, the view caches of the following nodes will also be cleared:

• Nodes of related and reverse related objects that have relations of the ”common” type

• Nodes of reverse related objects that have relations of the ”XML embedded” type

This is controlled by the ”ClearRelationTypes (page 1838)” configuration setting.

If you want to use the smart viewcache cleaning feature, make sure the ”view-
cache.ini.append.php” file located in the ”settings/siteaccess/example admin” directory (replace
”example admin” by the name of the siteaccess that is used for adding and editing content) con-
tains the following lines:

[ViewCacheSettings]
SmartCacheClear=enabled

These lines will instruct the system to follow the rules specified in this configuration file in ad-
dition to the default behavior. The configuration file usually includes a single, common settings
section called ”[ViewCacheSettings]” and multiple specific sections that describe the rules deter-
mining which additional nodes the view cache should be cleared for. Note that the view cache
of those additional nodes will also be cleared in accordance with the svcs rules (see example 5).
These sections are named after the class identifiers.

When a published object is changed, svcs gets its identifier as an input parameter. It checks
which class this object belongs to and looks for a section named after that class identifier in the
”viewcache.ini” configuration file (and its overrides). The rules specified in this section will be
applied to the parent nodes that are listed in the path string (page 990) attribute of the initially
changed node. If the published object has several nodes/locations, svcs will sequentially handle
their path strings. The following list reveals how svcs will handle each node of the published
object:

1. Scan the parent nodes listed in the node’s ”path string” attribute (the maximal quantity of
nodes that will be scanned is controlled by the ”MaxParents” setting).

4.12.3 View caching / Smart view cache cleaning 417

4

2. Perform the following actions for each of the parent nodes:

• Check which class the object encapsulated by that node belongs to.

• If the identifier of that class is listed in the ”DependentClassIdentifier[]” array, add the
matching parent node to the list of additional nodes.

3. If the ”ObjectFilter[]” setting is empty, clear the view caches for additional nodes. Other-
wise, check the identifiers of the objects encapsulated by additional nodes and only clear
caches for those that have their object identifiers listed in the ”ObjectFilter[]” array. In both
cases, the caches are cleared using the method(s) specified in the ”ClearCacheMethod[]”
setting.

From 3.9, it is also possible to clear the caches for a set of arbitrary objects when objects of specific
types are changed. If the ”AdditionalObjectIDs[]” setting contains a list of object identifiers, the
system will clear the view cache for all the locations (nodes) of these objects, regardless of
whether they are listed in ”path string” or not.

The following table gives detailed description for the configuration settings mentioned above.

Name Type Description
DependentClassIdentifier An array of class identifiers Specifies which content

(not ID numbers) classes that will be consid-
ered as ”dependent classes”.
If a node encapsulating an
object of such a class is
listed in ”path string”, svcs
will add it to the list of addi-
tional nodes. The view cache
for additional nodes will be
cleared using the method(s)
specified in the next setting.

ClearCacheMethod An array of strings Sets which method(s) to
use when clearing the view
caches for additional nodes.
This setting is an array of
strings where only six pre-
defined values can be used
(see the next table).
Name: object
Description: Clear the view
cache for all the locations
(nodes) of the object.

Name: parent
Description: Clear the view
cache for the parent node(s)
of the object.

4.12.3 View caching / Smart view cache cleaning 418

4

Name: relating
Description: Clear the view
cache for related and reverse
related objects that have re-
lations of the ”common” type
and reverse related objects
that have relations of the
”XML embedded” type (ac-
cording to the ”ClearRela-
tionTypes (page 1838)” con-
figuration setting).

Name: keyword
Description: Clear the view
cache for the objects that
have the same keyword as
this object.

Name: siblings
Description: Clear the view
cache for all the siblings of
this node/object.

Name: all
Description: Clear the view
cache for all the listed above.

ObjectFilter An array of object ID num- If specified, the view caches
bers will only be cleared for those

additional nodes that encap-
sulate the objects with these
identifiers. If not specified,
all additional nodes will have
their view cache cleared.

MaxParents Integer Sets how many parents in
”path string” will be checked
. If not specified, svcs will
scan all the parents listed in
”path string”.

AdditionalObjectIDs An array of object ID num- Makes it possible to clear the
bers caches for a set of arbitrary

objects regardless of whether
their locations are listed in
the node’s ”path string” at-
tribute or not.

4.12.3 View caching / Smart view cache cleaning 419

4

Example 1

Let’s say that both view caching and svcs are enabled with the following part of a content struc-
ture:(see figure 4.98)

Figure 4.98: A part of the site content structure.

If you do not specify any rules for svcs, changing an article will lead to clearing the view caches
for all its published nodes, their parent nodes, nodes of objects containing the same keywords,
nodes of related and reverse related objects that have relations of the ”common” type and nodes
of reverse related objects that have relations of the ”XML embedded” type (this is the default
behavior of svcs).

If the ”article2” object has only one location, does not contain any keywords and is not related
to any other objects, changing it will lead to clearing the view cache of the article itself and the
”News” folder. The view cache of the ”About” and ”Company” nodes will not be cleared.

However, you can extend this default behavior by adding the following configuration group to
the ”viewcache.ini.append.php” configuration file of your (admin) siteaccess:

[article]
DependentClassIdentifier[]
DependentClassIdentifier[]=folder
ClearCacheMethod[]
ClearCacheMethod[]=object

Now, if an article is changed, the system will fetch all the parent nodes of this article sequentially
according to its ”path string” attribute (the path string for ”article2” ends with ”/77/78/80/82/”),
check which of them are folder nodes and clear the view cache for those folders. This means that
changing ”article2” will lead to clearing the view cache of ”article2”, ”News”, ”About”, ”Company”
and all the parent folder nodes that are located above the ”Company” node.

Example 2

It is possible to limit the depth of fetching node IDs from the ”path string” attribute like this:

4.12.3 View caching / Smart view cache cleaning 420

4

[article]
DependentClassIdentifier[]
DependentClassIdentifier[]=folder
ClearCacheMethod[]
ClearCacheMethod[]=object
MaxParents=2

This will tell the system to take into account only two penultimate items from the node’s path
string (i.e. parent and grandparent of the node). This means that changing ”article2” will only
lead to clearing the view caches of ”article2”, ”News” and ”About”. The view cache of the ”Com-
pany” node and its parent folders will not be cleared.

Example 3

You can use the ”ObjectFilter[]” configuration array so that a folder node listed in ”path string”
will not be included in the list of additional nodes unless the object encapsulated by this node is
explicitly specified in the following way:

ObjectFilter[]
ObjectFilter[]=<object_id1>
ObjectFilter[]=<object_id2>
...

Assuming that the ”Company” folder object in example 1 has ID number 74 (while its node ID
is 77), you can specify the following settings in the ”viewcache.ini.append.php” of your (admin)
siteaccess:

[article]
DependentClassIdentifier[]
DependentClassIdentifier[]=folder
ClearCacheMethod[]
ClearCacheMethod[]=object
ObjectFilter[]
ObjectFilter[]=74

If ”article2” is changed, svcs will check which of the folder nodes listed in the given path string
(nodes 80, 78, 77, ...) have their object ID numbers matching one of the values in the ”Object-
Filter[]” array and thus only the ”Company” page will be included in the list of additional nodes.
The system will only clear view caches of ”article2”, ”News” and ”Company” (according to the
default behavior and the given svcs rules). The view cache of the ”About” page will not be cleared
because the ID number of that object is not 74.

4.12.3 View caching / Smart view cache cleaning 421

4

Example 4

If you wish to clear the caches for a set of arbitrary objects when objects of specific types
are changed, you will have to specify a list of object ID numbers using the ”AdditionalObjec-
tIDs[]” configuration array. Assuming that the object ID numbers of the ”Archive” folder and
the ”CD” product are 64 and 69 accordingly, you can specify the following settings in the ”view-
cache.ini.append.php” of your (admin) siteaccess:

[article]
AdditionalObjectIDs[]
AdditionalObjectIDs[]=64
AdditionalObjectIDs[]=69

This will tell the system to always clear the view cache of the ”Archive” folder and the ”CD”
product when an article (any article) is changed. This means that changing ”article2” will lead
to clearing the view caches of ”article2”, ”News”, ”Archive” and ”CD”.

Example 5

Let’s say that you have specified the following settings in the ”viewcache.ini.append.php” of your
(admin) siteaccess:

[article]
AdditionalObjectIDs[]
AdditionalObjectIDs[]=69

[product]
AdditionalObjectIDs[]
AdditionalObjectIDs[]=64

The settings located in the ”[article]” configuration block will tell the system to always clear the
view cache of the ”CD” product when an article is changed. This means that changing ”article2”
will lead to clearing the view caches of ”article2”, ”News” and ”CD”. When clearing the cache of
the ”CD” product, svcs will apply the rules specified in the ”[product]” section, and thus the view
cache of the ”Archive” folder will also be cleared.

4.12.4 View caching / Pre-generation of view cache 422

4

4.12.4 Pre-generation of view cache

The ”cache on request” approach described in the previous sections supposes that the view cache
for a page is created when this page is being accessed for the first time. The additional ”cache
on publishing” functionality makes it possible to generate view cache files when a node is being
created or modified. This makes the publishing process a bit slower (not recommended for sites
with lots of content editors), but reduces the access time when the pages are being requested.

The ”cache on publishing” feature is disabled by default. This behavior is controlled by the Pre-
ViewCache (page 1566) setting located under the ”[ContentSettings]” section of the ”site.ini”
configuration file. Please note that enabling this feature will only affect the view caches gener-
ated for the ”full” view mode. Whenever an object is published, the system will generate the
view cache for all the nodes/locations of this object and their parent nodes. The PreCacheSiteac-
cessArray (page 1565) setting located at the same place controls which siteaccess(es) the view
cache should be generated for (usually public siteaccesses that are used for viewing content).

If you wish to create the view cache files on publishing, add the following lines to the ”[Con-
tentSettings]” section of ”settings/siteaccess/example admin/site.ini.append.php” configuration
file (replace ”example admin” by the name of the siteaccess that is used for creating and editing
content):

PreViewCache=enabled
PreCacheSiteaccessArray[]
PreCacheSiteaccessArray[]=example

This will enable the ”cache on publishing” feature and tell the system that the view cache should
be generated for the ”example” siteaccess. If you have a news folder containing a lot of articles,
editing one of them will lead to re-generating the view cache files of the article itself and its
parent (the news folder). When a new article is published in the folder, the system will generate
a view cache for the newly added article and re-generate the view cache of the news folder.

Please note that the view cache will only be generated for the Anonymous user by default. This
behavior is controlled by the PreviewCacheUsers (page 1564) setting located in the ”[ContentSet-
tings]” section of the ”site.ini” configuration file.

4.13 Notifications 423

4

4.13 Notifications

eZ Publish has a built-in notification system that allows users to be informed about miscellaneous
events that occur. It is possible to be notified when objects are updated or published, when
workflows are executed and so on.

There are two built-in types of notifications:

• Subtree notifications

• Collaboration notifications

Subtree notifications

It is possible to subscribe for notifications about a subtree. For example, if you have a set of
articles located under a folder called ”Business”, a user can subscribe for subtree notifications for
this folder. The system will then send an E-mail to the user every time changes are made under
the ”Business” folder. The following changes will trigger a notification:

• When a new node is published within the subtree.

• When the contents of an existing node is changed.

A user can choose to receive notifications in the form of a single E-mail or as a digest of messages.

Collaboration notifications

The eZ Publish collaboration system allows you to work together with other people so that you
can approve/reject any changes they made when it comes to content. For example, you can spec-
ify that all the changes made in the ”Standard” section (page 132) can not be published without
your approval. (This can be done by creating a new ”Approve” event (page 1067) within a new
workflow (page 165) initiated by the ”content-publish-before” trigger function.) If somebody
(except you, the administrator) edits content located under the ”Standard” section, the system
will generate new collaboration messages. For example, if somebody changes article ”A”, the
system will generate a new collaboration message ”article A awaits your approval” for you and
another collaboration message ”article A awaits approval by editor” for the user who changed it.

To view your collaboration messages, click the ”My Account” tab in the administration interface
and then access the ”Collaboration” link on the left. You will be able to review/approve/reject
the changes.

You can use collaboration notifications to be notified by E-mail about new collaboration messages.
The system will send you an E-mail every time a new collaboration message is generated for you.

4.13 Notifications 424

4

Processing notifications

In the root of the eZ Publish directory there is a file called ”runcronjobs.php”. It takes care of pro-
cessing the workflows, notifications and other tasks that should be processed in the background.
If you are going to use the notification system, ”runcronjobs.php” must be executed periodically.
The most common way to do this is to set up a scheduled job that runs every 30-60 minutes or
so. Please refer to the ”Configuring cronjobs (page 334)” and ”Running cronjobs (page 337)”
sections for more information.

In accordance with the instructions specified in the ”cronjobs/notification.php” file, ”run-
cronjobs.php” launches the main notification processing script ”kernel/classes/notification/
eznotificationeventfilter.php”.

If you need to launch this script manually, add the ”notification/runfilter” notation to the ad-
ministration interface URL and then click the ”Run notification filter” button there (see the next
screenshot).

(see figure 4.99)

Figure 4.99: The notification filter interface.

Please note that processing notifications may cause a timeout error if there is a huge amount
of notification events in the database. Because of this, the ”runfilter” view of the ”notification”
module (page 780) should only be used for testing and debugging.

4.13.1 Notifications / Using the admin interface 425

4

4.13.1 Using the admin interface

Subtree notifications

Subscribing

You can easily subscribe for subtree notifications about an object using either the context menu
or the notification settings interface.

Using the context menu

To subscribe for subtree notification for an object, you should do the following:

1. Log in to the administration interface. You should see the ”Content structure” tree on the
left where the top node is selected. The following screenshot shows how the system will
display the contents of the selected node and the list of its subitems. (see figure 4.100)

2. Locate the desired node in the ”Content structure” tree or the ”Sub items” window, click on
its icon and select ”Add to my notifications” from the context menu - this is shown in the
screenshot below. (see figure 4.101)

3. The system will add a new subtree notification and show you a confirmation: (see figure
4.102)

Using the notification settings interface

It is possible to subscribe for subtree notifications for an object by adding this object to the ”My
item notifications” list located towards the bottom of the notification settings interface. The
following text reveals how this can be done:

1. Click the ”My Account” tab in the administration interface and select the ”My notification
settings” link on the left. You will be taken to the notification settings interface as shown in
the screenshot below. (see figure 4.103)

This interface can be also accessed by adding the ”/notification/settings” notation to the
site URL.

2. Look at the ”My item notifications” list located towards the bottom of the notification set-
tings interface. All the items that you have already subscribed for are listed here. Click the
”Add items” button to add a new notification.

3. The system will bring up the browse interface which will allow you to select the desired
nodes: (see figure 4.104)

Use the list to select the node which encapsulates the object that you wish to be notified
about. Please note that it is possible to select multiple nodes/objects at the same time. You
can navigate the list by clicking on the names of the nodes. If the desired node is located

4.13.1 Notifications / Using the admin interface 426

4

Figure 4.100: Browsing the content tree.

outside the ”Content structure” tree then simply click the up arrow icon/button until it
brings you to the root of the tree. This operation will allow you to for example switch
to the ”User accounts” tree and select user groups that are located there. The following
illustration shows the up-arrow. (see figure 4.105)

It is possible to reconfigure how the list is displayed. For example, you can set the quantity
of objects per page by clicking the ”10” / ”25” and ”50” links. If you wish to browse image
objects as thumbnails, simply click the ”Thumbnail” button.

4. When you’re finished selecting the desired object(s) (simply use the checkboxes to do this)
click the ”OK” button. The system will subscribe you for subtree notifications about these
objects and add them to the ”My item notifications” list.

4.13.1 Notifications / Using the admin interface 427

4

Figure 4.101: Subscribing to subtree notifications using the context menu.

Figure 4.102: The ”notification added” confirmation for administrators.

Setting up the digest mode

If you wish to receive the subtree notifications as a daily/weekly/monthly digest, enable the
digest mode as described below.

1. Access the notification settings interface either by adding the ”/notification/settings” nota-
tion to the URL or selecting ”My Account - My notification settings” in the administration
interface.

2. The digest settings are located at the top of the notification settings interface. By default,
the digest mode is disabled (as shown in the screenshot below). (see figure 4.106)

To enable the digest mode, select the ”Receive all messages combined in one digest” check-
box and choose how often the digest should be sent to you.

• Once a day, at some fixed time (from 0:00 to 23:00).

• Once a week, on some fixed day (from Sunday to Saturday).

• Once a month, on some fixed day (from 1 to 31).

3. Click the ”Apply changes” button to save your settings.

4.13.1 Notifications / Using the admin interface 428

4

Figure 4.103: Notification settings for administrators.

Unsubscribing

If you no longer wish to receive notifications about an object, use the following instructions to
unsubscribe.

1. Access the notification settings interface either by adding the ”/notification/settings” no-
tation to the URL or selecting ”My Account” and then ”My notification settings” in the
administration interface.

2. The ”My item notifications” list located towards the bottom of the notification settings
interface contains all the items that you have already subscribed for. Use checkboxes to
select the item(s) that you no longer wish to be notified about (see the screenshot below).
(see figure 4.107)

3. Click the ”Remove selected” button. The system will remove the selected item(s) from
the list of notifications and thus you will no longer receive any messages about that/those
object(s).

4.13.1 Notifications / Using the admin interface 429

4
Figure 4.104: Browsing the content tree.

Figure 4.105: The ”Up” button

Figure 4.106: Digest settings

Collaboration notifications

If you’re using the collaboration system to work together with other people, you may wish to be
notified by E-mail every time a new collaboration message is created for you. In this case, you

4.13.1 Notifications / Using the admin interface 430

4

Figure 4.107: The list of items for subtree notifications.

should enable the collaboration notifications feature. The following text describes how to do this.

1. Access the notification settings interface either by adding the ”/notification/settings” no-
tation to the URL or selecting ”My Account” and then ”My notification settings” in the
administration interface.

2. Look at the ”Collaboration notification” section located under the digest settings. By de-
fault, the collaboration notifications are disabled. If you wish to receive collaboration noti-
fications, select the ”Approval” checkbox as shown in the following screenshot. (see figure
4.108)

Figure 4.108: Settings for collaboration notifications.

3. Click the ”Apply changes” button to save your settings. The system will then send you an
E-mail every time a new collaboration message is generated for you.

Please note that collaboration notifications do not support digest mode.

4.13.2 Notifications / Using an actual site 431

4

4.13.2 Using an actual site

Subtree notifications are available for those users who are allowed to use the ”notification” mod-
ule (page 780) by the role/policy settings. Please refer to ” Granting access to notifications (page
436)” for more information about access rights. Collaboration notifications are only available
when you’re using the administration interface.

Subscribing for subtree notifications

A user can subscribe for subtree notifications about the item that is being viewed by clicking the
”Keep me updated” button. The following screenshot shows a forum from one of the standard
sites. (see figure 4.109)

Figure 4.109: The ”keep me updated” button.

After clicking this button, the system will add a new subtree notification and show a confirmation:
(see figure 4.110)

Figure 4.110: The ”notification added” confirmation for users.

In the standard sites, the ”Keep me updated” button is always displayed on the forum pages while
other pages do not contain this button. The forum is controlled by the following templates:

• design/your siteaccess/override/templates/full/forum.tpl

• design/your siteaccess/override/templates/full/forum topic.tpl

Please refer to ” Adding the ”Keep me updated” button (page 434)” for more information about
adding the update button to other templates/pages.

4.13.2 Notifications / Using an actual site 432

4

Setting the digest mode

The notification settings can be accessed regardless of the siteaccess/design that is used (as long
as the permissions are ok). You can do the following to access the interface:

1. After logging in to the system, add the ”/notification/settings” notation to the site URL
(http://www.example.com/notification/settings) in order to access the notification set-
tings. You should see the digest settings and the ”Node notification” list (as shown in
the following screenshot). (see figure 4.111)

Figure 4.111: Notification settings for users.

2. By default, the digest mode is disabled. To enable the digest mode, select the ”Receive all
messages combined in one digest” checkbox, and choose how often the digest should be
sent to you.

• Once a day, at some fixed time (from 0:00 to 23:00).

• Once a week, on some fixed day (from Sunday to Saturday).

• Once a month, on some fixed day (from 1 to 31).

3. Click the ”Store” button to save your settings. (If you wish to discard changes, simply click
the ”Cancel” button.)

4.13.2 Notifications / Using an actual site 433

4

Unsubscribing

If you no longer wish to receive subtree notifications about an object, follow these instructions to
unsubscribe:

1. Access your notification settings by adding the ”/notification/settings” notation to the site
URL (http://www.example.com/notification/settings).

2. The ”Node notification” list located under the digest settings contains all the items that you
have already subscribed for (look at the previous screenshot). Use checkboxes to select the
item(s) that you no longer wish to be notified about.

3. Click the ”Remove” button. The system will remove the selected item(s) from the list of
notifications.

Please note that you can customize the notification settings template(s) by copying the default
templates from either the standard or the admin design and changing them to suit your site.

4.13.3 Notifications / Adding a ”Keep me updated” button 434

4

4.13.3 Adding a ”Keep me updated” button

A user can subscribe for subtree notifications for the page that is being viewed by making use
of a ”Keep me updated” button. Many of the default templates do not contain this button. The
only exception is made for the forum pages where the button code is included into the following
templates:

• design/your siteaccess/override/templates/full/forum.tpl

• design/your siteaccess/override/templates/full/forum topic.tpl

Returning to the previous example, if you have a set of articles located under a folder called
”Business”, your users will not be able to subscribe for subtree notifications for this folder as long
as there is no ”Keep me updated” button there. Please note that the user must be logged in to
make use of this feature.

You can easily add the ”Keep me updated” button by inserting the following code into the over-
ride templates. For example, you can add this code to the ”design/your siteaccess/override/
templates/full/folder.tpl” template:

<form method="post" action={’/content/action’|ezurl}>
<input type="hidden" name="ContentNodeID" value="{$node.node_id}" />
<input type="submit" name="ActionAddToNotification" value="Keep me updated" />
</form>

After clearing the caches, the ”Keep me updated” button will appear every time a user is viewing
a folder. The same changes can be easily done for your articles and other content objects.

Please note that some of the default templates may already contain a ”/content/action” form. In
this case, make sure that all the variables listed in the above code fragment are present inside
this form in the template. You can also have several forms posting data to”/content/action”.

If you wish to have the button present in the pagelayout then you’ll have to do it a bit differently.
The reason for this is that the $node variable is not present in the pagelayout.

{* Check if we have a node... *}
{if $module_result.node_id}

<form method="post" action={’/content/action’|ezurl}>

<input type="hidden" name="ContentNodeID" value="{$module_result.node_id}" />
<input type="submit" name="ActionAddToNotification" value="Keep me updated" />

</form>

{/if}

4.13.4 Notifications / Customizing the E-mails 435

4

4.13.4 Customizing the E-mails

It is possible to customize the notification E-mails by modifying templates. For example, the
”plain.tpl” template located in the ”templates/notification/handler/ezgeneraldigest/view/” di-
rectory of the standard design is the main notification template. It controls how the E-mails will
be generated.

If you need to make changes to this template, you should copy it to your custom design and
change it there. For example, you could copy it and add some additional/static text that will
appear in all E-mails that are sent out. Remember to clear the caches before testing the changes.
Please note that you should not change the default template but instead copy them to your own
design.

4.13.5 Notifications / Granting access to notifications 436

4

4.13.5 Granting access to notifications

The built-in permission system controls whether users are allowed to use notifications or not.
The following text explains how you can check and assign the necessary permissions.

Checking the access rights

The following text explains how you can view a user or a user group and check if the user or the
group is allowed to access the ”notification” module (page 780).

1. Log in to the administration interface and click the ”User accounts” tab. You should see
your users and groups on the left.

2. Select the target user/group using the tree or the ”Sub items” window. (see figure 4.112)

Figure 4.112: The usergroup view interface.

The screenshot above shows a situation when the ”Editors” user group is selected. You
can bring up a list of roles and policies assigned to this group by enabling the ”Roles” and
”Policies” windows using the menu at the top.

3. Look at the ”Module” column in the table of policies. As long as the ”notification” module
(page 780) is not listed here, the selected user/group is not allowed to use notifications.
Please refer to the next sections for information about how you can create a new role (that
grants access to the module) and assign it to a user/group.

4.13.5 Notifications / Granting access to notifications 437

4

Creating a new role

The following text reveals how you can create a new role for granting access to notifications.

1. Click the ”User accounts” tab in the administration interface and then access the ”Roles and
policies” link on the left. You should see the list of existing roles as shown in the screenshot
below.

(see figure 4.113)

Figure 4.113: The list of roles.

2. Let’s create a new role called for example ”My notification role”. Click the ”New role”
button under the list of roles. You will be taken to the role edit interface as shown in the
following screenshot. (see figure 4.114)

Figure 4.114: Adding a new role.

3. Specify the name of the role and click the ”New policy” button.

4. The wizard will help you to create a new policy in two steps. (see figure 4.115)

The above screenshot shows the first step. Select the ”notification” module from the drop-
down list and click the ”Grant access to one function” button.

4.13.5 Notifications / Granting access to notifications 438

4

Figure 4.115: The new policy wizard, step 1.

5. You will be taken to the second step as shown in the screenshot below. (see figure 4.116)

Choose the ”use” function from the dropdown list. Please note that you shouldn’t choose the
”administrate” function because it grants access to the ”runfilter” view of the ”notification”
module (page 780).

6. Click the ”Grant full access” button. (There is no point clicking the ”Grant limited access”
button because the functions of the ”notification” module do not support limitations.)

7. The new policy will appear in the role edit interface as shown in the following screenshot.
(see figure 4.117)

8. Click ”OK” to save your changes and go back the role view interface. (see figure 4.118)

The new policy will appear in the role view interface as shown in the screenshot above. You
can now assign this role to any user or group (this is explained in the next section).

Assigning a role to a user and/or a user group

A role can be viewed by clicking on its name in the list of existing roles in the role interface
(select ”Roles and policies” from within the ”User accounts” to bring up the role interface).

When you’re looking at a role, there should be a list of users/groups towards the bottom of the
page. This list reveals the users and groups that the role which is being viewed has been assigned
to. The following text explains how to use this list in order to assign the role that is currently
being viewed to the ”Editors” user group.

1. Click the ”Assign” button located under the list of users in the role view interface.

4.13.5 Notifications / Granting access to notifications 439

4

Figure 4.116: The new policy wizard, step 2.

Figure 4.117: The role edit interface.

2. Select the ”Editors” user group as shown in the following screenshot and click the ”OK”
button.
(see figure 4.119)

3. The ”Editors” user group will appear in the list of users. The screenshot below shows the

4.13.5 Notifications / Granting access to notifications 440

4

Figure 4.118: The role view interface.

Figure 4.119: Assigning a role to a user group.

role view interface for ”My notification role” that is assigned to the ”Editors” user group
(this means that all users that belong to this group are allowed to use notifications). (see
figure 4.120)

Please note that you can assign the role to a single user in the same way as to a user group.

4.13.5 Notifications / Granting access to notifications 441

4

Figure 4.120: The role view interface.

4.13.6 Notifications / Notification events 442

4

4.13.6 Notification events

The following three notification events are supported by default:

• Publish

• Collaboration

• Current time

Publish

Every time an object is published, a new ”ezpublish” event is created.

Collaboration

Every time a collaboration message is generated, a new ”ezcollaboration” event is created.

Current time

Every time the ” runcronjobs.php” script is executed, a new ”ezcurrenttime” event is created.
This behavior is specified in the ”cronjobs/notification.php” file. The system uses ”ezcurrenttime”
events for generating digest notifications.

If you need to generate this event manually, add the ”notification/runfilter” notation to the URL
of your site administration interface and then click the ”Spawn time event” button. Please note
that the ”runfilter” view of the ”notification” module (page 780) should be used only for testing
and debugging.

The built-in notification event types are stored in the ”kernel/classes/notification/event/” direc-
tory. It is possible to extend the system by creating custom notification events for special needs.

Creation and storage

Let’s say that you have an article on your site, and a user has subscribed for subtree notifications
about this article. Every time a new comment is posted or an updated version of the article is
published, the system will generate a new ”ezpublish” event and store it in the database. This
event can be processed by zero, one, or more notification handlers (page 445).

Settings

The available notification event types are specified in the ”[NotificationEventTypeSettings]” sec-
tion of the ” notification.ini (page 1549)” configuration file located in the ”settings” directory.
The following settings can be used under this section:

4.13.6 Notifications / Notification events 443

4

The ”RepositoryDirectories[]” array specifies the directories where eZ Publish will search for built
in notification event types. The exact location of the event in the directory is specified using the
”AvailableNotificationEventTypes” setting.

The ”ExtensionDirectories[]” array specifies the extension directories where eZ Publish will
search for additional notification event types. By default eZ Publish will search in the ”notifica-
tiontypes” subdirectory inside your extension. The exact location of the event in this subdirectory
is specified with the ”AvailableNotificationEventTypes” setting.

The ”AvailableNotificationEventTypes[]” array contains a list of event types.

Example 1

The following lines can be specified in the ” notification.ini (page 1549)” configuration file:

[NotificationEventTypeSettings]
RepositoryDirectories[]=kernel/classes/notification/event/
ExtensionDirectories[]
AvailableNotificationEventTypes[]=ezpublish
AvailableNotificationEventTypes[]=ezcurrenttime
AvailableNotificationEventTypes[]=ezcollaboration

These settings will make eZ Publish search for the following files for built in notification events:

• kernel/classes/notification/event/ezpublish/ezpublishtype.php

• kernel/classes/notification/event/ezcurrenttime/ezcurrenttimetype.php

• kernel/classes/notification/event/ezcollaboration/ezcollaborationtype.php

Example 2

You can extend the system by creating custom notification events. For example, if you have an
extension ”nExt” that includes a notification event ”nev”, put the following lines into an override
for ” notification.ini (page 1549)” configuration file:

[NotificationEventTypeSettings]
ExtensionDirectories[]=nExt
AvailableNotificationEventTypes[]=nev

or

[NotificationEventTypeSettings]
RepositoryDirectories[]=extension/nExt/notificationtypes/
AvailableNotificationEventTypes[]=nev

4.13.6 Notifications / Notification events 444

4

These settings will make eZ Publish expect the additional notification event to be located at
”extension/nExt/notificationtypes/nev/nevtype.php”

Please note that you must always clear at least the ini cache in order to make the system re-read
the changed configuration files.

4.13.7 Notifications / Notification handlers 445

4

4.13.7 Notification handlers

There are several handlers that process notification events. The following handlers are known to
the eZ Publish system by default:

• Subtree notification

• General digest

• Collaboration notification

Subtree notification

The ”ezsubtree” notification handler processes ”ezpublish” events.

General digest

The ”ezgeneraldigest” notification handler processes ”ezcurrenttime” events.

Collaboration notification

The ”ezcollaborationnotification” notification handler processes ”ezcollaboration” events.

The built-in notification handlers are stored in the ”kernel/classes/notification/handler/” direc-
tory. It is possible to extend the system by creating custom notification handlers for special needs.

Processing the notification events

Whenever the ”eznotificationeventfilter.php” script is executed, the system will try to run every
unhandled notification event (page 442) with every available notification handler.

Please note that handling one event may result in sending/generating more than one notification.
For example, if a new version of an article is published, all the subscribed users will be notified.

If every notification is sent successfully, the event will be deleted from the database. Otherwise,
if some of the generated notifications must be delayed in order to form a daily/weekly/monthly
digest, the system will add new notification items to the user collection. A notification item
contains data about the notification event, its handler, subscriber e-mail and time when this
notification must be sent.

The digest handler starts processing the ”ezcurrenttime” event by accessing the collection of
notification items. The time specified in the ”ezcurrenttime” event will be compared with the time
of each notification item in order to determine which items that must be handled at the moment.
As long as each notification item contains data on the notification event and its handler, the
system will process this event with the right handler. The resulting notifications will be collected
into digest messages and sent to the subscribers.

4.13.7 Notifications / Notification handlers 446

4

If the notification item was handled successfully, this item will be removed from the collection. If
none of the remaining notification items reference the handled notification event, this event will
be deleted from the database.

The ”ezcurrenttime” event will be deleted from the database when processing is completed.
Please note that processing the ”ezcurrenttime” event by the digest handler does not always re-
sult in sending/generating digest notifications (for example, if none of the subscribers has chosen
the digest mode for notifications).

Settings

The ”[NotificationEventHandlerSettings]” section of the ” notification.ini (page 1549)” config-
uration file defines the event handlers that will respond to the notification event. Under this
section, the following settings can be specified:

The ”RepositoryDirectories[]” array specifies the directories where eZ Publish will search for built
in notification handlers. The exact location of the handler in the directory is specified using the
”AvailableNotificationEventTypes” setting.

The ”ExtensionDirectories[]” array specifies the extension directories where eZ Publish will
search for additional notification handlers. By default eZ Publish will search in the ”notifica-
tion/handler/” subdirectory inside your extension. The exact location of the handler in this
subdirectory is specified using the ”AvailableNotificationEventTypes” setting.

The ”AvailableNotificationEventTypes[]” array contains a list of handlers.

Example 1

The following lines can be specified in the ” notification.ini (page 1549)” configuration file:

[NotificationEventHandlerSettings]
RepositoryDirectories[]=kernel/classes/notification/handler/
ExtensionDirectories[]
AvailableNotificationEventTypes[]=ezgeneraldigest
AvailableNotificationEventTypes[]=ezcollaborationnotification
AvailableNotificationEventTypes[]=ezsubtree

These settings will make eZ Publish search for the following files for built in notification handlers.

• kernel/classes/notification/handler/ezgeneraldigest/ezgeneraldigesthandler.php

• kernel/classes/notification/handler/ezcollaborationnotification/
ezcollaborationnotificationhandler.php

• kernel/classes/notification/handler/ezsubtree/ezsubtreehandler.php

4.13.7 Notifications / Notification handlers 447

4

Example 2

You can extend the system by creating custom notification handlers. For example, if you have an
extension ”nExt” that includes a notification handler ”nh” put the following lines into an override
for the ” notification.ini (page 1549)” configuration file:

[NotificationEventHandlerSettings]
ExtensionDirectories[]=nExt
AvailableNotificationEventTypes[]=nh

or

[NotificationEventHandlerSettings]
RepositoryDirectories[]=extension/nExt/notification/handler/
AvailableNotificationEventTypes[]=nh

These settings will make eZ Publish expect the additional notification handler to be located at
”extension/nExt/notification/handler/nh/nhhandler.php”

4.13.8 Notifications / Frequently Asked Questions 448

4

4.13.8 Frequently Asked Questions

Q: Is there a standard user who automatically get notified about all the site changes (creation/
modification of content objects)?

A: By default, none of the users is notified about all the site changes. If you want to be notified
whenever content is changed or added, you can subscribe for subtree notifications for the top
node in the ”Content structure” tree.

Q: Is it possible to be notified about new user registrations?

A: You can subscribe for subtree notifications for the top node in the ”User accounts” tree so that
you will be notified every time a new user is created. To do this, click on the ”User accounts”
tab in the administration interface, locate the desired node (under which new users are created
upon user registration) in the tree and select ”Add to my notifications” using the context menu.

Q: Is it possible to receive E-mails whenever I need to approve an article? Is it possible that the writer
of the article is notified whether or not the article was approved?

A: It is possible to get notifications when you need to approve an item (same for the author).
This can be easily done by enabling the collaboration notifications. Currently there is no support
for notifications to the author when the the article has been approved/rejected.

Q: I have subscribed for notifications but I do not receive any E-mails.

A: You might have forgotten about ” runcronjobs.php” script. If you wish to use the notification
system, this script must be executed periodically.

Q: I use both subtree and collaboration notifications. The subtree notifications work well but I do
not receive collaboration notifications.

A: The collaboration notifications are sent every time a new collaboration message is generated.
Check your collaboration messages by clicking the ”My Account” tab in the administration in-
terface and select the ”Collaboration” link on the left. If there are no collaboration messages
there, check your collaboration settings by clicking the ”Setup” tab and choosing the ”Work-
flows” and/or ”Triggers” link on the left. Please refer to the ” Workflows (page 165)” and ”
Approve (page 1067)” documentation chapters for more information about workflows, triggers
and approval events. (A simple example of implementing an approval mechanism including cre-
ating a workflow, connecting it to a trigger function and approving entries can be found in the
old documentation.)

Q: Notification settings are not available for one of my users.

A: A user must be logged in to access the notification settings. If the notification settings are
still unavailable after logging in, please check the role/policy settings specified for the user(s) as
described in the ” Granting access to notifications (page 436)” part of the documentation.

Q: Why do the users see the ”access denied” page when they click the ”Keep me updated” button?

A: Perhaps they are not allowed to use notifications. Check the role/policy settings specified for
these users as described in the ” Granting access to notifications (page 436)” chapter.

Q: I have the default/built-in forum on my site and I wish that every registered user should be able
to subscribe/unsubscribe for subtree notifications about the forum/topic/reply. How can I do this?

http://ez.no/products/ez_publish_cms/documentation/building_an_ez_publish_site/the_guestbook/creating_a_workflow
http://ez.no/products/ez_publish_cms/documentation/building_an_ez_publish_site/the_guestbook/creating_a_workflow
http://ez.no/products/ez_publish_cms/documentation/building_an_ez_publish_site/the_guestbook/connecting_the_workflow_to_a_trigger_function
http://ez.no/products/ez_publish_cms/documentation/building_an_ez_publish_site/the_guestbook/approving_entries

4.13.8 Notifications / Frequently Asked Questions 449

4

A: By default, all the users that belong to the ”Guest accounts” user group are allowed to use
notifications. This is specified in the default ”Forum user” role that is assigned to the guest user
group. It is possible to assign this role to other users (please refer to ” Assigning a role to a
user / user group” section of the ” Granting access to notifications (page 436)” chapter for more
information). There is no point to assign this role to the ”Administrator users” group. The default
”Administrator” role assigned to the ”Administrator users” group allows these users to access all
modules including the ”notification” module (page 780).

Q: In the role/policy settings I can choose the ”administrate” function when granting access to the
”notification” module. Does it mean that it is possible to view/edit the notification settings of each
subscribed user somewhere in the administration area?

A: Although letting administrators to view and/or edit notification settings for all users is proba-
bly good idea, it is not implemented yet. The only difference between ”use” and ”administrate”
functions is that the latter grants access to the ”runfilter” view of the ”notification” module (page
780). Please note that this view should only br used for testing and debugging.

Q: Is it possible to force digest mode for notifications so that the digest mode is set by default for all
the subscribed users (with the preset time)?

A: This functionality is not implemented. By default, the digest mode is off and the database
contains no records about this setting. If the user sets the digest mode, it will be recorded in the
database.

Q: Is there any way to set ”filters” for subtree notifications? I have a set of articles under a certain
folder and the users are notified whenever a new article is created there. However, they also receive
notifications when an existing article is edited or a new folder is created. I’d like to specify ”only
notify if a new object of type article is being created” or something similar.

A: This is not supported at the moment.

4.14 Search engine 450

4

4.14 Search engine

The system comes with a built-in search engine which integrates tightly with the content struc-
ture. It is capable of indexing everything that is inputted through the native content model.

In eZ Publish, a content class describes the actual data structures (for example news articles,
products, etc.). The classes are built up of attributes which are represented by datatypes. An
attribute can be the title of an article, the price of a product and so on. It is possible to control
which attributes that should be indexed by the search engine. This can be done by making use
of the ”Searchable” checkboxes while editing a class. Some datatypes (for example float, price,
etc.) do not support indexing. Please refer to the datatype overview (page 463) page to see
which datatypes that can be indexed.

When an object is published, the attributes that are marked searchable will be indexed by the
search engine. It will then be possible to use the search interface to find words or phrases that
are a part of the published content. For example, if the user searches for ”backpack”, the system
will return a list of all kinds of objects where the word ”backpack” occurs. This is the default
behavior. The following screenshot shows the standard search interface.

(see figure 4.121)

Figure 4.121: Standard search interface

Advanced search

The advanced search interface makes it possible tweak and narrow the search. The following
features are supported:

• Search for several words at the same time (for example ”car bike train”).

• Search for an exact phrase (for example ”cheap cars in Scandinavia”).

• Class level filtering (limit the search to a specific class).

4.14 Search engine 451

4

• Attribute level filtering (search only a specific attribute).

• Tree level filtering (limit the search to a part of the node tree).

• Section filtering (limit the search to objects that belong to a certain section).

• Time filtering (yesterday, last week/month/3-months/year).

The following screenshot shows the advanced search interface.

(see figure 4.122)

Figure 4.122: Advanced search interface

Wildcard searching

The default behavior of the search engine is that it only searches for complete words or phrases.
If the user searches for ”demo”, the system will not return objects that contain words like ”demo-
lition”, ”demonstration” and so on. However, eZ Publish does in fact support wildcard searching,
but it must be turned on by adding the following lines to a configuration override for ”site.ini”:

[SearchSettings]
EnableWildcard=true

When the wildcard search feature is turned on, it is possible to use the asterisk character as a
wildcard, for example like this: ”demo*”. In this case, eZ Publish will return a list of objects that
contain words starting with ”demo”. For example, it would return objects containing words like
”demonstration”, ”demolition”, etc. When this notation is used, the result will also return objects
that contain the word which was specified before the asterisk. In other words, objects containing
only the word ”demo” will also be returned.

Please note that the asterisk can only be used after a word. This means that the following search
queries are invalid: ”*demo” and ”some*thing”.

4.14 Search engine 452

4

Warning! There is a good reason for the wildcard search being turned off by default. It requires
a lot more processing time than the standard search. This means that the server might have to
be upgraded in order to produce faster results and to achieve less overall system load.

Logical operators

Inline logical operators like ”AND” and ”OR” are not supported. This means that it is not possible
to specify search queries like ”cars AND minivans” or ”trucks OR vans”. However, it is in fact
possible to do an AND search. This can be done by making use of the ”Search for all of the
following words” input field in the advanced search interface. For example, if the user inputs
”cars bikes” then the system will return a list of objects that contain both of these words. The
order of the words is insignificant.

Search statistics

The setup part of the administration interface provides access to a page that reveals information
about words/phrases that have been searched along with the average results that have been
returned. The following screenshot shows the search statistics interface.

(see figure 4.123)

Figure 4.123: Search statistics

The ”Reset statistics” button will simply clear the search log.

4.15 WebDAV 453

4

4.15 WebDAV

WebDAV is an abbreviation for ”Web-based Distributed Authoring and Versioning” (published as
an open standard under RFC 2518). WebDAV is a set of extensions to the HTTP protocol which
allows users to collaboratively edit and manage files on a web server. This is achieved by making
use of a WebDAV compatible client / application. For example, it is possible to use recent versions
of KDE’s Konqueror or Microsoft’s Internet Explorer. Using a WebDAV compatible client, the user
connects to the server and is able to browse and manage files in a similar way as with a network
share or an FTP server. In other words, what this protocol does is that it makes it possible to
browse, create, remove, upload, download, rename, etc. files and directories on a web server.
One of the most important advantages of this technology is that it uses port 80 for network traffic.
This means that if you are able to surf the site from your workstation, you can also use WebDAV
to administer it. It does not require firewall reconfiguration.

eZ Publish and WebDAV

From version 3.2 and up, eZ Publish provides a built in WebDAV server. This implementation
allows users to communicate with eZ Publish using a WebDAV compatible client. Once connected,
it is possible to browse and manage the node tree of a site. The tree will be displayed as if it were
a filesystem (as directories and files).

When a user connects to the eZ Publish WebDAV server for the first time, the system will display a
list of the siteaccesses that have been made available for WebDAV. This list can be configured using
the ”SiteList[]” directive under ”[SiteSettings]” in a configuration override for ”site.ini”. Please
note that the system does not ask for a username/password combination at this stage. In other
words, anyone with network access will be able to see the names of the available siteaccesses.
The following screenshot shows what the user will see if there are two available siteaccesses,
”example” and ”plain user”.

(see figure 4.124)

Figure 4.124: WebDAV - Virtual top folder

When a siteaccess is chosen, the system will attempt to authenticate the user by asking for a

4.15 WebDAV 454

4

username/password combination. The next screenshot shows this.

(see figure 4.125)

Figure 4.125: WebDAV - Login

The provided username and password must belong to a valid eZ Publish user that exists for the
selected siteaccess. Furthermore, the user must have sufficient privileges in order to be able to
see the contents of the node tree. The following screenshot shows a WebDAV client displaying
the contents of the root node of an eZ Publish siteaccess called ”plain user”.

(see figure 4.126)

Figure 4.126: WebDAV - Top level nodes

As the screenshot indicates, the user will be able to browse and manage the contents of the
”Content” and ”Media” top level nodes. The next screenshot shows an example of what the user
will see after doing some exploration of the node structure of the ”Content” top level node.

(see figure 4.127)

4.15 WebDAV 455

4

Figure 4.127: WebDAV - Content node tree

Browsing and downloading

The default behavior is that all nodes are displayed as directories. The reason for this is because
in eZ Publish any object can be placed under any other object by the way of nodes. Displaying
the nodes as directories makes it possible to explore the structure of the node tree. However, not
all nodes are displayed as directories.

Nodes that reference objects containing datatypes that store files will be displayed as files instead
of directories. This means that for example nodes that make use of the image, media or the
file datatype will be displayed as files. When downloaded, eZ Publish will send the file that is
contained in the attribute which is represented by a datatype capable of storing a file. If several
attributes are represented by such datatypes, it is the contents of the first attribute that will be
used.

The ”FolderClasses[]” directive in ”webdav.ini” can be used to configure which types of nodes
that should be shown as directories in the WebDAV client. The default configuration assures that
nodes referencing folder objects are always displayed as directories. Adding a class that makes
use of a datatype capable of storing a file will result in an override of the behavior described in
the previous paragraph. In other words, this setting makes it possible to display different types
of nodes as directories even if they contain files.

4.15 WebDAV 456

4

Uploading

Any type of file can be uploaded to the system. Files will be stored using instances of the file
class. In other words, every time a file is uploaded, eZ Publish will create a file object where the
file attribute will contain the uploaded data. In addition, a node will be created at the location
where the file was uploaded in the tree. This is the default behavior. However, not all file types
will be created as file objects.
It is possible to configure the system so that it creates different kinds of objects based on the type
of the uploaded file. For example, the default configuration makes sure that uploaded images
are created as image objects. This behavior is controlled by mapping MIME types to classes. The
mappings can be configured using the ”MimeClassMap[]” directive under ”CreateSettings” in a
configuration override for ”upload.ini”. The ”DefaultClass” directive determines which class that
should be used if there is no suitable mapping. This is usually set to ”file”, which means that
unrecognized file types will be created as file objects. The following example shows the default
mappings.

MimeClassMap[]
MimeClassMap[image]=image
MimeClassMap[video/quicktime]=quicktime
MimeClassMap[video/x-msvideo]=windows_media
MimeClassMap[video/vnd.rn-realvideo]=real_video
MimeClassMap[application/vnd.rn-realmedia]=real_video
MimeClassMap[application/x-shockwave-flash]=flash

Each entry in the ”MimeClassMap[]” array must be further specified using a block that reveals
details about the class that is being mapped to. The blocks must contain the following informa-
tion:

• The identifier of the target class (appended with ” ClassSettings”).

• The class attribute identifier which will get the file data.

• The class attribute identifier which will get the name.

• A pattern that defines the name of the object.

The following example shows the default class map block for images.

[image_ClassSettings]
FileAttribute=image
NameAttribute=name
NamePattern=<original_filename_base>

The example above will tell eZ Publish that when an image is uploaded, the actual file data
should be put into an attribute identified by the string ”image”. The name of the image should
be stored using an attribute called ”name” (as before, it is the identifier of the attribute that is

4.15 WebDAV 457

4

used). The ”NamePattern” tells the system about how it should generate the name for uploaded
images. It may contain plain text and special tags enclosed by angle brackets (”<” and ”>”). The
following table reveals the tags that can be used.

Tag Description
original filename The name of the uploaded file, like it was on

the local machine (for example ”test.jpg”.
original filename base The name of the uploaded file without an ex-

tension (for example ”test”).
original filename suffix The extension of the uploaded file (for exam-

ple ”.jpg”).
mime type The MIME type of the uploaded file (for exam-

ple ”image/jpeg”).

Custom upload handling

It is possible to use custom upload handlers in order to process uploaded files in a special way.
Custom upload handlers must be provided as extensions. A handler must be automatically trig-
gered whenever a certain type of file is uploaded to the system. This can be done by making
use of the ”MimeUploadHandlerMap[]” directive under ”[CreateSettings]” in ”upload.ini”. For
example, the following line will make sure that uploaded images (regardless of type) are handled
by a class called ”ezimageuploadhandler” located in ”ezimageuploadhandler.php”.

MimeUploadHandlerMap[image]=ezimageuploadhandler

It is also possible to have only a specific type of file be processed by the upload handler. The
following example demonstrates how to only handle JPEG images.

MimeUploadHandlerMap[image/jpeg]=ezimageuploadhandler

The upload handler itself must be put in a directory called ”uploadhandlers” in an extension, like
this:

eZ Publish
|
-extensions
|
-example
|
-uploadhandlers
|
-ezimageuploadhandler.php

The following code shows the skeleton of a custom upload handler.

4.15 WebDAV 458

4

include_once(’kernel/classes/ezcontentuploadhandler.php’);

class eZExampleUploadHandler extends eZContentUploadHandler
{

function eZExampleUploadHandler()
{

$this->eZContentUploadHandler(’Example file handling’, ’example’);
}

/*!
Handles the uploading of example files.

*/
function handleFile(&$upload, &$result,

$filePath, $originalFilename, $mimeInfo,
$location, $existingNode)

{
// Implement your import/conversion routine here
copy($filepath, "var/cache/example.jpeg");

}
}

4.15.1 WebDAV / Setting it up 459

4

4.15.1 Setting it up

This section describes how eZ Publish can be configured in order to function as a WebDAV server.
Please note that the DNS and the web server also needs to be configured.

Step 1: Enable the WebDAV server

The master WebDAV switch must be turned on. Create a global configuration override for ”web-
dav.ini” and make sure that it contains the following lines:

[GeneralSettings]
EnableWebDAV=true

Step 2: Add the desired siteaccesses

In order to allow WebDAV access for a specific siteaccess, the name of the siteaccess must be
specified in the ”SiteList[]” array under ”[SiteSettings]” in a configuration override for ”site.ini”.
Make sure that the global configuration override for ”site.ini” contains the necessary lines. The
following example shows how WebDAV can be opened up for a siteaccess called ”plain user” and
another one called ”example”.

[SiteSettings]
SiteList[]
SiteList[]=plain_user
SiteList[]=example

Step 3: Clear all caches

The eZ Publish part of the configuration is done. Clear all caches in order to make sure that the
system uses the updated version of the configuration.

Step 4: Setup a DNS entry

Set up a DNS entry (for example a subdomain) that will be used to access the WebDAV
server. The entry must point to the IP address of the web server. For example, if you’re us-
ing ”www.example.com” to access the web pages, you could set up ”webdav.example.com” for
WebDAV.

Step 5: Configure the web server

There is a file called ”webdav.php” in the root of the eZ Publish directory. This file provides
the actual WebDAV interface. The web server must automatically execute this file whenever a

4.15.1 WebDAV / Setting it up 460

4

WebDAV client sends a command to the server. The following lines show an example of how this
can be done in the configuration file of the Apache web server.

<Virtualhost 128.39.140.28>
<Directory /path/to/ezpublish>

Options FollowSymLinks Indexes ExecCGI
AllowOverride None

</Directory>
DocumentRoot /path/to/ezpublish
RewriteEngine On
RewriteRule . /webdav.php
ServerAdmin admin@example.com
ServerName webdav.example.com

</VirtualHost>

Note: make sure that you have a ”NamedVirtualHost” line before the declaratoin of the virtual
hosts.

Step 6: Test

Launch a WebDAV compatible client / application and attempt to connect to the server.

Internet Explorer

Recent versions of Microsoft’s Internet Explorer (6.0.2800.1106 or later) contain a built-in Web-
DAV client. The target address must be opened as a web folder.

1. Start Internet Explorer.

2. Access the ”File” menu and select ”Open”, a dialog should appear.

3. Type in the address of the WebDAV server along with a hash (”#”) character at the end, like
this: http://webdav.example.com/#

(see figure 4.128)

Figure 4.128: WebDAV - IE open dialog

4.15.1 WebDAV / Setting it up 461

4

4. Make sure that the ”Open as web folder” checkbox is checked.

5. Click OK. You should be able to see the available siteaccesses as directories.

KDE/Konqueror

Make sure you have a recent version of Konqueror (3.1.3 or later). Open up a Konqueror win-
dow and attempt to browse the WebDAV server by accessing it using a URL that resembles the
following example: ”webdav://webdav.example.com/”.

(see figure 4.129)

Figure 4.129: WebDAV - Content node tree

Chapter 5

Reference

This chapter provides reference information for developers. It covers the following topics:

• Datatypes (page 463)

• Content classes (page 561)

• Modules (page 588)

• Views (page 949)

• Objects (page 950)

• Workflow events (page 1066)

• Template operators (page 1074)

• Template functions (page 1302)

• Template control structures (page 1354)

• Template override conditions (page 1369)

• Template fetch functions (page 1396)

• Template PDF functions (page 1397)

• Configuration files (page 1438)

• Libraries (page 1858)

• XML tags (page 1871)

• Scripts (page 1872)

462

5.1 Datatypes 463

5

5.1 Datatypes

Authors (page 465)
Stores info about additional authors.

Checkbox (page 467)
Stores a binary value (on or off).

Country (page 469)
Stores a user country. [Webshop]

Date (page 471)
Validates and stores a date value.

Date and time (page 473)
Validates and stores a date and a time value.

E-mail (page 475)
Validates and stores an E-mail address.

Enum (page 476)
DEPRECATED

File (page 477)
Stores any type of file.

Float (page 481)
Validates and stores a decimal value.

Identifier (page 483)
Generates a non-editable identification string.

Image (page 485)
Validates and stores a digital image.

Ini setting (page 489)
DEPRECATED

Integer (page 490)
Validates and stores an integer value.

ISBN (page 492)
Validates and stores an ISBN value.

Keywords (page 497)
Stores keywords.

Matrix (page 499)
Stores multiple rows and columns of text.

Media (page 501)
Stores a media file (Flash/QT/Real/etc.).

5.1 Datatypes 464

5

Multi-option (page 504)
DEPRECATED

Multi-option2 (page 506)
Allows option selections (supports enabling/disabling of options, images, nested option
sets and dependencies). [Webshop]

Multi-price (page 513)
Stores prices in different currencies (inc/ex VAT). [Webshop]

Object relation (page 515)
Stores a relation to a content object.

Object relations (page 517)
Stores relations to other content objects.

Option (page 522)
Allows an option selection. [Webshop]

Package (page 524)
DEPRECATED

Price (page 525)
Stores a price (inc/ex VAT). [Webshop]

Product category (page 527)
Stores a product category. [Webshop]

Range option (page 529)
Allows an integer selection. [Webshop]

Selection (page 531)
Stores single and multiple choices.

Subtree subscription (page 533)
DEPRECATED

Text block (page 534)
Stores multiple lines of unformatted text.

Text line (page 536)
Stores a single line of unformatted text.

Time (page 538)
Validates and stores a time value.

URL (page 540)
Validates and stores a URL / address.

User account (page 542)
Validates and stores info about a user.

XML block (page 544)
Validates and stores multiple lines of formatted text.

5.1.1 Datatypes / Authors 465

5

5.1.1 Authors

Summary

Stores info about additional authors.

Properties

Name Internal name Searchable Information collector
Authors ezauthor Yes. No.

Description

This datatype allows the validation, storage and retrieval of additional authors. For each author,
it is capable of handling a name and an E-mail address. It is only the E-mail address that will be
validated. It is typically useful when there is a need for storing information about additional au-
thors who have written/created different parts of an object’s contents. The following screenshot
shows the class attribute edit interface for this datatype.

(see figure 5.1)

Figure 5.1: Class attribute edit interface for the ”Authors” datatype.

As the screenshot indicates, the ”Authors” datatype does not have any class specific configuration
parameters.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.2)

When a new object is created, the attribute using this datatype will have its first row set to the
name and the E-mail address of the user who created the object.

5.1.1 Datatypes / Authors 466

5

Figure 5.2: Object attribute edit interface for the ”Authors” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute (page 981) object using this datatype returns an
ezauthor (page 954) object.

5.1.2 Datatypes / Checkbox 467

5

5.1.2 Checkbox

Summary

Stores a binary value (on or off).

Properties

Name Internal name Searchable Information collector
Checkbox ezboolean Yes. Yes.

Description

This datatype allows the storage and retrieval of a binary value. It can be either on/true or off/
false. The following screenshot shows the class attribute edit interface for this datatype.

(see figure 5.3)

Figure 5.3: Class attribute edit interface for the ”Checkbox” datatype.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.4)

Figure 5.4: Object attribute edit interface for the ”Checkbox” datatype.

5.1.2 Datatypes / Checkbox 468

5

Default value

The ”Default value” parameter makes it possible to control the initial value of an attribute using
this datatype when a new object is created.

Raw output

The ”.content” of an ezcontentobjectattribute (page 981) object using this datatype returns either
”1” or ”0” depending on the state of the checkbox (checked or unchecked).

5.1.3 Datatypes / Country 469

5

5.1.3 Country

Summary

Stores a user country. [Webshop]

Properties

Name Internal name Searchable Information collector
Country ezcountry Yes. No.

Description

This datatype allows the storage of a user country and thus makes it possible to charge the value
added taxes depending on the country the customer is from. This functionality is described in
the ”VAT charging system (page 345)” section of the ”Features” chapter. The following screenshot
shows the class attribute edit interface for this datatype.

(see figure 5.5)

Figure 5.5: Class attribute edit interface for the ”Country” datatype.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.6)

Raw output

The ”.content” of an ezcontentobjectattribute (page 981) object using this datatype returns a
hash that consists of the following elements:

5.1.3 Datatypes / Country 470

5

Figure 5.6: Object attribute edit interface for the ”Country” datatype.

Key Type Description
value string The actual name of the coun-

try (for example ”Norway”).

5.1.4 Datatypes / Date 471

5

5.1.4 Date

Summary

Validates and stores a date value.

Properties

Name Internal name Searchable Information collector
Date ezdate Yes. No.

Description

This datatype allows the validation, storage and retrieval of dates consisting of a year, month and
day value. The valid input range is 01.01.1970 - 19.01.2038. The following screenshot shows
the class attribute edit interface of this datatype.

(see figure 5.7)

Figure 5.7: Class attribute edit interface for the ”Date” datatype.

Default value

The ”Default value” parameter has two options: ”Empty” and ”Current date”. The default setting
is ”Empty”, which means that when a new object is created, the attribute using this datatype will
be empty. If the ”Current date” setting is used, the current date will be set when a new object is
created.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatye.

(see figure 5.8)

5.1.4 Datatypes / Date 472

5

Figure 5.8: Object attribute edit interface for the ”Date” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute object using this datatype returns an ezdate (page
1001) object.

5.1.5 Datatypes / Date and time 473

5

5.1.5 Date and time

Summary

Validates and stores a date and a time value.

Properties

Name Internal name Searchable Information collector
Date and time ezdatetime Yes. No.

Description

This datatype allows the validation, storage and retrieval of a date/time value. It is capable
of storing a date/time consisting of a year, month, day, hour and minute value. The following
screenshot shows the class attribute edit interface for this datatype.

(see figure 5.9)

Figure 5.9: Class attribute edit interface for the ”Datetime” datatype.

Default value

The ”Default value” parameter can be used to control the initial value of an attribute using this
datatype when a new object is created. There are three options:

• Empty

• Current datetime

• Adjusted current datetime

5.1.5 Datatypes / Date and time 474

5

The default setting is ”Empty”, which means that when a new object is created, the attribute
using this datatype will be empty. If the ”Current datetime” option is used, the current date and
time will be set. If the ”Adjusted datetime” is used, an adjusted value of the current date and
time will be set. How much the current date and time should be adjusted must be specified using
the fields within the ”Current datetime adjusted by” group.

Current datetime adjusted by

The fields within this group can be used to specify the desired date/time adjustment when the
(”Adjusted current datetime”) option is used. Both positive and negative numerical values are
allowed. If the values given in the example above are used and an object is created at 00:00 on
the first of January 2005, the initial value of the attribute will be set to 04:05, third of February,
2006.

Object attribute edit interface

The following screenshot shows the object attribute interface for this datatype.

(see figure 5.10)

Figure 5.10: Object attribute edit interface for the ”Date and time” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute (page 981) object using this datatype returns an
ezdatetime (page 1002) object.

5.1.6 Datatypes / E-mail 475

5

5.1.6 E-mail

Summary

Validates and stores an E-mail address.

Properties

Name Internal name Searchable Information collector
E-mail ezemail Yes. Yes.

Description

This datatype allows the validation, storage and retrieval of an electronic mail address. The
following screenshot shows the class attribute edit interface for this datatype.

(see figure 5.11)

Figure 5.11: Class attribute edit interface for the ”Email” datatype.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.12)

Figure 5.12: Object attribute edit interface for the ”E-mail” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute (page 981) object returns the actual E-mail address.

5.1.7 Datatypes / Enum 476

5

5.1.7 Enum

Summary

DEPRECATED

Properties

Name Internal name Searchable Information collector
Enum ezenum Yes. No.

Description

This datatype should not be used any more because it is slow. It has been substituted by the
”Selection” (page 531) datatype.

5.1.8 Datatypes / File 477

5

5.1.8 File

Summary

Stores any type of file.

Properties

Name Internal name Searchable Information collector
File ezbinaryfile Yes. No.

Description

This datatype allows the storage and retrieval of a single file. It is capable of handling virtually
any file type and is typically used for storing legacy document types such as PDF files, Word doc-
uments, spreadsheets, etc. The maximum allowed file size is determined by the ”Max file size”
class attribute edit parameter and the ”upload max filesize” directive in the main PHP configu-
ration file (”php.ini”). The following screenshot shows the class attribute edit interface for this
datatype.

(see figure 5.13)

Figure 5.13: Class attribute edit interface for the ”File” datatype.

Max file size

The ”Max file size” parameter makes it possible to set the highest size (in megabytes) that the
system will allow. By default, this parameters is zero, which means that eZ publish will not do
any size checking when files are uploaded. In the example above, the ”Max file size” parameter
is set to 16 MB, which means that the object edit interface will not allow the upload of files that
are larger than 16 megabytes. However, if the value of the ”upload max filesize” PHP setting is
lower than 16 megabytes, the underlying system will cancel the upload.

5.1.8 Datatypes / File 478

5

Object attribute edit interface

The following screenshot shows the object attribute edit interface when an attribute using this
datatype does not contain any file.

(see figure 5.14)

Figure 5.14: Object attribute edit interface for the ”File” datatype.

The following screenshot shows the object attribute edit interface when an attribute using this
datatype contains a file. The interface reveals the name of the file that was uploaded (”BD-
Scratch.wav”), the MIME type (”audio/wav”) and the size (1.15 MB).

(see figure 5.15)

Figure 5.15: Object attribute edit interface for the ”File” datatype.

MIME types

The MIME type will be automatically set based on the extension of the uploaded file’s name. If
the extension is unknown, the default MIME type will be used (”application/octet-stream”). The
MIME types can be configured at the end of the ”/lib/ezutils/classes/ezmimetype.php” file.

Storage

The uploaded files are stored on the filesystem. The main reason for this is because the filesystem
is much faster than the database when it comes to the storage and retrieval of large data chunks.
Having the files on the filesystem allows the webserver to serve them directly without the need
of going through the database. In addition, this technique makes it easier to use external tools to

5.1.8 Datatypes / File 479

5

manipulate/scan/index the contents of the uploaded files and it dramatically decreases the size
of the database.

All files uploaded through an attribute that makes use of the file datatype will be stored below
”storage/original” within the directory specified by the ”VarDir” directive in a configuration over-
ride for ”site.ini”. A new subdirectory will be created for every MIME type. For example, if an
executable (.exe) file is uploaded, a directory called ”application” will be created; if a text file is
uploaded then a directory called ”text” will be created, and so on. The uploaded files will be put
in the different MIME type directories. Instead of re-using the original filenames, eZ publish will
create a hash for every file. The following illustration shows the location of two uploaded files
(an .exe and a .txt file) when the var directory is set to ”my site”.

(see figure 5.16)

Figure 5.16: Complete directory structure with uploaded files.

The system keeps track of the files using a database table called ”ezbinaryfile” consisting of the
following fields:

Field Description
content object attribute id The identification of the content object at-

tribute.
download count The number of times the file has been down-

loaded.
filename The

name of the file on the filesystem (for example
”5fd39fbaf751369965a4108715d5dea9.txt”).

mime type The MIME type of the file (for example ”text/
plain”).

original filename The original name of the uploaded file (for ex-
ample ”readme.txt”).

version The version of the object that the file belongs
to.

Binary file indexing

eZ publish is capable of indexing the actual contents of uploaded files. This feature makes it
possible to use the built-in search engine to search for something that is inside a file; for example
the contents of a PDF file or a spreadsheet. By default, the system is only capable of indexing the

5.1.8 Datatypes / File 480

5

contents of plain text/ASCII files. However, by making use of external programs, it is capable of
indexing the contents of virtually any file type (as long as there is a program that goes through
the file and returns keywords/contents as plain text). The external handlers can be set up in a
configuration override for the ”binaryfile.ini” file.

Raw output

The ”.content” of an ezcontentobjectattribute (page 981) object using this datatype returns an
ezbinaryfile (page 958) object.

5.1.9 Datatypes / Float 481

5

5.1.9 Float

Summary

Validates and stores a decimal value.

Properties

Name Internal name Searchable Information collector
Float ezfloat No. No.

Description

This datatype makes it possible to validate, store and retrieve a single decimal value. It is
capable of handling both positive and negative numbers ranging from -3.402823466E+38 to
3.402823466E+38. Please note that these numbers may vary depending on the platform and the
database that is used. The following screenshot shows the class edit interface for this datatype.

(see figure 5.17)

Figure 5.17: Class edit interface for the ”Float” datatype.

Default value

The ”Default value” parameter makes it possible to set a default decimal value. When the param-
eter is used and a new object is created, the contents of the attribute using this datatype will be
preset to the given value. In the example above, the ”Temperature” attribute of new objects will
be set to 24.13.

5.1.9 Datatypes / Float 482

5

Min integer value

The ”Min float value” parameter makes it possible to set the lowest value that the input interface
will allow. The default value of this parameter is empty, which means that the system will allow
the lowest possible value (-3.402823466E+38). In the example above, the parameter is set to
”-40.00”. This means that the input interface will not allow the storage of numbers with values
less than -40.00.

Max float value

The ”Max float value” parameter makes it possible to set the highest value that the input interface
will allow. The default value of this parameter is empty, which means that the system will allow
the highest possible value (3.402823466E+38). In the example above, the parameter is set to
”120.00”. This means that the input interface will not allow the storage of numbers with values
as high as 120.00.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.18)

Figure 5.18: Object attribute edit interface for the ”Float” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute (page 981) object using this datatype returns a
string containing the actual decimal value.

5.1.10 Datatypes / Identifier 483

5

5.1.10 Identifier

Summary

Generates a non-editable identification string.

Properties

Name Internal name Searchable Information collector
Identifier ezidentifier Yes. No.

Description

This datatype allows the automatic generation of unique identification strings for objects. An in-
stance of a class that makes use of this datatype will have a unique identification string generated
whenever the object is published for the very first time. The identification string is system-wide
and may consist of the following elements:

• User configurable start-text

• Automatically generated identification number (configurable start value and number of
digits)

• User configurable end-text

The system will increment the actual counter(s) whenever a new object is published. It will not
decrement and reorganize the identification strings when an object is removed. The identification
strings are generated and maintained by the system and thus they can not be modified using the
object edit interface. The identification strings are generated based on the class type and the
identification number of the class attribute. In other words, the identifiers do not depend on the
objects’ locations within the content node tree. In addition, the datatype may be used to represent
several attributes within the same class. The following screenshot shows the class attribute edit
interface for this datatype.

(see figure 5.19)

Pretext

The ”Pretext” parameter can be used to specify a desired start-text (all characters are allowed)
that should appear before the automatically generated identification number. In the example
above, the text ”ABC” is used. This means that the identification strings generated for instances
of this class will start with the letters ”ABC”.

5.1.10 Datatypes / Identifier 484

5

Figure 5.19: Class attribute edit interface for the ”Identifier” datatype.

Posttext

The ”Posttext” parameter can be used to specify a desired end-text (all characters are allowed)
that should appear after the automatically generated identification number. In the example
above, the text ”XYZ” is used. This means that the identification strings generated for instanced
of this class will end with the letters ”XYZ”.

Digits

The ”Digits” parameter makes it possible to insert additional zeros in order to generate equally
long identification strings. In the example above, the digits parameter is set to ”2”. This means
that numbers below 10 will appear with a prepended zero: ”01”, ”02”, ”03”...”09”. If the param-
eter was set to ”3”, the system would generate ”001”, ”002” and so on. The ”Digits” parameter
can not be used to set the actual range / stop value. It only makes it possible to prepend the
actual number with zeros.

Start value

The ”Start value” parameter can be used to specify a desired start value for the counter; the
default value is zero. In the example above, the value ”1” is used. This means that the counter
will start at ”1”. Given all the parameters above, the identification string generated for the very
first object will be ”ABC01XYZ”.

Raw output

The ”.content” of an ezcontentobjectattribute (page 981) object using this datatype returns a
string containing the actual identification value.

5.1.11 Datatypes / Image 485

5

5.1.11 Image

Summary

Validates and stores a digital image.

Properties

Name Internal name Searchable Information collector
Image ezimage No. No.

Description

This datatype allows the storage of digital images. It is capable of handling virtually any image
type. The maximum allowed file size is determined by the ”Max file size” class attribute edit
parameter and the ”upload max filesize” directive in the main PHP configuration file (”php.ini”).
The following screenshot shows the class attribute edit interface for this datatype.

(see figure 5.20)

Figure 5.20: Class attribute edit interface for the ”Image” datatype.

Max file size

The ”Max file size” parameter makes it possible to set the highest size (in megabytes) that the
system will allow. By default, this parameters is zero, which means that eZ Publish will not
do any size checking when image files are uploaded. In the example above, the ”Max file size”
parameter is set to 16 MB, which means that the object edit interface will not allow the upload
of images that are larger than 16 megabytes. However, if the value of the ”upload max filesize”
PHP setting is lower than 16 megabytes, the underlying system will cancel the upload.

5.1.11 Datatypes / Image 486

5

Object attribute edit interface

The following screenshot shows the object attribute edit interface when an attribute using this
datatype does not contain an image.

(see figure 5.21)

Figure 5.21: Object attribute edit interface for the ”Image” datatype.

The following screenshot shows the object attribute edit interface when an attribute using this
datatype contains an actual image. The interface reveals the image itself, the name of the file
that was uploaded (”dj cat.jpg”), the MIME type (”image/jpeg”) and the size (29.02 kB).

(see figure 5.22)

Figure 5.22: Object attribute edit interface for the ”Image” datatype.

Storage

The uploaded images are stored on the filesystem. The main reason for this is because the
filesystem is much faster than the database when it comes to the storage and retrieval of large
data chunks. Having the images on the filesystem allows the webserver to serve them directly

5.1.11 Datatypes / Image 487

5

without the need of going through the database. In addition, this technique makes it easier to use
external tools to manipulate the images and it dramatically decreases the size of the database.

All images uploaded through an attribute that makes use of the image datatype will be stored
below ”storage/images” within the directory specified by the ”VarDir” directive in a configuration
override for ”site.ini”. A directory structure is generated for each object that stores an image.
The structure will be an exact copy of the actual node path (consisting of the object names)
from the root to the main node that references the object which contains images. The following
illustration shows the path to a directory on the filesystem in which the different images of an
object are stored.

(see figure 5.23)

Figure 5.23: Example of image path on the filesystem.

In the example above, an image has been stored by an object called ”My Something”. The
main node of this object is a child of a node called ”Example”. The var directory used by the
siteaccess is ”var/my site”. The images stored by the ”My Something” object will be located in
this directory. For each image, version and translation, a new directory will be created. The
following illustration shows the naming convention of the directories under which the actual
images are stored.

(see figure 5.24)

Figure 5.24: Example of an image subdirectory.

The example above shows a directory for an image that has been stored by the 1024th object
attribute. The image belongs to the British translation for the eight version of the content object.
The following illustration shows a complete directory structure with actual image files.

(see figure 5.25)

As the illustration indicates, the image stored by the 1024th attribute (that belongs to the ”My
Something” object) is represented by multiple files. The original image is ”test.png”, the rest of
the images are the different image variations.

5.1.11 Datatypes / Image 488

5

Figure 5.25: Complete directory structure with uploaded image and generated variations.

Image variations

With the help of an external application (ImageMagick) or the PHP image library (GD), eZ Pub-
lish is capable of generating different variations of an uploaded image. This feature is typically
useful when there is a need to show the same image in different ways (for example different
sizes). The image variations are controlled by different configuration directives in image.ini. The
following table shows the default image variations.

Variation Width Height
reference max 600 pixels max 600 pixels
small max 100 pixels max 100 pixels
medium max 200 pixels max 200 pixels
large max 300 pixels max 300 pixels
rss max 88 pixels max 31 pixels

When an image variation is created (and the default settings are used), eZ Publish will generate
a reference image using the file that was uploaded. The reference image is then used to generate
the different image variations (small, medium, large and rss) on-demand using the constraints
specified in the table above. The generated variations will be cached on the filesystem.

Depending on the image system used, eZ Publish is capable of generating image variations that
consist of much more than just scaling. For example, it is possible to generate sharpened grayscale
images for the thumbnails of a photo album. Please refer to the documentation of the image.ini
configuration file for more information about the different possibilities.

Raw output

The ”.content” of an ezcontentobjectattribute (page 981) object using this datatype returns an
ezimagealiashandler (page 1003) object.

5.1.12 Datatypes / Ini setting 489

5

5.1.12 Ini setting

Summary

DEPRECATED

Properties

Name Internal name Searchable Information collector
Ini setting ezinisetting Yes. No.

Description

This datatype should no longer be used.

5.1.13 Datatypes / Integer 490

5

5.1.13 Integer

Summary

Validates and stores an integer value.

Properties

Name Internal name Searchable Information collector
Integer ezinteger Yes. No.

Description

This datatype makes it possible to validate, store and retrieve a single integer value. It is capable
of handling both positive and negative numbers ranging from -2,147,483,648 to 2,147,483,647.
The following screenshot shows the class edit interface for this datatype.

(see figure 5.26)

Figure 5.26: Class edit interface for the ”Integer” datatype.

Default value

The ”Default value” parameter makes it possible to set a default integer. When the parameter is
used and a new object is created, the contents of the attribute using this datatype will be preset
to the given value. In the example above, the ”Correct result” attribute of new objects will be set
to 13.

Min integer value

The ”Min integer value” parameter makes it possible to set the lowest value that the input inter-
face will allow. The default value of this parameter is empty, which means that the system will

5.1.13 Datatypes / Integer 491

5

allow the lowest possible value, which is -2,147,483,648. In the example above, the parameter
is set to ”-64”. This means that the input interface will not allow the storage of numbers with
values less than -64.

Max integer value

The ”Max integer value” parameter makes it possible to set the highest value that the input inter-
face will allow. The default value of this parameter is empty, which means that the system will
allow the highest possible value, which is 2,147,483,647. In the example above, the parameter is
set to ”48”. This means that the input interface will not allow the storage of numbers with values
as high as 48.

Object attribute edit interface

The following screenshot shows the object attribute interface for this datatype.

(see figure 5.27)

Figure 5.27: Object attribute edit interface for the ”Integer” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute (page 981) object using this datatype returns a
string containing the actual integer.

5.1.14 Datatypes / ISBN 492

5

5.1.14 ISBN

Summary

Validates and stores an ISBN value.

Properties

Name Internal name Searchable Information collector
ISBN ezisbn Yes. No.

Description

The ”ISBN” datatype allows the validation, storage and retrieval of a single ISBN (International
Standard Book Number) code. From version 3.10 of eZ Publish, this datatype uses the new
ISBN-13 format by default.

Note that from the 1st of January, 2007, the book industry started using 13 digit ISBN codes
(ISBN-13) to identify all books in their supply chains.

According to the ISBN-13 standard, the 13-digit number consists of five parts. The parts are
separated by dashes. The following table describes each of the five parts using the ISBN-13 code
”978-0-14026-690-0” as an example.

Name Description Example
1 Prefix A three digit prefix 978

that can be either
978 or 979. Note
that the new 979
prefix will not be uti-
lized until all 978
prefixes have been
assigned.

2 Registration group A variable set of dig- 0
its that identify the
coun-
try/region in which
the ISBN code was
assigned. Zero (”0”)
means that the book
belongs to an En-
glish speaking area.

3 Registrant A variable set of dig- 14026
its that identify the
publisher to whom
the ISBN code was

http://www.isbn.org/standards/home/isbn/transition.asp

5.1.14 Datatypes / ISBN 493

5

originally allocated.
4 Publication A variable set of dig- 690

its that identify the
title of the book.

5 Check digit A one digit control 0
number that makes
it possible to vali-
date the ISBN code.
The check digit is
calculated using a
formula that makes
use of the preceding
parts (Prefix, Regis-
tration group, Reg-
istrant and Publica-
tion).

While the ”Prefix” and ”Check digit” elements have a fixed length (3 and 1 digits accordingly),
the length of the remaining elements may vary. However, the total length of an ISBN-13 is always
13 digits. The length of the ”Registration group”, ”Registrant” and ”Publication” elements can be
calculated according to the rules set by the International ISBN Agency. The calculation of these
elements is based on the distribution of ranges for the different regions.

In eZ Publish, the ISBN codes are stored as text. The digits are separated by dashes. The
different ranges are stored in the database, allowing the system to fix up incorrectly entered
ISBN-13 codes (codes with misplaced or missing dashes). When a new version of eZ Publish is
released, the latest information about the different ranges is downloaded from http://www.isbn-
international.org and stored in the ”db data.dba” file located in the ”kernel/classes/datatypes/
ezisbn/share/” directory. During the installation process, the setup wizard imports this informa-
tion to the database. If the information about ranges is missing from the database, the system
will display a warning at the class attribute edit interface for this datatype (see below).

Note that the calculation rules can be changed on a monthly basis and thus you should run the
”updateisbn13.php” script regularly in order to keep the range-information in the database up
to date. The following example shows how to get the latest ranges from the ISBN International
website:

1. Download a ”.js” file containing the list of ranges using the following link: http://www.isbn-
international.org/converter/ranges.js

2. Navigate into the eZ Publish directory and copy the downloaded file there.

3. Run the ”updateisbn13.php” script using the following shell command:

php bin/php/updateisbn13.php --file=ranges.js

The script will import information from the ”range.js” file to the database.

The following screenshot shows the class attribute edit interface for this datatype.

http://www.isbn-international.org/index.html
http://www.isbn-international.org
http://www.isbn-international.org
http://www.isbn-international.org/converter/ranges.js
http://www.isbn-international.org/converter/ranges.js

5.1.14 Datatypes / ISBN 494

5

(see figure 5.28)

Figure 5.28: Class attribute edit interface for the ”ISBN” datatype.

The ”ISBN-13 format” checkbox makes it possible to configure the datatype so that it validates
and stores ISBN codes according to the ISBN-13 standard. From version 3.10, this checkbox
is checked by default when a new attribute using the ISBN datatype is created. Note that the
object edit interface will appear differently (four input fields instead of one) when the checkbox
is unchecked (see below).

The following screenshot shows how the class attribute edit interface for the ISBN datatype looks
like if the information about ranges is missing from the database.

(see figure 5.29)

Figure 5.29: Class attribute edit interface for the ”ISBN” datatype if the range data for ISBN-13 was
not imported.

Click the ”Import ISBN range data” button to import ranges to the database.

5.1.14 Datatypes / ISBN 495

5

Object attribute edit interface

The following screenshot shows the default object attribute edit interface for this datatype.

(see figure 5.30)

Figure 5.30: Object attribute edit interface for the ”ISBN” datatype.

As the screenshot shows, an ISBN-13 code consists of five parts separated by dashes.

The system will automatically add dashes in case they were omitted during input (for example,
”9780140266900” will be converted to ”978-0-14026-690-0”). The system will also automati-
cally fix incorrectly placed dashes (for example, ”978-0-140266-90-0” will be converted to ”978-
0-14026-690-0”). If an ISBN-10 code is entered, the system will automatically convert it into
a valid ISBN-13 code unless the ”ISBN-13 format” checkbox is disabled at the class level. Note
that there is no support for automatic conversion of ISBN-13 codes to ISBN-10 codes since the
ISBN-10 format is considered to be obsolete.

In eZ Publish 3.10, a feature for checking the validity of ISBN codes has been introduced. By
default, the system will check all elements of an ISBN-13 code and display a warning if one or
more of the entered elements are invalid. For example, ”978-0-14026-690-6” is considered to
be an invalid code; according to the standard, the last digit should have been a zero (”0”). The
validity checking feature can be turned on (default) or off. It is controlled by the ”StrictVali-
dation (page 1464)” setting located in the [ISBNSettings] section of the ”settings/content.ini”
configuration file. Note that the ”Prefix” and ”Check digit” parts will be validated regardless if
the ”StrictValidation” setting is enabled or not.

The following screenshot shows the object attribute edit interface for this datatype when ISBN-13
support is disabled.

(see figure 5.31)

Figure 5.31: Object attribute edit interface for the ”ISBN” datatype when in ISBN-10 mode.

Raw output

The ”.content” of an ezcontentobjectattribute (page 981) object using this datatype returns a
hash containing eight elements. The hash-structure of the elements is given in the table below.

Key Type Description
prefix string The ”Prefix” part of the ISBN

5.1.14 Datatypes / ISBN 496

5

code (for example 978).
field1 string The ”Registration

group” part of the ISBN code
(for example 0).

field2 string The ”Regis-
trant” part of the ISBN code
(for example 14026).

field3 string The ”Publication group” part
of the ISBN code (for exam-
ple 690).

field4 string The ”Check digit” part of the
ISBN code (for example 0).

value string The entire ISBN code with
dashes (for example 978-0-
14026-690-0).

value without hyphens string The entire ISBN code with-
out dashes (for example
9780140266900).

value with spaces string The entire ISBN code with
spaces (for example 978 0
14026 690 0).

5.1.15 Datatypes / Keywords 497

5

5.1.15 Keywords

Summary

Stores keywords.

Properties

Name Internal name Searchable Information collector
Keywords keywords Yes. No.

Description

This datatype allows the storage of keywords for an object. The keywords must be specified as a
comma separated list of words and/or phrases. This datatype can be used to connect objects of
the same type based on their keywords. It is typically useful when it comes to creating interfaces
that allow the user to quickly browse other pages with related content (for example ”see also”
or ”related pages” list of hyperlinks). If two objects share at least one common keyword, the
objects will be connected behind the scenes. The system will create the necessary entries in the
”ezkeyword” and the ”ezkeyword attribute link” database tables. Please note that this datatype
does not generate object relations, it simply uses its own tables in the database to connect the
objects. The following screenshot shows the class attribute edit interface for this datatype.

(see figure 5.32)

Figure 5.32: Class attribute edit interface for the ”Keywords” datatype.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.33)

5.1.15 Datatypes / Keywords 498

5

Figure 5.33: Object attribute edit interface for the ”Keywords” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute (page 981) object using this datatype returns an
ezkeyword (page 1014) object.

5.1.16 Datatypes / Matrix 499

5

5.1.16 Matrix

Summary

Stores multiple rows and columns of text.

Properties

Name Internal name Searchable Information collector
Matrix ezmatrix Yes. No.

Description

This datatype allows the storage and retrieval of information structured in a table. The following
screenshot shows the class attribute edit interface for this datatype.

(see figure 5.34)

Figure 5.34: Class attribute edit interface for the ”Matrix” datatype.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.35)

5.1.16 Datatypes / Matrix 500

5

Figure 5.35: Object attribute edit interface for the ”Matrix” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute (page 981) object using this datatype returns an
ezmatrix (page 1019) object.

5.1.17 Datatypes / Media 501

5

5.1.17 Media

Summary

Stores a media file (Flash/QT/Real/etc.).

Properties

Name Internal name Searchable Information collector
Media ezmedia No. No.

Description

This datatype allows the storage and playback of a video file. It is capable of handling Ap-
ple QuickTime, Macromedia Flash, Microsoft Windows Media and Real Media files. The max-
imum allowed file size is determined by the ”Max file size” class attribute edit parameter and
the ”upload max filesize” directive in the main PHP configuration file (”php.ini”). The following
screenshot shows the class attribute edit interface for this datatype.

(see figure 5.36)

Figure 5.36: Class attribute edit interface for the ”Media” datatype.

Media player type

The ”Media player type” parameter controls the way the video file will be played back on the
client side. The following options are available:

• Flash

• QuickTime

• Real player

• Windows media player

5.1.17 Datatypes / Media 502

5

Max file size

The ”Max file size” parameter makes it possible to set the highest size (in megabytes) that the
system will allow. By default, this parameters is zero, which means that eZ Publish will not do
any size checking when files are uploaded. In the example above, the ”Max file size” parameter
is set to 32 MB, which means that the object edit interface will not allow the upload of files that
are larger than 32 megabytes. However, if the value of the ”upload max filesize” PHP setting is
lower than 32 megabytes, the underlying system will cancel the upload.

Object attribute edit interface

The object attribute edit interface for the ”Media” datatype depends on the selected ”Media
player type” (in class edit mode). The following screenshots show the different object attribute
edit interfaces for the supported media types.

(see figure 5.37)

Figure 5.37: Object attribute edit interface for the ”Media” datatype (Flash).

(see figure 5.38)

Figure 5.38: Object attribute edit interface for the ”Media” datatype (QuickTime).

(see figure 5.39)
(see figure 5.40)

5.1.17 Datatypes / Media 503

5

Figure 5.39: Object attribute edit interface for the ”Media” datatype (Real Media).

Figure 5.40: Object attribute edit interface for the ”Media” datatype (Windows media).

Storage

Files that have been uploaded through the ”Media” datatype are stored in the same way as files
that are uploaded using the ”File” (page 477) datatype. However, the system keeps track of the
media files using the ”ezmedia” table instead of the ”ezbinaryfile” table.

Raw output

The ”.content” of an ezcontentobjectattribute (page 981) object using this datatype returns an
ezmedia (page 1022) object.

5.1.18 Datatypes / Multi-option 504

5

5.1.18 Multi-option

Summary

DEPRECATED

Properties

Name Internal name Searchable Information collector
Multi-option ezmultioption Yes. No.

Description

This datatype should no longer be used. It was deprecated in eZ Publish 3.10 and is replaced by
the ”Multi-option2 (page 506)” datatype.

This datatype makes it possible to create multiple groups of options for each content object. Each
option can be assigned a short text and an additional price. This datatype works in the same way
as the ”Option” (page 522) datatype. The only difference is that instead of supporting only one
group of options, it allows the creation of multiple groups of options for each content object. The
following screenshot shows the class attribute edit interface for this datatype.

(see figure 5.41)

Figure 5.41: Class attribute edit interface for the ”Multi-option” datatype.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.42)

Raw output

The ”.content” of an ezcontentobjectattribute (page 981) object using this datatype returns an
ezmultioption (page 1024) object.

5.1.18 Datatypes / Multi-option 505

5
Figure 5.42: Object attribute edit interface for the ”Multi-option” datatype.

5.1.19 Datatypes / Multi-option2 506

5

5.1.19 Multi-option2

Summary

Allows option selections (supports enabling/disabling of options, images, nested option sets and
dependencies). [Webshop]

Properties

Name Internal name Searchable Information collector
Multi-option2 ezmultioption2 Yes. No.

Description

This datatype makes it possible to create multiple and distinctive groups of multi-options for each
content object. The multi-options can be nested (there is a limit, see below). For each option,
you can specify an additional price, an image, whether the option should be the default selection
and if it should be possible to select it (sometimes you wish to force the selection of a set of
options without providing a default selection for the user; in that case, the first option can be set
to something like ”Make a choice”). In addition, this datatype makes it is possible to set up rules
for allowing/disallowing certain combinations of options.

All configuration is done at the object level. This provides great flexibility. Every object using
the ”Multi-option2” datatype can be different since there is no class-level configuration to be
followed. In other words, if you need to represent different types of products, you can just create
a simple and generic ”Product” class that uses this datatype. The products (objects) themselves
can be of completely different types with different traits (options). For example, you can create
an object representing a computer with different options (memory, processor, etc.). At the same
time, you can create another object that represents a couch; again with different options (color,
finish, size, softness, etc.) and so on. All options, additional prices, rules / dependencies and so
on can be defined at the object level.

The capabilities and practical usage of this datatype will be explained using an example of cars
being sold through the webshop. Note that there will only be one car object. However, the
options, rules and so on will make it possible to sell different versions (custom configurations)
of the product. The price of the car will vary depending on the selected options. Note that some
options will be default while others must be selected (the user will not be allowed to continue
until a selection is made). In addition, some combination of options will not be allowed. Note
that this particular feature requires JavaScript support in the browser because the validation will
be done on-the-fly while the user is tweaking the options. However, there is a fallback mechanism
for non-JavaScript clients. It will take care of the validation when the product is added to the
basket. In this case, the product will not be added to the basket as long as an invalid set of
selections is provided.

The product (car) in this example will have three different traits: body, color and seats. We will
use three multi-options called ”Body”, ”Color” and ”Seats” to represent the possible combina-

5.1.19 Datatypes / Multi-option2 507

5

tions/variations.

The following table shows the available options for this example.

Body Color Seats

• Sedan • Black • Cloth
• Combi • Red • Leather
• Hatchback

Each option can be assigned a short text and an additional price. It is also possible to add
images for options. In the example above, images can be used to demonstrate the colors that the
vehicle is available in and/or show how the different bodies look like. An option can be disabled.
Disabling an option will make it non-selectable when the object is viewed. For each multi-option,
it is possible to specify a default selection. If a disabled option is chosen as the default selection,
users will be forced to select one of the enabled options instead. The following table shows how
the default and disabled options are set for the example described above.

Body Color Seats

• Sedan (default) • Black • Make your choice (de-
• Combi • Red (default) fault, disabled)
• Hatchback • Cloth

• Leather

As the table shows, the default choice for body style is ”Sedan”, the default color is red. The
”Seats” multi-option contains a new option called ”Make your choice”, which will be selected by
default. Since this option is disabled, the user will have to select either ”Cloth” or ”Leather” in
order to buy a car (”Make your choice” will be treated as an invalid selection).

This datatype supports hierarchical organization of the multi-options for each content object.
This means that it is possible to create new multi-options beneath existing ones, thus allowing
the site administrator to build complex multi-level structures. In the car example, two new multi-
options called ”Bumpers” and ”Mirrors” added beneath the ”Color” multi-option could represent
the available colors of bumpers and mirrors (the ”Color” multi-option represents available body
colors). The following table shows the resulting two-level structure.

Body Color Seats

• Sedan • Black • Make your
• Combi • Red choice
• Hatchback • Cloth

• Leather
Bumpers Mirrors

• Same as body • Silver
• Non-painted • Same as body

• Non-painted

It is possible to specify dependency rules for options located in nested groups. Let’s say that for

5.1.19 Datatypes / Multi-option2 508

5

example red cars can not have their bumpers painted in the same color as the body. This situation
can be described using the following table where each column corresponds to one of the options
of the outer group (”Color”), while the options of the nested group (”Bumpers”) are represented
by the rows.

Bumpers Color of the body
Black Red
Same as body Available Not available
Non-painted Available Available

In a similar way, the following table demonstrates the dependency rules between the ”Color” and
”Mirrors” groups of options.

Mirrors Color of the body
Black Red
Silver Not available Available
Same as body Available Available
Non-painted Available Not available

As the table shows, silver mirrors are not available for black cars and red cars can not have
non-painted mirrors. If the dependency rules are specified as shown in the tables above, the
system will make the specified options of the inner groups disabled depending on the options
that are selected in the outer group. This is achieved by making use of JavaScript in the resulting
HTML and thus the client browser must support JavaScript for it to work. If JavaScript is not
supported, the interface will allow invalid selections while the visitor/customer plays around
with the different options. However, the product will not be added to the basket as long as an
invalid set of selections is provided. As previously mentioned, the combination of options will be
validated when the user attempts to add the object to the shopping basket.

This datatype supports grouping of multi-options. A multi-option located at the top level of the
structure always belongs to a group. Multi-options located beneath it (second level, third level
and so on) will be considered to be in the same group. The following table shows the situation
with two groups called ”Exterior” and ”Interior”.

EXTERIOR INTERIOR
Body Color Seats

• Sedan • Black • Make your
• Combi • Red choice
• Hatchback • Cloth

• Leather
Bumpers Mirrors

• Same as body • Silver
• Non-painted • Same as body

• Non-painted

In the example above, while the ”Body” and ”Color” multi-options belong to the ”Exterior” group,
the ”Seats” multi-option belongs to another group called ”Interior”. In other words, the multi-

5.1.19 Datatypes / Multi-option2 509

5

options located at the top level are grouped. The ”Bumpers” and ”Mirrors” multi-options located
at the second level belong to the same group as ”Color”.

Note that both grouping and nesting of multi-options are defined at the time of creation. It is
not possible to move an existing multi-option to another group or place it beneath a different
multi-option. This is why the multi-level structure must be carefully thought out beforehand. It
is not recommended to create structures containing more than ten levels. The maximum number
of levels is limited to 15. Refer to the source code if you need to change this limitation.

Removal of a multi-option will also remove all its sub items (multi-options located beneath it).
By removing all multi-options that belong to a group, you can remove the the group itself. Note
that this is the only way of removing a group.

The following screenshot shows the class attribute edit interface for this datatype.

(see figure 5.43)

Figure 5.43: Class attribute edit interface for the ”Multi-option2” datatype.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.44)

As you can see from the screenshot above, options are represented as lines in the table (one table
for each multi-option). The ”Option” field contains the name of the option. The value specified
in the ”Additional price” column will be added to the product price in case the corresponding
option is selected. The ”Image” column can be used to add images to options. When viewing a
product, users will see a thumbnail/icon that links to the original image. In this case, the system
will display options as a list with radio buttons (if no images are added, the options are shown
using a drop-down list). Note that it is possible to add other types of related objects instead of
images, but the default templates are for images only.

While the ”Def” column with radio buttons can be used to specify the default selection, the ”Dis”
column contains checkboxes for disabling the options. The ”Add option” button can be used
to add a new empty line to the table. To remove one or more options, select them using the
checkboxes located in the first unnamed column and click the ”Remove selected” button.

To add a new multi-option beneath an existing one, click the ”Add multioption sub level” button.
Note that this button will not be shown for multi-options that already have sub items (multi-

5.1.19 Datatypes / Multi-option2 510

5

Figure 5.44: Object attribute edit interface for the ”Multi-option2” datatype.

options located beneath them). In this case, the system will show a list of the sub items with
checkboxes on the left side plus two new buttons called ”Remove multioption” and ”Add multi-
option” below. These buttons are present at each level of the structure, allowing you to add and
remove multi-options located at the different levels. Note that removing a multi-option will also
remove all its sub items.

Adding a new group of multi-options

The ”Add group” button makes it possible to add a new group of multi-options. The following
screenshot shows a part of the object attribute edit interface that corresponds to a newly created
empty group of multi-options.

5.1.19 Datatypes / Multi-option2 511

5

(see figure 5.45)

Figure 5.45: A part of the object attribute edit interface for the ”Multi-option2” datatype.

As the screenshot shows, a newly created group consists of one multi-option containing only one
option (all the fields are empty). At this stage, you should enter the name of the group and the
name of multi-option, plus create the necessary options. Nested multi-options can be created
using the ”Add multioption sub level” button.

The ”Add multioption” button allows you to add new multi-options to the top level within the
group. The system will show all multi-options that belong to the group with checkboxes on the
left hand side. The ”Remove multioption” button can be used to remove selected multi-options.
The group itself is automatically removed when all multi-options that belong to it are removed.

Adding dependency rules

The ”Rules” button located at the bottom makes it possible to specify dependency rules for nested
multi-options. When this button is clicked, the object attribute edit interface will change. Instead
of showing an interface for editing the options, the system will show an interface that can be
used to define the rules. Note that this behavior isn’t common when it comes to other datatypes.
The following screenshot shows what the object attribute edit interface will change into when
the ”Rules” button is clicked.

(see figure 5.46)

As the screenshot shows, every nested multi-option (”Bumpers” and ”Mirrors”) has a table with
checkboxes that make it possible to specify which options are available for each possible value
of the parent multi-option (”Color”). By default, all checkboxes are selected, meaning that all
options are available. The screenshot above shows a situation which follows the rules that were
discussed earlier. In other words, the following limitations are introduced:

• Red cars can not have bumpers painted in the same color as the body.

• Black cars can not have silver mirrors.

• Red cars can not have non-painted mirrors.

The ”Reset rules” button located at the bottom of the interface makes it possible to restore the
default configuration (allowing all possible combinations). Note that pressing this button will

5.1.19 Datatypes / Multi-option2 512

5

Figure 5.46: Dependency rules in the object attribute edit interface for the ”Multi-option2” datatype.

wipe out the custom rules. Clicking the ”Options” button will bring you back to the interface for
editing options. In other words, the ”Rules” and the ”Options” buttons make it possible to switch
between the two object edit interfaces of this datatype.

Raw output

The ”.content” of an ezcontentobjectattribute (page 981) object using this datatype returns an
ezmultioption2 (page 1026) object.

5.1.20 Datatypes / Multi-price 513

5

5.1.20 Multi-price

Summary

Stores prices in different currencies (inc/ex VAT). [Webshop]

Properties

Name Internal name Searchable Information collector
Multi-price ezmultiprice Yes. No.

Description

This datatype allows the storage of prices in multiple currencies and thus makes it possible to
connect content objects with the e-commerce subsystem. The e-commerce features of eZ Publish
are described in the ”Webshop (page 160)” section of the ”Concepts and basics” chapter and
in the ”Multi-currency (page 377)” section of the ”Features” chapter. The following screenshot
shows the class attribute edit interface for this datatype.

(see figure 5.47)

Figure 5.47: Class attribute edit interface for the ”Multi-price” datatype.

Parameters and usage

This is a special datatype which plugs more deeply into the system. Instances of any class con-
taining the multi-price datatype will automatically be treated as products. This datatype works
with VATs in the same way as the ”Price (page 525)” datatype. (Please note that price and multi-
price datatypes are incompatible. A content class can only contain one price attribute or one
multi-price attribute.)

5.1.20 Datatypes / Multi-price 514

5

It is possible to set one of the predefined currencies as ”default currency” on the class level so
that the system will create a custom price (page 378) in this currency and auto prices (page 378)
in all other currencies when a new object is created. Note that a custom price can be always
modified or removed for each individual product / object.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.48)

Figure 5.48: Object attribute edit interface for the ”Multi-price” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute (page 981) object using this datatype returns an
ezmultiprice (page 1031) object.

5.1.21 Datatypes / Object relation 515

5

5.1.21 Object relation

Summary

Stores a relation to a content object.

Properties

Name Internal name Searchable Information collector
Object relation ezobjectrelation Yes. No.

Description

This datatype allows the relation of a single object. The following screenshot shows the class
attribute edit interface for this datatype.

(see figure 5.49)

Figure 5.49: Class attribute edit interface for the ”Object relation” datatype.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.50)

5.1.21 Datatypes / Object relation 516

5

Figure 5.50: Object attribute edit interface for the ”Object relation” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute (page 981) object using this datatype returns either
FALSE (if there is no relation) or an ezcontentobject (page 971) object.

5.1.22 Datatypes / Object relations 517

5

5.1.22 Object relations

Summary

Stores relations to other content objects.

Properties

Name Internal name Searchable Information collector
Object relations ezobjectrelationlist Yes. No.

Description

This datatype makes it possible to store relations to multiple objects. It allows users to browse the
node tree and select objects that should be related; in addition, it makes it possible to create new
objects and automatically relate them to the one that is being edited. The following screenshot
shows the class attribute edit interface for this datatype.

(see figure 5.51)

Figure 5.51: Class attribute edit interface for the ”Object relations” datatype.

The ”Selection method” dropdown list makes it possible to set which browse interface that should

5.1.22 Datatypes / Object relations 518

5

be used when the node tree is being explored by users (from within the object edit interface).
There are seven selection methods in total. Three of them allow the selection of one object at a
time. The remaining four make it possible to select multiple objects at the same time.

The following selection methods only allow the addition of one related object at a time:

• Dropdown list

• List with radio buttons

• Template based, single

The following selection methods allow the addition of multiple related objects at the same time:

• Browse (default)

• List with check boxes

• Multiple selection list

• Template based, multi

By default, the ”Browse” selection method is used, which means that the system will bring up a
standard browse interface for adding related objects. It is possible to specify the start-location
for browsing. This is controlled by the ”Default location” section. If any other selection method
is used, the system will display a list of nodes as part of the object edit interface. In these cases,
the list is automatically limited to one subtree, according to the specified default location. The
template based selection methods (”Template based, multi” and ”Template based, single”) make
use of the ”objectrelationlist.tpl” template located in the ”templates/node/view/” directory of the
standard design. By creating a template override, you can customize the look and feel for these
selection methods.

Note that if a related object is moved to the trash, the relation will still exist. The related object
itself will not be shown when the object which it is related to is displayed. This behavior can
be changed by overriding the default templates. If the ”Browse” selection method is used, in the
object edit interface, the ”Published” column of the corresponding related object will read ”No”.

The ”Type” dropdown list is no longer in use. It is only available if the backwards compatibility
mode is enabled. This is controlled by the ”AdvancedObjectRelationList” setting located in the
”[BackwardCompatibilitySettings]” section of the ”settings/site.ini” configuration file or an over-
ride. Due to some problems with the old implementation, this setting is disabled by default. This
documentation page provides the description of the datatype assuming that the ”AdvancedOb-
jectRelationList” setting is disabled.

The ”Allowed classes” menu makes it possible to control which types of objects that users should
be allowed to select while browsing the node tree.

In addition to allowing relations to existing objects, this datatype makes it possible to create new
objects and automatically relate them to the one that is being edited. Note that this currently
works with all selection methods except the ”Browse” method. In order to use this feature, you

5.1.22 Datatypes / Object relations 519

5

need to specify which type of object that should be created and where the newly created objects
should be placed. This can be done by making use of the ”Object class” dropdown list in the
”New objects” section and the ”Default location” section. If the ”Object class” dropdown is set to
”none”, it will not be possible to create new objects from within the object edit interface.

As previously mentioned, the ”Default location” section can be used to limit the list of nodes to
the specified subtree (for any selection method except ”Browse”). For example, if you use the
”Media” folder as the default location and specify ”List with check boxes” as the selection method
in the class edit interface, the system will display nodes which are located under the ”Media”
node (only the ones which are directly below it) along with checkboxes for making selections
right in the object edit interface. If no default location is specified, the list of nodes will only
contain the top level nodes.

Object attribute edit interface

The look and feel of the object attribute edit interface for this datatype varies depending on which
selection method that is specified at the class level. Note that the ”Create new” button will not
be available unless a default location and a class for newly created objects are specified.

The following screenshot shows the object attribute edit interface for this datatype in a case
where the ”Browse” selection method is used.

(see figure 5.52)

Figure 5.52: Object attribute edit interface for the ”Object relations” datatype (default selection
method).

The following screenshot shows the object attribute edit interface in a case where the ”List with
check boxes” selection method is used while both the default location (in this case the ”Media”
folder) and the type of newly created objects are specified.

(see figure 5.53)

The following screenshot shows the object attribute edit interface in a case where the ”Multiple
selection list” selection method is used and the ”Media” folder is specified as the default location.

(see figure 5.54)

The following screenshot shows the object attribute edit interface in a case where the ”Dropdown
list” selection method is used and the ”Media” folder is specified as the default location.

(see figure 5.55)

5.1.22 Datatypes / Object relations 520

5

Figure 5.53: Object attribute edit interface for the ”Object relations” datatype (list with checkboxes).

Figure 5.54: Object attribute edit interface for the ”Object relations” datatype (multiple selection
list).

Figure 5.55: Object attribute edit interface for the ”Object relations” datatype (dropdown list).

The following screenshot shows the object attribute edit interface in a case where the ”List with
radio buttons” selection method is used and the ”Media” folder is specified as the default location.

(see figure 5.56)

Figure 5.56: Object attribute edit interface for the ”Object relations” datatype (list with radio but-
tons).

5.1.22 Datatypes / Object relations 521

5

Raw output

The ”.content” of an ezcontentobjectattribute (page 981) object using this datatype returns a
hash containing one element called ”relation list”. This element can be either an empty array
(if there are no relations) or an array of hashes. If there are related objects, each element will
contain information about a specific object. The hash-structure of the elements is given in the
table below.

Key Type Description
priority string The node’s priority (positive

or negative integer).
contentobject id string The ID number of the content

object.
contentobject version string The number of the published

version.
node id string The ID number of the node.
parent node id string The ID number of the parent

node.
contentclass id string The ID number of the content

class which the object is an
instance of.

contentobject remote id string The remote id of the related
content object.

identifier boolean Reserved for future use.
is modified boolean Not in use (needed for back-

wards compatibility).

5.1.23 Datatypes / Option 522

5

5.1.23 Option

Summary

Allows an option selection. [Webshop]

Properties

Name Internal name Searchable Information collector
Option ezoption No. Yes.

Description

This datatype makes it possible to create a single group of options for each content object. Each
option can be assigned a short text and an additional price. For example, it can be used to sell
T-shirts in different colors where the price is different for some (or all) colors. The following
screenshot shows the class attribute edit interface for this datatype.

(see figure 5.57)

Figure 5.57: Class attribute edit interface for the ”Option” datatype.

The ”Default name” parameter can be used to specify a name which will be used (as the name
for the option) every time a new object is created.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.58)

Raw output

The ”.content” of an ezcontentobjectattribute (page 981) object using this datatype returns an
ezoption (page 1035) object.

5.1.23 Datatypes / Option 523

5

Figure 5.58: Object attribute edit interface for the ”Option” datatype.

5.1.24 Datatypes / Package 524

5

5.1.24 Package

Summary

DEPRECATED

Properties

Name Internal name Searchable Information collector
Package ezpackage No. No.

Description

This datatype should no longer be used.

5.1.25 Datatypes / Price 525

5

5.1.25 Price

Summary

Stores a price (inc/ex VAT). [Webshop]

Properties

Name Internal name Searchable Information collector
Price ezprice No. No.

Description

This datatype allows the storage of a price and thus makes it possible to connect content objects
with the e-commerce subsystem. The e-commerce features of eZ Publish are described in the
”Webshop (page 160)” section of the ”Concepts and basics” chapter. The following screenshot
shows the class attribute edit interface for this datatype.

(see figure 5.59)

Figure 5.59: Class attribute edit interface for the ”Price” datatype.

Parameters and usage

This is a special datatype which plugs more deeply into the system. Instances of any class contain-
ing the price datatype will automatically be treated as products. This datatype does not support
prices in multiple currencies. It makes possible to set only one price value for each product (the
system will use your locale currency for this price). However, you can use the ”Multi-price (page
513)” datatype for multi-currency support. (Please note that price and multi-price datatypes are
incompatible. A content class can only contain one price attribute or one multi-price attribute.)

A class attribute represented by the price datatype makes use of one of the predefined VATs.
There are two ways in which the selected VAT can be used. This configuration depends on how

5.1.25 Datatypes / Price 526

5

the product prices are entered when the objects are created. The first alternative (Price inc. VAT)
is to be used if the prices that are entered already include the value added tax. The second
alternative (Price ex. VAT) should be used if the prices that are entered do not contain the value
added tax. When the first alternative is used and the product is viewed, the price that was entered
will be shown.

When the second alternative is used and the product is viewed, the price will be the price that
was entered plus the VAT. When the object is in the basket and the basket is viewed, it is possible
to see the price of the products with and without the VATs (regardless of which approach that
was used). The VAT parameters on the class level only control the default VAT settings that will
be used when a new object is created. In other words, the VAT settings may be modified for each
individual product / object.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.60)

Figure 5.60: Object attribute edit interface for the ”Price” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute (page 981) object using this datatype returns an
ezprice (page 1043) object.

5.1.26 Datatypes / Product category 527

5

5.1.26 Product category

Summary

Stores a product category. [Webshop]

Properties

Name Internal name Searchable Information collector
Product category ezproductcategory Yes. No.

Description

This datatype allows the storage of a product category and thus makes it possible to charge
different value added taxes depending on the product category. This functionality is described in
the ”VAT charging system (page 345)” section of the ”Features” chapter. The following screenshot
shows the class attribute edit interface for this datatype.

(see figure 5.61)

Figure 5.61: Class attribute edit interface for the ”Product category” datatype.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.62)

Figure 5.62: Object attribute edit interface for the ”Product category” datatype.

5.1.26 Datatypes / Product category 528

5

Raw output

The ”.content” of an ezcontentobjectattribute (page 981) object using this datatype returns an
ezproductcategory (page 1044) object.

5.1.27 Datatypes / Range option 529

5

5.1.27 Range option

Summary

Allows an integer selection. [Webshop]

Properties

Name Internal name Searchable Information collector
Range option ezrangeoption No. No.

Description

This datatype makes it possible to create a single group of enumerated options for each content
object. For example, it can be used in a scenario where the goal is to sell shoes of different sizes
and the size does not affect the price. For each content object, the administrator needs to set up
the available range (if any). The following screenshot shows the class attribute edit interface for
this datatype.

(see figure 5.63)

Figure 5.63: Class attribute edit interface for the ”Range option” datatype.

The ”Default name” parameter can be used to specify a name which will be used (as the name
for the option) every time a new object is created.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.64)

5.1.27 Datatypes / Range option 530

5

Figure 5.64: Object attribute edit interface for the ”Range option” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute (page 981) object using this datatype returns an
ezrangeoption (page 1046) object.

5.1.28 Datatypes / Selection 531

5

5.1.28 Selection

Summary

Stores single and multiple choices.

Properties

Name Internal name Searchable Information collector
Selection ezselection Yes. No.

Description

This datatype allows the storage of single or multiple option selections. The options must be
defied on the class level. This datatype can for example be used to define different categories
for news articles (as shown in the example below: ”Local”, ”National”, etc.). The following
screenshot shows the class attribute edit interface for this datatype.

(see figure 5.65)

Figure 5.65: Class attribute edit interface for the ”Selection” datatype.

Style

The ”Style” parameter controls the behavior of the object attribute edit interface. It can be either
”Single” or ”Multiple”. While ”Single” means that the object attribute edit interface will only

5.1.28 Datatypes / Selection 532

5

allow a single selection, the ”Multiple” setting allows the selection of multiple options.

Options

The ”Options” interface allows the specification of the options that should be available for se-
lection when an object is edited. The options are identified by an identification number. The
identification number of the first option is zero. Please note that the system does not give any
warning if an option that is used is removed. In other words, removing options may result in an
inconsistent database.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.66)

Figure 5.66: Object attribute interface for the ”Selection” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute (page 981) object using this datatype returns an
array of the identification numbers (as strings) of the selected options.

5.1.29 Datatypes / Subtree subscription 533

5

5.1.29 Subtree subscription

Summary

DEPRECATED

Properties

Name Internal name Searchable Information collector
Subtree subscription ezsubtreesubscription No. No.

Description

This datatype should no longer be used. It has been replaced by the ”My notification settings”
interface of the ”My account” part in the administration interface.

5.1.30 Datatypes / Text block 534

5

5.1.30 Text block

Summary

Stores multiple lines of unformatted text.

Properties

Name Internal name Searchable Information collector
Text block eztext Yes. Yes.

Description

This datatype allows the storage and retrieval of multiple lines of unformatted text. It is capable
of handling up to 16,777,216 characters. The following screenshot shows the class edit interface
for this datatype.

(see figure 5.67)

Figure 5.67: Class edit interface for the ”Text block” datatype.

Preferred number of rows

The ”Preferred number of rows” parameter makes it possible to control the height of the input
field that is displayed when an object is being edited. The following options are available: 2, 5,
10, 15, 20 and 25.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.68)

5.1.30 Datatypes / Text block 535

5

Figure 5.68: Object attribute edit interface for the ”Text block” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute (page 981) object using this datatype returns a
string containing the actual text.

5.1.31 Datatypes / Text line 536

5

5.1.31 Text line

Summary

Stores a single line of unformatted text.

Properties

Name Internal name Searchable Information collector
Text line ezstring Yes. Yes.

Description

This datatype makes it possible to store and retrieve a single line of unformatted text. It is
capable of handling up to 255 number of characters. The following screenshot shows the class
edit interface for this datatype.

(see figure 5.69)

Figure 5.69: Class edit interface for the ”Text line” datatype.

Default value

The ”Default value” parameter makes it possible to set a default text. When the parameter is
used and a new object is created, the contents of the attribute using this datatype will be preset
to the given text. In the example above, the ”Summary” attribute of new objects will be set to
”The summary has not yet been added.”.

Max string length

The ”Max string length” parameter makes it possible to control the maximum number of char-
acters that the input interface should allow. By default, this parameter is empty - which means

5.1.31 Datatypes / Text line 537

5

that the system will allow the maximum number of characters (255). In the example above, the
parameter is set to 64. This means that the input interface will not allow the storage of strings
that exceed 64 characters.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.70)

Figure 5.70: Object attribute interface for the ”Text line” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute (page 981) object using this datatype returns a
string containing the actual text.

5.1.32 Datatypes / Time 538

5

5.1.32 Time

Summary

Validates and stores a time value.

Properties

Name Internal name Searchable Information collector
Time eztime No. No.

Description

This datatype allows the validation, storage and retrieval of a time value consisting of hour and
minute. The following screenshot shows the class attribute edit interface for this datatype.

(see figure 5.71)

Figure 5.71: Class attribute edit interface for the ”Time” datatype.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.72)

Figure 5.72: Object attribute edit interface for the ”Time” datatype.

5.1.32 Datatypes / Time 539

5

Raw output

The ”.content” of an ezcontentobjectattribute (page 981) object using this datatype returns an
eztime (page 1054) object.

5.1.33 Datatypes / URL 540

5

5.1.33 URL

Summary

Validates and stores a URL / address.

Properties

Name Internal name Searchable Information collector
URL ezurl No. No.

Description

This datatype allows the validation and storage of a hyperlink. The following screenshot shows
the class attribute edit interface for this datatype.

(see figure 5.73)

Figure 5.73: Class attribute edit interface for the ”URL” datatype.

Object attribute edit interface

For each link, an address and an additional text may be stored. The following screenshot shows
the object attribute edit interface for this datatype.

(see figure 5.74)

Figure 5.74: Object attribute edit interface for the ”URL” datatype.

5.1.33 Datatypes / URL 541

5

URL storage and checking

URLs that are input either using the URL or the XML block datatype are stored and handled in a
special way. This solution makes it possible to view, edit and check if the URLs actually work on a
massive scale. Please refer to the ”URL storage” (page 134) section of the ”Concepts and basics”
(page 88) chapter for more information about this feature.

Raw output

The ”.content” of an ezcontentobjectattribute (page 981) object using this datatype returns a
string containing the actual address.

5.1.34 Datatypes / User account 542

5

5.1.34 User account

Summary

Validates and stores info about a user.

Properties

Name Internal name Searchable Information collector
User account ezuser Yes. No.

Description

This datatype allows storage and retrieval of a single user account. Whenever an object that
uses this datatype is published for the first time, the system will create a new user. The user’s ID
number will be the identification number of the object. The following screenshot shows the class
attribute edit interface for this datatype.

(see figure 5.75)

Figure 5.75: Class attribute edit interface for the ”User account” datatype.

Object attribute edit interface

For each user, the ”User account” datatype stores the following information:

• A username

• A password

• An E-mail address

The username can only be modified before the object is published for the first time. The following
screenshot shows the object attribute edit interface for this datatype.

(see figure 5.76)

5.1.34 Datatypes / User account 543

5

Figure 5.76: Object attribute edit interface for the ”User account” datatype.

User account settings

The properties of a user account can be tweaked by the administrator. This can be done by
following the ”Change user account settings” link from within the view of a user account object
in the administration interface. Currently it is only possible to change whether the user account
should be enabled or disabled (whether the user is allowed to log in to the system or not). The
following screenshot shows the user account settings panel.

(see figure 5.77)

Figure 5.77: Settings interface for the ”User account” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute (page 981) object using this datatype returns an
ezuser (page 1056) object.

5.1.35 Datatypes / XML block 544

5

5.1.35 XML block

Summary

Validates and stores multiple lines of formatted text.

Properties

Name Internal name Searchable Information collector
XML block ezxmltext Yes. No.

Description

Although there are no immediate visual clues, this datatype behaves quite differently compared
to the regular ”Text block” datatype. In particular, it is capable of validating and storing multiple
lines of formatted text instead of just plain text. The text in an XML block must be formatted
using a collection of predefined tags. The tags control the actual HTML markup of the content.
eZ Publish comes with a collection of tags that cover the needs of typical everyday tasks. In
addition, it is also possible to extend the system by creating custom tags for special needs.

Please note that the ”<” sign means the beginning of an XML tag. If you need to insert a less-than
sign in the normal text flow (for example, ”3<5”), you will have to use the corresponding XML
entity as shown below:

3<5

From version 3.9, it is possible to input numerical entities and have them translated to their
corresponding characters/symbols when the text is being rendered. For this to work, you need
to enable the ”AllowNumericEntities (page 1531)” configuration setting within the ”[InputSet-
tings]” block of an override for ”ezxml.ini”.

By default, the datatype supports the following XML tags:

• Headings (page 546)

• Bold text (page 547)

• Italic text (page 548)

• Unformatted text (page 549)

• Lists (page 550)

• Tables (page 551)

• Hyperlinks (page 553)

• Anchors (page 555)

http://en.wikipedia.org/wiki/List_of_XML_and_HTML_character_entity_references#Character_entities_in_XML
http://en.wikipedia.org/wiki/List_of_XML_and_HTML_character_entity_references#Character_entities_in_XML

5.1.35 Datatypes / XML block 545

5

• Object embedding (page 556)

• Custom tags (page 559)

• Paragraphs (page 560)

The following screenshot shows the class attribute edit interface for this datatype.

(see figure 5.78)

Figure 5.78: Class attribute edit interface for the ”XML block” datatype.

Object attribute edit interface

The following screenshot shows the object attribute edit interface for this datatype.

(see figure 5.79)

Figure 5.79: Object attribute edit interface for the ”XML block” datatype.

Raw output

The ”.content” of an ezcontentobjectattribute (page 981) object using this datatype returns an
ezxmltext (page 1065) object.

5.1.35 Datatypes / XML block 546

5

Headings

Headings/titles can be added by making use of either the ”h” or the ”header” tag. The ”level”
parameter controls the size/level of the heading, it must be a number between 1 and 6. The
optional ”class” parameter allows the use of a desired CSS class. The optional ”anchor name”
parameter makes it possible to add an anchor to the heading. Usage:

<h [level=""] [class=""] [anchor_name=""] [custom_parameter="" [...]
]>Example</
h>

or

<header [level=""] [class=""] [anchor_name=""] [custom_parameter="" [...]
]>Example</
header>

The custom parameters are optional. Their names must be specified using the ”CustomAt-
tributes[] (page 1466)” array in the [header] block within an override for the ”content.ini” con-
figuration file. When used, a custom parameter will be available as a template variable with the
same name as it was specified in the tag itself.

By default, the specified levels are increased by one. In other words, a level 1 header in the XML
block will become a level 2 header (H2) in the resulting HTML. The reason for this is because
the H1 tag is reserved for the name / main title of the content object. The headings inside the
XML block will thus become subheadings of the main title. This behavior can be changed by
creating an override template for the ”/content/datatype/view/ezxmltags/header.tpl” template
(it can not be controlled from within an configuration file).

5.1.35 Datatypes / XML block 547

5

Bold text

Bold text can be achieved by using one of the following tags: ”b”, ”bold” or ”strong”. The optional
”class” parameter allows the use of a desired CSS class. Usage:

<b [class=""] [custom_parameter="" [...]]>Bold text.

or

<bold [class=""] [custom_parameter="" [...]]>Bold text.</bold>

or

<strong [class=""] [custom_parameter="" [...]]>Bold text.

The custom parameters are optional. Their names must be specified using the ”CustomAt-
tributes[] (page 1466)” array in the [strong] block within an override for the ”content.ini” con-
figuration file. When used, a custom parameter will be available as a template variable with the
same name as it was specified in the tag itself.

5.1.35 Datatypes / XML block 548

5

Italic text

Italic/emphasized text can be achieved by using one of the following tags: ”i”, ”em” or ”empha-
size”. The optional ”class” parameter allows the use of a desired CSS class. Usage:

<i [class=""] [custom_parameter="" [...]]>Emphasized text.</i>

or

<em [class=""] [custom_parameter="" [...]]>Emphasized text.

or

<emphasize [class=""] [custom_parameter="" [...]]>Emphasized text.</emphasize>

The custom parameters are optional. Their names must be specified using the ”CustomAt-
tributes[] (page 1466)” array in the [emphasize] block within an override for the ”content.ini”
configuration file. When used, a custom parameter will be available as a template variable with
the same name as it was specified in the tag itself.

5.1.35 Datatypes / XML block 549

5

Unformatted text

The ”literal” tag can be used to output unformatted text, for example program source code, HTML
code, XML content, etc. Everything that is inside an a literal block will be rendered in the same
way (character by character) as it is within the literal tags (the text will be output using the
HTML PRE tags). The optional ”class” parameter allows the use of a desired CSS class. Usage:

<literal [class=""] [custom_parameter="" [...]]>Example<\literal>

Please note that in the example above, the slash is in the wrong way within the tag that terminates
the literal block. This was done in order to make the tag appear on the documentation page
(since we’re using literal tags to make code blocks). In other words, it should be terminated with
a frontslash instead of a backslash.

The custom parameters are optional. Their names must be specified using the ”CustomAt-
tributes[] (page 1466)” array in the [literal] block within an override for the ”content.ini” con-
figuration file. When used, a custom parameter will be available as a template variable with the
same name as it was specified in the tag itself.

5.1.35 Datatypes / XML block 550

5

Lists

It is possible to create lists in the same way as in HTML by making use of the ”ol”, ”ul” and ”li”
tags. The lists can be nested. The optional ”class” parameter allows the use of a desired CSS
class. The following examples demonstrate the usage of ordered and unordered lists.

Ordered lists

<ol [class=""] [custom_parameter="" [...]]>
<li [class=""] [custom_parameter="" [...]]>Element 1
<li [class=""] [custom_parameter="" [...]]>Element 2
<li [class=""] [custom_parameter="" [...]]>Element 3

Unordered lists

<ul [class=""] [custom_parameter="" [...]]>
<li [class=""] [custom_parameter="" [...]]>Element 1
<li [class=""] [custom_parameter="" [...]]>Element 2
<li [class=""] [custom_parameter="" [...]]>Element 3

The custom parameters are optional. In order to use them, their names must be specified using
the ”CustomAttributes[] (page 1466)” array in the [ol], [ul], [li] blocks within an override for the
”content.ini” configuration file. When used, a custom parameter will be available as a template
variable with the same name as it was specified in the tag itself.

5.1.35 Datatypes / XML block 551

5

Tables

Tables can be created in the same way as in HTML using ”table”, ”tr”, ”th” and ”td” tags. The
tables can be nested. Usage:

<table [class=""] [border=""] [width=""] [custom_parameter="" [...]]>
...
</table>

The ”class”, ”border” and ”width” parameters are optional. The ”class” parameter can be used
to assign a desired CSS class. The ”border” parameter can be used to set a border (number of
pixels). The ”width” parameter can be used to control the table width (either 0-100% or number
of pixels). Table content should be written according to normal HTML table syntax with ”tr”, ”th”
and ”td” tags, see below.

Table rows

Table rows can be created in the same way as in HTML:

<tr [class=""] [custom_parameter="" [...]]>Table row content goes here.</tr>

The ”class” parameter can be used to set the desired CSS class.

Table headers

Table headers can be created in the same way as in HTML:

<th [class=""] [width=""] [rowspan=""] [colspan=""] [custom_parameter="" [...]
]>Example.</
th>

All parameters are optional. The ”class” parameter can be used to set the desired CSS class. The
”width” parameter can be used to set the width (either as percentage or number of pixels). The
”rowspan” and ”colspan” parameters are the same as in HTML.

Table data/cell

Table data/cells can be created in the same way as in HTML:

<td [class=""] [width=""] [rowspan=""] [colspan=""] [custom_parameter="" [...]
]>Example.</
td>

5.1.35 Datatypes / XML block 552

5

All parameters are optional. The ”class” parameter can be used to set the desired CSS class. The
”width” parameter can be used to set the width (either as percentage or number of pixels). The
”rowspan” and ”colspan” parameters are the same as in HTML.

Note that all custom parameters mentioned in the usage examples are optional as well. In order
to use them, their names must be specified using the ”CustomAttributes[] (page 1466)” array
in the [table], [tr], [th], [td] blocks within an override for the ”content.ini” configuration file.
When used, a custom parameter will be available as a template variable with the same name as
it was specified in the tag itself.

5.1.35 Datatypes / XML block 553

5

Hyperlinks

Hyperlinks can be inserted by making use of the ”a” or the ”link” tags. Usage:

<a href="" [view=""] [target=""] [class=""] [title=""] [id=""]
[custom_parameter="" [...]]>Example.</
a>

or

<link href="" [view=""] [target=""] [class=""] [title=""] [id=""]
[custom_parameter="" [...]]>Example.</
link>

The ”href” parameter is required and it must be set to a valid address (either external or internal).

The ”view” parameter will only have effect when used together with internal links (see below).
This parameter makes it possible to specify the view mode that will be used when the node (or
object) which the internal link points to is shown. By default, the system always uses the ”full”
view mode to show the contents of internal links.

The ”target” parameter can be used to control how the target URL should be opened (inside the
existing/active browser window/tab or within a new window/tab). The ”class” parameter can be
used to specify a CSS class that should be used when the link is rendered. The ”title” parameter
can be used to specify a short title text (will be shown when the pointer is hovering over the
link). The ”id” parameter is for assigning unique identifiers.

The custom parameters are optional. Their names must be specified using the ”CustomAt-
tributes[] (page 1466)” array in the [link] block within an override for the ”content.ini” con-
figuration file. When used, a custom parameter will be available as a template variable with the
same name as it was specified in the tag itself.

Internal links

It is possible to create internal links (to other nodes and objects) by making use of the ”eznode:/
/” and the ”ezobject://” notation. The internal links will be created dynamically based on the
node/object ID numbers. In other words, if a node is moved, the link(s) will point to the new
location(s) and thus they will not be broken.

Link to a node

A link to a node can be created either by specifying the target node’s ID number or the node path.
The following examples demonstrate how an internal link to node number 128 can be created.

Example.

5.1.35 Datatypes / XML block 554

5

or

<link href="eznode://128">Example.</link>

The following examples demonstrate how an internal link to a node located at ”products/
computers/example” can be created.

Example.

or

<link href="eznode://products/computers/example">Example.</link>

Link to an object

The following examples demonstrate how an internal link to object number 1024 can be created.

Example.

or

<link href="ezobject://1024">Example.</link>

When object linking is used, the destination address will be generated using the main node
assignment of the target object.

Alternate view modes

The ”view” parameter can be used together with both ”eznode://” and ”ezobject://” links. It
makes it possible to display the specified node (if object, its main node will be used) using a
specific view mode instead of the default ”full” view mode. The following example shows how
to create an internal link that (when clicked/followed) brings up node number 1024 using the
”line” view mode.

Example (as line).

5.1.35 Datatypes / XML block 555

5

Anchors

The ”anchor” tag makes it possible to insert HTML anchors inside the XML block. The inserted
anchors will work like standard HTML anchors. Usage:

<anchor name="" [custom_parameter="" [...]] />

The ”name” parameter must be set to a unique identifier for the anchor. Anchors can be reached
by appending the hash character (#) followed directly by the name of the anchor that the browser
should jump to. Example: http://www.example.com/hobbies#music

The custom parameters are optional. Their names must be specified using the ”CustomAt-
tributes[] (page 1466)” array in the [anchor] block within an override for the ”content.ini” con-
figuration file. When used, a custom parameter will be available as a template variable with the
same name as it was specified in the tag itself.

5.1.35 Datatypes / XML block 556

5

Object embedding

The ”embed” tag makes it possible to insert an arbitrary content object directly in the XML block.
It can for example be used to embed images. Usage:

<embed href="" [class=""] [view=""] [align=""] [target=""] [size=""] [id=""]
[custom_parameter="" [...]] /
>

With this tag, embedded objects are inserted as ”block elements”. Such an element always begins
on a new line when it is displayed. It exists in its own virtual box and is always followed by a
carriage return (like if someone hit the ”Enter” key after inserting the object). This means that,
for example, inserting an image using the ”embed” tag will break the current paragraph. The
”embed” tag is represented by block-level tags in the resulting XHTML code.

The ”embed-inline” tag makes it possible to insert objects as inline elements. For example, this
tag allows you to insert an image inside a text line. Usage:

<embed-inline href="" [class=""] [view=""] [align=""] [target=""] [size=""]
[id=""] [custom_parameter="" [...]] /
>

This tag is represented by inline tags in the resulting XHTML code. The templates that are used
for rendering ”embed-inline” tags must not contain block-level XHTML tags.

The following table reveals the list of parameters supported by the ”embed” and ”embed-inline”
tags.

Parameter Description Required
href The ”href” parameter must Yes.

be a valid link to either a
node or an object using the
same notation as for hyper-
links (for example ”eznode:/
/134”, ”eznode://path/to/
some/node” and ”ezobject://
1024”). If the provided link
is a link to a node, eZ Publish
will use the object that is en-
capsulated by that node. In
other words, in both cases it
is the object that will be in-
serted (the node notation is
just a wrapper).

class The ”class” parameter makes No.
it possible to specify a cus-
tom stylesheet that should be
used. In the template, the

http://www.w3.org/TR/REC-html40/struct/global.html#h-7.5.3

5.1.35 Datatypes / XML block 557

5

specified stylesheet will be
available in the $classifica-
tion variable.

view The ”view” parameter makes No.
it possible to specify the
view mode that should be
used when the object is ren-
dered (for example ”full”,
”line” and so on). By de-
fault, the system uses the
”embed” view mode when
rendering objects that are
inserted using the ”embed”
tag, while the ”embed-inline”
view mode is used together
with ”embed-inline” tags.

align The ”align” parameter can No.
be used to specify the po-
sitioning of the embedded
object; possible values are
”left”, ”center” and ”right”.

target The ”target” parameter can No.
be used to set the opening
method (same browser tab/
window or new browser tab/
window) for the embedded
item (for example ” self”, ”
blank”, etc.).

size The ”size” parameter can be No.
used to set the image size
that should be used when
an image object is embed-
ded (for example ”small”,
”medium”, ”large”, etc.). The
available sizes are defined by
image.ini.

id The ”id” parameter makes it No.
possible to assign a unique ID
which will be the ID attribute
in the resulting HTML.

custom parameters The available custom param- No.
eters must be specified us-
ing the ”CustomAttributes[]
(page 1466)” array in ei-
ther the [embed] or [embed-
inline] block within an over-

5.1.35 Datatypes / XML block 558

5

ride for the ”content.ini” con-
figuration file. When used,
a custom parameter will be
available as a template vari-
able with the same name as
it was specified in the tag it-
self.

5.1.35 Datatypes / XML block 559

5

Custom tags

In addition to the default tags described above, the ”XML block” datatype makes it possible to use
custom tags. A custom tag can be used both as a block or an inline element. Custom tags must
be specified using the ”AvailableCustomTags[]” array in the [CustomTagSettings] block within
an override for the ”content.ini” configuration file. When the XML is rendered, the contents of a
custom tag will be replaced by a custom template. The name of the template must be specified
using the ”name” parameter. Example of usage:

<custom name="template_name" [custom_parameter="value" [...]]>
The quick brown fox jumps over the lazy dog.
</custom>

The custom tag in the example above will be replaced by a template called ”template name.tpl”.
This template must be located in the following directory within the current design: ”/templates/
content/datatype/view/ezxmltags/” (or one of the fallback designs). It is also possible to create
an override template. The contents of the tag will be available in the ”$content” variable within
the inserted template.

The custom parameters are optional. Their names must be specified using the ”CustomAt-
tributes[] (page 1466)” array within an override for the ”content.ini” configuration file. When
used, a custom parameter will be available as a template variable with the same name as it was
specified in the tag itself.

5.1.35 Datatypes / XML block 560

5

Paragraphs

Paragraphs can be added by making use of either the ’p’ or the ’paragraph’ tag.

The optional ’class’ parameter allows the use of a desired CSS class. If you do not specify the class
parameter, the paragraph will be displayed in a natural way (without tags) in the administration
interface. To create a non-classified paragraph, you can simply press ’Enter’ key twice.

Usage:

<p [class=""] [custom_parameter="" [...]]>Example</p>

or

<paragraph [class=""] [custom_parameter="" [...]]>Example</paragraph>

By default, the system will use ’p’ tag in the resulting XHTML code. This behavior can be changed
by creating an override template for the ’/content/datatype/view/ezxmltags/paragraph.tpl’.

The custom parameters are optional. Their names must be specified using the ”CustomAt-
tributes[] (page 1466)” array in the [paragraph] block within an override for the ”content.ini”
configuration file. When used, a custom parameter will be available as a template variable with
the same name as it was specified in the tag itself.

5.2 Content classes 561

5

5.2 Content classes

The classes are documented in the following sections:

• Content (page 562)

• Media (page 578)

• Users (page 585)

5.2.1 Content classes / Content 562

5

5.2.1 Content

Article (page 563)
Defines a structure for storing articles.

Comment (page 564)
Defines a structure for storing comments/feedback.

Company (page 565)
Defines a structure for storing information about comapnies.

Feedback form (page 566)
Defines a structure for feedback forms.

Folder (page 567)
Defines a structure for folders / information pages.

Forum (page 568)
Defines a structure for storing forums.

Forum reply (page 569)
Defines a structure for storing forum replies.

Forum topic (page 570)
Defines a structure for storing forum topics.

Gallery (page 571)
Defines a structure for storing image galleries.

Link (page 572)
Defines a structure for storing hyperlinks.

Person (page 573)
Defines a structure for storing information about people.

Poll (page 574)
Defines a structure for storing polls.

Product (page 575)
Defines a strucutre for storing information about products.

Review (page 576)
Defines a structure for storing product reviews.

Weblog (page 577)
Defines a structure for storing personal logs.

5.2.1 Content classes / Content 563

5

Article

Summary

Defines a structure for storing articles.

Properties

Name Identifier Container Object name pattern
Article article Yes. <short title|title>

Attributes

Name Identifier Datatype R S C T
Title title Text line Yes. Yes. No. Yes.
Short title short title Text line No. Yes. No. Yes.
Author author Authors No. Yes. No. Yes.
Intro intro XML block Yes. Yes. No. Yes.
Body body XML block Yes. Yes. No. Yes.
Enable comments enable comments Checkbox No. No. No. No.
Image image Object relation No. Yes. No. No.
Keywords keywords Keywords No. Yes. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.1 Content classes / Content 564

5

Comment

Summary

Defines a structure for storing comments/feedback.

Properties

Name Identifier Container Object name pattern
Comment comment Yes. <subject>

Attributes

Name Identifier Datatype R S C T
Subject subject Text line Yes. Yes. No. Yes.
Author author Text line Yes. Yes. No. Yes.
Message message Text block Yes. Yes. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.1 Content classes / Content 565

5

Company

Summary

Defines a structure for storing information about comapnies.

Properties

Name Identifier Container Object name pattern
Company company Yes. <company name>

Attributes

Name Identifier Datatype R S C T
Company name company name Text line Yes. Yes. No. Yes.
Company number company number Text line No. Yes. No. Yes.
Company address company address Matrix No. Yes. No. Yes.
Logo logo Image No. Yes. No. Yes.
Additional information additional information Text block No. Yes. No. Yes.
Contact information contact information Matrix No. Yes. No. Yes.
Contacts contacts Object relations No. Yes. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.1 Content classes / Content 566

5

Feedback form

Summary

Defines a structure for feedback forms.

Properties

Name Identifier Container Object name pattern
Feedback form feedback form Yes. <name>

Attributes

Name Identifier Datatype R S C T
Name name Text line Yes. Yes. No. Yes.
Description description XML block No. Yes. No. Yes.
Subject subject Text line Yes. Yes. Yes. Yes.
Message message Text block Yes. Yes. Yes. Yes.
Email email E-mail Yes. No. Yes. Yes.
Recipient recipient E-mail Yes. No. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.1 Content classes / Content 567

5

Folder

Summary

Defines a structure for folders / information pages.

Properties

Name Identifier Container Object name pattern
Folder folder Yes. <name|short name>

Attributes

Name Identifier Datatype R S C T
Name name Text line Yes. Yes. No. Yes.
Short name short name Text line Yes. Yes. No. Yes.
Short description short description XML block No. Yes. No. Yes.
Description description XML block No. Yes. No. Yes.
Show children show children Checkbox No. No. No. No.

R Required
S Searchable
C Collector
T Translatable

5.2.1 Content classes / Content 568

5

Forum

Summary

Defines a structure for storing forums.

Properties

Name Identifier Container Object name pattern
Forum forum Yes. <name>

Attributes

Name Identifier Datatype R S C T
Name name Text line Yes. Yes. No. Yes.
Description description XML block No. Yes. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.1 Content classes / Content 569

5

Forum reply

Summary

Defines a structure for storing forum replies.

Properties

Name Identifier Container Object name pattern
Forum reply forum reply Yes. <subject>

Attributes

Name Identifier Datatype R S C T
Subject subject Text line Yes. Yes. No. Yes.
Message message Text block Yes. Yes. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.1 Content classes / Content 570

5

Forum topic

Summary

Defines a structure for storing forum topics.

Properties

Name Identifier Container Object name pattern
Forum topic forum topic Yes. <subject>

Attributes

Name Identifier Datatype R S C T
Subject subject Text line Yes. Yes. No. Yes.
Message message Text block Yes. Yes. No. Yes.
Sticky sticky Checkbox No. No. No. Yes.
Notifiy me about updates nofity me Subtree subscription No. No. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.1 Content classes / Content 571

5

Gallery

Summary

Defines a structure for storing image galleries.

Properties

Name Identifier Container Object name pattern
Gallery gallery Yes. <name>

Attributes

Name Identifier Datatype R S C T
Name name Text line Yes. Yes. No. Yes.
Short description short description XML block No. Yes. No. Yes.
Description description XML block No. Yes. No. Yes.
Image image Object relation No. Yes. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.1 Content classes / Content 572

5

Link

Summary

Defines a structure for storing hyperlinks.

Properties

Name Identifier Container Object name pattern
Link link Yes. <name>

Attributes

Name Identifier Datatype R S C T
Name name Text line Yes. Yes. No. Yes.
Description description XML block No. Yes. No. Yes.
Location location URL No. No. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.1 Content classes / Content 573

5

Person

Summary

Defines a structure for storing information about people.

Properties

Name Identifier Container Object name pattern
Person person Yes. <first name> <last name>

Attributes

Name Identifier Datatype R S C T
First name first name Text line Yes. Yes. No. Yes.
Last name last name Text line Yes. Yes. No. Yes.
Job title job title Text line No. Yes. No. Yes.
Contact information contact information Matrix No. Yes. No. Yes.
Picture picture Object relation No. Yes. No. Yes.
Comment comment XML block No. Yes. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.1 Content classes / Content 574

5

Poll

Summary

Defines a structure for storing polls.

Properties

Name Identifier Container Object name pattern
Poll poll Yes. <name>

Attributes

Name Identifier Datatype R S C T
Name name Text line Yes. Yes. No. Yes.
Description description XML block No. Yes. No. Yes.
Question question Option Yes. No. Yes. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.1 Content classes / Content 575

5

Product

Summary

Defines a strucutre for storing information about products.

Properties

Name Identifier Container Object name pattern
Product product Yes. <name>

Attributes

Name Identifier Datatype R S C T
Name name Text line Yes. Yes. No. Yes.
Short description short description XML block No. Yes. No. Yes.
Description description XML block No. Yes. No. Yes.
Image image Object relation No. Yes. No. Yes.
Price price Price No. No. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.1 Content classes / Content 576

5

Review

Summary

Defines a structure for storing product reviews.

Properties

Name Identifier Container Object name pattern
Review review Yes. <summary>

Attributes

Name Identifier Datatype R S C T
Summary summary Text line Yes. Yes. No. Yes.
Author author Text line No. Yes. No. Yes.
Message message Text block No. Yes. No. Yes.
Rating rating Selection No. Yes. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.1 Content classes / Content 577

5

Weblog

Summary

Defines a structure for storing personal logs.

Properties

Name Identifier Container Object name pattern
Weblog weblog Yes. <title>

Attributes

Name Identifier Datatype R S C T
Title title Text line Yes. Yes. No. Yes.
Message message XML block Yes. Yes. No. Yes.
Enable comments enable commeents Checkbox No. Yes. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.2 Content classes / Media 578

5

5.2.2 Media

File (page 579)
Defines a structure for storing binary files.

Flash (page 580)
Defines a structure for storing Macromedia Flash files.

Image (page 581)
Defines a structure for storing digital images.

QuickTime (page 582)
Defines a structure for storing Apple QuickTime files.

Real video (page 583)
Defines a structure for storing Real video files.

Windows media (page 584)
Defines a structure for storing ”.avi” files.

5.2.2 Content classes / Media 579

5

File

Summary

Defines a structure for storing binary files.

Properties

Name Identifier Container Object name pattern
File file Yes. <name>

Attributes

Name Identifier Datatype R S C T
Name name Text line Yes. Yes. No. Yes.
Description description XML block No. Yes. No. Yes.
File file File Yes. No. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.2 Content classes / Media 580

5

Flash

Summary

Defines a structure for storing Macromedia Flash files.

Properties

Name Identifier Container Object name pattern
Flash flash Yes. <name>

Attributes

Name Identifier Datatype R S C T
Name name Text line Yes. Yes. No. Yes.
Description description XML block No. Yes. No. Yes.
File file Media Yes. No. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.2 Content classes / Media 581

5

Image

Summary

Defines a structure for storing digital images.

Properties

Name Identifier Container Object name pattern
Image image Yes. <name>

Attributes

Name Identifier Datatype R S C T
Name name Text line Yes. Yes. No. Yes.
Caption caption XML block No. Yes. No. Yes.
Image image Image No. No. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.2 Content classes / Media 582

5

QuickTime

Summary

Defines a structure for storing Apple QuickTime files.

Properties

Name Identifier Container Object name pattern
QuickTime quicktime Yes. <name>

Attributes

Name Identifier Datatype R S C T
Name name Text line Yes. Yes. No. Yes.
Description description XML block No. Yes. No. Yes.
File file Media Yes. No. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.2 Content classes / Media 583

5

Real video

Summary

Defines a structure for storing Real video files.

Properties

Name Identifier Container Object name pattern
Real video real video Yes. <name>

Attributes

Name Identifier Datatype R S C T
Name name Text line Yes. Yes. No. Yes.
Description description XML block No. Yes. No. Yes.
File file Media Yes. No. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.2 Content classes / Media 584

5

Windows media

Summary

Defines a structure for storing ”.avi” files.

Properties

Name Identifier Container Object name pattern
Windows media windows media Yes. <name>

Attributes

Name Identifier Datatype R S C T
Name name Text line Yes. Yes. No. Yes.
Description description XML block No. Yes. No. Yes.
File file Media Yes. No. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.3 Content classes / Users 585

5

5.2.3 Users

User (page 586)
Defines a structure for storing user accounts.

User group (page 587)
Defines a structure for storing user groups.

5.2.3 Content classes / Users 586

5

User

Summary

Defines a structure for storing user accounts.

Properties

Name Identifier Container Object name pattern
User user Yes. <first name> <last name>

Attributes

Name Identifier Datatype R S C T
First name first name Text line Yes. Yes. No. Yes.
Last name last name Text line Yes. Yes. No. Yes.
User account user account User account Yes. Yes. No. Yes.
Signature signature Text block No. Yes. No. Yes.
Image image Image No. No. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.2.3 Content classes / Users 587

5

User group

Summary

Defines a structure for storing user groups.

Properties

Name Identifier Container Object name pattern
User group user group Yes. <name>

Attributes

Name Identifier Datatype R S C T
Name name Text line Yes. Yes. No. Yes.
Description description Text line No. Yes. No. Yes.

R Required
S Searchable
C Collector
T Translatable

5.3 Modules 588

5

5.3 Modules

class (page 590)
Provides views for managing classes, class groups, etc.

collaboration (page 609)
Provides an interface to the collaboration engine.

content (page 624)
Provides views for managing content (nodes, objects, searching, etc.)

error (page 761)
Provides an interface for error handling / reporting.

ezinfo (page 762)
Provides views for displaying information about eZ publish.

form (page 767)
Provides a view that generates an E-mail containing the data that was posted (DEPRE-
CATED).

infocollector (page 770)
Provides views for managing collected information.

layout (page 775)
Provides a view that makes it possible to use alternative pagelayouts.

notification (page 780)
Provides an interface to the notification engine.

package (page 792)
Provides views for importing/exporting packages.

pdf (page 815)
Provides views for configuring PDF exports (DEPRECATED).

reference (page 819)
Provides a view for displaying documentation generated by Doxygen.

role (page 820)
Provides views for managing roles.

rss (page 828)
Provides views for managing RSS imports and exports.

search (page 834)
Provides a view that displays search statistics.

section (page 841)
Provides views for managing sections.

5.3 Modules 589

5

setup (page 856)
Provides the web based setup wizard.

shop (page 857)
Provides views for the webshop (basket, wish list, order list, etc.).

trigger (page 900)
Provides a view for managing workflow triggers.

url (page 903)
Provides views for managing the URLs stored in the database.

user (page 912)
Provides views for logging users in/out, password changing, etc.

workflow (page 937)
Provides views for managing workflows, workflow groups, workflow events, etc.

5.3.1 Modules / class 590

5

5.3.1 class

Summary

Provides views for managing classes, class groups, etc.

Description

This module provides several interfaces that can be used to view and manage the content classes
and class groups that are present in the system. The views that the module provides are used by
the ”Class” section of the ”Setup” part of the administration interface.

The module components are documented in the following sections:

• Fetch functions (page 591)

• Views (page 598)

5.3.1 Modules / class 591

5

Fetch functions

attribute list (page 592)
Fetches the attributes of a class.

latest list (page 593)
Fetches the most recently modified classes.

list (page 594)
Fetches a collection of classes.

override template list (page 596)
Fetches the override rules associated with a class.

5.3.1 Modules / class 592

5

attribute list

Summary

Fetches the attributes of a class.

Usage

fetch(’class’, ’attribute_list’, hash(’class_id’, class_id))

Parameters

Name Type Description Required
class id interger The ID number of the target class. Yes.

Returns

Array of ezcontentclassattribute (page 965) objects or FALSE.

Description

This function fetches the attributes of a class specified by the ”class id” parameter. The function
returns an array of ezcontentclassattribute (page 965) objects or FALSE.

Examples

Example 1

{def $attributes=fetch(’class’, ’attribute_list’, hash(’class_id’, 13))}

{foreach $attributes as $attribute}
{$attribute.name|wash}

{/foreach}

Outputs the names of the attributes that belong to class number 13.

5.3.1 Modules / class 593

5

latest list

Summary

Fetches the most recently modified classes.

Usage

fetch(’class’, ’latest_list’, hash([’offset’, offset] ,
[’limit’, limit]))

Parameters

Name Type Description Required
offset integer The offset to start at. No.
limit integer The number of classes that should be

fetched.
No.

Returns

Array of ezcontentclass (page 961) objects.

Description

This function fetches the most recently modified classes. The function returns an array of ezcon-
tentclass (page 961) objects. The ”offset” and ”limit” parameters are optional and can be used
to narrow down the result. If the ”offset” and ”limit” parameters are omitted, the function will
simply return all the available classes.

Examples

Example 1

{def $classes=fetch(’class’, ’latest_list’, hash(’limit’, 10))}

{foreach $classes as $class}
{$class.name|wash}

{/foreach}

Outputs the names of the ten most recently modified classes.

5.3.1 Modules / class 594

5

list

Summary

Fetches a collection of classes.

Usage

fetch(’class’, ’list’, hash([’class_filter’, class_filter],
[’sort_by’, sort_by]))

Parameters

Name Type Description Required
class filter array The classes that should be filtered. No.
sort by array The sorting mechanism that should be

used.
No.

Returns

Array of ezcontentclass (page 961) objects or FALSE.

Description

This function fetches a collection of classes. The optional ”class filter” parameter can be used to
fetch only a given set of classes. This parameter must be either an array of class ID numbers or
an array of class identifier strings (in other words: mixing is not possible). If the ”class filter”
array is omitted, all classes will be returned.

The optional ”sort by” parameter makes it possible to sort the result in different ways. This
parameter must be provided as an array. The first element of the array is the desired sorting
method. The second element of the array is the sorting direction, it can be either true() or false()
- ascending or descending. The following table shows the sorting methods that can be used.

Sorting method Description
id The classes are sorted by their ID numbers.
name The classes are sorted by their names.

You can only use one sorting method per query. In other words, you can sort the classes by name
or by ID, but not both in the same query.

5.3.1 Modules / class 595

5

Examples

Example 1

{def $classes=fetch(’class’, ’list’)}

{foreach $classes as $class}
{$class.name|wash}

{/foreach}

Outputs the names of all classes.

Example 2

{def $classes=fetch(’class’, ’list’, hash(’class_filter’, array(’folder’,
’article’)))}

{foreach $classes as $class}
{$class.name|wash}

{/foreach}

Outputs the names of the classes identified by the strings ”folder” and ”article”.

Example 3

{def $classes=fetch(’class’, ’list’,
hash(’class_filter’, array(1, 2, 3),

’sort_by’, array(’name’, true())))}

The function will fetch classes number 1, 2 and 3. The fetched classes will be sorted by name in
ascending order.

5.3.1 Modules / class 596

5

override template list

Summary

Fetches the override rules associated with a class.

Usage

fetch(’class’, ’override_template_list’, hash(’class_id’, class_id))

Parameters

Name Type Description Required
class id integer The ID number of the target class. Yes.

Returns

An array of hashes containing information about the override rules.

Description

This function fetches the override rules that are associated with the class specified by the ”class
id” parameter. The function returns an array of hashes. Each element of the returned array
contains the following structure:

Attribute Type Description
siteaccess string The siteaccess that the over-

ride belongs to.
block string The name of the override

block.
source string The path to the original tem-

plate.
target string The path to the override tem-

plate.

Examples

Example 1

{def $overrides=fetch(’class’, ’override_template_list’, hash(’class_id’, 13
))}

{foreach $overrides as $override}

5.3.1 Modules / class 597

5

{$override.target} - ({$override.source})

{/foreach}

Outputs information about the overrides for class number 13.

5.3.1 Modules / class 598

5

Views

classlist (page 599)
Provides an interface for generating a class overview for a class group.

copy (page 600)
Provides an interface for copying a role.

down (page 601)
Provides an interface for moving an attribute to a lower position.

edit (page 602)
Provides an interface for editing a class.

groupedit (page 603)
Provides an interface for editing a class group.

grouplist (page 604)
Provides an interface for generating an overview of the class groups.

removeclass (page 605)
Provides an interface to the class removal mechanism.

removegroup (page 606)
Provides an interface to the class group removal mechanism.

up (page 607)
Provides an interface for moving an attribute to a higher position.

view (page 608)
Provides an interface for viewing a class.

5.3.1 Modules / class 599

5

classlist

Summary

Provides an interface for generating a class overview for a class group.

5.3.1 Modules / class 600

5

copy

Summary

Provides an interface for copying a role.

5.3.1 Modules / class 601

5

down

Summary

Provides an interface for moving an attribute to a lower position.

5.3.1 Modules / class 602

5

edit

Summary

Provides an interface for editing a class.

5.3.1 Modules / class 603

5

groupedit

Summary

Provides an interface for editing a class group.

5.3.1 Modules / class 604

5

grouplist

Summary

Provides an interface for generating an overview of the class groups.

5.3.1 Modules / class 605

5

removeclass

Summary

Provides an interface to the class removal mechanism.

5.3.1 Modules / class 606

5

removegroup

Summary

Provides an interface to the class group removal mechanism.

5.3.1 Modules / class 607

5

up

Summary

Provides an interface for moving an attribute to a higher position.

5.3.1 Modules / class 608

5

view

Summary

Provides an interface for viewing a class.

5.3.2 Modules / collaboration 609

5

5.3.2 collaboration

Summary

Provides an interface to the collaboration engine.

Description

This module provides an interface to the collaboration engine inside the eZ publish kernel. The
administration interface makes use of the views that the module provides in order to allow the
management of collaboration items. Although possible, it isn’t common to use these views when
building a website (unless there is a need to replicate the collaboration management functionality
of the administration interface).

The module components are documented in the following sections:

• Fetch functions (page 610)

• Views (page 619)

5.3.2 Modules / collaboration 610

5

Fetch functions

group tree (page 611)
Not documented yet.

item count (page 612)
Not documented yet.

item list (page 613)
Not documented yet.

message list (page 614)
Not documented yet.

participant (page 615)
Not documented yet.

participant list (page 616)
Not documented yet.

participant map (page 617)
Not documented yet.

tree count (page 618)
Not documented yet.

5.3.2 Modules / collaboration 611

5

group tree

Summary

Not documented yet.

5.3.2 Modules / collaboration 612

5

item count

Summary

Not documented yet.

5.3.2 Modules / collaboration 613

5

item list

Summary

Not documented yet.

5.3.2 Modules / collaboration 614

5

message list

Summary

Not documented yet.

5.3.2 Modules / collaboration 615

5

participant

Summary

Not documented yet.

5.3.2 Modules / collaboration 616

5

participant list

Summary

Not documented yet.

5.3.2 Modules / collaboration 617

5

participant map

Summary

Not documented yet.

5.3.2 Modules / collaboration 618

5

tree count

Summary

Not documented yet.

5.3.2 Modules / collaboration 619

5

Views

action (page 620)
Not documented yet.

group (page 621)
Not documented yet.

item (page 622)
Not documented yet.

view (page 623)
Not documented yet.

5.3.2 Modules / collaboration 620

5

action

Summary

Not documented yet.

5.3.2 Modules / collaboration 621

5

group

Summary

Not documented yet.

5.3.2 Modules / collaboration 622

5

item

Summary

Not documented yet.

5.3.2 Modules / collaboration 623

5

view

Summary

Not documented yet.

5.3.3 Modules / content 624

5

5.3.3 content

Summary

Provides views for managing content (nodes, objects, searching, etc.)

Description

This module provides an interface to the content engine that is built into eZ Publish. It is the
most important and most commonly utilized module. It provides views that make it possible to
display and edit the contents of objects, manage nodes in the content tree, searching, translation,
etc. A typical eZ Publish site uses many of the views and the fetch functions that this module
provides.

The module components are documented in the following sections:

• Fetch functions (page 625)

• Views (page 721)

5.3.3 Modules / content 625

5

Fetch functions

access (page 628)
Checks if the current user has access to a given function.

bookmarks (page 630)
Fetches the bookmarks of the current user.

calendar (page 632)
Not documented yet.

can instantiate classes (page 633)
Checks if the current user is allowed to create nodes.

can instantiate class list (page 635)
Fetches the classes that the current user can create objects of.

class (page 637)
Fetches a content class.

class attribute (page 638)
Fetches an attribute of a content class.

class attribute list (page 639)
Fetches the attributes of a class.

collected info collection (page 641)
Fetches an information collection.

collected info count (page 642)
Fetches the number of collections that match a certain criteria.

collected info count list (page 644)
Fetches the number of times different values were collected.

contentobject attributes (page 645)
Fetches the attributes of an object’s version (and translation).

country list (page 647)
Fetches the list of countries specified in the ”country.ini” configuration file.

draft count (page 649)
Fetches the number of drafts that belong to the current user.

draft version list (page 650)
Fetches the drafts that belong to the current user.

keyword (page 651)
Fetches nodes that use keywords starting with a given sequence.

keyword count (page 655)
Fetches the number of nodes that use certain keywords. Only nodes that are main locations
for content objects are counted.

5.3.3 Modules / content 626

5

list (page 657)
Fetches the children of a node or a collection of nodes.

list count (page 674)
Fetches the number of children of a node.

locale (page 676)
Fetches the current or a specified locale.

locale list (page 677)
Fetches the available locales.

navigation part (page 678)
Fetches information about a navigation part.

navigation parts (page 679)
Fetches all available navigation parts.

node (page 680)
Fetches a node (identified by either an ID number or a path).

non translation list (page 682)
Fetches locales that a version of an object may be translated into.

object (page 683)
Fetches a content object (specified by an ID number).

object by attribute (page 684)
DEPRECATED

object count by user id (page 685)
Fetches the number of objects (of a class) created by a user.

pending count (page 686)
Fetches the number of pending objects for the current user.

pending list (page 687)
Fetches the pending objects for the current user.

recent (page 688)
Fetches nodes where the current user recently published something.

related objects (page 689)
Fetches related objects.

related objects count (page 692)
Fetches the number of related objects.

reverse related objects (page 693)
Fetches reverse related objects.

reverse related objects count (page 696)
Fetches the number of reverse related objects.

5.3.3 Modules / content 627

5

same classattribute node (page 697)
Fetches nodes containing attributes that match a certain value.

search (page 699)
Fetches nodes containing data that match a certain criteria.

section list (page 703)
Fetches the available sections.

tipafriend top list (page 704)
Fetches the most popular (most tipped) nodes.

translation list (page 707)
Fetches the locales that can be used to translate objects.

trash count (page 708)
Fetches the number of objects that are in the trash.

trash object list (page 709)
Fetches the objects that are in the trash.

tree (page 710)
Fetches the children of a node recursively.

tree count (page 713)
Fetches the number of children of a node recursively.

version (page 715)
Fetches a specific version of an object.

version count (page 716)
Fetches the number of versions of a content object.

version list (page 717)
Fetches all the versions of a content object.

view top list (page 719)
Fetches the most popular (most viewed) nodes.

5.3.3 Modules / content 628

5

access

Summary

Checks if the current user has access to a given function.

Usage

fetch(’content’, ’access’,
hash(’access’, access,

’contentobject’, contentobject,
[’contentclass_id’, contentclass_id,]
[’parent_contentclass_id’, parent_contentclass_id]))

Parameters

Name Type Description Required
access string The desired access method (see be-

low).
Yes.

contentobject object The target/location (either an object or
a node).

Yes.

contentclass id integer,
string

The ID number or identifier of the class
that should be included in the check.

No.

parent contentclass id integer,
string

The parent node’s class ID number or
identifier that should be included in
the check.

No.

Returns

TRUE if access is allowed, FALSE otherwise.

Description

This function makes it possible to find out if the current user has access (read, edit, create, re-
move, etc.) to a given content object or a content node. The optional parameters ”contentclass
id” and ”parent content class id” can be used to finetune the checking. These parameters are com-
patible with both class ID numbers and class identifier strings. The function supports checking
for the following access methods:

• bookmark

• create

• edit

5.3.3 Modules / content 629

5

• move

• read

• remove

• pdf (deprecated)

• restore

• translate

• versionread

When checking ”create” access and the ”contentclass id” is not specified, the function will return
TRUE as long as there is a create access for the given object. However, the user could still not be
allowed to create a specific class.

Examples

Example 1

{def $test=fetch(’content’, ’access’,
hash(’access’, ’read’,

’contentobject’, $node))}

{if $test}
The current user has read access to the given node.

{else}
The current user does not have read access to the given node.

{/if}

Checks if the content node represented by $node is can be read by the current user.

Example 2

{def $test=fetch(’content’, ’access’,
hash(’access’, ’create’,

’contentobject’, $node,
’contentclass_id’, ’folder’))}

{if $test}
The current user can create a folder below the given node.

{else}
The current user can not create a folder below the given node.

{/if}

Checks if the current user can create an instance of a given class below the specified node.

5.3.3 Modules / content 630

5

bookmarks

Summary

Fetches the bookmarks of the current user.

Usage

fetch(’content’, ’bookmarks’, hash([’offset’, offset,]
[’limit’, limit]))

Parameters

Name Type Description Required
offset integer Number of bookmarks to skip. No.
limit integer Maximum number of bookmarks to

fetch.
No.

Returns

An array of ezcontentbrowsebookmark (page 959) objects.

Description

Fetches the bookmarks of the current user and returns an array of ezcontentbrowsebookmark
(page 959) objects. The resulting array starts with the most recently added bookmark.

Examples

Example 1

{def $bookmarks=fetch(’content’, ’bookmarks’)}

{foreach $bookmarks as $bookmark}

{$bookmark.name|wash}

{/foreach}

Outputs all the bookmarks (as links) for the current user.

5.3.3 Modules / content 631

5

Example 2

{def $bookmarks=fetch(’content’, ’bookmarks’,
hash(’limit’, 5))}

{foreach $bookmarks as $bookmark}

{$bookmark.name|wash}

{/foreach}

Outputs the five most recently added bookmarks (as links) for the current user.

5.3.3 Modules / content 632

5

calendar

Summary

Not documented yet.

5.3.3 Modules / content 633

5

can instantiate classes

Summary

Checks if the current user is allowed to create nodes.

Usage

fetch(’content’, ’can_instantiate_classes’ [, hash(’parent_node’,
parent_node)])

Parameters

Name Type Description Required
parent node object Node to check if user can create new

object in
No.

Returns

TRUE if the current user is allowed to create nodes, FALSE otherwise.

Description

This fetch function checks if the current user is allowed to create nodes either below the current
position within the tree or below a given node (specified by the ”parent node” parameter). The
function will return TRUE if the current user is allowed to create nodes, otherwise FALSE will be
returned.

Examples

Example 1

{if fetch(’content’, ’can_instantiate_classes’)}
The current user can create nodes below the current node.

{else}
The current user can not create nodes below the current node.

{/if}

Example 2

{def $target=fetch(’content’, ’node’, hash(’node_id’, 64)}

5.3.3 Modules / content 634

5

{if fetch(’content’, ’can_instantiate_classes’, hash(’parent_node’, $target
)}

The current user can create nodes below node number 64.
{else}

The current user can not create nodes below node number 64.
{/if}

5.3.3 Modules / content 635

5

can instantiate class list

Summary

Fetches the classes that the current user can create objects of.

Usage

fetch(’content’, ’can_instantiate_class_list’, hash([’group_id’,
group_id],

[’parent_node’,
parent_node])

Parameters

Name Type Description Required
group id integer The ID number of a class group to fetch

classes from.
No.

parent node object Alternative parent node. No.

Returns

Array of ezcontentclass (page 961) objects or FALSE.

Description

This function fetches a list of classes that the current user is allowed to create objects from. If no
parameters are given, the class list will be generated based on the current node and classes from
all class groups. The ”group id” parameter can be used to instruct the system to only fetch classes
from a certain class group. The ”parent node” parameter can be used to instruct the system to
check which classes the current user is allowed to instantiate below a certain node instead of
the current node. The function returns an array of ezcontentclass (page 961) objects or FALSE /
empty array if the current user can not create instances of any class.

Examples

Example 1

{def $classes=fetch(’content’, ’can_instantiate_class_list’)}

{foreach $classes as $class}
{$class.name}

{/foreach}

5.3.3 Modules / content 636

5

Outputs the name of all classes that the current user is allowed to create below the current node.

Example 2

{def $classes=fetch(’content’, ’can_instantiate_class_list’, hash(
’group_id’, 3)}

{foreach $classes as $class}
{$class.name}

{/foreach}

Outputs the name of classes belonging to class group number 3 that the current user is allowed
to create below the current node.

5.3.3 Modules / content 637

5

class

Summary

Fetches a content class.

Usage

fetch(’content’, ’class’, hash(’class_id’, class_id))

Parameters

Name Type Description Required
class id integer The identifier or ID number of the of

class that should be fetched.
Yes.

Returns

The specified class as an ezcontentclass (page 961) object or FALSE.

Description

This function fetches the class specified by the ”class id” parameter and returns it as an ezcon-
tentclass (page 961) object. The function will return FALSE if the specified class is unavailable.

Examples

Example 1

{def $class=fetch(’content’, ’class’, hash(’class_id’, 13))}
{$class.name|wash}

Outputs name of class number 13.

5.3.3 Modules / content 638

5

class attribute

Summary

Fetches an attribute of a content class.

Usage

fetch(’content’, ’class_attribute’, hash(’attribute_id’, attribute_id,
[’version_id’, version_id]))

Parameters

Name Type Description Required
attribute id integer The ID number of the class attribute

that should be fetched.
Yes.

version id integer The status/version of the class. No.

Returns

The specified class attribute as an ezcontentclassattribute object or FALSE.

Description

This function fetches the class attribute specified by the ”attribute id” parameter and returns it as
an ezcontentclassattribute (page 965) object. The function will return FALSE if the specified class
attribute is unavailable. The optional ”version id” parameter can be used to fetch the specified
class attribute from a certain version of a class. The following versions / status codes can be
used:

• 0: defined

• 1: temporary

• 2: modified

Examples

Example 1

{def$class_attribute=fetch(’content’,’class_attribute’,hash(’attribute_id’,231))}
{$class_attribute.name|wash}

Outputs the name of class attribute number 231.

5.3.3 Modules / content 639

5

class attribute list

Summary

Fetches the attributes of a class.

Usage

fetch(’content’, ’class_attribute_list’,
hash(’class_id’, class_id,

[’version_id’, version_id]))

Parameters

Name Type Description Required
class id integer The ID number of the target class. Yes.
version id integer The version/status of the class. No.

Returns

Array of ezcontentclassattribute (page 965) objects or FALSE.

Description

This function fetches the attributes of a class. The ID number of the target class must be specified
using the ”class id” parameter. The function returns an array of ezcontentclassattribute (page
965) objects or FALSE if the specified class attribute is unavailable. The optional ”version id”
parameter can be used to fetch class attributes from a certain version of a class. The following
versions / status codes can be used:

• 0: defined

• 1: temporary

• 2: modified

Examples

Example 1

{def $attributes=fetch(’content’, ’class_attribute_list’, hash(’class_id’,
13))}

{foreach $attributes as $attribute}

5.3.3 Modules / content 640

5

{$attribute.name|wash}

{/foreach}

Outputs the names of the attributes that belong to class number 13.

5.3.3 Modules / content 641

5

collected info collection

Summary

Fetches an information collection.

Usage

fetch(’content’, ’collected_info_collection’,
hash(’collection_id’, collection_id,

’contentobject_id’, contentobject_id))

Parameters

Name Type Description Required
collection id integer The ID number of the collection that

should be fetched.
Yes.

contentobject id integer The ID number of the object that
should be fetched.

Yes.

Returns

An ezinformationcollection (page 1010) object or FALSE.

Description

This function fetches an information collection. Both the ID number of the collection and the
contentobject must be provided. The function returns an ezinformationcollection (page 1010)
object or FALSE.

Examples

Example 1

{def $collection=fetch(’content’, ’collected_info_collection’,
hash(’collection_id’, 123,

’contentobject_id’, 456))}

{foreach $collection.attributes as $attribute}
{$attribute.contentclass_attribute_name}

{/foreach}

Outputs the attributes for the 123rd information collection for object number 456.

5.3.3 Modules / content 642

5

collected info count

Summary

Fetches the number of collections that match a certain criteria.

Usage

fetch(’content’, ’collected_info_count’,
hash([’object_attribute_id’, object_attribute_id,]

[’object_id’, object_id,]
[’value’, value]))

Parameters

Name Type Description Required
object attribute id integer The ID number of the target object at-

tribute.
No.

object id integer The ID number of the target content
object.

No.

value integer Value filtering on the attribute level. No.

Returns

The number of collections (as an integer).

Description

This function counts the number of collections based on the provided parameters. An object’s ID
number (using the ”object id” parameter) or an object attribute’s ID number (using the ”object
attribute id” parameter) must be specified. In addition, it is possible to filter out collections that
match a certain value. This is typically useful when it comes to counting the number of times a
specific value was submitted to a poll. If the ”value” parameter is used then the ”object attribute
id” parameter must also be provided. The function returns a positive integer if the system is able
to find collections matching the given parameters; if not, zero will be returned.

Examples

Example 1

{def $collections=fetch(’content’, ’collected_info_count’,
hash(’object_attribute_id’, 42,

’object_id’, 20,

5.3.3 Modules / content 643

5

’value’, 1))}
{$collections}

Outputs the number of times attribute #42 for object number 20 has collected ”1”.

5.3.3 Modules / content 644

5

collected info count list

Summary

Fetches the number of times different values were collected.

Usage

fetch(’content’, ’collected_info_count_list’, hash(’object_attribute_id’,
object_attribute_id))

Parameters

Name Type Description Required
object attribute id integer The ID number of the target object at-

tribute.
Yes.

Returns

An array of integers representing a count for every value.

Description

This function calculates and returns the sum of collected values (integers). It was developed for
the poll feature.

Examples

Example 1

{def $counts=fetch(’content’, ’collected_info_count_list’,
hash(’object_attribute_id’, 1024))}

{foreach $counts as $count}
{$count}

{/foreach}

Outputs the number of times different values were collected.

5.3.3 Modules / content 645

5

contentobject attributes

Summary

Fetches the attributes of an object’s version (and translation).

Usage

fetch(’content’, ’contentobject_attributes’,
hash(’version’, version,

[’language_code’, language_code]))

Parameters

Name Type Description Required
version object The target version (must be an ezcon-

tentobjectversion object).
Yes.

language code string The language code. No.

Returns

An array of ezcontentobjectattribute (page 981) objects or FALSE.

Description

This function fetches the attributes that belong to a certain version. The version must be pro-
vided (as an ezcontentobjectversion (page 995)) using the ”version” parameter. The ”language
code” parameter is optional and can be used to get the attributes that belong to a specific trans-
lation. The function returns an array of ezcontentobjectattribute (page 981) objects or FALSE if
something went wrong.

Examples

Example 1

{def $object=fetch(’content’, ’object’, hash(’object_id’, 14))
$attributes=fetch(’content, ’contentobject_attributes’,

hash(’version’, $object.current))}

{foreach $attributes as $attribute}
{$attribute.data_type_string}

{/foreach}

5.3.3 Modules / content 646

5

Outputs the names of the datatypes that are used by the different attributes within the current
version of object number 14.

5.3.3 Modules / content 647

5

country list

Summary

Fetches the list of countries specified in the ”country.ini” configuration file.

Usage

fetch(’content’, ’country_list’,
hash([’filter’, filter,]

[’value’, value]))

Parameters

Name Type Description Required
filter string The type of filtering. No.
value string The value of the filter. No.

Returns

An array of hashes (see below) or FALSE.

Description

This function returns a structure that contains information about countries which are mentioned
in the ”country.ini” configuration file. The optional ”filter” parameter sets the type of filtering
that will be used when the countries are fetched. It can be set to ”Name”, ”Alpha2”, ”Alpha3” or
”IDC”. The ”value” parameter can be used to set the filter’s value. For example, it could be set to
”Norway”.

Note that the names of the countries are fetched according to the current locale settings.

The function returns an array of hashes. The hashes consist of the following elements:

Key Type Description
Name string The name of the country (for

example Norway).
Alpha2 string The ISO 3166-1 alpha-2 code

of the country (for example
NO).

Alpha3 string The ISO 3166-1 alpha-3 code
of the country (for example
NOR).

IDC string The international dial-
ing code of the country (for
example 47).

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-3
http://en.wikipedia.org/wiki/List_of_country_calling_codes
http://en.wikipedia.org/wiki/List_of_country_calling_codes

5.3.3 Modules / content 648

5

Examples

Example 1

{def $all_countries=fetch(’content’, ’country_list’)}

{foreach $all_countries as $country}
{$country.Name}

{/foreach}

Outputs the names of all countries specified in the ”country.ini” configuration file or its override.

Example 2

{def $country=fetch(’content’, ’country_list’, hash(’filter’, ’Name’,
’value’, ’Norway’))}

{$country.Name} : {$country.IDC}

Outputs the country name and international dialing code for Norway.

5.3.3 Modules / content 649

5

draft count

Summary

Fetches the number of drafts that belong to the current user.

Usage

fetch(’content’, ’draft_count’)

Returns

The number of drafts (as an integer) that belong to the current user.

Description

This function fetches the number of drafts that belong to the current user and returns it as an
integer.

Examples

Example 1

{def $drafts=fetch(’content’, ’draft_count’)}
The current user has {$drafts} drafts.

Outputs the number of drafts that belong to the current user.

5.3.3 Modules / content 650

5

draft version list

Summary

Fetches the drafts that belong to the current user.

Usage

fetch(’content’, ’draft_version_list’,
hash([’offset’, offset,]

[’limit’, limit]))

Parameters

Name Type Description Required
offset integer The offset to start at. No.
limit integer The number of drafts/versions that

should be fetched.
No.

Returns

An array of ezcontentobjectversion (page 995) objects or FALSE.

Description

This function fetches the drafts that belong to the current user. The optional parameters ”offset”
and ”limit” can be used to limit the result. The function returns an array of ezcontentobjectver-
sion (page 995) objects. If no drafts can be found or if something goes wrong, the function
returns FALSE.

Examples

Example 1

{def $drafts=fetch(’content’, ’draft_version_list’)}

{foreach $drafts as $draft}
{$draft.id}: {$draft.name}

{/foreach}

Outputs the ID numbers and the names of all drafts that belong to the current user.

5.3.3 Modules / content 651

5

keyword

Summary

Fetches nodes that use keywords starting with a given sequence.

Usage

fetch(’content’, ’keyword’,
hash(’alphabet’, alphabet,

[’strict_matching’, strict_matching,]
[’classid’, classid,]
[’offset’, offset,]
[’limit’, limit,]
[’owner’, owner,]
[’parent_node_id’, parent_node_id,]
[’include_duplicates’, include_duplicates,]
[’sort_by’, sort_by]))

Parameters

Name Type Description Required
alphabet string The sequence that should be matched. Yes.
strict matching boolean Enables or disables exact matching. If

FALSE (or omitted), the function will
look for keywords that start with the
specified sequence.

No.

classid array Filtering: the ID number of the class or
an array of the ID numbers.

No.

offset integer The offset to start at. No.
limit integer The number of elements that should be

returned.
No.

owner integer Filtering by owner: the ID number of
the object representing the user.

No.

parent node id integer The ID number of the parent node. No.
include duplicates boolean Makes it possible to avoid duplicates

(different keywords but same nodes)
in the result. If TRUE (or omitted), du-
plicates are allowed.

No.

sort by array The sorting mechanism that should be
used.

No.

Returns

An array of hashes (see below) or FALSE.

5.3.3 Modules / content 652

5

Description

This function fetches nodes that encapsulate objects which make use of certain keywords. It
returns an array of hashes where each hash represents a ”keyword-node” pair.

The keyword must be provided using the ”alphabet” parameter. This parameter can be a letter, a
part of a word or an entire word - the function will look for keywords that start with the specified
sequence. This means that if you specify ”car” in the ”alphabet” parameter, the system will look
for keywords like ”car”, ”card”, ”carnival”, ”car painting” and so on (but not ”scarf” for example).
Every time such a keyword is found, the main node of the object that uses this keyword will be
included in the result along with the matching keyword. Note that if an object contains multiple
keywords that start from the specified sequence, the main node of this object will be fetched
several times. The following table shows an example of the structure that may be returned if
there are three articles that contain matching keywords:

Keyword Node
car enamel The main node of the ”Auto” article (as a ez-

contentobjecttreenode (page 990) object).
car painting The main node of the ”Auto” article (as a ez-

contentobjecttreenode (page 990) object).
car sickness The main node of the ”Driving” article (as a

ezcontentobjecttreenode (page 990) object).
cars The main node of the ”Traffic” article (as a ez-

contentobjecttreenode (page 990) object).

As you can see from the table, the article called ”Auto” uses two keywords that start from ”car”:
”car enamel” and ”car painting”. The remaining two articles (”Driving” and ”Traffic”) make use
of one keyword each: ”car sickness” and ”cars”.

The ”strict matching” parameter is optional and can be set to either true() or false(). When set to
true(), the fetch function will look for the exactly same keyword as the specified sequence. For
example, if the ”alphabet” parameter is set to ”car”, only items that use ”car” as a keyword will
be fetched; keywords like ”card”, ”carnival”, ”car painting” and so on will be ignored.

By default, the function will fetch nodes that encapsulate objects of all types created by any user.
However, it is possible to fetch objects of a certain type or that were created by a specific user, by
using the optional ”classid” and ”owner” parameters. The ”offset” and ”limit” parameters can be
used to limit the result.

The optional ”parent node id” parameter makes it possible to fetch nodes that are directly under
the specified parent node. If an object makes use of a keyword that starts with the specified
sequence, the function will check if the main node of this object is a child on the specified parent
node. If yes, it will be included in the result.

The ”include duplicates” parameter makes it possible to avoid duplicates (different keywords but
same nodes) in the result. This parameter is optional and can be set to either true() or false().
When set to false(), the result will only contain unique nodes. For example, if an article contains
both ”car enamel” and ”car painting” keywords, and you specify ”car” in the ”alphabet” parameter,
the main node of this article will be included in the result once. The corresponding keyword-node
pair will contain the original sequence (”car”) instead of the actual keyword that was matched

5.3.3 Modules / content 653

5

(”car enamel” or ”car painting”). The following table shows the structure that would be returned
if the ”include duplicates” parameter is set to false() in the three-articles example above:

Keyword Node
car The main node of the ”Auto” article (as a ez-

contentobjecttreenode (page 990) object).
car sickness The main node of the ”Driving” article (as a

ezcontentobjecttreenode (page 990) object).
cars The main node of the ”Traffic” article (as a ez-

contentobjecttreenode (page 990) object).

The ”sort by” parameter makes it possible to sort the result in different ways. This parameter
must be provided as an array. The first element of the array must be the desired sorting method.
The second element of the array must be the sorting direction, it can be either true() or false() -
ascending or descending. Note that this parameter works in the very same way as the ”sort by”
parameter of the list (page 657) fetch function. However, it currently only supports the following
sorting methods:

• class identifier

• class name

• modified

• name

• published

• section

Note that using other sort methods will lead to an error.

The function returns an array of hashes. Each hash consists of the following elements:

Key Type Description
keyword string The keyword that was

matched.
link object object The node (as a ezcontentob-

jecttreenode (page 990) ob-
ject) that encapsulates an ob-
ject which uses the matched
keyword.

If no match is found, the function will return FALSE.

5.3.3 Modules / content 654

5

Examples

Example 1

{def $list=fetch(’content’, ’keyword’,
hash(alphabet, ’computer’,

classid, 3))}

{foreach $list as $element}
{$element.link_object.name|wash} ({$element.keyword|wash})

{/foreach}

Outputs the names of nodes that encapsulate objects which make use of keywords starting with
the string ”computer”. In addition, the matched keywords are also printed.

Example 2

{def $list=fetch(’content’, ’keyword’,
hash(alphabet, ’computer’,

classid, array(1, 3)))}

Only nodes that encapsulate objects of the specified two classes will be fetched.

Example 3

{def $list=fetch(’content’, ’keyword’,
hash(alphabet, ’computer’,

classid, array(1, 3),
owner, 14,
sort_by, array(’modified’, false())))}

Only the nodes/objects that are created by the user that has ID number 14 will be included
in the result. The nodes will be sorted by the modification time of the objects; the node that
encapsulates the most recently modified object will be the first element in the collection.

5.3.3 Modules / content 655

5

keyword count

Summary

Fetches the number of nodes that use certain keywords. Only nodes that are main locations for
content objects are counted.

Usage

fetch(’content’, ’keyword_count’,
hash(’alphabet’, alphabet,

[’strict_matching’, strict_matching,]
[’classid’, classid,]
[’owner’, owner,]
[’parent_node_id’, parent_node_id,]
[’include_duplicates’, include_duplicates]))

Parameters

Name Type Description Required
alphabet string The sequence that should be matched. Yes.
strict matching boolean Enables or disables exact matching. If

FALSE (or omitted), the function will
look for keywords that start with the
specified sequence.

No.

classid integer Filtering: the ID number of the class. No.
owner integer Filtering by owner: the ID number of

the object representing the user.
No.

parent node id integer The ID number of the parent node. No.
include duplicates boolean Makes it possible to avoid counting du-

plicates (different keywords but same
nodes). If TRUE (or omitted), dupli-
cates are allowed.

No.

Returns

The number of matching nodes (as an integer).

Description

This fetch function operates in almost the same way as the ”keyword” fetch function. However,
instead of returning the actual nodes along with the matching keywords, it returns the count of
the nodes. The ”keyword count” function takes the same parameters as the ”keyword” function

5.3.3 Modules / content 656

5

with some exceptions (for example sorting is not supported). Refer to the documentation of the
”keyword (page 651)” function for a detailed description of the parameters.

Examples

Example 1

{def $count=fetch(’content’, ’keyword_count’,
hash(’alphabet’, ’computer’))}

There are {$count} number of nodes using keywords starting with "computer".

Outputs the number of nodes that encapsulate objects which use keywords starting with ”com-
puter”.

5.3.3 Modules / content 657

5

list

Summary

Fetches the children of a node or a collection of nodes.

Usage

fetch(’content’, ’list’,
hash(’parent_node_id’, parent_node_id,

[’sort_by’, sort_by,]
[’offset’, offset,]
[’limit’, limit,]
[’attribute_filter’, attribute_filter,]
[’extended_attribute_filter’, extended_attribute_filter,]
[’class_filter_type’, class_filter_type,]
[’class_filter_array’, class_filter_array,]
[’only_translated’, only_translated,]
[’language’, language,]
[’main_node_only’, main_node_only,]
[’as_object’, as_object,]
[’depth’, depth,]
[’limitation’, limitation]
[’ignore_visibility’, ignore_visibility]))

5.3.3 Modules / content 658

5

Parameters

Name Type Description Required
parent node id mixed The ID number(s) of the parent

node(s).
Yes.

sort by array The sorting mechanism that should be
used.

No.

offset integer The offset to start at. No.
limit integer The number of nodes that should be

fetched.
No.

attribute filter mixed The attribute level filter logic. No.
extended attribute
filter

mixed The extended attribute level filter
logic.

No.

class filter type string The type of class filtering (include/
exclude).

No.

class filter array array The classes that should be filtered. No.
group by array DEPRECATED No.
only translated boolean Translation filtering (on/off). No.
language string The translations that should be

fetched.
No.

main node only boolean Type of nodes that should be fetched
(all or main nodes only).

No.

as object boolean If TRUE (or omitted), an array of ”ez-
contentobjecttreenode” objects will be
fetched. Otherwise, an array of arrays
will be returned.

No.

depth integer The maximum level of depth that
should be explored (1 by default).

No.

limitation array Limitation array (emtpy array = access
override).

No.

ignore visibility boolean Makes it possible to fetch hidden
nodes.

No.

Returns

An array of ezcontentobjecttreenode (page 990) objects or FALSE.

Description

This function fetches the children of a single node or a collection of nodes. The parent node(s)
must be specified using the ”parent node id” parameter. This parameter can either be the ID
number of a single node or an array containing several node ID numbers. The function will
fetch the nodes that are directly under the specified parent node(s). The collection is returned
as an array of ezcontentobjecttreenode (page 990) objects. If no nodes are found or if an error

5.3.3 Modules / content 659

5

occurs, the function will return FALSE. The optional ”group by” parameter (grouping on a date/
time basis) is deprecated since this functionality is not supported by Oracle and PostgreSQL.

Sorting

The ”sort by” parameter makes it possible to sort the result in different ways. This parameter
must be provided as an array. The first element of the array must be the desired sorting method.
The second element of the array must be the sorting direction, it can be either true() or false() -
ascending or descending. The following table shows the sorting methods that can be used.

Sorting method Description
attribute The nodes are sorted according to the value of

a specific attribute.
class identifier The nodes are sorted by the class identifiers of

the objects.
class name The nodes are sorted by the class names of the

objects.
depth The nodes are sorted by their depth in the con-

tent tree.
modified The nodes are sorted by the modification time

of the objects.
name The nodes are sorted by the names of the ob-

jects.
path The nodes are sorted by their node ID path

strings (/1/2/43/56).
path string The nodes are sorted by their virtual path

strings (/company/about).
priority The nodes are sorted by their priority.
published The nodes are sorted by the creation time of

the objects.
section The nodes are sorted by the section IDs of the

objects.

It is possible to combine different sorting methods. For example, it is possible to sort the nodes
alphabetically and by their publish date/time at the same time.

Sorting on the attribute level is supported for the following datatypes:

• Checkbox

• Date

• Date and time

• E-mail

• Integer

• Selection (will not work when used as multiple selector)

5.3.3 Modules / content 660

5

• Text line

• Time

The syntax for doing attribute level sorting is almost the same as for normal sorting. The only
difference is that the ID number or the identifier of the target attribute must be specified. If
the identifier is used then both the identifier of the class and the attribute must be specified
(separated by a slash, like this: ”my class/my attribute”). Attribute sorting can only be used if
the returned collection contains the same type of nodes.

Fetching subsets

By making use of the ”offset” and ”limit” parameters, it is possible to fetch only a subset of the
collection that would have been returned if these parameters were omitted. While the ”offset”
parameter defines the start of the subset, the ”limit” parameter defines the length (number of
elements/nodes) of the subset. These parameters are processed at the final stage. In other
words, it is possible to do advanced sorting/filtering and grab only a specific chunk of from the
sorted/filtered/etc. collection.

Class filtering

The class filter mechanism is controlled by the ”class filter type” and ”class filter array” parame-
ters. The ”class filter type” parameter tells eZ Publish to include or exclude specific node types.
This parameter must be either ”include” or ”exclude”. It is not possible to include one set and
to exclude another at the same time. The value of the ”class filter array” parameter specifies the
type of nodes that should be included or excluded. This parameter must be an array of class ID
numbers or class identifier strings.

Attribute filtering

The attribute filter mechanism is controlled by the ”attribute filter” parameter. Attribute filtering
makes it possible to fetch a set of nodes where an attribute (or several attributes) contains some
specific data. Filtering on the attribute level is supported for the following datatypes:

• Checkbox

• Date

• Date and time

• E-mail

• Integer

• Object relation

5.3.3 Modules / content 661

5

• Selection (will not work when used as multiple selector)

• Text line

• Time

The ”attribute filter” parameter must be an array. The first element may be set to either ”and” or
”or” - this controls how the matching specified in the upcoming elements should be carried out.
If this parameter is omitted, the system will default to ”and”. The rest of the elements are arrays,
each array specifies a match. The elements in this array are:

1. Attribute ID

2. Match type

3. Match value

The attribute ID can be specified either as the ID number of the attribute or as a string that
contains the identifier of the class and the identifier of the attribute separated by a slash. (Note
that it is also possible to specify one of the pre-defined strings in order to do filtering on a non-
attribute.) The ID number of the attribute or the identifier of the class and the attribute can be
found when viewing/editing content classes.

The match type tells how eZ Publish should try to match the values. The match value is the data
that should be matched. The following match types can be used:

Type Description
= Equal
!= Not equal
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
in Matches one of the array values
not in Does not match any of the array values
between Is a part of the range determined by the start

and end values
not between Is outside the range determined by the start

and end values
like Matches the wildcard string (the wildcard

character is ’*’)

It is not possible to filter on attributes of different classes, for example it is not possible to filter
on both ”article/show comments” and ”folder/show comments” in the same filter.

Filtering on a non-attribute

Instead of the class/attribute syntax, you can use ”published” and ”priority” as ”AttributeID”. It is
also possible to use ”owner” as ”AttributeID” which refers to the owner’s identifier of the content

5.3.3 Modules / content 662

5

object. This can for instance be used to find all objects of a given user.

There are also some other pre-defined strings that can be used as ”AttributeID” (refer to the
following table). When one of these strings is used as ”AttributeID”, filtering is based on template
object attributes (not on content object (page 106) attributes). This means that if you use for
example ”priority” as ”AttributeID”, the system will check the value of the ”priority” attribute
of the ”ezcontentobjecttreenode (page 990)” objects that represent information about content
nodes.

The following table describes the pre-defined strings and corresponding attributes.

Name Description
class identifier The identifier of the class which the object en-

capsulated by the node is an instance of.
class name The name of the class which the object encap-

sulated by the node is an instance of.
depth The depth of the node within the content node

tree.
modified A UNIX timestamp pinpointing the exact date/

time when the object encapsulated by the
node was last modified (the ”modified” at-
tribute of the corresponding ”ezcontentobject”
object).

modified subnode A UNIX timestamp pinpointing the exact time
a sub node was changed.

name The name of the object the node encapsulates.
owner The ID number of the object representing

the user who initially created the object (the
”owner id” attribute of the corresponding ”ez-
contentobject” object).

path The node’s path string (the ”path string” at-
tribute).

priority The node’s priority.
published A UNIX timestamp pinpointing the exact date/

time when the object was published for the
first time (the ”published” attribute of the cor-
responding ”ezcontentobject” object).

section The ID number of the section that the object
belongs to (the ”section id” attribute of the
corresponding ”ezcontentobject” object).

Extended attribute filtering

The ”extended attribute filter” parameter can be used to do advanced attribute filtering. It is
for expert/experienced users. This mechanism makes it possible to introduce additional SQL
conditions within the fetch. It allows filtering based on values in custom tables and/or special
filtering within the ”ezcontentobject attribute” table.

5.3.3 Modules / content 663

5

The mechanism must be configured using a configuration override for ”extendedattribute-
filter.ini”. This file allows the site administrator to set up different custom filters. Each filter
must be a named collection of configuration settings. The name of a filter is the name of the
configuration block under which the filter’s settings are defined. The following text shows an
example that demonstrates the setup of a filter called ”MyFilter”.

#The name of the filter.
[MyFilter]

#The name of the extension where the filtering code is defined.
ExtensionName=myextension

#The name of the filter class.
ClassName=eZMyExtendedFilter

#The name of the method which is called to generate the SQL parts.
MethodName=createSqlParts

#The file which should be included (extension/
myextension will automatically be prepended).
FileName=classes/ezmyextendedfilter.php

The function defined by the ”MethodName” setting must return an associative array containing
two strings:

array(’tables’ => ’...’, ’joins’ => ’...’);

The contents of ”tables” must start with a comma. The rest of the string should contain a comma
separated list of other tables that should be included in the query. The contents of ”joins” will be
added inside the ”WHERE” section of the query. This string must start with a space and contain
an ”AND” and an additional space at the end.

The example below shows a solution that filters the content based on values within an additional/
custom table. This table is joined with the node table (by object ID and object version). The
additional/custom table would most likely be maintained by a special/custom datatype.

class eZMyExtendedFilter
{

/*!
Constructor
*/
function eZMyExtendedFilter()
{

// Empty...
}

5.3.3 Modules / content 664

5

function createSqlParts($params)
{

$sqlTables= ’, ezmyfiltertable ’;

$sqlJoins = ’ ezcontentobject_tree.contentobject_id =
ezmyfiltertable.contentobject_id AND
ezcontentobject_tree.contentobject_version = ezmyfiltertable.version AND ’;

if (isset($params[’value1’]))
{

$value1 = $params[’value1’];
}
else
{

$value1 = "10";
}
if (isset($params[’value2’]))
{

$value2 = $params[’value2’];
}
else
{

$value2 = "10";
}

$sqlCondArray = array();

$sqlCondArray[] = ’ezmyfiltertable.my_cond1 = ’ . $value1;

$sqlCondArray[] = ’ezmyfiltertable.my_cond1 = ’ . $value2;

$sqlCond = implode(’ or ’, $sqlCondArray);

$sqlCond = ’ (’ . $sqlCond . ’) AND ’ . $sqlJoins . ’ ’;

return array(’tables’ => $sqlTables, ’joins’ => $sqlCond);

}
}

The following template code shows how the extended attribute filter (see the PHP code above)
can be used within a fetch.

5.3.3 Modules / content 665

5

{fetch(’content’, ’list’,
hash(’parent_node_id’, 2,

’sort_by’, array(’priority’, false()),
’limit’, 15,
’extended_attribute_filter’,

hash(’id’, ’MyFilter’,
’params’, hash(’value1’, 15,

’value2’, 30)),
’depth’, 10,
’main_node_only’, true()))}

There is an additional example at the bottom of this page: Example 20.

Fetching main nodes only

The ”main node only” parameter can be used to tell eZ Publish that it should only fetch main
nodes (nodes that are main locations for content objects). This parameter is optional and can
be set to either true() or false(). When set to true(), the fetch function will only return main
nodes. This functionality can be used to avoid duplicates (different nodes but same objects) in
the result.

Fetching translated objects only

In some multi-language scenarios, not all objects are translated into other/all languages. When
the ”only translated” parameter is set to ”true()” the system will only fetch objects that have
been translated into the language used by the siteaccess (the current language). The ”language”
parameter can be used to control which translations that should be fetched. The value of this
parameter must be a valid locale string, for example ”ger-DE”.

Access override

The ”limitation” parameter makes it possible to instruct the system to use an alternate set of
access limitations instead of the ones that belong to the current user. This is typically useful
when there is a need to fetch nodes that the current user does not have access to. All permission
checking can be skipped by providing an empty array. It is also possible to provide arrays that
dictate the access limitations of other users and/or virtual sets of limitations. The array follows
an internal structure that will be documented in the future.

Visibility override

The ”ignore visibility” parameter makes it possible to fetch hidden nodes. It can be set to either
”true()” or ”false()”. If set to ”true()”, the fetch will ignore the visibility flags of nodes and thus it
will return all nodes regardless of their visibility status. In other words, this parameter overrides

5.3.3 Modules / content 666

5

the ”ShowHiddenNodes” (page 1741) configuration directive for a specific fetch operation in a
template.

Examples

Example 1

{def $nodes=fetch(’content’, ’list’,
hash(’parent_node_id’, 42,

’depth’, 3))}

{foreach $nodes as $node}
{$node.name|wash}

{/foreach}

This example demonstrates how to fetch nodes which are until the third level under the parent
node number 42. Outputs the names of all these nodes.

Example 2

{fetch(’content’, ’list’,
hash(’parent_node_id’, 42,

’sort_by’, array(’published’, false())))}

This example demonstrates how to fetch all nodes that are the children of node number 42. The
nodes are sorted by the time they were created; the most recently created node will be the first
element in the collection.

Example 3

{fetch(’content’, ’list’,
hash(’parent_node_id’, array (’42’, ’43’, ’45’),

’sort_by’, array(’published’, false())))}

This example demonstrates how to fetch all nodes that are the children of multiple nodes; number
42, 43 and 45. The nodes are sorted by the time they were created; the most recently created
node will be the first element in the collection.

Example 4

{fetch(’content’, ’list’,
hash(’parent_node_id’, 42,

’sort_by’, array(array(’name’, false()),
array(’published’, false())))}

5.3.3 Modules / content 667

5

This example demonstrates how to combine different sorting methods. The fetch function will
fetch the child nodes of node number 42. The fetched nodes will be sorted by their name and the
time they were created.

Example 5

{fetch(’content’, ’list’,
hash(’parent_node_id’, 42,

’sort_by’, array(’attribute’,
false(),
107)))}

This example demonstrates attribute sorting by using the ID number of the attribute.

Example 6

{fetch(’content’, ’list’,
hash(’parent_node_id’, 42,

’sort_by’, array(’attribute’,
false(),
’person/last_name’)))}

This example demonstrates attribute sorting by using the string notation to pinpoint the identifier
of the class and the attribute.

Example 7

{fetch(’content’, ’list’,
hash(’parent_node_id’, 42,

’class_filter_type’, ’include’,
’class_filter_array’, array(’13’)))}

This example demonstrates how to use class filtering to fetch only nodes that reference objects
that are instances of class number 13.

Example 8

{fetch(’content’, ’list’,
hash(’parent_node_id’, 42,

’class_filter_type’, ’include’,
’class_filter_array’, array(’folder’)))}

This example demonstrates how to use class filtering to fetch only nodes that reference folder
objects.

5.3.3 Modules / content 668

5

Example 9

{fetch(’content’, ’list’,
hash(’parent_node_id’, 42,

’class_filter_type’, ’exclude’,
’class_filter_array’, array(’article’,

’comment’)))}

This example demonstrates how to use class filtering to exclude articles and comments from a
fetch.

Example 10

{fetch(’content’, ’list’,
hash(’parent_node_id’, 42,

’attribute_filter’, array(’or’,
array(152, ’=’, ’abc’),
array(153, ’=’, ’42’))))}

This example demonstrates how to do attribute filtering. Only nodes that have attributes number
152 and 153 set to ”abc” and 42 respectively will be included in the result.

Example 11

{fetch(’content’,
’list’,
hash(’parent_node_id’, 42,

’attribute_filter’, array(array(’article/title’,
’like’,
’*story*’))))}

This example demonstrates how to do attribute filtering. Instead of specifying the ID number of
the attribute (as in the previous example), the identifier of the class and the attribute is used.
Only article nodes that contain the text ”story” in their title attribute will be included in the result.

Example 12

{fetch(’content’,
’list’,
hash(’parent_node_id’, 42,

’attribute_filter’, array(array(’article/image’,
’=’,
87))))}

5.3.3 Modules / content 669

5

This example demonstrates how to do attribute filtering using an attribute of the ”Object relation”
datatype. Only article nodes that store relation to the specified content object (object ID = 87)
in their ”image” attribute will be included in the result.

Example 13

{fetch(’content’,
’list’,
hash(’parent_node_id’, 42,

’attribute_filter’, array(array(’review/rating’,
’between’,
array(0, 2)))))}

This example demonstrates how to do attribute filtering using an attribute of the ”Selection”
datatype. Only review nodes that contain ”Very good”, ”Good” or ”Ok” (options 0, 1 or 2) in their
”rating” attribute will be included in the result.

Example 14

{fetch(’content’,
’list’,
hash(’parent_node_id’, 42,

’attribute_filter’, array(array(’bug/priority’,
’in’,
array(1, 4)))))}

Fetches bugs with priority 1 and 4 (i.e. bug nodes that have their priority attribute set to 1 or 4).

Example 15

{fetch(’content’,
’list’,
hash(’parent_node_id’, 42,

’attribute_filter’, array(array(’bug/priority’,
’between’,
array(2, 4)))))}

Fetches bugs with priority 2, 3 and 4 (i.e. bug nodes that have their priority attribute value
between 2 and 4).

Example 16

5.3.3 Modules / content 670

5

{fetch(’content’, ’list’,
hash(’parent_node_id’, 42,

’attribute_filter’, array(’and’,
array(’priority’, ’>’, ’20’),
array(’article/

title’, ’=’, ’abc’))))}

This example demonstrates how to do filtering on a non-attribute. Instead of specifying the
identifier of the class and the attribute, ”priority” is used. Only article nodes that have their title
attribute set to ”abc” and have a priority greater than 20 will be included in the result.

Example 17

{def $nodes=fetch(’content’, ’list’,
hash(’parent_node_id’, 42,

’attribute_filter’, array(’and’,
array(’owner’,
’=’,

$current_user.contentobject_id) ,
array(’class_identifier’, ’=’, ’folder’)) ,

’depth’, 3))}

{foreach $nodes as $node}
{$node.name|wash}

{/foreach}

{undef $nodes}

Fetches folder nodes which are until the third level under the parent node number 42 and are
created by the current user.

Example 18

{fetch(’content’, ’list’,
hash(’parent_node_id’, 2,

’only_translated’, true()))}

This example demonstrates how to fetch only nodes that reference objects that have been trans-
lated into the current language (the language that the siteaccess is using).

Example 19

5.3.3 Modules / content 671

5

{fetch(’content’, ’list’,
hash(’parent_node_id’, 2,

’limit’, 3,
’only_translated’, true(),
’language’, ’ger-DE’))}

This example demonstrates another way to fetch translated objects. The fetch will return nodes
that reference objects which have been translated into the German language.

Example 20

{fetch(’content’, ’list’,
hash(’parent_node_id’, 2,

’sort_by’, array(’priority’, false()),
’limit’, 15,
’extended_attribute_filter’,

hash(’id’, ’MyFilter’,
’params’, hash(’value1’, ’text1’,

’value2’, ’text2’))))}

This example demonstrates how the extended attribute filter can be used. The template code
above will fetch objects that match the following condition: any object using the ezstring datatype
containing either ”text1” or ”text2”. The necessary PHP implementation is shown in the example
below.

class eZMyExtendedFilter
{

/*!
Constructor
*/
function eZMyExtendedFilter()
{

// Empty...
}

function createSqlParts($params)
{

$sqlTables= ’, ezcontentobject_attribute as myfilter_alias ’;

$sqlJoins = ’ ezcontentobject_tree.contentobject_id =
myfilter_alias.contentobject_id AND ezcontentobject_tree.contentobject_version
= myfilter_alias.version AND myfilter_alias.data_type_string = "ezstring"
AND’;

5.3.3 Modules / content 672

5

if (isset($params[’value1’]))
{

$value1 = $params[’value1’];
}
else
{

$value1 = ’fooo’;
}
if (isset($params[’value2’]))
{

$value2 = $params[’value2’];
}
else
{

$value2 = ’boooo’;
}

$sqlCondArray = array();

$sqlCondArray[] = ’myfilter_alias.data_text = "’ . $value1 . ’"’;
$sqlCondArray[] = ’myfilter_alias.data_text = "’ . $value2 . ’"’;

$sqlCond = implode(’ or ’, $sqlCondArray);

$sqlCond = ’ (’ . $sqlCond . ’) AND ’ . $sqlJoins . ’ ’;

return array(’tables’ => $sqlTables, ’joins’ => $sqlCond);

}
}

Example 21

{fetch(’content’, ’list’, hash(’parent_node_id’, 2,
’ignore_visibility’, true()))}

This example demonstrates how to fetch nodes regardless of their visibility status. The operation
above will return both visible and hidden nodes that are directly below node #2.

Example 22

{def $nodes=fetch(’content’, ’list’, hash(’parent_node_id’, 2,
’as_object’, false()))}

5.3.3 Modules / content 673

5

The result is an array of arrays. The first inner array reveals information
about the node "{$nodes[0].name|wash}": <br /
> {$nodes[0]|attribute(show, 1)}

This example demonstrates the behavior when the ”as object” parameter is set to FALSE. The
following output will be produced:

The result is an array of arrays. The first inner array reveals information about the node ”Multi-
price products”:

Attribute Type Value
contentclass id string 1
current version string 1
id string 61
initial language id string 2
is published string
language mask string 3
modified string 1161682117
name string ’Multiprice products’
owner id string 14
published string 1161682117
remote id string ’f3f9d3443e61498e01523e3016ca136b’
section id string 1
status string 1
contentobject id string 61
contentobject is published string 1
contentobject version string 1
depth string 2
is hidden string
is invisible string
main node id string 63
modified subnode string 1161682290
node id string 63
parent node id string 2
path identification string string ’multiprice products’
path string string ’/1/2/63/’
priority string
sort field string 2
sort order string
class name string ’Folder’
class identifier string ’folder’
real translation string ’eng-GB’

5.3.3 Modules / content 674

5

list count

Summary

Fetches the number of children of a node.

Usage

fetch(’content’, ’list_count’,
hash(’parent_node_id’, parent_node_id,

[’class_filter_type’, class_filter_type,]
[’class_filter_array’, class_filter_array,]
[’attribute_filter’, attribute_filter,]
[’extended_attribute_filter’, extended_attribute_filter,]
[’main_node_only’, main_node_only,]))

Parameters

Name Type Description Required
parent node id integer The ID number of the parent node. Yes.
class filter type string The type of class filtering (include/

exclude).
No.

class filter array array The classes that should be filtered. No.
attribute filter mixed Filter logic for attribute level filtering. No.
extended attribute
filter

mixed The extended attribute level filter
logic.

No.

main node only integer Type of nodes that should be fetched
(all or main nodes only).

No.

Returns

An integer (the number of nodes).

Description

This function operates in almost the same way as the ”list” fetch function. The difference is that
instead of returning the actual nodes, it returns the count (the number of nodes that were found).
The ”list count” function takes the same parameters as the ”list” function with some exceptions
(sorting, grouping, limit/offset, etc. is not supported). Please refer to the documentation of the
”list” (page 657) function for a detailed description of the parameters.

5.3.3 Modules / content 675

5

Examples

Example 1

{def $count=fetch(’content’, ’list_count’, hash(’parent_node_id’, 42))}
Node number 42 has {$count} number of children.

Outputs the number of nodes that are below node number 42.

5.3.3 Modules / content 676

5

locale

Summary

Fetches the current or a specified locale.

Usage

fetch(’content’, ’locale’ [, hash(’locale_code’, locale_code)])

Parameters

Name Type Description Required
locale code string The code of the locale to be fetched. No.

Returns

An ezlocale (page 1015) object.

Description

This function fetches either the default/current locale (specified using the ”Locale” directive
within the ”[RegionalSettings]” block of ”site.ini”) or the locale specified by the optional ”locale
code” parameter. The ”locale code” must be a valid locale code, for example ”eng-GB”, ”nor-NO”
and so on. Locales are listed and specified in the ”share/locale” directory.

Examples

Example 1

{fetch(’content’, ’locale’)}

Fetches and returns the current locale.

Example 2

{fetch(’content’, ’locale’, hash(’locale_code’, ’rus-RU’))}

Fetches and returns the Russian locale.

5.3.3 Modules / content 677

5

locale list

Summary

Fetches the available locales.

Usage

fetch(’content’, ’locale_list’)

Returns

An array of ezlocale (page 1015) objects.

Description

This function fetches all the available locales and returns an array of ezlocale (page 1015) objects.

Examples

Example 1

{def $locales=fetch(’content’, ’locale_list’)}

{foreach $locales as $locale}
{$locale.locale_code} : {$locale.country_name}

{/foreach}

Outputs the locale codes and the names of the countries that the different locales belong to.

5.3.3 Modules / content 678

5

navigation part

Summary

Fetches information about a navigation part.

Usage

fetch(’content’, ’navigation_part’, hash(’identifier’, identifier))

Parameters

Name Type Description Required
identifier string The identifier of the desired navigation

part.
Yes.

Returns

An associative array (see below) or FALSE.

Description

This function fetches information about a navigation part. The identifier of the navigation part
must be specified using the ”identifier” parameter. The function returns a hash that consists of
the following elements:

Key Type Description
name string The actual name of the nav-

igation part (for example
”Content structure”).

identifier string The identifier of the naviga-
tion part (for example ”ez-
contentnavigationpart”).

Examples

Example 1

{def $navigation_part=fetch(’content’, ’navigation_part’,
hash(’identifier’, ’ezcontentnavigationpart’))}

{$navigation_part.name}

Outputs the name of the navigation part identified by the string ”ezcontentnavigationpart”.

5.3.3 Modules / content 679

5

navigation parts

Summary

Fetches all available navigation parts.

Usage

fetch(’content’, ’navigation_parts’)

Returns

An array of hashes (see below).

Description

This function fetches all the available navigation parts. The function returns an array with hashes
containing the following elements:

Key Type Description
name string The actual name of the nav-

igation part (for example
”Content structure”).

identifier string The identifier of the naviga-
tion part (for example ”ez-
contentnavigationpart”).

Examples

Example 1

{def $navigation_parts=fetch(’content’, ’navigation_parts’)}

{foreach $navigation_parts as $navigation_part}
{$navigation_part.identifier} : {$navigation_part.name}

{/foreach}

Outputs the identifiers and names of all the available navigation parts.

5.3.3 Modules / content 680

5

node

Summary

Fetches a node (identified by either an ID number or a path).

Usage

fetch(’content’, ’node’, hash([’node_id’, node_id,]
[’node_path’, node_path]))

Parameters

Name Type Description Required
node id integer The ID number of the node that should

be fetched.
No.

node path string The path of the node that should be
fetched.

No.

Returns

An ezcontentobjecttreenode (page 990) object of FALSE.

Description

This function fetches a single node and returns it as a ezcontentobjecttreenode (page 990). The
target node must be specified using either the ”node id” or the ”node path” parameter. If no node
can be found, or if an error occurs, the function will return FALSE.

Examples

Example 1

{def $my_node=fetch(’content’, ’node’, hash(’node_id’, 96))}
{$my_node.name|wash}

Fetches node number 96 and outputs the name of the object that is encapsulated by that node.

Example 2

{def $my_node=fetch(’content’, ’node’, hash(’node_path’, ’news/
article_test’))}
{$my_node.name|wash}

5.3.3 Modules / content 681

5

Fetches the node by the specified path and outputs the name of the object that is encapsulated
by that node.

Example 3

{def $my_node=fetch(’content’, ’node’, hash(’node_path’, ’news/
article_test’))}
Views: {$my_node.view_count}

Fetches the node by the specified path and outputs the number of times this node has been
viewed. (The ”updateviewcount.php” cronjob must be run periodically.)

5.3.3 Modules / content 682

5

non translation list

Summary

Fetches locales that a version of an object may be translated into.

Usage

fetch(’content’, ’non_translation_list’, hash(’object_id’, id, ’version’,
version)

Parameters

Name Type Description Required
object id integer The ID number of the target object. Yes.
version integer The target version number. Yes.

Returns

An array of ezlocale (page 677) objects or FALSE.

Description

This function will fetch all the locales that a specific version of a content object may be translated
to. The locales which the version is already translated to will not be included. The function
returns an array of ezlocale (page 677) objects. It will return FALSE if there are no more alternate
locales.

Examples

Example 1

{def $locales=fetch(’content’, ’non_translation_list’,
hash(’object_id’, 42,

’version’, 3))}

{foreach $locales as $locale}
{$locale.language_name}

{/foreach}

Outputs the language names of the locales that version number 3 of object number 42 can be
translated to.

5.3.3 Modules / content 683

5

object

Summary

Fetches a content object (specified by an ID number).

Usage

fetch(’content’, ’object’, hash(’object_id’, object_id))

Parameters

Name Type Description Required
object id integer The ID number of the target object. Yes.

Returns

An ezcontentobject (page 971) object or FALSE.

Description

This function fetches a content object. The ID number of the object must be specified using the
”object id” parameter. The function returns an ezcontentobject (page 971) object. It will return
FALSE if a non-existing ID number is provided or if an error occurs.

Examples

Example 1

{def $object=fetch(’content’, ’object’, hash(’object_id’, 13))}
{$object.name|wash}

Outputs the name of object number 13.

5.3.3 Modules / content 684

5

object by attribute

Summary

DEPRECATED

5.3.3 Modules / content 685

5

object count by user id

Summary

Fetches the number of objects (of a class) created by a user.

Usage

fetch(’content’, ’object_count_by_user_id’,
hash(’class_id’, class_id,

’user_id’, user_id))

Parameters

Name Type Description Required
class id integer The ID number of the target class. Yes.
user id integer The ID number of the user (object ID). Yes.

Returns

The number of objects (as an integer).

Description

This function counts the number of objects (of a certain type) that were created by a user. Both
the type of the object (the class) and the user must be specified. The function returns an integer
revealing the number of objects that were found.

Examples

{def count=fetch(’content’, ’object_count_by_user_id’, hash(’class_id’, 13,
’user_id’, 14))}
{$count}
{undef $count}

Outputs the number of objects (of class number 13) that have been created by user number 14.

5.3.3 Modules / content 686

5

pending count

Summary

Fetches the number of pending objects for the current user.

Usage

fetch(’content’, ’pending_count’)

Returns

An integer revealing the number of pending objects.

Description

This function reveals the number of pending objects that belong to the current user.

Examples

Example 1

{def $count=fetch(’content’, ’pending_count’)}
There are {$count} pending objects.

Outputs the number of pending objects that belong to the current user.

5.3.3 Modules / content 687

5

pending list

Summary

Fetches the pending objects for the current user.

Usage

fetch(’content’, ’pending_list’)

Returns

An array of objects or FALSE.

Description

This function fetches the pending objects that belong to the current user. The function returns an
array of or FALSE if there are no pending objects.

Examples

Example 1

{def $pending=fetch(’content’, ’pending_list’)}

{foreach $pending as $object}
{$object.name}

{/foreach}

Outputs the names of the pending objects that belong to the current user.

5.3.3 Modules / content 688

5

recent

Summary

Fetches nodes where the current user recently published something.

Usage

fetch(’content’, ’recent’)

Returns

An array of ezcontentbrowserecent (page 960) objects or FALSE.

Description

This function fetches nodes under which the current user recently has published something. The
function returns an array of ezcontentbrowserecent (page 960) objects. If there are no nodes
under which the current user has published something, the function will return FALSE.

Examples

Example 1

{def $recent=fetch(’content’, ’recent’)}
{foreach $recent as $element}

{$element.name}
{/foreach}

Outputs the names of the nodes under which the current user recently published something.

5.3.3 Modules / content 689

5

related objects

Summary

Fetches related objects.

Usage

fetch(’content’, ’related_objects’,
hash(’object_id’, object_id,

[’attribute_identifier’, attribute_identifier,]
[’all_relations’, boolean,]
[’group_by_attribute’, boolean,],
[’sort_by’, sort_by]))

Parameters

Name Type Description Required
object id integer The ID number of the target object. Yes.
attribute identifier mixed The ID number or class/attribute iden-

tifier of the target attribute.
No.

all relations mixed Controls what types of relations that
should be fetched, default is FALSE.

No.

group by attribute boolean Groups the result based on the at-
tributes, default value is TRUE.

No.

sort by array The sorting mechanism that should be
used.

No.

Returns

An array of ezcontentobject (page 971) objects or a two-dimensional array if ’group by attribute’
is TRUE. If no objects are found, the function will return FALSE.

Description

This function fetches the objects that have been related to an object specified by the ”object id”
parameter. It is capable of returning all related objects regardless of their relation type (attributes
using the ”Object relation” (page 515) or ”Object relations” (page 517) datatype or standard
object-level relations classified as ”Common”, ”XML linked” or ”XML embedded”).

The ”attribute identifier” parameter makes it possible to specify either an ID number or an identi-
fier string (class/attribute - for example ”my class/my attribute”) of an attribute. This parameter
is not required. The default value is zero, which makes the function return only objects that
are related on an object level, not at the attribute level. This behavior is similar to ’related

5.3.3 Modules / content 690

5

contentobject array’ functional attribute of a content object. When the parameter is used, the
system will return objects that have been related using an attribute that is based on either the
”Object relation” (page 515) or ”Object relations” (page 517) datatype.

The ”all relations” parameter makes it possible to fetch all types of relations (when set to TRUE).
This parameter is not required and the default value is FALSE. In addition, the value of this
parameter can also be an array. The array may consist of the following strings: ”common”, ”xml
link”, ”xml embed” and ”attribute”. Each of them correspond to a relation type. The types can
be mixed and provided in any order, which means that it is possible to use this parameter to do
basic filtering. Refer to the ”Object relations” page of the ”Concepts and basics” chapter for more
information about the relation types.

The ”group by attribute” parameter can only be used when the value of the ”all relations” param-
eter is non-FALSE (either TRUE or an array). When the ”group by attribute” parameter has been
set to TRUE, the function will return a two-dimensional array instead of just an array of objects.
The following example shows how this structure is built up:

$related_objects_grouped = array(

0 => array($object1, $object2 ...),

// Objects related on content object level
attr_id_1 => array($object1, $object2 ...),
attr_id_2 => array($object1, $object2 ...),

...

// Objects related by attributes
);

The ”sort by” parameter makes it possible to sort the result in different ways. This parameter
must be provided as an array of arrays that define the sorting methods. The first element of
each array must be the desired sorting method. The second element of the array must be the
sorting direction, it can be either TRUE or FALSE (ascending or descending). Please note that
this parameter works in the very same way as the ”sort by” parameter of the list (page 657) fetch
function. However, it currently only supports the following sorting methods:

• class identifier

• class name

• modified

• name

• published

• section

Please note that using other sort methods will lead to an error.

5.3.3 Modules / content 691

5

Examples

Example 1

{def $related=fetch(’content’, ’related_objects’,
hash(’object_id’, $node.object.id,

’all_relations’, true(),
’group_by_attribute’, true(),
’sort_by’, array(array(’class_name’, true()),

array(’name’, true()))))}

Returns all relations grouped in arrays by attribute ID, then sorted by
class name and by object’s name in ascending order.

5.3.3 Modules / content 692

5

related objects count

Summary

Fetches the number of related objects.

Usage

fetch(’content’, ’related_objects_count’,
hash(’object_id’, object_id,

[’attribute_identifier’, attribute_identifier,]
[’all_relations’, boolean,]))

Parameters

Name Type Description Required
object id integer The ID number of the target object. Yes.
attribute identifier mixed The ID number or class/attribute iden-

tifier of the target attribute.
No.

all relations mixed Controls what type of relations that
should be feetched, default is FALSE.

No.

Returns

An integer (the number of related objects).

Description

This fetch function operates in almost the same way as the ”related objects” fetch function. The
difference is that instead of returning the related objects themselves, it returns the count (the
number of related objects that were found). The ”related objects count” function takes the same
parameters as the ”related objects” function with some exceptions (for example sorting is not
supported). Please refer to the documentation of the ”related objects” (page 689) function for a
detailed description of the parameters.

5.3.3 Modules / content 693

5

reverse related objects

Summary

Fetches reverse related objects.

Usage

fetch(’content’, ’reverse_related_objects’,
hash(’object_id’, object_id,

[’attribute_identifier’, attribute_identifier,]
[’all_relations’, boolean,]
[’group_by_attribute’, boolean,]
[’sort_by’, sort_by]
[’ignore_visibility’, ignore_visibility]))

Parameters

Name Type Description Required
object id integer The ID number of the target object. Yes.
attribute identifier mixed The ID number or class/attribute iden-

tifier of the target attribute.
No.

all relations boolean Controls whether to fetch all types of
relastions or not, default is FALSE.

No.

group by attribute boolean Groups the result based on the at-
tributes, default value is TRUE.

No.

sort by array The sorting mechanism that should be
used.

No.

ignore visibility boolean Makes it possible to fetch hidden nodes
(TRUE by default).

No.

Returns

An array of ezcontentobject (page 971) objects or FALSE.

Description

This function makes it possible to fetch reverse related objects. The target object must be specified
using the ”object id” parameter. The function will return an array of ezcontentobject (page 971)
objects which are using the target object through the conventional object relation mechanism. If
no objects are found, the function will return FALSE.

5.3.3 Modules / content 694

5

Class attribute filtering

By making use of the ”attribute identifier” parameter, it is possible to fetch reverse related objects
that make use of the target object by the way of an attribute. The attribute must use either
the ”Object relation” (page 515) or the ”Object relations” (page 517) datatype. The ”attribute
identifier” parameter can either be the ID number of the class attribute or a string that consists of
the class identifier, a slash and the class attribute identifier (for example ”my class/my attribute”).

The ”all relations” parameter makes it possible to fetch all types of relations. This parameter is
not required and the default value is FALSE.

The ”group by attribute” parameter can only be used when the ”all relations” parameter has been
set to TRUE. When the ”group by attribute” parameter has been set to TRUE, the function will
return a two-dimensional array instead of just an array of objects. The following example shows
how this structure is built up:

$related_objects_grouped = array(

0 => array($object1, $object2 ...),

// Objects related on content object level
attr_id_1 => array($object1, $object2 ...),
attr_id_2 => array($object1, $object2 ...),

...

// Objects related by attributes
);

The ”sort by” parameter makes it possible to sort the result in different ways. This parameter
must be provided as an array of arrays that define the sorting methods. The first element of
each array must be the desired sorting method. The second element of the array must be the
sorting direction, it can be either TRUE or FALSE (ascending or descending). Please note that
this parameter works in the very same way as the ”sort by” parameter of the list (page 657) fetch
function. However, it currently only supports the following sorting methods:

• class identifier

• class name

• modified

• name

• published

• section

Please note that using other sort methods will lead to an error.

5.3.3 Modules / content 695

5

Fetching hidden nodes

The ”ignore visibility” parameter makes it possible to fetch hidden nodes. It can be set to either
”true()” or ”false()”. If set to ”true()”, the fetch will ignore the visibility flags of nodes and thus
it will return all nodes regardless of their visibility status.

Examples

Example 1

{def $objects=fetch(’content’, ’reverse_related_objects’,
hash(’object_id’, 256))}

{foreach $objects as $object}
{$object.name|wash}

{/foreach}

Outputs the names of the objects that make use of object number 256 through the conventional
related objects mechanism.

Example 3

{def $objects=fetch(’content’, ’reverse_related_objects’,
hash(’object_id’, 256,

’attribute_identifier’, ’4096’))}

{foreach $objects as $object}
{$object.name|wash}

{/foreach}

Outputs the names of the objects that make use of object number 256 through class attribute
number 4096.

Example 3

{def $objects=fetch(’content’, ’reverse_related_objects’,
hash(’object_id’, 256,

’attribute_identifier’, ’my_class/my_attribute’))}

{foreach $objects as $object}
{$object.name|wash}

{/foreach}

Outputs the names of the objects that make use of object number 256 through an attribute called
”my attribute” that is a part of class ”my class”.

5.3.3 Modules / content 696

5

reverse related objects count

Summary

Fetches the number of reverse related objects.

Usage

fetch(’content’, ’reverse_related_objects_count’,
hash(’object_id’, object_id,

[’attribute_identifier’, attribute_identifier,]
[’all_relations’, all_relations,]
[’ignore_visibility’, ignore_visibility]))

Parameters

Name Type Description Required
object id integer The ID number of the target object. Yes.
attribute identifier mixed The ID number or class/attribute iden-

tifier of the target attribute.
No.

all relations boolean Controls whether to fetch all types of
relastions or not, default is FALSE.

No.

ignore visibility boolean Makes it possible to fetch hidden
nodes.

No.

Returns

An integer (number of reverse related objects).

Description

This function is the same as the ”reverse related objects” function. However, instead of return-
ing an array of objects, it returns the number of objects that were found. Please refer to the
documentation of the ”reverse related objects” (page 693) function for information about the
parameters.

5.3.3 Modules / content 697

5

same classattribute node

Summary

Fetches nodes containing attributes that match a certain value.

Usage

fetch(’content’, ’same_classattribute_node’,
hash(’class_attribute_id’, class_attribute_id,

’value’, value,
’datatype’, datatype))

Parameters

Name Type Description Required
id integer The ID number of the class attribute

that should be examined.
Yes.

value mixed The value that should be matched. Yes.
datatype string Must be either ”int”, ”float” or ”text”. Yes.

Returns

An array of ezcontentobjecttreenode (page 990) objects or FALSE.

Description

This function will go through all object attributes that are instances of the class attribute spec-
ified by the ”class attribute id” parameter. The value that should be matched must be specified
using the ”value” parameter. In addition, the type of data (either ”int”, ”float” or ”text”) that the
datatype representing the attribute must be provided. The function returns an array of ezcon-
tentobjecttreenode (page 990) objects or FALSE (if there is no match).

Examples

{def $matched_nodes=fetch(’content’, ’same_classattribute_node’,
hash(’class_attribute_id’, 245,

’value’, ’example’,
’datatype’, ’text’))}

{foreach $matched_nodes as $matched_node}
{$matched_node.name|wash}

{/foreach}

5.3.3 Modules / content 698

5

Outputs the names of the nodes that make use of class attribute number 245 and where the text
contents of the object attribute equals the string ”example”.

5.3.3 Modules / content 699

5

search

Summary

Fetches nodes containing data that match a certain criteria.

Usage

fetch(content, search,
hash(text, text,

[offset, offset,]
[limit, limit,]
[section_id, id,]
[subtree_array, array,]
[publish_timestamp, time,]
[publish_date, date,]
[class_id, id,]
[class_attribute_id, id,]
[sort_by, sort_by,]
[limitation, limitation,]
[ignore_visibility, ignore_visibility,]))

5.3.3 Modules / content 700

5

Parameters

Name Type Description Required
text string The text that should be matched. Yes.
subtree array mixed Array node ID number under which the

system should search.
No.

offset integer The offset to start at. No.
limit integer The number of nodes that should be re-

turned.
No.

publish timestamp integer Only search objects with the specified
publishing date/time (as a UNIX times-
tamp).

No.

publish date integer Only search objects published during
the last day / week / month / three
months / one year.

No.

section id integer Only match objects that are in this sec-
tion.

No.

class id integer Only match objects that are instances
of this class. This parameter can also
be an array of class ID numbers.

No.

class attribute id integer Only search within this attribute. This
parameter can also be an array of at-
tribute ID numbers.

No.

sort by mixed Sort the result. See description below. No.
limitation array Limitation array (emtpy array = access

override).
No.

ignore visibility boolean Makes it possible to get hidden nodes. No.

Returns

An array of hashes (see below) or FALSE.

Description

This function will perform a search and it will return the hits that the current user has read access
to. The function returns an array of hashes. The hashes consist of the following elements:

SearchResult array An array of the nodes (as ez-
contentobjecttreenode (page
990) objects) that matched
the search conditions.

SearchCount integer The total number of nodes
that matched the search con-
ditions.

StopWordArray array An array of strings contain-

5.3.3 Modules / content 701

5

ing words that were ex-
cluded from the search.

Sorting

The ”sort by” parameter makes it possible to sort the result in different ways. This parameter be-
haves exactly in the same way as it does for the ”list” function. Please refer to the documentation
page of the ”list (page 657)” function for a complete explanation of this parameter.

Searching by the date of publishing

The ”publish date” parameter makes it possible to search objects published during the specified
period. The following table reveals the possible values of this parameter.

1 one day
2 one week
3 one month
4 three months
5 one year

The ”publish timestamp” parameter makes it possible to search objects with the specified publish-
ing date/time. This value must be a UNIX timestamp. You can also use an array of two elements
in order to search withing the given range.

Please note that you can not use both ”publish timestamp” and ”publish date” at the same time.
If you use ”publish timestamp” then ”publish date” will be ignored.

Access override

The ”limitation” parameter makes it possible to instruct the system to use an alternate set of
access limitations instead of the ones that belong to the current user. This is typically useful
when there is a need to match and return nodes that the current user does not have access to.
All permission checking can be skipped by providing an empty array. It is also possible to provide
arrays that define access limitations of other users and/or custom sets of limitations. Note that
this is for advanced/experienced users. You’ll have to look in the source code of the kernel for
details related to the format of this array.

Visibility override

The ”ignore visibility” parameter makes it possible to allow the search function to get hidden
nodes. It can be set to either ”true()” or ”false()” (default). If set to ”true()”, the search engine
will ignore the visibility flags of nodes and thus the result will contain all kinds of nodes regardless
if they are hidden or not. In other words, this parameter overrides the ”ShowHiddenNodes” (page
1741) configuration directive for a specific search operation in a template.

5.3.3 Modules / content 702

5

Examples

Example 1

{def $search=fetch(’content’, ’search’,
hash(’text’, ’example’,

’class_id’, array(’2’, ’5’)))}

The search returned {$search.SearchCount} matches.

{foreach $search.SearchResult as $matched_node}
{$matched_node.name|wash}

{/foreach}

Outputs the names of all nodes which encapsulte objects of classes 2 and 5 containing the word
”example”.

Example 2

{def $search=fetch(’content’, ’search’,
hash(’text’, ’example’,

’publish_timestamp’, array(’1033920746’,
’1033920789’)))}

The search returned {$search.SearchCount} matches.

{foreach $search.SearchResult as $matched_node}
{$matched_node.name|wash}

{/foreach}

Outputs the names of all nodes which encapsulte objects published between the specified date/
time values.

5.3.3 Modules / content 703

5

section list

Summary

Fetches the available sections.

Usage

fetch(’content’, ’section_list’)

Returns

An array of ezsection (page 1050) objects.

Description

This function fetches all the available sections. An array of ezsection (page 1050) objects will be
returned.

Examples

Example 1

{def $sections=fetch(’content’, ’section_list’)}
{foreach $sections as $section}

{$section.name}

{/foreach}

Outputs the names of all the available sections.

5.3.3 Modules / content 704

5

tipafriend top list

Summary

Fetches the most popular (most tipped) nodes.

Usage

fetch(’content’, ’tipafriend_top_list’,
hash([’offset’, offset,]

[’limit’, limit,]
[’start_time’, start_time,]
[’end_time’, end_time,]
[’duration’, duration,]
[’ascending’, ascending,]
[’extended’, extended]))

Parameters

Name Type Description Required
offset integer The offset to start at. No.
limit integer The number of nodes that should be re-

turned.
No.

start time integer The time to start at. No.
end time integer The time to end at. No.
duration integer The period of time that should be used. No.
ascending boolean The sorting direction that should be

used. If FALSE (default), the results
will be sorted descending by the num-
ber of times each node was tipped.

No.

extended boolean If TRUE, an array of hashes will be re-
turned.

No.

Returns

An array of ezcontentobjecttreenode (page 990) objects, an array of hashes (see below) or FALSE.

Description

This function fetches the nodes that were most tipped using the ”Tip a friend” feature. The ”Tip
a friend” feature can be accessed by requesting the ”tipafriend” view of the ”content” module,
it takes a node ID as a parameter, for example: ”http://www.example.com/content/tipafriend/
44”.

5.3.3 Modules / content 705

5

The returned result is sorted by the number of times the nodes were tipped. The sorting direc-
tion can be controlled using the ”ascending” parameter, it can be set to either TRUE or FALSE
(default).

The ”limit” and ”offset” parameters can be used to control the number of items returned and the
offset to start at.

The ”start time”, ”end time” and ”duration” parameters can be used to specify a time period that
the function should operate within. These parameters make it possible to fetch the most popular/
tipped nodes for a certain period of time (for example last 24 hours, last week, last month, etc.).
If the ”start time” and ”duration” parameters are specified, results for the ”start time+duration”
period of time will be fetched. If the ”end time” and ”duration” parameters are specified, results
for the ”end time-duration” period of time will be fetched. If all of these parameters are omitted,
the function will cover all nodes, regardless when they were tipped. If both the ”start time” and
”duration” parameters are omitted, then only results for the period before ”end time” will be
fetched. If only the ”start time” or ”duration” parameter is set, the function will automatically
use the current time as the ”end time” parameter.

By default (when the ”extended” parameter is FALSE), the function returns an array of ezcon-
tentobjecttreenode (page 990) objects. If the ”extended” parameter is set to TRUE, the function
will return an array of the following hashes:

Key Type Description
node id string The ID number of the node.
count string The number of times the

node was tipped.
node object The node itself (as an ez-

contentobjecttreenode (page
990) object).

If the function is unable to find any tipped nodes or if an error occurs, it will return FALSE.

Examples

Example 1

{def $popular_nodes=fetch(’content’, ’tipafriend_top_list’,
hash(’limit’, 10,

’offset’, 0,
’start_time’, maketime(0, 0, 0),
’duration’, mul(60, 60, 24)
))}

{foreach $popular_nodes as $popular_node}
{$popular_node.name|wash}

{/foreach}
{undef}

5.3.3 Modules / content 706

5

Outputs the names of the ten most popular nodes during the last 24 hours. The ”start time”
parameter sets 00:00:00 as the time and the current date. The ”duration” parameter is set to a
period that equals one day (60 seconds x 60 minutes x 24 hours).

Example 2

{def $popular_nodes=fetch(’content’, ’tipafriend_top_list’,
hash(’ascending’, false(),

’extended’, true()
))}

{foreach $popular_nodes as $popular_node}
<tr>

<td>{$popular_node.node.name|wash}</td>
<td>{$popular_node.count}</td>

</tr>
{/foreach}
{undef}

Generates a list of popular nodes by outputting their names and the number of times they were
tipped. The results are sorted by the number of times the nodes were tipped.

5.3.3 Modules / content 707

5

translation list

Summary

Fetches the locales that can be used to translate objects.

Usage

fetch(’content’, ’translation_list’)

Returns

An array of ezlocale (page 1015) objects.

Description

This function fetches all the available locales that can be used to translate the contents of ob-
jects. This translations can be managed from within the ”Translations” section of the ”Setup”
part within the administration interface. The function returns an array of ezlocale (page 1015)
objects.

Examples

Example 1

{def $locales=fetch(’content’, ’translation_list’)}

{foreach $locales as $locale}
{$locale.language_name}

{/foreach}

Outputs the names of the languages that can be used to translate the contents of objects.

5.3.3 Modules / content 708

5

trash count

Summary

Fetches the number of objects that are in the trash.

Usage

fetch(’content’, ’trash_count’)

Returns

An integer revealing the number of objects that are in the trash.

Description

This function returns the number of objects (as an integer) that are in the trash. An object is
considered to be in the trash if its status field is set to archived.

Examples

Example 1

{def $trash_count=fetch(’content’, ’trash_count’)}
There are {$trash_count} objects in the trash.

Outputs the number of items that are in the trash.

5.3.3 Modules / content 709

5

trash object list

Summary

Fetches the objects that are in the trash.

Usage

fetch(’content’, ’trash_object_list’,
hash([’offset’, offset,]

[’limit’, limit]))

Parameters

Name Type Description Required
offset integer The offset to start at. No.
limit integer The number of objects that should be

returned.
No.

Returns

An array of ezcontentobject (page 971) objects or FALSE.

Description

This function fetches all the objects that are in the trash. An object is considered to be in the
trash if its status field is set to ”archived”. The optional ”offset” and ”limit” parameters can be
used to limit the result. The function returns an array of ezcontentobject (page 971) objects or
FALSE if no objects are found.

Examples

{def $trashed_objects=fetch(’content’, ’trash_object_list’) }

{foreach $trashed_objects as $object}
{$object.name|wash}

{/foreach}

Outputs the names of the objects that are in the trash.

5.3.3 Modules / content 710

5

tree

Summary

Fetches the children of a node recursively.

Usage

fetch(’content’, ’tree’,
hash(’parent_node_id’, parent_node_id,

[’sort_by’, sort_by,]
[’offset’, offset,]
[’limit’, limit,]
[’attribute_filter’, attribute_filter,]
[’extended_attribute_filter’, extended_attribute_filter,]
[’class_filter_type’, class_filter_type,]
[’class_filter_array’, class_filter_array,]
[’only_translated’, only_translated,]
[’language’, language,]
[’main_node_only’, main_node_only,]
[’as_object’, as_object,]
[’depth’, depth,]
[’depth_operator’, depth_operator]
[’limitation’, limitation]
[’ignore_visibility’, ignore_visibility]))

5.3.3 Modules / content 711

5

Parameters

Name Type Description Required
parent node id integer The ID number of the parent node. Yes.
sort by array The sorting mechanism that should be

used.
No.

offset integer The offset to start at. No.
limit integer The maximum number of nodes that

should be fetched.
No.

attribute filter mixed Filter logic for attribute level filtering. No.
extended attribute
filter

mixed The extended attribute level filter
logic.

No.

class filter type string The type of class filtering (include/
exclude).

No.

class filter array array The type of nodes that should be fil-
tered.

No.

only translated boolean Translation filtering (on/off). No.
language string The language that should be filtered. No.
main node only boolean Type of nodes that should be fetched

(all or main nodes only).
No.

as object boolean If TRUE (or omitted), an array of ”ez-
contentobjecttreenode” objects will be
fetched. Otherwise, an array of arrays
will be returned.

No.

depth integer The maximum level of depth that
should be explored.

No.

depth operator string The logic to use when checking the
depth.

No.

limitation array Limitation array (emtpy array = access
override).

No.

ignore visibility boolean Makes it possible to fetch hidden
nodes.

No.

Description

The ”tree” function is very similar to the ”list” fetch function. The only difference is that the tree
function fetches child nodes recursively. The recursion depth can be controlled by the ”depth”
and ”depth operator” parameters. The rest of the parameters behave exactly in the same way as
they do for the ”list” function. Please refer to the documentation page of the ”list (page 657)”
function for a complete explanation of the parameters.

Depth

The depth parameter can be used to specify the level of depth (within the branch) that the
function should explore when it is running. If the depth is set to one, this function will simply act

5.3.3 Modules / content 712

5

as the list function. If the depth is greater than one, the function will fetch nodes further down
in the branch. The default value is unlimited.

Depth operator

The depth operator can be set to either ”lt”, ”eq” or ”gt” - meaning ”less than”, ”equal to” and
”greather than”. For example, if it is set to ’eq’, only nodes with the depth that was specified
using the depth parameter will be fetched.

Examples

Example 1

{def $nodes=fetch(’content’, ’tree’,
hash(’parent_node_id’, 42))}

{foreach $nodes as $node}
{$node.name|wash}

{/foreach}

This example demonstrates how to fetch all the nodes that are under node number 42 recursively
(all children, grand-children, etc. will be fetched). The names of the nodes are displayed.

5.3.3 Modules / content 713

5

tree count

Summary

Fetches the number of children of a node recursively.

Usage

fetch(’content’, ’tree_count’,
hash(’parent_node_id’, parent_node_id,

[’class_filter_type’, class_filter_type,]
[’class_filter_array’, class_filter_array,]
[’attribute_filter’, attribute_filter,]
[’extended_attribute_filter’, extended_attribute_filter,]
[’main_node_only’, boolean,]
[’depth’, depth,]
[’depth_operator’, depth_operator]))

Parameters

Name Type Description Required
parent node id integer The ID number of the parent node. Yes.
class filter type string Filter type for class filtering (include/

exclude).
No.

class filter array array The type of nodes that should be fil-
tered.

No.

attribute filter mixed Filter logic for attribute level filtering. No.
extended attribute
filter

mixed The extended attribute level filter
logic.

No.

main node only boolean Type of nodes that should be fetched
(all or main nodes only).

No.

depth integer The maximum level of depth that
should be explored.

No.

depth operator string The logic to use when checking the
depth.

No.

Returns

An integer (number of nodes).

Description

This function works in the very same way as the ”tree” function. The difference is that it returns
only the number of nodes (instead of the actual nodes). Please refer to the documentation of the

5.3.3 Modules / content 714

5

”list” (page 657), ”list count” (page 674) and the ”tree” (page 710) fetch functions.

Examples

Example 1

{def $count=fetch(’content’, ’tree_count’,
hash(’parent_node_id’, 42,

’class_filter_type’, ’exclude’,
’class_filter_array’, array(’folder’, ’comment’))

)}

Number of nodes: {$count}

This example counts the number of nodes that are children of node number 42, recursively.
Nodes that reference ”folder” or ”comment” objects will be excluded from the count.

5.3.3 Modules / content 715

5

version

Summary

Fetches a specific version of an object.

Usage

fetch(’content’, ’version’, hash(’object_id’, object_id,
’version_id’, version_id))

Parameters

Name Type Description Required
object id integer The ID number of the target object. Yes.
version id integer The version number that should be

fetched.
Yes.

Returns

An ezcontentobjectversion (page 995) object or FALSE.

Description

This function fetches a specific version of a content object. Both the ID number of the target
object and the number of the desired version must be specified using the ”object id” and the
”version id” parameters. The function returns an ezcontentobjectversion (page 995) object. It
will return FALSE if invalid parameters have been provided or if the current user has insufficient
permissions.

Examples

Example 1

{def $version=fetch(’content’, ’version’, hash(’object_id’, 13,
’version_id’, 3))}

Name of version: {$version.name}

Outputs the name of version number 3 for object number 13.

5.3.3 Modules / content 716

5

version count

Summary

Fetches the number of versions of a content object.

Usage

fetch(’content’, ’version_count’, hash(’contentobject’, object))

Parameters

Name Type Description Required
contentobject object The target object. Yes.

Returns

The number of versions of an object (as an integer).

Description

This function retrieves the number of versions of a content object. The target object must be
specified using the ”contentobject” parameter.

Examples

Example 1

{* Fetch object number 13. *}
{def $object=fetch(’content’, ’object’, hash(’object_id’, 13))}

{* Fetch the number of versions for object number 13. *}
{def $versions=fetch(’content’, ’version_count’, hash(’contentobject’,
$object))}

Object number 13 consists of {$versions} versions.

Outputs the numbre of versions that make up object number 13.

5.3.3 Modules / content 717

5

version list

Summary

Fetches all the versions of a content object.

Usage

fetch(’content’, ’version_list’, hash(’contentobject’, object,
[’offset’, offset,]
[’limit’, limit]))

Parameters

Name Type Description Required
contentobject object The target object. Yes.
offset integer Offset to start at. No.
limit integer The number of versions that should be

fetched.
No.

Returns

An array of ezcontentobjectversion (page 995) objects.

Description

This function fetches all the versions of a certain object. The object itself must be specified using
the ”contentobject” parameter. The ”offset” and ”limit” parameters are optional and can be used
to limit the result. The function returns an array of ezcontentobjectversion (page 995) objects.

Examples

Example 1

{* Fetch object number 13. *}
{def $object=fetch(’content’, ’object’, hash(’object_id’, 13))}

{* Fetch all the versions of object number 13. *}
{def $versions=fetch(’content’, ’version_list’, hash(’contentobject’,
$object))}

{* Loop through all versions and display their names. *}
{foreach $versions as $version}

5.3.3 Modules / content 718

5

{$version.name}

{/foreach}

Outputs the names of all versions that belong to object number 13.

5.3.3 Modules / content 719

5

view top list

Summary

Fetches the most popular (most viewed) nodes.

Usage

fetch(’content’, ’view_top_list’,
hash([’section_id’, section_id,]

[’class_id’, class_id,]
[’offset’, offset,]
[’limit’, limit]))

Parameters

Name Type Description Required
section id integer The ID number of the section. No.
class id integer The ID number of the class. No.
offset integer The offset to start at. No.
limit integer The number of nodes that should be re-

turned.
No.

Returns

An array of ezcontentobjecttreenode (page 990) objects.

Description

This function fetches the most popular (most viewed) nodes. The function returns an array of
ezcontentobjecttreenode (page 990) objects. The ”section id” and ”class id” parameters can be
used to filter out objects of certain type and/or objects that belong to a certain section. The
”offset” and ”limit” parameters can be used to limit the result.

In order to work, this function requires the use of the cronjob script. A part of this script will
update the view counters of the nodes by analyzing the Apache log files. The ”Scripts[]” array of
a configuration override for ”cronjob.ini” should include the ”updateviewcount.php” script:

...
Scripts[]=updateviewcount.php
...

In addition, the logfile settings in ”logfile.ini” should match the syntax of the Apache log files.

5.3.3 Modules / content 720

5

Examples

Example 1

{def $popular_nodes=fetch(’content’, ’view_top_list’,
hash(’class_id’, 2,

’limit’, 10,
’offset’, 0))}

{foreach $popular_nodes as $popular_node}
{$popular_node.name|wash}

{/foreach}

Outputs the names of the ten most popular nodes that encapsulate objects of class number 2.

5.3.3 Modules / content 721

5

Views

action (page 724)
Provides an interface to different actions (AddToBasket, SwapNode, etc.).

advancedsearch (page 725)
Provides the advanced search interface.

bookmark (page 726)
Provides an interface for managing the current user’s bookmarks.

browse (page 727)
Provides an interface for selecting node(s) by browsing the node tree.

collectedinfo (page 728)
Provides an interface for displaying the information that was collected.

collectinformation (page 729)
Provides an interface for collecting information.

copy (page 730)
Provides an interface for copying a single node.

copysubtree (page 731)
Provides an interface for copying an entire subtree of nodes.

diff (page 732)
Provides an interface for comparing two different versions of an object (DEPRECATED).

download (page 733)
Provides an interface for downloading files stored by the ”File” datatype.

draft (page 734)
Provides an interface for managing the current user’s drafts.

edit (page 735)
Provides an interface for editing and translating the contents of objects.

hide (page 736)
Provides an interface for hiding and revealing nodes.

history (page 737)
Provides an interface for managing the versions of an object and comparing two different
versions of an object.

keyword (page 738)
Loads a template that can fetch objects which use keyword.

move (page 739)
Provides an interface for changing the location of a node.

5.3.3 Modules / content 722

5

new (page 740)
Loads a template that can be used to display new content since last visit.

pdf (page 741)
Provides on-the-fly PDF generation of a node (DEPRECATED).

pendinglist (page 742)
Provides an overview of the current user’s pending items.

removeassignment (page 743)
Provides an interface for removing node assignments.

removeeditversion (page 744)
Provides an interface for draft removal.

removenode (page 745)
Provides an interface for removing nodes.

removeobject (page 746)
Provides an interface for removing objects.

restore (page 747)
Provides an interface for restoring objects from the trash.

reverserelatedlist (page 748)
Provides an interface for viewing the reverse related objects of a node and it’s children
(recursively).

search (page 749)
Provides the standard search interface.

tipafriend (page 750)
Provides an interface to the ”tip a friend” feature.

translate (page 751)
Provides an interface for the translation of a node (DEPRECATED).

translations (page 752)
Provides an interface for managing content translations.

trash (page 753)
Provides an interface for managing the trash.

treemenu (page 754)
Fetches a node’s list of children for the dynamic content structure tree menu.

upload (page 755)
Provides an interface for uploading a file which will become a node.

urlaliases (page 756)
Provides an interface for managing virtual URLs of the content nodes.

5.3.3 Modules / content 723

5

urltranslator (page 757)
Provides an interface for managing virtual URLs.

versions (page 758)
Provides an interface for managing the versions of an object (DEPRECATED).

versionview (page 759)
Provides an interface for viewing a version of an object.

view (page 760)
Provides an interface for viewing a node.

5.3.3 Modules / content 724

5

action

Summary

Provides an interface to different actions (AddToBasket, SwapNode, etc.).

5.3.3 Modules / content 725

5

advancedsearch

Summary

Provides the advanced search interface.

5.3.3 Modules / content 726

5

bookmark

Summary

Provides an interface for managing the current user’s bookmarks.

5.3.3 Modules / content 727

5

browse

Summary

Provides an interface for selecting node(s) by browsing the node tree.

5.3.3 Modules / content 728

5

collectedinfo

Summary

Provides an interface for displaying the information that was collected.

5.3.3 Modules / content 729

5

collectinformation

Summary

Provides an interface for collecting information.

5.3.3 Modules / content 730

5

copy

Summary

Provides an interface for copying a single node.

5.3.3 Modules / content 731

5

copysubtree

Summary

Provides an interface for copying an entire subtree of nodes.

5.3.3 Modules / content 732

5

diff

Summary

Provides an interface for comparing two different versions of an object (DEPRECATED).

5.3.3 Modules / content 733

5

download

Summary

Provides an interface for downloading files stored by the ”File” datatype.

5.3.3 Modules / content 734

5

draft

Summary

Provides an interface for managing the current user’s drafts.

5.3.3 Modules / content 735

5

edit

Summary

Provides an interface for editing and translating the contents of objects.

5.3.3 Modules / content 736

5

hide

Summary

Provides an interface for hiding and revealing nodes.

5.3.3 Modules / content 737

5

history

Summary

Provides an interface for managing the versions of an object and comparing two different versions
of an object.

5.3.3 Modules / content 738

5

keyword

Summary

Loads a template that can fetch objects which use keyword.

5.3.3 Modules / content 739

5

move

Summary

Provides an interface for changing the location of a node.

5.3.3 Modules / content 740

5

new

Summary

Loads a template that can be used to display new content since last visit.

5.3.3 Modules / content 741

5

pdf

Summary

Provides on-the-fly PDF generation of a node (DEPRECATED).

5.3.3 Modules / content 742

5

pendinglist

Summary

Provides an overview of the current user’s pending items.

5.3.3 Modules / content 743

5

removeassignment

Summary

Provides an interface for removing node assignments.

5.3.3 Modules / content 744

5

removeeditversion

Summary

Provides an interface for draft removal.

5.3.3 Modules / content 745

5

removenode

Summary

Provides an interface for removing nodes.

5.3.3 Modules / content 746

5

removeobject

Summary

Provides an interface for removing objects.

5.3.3 Modules / content 747

5

restore

Summary

Provides an interface for restoring objects from the trash.

5.3.3 Modules / content 748

5

reverserelatedlist

Summary

Provides an interface for viewing the reverse related objects of a node and it’s children (recur-
sively).

5.3.3 Modules / content 749

5

search

Summary

Provides the standard search interface.

5.3.3 Modules / content 750

5

tipafriend

Summary

Provides an interface to the ”tip a friend” feature.

5.3.3 Modules / content 751

5

translate

Summary

Provides an interface for the translation of a node (DEPRECATED).

5.3.3 Modules / content 752

5

translations

Summary

Provides an interface for managing content translations.

5.3.3 Modules / content 753

5

trash

Summary

Provides an interface for managing the trash.

5.3.3 Modules / content 754

5

treemenu

Summary

Fetches a node’s list of children for the dynamic content structure tree menu.

5.3.3 Modules / content 755

5

upload

Summary

Provides an interface for uploading a file which will become a node.

5.3.3 Modules / content 756

5

urlaliases

Summary

Provides an interface for managing virtual URLs of the content nodes.

5.3.3 Modules / content 757

5

urltranslator

Summary

Provides an interface for managing virtual URLs.

5.3.3 Modules / content 758

5

versions

Summary

Provides an interface for managing the versions of an object (DEPRECATED).

5.3.3 Modules / content 759

5

versionview

Summary

Provides an interface for viewing a version of an object.

5.3.3 Modules / content 760

5

view

Summary

Provides an interface for viewing a node.

5.3.4 Modules / error 761

5

5.3.4 error

Summary

Provides an interface for error handling / reporting.

Description

This module is used internally by other modules that wish to report/display error messages. The
view(s) that hte module provides can be used when developing/creating a custom module. It
doesn’t provide any direct/usable functionality when it comes to building a site (templatework
only) with eZ publish.

5.3.5 Modules / ezinfo 762

5

5.3.5 ezinfo

Summary

Provides views for displaying information about eZ publish.

Description

This is a small module that makes it possible to extract some generic information about the
system. It doesn’t interface with any engines inside the kernel. What it does is that it provides
three views: ”about”, ”copyright” and ”is alive”. The ”about” view returns information about eZ
publish, the ”copyright” view returns copyright information (related to eZ publish) and the ”is
alive” view checks the database connection and if everything seems to be okay, it returns the text
”eZ publish is alive!”.

The module components are documented in the following sections:

• Views (page 763)

5.3.5 Modules / ezinfo 763

5

Views

about (page 764)
Provides information about the system (version number, etc.).

copyright (page 765)
Provides copyright information related to eZ publish.

is alive (page 766)
Provides information about the database connection.

5.3.5 Modules / ezinfo 764

5

about

Summary

Provides information about the system (version number, etc.).

5.3.5 Modules / ezinfo 765

5

copyright

Summary

Provides copyright information related to eZ publish.

5.3.5 Modules / ezinfo 766

5

is alive

Summary

Provides information about the database connection.

5.3.6 Modules / form 767

5

5.3.6 form

Summary

Provides a view that generates an E-mail containing the data that was posted (DEPRECATED).

Description

This module has been deprecated and should not be used. It is strongly recommended to use the
information collection (page 135) feature instead.

This module is one of the simplest modules in eZ Publish. It only contains one view, which is
the ”process” view. This view can only be called using HTTP POST (form action). The process
view simply sends out an e-mail containing the data that was posted using the input fields. This
module does not act as an interface to an engine inside the eZ Publish kernel. It only provides a
simple form processing mechanism.

Note that the view provided by this module is insecure by design. It is possible to specify the
sender’s and the receiver’s E-mail address using certain hidden input fields. In other words, it
can be easily exploited by spammers. That’s why this module is disabled by default. It can be
enabled by setting ”Module=enabled” in the [FormProcessSettings] block within an configuration
override file for ”site.ini”. Hint: by commenting out the sender/receiver lines within the switch
statement in ”/kernel/form/process.php” it is possible to make this module much more secure
than it is by default.

The module components are documented in the following sections:

• Views (page 768)

5.3.6 Modules / form 768

5

Views

process (page 769)
Provides an interface for creating an E-mail based on form data (DEPRECATED).

5.3.6 Modules / form 769

5

process

Summary

Provides an interface for creating an E-mail based on form data (DEPRECATED).

5.3.7 Modules / infocollector 770

5

5.3.7 infocollector

Summary

Provides views for managing collected information.

Description

This module provides various interfaces that can be used to inspect/view and delete information
that was collected by content objects.

The module components are documented in the following sections:

• Views (page 771)

5.3.7 Modules / infocollector 771

5

Views

collectionlist (page 772)
Provides an interface for viewing and removing the collections of an object.

overview (page 773)
Provides an interface for viewing objects that have collected information.

view (page 774)
Provides an interface for viewing and deleting a specific collection.

5.3.7 Modules / infocollector 772

5

collectionlist

Summary

Provides an interface for viewing and removing the collections of an object.

5.3.7 Modules / infocollector 773

5

overview

Summary

Provides an interface for viewing objects that have collected information.

5.3.7 Modules / infocollector 774

5

view

Summary

Provides an interface for viewing and deleting a specific collection.

5.3.8 Modules / layout 775

5

5.3.8 layout

Summary

Provides a view that makes it possible to use alternative pagelayouts.

Description

This module has only one view, ”set”. The view can be used to force the system to make use
of a different pagelayout template than the default one (pagelayout.tpl). It simply takes care of
setting the variable that eZ publish uses when picking out the pagelayout template file.

When finished, the module that is specified (after the layout part in the URL) will be executed.
In other words, the layout module offers a prefix/prerun-mechanism that can be used to specify
which pagelayout eZ publish should use when rendering a specific page. For example, it can be
used to set the printer-friendly layout:

http://www.example.com/layout/set/print/content/view/full/45

Note that the URL actually contains two module-view pairs. The first module/view combination
will make sure that the print pagelayout is used, the second module/view combination instructs
eZ publish to display a full view of node number 45. The result will be the following: eZ publish
will render the full view of node number 45, but instead of using ”pagelayout.tpl” as the main
template, it will use the pagelayout that is associated with ”print” in the configuration override
for ”layout.ini”.

The module components are documented in the following sections:

• Fetch functions (page 776)

• Views (page 778)

5.3.8 Modules / layout 776

5

Fetch functions

sitedesign list (page 777)
DEPRECATED (Fetches the names of the currently used designs.)

5.3.8 Modules / layout 777

5

sitedesign list

Summary

DEPRECATED (Fetches the names of the currently used designs.)

Usage

fetch(’layout’, ’sitedesign_list’)

Returns

An array of strings containing the design names.

Description

This function fetches the different designs that are used by the current siteaccess. The function
returns an array of strings containing the names of the designs.

Examples

Example 1

{def $designs=fetch(’layout’, ’sitedesign_list’)}

{foreach $designs as $design}
{$design}

{/foreach}

Outputs the names of the designs that are used by the current siteaccess.

5.3.8 Modules / layout 778

5

Views

set (page 779)
Forces the system to use an alternate pagelayout.

5.3.8 Modules / layout 779

5

set

Summary

Forces the system to use an alternate pagelayout.

5.3.9 Modules / notification 780

5

5.3.9 notification

Summary

Provides an interface to the notification engine.

Description

This module provides an interface to the notification engine inside the eZ publish kernel. The
administration interface makes use the views that this module provides in order to allow the
management of notifications (add new, remove, edit, etc.). Although possible, it isn’t common
to use these views when building a website (unless there is a need to replicate the notification
management functionality of the administration interface).

The module components are documented in the following sections:

• Fetch functions (page 781)

• Views (page 788)

5.3.9 Modules / notification 781

5

Fetch functions

digest handlers (page 782)
Fetches the notification handlers for the notification items that should be sent as digest to
the current user.

digest items (page 783)
Fetches notification items that should be sent as digest to the current user.

event content (page 784)
Fetches the contents of the notification event.

handler list (page 785)
Fetches the available notification handlers.

subscribed nodes (page 786)
Fetches nodes that the current user has subscribed to.

subscribed nodes count (page 787)
Fetches the number of nodes that the current user has subscribed to.

5.3.9 Modules / notification 782

5

digest handlers

Summary

Fetches the notification handlers for the notification items that should be sent as digest to the
current user.

5.3.9 Modules / notification 783

5

digest items

Summary

Fetches notification items that should be sent as digest to the current user.

5.3.9 Modules / notification 784

5

event content

Summary

Fetches the contents of the notification event.

5.3.9 Modules / notification 785

5

handler list

Summary

Fetches the available notification handlers.

Usage

fetch(’notification’, ’handler_list’)

Returns

An array of notification handler objects.

Description

This function fetches all the available notification handlers and returns an array containing han-
dler objects.

Examples

Example 1

{def $handlers=fetch(’notification’, ’handler_list’)}
{foreach $handlers as $handler}

{$handler.id_string}

{/foreach}

Outputs the identification string of all the available notification handlers.

5.3.9 Modules / notification 786

5

subscribed nodes

Summary

Fetches nodes that the current user has subscribed to.

Usage

fetch(’notification’, ’subscribed_nodes’,
hash([’offset’, offset,]

[’limit’, limit]))

Parameters

Name Type Description Required
offset integer The offset to start at. No.
limit integer The number of nodes that should be

fetched.
No.

Returns

Array of ezsubtreenotificationrule (page 1053) objects or FALSE.

Description

This function fetches the nodes that the current user has subsribed to. The ”offset” and ”limit”
parameters are optional. The function returns an array of ezsubtreenotificationrule (page 1053)
objects or FALSE if no nodes could be found.

Examples

Example 1

{def $subscriptions=fetch(’notification’, ’subscribed_nodes’)}

{foreach $subscriptions as $subscription}
{$subscription.node.name|wash}

{/foreach}

Outputs the names of the nodes that the current user has subscribed to.

5.3.9 Modules / notification 787

5

subscribed nodes count

Summary

Fetches the number of nodes that the current user has subscribed to.

Usage

fetch(’notification’, ’subscribed_nodes_count’)

Returns

The number of nodes that the current user has subscribed to (as an integer).

Description

This function fetches and returns the number of nodes that the current user has subsribed to.

Examples

Example 1

{def $node_count=fetch(’notification’, ’subscribed_node_count’)}
The current user has subscribed to {$node_count} number of nodes.

Outputs the number of nodes that the current user has subscribed to.

5.3.9 Modules / notification 788

5

Views

addtonotification (page 789)
Provides a mechanism that adds a new subtree notification.

runfilter (page 790)
Provides an interface for launching the main notification processing script and for generat-
ing a new time event.

settings (page 791)
Provides an interface for tweaking user notification settings.

5.3.9 Modules / notification 789

5

addtonotification

Summary

Provides a mechanism that adds a new subtree notification.

5.3.9 Modules / notification 790

5

runfilter

Summary

Provides an interface for launching the main notification processing script and for generating a
new time event.

5.3.9 Modules / notification 791

5

settings

Summary

Provides an interface for tweaking user notification settings.

5.3.10 Modules / package 792

5

5.3.10 package

Summary

Provides views for importing/exporting packages.

Description

This module provides an interface to the packaging system. It makes it possible to view, import,
export, install, uninstall, etc. eZ publish packages. The views that this module provides are used
within the setup part of the administration interface.

The module components are documented in the following sections:

• Fetch functions (page 793)

• Views (page 807)

5.3.10 Modules / package 793

5

Fetch functions

can create (page 794)
Not documented yet.

can edit (page 795)
Not documented yet.

can export (page 796)
Not documented yet.

can import (page 797)
Not documented yet.

can install (page 798)
Not documented yet.

can list (page 799)
Not documented yet.

can read (page 800)
Not documented yet.

can remove (page 801)
Not documented yet.

dependent list (page 802)
Not documented yet.

item (page 803)
Not documented yet.

list (page 804)
Not documented yet.

maintainer role list (page 805)
Not documented yet.

repository list (page 806)
Not documented yet.

5.3.10 Modules / package 794

5

can create

Summary

Not documented yet.

5.3.10 Modules / package 795

5

can edit

Summary

Not documented yet.

5.3.10 Modules / package 796

5

can export

Summary

Not documented yet.

5.3.10 Modules / package 797

5

can import

Summary

Not documented yet.

5.3.10 Modules / package 798

5

can install

Summary

Not documented yet.

5.3.10 Modules / package 799

5

can list

Summary

Not documented yet.

5.3.10 Modules / package 800

5

can read

Summary

Not documented yet.

5.3.10 Modules / package 801

5

can remove

Summary

Not documented yet.

5.3.10 Modules / package 802

5

dependent list

Summary

Not documented yet.

5.3.10 Modules / package 803

5

item

Summary

Not documented yet.

5.3.10 Modules / package 804

5

list

Summary

Not documented yet.

5.3.10 Modules / package 805

5

maintainer role list

Summary

Not documented yet.

5.3.10 Modules / package 806

5

repository list

Summary

Not documented yet.

5.3.10 Modules / package 807

5

Views

create (page 808)
Not documented yet.

export (page 809)
Not documented yet.

install (page 810)
Not documented yet.

list (page 811)
Not documented yet.

uninstall (page 812)
Not documented yet.

upload (page 813)
Not documented yet.

view (page 814)
Not documented yet.

5.3.10 Modules / package 808

5

create

Summary

Not documented yet.

5.3.10 Modules / package 809

5

export

Summary

Not documented yet.

5.3.10 Modules / package 810

5

install

Summary

Not documented yet.

5.3.10 Modules / package 811

5

list

Summary

Not documented yet.

5.3.10 Modules / package 812

5

uninstall

Summary

Not documented yet.

5.3.10 Modules / package 813

5

upload

Summary

Not documented yet.

5.3.10 Modules / package 814

5

view

Summary

Not documented yet.

5.3.11 Modules / pdf 815

5

5.3.11 pdf

Summary

Provides views for configuring PDF exports (DEPRECATED).

Description

This module provides an interface to the PDF (Portable Document Format) engine inside the
kernel. This module has a couple of views that make it possible to configure PDF exports. The
views provided by this module are used within the setup part of the administration interface.

The module components are documented in the following sections:

• Views (page 816)

5.3.11 Modules / pdf 816

5

Views

edit (page 817)
Provides an interface for editing PDF exports (DEPRECATED).

list (page 818)
Provides an interface for generating an overview of the PDF exports (DEPRECATED).

5.3.11 Modules / pdf 817

5

edit

Summary

Provides an interface for editing PDF exports (DEPRECATED).

5.3.11 Modules / pdf 818

5

list

Summary

Provides an interface for generating an overview of the PDF exports (DEPRECATED).

5.3.12 Modules / reference 819

5

5.3.12 reference

Summary

Provides a view for displaying documentation generated by Doxygen.

Description

This module provides a view for displaying documentation generated by Doxygen.

5.3.13 Modules / role 820

5

5.3.13 role

Summary

Provides views for managing roles.

Description

This module provides an interface to the permission system inside the eZ Publish kernel. It
contains views that can be used to manage roles, role assignments, policies and so on. These
views are used by the administration interface.

The module components are documented in the following sections:

• Views (page 821)

5.3.13 Modules / role 821

5

Views

assign (page 827)
Provides an interface for assigning roles to users and user groups.

copy (page 826)
Provides an interface for copying roles.

edit (page 825)
Provides an interface for editing roles.

list (page 824)
Provides an interface for generating an overview of all available roles.

policyedit (page 823)
Provides an interface for editing policies.

view (page 822)
Provides an interface for viewing a role.

5.3.13 Modules / role 822

5

view

Summary

Provides an interface for viewing a role.

5.3.13 Modules / role 823

5

policyedit

Summary

Provides an interface for editing policies.

5.3.13 Modules / role 824

5

list

Summary

Provides an interface for generating an overview of all available roles.

5.3.13 Modules / role 825

5

edit

Summary

Provides an interface for editing roles.

5.3.13 Modules / role 826

5

copy

Summary

Provides an interface for copying roles.

5.3.13 Modules / role 827

5

assign

Summary

Provides an interface for assigning roles to users and user groups.

5.3.14 Modules / rss 828

5

5.3.14 rss

Summary

Provides views for managing RSS imports and exports.

Description

This module provides an interface to the RSS (Really Simple Syndication) engine inside the eZ
Publish kernel. The views that this module provide are used by the administration interface.
These views make it possible to view and mange incoming and outgoing RSS feeds.

The module components are documented in the following sections:

• Views (page 829)

5.3.14 Modules / rss 829

5

Views

edit export (page 830)
Provides an interface for editing an RSS export.

edit import (page 831)
Provides an interface for editing an RSS import.

feed (page 832)
Not documented yet.

list (page 833)
Provides an interface for generating an overview of RSS imports and exports.

5.3.14 Modules / rss 830

5

edit export

Summary

Provides an interface for editing an RSS export.

5.3.14 Modules / rss 831

5

edit import

Summary

Provides an interface for editing an RSS import.

5.3.14 Modules / rss 832

5

feed

Summary

Not documented yet.

5.3.14 Modules / rss 833

5

list

Summary

Provides an interface for generating an overview of RSS imports and exports.

5.3.15 Modules / search 834

5

5.3.15 search

Summary

Provides a view that displays search statistics.

Description

This module provides only a single view which is the ”stats” view. The view can be used to display
and reset the search statistics. The search module itself doesn’t take care of indexing words, etc.
This is done from within the content engine when objects are published.

The module components are documented in the following sections:

• Fetch functions (page 835)

• Views (page 839)

5.3.15 Modules / search 835

5

Fetch functions

list (page 836)
Fetches the phrases that have been searched ordered by their usage frequency.

list count (page 838)
Fetches the number of unique phrases that have been searched.

5.3.15 Modules / search 836

5

list

Summary

Fetches the phrases that have been searched ordered by their usage frequency.

Usage

fetch(’search’, ’list’,
hash([’offset’, offset,]

[’limit’, limit]))

Parameters

Name Type Description Required
offset integer The offset to start at. No.
limit integer The number of items that should be re-

turned.
No.

Returns

An array of hashes (see below) or FALSE.

Description

This function fetches the phrases that have been searched on the site. The phrases are ordered by
their usage frequency. If two or more phrases have the same usage frequency, they are ordered
by the number of nodes that match the search conditions.

The ”offset” and ”limit” parameters are optional and can be used to limit the result. If the ”offset”
and ”limit” parameters are omitted, the function will return all the search phrases.

The function returns an array of hashes. The hashes consist of the following elements:

Key Type Description
id string The ID number of the search

phrase.
phrase string The text of the search phrase.
phrase count string The number of times the

phrase has been searched for.
result count string The number of nodes that

match the search conditions
(average search results that
have been returned).

If no search phrases are found, the function returns FALSE.

5.3.15 Modules / search 837

5

Examples

Example 1

{def $search_list=fetch(’search’, ’list’))}
{foreach $search_list as $s}

{$s.id } : {$s.phrase}

{/foreach}

Outputs all phrases that have been searched for along with their ID numbers.

Example 2

{def $search_list=fetch(’search’, ’list’, hash(’limit’,’10’))}
{foreach $search_list as $s}

{$s.phrase } : {$s.phrase_count}

{/foreach}

Outputs the ten most frequently searched phrases and their usage frequency.

5.3.15 Modules / search 838

5

list count

Summary

Fetches the number of unique phrases that have been searched.

Usage

fetch(’search’, ’list_count’)

Returns

The number of phrases that have been searched (as an integer).

Description

This function fetches the number of unique phrases that have been searched and returns it as an
integer.

Examples

Example 1

{def $count=fetch(’search’, ’list_count’)}
{$count} phrases were searched on this site.

Outputs the number of unique phrases that have been searched on the site.

5.3.15 Modules / search 839

5

Views

stats (page 840)
Provides an interface for viewing and resetting the search statistics.

5.3.15 Modules / search 840

5

stats

Summary

Provides an interface for viewing and resetting the search statistics.

5.3.16 Modules / section 841

5

5.3.16 section

Summary

Provides views for managing sections.

Description

This module provides an interface to the content engine inside the eZ Publish kernel. The section
mechanism can be used to create groups of objects. Please refer to the ”sections” (page 132) part
of the ”Concepts and basics” chapter for more information about sections. This module provides
views that are used by the administration interface.

The module components are documented in the following sections:

• Fetch functions (page 842)

• Views (page 851)

5.3.16 Modules / section 842

5

Fetch functions

object (page 843)
Fetches a section.

object list (page 844)
Fetches objects that belong to certain section.

object list count (page 846)
Fetches the number of objects that belong to certain section.

roles (page 848)
Fetches roles that have at least one policy limited to a certain section.

user roles (page 850)
Fetches users and/or user groups with role limitations related to a certain section.

5.3.16 Modules / section 843

5

object

Summary

Fetches a section.

Usage

fetch(’section’, ’object’, hash(’section_id’, section_id))

Parameters

Name Type Description Required
section id integer The ID number of the section that

should be fetched.
Yes.

Returns

An ezsection (page 1050) object or FALSE.

Description

This function fetches an object that represents a section. The ”section id” parameter must be a
valid section ID number. The function returns an ezsection (page 1050) object. If an invalid ID
number is specified, the function will return FALSE.

Examples

Example 1

{def $section=fetch(’section’, ’object’, hash(’section_id’, 13))}
{$section.name|wash}

Outputs the name of section number 13.

5.3.16 Modules / section 844

5

object list

Summary

Fetches objects that belong to certain section.

Usage

fetch(’section’, ’object_list’,
hash(’section_id’, section_id,

[’offset’, offset,]
[’limit’, limit,]
[’sort_order’, sort_order]
[’status’, status]))

Parameters

Name Type Description Required
section id integer The ID number of the target section. Yes.
offset integer The offset to start at. No.
limit integer The number of objects that should be

fetched.
No.

sort order array The desired sorting order. No.
status string The status of the target objects (’pub-

lished’ by default).
No.

Returns

An array of ezcontentobject (page 971) objects or FALSE.

Description

This function fetches a set of objects that belong to a certain section. The section must be spec-
ified by its ID number using the ”section id” parameter. The ”offset”, ”limit” and ”sort order”
parameters work in the same way as in the list (page 657) fetch function of the ”content” mod-
ule.

The optional ”status” parameter can be used to specify the status of objects that should be fetched.
If this parameter is omitted or set to ”published”, the function will fetch all published objects that
belong to the specified section. If set to ”archived”, the archived (moved to the trash) objects that
belong to the specified section will be fetched. (Note that fetching all draft objects that belong to
a certain section is not supported.)

The function returns an array of ezcontentobject (page 971) objects. If no objects can be found,
or if the provided section ID number is invalid, FALSE will be returned.

5.3.16 Modules / section 845

5

Examples

Example 1

{def $objects=fetch(’section’, ’object_list’,
hash(’section_id’, 13))}

{foreach $objects as $object}
{$object.name}

{/foreach}

Outputs the names of the published objects that belong to section number 13.

Example 2

{def $objects=fetch(’section’, ’object_list’,
hash(’section_id’, 5,

’status’, ’archived’))}

{foreach $objects as $object}
{$object.name}

{/foreach}

Outputs the names of the objects that belong to section number 5 and are moved to the trash.

5.3.16 Modules / section 846

5

object list count

Summary

Fetches the number of objects that belong to certain section.

Usage

fetch(’section’, ’object_list_count’,
hash(’section_id’, section_id,

[’status’, status]))

Parameters

Name Type Description Required
section id integer The ID number of the target section. Yes.
status string The status of the target objects (’pub-

lished’ by default).
No.

Returns

The number of objects (as an integer) that belong to the section.

Description

This function counts the number of objects that belong to a section specified by the ”section id”
parameter. The optional ”status” parameter works in the same way as in the ”object list (page
844)” fetch function.

The function returns the count as an integer.

Examples

Example 1

{def $count=fetch(’section’, ’object_list_count’,
hash(’section_id’, 13))}

There are {$count} number of objects in section number 13.

Outputs the number of published objects that belong to section number 13.

5.3.16 Modules / section 847

5

Example 2

{def $count=fetch(’section’, ’object_list_count’,
hash(’section_id’, 5,

’status’, ’archived’))}

There are {$count} number of archived objects in section number 5.

Outputs the number of objects that belong to section number 5 and are moved to the trash.

5.3.16 Modules / section 848

5

roles

Summary

Fetches roles that have at least one policy limited to a certain section.

Usage

fetch(’section’, ’roles’, hash(’section_id’, section_id))

Parameters

Name Type Description Required
section id integer The ID number of the target section. Yes.

Returns

An array (see below) or FALSE.

Description

This function returns a structure that contains information about roles which have at least one
policy limited to a certain section. The function returns an array with two keys:

Name Description
roles Contains a list of roles with at least one policy

limited to the given section.
limited policies Contains a 2D array (the role ID as the first

key) of the limited policies.

Examples

Example 1

{def $roles_array=fetch(’section’, ’roles’, hash(’section_id’, 13))
$roles=$roles_array.roles
$policies=$roles_array.limited_policies}

{foreach $roles as $role}
{$role.name}:
{foreach $limited_policies[$role.id] as $policy}

{$policy.module_name}/{$policy.function_name}
{delimiter}, {/delimiter}

5.3.16 Modules / section 849

5

{/foreach}

{/foreach}

Outputs information about roles that have limitations associated with section number 13.

5.3.16 Modules / section 850

5

user roles

Summary

Fetches users and/or user groups with role limitations related to a certain section.

Usage

fetch(’section’, ’user_roles’, hash(’section_id’, section_id))

Parameters

Name Type Description Required
section id integer The ID number of the target section. Yes.

Returns

An array (see below) or FALSE.

Description

This function fetches user and/or user groups that have role limitations associated with a certain
section. The section must be defined using a valid section ID number through the ”section id”
parameter. Please refer to the example below to see how the returned information can be used.

Examples

Example 1

{def $user_roles=fetch(’section’, ’user_roles’, hash(’section_id’, 13))}

{foreach $user_roles as $user_role}
User (or group) {$user_role.user.name} has limitation on the section 13.
The "touched" role is {$user_role.role.name}.

{/foreach}

5.3.16 Modules / section 851

5

Views

assign (page 855)
Provides an interface for assigning objects to a section.

edit (page 854)
Provides an interface for editing a section.

list (page 853)
Provides an interface for generating an overview of all the available sections.

view (page 852)
Provides an interface for viewing a section.

5.3.16 Modules / section 852

5

view

Summary

Provides an interface for viewing a section.

5.3.16 Modules / section 853

5

list

Summary

Provides an interface for generating an overview of all the available sections.

5.3.16 Modules / section 854

5

edit

Summary

Provides an interface for editing a section.

5.3.16 Modules / section 855

5

assign

Summary

Provides an interface for assigning objects to a section.

5.3.17 Modules / setup 856

5

5.3.17 setup

Summary

Provides the web based setup wizard.

Description

This module provides the views for the web based setup wizard.

5.3.18 Modules / shop 857

5

5.3.18 shop

Summary

Provides views for the webshop (basket, wish list, order list, etc.).

Description

This module provides an interface to the content and the e-commerce engine inside the eZ Publish
kernel. The views that this module offers are typically used when building a webshop oriented
site. This module also provides some views that are used by the administration interface.

The module components are documented in the following sections:

• Fetch functions (page 858)

• Views (page 874)

5.3.18 Modules / shop 858

5

Fetch functions

basket (page 859)
Fetches the current user’s shopping basket.

best sell list (page 860)
Fetches the most popular / most sold products.

currency (page 863)
Fetches a currency object.

currency list (page 864)
Fetches the available currencies.

preferred currency code (page 866)
Fetches the current user’s preferred currency.

product category (page 867)
Fetches a product category.

product category list (page 868)
Fetches the available product categories.

related purchase (page 869)
Fetches products that were purchased together with a given product.

wish list (page 871)
Fetches the products of a given wishlist.

wish list count (page 873)
Fetches a wishlist and returns the number of items in it.

5.3.18 Modules / shop 859

5

basket

Summary

Fetches the current user’s shopping basket.

Usage

fetch(’shop’, ’basket’)

Returns

An ezbasket (page 955) object.

Description

This function fetches the shopping basket that belongs to the current user. The function returns
an ezbasket (page 955) object.

Examples

Example 1

{def $basket=fetch(’shop’, ’basket’)}

{if $basket.is_empty}

There are no products in the basket.

{else}

There are {count($basket.items)} items in the basket.

Total price (ex. VAT) : {$basket.total_ex_vat|l10n(currency)}

Total price (inc. VAT): {$basket.total_inc_vat|l10n(currency)}

{/if}

Outputs basic information about the current user’s shopping basket.

5.3.18 Modules / shop 860

5

best sell list

Summary

Fetches the most popular / most sold products.

Usage

fetch(’shop’, ’best_sell_list’,
hash([’top_parent_node_id’, parent_node_id,]

[’offset’, offset,]
[’limit’, limit,]
[’start_time’, start_time,]
[’end_time’, end_time,]
[’duration’, duration,]
[’ascending’, ascending,]
[’extended’, extended]))

Parameters

Name Type Description Required
top parent node id integer The ID number of the top node. Yes.
limit integer The number of objects that should be

returned.
No.

offset integer The offset to start at. No.
start time integer The time to start at. No.
end time integer The time to end at. No.
duration integer The period of time that should be used. No.
ascending boolean The sorting direction that should be

used. If FALSE (default), the results
will be sorted descending by the num-
ber of times each product was bought.

No.

extended boolean If TRUE, an array of hashes will be re-
turned.

No.

Returns

An array of ezcontentobject (page 971) objects, an array of hashes (see below) or FALSE.

Description

This function fetches the most popular / most sold products that are located within a specified
part of the content node tree. The ”top parent node id” parameter must be used to tell the func-
tion under which node it should look for popular products.

5.3.18 Modules / shop 861

5

The returned result is sorted by the number of times the products were bought. The sorting
direction can be controlled using the ”ascending” parameter, it can be set to either TRUE or
FALSE (default).

The ”limit” and ”offset” parameters can be used to control the number of items returned and the
offset to start at.

The ”start time”, ”end time” and ”duration” parameters can be used to specify a time period that
the function should operate within. These parameters make it possible to fetch the most popular/
sold products for a certain period of time (for example last 24 hours, last week, last month, etc.).
If the ”start time” and ”duration” parameters are specified, results for the ”start time+duration”
period of time will be fetched. If the ”end time” and ”duration” parameters are specified, results
for the ”end time-duration” period of time will be fetched. If all of these parameters are omitted,
the function will cover all products, regardless when they were purchased. If both the ”start time”
and ”duration” parameters are omitted, then only results for the period before ”end time” will
be fetched. If only the ”start time” or ”duration” parameter is set, the function will automatically
use the current time as the ”end time” parameter.

By default (when the ”extended” parameter is FALSE), the function returns an array of ezcon-
tentobject (page 971) objects. If the ”extended” parameter is set to TRUE, the function will return
an array of the following hashes:

Key Type Description
count integer The number of times the

product was bought.
contentobject id string The ID number of the prod-

uct.
object object The product itself (as an ez-

contentobject (page 971) ob-
ject).

If the function is unable to find any products, it will return FALSE.

Examples

Example 1

{def $best_sellers=fetch(’shop’, ’best_sell_list’,
hash(’top_parent_node_id’, 2,

’limit’, 5,
’offset’, 0,
’start_time’, maketime(0, 0, 0),
’duration’, mul(60, 60, 24))) }

{foreach $best_sellers as $product}
{$product.name}

{/foreach}
{undef}

5.3.18 Modules / shop 862

5

Outputs the names of the five most popular products below node 2 during the last 24 hours. The
”start time” parameter sets 00:00:00 as the time and the current date. The ”duration” parameter
is set to a period that equals one day (60 seconds x 60 minutes x 24 hours).

Example 2

{def $best_sellers=fetch(’shop’, ’best_sell_list’,
hash(’top_parent_node_id’, 2,

’ascending’, false(),
’extended’, true())) }

<table>
{foreach $best_sellers as $product}

<tr>
<td>{$product.object.name}</td>
<td>{$product.object.main_node.path_identification_string}</td>
<td>{$product.count}</td>
</tr>

{/foreach}
</table>
{undef}

Generates a list of popular products by outputting the names, node paths and the number of times
they were bought. The results are sorted by the number of times the products were bought.

5.3.18 Modules / shop 863

5

currency

Summary

Fetches a currency object.

Usage

fetch(’shop’, ’currency’,
hash(’code’, code))

Parameters

Name Type Description Required
code string The three-character code of the target

currency.
Yes.

Returns

An ezcurrencydata (page 999) object or FALSE.

Description

This function fetches the currency specified by the ”code” parameter and returns it as an ezcurren-
cydata (page 999) object. The function will return FALSE if the specified currency is unavailable.

Examples

Example 1

{def $code = ’EUR’}

{def $currency = fetch(’shop’, ’currency’,
hash(’code’, $code))}

{if $currency}
The currency symbol for EUR is {$currency.symbol}.

{/if}

Outputs the currency symbol that is used for the ”EUR” currency if available.

5.3.18 Modules / shop 864

5

currency list

Summary

Fetches the available currencies.

Usage

fetch(’shop’, ’currency_list’ [, hash(’status’, status)])

Parameters

Name Type Description Required
status string The status of the target currencies. No.

Returns

An array of ezcurrencydata (page 999) objects or FALSE.

Description

This function fetches the available currencies and returns an array of ezcurrencydata (page 999)
objects. The resulting array starts with the most recently added currency. When the optional
”status” parameter is used then only currencies with the specified status will be fetched.

Examples

Example 1

{def $currency_list = fetch(’shop’, ’currency_list’)}
{if count($currency_list)}

{foreach $currency_list as $Currency}
{$Currency.code}

{/foreach}
{else}

There are no currencies.
{/if}

Outputs the currency codes for all the available currencies.

Example 2

5.3.18 Modules / shop 865

5

{def $currency_list = fetch(’shop’, ’currency_list’, hash(’status’, ’active’
))}
{if count($currency_list)}

The following currencies are active:

{foreach $currency_list as $Currency}

{$Currency.code}

{/foreach}

{else}
There are no active currencies.

{/if}

Outputs the currency codes for active currencies only.

5.3.18 Modules / shop 866

5

preferred currency code

Summary

Fetches the current user’s preferred currency.

Usage

fetch(’shop’, ’preferred_currency_code’)

Returns

A three-character currency code or FALSE.

Description

This function fetches the preferred currency of the current user and returns a three-character
currency code. A value for the preferred currency is taken from (sorted by priority ascending)

• shop.ini

• user’s preferences

• session variable

The function will return FALSE if the preferred currency is not specified.

Examples

Example 1

{def $currency = fetch(’shop’, ’preferred_currency_code’)}
{if $currency}

Your preferred currency is {$currency}.
{else}

You should choose the preferred currency.
{/if}

Outputs the currency code of the current user’s preferred currency.

5.3.18 Modules / shop 867

5

product category

Summary

Fetches a product category.

Usage

fetch(’shop’, ’product_category’,
hash(’category_id’, category_id))

Parameters

Name Type Description Required
category id integer The identifier of the target product cat-

egory.
Yes.

Returns

An ezproductcategory (page 1044) object or FALSE.

Description

This function fetches the product category specified by the ”category id” parameter and returns
it as an ezproductcategory (page 1044) object. The function will return FALSE if the specified
product category is unavailable.

Examples

Example 1

{def $category = fetch(’shop’, ’product_category’,
hash(’category_id’, 3))}

{if $category}
The product category called "{$category.name}" has id=3.

{/if}

Outputs the name of the product category with the specified identifier.

5.3.18 Modules / shop 868

5

product category list

Summary

Fetches the available product categories.

Usage

fetch(’shop’, ’product_category_list’)

Returns

An array of ezproductcategory (page 1044) objects or FALSE.

Description

This function fetches the available product categories and returns an array of ezproductcategory
(page 1044) objects.

Examples

Example 1

{def $product_categories = fetch(’shop’, ’product_category_list’)}
{if count($product_categories)}

{foreach $product_categories as $Category}
{$Category.name}

{/foreach}
{else}

There are no product categories.
{/if}

Outputs the category names for all the available product categories.

5.3.18 Modules / shop 869

5

related purchase

Summary

Fetches products that were purchased together with a given product.

Usage

fetch(’shop’, ’related_purchase’,
hash(’contentobject_id’, id,

’limit’, limit))

Parameters

Name Type Description Required
contentobject id integer The ID number of the object represent-

ing the source product.
Yes.

limit integer The number of objects that should be
fetched.

Yes.

Returns

An array of ezcontentobject (page 971) objects or FALSE.

Description

This function fetches a collection of products (content objects) that were purchased together with
a given product. It can be used to create a ”People who bought this product has also bought...”
list. The source product must be specified using the ”contentobject id” parameter. This parameter
must be an integer that reveals the ID number of the content object that represents the source
product. The ”limit” parameter must be used to limit the result. The function will return an array
of ezcontentobject (page 971) objects or FALSE if no objects were found.

Examples

Example 1

{def $other_products=fetch(’shop’, ’related_purchase’,
hash(’contentobject_id’, 32,

’limit’, 5))}

{foreach $other_products as $product}
{$product.name}

{/foreach}

5.3.18 Modules / shop 870

5

Outputs the names of 5 products that were bought together with a product represented by object
number 32.

5.3.18 Modules / shop 871

5

wish list

Summary

Fetches the products of a given wishlist.

Usage

fetch(’shop’, ’wish_list’,
hash(’production_id’, production_id,

[’offset’, offset,]
[’limit’, limit]))

Parameters

Name Type Description Required
production id integer The ID of the target wishlist. Yes.
offset integer The offset to start at. No.
limit integer The number of products that should be

fetched.
No.

Returns

An array of arrays containing information about the items in the wishlist (see below) or FALSE.

Description

This function fetches the products that belong to a certain wishlist. The system stores wishlists
using the same solution that is used to store the contents of shopping baskets, the ”product
collection” schema. The desired wishlist must be specified using the ID number of the product
collection that contains the wishlist. The optional ”offset” and ”limit” parameters can be used to
control the resulting set. The function returns an array of arrays containing information about
each item in the wishlist. The following table shows the structure that is used for each element
of the array.

Attribute Type Description
id string The ID number of the item in

the basket.
vat value string 32
item count string The quantity.
node id string The ID number of the node

that represents the item.
object name string The name of the object that

5.3.18 Modules / shop 872

5

represents the item.
price ex vat double The price of the item exclud-

ing the VAT.
price inc vat string The price of the item includ-

ing the VAT.
discount percent string The discount percentage (if

any).
total price ex vat double The total price excluding the

VAT.
total price inc vat double The total price including the

VAT.
item object object The item itself (as an ezpro-

ductcollectionitem (page
1045) object).

If the system is unable to find any products, an empty wishlist / FALSE will be returned.

Examples

Example 1

{def $wishlist=fetch(’shop’, ’wish_list’, hash(’production_id’, 13))}

{foreach $wishlist as $wish}
{$wish.object_name|wash}

{/foreach}

Outputs the names of the objects that make up wishlist number 13.

5.3.18 Modules / shop 873

5

wish list count

Summary

Fetches a wishlist and returns the number of items in it.

Usage

fetch(’shop’, ’wish_list_count’, hash(’production_id’, production_id))

Parameters

Name Type Description Required
production id integer The ID number of the target wishlist. Yes.

Returns

The number of items that make up the wishlist (as an integer).

Description

This function fetches the products that belong to a certain wishlist and returns an integer. The
integer reveals the number of items that make up the wishlist. The system stores wishlists using
the same solution that is used to store the contents of shopping baskets, the ”product collection”
schema. The desired wishlist must be specified using the ID number of the product collection
that contains the target wishlist.

Examples

Example 1

{def $sum=fetch(’shop’, ’wish_list_count’, hash(’productcollection_id’, 13
))}
There are {$sum} items in wishlist number 13.

Outputs the number of items that make up wishlist number 13.

5.3.18 Modules / shop 874

5

Views

basket (page 876)
Provides an interface to the shopping basket of the current user.

checkout (page 877)
Provides the checkout interface.

confirmorder (page 878)
Provides the interface that asks the user to confirm an order.

currencylist (page 879)
Provides an interface for viewing currencies and makes it possible to edit some of the
currency’s attributes for several currencies at the same time. Allows to update auto rates
for all currencies.

customerlist (page 880)
Provides an interface for generating an overview of the customers.

customerorderview (page 881)
Provides an interface for viewing information the orders of a customer.

discountgroup (page 882)
Provides an interface for generating an overview of the discount groups.

discountgroupedit (page 883)
Provides an interface for editing a discount group.

discountgroupview (page 884)
Provides an interface for viewing a discount group.

discountruleedit (page 885)
Provides an interface for editing a discount rule.

editcurrency (page 886)
Provides an interface for editing a currency.

editvatrule (page 887)
Provides an interface for editing a VAT charging rule.

orderlist (page 888)
Provides an interface for generating an overview of orders.

orderview (page 889)
Provides an interface for viewing an order.

preferredcurrency (page 890)
Provides an interface for setting the user’s preferred currency.

productcategories (page 891)
Provides an interface for viewing and managing product categories.

5.3.18 Modules / shop 875

5

productsoverview (page 892)
Provides an interface for generating an overview of products and allows sorting by product’s
name or price.

register (page 893)
Provides an interface for registering a customer.

removeorder (page 894)
Provides an interface for removing an order.

statistics (page 895)
Provides an interface for generating sales statistics.

userregister (page 896)
Provides an interface for registering a user.

vatrules (page 897)
Provides an interface for generating an overview of the VAT charging rules.

vattype (page 898)
Provides an interface for managing VATs.

wishlist (page 899)
Provides an interface for viewing and managing the current user’s wishlist.

5.3.18 Modules / shop 876

5

basket

Summary

Provides an interface to the shopping basket of the current user.

5.3.18 Modules / shop 877

5

checkout

Summary

Provides the checkout interface.

5.3.18 Modules / shop 878

5

confirmorder

Summary

Provides the interface that asks the user to confirm an order.

5.3.18 Modules / shop 879

5

currencylist

Summary

Provides an interface for viewing currencies and makes it possible to edit some of the currency’s
attributes for several currencies at the same time. Allows to update auto rates for all currencies.

5.3.18 Modules / shop 880

5

customerlist

Summary

Provides an interface for generating an overview of the customers.

5.3.18 Modules / shop 881

5

customerorderview

Summary

Provides an interface for viewing information the orders of a customer.

5.3.18 Modules / shop 882

5

discountgroup

Summary

Provides an interface for generating an overview of the discount groups.

5.3.18 Modules / shop 883

5

discountgroupedit

Summary

Provides an interface for editing a discount group.

5.3.18 Modules / shop 884

5

discountgroupview

Summary

Provides an interface for viewing a discount group.

5.3.18 Modules / shop 885

5

discountruleedit

Summary

Provides an interface for editing a discount rule.

5.3.18 Modules / shop 886

5

editcurrency

Summary

Provides an interface for editing a currency.

5.3.18 Modules / shop 887

5

editvatrule

Summary

Provides an interface for editing a VAT charging rule.

5.3.18 Modules / shop 888

5

orderlist

Summary

Provides an interface for generating an overview of orders.

5.3.18 Modules / shop 889

5

orderview

Summary

Provides an interface for viewing an order.

5.3.18 Modules / shop 890

5

preferredcurrency

Summary

Provides an interface for setting the user’s preferred currency.

5.3.18 Modules / shop 891

5

productcategories

Summary

Provides an interface for viewing and managing product categories.

5.3.18 Modules / shop 892

5

productsoverview

Summary

Provides an interface for generating an overview of products and allows sorting by product’s
name or price.

5.3.18 Modules / shop 893

5

register

Summary

Provides an interface for registering a customer.

5.3.18 Modules / shop 894

5

removeorder

Summary

Provides an interface for removing an order.

5.3.18 Modules / shop 895

5

statistics

Summary

Provides an interface for generating sales statistics.

5.3.18 Modules / shop 896

5

userregister

Summary

Provides an interface for registering a user.

5.3.18 Modules / shop 897

5

vatrules

Summary

Provides an interface for generating an overview of the VAT charging rules.

5.3.18 Modules / shop 898

5

vattype

Summary

Provides an interface for managing VATs.

5.3.18 Modules / shop 899

5

wishlist

Summary

Provides an interface for viewing and managing the current user’s wishlist.

5.3.19 Modules / trigger 900

5

5.3.19 trigger

Summary

Provides a view for managing workflow triggers.

Description

This module provides an interface to the workflow engine inside the eZ Publish kernel. It consists
of a view that can be used to list and manage the workflows that should be triggered before or
after a specific function within a specific module is executed. The administration interface makes
use of this view to allow the administrator to view and manage triggers.

The module components are documented in the following sections:

• Views (page 901)

5.3.19 Modules / trigger 901

5

Views

list (page 902)
Provides an interface for viewing and managing the workflow triggers.

5.3.19 Modules / trigger 902

5

list

Summary

Provides an interface for viewing and managing the workflow triggers.

5.3.20 Modules / url 903

5

5.3.20 url

Summary

Provides views for managing the URLs stored in the database.

Description

This module provides an interface to the content engine inside the eZ Publish kernel. Every
address that is input as a link into an attribute using the XML block (page 544) or the URL
(page 540) datatype is stored in a separate part of the database. Actual data stored using these
datatypes only contain references to entries in the separate URL table. This feature makes it
possible to inspect and edit the published URLs without having to interact with the content
objects. Please refer to the ”URL storage” (page 134) part of the ”Concepts and basics” chapter
for more information about this feature. The ”url” module provides views that make it possible
to manage the URLs. The administration interface makes use of this module to allow the users
to manage the URLs.

The module components are documented in the following sections:

• Fetch functions (page 904)

• Views (page 908)

5.3.20 Modules / url 904

5

Fetch functions

list (page 905)
Fetches the URLs that are stored in the URL table.

list count (page 907)
Fetches the number of URLs that are stored in the URL table.

5.3.20 Modules / url 905

5

list

Summary

Fetches the URLs that are stored in the URL table.

Usage

fetch(’url’, ’list’, hash([’is_valid’, is_valid,]
[’offset’, offset,]
[’limit’, limit]))

Parameters

Name Type Description Required
is valid boolean Instructs the system to only fetch valid

or invalid URLs.
No.

offset integer The offset to start at. No.
limit integer The number of URLs that should be

fetched.
No.

Returns

An array of ezurl (page 1055) objects or FALSE.

Description

This function fetches URLs from the URL table.The URL table stores addresses that have been
input using the URL (page 540) or the XML block (page 544) datatype. Please refer to the ”URL
storage” (page 134) section of the ”Concepts and basics” chapter for more information about
how the system handles URLs.

The ”is valid”, ”offset” and ”limit” parameters are optional. While the ”is valid” parameter can be
used to filter out only valid (TRUE) or invalid (FALSE) URLs, the ”offset” and ”limit” parameters
can narrow down the result. If the ”is valid” parameter is omitted, both valid and invalid URLs
will be fetched. The function returns an array of ezurl (page 1055) objects. If no URLs can be
found, the function will return FALSE.

Examples

Example 1

5.3.20 Modules / url 906

5

{def $urls=fetch(’url’, ’list’, hash(’is_valid’, true(),
’offset’, 0,
’limit’, 10))}

{foreach $urls as $url}
{$url.url}

{/foreach}

Outputs the first ten valid URLs that are stored in the URL table.

5.3.20 Modules / url 907

5

list count

Summary

Fetches the number of URLs that are stored in the URL table.

Usage

fetch(’url’, ’list_count’, hash([’is_valid’, is_valid]))

Parameters

Name Type Description Required
is valid boolean Instructs the system to count either

valid or invalid URLs.
No.

Returns

The number of URLs (as an integer).

Description

This function fetches and counts the URLs that are stored in the URL table.The URL table stores
addresses that have been input using the URL (page 540) or the XML block (page 544) datatype.
Please refer to the ”URL storage” (page 134) section of the ”Concepts and basics” chapter for
more information about how the system handles URLs.

The ”is valid” parameter is optional and can be used to filter out only valid (TRUE) or invalid
(FALSE) URLs. If the ”is valid” parameter is omitted, both valid and invalid URLs will be counted.
The function returns the number of found URLs as an integer.

Examples

Example 1

{def $valid_urls=fetch(’url’, ’list_count’, hash(’is_valid’, true()))
Number of valid URLs: {$valid_urls}

Outputs the number of valid URLs.

5.3.20 Modules / url 908

5

Views

edit (page 911)
Provides an interface for editing a URL.

list (page 910)
Provides an interface for generating an overview of all URLs.

views (page 909)
Provides an interface for viewing an URL.

5.3.20 Modules / url 909

5

views

Summary

Provides an interface for viewing an URL.

5.3.20 Modules / url 910

5

list

Summary

Provides an interface for generating an overview of all URLs.

5.3.20 Modules / url 911

5

edit

Summary

Provides an interface for editing a URL.

5.3.21 Modules / user 912

5

5.3.21 user

Summary

Provides views for logging users in/out, password changing, etc.

Description

This module provides an interface to the permission system inside the eZ Publish kernel. It
contains views that make it possible to log users in and out, register and activate new users,
password changing, etc. A typical eZ Publish site that has login capabilities makes use the views
that this module provides.

The module components are documented in the following sections:

• Fetch functions (page 913)

• Views (page 927)

5.3.21 Modules / user 913

5

Fetch functions

anonymous count (page 914)
Fetches the number of anonymous users.

current user (page 915)
Fetches the user that is currently logged in.

has access to (page 916)
Checks if a user has access to a certain function of a module.

is logged in (page 918)
Checks if a specific user is logged in.

logged in count (page 919)
Fetches the number of users that are logged in.

logged in list (page 920)
Fetches the names of the users that are logged in.

logged in users (page 922)
Fetches the users that are logged in.

member of (page 924)
Fetches the roles that are assigned to a user.

user role (page 925)
Fetches the policies that are available for a user.

5.3.21 Modules / user 914

5

anonymous count

Summary

Fetches the number of anonymous users.

Usage

fetch(’user’, ’anonymous_count’)

Returns

The number of anonymous users as an integer.

Description

This function counts the number of anonymous users currently accessing the site and returns that
count (as an integer). An anonymous user is considered to be active if the last access time within
the range of the activity timeout. The timeout can be set using the ”ActivityTimeout” directive in
a configuration override for ”site.ini”. The default timeout is one hour.

Examples

Example 1

{def $visitors=fetch(’user’, ’anonymous_count’)}
There are {$visitors} anonymous users accessing the site.

Outputs the number of anonymous users that are currently accessing the site.

5.3.21 Modules / user 915

5

current user

Summary

Fetches the user that is currently logged in.

Usage

fetch(’user’, ’current_user’)

Returns

An ezuser (page 1056) object.

Description

This function fetches the user object for the user that is currently logged in. If no user is logged
in, the anonymous user will be returned. In both cases, the function will return an ezuser (page
1056) object.

Examples

Example 1

{def $user=fetch(’user’, ’current_user’)}
User: {$user.contentobject.name}

E-mail: {$user.email}

Username: {$user.login}

Group(s): {$user.groups|implode(’, ’)}

Outputs miscellaneous information about the user that is currently logged in.

5.3.21 Modules / user 916

5

has access to

Summary

Checks if a user has access to a certain function of a module.

Usage

fetch(’user’, ’has_access_to’,
hash(’module’, module

’function’, function,
[’user_id’, user_id]))

Parameters

Name Type Description Required
module string The name of the module. Yes.
function string The name of the function. Yes.
user id integer The ID number of the user. No.

Returns

TRUE if access is allowed, FALSE otherwise.

Description

This function checks if the current user has access to a certain function of a module. The name of
the module and the function must be provided using the ”module” and the ”function” parameters.
The optional ”user id” parameter can be used to check access for other users than the current user.
The function returns TRUE if access is allowed, otherwise FALSE will be returned.

Examples

Example 1

{def $access=fetch(’user’, ’has_access_to’,
hash(’module’, ’content’,

’function’, ’read’,
’user_id’, 128))}

{if $access}
Access is allowed.

{else}

5.3.21 Modules / user 917

5

Access is denied.
{/if}

Reveals if user number 128 has access to the read function of the content module.

5.3.21 Modules / user 918

5

is logged in

Summary

Checks if a specific user is logged in.

Usage

fetch(’user’, ’is_logged_in’, hash(’user_id’, user_id))

Parameters

Name Type Description Required
user id integer The ID number of the user that should

be checked.
Yes.

Returns

TRUE if the specified user is logged in, FALSE otherwise.

Description

This function checks if a user is logged in or not. The desired user’s ID number must be specified
using the ”user id” parameter. The ID number of a user is the same as the ID number of the
content object that represents that user. A user is considered to be active / logged in if the
last access time is within the range of the activity timeout. The timeout can be set using the
”ActivityTimeout” directive in a configuration override for ”site.ini”. The default timeout is one
hour.

Examples

Example 1

{def $test=fetch(’user’, ’is_logged_in’, hash(’user_id’, 256))}

{if $test}
User number 256 is currently logged in.

{else}
User number 256 is not logged in.

{/if}

Outputs information that reveals whether user number 256 is logged in or not.

5.3.21 Modules / user 919

5

logged in count

Summary

Fetches the number of users that are logged in.

Usage

fetch(’user’, ’logged_in_count’)

Returns

The number of logged in users (as an integer).

Description

This function counts the number of logged in users (both anonymous and non-anonymous) and
returns that count as an integer. A user is considered to be active / logged in if the last access time
is within the range of the activity timeout. The timeout can be set using the ”ActivityTimeout”
directive in a configuration override for ”site.ini”. The default timeout is one hour.

Examples

Example 1

{def $users=fetch(’user’, ’logged_in_count’)}
There are currently {$users} active users on the system.

Outputs the number of currently active / logged in users.

5.3.21 Modules / user 920

5

logged in list

Summary

Fetches the names of the users that are logged in.

Usage

fetch(’user’, ’logged_in_list’,
hash([’sort_by’, sort_by,]

[’offset’, offset,]
[’limit’, limit]))

Parameters

Name Type Description Required
sort by mixed The field that should be used by the

sorting mechanism.
No.

offset integer The offset to start at. No.
limit integer The number of users that should be

fetched.
No.

Returns

An associative array or FALSE.

Description

This function will fetch all the logged in users and return an associative array. The keys of the
returned hash will be the user ID numbers; the values will be the users’ names. If no users are
logged in, FALSE will be returned. The ”sort by”, ”offset” and ”limit” parameters are optional.

A user is considered to be active / logged in if the last access time is within the range of the
activity timeout. The timeout can be set using the ”ActivityTimeout” directive in a configuration
override for ”site.ini”. The default timeout is one hour.

The ”sort by” parameter must be specified as an array. Each element of the array must be another
array where the first element denotes the field (as a string) that the sorting mechanism should
use. The second element specifies the direction of the sort (as a boolean). The following sorting
fields can be used:

• user id

• login

• activity

5.3.21 Modules / user 921

5

• email

Examples

Example 1

{def $users=fetch(’user’, ’logged_in_list’,
hash(’sort_by’, array(array(’login’, true()))))}

{foreach $users as $user}
{$user}

{/foreach}

Outputs the names of the users that are currently logged in (sorted by usernames).

5.3.21 Modules / user 922

5

logged in users

Summary

Fetches the users that are logged in.

Usage

fetch(’user’, ’logged_in_users’,
hash([’sort_by’, sort_by,]

[’offset’, offset,]
[’limit’, limit]))

Parameters

Name Type Description Required
sort by mixed The field that should be used by the

sorting mechanism.
No.

offset integer The offset to start at. No.
limit integer The number of users that should be

fetched.
No.

Returns

An array with ezuser (page 1056) objects or FALSE.

Description

This function will fetch all the logged in users and return an array containing ezuser (page 1056)
objects. If no users are logged in, FALSE will be returned. The ”sort by”, ”offset” and ”limit”
parameters are optional.

A user is considered to be active / logged in if the last access time is within the range of the
activity timeout. The timeout can be set using the ”ActivityTimeout” directive in a configuration
override for ”site.ini”. The default timeout is one hour.

The ”sort by” parameter must be specified as an array. Each element of the array must be another
array where the first element denotes the field (as a string) that the sorting mechanism should
use. The second element specifies the direction of the sort (as a boolean). The following sorting
fields can be used:

• user id

• login

• activity

5.3.21 Modules / user 923

5

• email

Examples

Example 1

{def $users=fetch(’user’, ’logged_in_users’,
hash(’sort_by’, array(array(’login’, true()))))}

{foreach $users as $user}
{$user.contentobject.name}

{/foreach}

Outputs the names of the users that are currently logged in (sorted by usernames).

5.3.21 Modules / user 924

5

member of

Summary

Fetches the roles that are assigned to a user.

Usage

fetch(’user’, ’member_of’, hash(’id’, id))

Parameters

Name Type Description Required
id integer The ID number of the target user. Yes.

Returns

An array with ezrole (page 1048) objects or FALSE.

Description

This function will fetch the roles that are assigned to a user. The desired user’s ID number must
be specified using the ”id” parameter. The function will return an array of ezrole (page 1048)
objects. If no roles are associated with the user, or if an invalid user ID is provided, the function
will return FALSE.

Examples

Example 1

{def $roles=fetch(’user’, ’member_of’, hash(’id’, 42))}

{foreach $roles as $role}
{$role.name}

{/foreach}

Outputs the names of the roles that are assigned to user number 42.

5.3.21 Modules / user 925

5

user role

Summary

Fetches the policies that are available for a user.

Usage

fetch(’user’, ’user_role’, hash(’user_id’, user_id))

Parameters

Name Type Description Required
user id integer The user to fetch policies from Yes.

Returns

An array of hashes or FALSE.

Description

This function will fetch the policies that are available for a user. The desired user’s ID number
must be specified using the ”id” parameter. The function will return an array of policy structures
or FALSE if no policies are available or if a non-existing user ID number is provided. The following
table shows the structure of the hashes that make up the elements of the returned array.

Name Type Description
moduleName string The name of the module that

the user has access to (*
means all modules).

functionName string The name of the function
that the user has access to (*
means all functions).

limitation string The elements of the module
and function that the user
has access to (* means no
limitations).

Examples

Example 1

5.3.21 Modules / user 926

5

{def $policies=fetch(’user’, ’user_role’, hash(’user_id’, 42))}

{foreach $policies as $policy}
{$policy.moduleName} /
{$policy.functionName} /
{$policy.limitation}

{/foreach}

Outputs information about the policies that are available for user number 42.

5.3.21 Modules / user 927

5

Views

activate (page 928)
Provides an interface for activating a user account.

forgotpassword (page 929)
Provides an interface for situations where a user forgets his/her password.

login (page 930)
Provides an interface for logging in a user.

logout (page 931)
Provides a mechanism that logs out a user.

password (page 932)
Provides an interface for changing the password for the current user.

preferences (page 933)
Provides an interface for managing the preferences of the current user.

register (page 934)
Provides an interface for registering a new user.

setting (page 935)
Provides an interface for tweaking user account settings.

success (page 936)
Provides an interface that is called upon a successful user registration.

5.3.21 Modules / user 928

5

activate

Summary

Provides an interface for activating a user account.

5.3.21 Modules / user 929

5

forgotpassword

Summary

Provides an interface for situations where a user forgets his/her password.

5.3.21 Modules / user 930

5

login

Summary

Provides an interface for logging in a user.

5.3.21 Modules / user 931

5

logout

Summary

Provides a mechanism that logs out a user.

5.3.21 Modules / user 932

5

password

Summary

Provides an interface for changing the password for the current user.

5.3.21 Modules / user 933

5

preferences

Summary

Provides an interface for managing the preferences of the current user.

5.3.21 Modules / user 934

5

register

Summary

Provides an interface for registering a new user.

5.3.21 Modules / user 935

5

setting

Summary

Provides an interface for tweaking user account settings.

5.3.21 Modules / user 936

5

success

Summary

Provides an interface that is called upon a successful user registration.

5.3.22 Modules / workflow 937

5

5.3.22 workflow

Summary

Provides views for managing workflows, workflow groups, workflow events, etc.

Description

This module provides an interface to the workflow engine inside the eZ Publish kernel. A work-
flow is a sequential list of events that is started by a trigger. This module contains views that
make it possible to manipulate workflow groups, workflows and events. The administration in-
terface makes use of the views that this module provides in order to allow the users to manage
workflows (add new, remove, edit, etc.). Please refer to the ”Workflows” (page 165) section of
the ”Concepts an basics” chapter for more information about workflows.

The module components are documented in the following sections:

• Views (page 938)

5.3.22 Modules / workflow 938

5

Views

down (page 939)
Provides an interface for moving an event to a lower position.

edit (page 940)
Provides an interface for editing a workflow.

event (page 941)
Not documented yet.

groupedit (page 942)
Provides an interface for editing a workflow group.

grouplist (page 943)
Provides an interface for generating a list of all available workflow groups.

process (page 944)
Not documented yet.

run (page 945)
Not documented yet.

up (page 946)
Provides an interface for moving an event to a higher position.

view (page 947)
Provides an interface for viewing a workflow.

workflowlist (page 948)
Provides an interface for generating a list of workflows that belong to a group.

5.3.22 Modules / workflow 939

5

down

Summary

Provides an interface for moving an event to a lower position.

5.3.22 Modules / workflow 940

5

edit

Summary

Provides an interface for editing a workflow.

5.3.22 Modules / workflow 941

5

event

Summary

Not documented yet.

5.3.22 Modules / workflow 942

5

groupedit

Summary

Provides an interface for editing a workflow group.

5.3.22 Modules / workflow 943

5

grouplist

Summary

Provides an interface for generating a list of all available workflow groups.

5.3.22 Modules / workflow 944

5

process

Summary

Not documented yet.

5.3.22 Modules / workflow 945

5

run

Summary

Not documented yet.

5.3.22 Modules / workflow 946

5

up

Summary

Provides an interface for moving an event to a higher position.

5.3.22 Modules / workflow 947

5

view

Summary

Provides an interface for viewing a workflow.

5.3.22 Modules / workflow 948

5

workflowlist

Summary

Provides an interface for generating a list of workflows that belong to a group.

5.4 Views 949

5

5.4 Views

The views are documented in the following sections:

• class (page 590)

• collaboration (page 609)

• content (page 624)

• error (page 761)

• ezinfo (page 762)

• form (page 767)

• infocollector (page 770)

• layout (page 775)

• notification (page 780)

• package (page 792)

• pdf (page 815)

• reference (page 819)

• role (page 820)

• rss (page 828)

• search (page 834)

• section (page 841)

• setup (page 856)

• shop (page 857)

• trigger (page 900)

• url (page 903)

• user (page 912)

• workflow (page 937)

5.5 Objects 950

5

5.5 Objects

ezauthor (page 954)
Contains information about authors.

ezbasket (page 955)
Contains information about a user’s shopping basket.

ezbinaryfile (page 958)
Contains information about a file.

ezcontentbrowsebookmark (page 959)
Contains information about a bookmark.

ezcontentbrowserecent (page 960)
Contains information about a node with recently edited children.

ezcontentclass (page 961)
Contains information about a content class.

ezcontentclassattribute (page 965)
Contains information about an attribute of a content class.

ezcontentclassclassgroup (page 968)
Contains information about a class group assignment.

ezcontentclassgroup (page 969)
Contains information about a class group.

ezcontentlanguage (page 970)
Contains information about a language.

ezcontentobject (page 971)
Contains information about a content object.

ezcontentobjectattribute (page 981)
Contains information about an attribute of a content object.

ezcontentobjecttranslation (page 985)
DEPRECATED (Contains information about a translation.)

ezcontentobjecttrashnode (page 986)
Contains information about a node moved to the trash.

ezcontentobjecttreenode (page 990)
Contains information about a node within the content node tree.

ezcontentobjectversion (page 995)
Contains information about a version of a content object.

ezcurrencydata (page 999)
Contains information about a currency.

5.5 Objects 951

5

ezdate (page 1001)
Contains information about a date.

ezdatetime (page 1002)
Contains information about a date and time.

ezimagealiashandler (page 1003)
Contains information about an image.

ezimagelayer (page 1008)
Contains information about an image layer.

ezimageobject (page 1009)
Contains information about an image.

ezinformationcollection (page 1010)
Contains information about a block of collected information.

ezinformationcollectionattribute (page 1012)
Contains information about an attribute of a collection.

ezkeyword (page 1014)
Contains information about keywords.

ezlocale (page 1015)
Contains information about a locale.

ezmatrix (page 1019)
Contains information about a matrix.

ezmedia (page 1022)
Contains information about a video file.

ezmultioption (page 1024)
DEPRECATED (Contains information about multilpe options.)

ezmultioption2 (page 1026)
Contains information about a group of multi-options.

ezmultiprice (page 1031)
Contains information about prices and currencies for a product.

eznodeassignment (page 1033)
Contains information about a node assignment.

ezoption (page 1035)
Contains information about a collection of options.

ezorder (page 1036)
Contains information about an order.

ezorderitem (page 1040)
Contains information about order items.

5.5 Objects 952

5

ezorderstatus (page 1041)
Contains information about an order status.

ezpolicy (page 1042)
Contains information about a policy.

ezprice (page 1043)
Contains information about a price.

ezproductcategory (page 1044)
Contains information about a product category.

ezproductcollectionitem (page 1045)
Contains information about an item of a product collection.

ezrangeoption (page 1046)
Contains information about a range of options.

ezrole (page 1048)
Contains information about a role.

ezsection (page 1050)
Contains information about a section.

ezsimplifiedxmlinput (page 1051)
Contains information about XML data.

ezsubtreenotificationrule (page 1053)
Contains information about a subtree notification rule.

eztime (page 1054)
Contains information about a time value.

ezurl (page 1055)
Contains information about a URL.

ezuser (page 1056)
Contains information about a user.

ezvatrule (page 1058)
Contains information about a VAT charging rule.

ezvattype (page 1060)
Contains information about a VAT.

ezxhtmlxmloutput (page 1061)
Contains information about XML data.

ezxmlinputhandler (page 1062)
Contains information about XML data.

ezxmloutputhandler (page 1064)
Contains information about XML data.

5.5 Objects 953

5

ezxmltext (page 1065)
Contains information about an XML block.

5.5.1 Objects / ezauthor 954

5

5.5.1 ezauthor

Summary

Contains information about authors.

Attributes

Attribute Type Static* Description
author list array Yes. Contains infor-

mation about the au-
thors. Each element
in the array consists
of a hash of strings.
The keys are ”id”,
”name” and ”email”.

name NULL Yes. Not used.
is empty boolean No. Returns TRUE if the

object does not con-
tain any authors (if
the ”author list” ar-
ray is empty); oth-
erwise FALSE is re-
turned.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.2 Objects / ezbasket 955

5

5.5.2 ezbasket

Summary

Contains information about a user’s shopping basket.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the shopping basket.
session id string Yes. The ID of the session

that the basket be-
longs to.

productcollection id string Yes. The ID number of
the product collec-
tion that belongs to
the basket.

order id string Yes. The ID number of
the order that be-
longs to the basket.

items array No. An array of hashes
containing informa-
tion about the items.
Each element con-
sists of the following
data:
Attribute: id
Type: string
Description: The ID
number of the item
in the basket.

Attribute: vat value
Type: string
Description: The
actual value of VAT
(for example, 22).

Attribute: item
count
Type: string
Description: The
quantity.

5.5.2 Objects / ezbasket 956

5

Attribute: node id
Type: string
Description: The ID
number of the node
that represents the
item.

Attribute: object
name
Type: string
Description: The
name of the object
that represents the
item.

Attribute: price ex
vat
Type: double
Description: The
price of the item ex-
cluding the VAT.

Attribute: price inc
vat
Type: string
Description: The
price of the item in-
cluding the VAT.

Attribute: discount
percent
Type: string
Description: The
discount percentage
(if any).

Attribute: total
price ex vat
Type: double
Description: The
total price excluding
the VAT.

Attribute: total
price inc vat
Type: double

5.5.2 Objects / ezbasket 957

5

Description: The
total price including
the VAT.

Attribute: item
object
Type: object
Description: The
item itself (as an
ezproduct-
collectionitem (page
1045) object).

total ex vat float No. The total amount to
be payed excluding
the VAT.

total inc vat float No. The total amount to
be payed including
the VAT.

is empty boolean No. Returns TRUE
if there are no items
in the basket, FALSE
otherwise.

productcollection object No. The product collec-
tion that belongs to
the basket.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.3 Objects / ezbinaryfile 958

5

5.5.3 ezbinaryfile

Summary

Contains information about a file.

Attributes

Attribute Type Static* Description
contentobject string Yes. The ID number of
attribute id the content object

attribute that the file
belongs to.

version string Yes. The version number
of the object that the
file belongs to.

filename string Yes. The internal name of
the file (generated
by the system).

original filename string Yes. The original name of
the file.

mime type string Yes. The MIME type of
the file (for example
”audio/wav”).

download count string Yes. The number of times
the
file has been down-
loaded through the
”download”
(page 733) view of
the ”content” mod-
ule.

filesize integer No. The size of the file
(number of bytes).

filepath string No. The path to the file
(including the file-
name).

mime type category string No. The MIME type cat-
egory (for example
”audio”).

mime type part string No. The
MIME type part (for
example ”wav”).

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.4 Objects / ezcontentbrowsebookmark 959

5

5.5.4 ezcontentbrowsebookmark

Summary

Contains information about a bookmark.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the bookmark.
user id string Yes. The ID number of

the
user that the book-
mark belongs to.

node id string Yes. The ID
number of the book-
marked node.

name string Yes. The name of the
bookmark (the same
as the name of the
node).

node object No. The book-
marked node (as ez-
contentobject-
treenode (page 990)
object).

contentobject id string No. The ID number of
the object that is ref-
erenced by the book-
marked node.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.5 Objects / ezcontentbrowserecent 960

5

5.5.5 ezcontentbrowserecent

Summary

Contains information about a node with recently edited children.

Attributes

Attribute Type Static* Description
id string Yes. A unique ID number.
user id string Yes. The ID number of

the user that the
”browse recent” en-
try belongs to.

node id string Yes. The ID
number of the node
under which some-
thing was recently
published.

created string Yes. A UNIX timestamp
pinpointing the ex-
act date/time when
the ”browse recent”
entry was created.

name string Yes. The name of the
node under which
something was re-
cently published.

node object No. The actual node un-
der which
something was re-
cently published (as
an ezcontentobject-
treenode (page 990)
object).

contentobject id string No. The ID of the ob-
ject which is encap-
sulated by the node
under which some-
thing was recently
published.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.6 Objects / ezcontentclass 961

5

5.5.6 ezcontentclass

Summary

Contains information about a content class.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the class.
version string Yes. The version/status

of the class (0=nor-
mal, 1=temporary,
2=modified).

name string Yes. The name of the
class (for example
”News article”).

identifier string Yes. The identifier of the
class (for example
”news article”).

contentobject name string Yes. The pat-
tern which controls
how the names of
the instances should
be generated.

creator id string Yes. The ID number of
the object that rep-
resents the user who
created the class.

modifier id string Yes. The ID number of
the object that rep-
resents the user who
most modified the
class last.

created string Yes. A UNIX timestamp
pinpointing the ex-
act date/time when
the class was cre-
ated.

remote id string Yes. A global unique ID
for the class. The re-
mote ID is an MD5
hash of the time
when the class was

5.5.6 Objects / ezcontentclass 962

5

created plus a ran-
dom value. Remote
IDs are used to avoid
collision of identical
classes during an im-
port.

modified string Yes. A UNIX timestamp
pinpointing the ex-
act date/time when
the class was last
modified.

is container string Yes. Either 1 or 0. Re-
veals whether nodes
referencing
objects of this class
should be consid-
ered as containers or
not. Used by the
administration inter-
face to allow or dis-
allow the creation of
nodes under a node
which references an
object of this class.

always available string Yes. Either 1 or 0. Con-
trols whether new
instances (objects)
of this class should
be always available
or not. Used on
multi-language sites
to make it possi-
ble to fetch objects
which do not ex-
ist in any of the
site languages. Note
that this value sim-
ply dictates the de-
fault value for the
”always available”
flag of the objects
themselves and thus
it only affects new
instances.

data map array No. The attributes
(as ezcontentclassat-

5.5.6 Objects / ezcontentclass 963

5

tribute (page 965)
objects) that make
up the class.

object count string No. The number of in-
stances (objects) of
the class.

version count string No. DEPRECATED - Sim-
ilar to the ”version”
attribute, but will
be 2 if the ”version
count” is 2 or higher.

version status string No. DEPRECATED - The
version count of the
class if it has been
determined, FALSE
if not
determined.

ingroup list array No. The class groups (as
ezclassclassgroup
(page 968) objects)
that the class is a
member of.

ingroup id list array No. The class groups (as
ezclassgroup (page
968) objects) that
the class belongs to.

match ingroup id array No. The class groups (as
list ezclassgroup (page

968) objects) that
the class belongs to.
This variable is con-
nected with a fea-
ture that makes it
possible to cre-
ate template over-
rides based on class
groups.
By default the
”match ingroup id
list” always returns a
boolean FALSE value
because the class
group override fea-
ture is turned off. It
can be turned on by
setting the ”Enable-

5.5.6 Objects / ezcontentclass 964

5

Class-
GroupOverride” di-
rective in the [Con-
tentOverrideSet-
tings] block of a
configuration over-
ride for ”content.ini”
to ”true”.

group list array No. All
the class groups (as
ezclassclassgroup
(page 968) objects)
that are present in
the database.

creator object No. The object (as ez-
contentobject (page
971) object) repre-
senting the user who
created the class.

modifier object No. The object (as ez-
contentobject (page
971) object) repre-
senting the
user who last modi-
fied the class.

can instantiate array No. Not documented
languages yet.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.7 Objects / ezcontentclassattribute 965

5

5.5.7 ezcontentclassattribute

Summary

Contains information about an attribute of a content class.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the class attribute.
name string Yes. The name of the

class attribute.
version string Yes. The version number

of the version that
the attribute belongs
to.

contentclass id string Yes. The ID number of
the class that the at-
tribute belongs to.

identifier string Yes. The identifier of the
class at-
tribute (for example
”first name”).

placement string Yes. The location
of the class attribute
within the list of at-
tributes.

is searchable string Yes. Either 1 or 0. 1
means that the con-
tent stored
using this attribute
will be indexed by
the search engine, 0
means that the con-
tent will not be in-
dexed.

is required string Yes. Either 1 or 0. 1
means that input is
required, 0 means
that empty inputs
are allowed.

can translate string Yes. Either 1 or 0. 1
means that instances
of the attribute can

5.5.7 Objects / ezcontentclassattribute 966

5

be translated to dif-
ferent languages. 0
means that no trans-
lations (except for
the default transla-
tion) can be made.

is information string Yes. Either 1 or 0. 1
collector means that the at-

tribute functions as
an information col-
lector. 0 means that
the attribute is just a
normal attribute and
thus stores data in
the default/normal
way.

data type string string Yes. The identifier string
of the datatype that
is used to repre-
sent the class at-
tribute (for example
”ezstring”).

data int1 string Yes. Integer 1.
data int2 string Yes. Integer 2.
data int3 string Yes. Integer 3.
data int4 string Yes. Integer 4.
data float1 string Yes. Float 1.
data float2 string Yes. Float 2.
data float3 string Yes. Float 3.
data float4 string Yes. Float 4.
data text1 string Yes. Text 1.
data text2 string Yes. Text 2.
data text3 string Yes. Text 3.
data text4 string Yes. Text 4.
content mixed No. Data for

the datatype which
this class attribute is
made of, the actual
data
depends on the
datatype.

temporary object object No. A temporary content
attribute object attribute (as

ezcontento-
bjectattribute (page
981) object) which

5.5.7 Objects / ezcontentclassattribute 967

5

does not exist in the
database.

data type object No. The datatype that
is used to represent
the class attribute.

display info array No. Array of miscella-
neous display pa-
rameters used by the
system (for example
whether the compo-
nents of the edit
interface should be
grouped or not).

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.8 Objects / ezcontentclassclassgroup 968

5

5.5.8 ezcontentclassclassgroup

Summary

Contains information about a class group assignment.

Attributes

Attribute Type Static* Description
contentclass id string Yes. The ID number of

the class which be-
longs to the group.

contentclass version string Yes. The version (either 1
or 0).

group id string Yes. The ID number of
the class.

group name string Yes. The name of the
class group (for ex-
ample ”Media”).

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.9 Objects / ezcontentclassgroup 969

5

5.5.9 ezcontentclassgroup

Summary

Contains information about a class group.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the class group.
name string Yes. The name of the

class group (for ex-
ample ”Media”).

creator id string Yes. The ID number of
the object represent-
ing the user who cre-
ated the class group.

modifier id string Yes. The ID number of
the object represent-
ing the user who last
modified the class
group.

created string Yes. A UNIX timestamp
pinpointing the ex-
act date/time when
the class group was
created.

modified string Yes. A UNIX timestamp
pinpointing the ex-
act date/time when
the class group was
last modified.

creator object No. The user who cre-
ated the class group
(as ezuser (page
1056) object).

modifier object No. The user who last
modified
the class group (as
ezuser (page 1056)
object).

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.10 Objects / ezcontentlanguage 970

5

5.5.10 ezcontentlanguage

Summary

Contains information about a language.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the language (can be
2, 4, 8, 16, 32, etc.)

name string Yes. The name of the
language, for exam-
ple ”English (United
Kingdom)”.

locale string Yes. The language’s lo-
cale code (for exam-
ple ”eng-GB”).

disabled string Yes. Reserved for future
use.

translation object No. Returns reference to
the ez-
contentlanguage ob-
ject itself.

locale object object No. The locale of this
language (as ezlo-
cale (page 1015) ob-
ject).

object count string No. The number of ob-
jects translated to
this language.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.11 Objects / ezcontentobject 971

5

5.5.11 ezcontentobject

Summary

Contains information about a content object.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the object.
section id string Yes. The ID number of

the section that the
object belongs to.

owner id string Yes. The ID number of
the object represent-
ing the user who ini-
tially created the ob-
ject.

contentclass id string Yes. The ID
number of the con-
tent class which the
object is an instance
of.

is published string Yes. Either 1 or 0. 1
means that the ob-
ject has been pub-
lished. 0 means that
the object has not
yet been published.

published string Yes. A UNIX timestamp
pinpointing the ex-
act date/time when
the object was pub-
lished for the first
time.

modified string Yes. A UNIX timestamp
pinpointing the ex-
act date/time when
the object was last
modified.

current version string Yes. The number of the
currently published
version.

status string Yes. The status of the ob-

5.5.11 Objects / ezcontentobject 972

5

ject (0=Draft,
1=Published,
2=Archived).

remote id string Yes. A global unique ID
for the object. The
remote ID is an MD5
hash of the time
when the object was
created plus a ran-
dom value. Remote
IDs are used in or-
der to avoid colli-
sions of identical ob-
jects during an im-
port.

language mask string Yes. The sum of the ID
numbers of the lan-
guages in which the
last published ver-
sion of the object
exists. Please note
that the ID num-
bers are powers of
2. 1 (2ˆ0) is re-
served for marking
objects that should
always be available.
Objects that are al-
ways available will
be fetched even if
they do not exist
in any of the site/
prioritized
languages (the ini-
tial/main language
of the object will be
used).

initial language id string Yes. The ID number of
the initial/main lan-
guage.

current object No. The current ver-
sion (as ezcontento-
bjectversion (page
995)) of the object.

versions array No. The object’s versions
(as ezcontentob-

5.5.11 Objects / ezcontentobject 973

5

jectversion (page
995) objects).

author array array No. Array of ezuser
(page 1056) objects
representing the dif-
ferent creators of the
content object’s ver-
sions.

class name string No. The name of the
class which the con-
tent object is an in-
stance of (for exam-
ple ”Consumer prod-
uct”).

content class object No. The content class (as
ezcontentclass (page
961)) which
the content object is
an instance of.

contentobject array No. Array of ezcontento-
attributes bjectattribute (page

981)
objects representing
the attributes of the
content object.

owner object No. An ezcontentobject
(page 971) that rep-
resents the user who
initially created the
object.

related array No. An array of ezcon-
contentobject array tentobject (page

971) objects that are
related to this ob-
ject. This attribute
is deprecated. It is
recommended to use
the ”related objects
(page 689)” fetch
function instead.

related string No. The number of ob-
contentobject count jects that are related

to this object. This
attribute is depre-
cated. It is recom-
mended

5.5.11 Objects / ezcontentobject 974

5

to use the ”related
objects count (page
692)” fetch function
instead.

reverse related array No. An array of ezcon-
contentobject array tentobject

(page 971) objects
that make use of this
object (reverse rela-
tions). This attribute
is deprecated. It is
recommended to use
the ”reverse related
objects (page
693)” fetch function
instead.

reverse related string No. The number of ob-
contentobject count jects that are using

this object. This
attribute is depre-
cated. It is rec-
ommended to use
the ”reverse related
objects count (page
696)” fetch function
instead.

linked array No. An array of ezcon-
contentobject array tentobject (page

971) objects that are
related to this ob-
ject by means of the
”XML linked” object
relation.

linked string No. The number of ob-
contentobject count jects that are related

to this object by
means of the ”XML
linked” object rela-
tion.

reverse linked array No. An array of ezcon-
contentobject array tentobject

(page 971) objects
that make use of this
object by means of
the ”XML linked” ob-

5.5.11 Objects / ezcontentobject 975

5

ject relation.
reverse linked string No. The number of ob-
contentobject count jects that are using

this object by means
of the ”XML linked”
object relation.

embedded array No. An array of ezcon-
contentobject array tentobject

(page 971) objects
that are related to
this object by means
of the ”XML embed-
ded” object relation.

embedded string No. The number of ob-
contentobject count jects that are related

to
this object by means
of the ”XML embed-
ded” object relation.

reverse embedded array No. An array of ezcon-
contentobject array tentobject

(page 971) objects
that make use of
this object by means
of the ”XML embed-
ded” object relation.

reverse embedded string No. The number of ob-
contentobject count jects that are using

this object by means
of the ”XML embed-
ded” object relation.

can read boolean No. Returns TRUE if the
current
user has read access
to the object, FALSE
otherwise.

can pdf boolean No. Not documented
yet.

can diff boolean No. Not documented
yet.

can create boolean No. Not documented
yet.

can create class list array No. Not documented
yet.

can edit boolean No. Returns TRUE if the
current user has edit

5.5.11 Objects / ezcontentobject 976

5

access to the object,
FALSE otherwise.

can translate boolean No. Returns TRUE if the
current user has per-
missions to translate
the contents of the
object, FALSE other-
wise.

can remove boolean No. Returns TRUE if the
current user has per-
missions to remove
the object, FALSE
otherwise.

can move boolean No. Not documented
yet.

can move from boolean No. Returns TRUE if the
current user has per-
missions to move the
main node of the
object, FALSE other-
wise.

can view embed boolean No. Not documented
yet.

data map array No. Array of ezcontento-
bjectattribute (page
981) objects repre-
senting the actual
attributes of the con-
tent object.

main parent node id string No. The ID number of
the main node of the
object encapsulated
by the parent node.

assigned nodes array No. Array of nodes
(as ezcontentobject-
treenode (page 990)
objects) that encap-
sulate the object.

parent nodes array No. An array of ID num-
bers of the parent
nodes (as strings).

main node id string No. The ID number
of the object’s main
node.

main node object No. The ob-
ject’s main node (as

5.5.11 Objects / ezcontentobject 977

5

ezcontento-
bjecttreenode (page
990)).

default language string No. The
default language for
content objects (see
ContentObject-
Locale (page 1664))
if it is set or the
most prioritized lan-
guage (i.e. the first
element of the ”Site-
LanguageList (page
1656)” array).

content action list array No. An array of
hashes revealing in-
formation about the
content actions that
can be performed on
the object. The keys
”name” and ”action”
con-
tain the actual name
(for example ”Add
to basket” - which
should be value of
the HTML input tag)
and the action itself
(for example ”Ac-
tionAddToBasket” -
which should be the
name of the HTML
input tag). The ar-
ray is generated by a
function that exam-
ines the object’s at-
tributes.
If a datatype used
to represent an at-
tribute provides sup-
port for content ac-
tions or if the at-
tribute is an infor-
mation collector, the
supported actions
will be added to

5.5.11 Objects / ezcontentobject 978

5

the ”content action
list” array. This array
can be used to au-
tomatically generate
action buttons (stan-
dard HTML buttons)
for
content objects that
either make use of
special datatypes or
have attributes that
are marked as infor-
mation collectors.

class identifier string No. The identifier of the
class which the ob-
ject
is an instance of (for
example ”consumer
product”).

class group id list array No. An array of ID num-
bers of the
class groups which
the class (that the
object is an instance
of) belongs to.

name string No. The actual name of
the object in the cur-
rent lan-
guage (for example
”Liver sandwich”).

match ingroup id array No. The ID numbers of
list the class groups that

the class (which the
object is an instance
of) belongs to. This
variable
is connected with a
feature that makes
it possible to cre-
ate template over-
rides based on class
groups.
By default the
”match ingroup id
list” always returns a
boolean FALSE value

5.5.11 Objects / ezcontentobject 979

5

because the class
group override fea-
ture is turned off. It
can be turned on by
setting the ”Enable-
Class-
GroupOverride” di-
rective in the [Con-
tentOverrideSet-
tings] block of a
configuration over-
ride for ”content.ini”
to ”true”.

current language string No. Not documented
yet.

current language object No. Not documented
object yet.
initial language object No. The initial/main lan-

guage as a ezcon-
tentlanguage (page
970) object.

initial language string No. The code of the ini-
code tial/main language

(for example ”eng-
GB”).

available languages array No. The lan-
guages in which the
last published ver-
sion of the object ex-
ists (as an array of
locale codes).

language codes array No. Not documented
yet.

language js array string No. Not documented
yet.

languages array No. The list of languages
the object exists in,
ordered by their pri-
ority (as an array of
ezcontentlanguage
(page 970) objects).

can edit languages array No. Not documented
yet.

can create array No. Not documented
languages yet.
always available boolean No. Returns TRUE if the

5.5.11 Objects / ezcontentobject 980

5

object is marked as
”always avail-
able” (i.e. the object
will be fetched even
if it does not exist in
any of the site lan-
guages), FALSE oth-
erwise.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.12 Objects / ezcontentobjectattribute 981

5

5.5.12 ezcontentobjectattribute

Summary

Contains information about an attribute of a content object.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the attribute.
contentobject id string Yes. The ID number of

the content object
that the attribute be-
longs to.

version string Yes. The version number
of the content object
that the attribute be-
longs to.

language code string Yes. The code of the
translation that the
attribute belongs to
(for example ”eng-
GB”).

language id string Yes. The ID
number of the trans-
lation language plus
1 if this is the lan-
guage is initial/main
and the object is al-
ways available.

contentclassattribute string Yes. The ID number of
id the attribute.
attribute original id string Yes. The original ID of

the attribute.
sort key int string Yes. Integer used for sort-

ing.
sort key string string Yes. Text used for sort-

ing.
data type string string Yes. The identifier string

of the datatype (for
example ”ezstring”).

data text string Yes. Text stored by the at-
tribute.

data int string Yes. Integer stored by the

5.5.12 Objects / ezcontentobjectattribute 982

5

attribute.
data float string Yes. Float stored by the

attribute.
contentclass object No. The class attribute
attribute (as an ezcontent-

classattribute (page
965) object).

contentclass string No. The identifier of the
attribute identifier content class at-

tribute (for example
”first name”).

contentclass string No. The name of
attribute name the content class at-

tribute.
can translate string No. 1 if the attribute is

translatable, 0 if not.
is information string No. 1 if the attribute is
collector an information col-

lector, 0 if not.
is required string No. 1 if the attribute is

required, 0 if not.
content any No. The actual content

(what is returned
when the ”.content”
notation is used).

has http value boolean No. TRUE if the attribute
has an HTTP value,
FALSE otherwise.

value any No. The HTTP
input from the user
(if submitted) or the
contents of the ob-
ject
attribute from
the database (same
as the ”content” at-
tribute).

has content boolean No. TRUE if there is at-
tribute contains con-
tent, FALSE if it is
empty.

class content any No. The content of the
class attribute which
this object attribute
is made from (same
as ”.contentclass

5.5.12 Objects / ezcontentobjectattribute 983

5

attribute.content”).
object object No. The object that the

attribute belongs to
(as an ezcontentob-
ject (page 971) ob-
ject).

object version object No. The version that the
attribute belongs to
(as an ezcontentob-
jectversion (page
995) object).

view template string No. The name of the
template that is used
to display the view
interface for the at-
tribute (for example
”ezstring”).

edit template string No. The name of the
template that is used
to display the edit
interface for the at-
tribute (for example
”ezstring”).

result template string No. The name of the
template that is used
to display the in-
formation that was
collected by the at-
tribute (for example
”ezstring”).

has validation error boolean No. TRUE if a validation
error was detected,
FALSE if everything
is okay.

validation error NULL No. The validation er-
ror(s), NULL if none.

validation log NULL No. A log of the valida-
tion error(s), NULL
if none.

language object No. The original transla-
tion (as ezcontento-
bjectattribute (page
981) object) of this
content object
attribute (it may just

5.5.12 Objects / ezcontentobjectattribute 984

5

be the same object).
is a string No. Returns

the identifier of the
datatype that is used
to represent the at-
tribute (for example
”ezstring”).

display info array No. An array containing
infor-
mation about how
the attribute should
be displayed in dif-
ferent scenarios (for
example if the in-
formation should be
grouped, etc.).

class display info array No. An array containing
infor-
mation about how
the attribute should
be displayed on the
class level.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.13 Objects / ezcontentobjecttranslation 985

5

5.5.13 ezcontentobjecttranslation

Summary

DEPRECATED (Contains information about a translation.)

Attributes

Attribute Type Static* Description
contentobject id string Yes. The ID number of

the object that the
translation belongs
to.

version string Yes. The version number
that the translation
belongs to.

language code string Yes. The translation’s
language code (for
example ”eng-GB”).

locale object No. The locale (as ezlo-
cale (page 1015) ob-
ject) that the trans-
lation uses.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.14 Objects / ezcontentobjecttrashnode 986

5

5.5.14 ezcontentobjecttrashnode

Summary

Contains information about a node moved to the trash.

Attributes

Attribute Type Static* Description
node id string Yes. The ID number of

the node.
parent node id string Yes. The ID number of

the parent node.
main node id string Yes. The ID number of

the main node.
contentobject id string Yes. The ID number of

the content object.
contentobject string Yes. The number of the
version published version.
depth string Yes. The depth of the

node within the con-
tent node tree. The
depth of a top level
node is 1.

sort field string Yes. The sorting method
used to sort the child
nodes.

sort order string Yes. The sorting order
used when sorting
the node’s children.

priority string Yes. The node’s priority
(positive or negative
integer).

modified subnode string Yes. A UNIX timestamp
pinpointing the ex-
act time a sub node
was changed.

path string string Yes. The node’s
path string (for ex-
ample ”/1/2/44”).

path identification string Yes. The node’s path
string identification string

(for example ”com-
pany/about us/my

5.5.14 Objects / ezcontentobjecttrashnode 987

5

article”).
remote id string Yes. A unique ID for the

node (avoids crashes
when importing/
exporting nodes). A
remote ID is an MD5
hash of the
time when the node
was generated plus a
random value.

is hidden string Yes. The node’s hid-
den status (0=visi-
ble, 1=hidden).

is invisible string Yes. The node’s visibil-
ity status (0=visible,
1=hidden by supe-
rior).

name string No. The name of the ob-
ject the node encap-
sulates (for example
”My article”).

data map array No. The object’s
attributes as ezcon-
tentobjectattribute
(page 981) objects.

object object No. The actual con-
tent object (as ez-
contentobject (page
971)) that the node
encapsulates.

contentobject object No. The current ver-
version object sion (as ezcontento-

bjectversion (page
995)) of the object
that the node encap-
sulates.

sort array array No. The node’s sort ar-
ray.

can read boolean No. Returns TRUE if the
current
user has read access
to the node (FALSE
otherwise).

can create boolean No. Returns TRUE if the
current user can cre-
ate nodes under this

5.5.14 Objects / ezcontentobjecttrashnode 988

5

node (FALSE other-
wise).

can edit boolean No. Returns TRUE if the
current user has edit
access to the node
(FALSE otherwise).

can remove boolean No. Returns TRUE if the
current user
can remove the node
(FALSE otherwise).

creator object No. The object (as ez-
contentobject (page
971)) containing the
user who created the
node.

path array array No. Array of strings re-
vealing the ID num-
bers of the nodes
that make up the
path. The cur-
rent node is also in-
cluded.

parent object No. The parent node (as
ezcontento-
bjecttreenode (page
990)).

class identifier string No. The identifier of the
class which the ob-
ject encapsulated by
the node is an in-
stance of (for exam-
ple ”product
review”).

class name string No. The name of the
class which the ob-
ject encapsulated by
the node is an in-
stance of (for ex-
ample ”Product re-
view”).

original parent object No. Returns the par-
ent node (as ezcon-
tentobjecttreen-
ode (page 990)) or
NULL if the parent
node has been re-

5.5.14 Objects / ezcontentobjecttrashnode 989

5

moved or moved to
another place in the
content tree.

original parent path string No. Returns the path
id string identification string

of the parent node
(for example ”com-
pany/about us”) re-
gardless whether the
par-
ent node has been
removed, moved to
another place in the
content tree or not.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.15 Objects / ezcontentobjecttreenode 990

5

5.5.15 ezcontentobjecttreenode

Summary

Contains information about a node within the content node tree.

Attributes

Attribute Type Static* Description
node id string Yes. The ID number of

the node.
parent node id string Yes. The ID number of

the parent node.
main node id string Yes. The ID number of

the main node.
contentobject id string Yes. The ID number of

the content object.
contentobject string Yes. The number of the
version published version.
contentobject is string Yes. The published status
published of the object (0=not

published, 1=pub-
lished).

depth string Yes. The depth of the
node within the con-
tent node tree. The
depth of a top level
node is 1.

sort field string Yes. The sorting method
used to sort the child
nodes.

sort order string Yes. The sorting order
used when sorting
the node’s children.

priority string Yes. The node’s priority
(positive or negative
integer).

modified subnode string Yes. A UNIX timestamp
pinpointing the ex-
act time a sub node
was changed.

path string string Yes. The node’s
path string (for ex-
ample ”/1/2/44”).

path identification string Yes. The node’s path

5.5.15 Objects / ezcontentobjecttreenode 991

5

string identification
string in the initial/
main language (for
example ”company/
about us”).

remote id string Yes. A unique ID for the
node (avoids crashes
when importing/
exporting nodes). A
remote ID is an MD5
hash of the
time when the node
was generated plus a
random value.

is hidden string Yes. The node’s hid-
den status (0=visi-
ble, 1=hidden).

is invisible string Yes. The node’s visibil-
ity status (0=visible,
1=hidden by supe-
rior).

name string No. The name of the ob-
ject the node encap-
sulates (for example
”My article”).

data map array No. The object’s
attributes as ezcon-
tentobjectattribute
(page 981) objects.

object object No. The actual con-
tent object (as ez-
contentobject (page
971)) that the node
encapsulates.

subtree array No. All the nodes that
are below this node
as ezcontentobject-
treenode (page 990)
objects.

children array No. Array of nodes that
are
directly below this
node as ezcontento-
bjecttreenode (page
990) objects.

children count string No. The num-

5.5.15 Objects / ezcontentobjecttreenode 992

5

ber of nodes that are
directly below this
node.

view count integer No. The number of times
the node has been
viewed.

contentobject object No. The current ver-
version object sion (as ezcontento-

bjectversion (page
995)) of the object
that the node encap-
sulates.

sort array array No. The node’s sort ar-
ray.

can read boolean No. Returns TRUE if the
current
user has read access
to the node (FALSE
otherwise).

can pdf boolean No. Not documented
yet.

can create boolean No. Returns TRUE if the
current user can cre-
ate nodes under this
node (FALSE other-
wise).

can edit boolean No. Returns TRUE if the
current user has edit
access to the node
(FALSE otherwise).

can hide boolean No. Returns TRUE if the
current user
can modify the hid-
den state of the node
(FALSE otherwise).

can remove boolean No. Returns TRUE if the
current user
can remove the node
(FALSE otherwise).

can move boolean No. Returns TRUE if the
cur-
rent user can move
the node to another
location (FALSE oth-
erwise).

can move from boolean No. Same as ”can move”,

5.5.15 Objects / ezcontentobjecttreenode 993

5

returns TRUE if the
current user has per-
mis-
sions to move node,
FALSE otherwise.

can add location boolean No. Not documented
yet.

can remove location boolean No. Not documented
yet.

can view embed boolean No. Not documented
yet.

is main boolean No. Not documented
yet.

creator object No. The object (as ez-
contentobject (page
971)) containing the
user who created the
node.

path array No. Array containing the
nodes that make up
the path as ezcon-
tentobject-
treenode (page 990)
objects. The current
node is not included.

path array array No. Array of strings re-
vealing the ID num-
bers of the nodes
that make up the
path. The cur-
rent node is also in-
cluded.

parent object No. The parent node (as
ezcontento-
bjecttreenode (page
990)).

url string No. The URL of the node
either as a virtual
URL (”company/
about us”) or a sys-
tem URL (”content/
view/full/13”)
depending on a con-
figuration setting.

url alias string No. The virtual URL of
the node in the cur-

5.5.15 Objects / ezcontentobjecttreenode 994

5

rent lan-
guage (which is de-
termined according
to the list of priori-
tized languages), for
example ”company/
about us”.

class identifier string No. The identifier of the
class which the ob-
ject encapsulated by
the node is an in-
stance of (for exam-
ple ”product
review”).

class name string No. The name of the
class which the ob-
ject encapsulated by
the node is an in-
stance of (for ex-
ample ”Product re-
view”).

hidden invisible string No. The visibility
string status of a node (”-/

-” = completely visi-
ble, ”H/X” = hidden
by user and thus in-
visible, ”-/X” = hid-
den by superior).

hidden status string string No. The visibility status
of
the node: ”Visible”,
”Hidden” or ”Hidden
by superior”.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.16 Objects / ezcontentobjectversion 995

5

5.5.16 ezcontentobjectversion

Summary

Contains information about a version of a content object.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the version.
contentobject id string Yes. The ID number of

the object that the
version belongs to.

creator id string Yes. The ID number of
the object that rep-
resents the user who
created the version.

version string Yes. The actual version
number.

status string Yes. The status of the ver-
sion.

created string Yes. A UNIX timestamp
pinpointing the ex-
act date/time when
the version was cre-
ated.

modified string Yes. A UNIX timestamp
pinpointing the ex-
act date/time when
the version was last
modified.

workflow event pos string Yes. DEPRECATED -
was related to work-
flows.

user id string Yes. DEPRECATED -
was related to work-
flows.

language mask string Yes. The sum of the ID
numbers of the lan-
guages in which the
version exists plus 1.

initial language id string Yes. The ID
number of the lan-
guage which the ver-

5.5.16 Objects / ezcontentobjectversion 996

5

sion was edited in
(for example 16).

creator object No. The ob-
ject (as ezcontentob-
ject (page 971) ob-
ject) that represents
the user who created
the version.

name string No. The name of the ver-
sion (generated us-
ing the object name
pattern).

version name string No. The name of the ver-
sion (generated us-
ing the object name
pattern).

main parent node id string No. The ID number
of the main parent
node that references
the object which the
version belongs to.

contentobject array No. The attributes (as
attributes ezcontento-

bjectattribute (page
981) objects) that
the version consists
of. Only attributes
in the current lan-
guage (which is de-
termined according
to the list of priori-
tized languages) will
be fetched.

related array No. An array of ezcon-
contentobject array tentobject

(page 981) objects
representing the ob-
jects that are related
to the object that the
version belongs to.

reverse related array No. An array of ezcon-
object list tentobject

(page 981) objects
representing the ob-
jects that are related
to the object which

5.5.16 Objects / ezcontentobjectversion 997

5

the version belongs
to.

parent nodes array No. The parent nodes
(as eznodeassign-
ment (page 1033)
objects) of the nodes
which reference the
object that the ver-
sion belongs to.

can read boolean No. Returns TRUE if the
current
user has read access
to the version. Oth-
erwise FALSE is re-
turned.

can remove boolean No. Not documented
yet.

data map array No. A hash containing
the attributes (as ez-
contentobjectat-
tribute (page 981)
objects) that the ver-
sion consists of. The
keys of the hash are
the identifiers of the
attributes.

node assignments array No. An
array of node assign-
ments (as eznodeas-
signment (page
1033) objects) that
are connected with
the object which the
version belongs to.

contentobject object No. The object (as ez-
contentobject (page
971)) that the ver-
sion belongs to.

initial language object No. The language which
the version was
edited in (as ezcon-
tentlanguage (page
970) object).

language list array No. The translations (as
ezcontentob-
jecttranslation (page

5.5.16 Objects / ezcontentobjectversion 998

5

985) objects) that
belong to the ver-
sion - including the
default translation.

translation object No. DEPRECATED - was
related to old multi-
language functional-
ity.

translation list array No. The translations (as
ezcontentob-
jecttranslation (page
985) objects) that
belong to the ver-
sion - the default
translation is not in-
cluded.

complete array No. Same as
translation list the ”translation list”

attribute.
temp main node object No. A temporary node

(as ezcontentobject-
treenode (page 990)
object) for the object
that the version be-
longs to.
The temporary node
does not exist in the
database.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.17 Objects / ezcurrencydata 999

5

5.5.17 ezcurrencydata

Summary

Contains information about a currency.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the currency.
code string Yes. The three-character

currency code (for
example ”USD”).

symbol string Yes. A string that is used
as
the currency symbol
(for example ”$”).

locale string Yes. A locale that is used
for price formatting
(for example ”eng-
US”).

status string Yes. Returns 0 if the cur-
rency is inactive, 1
otherwise.

auto rate value string Yes. The currency rate
that is retrieved via
automatic update of
the exchange rates
from the Internet.

custom rate value string Yes. The currency
rate that is specified
manually (0.00000
by default).

rate factor string Yes. The rate factor value
(1.00000 by
default). If the cus-
tom rate is 0.00000
or not specified then
the auto rate will
be multiplied by the
rate factor.

rate value string No. The actual rate value
that will be used in
calculations. The

5.5.17 Objects / ezcurrencydata 1000

5

rate value will be the
same as the custom
rate if it is not zero.
If the custom rate is
0.00000 or not spec-
ified then the auto
rate will be multi-
plied by the rate fac-
tor.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.18 Objects / ezdate 1001

5

5.5.18 ezdate

Summary

Contains information about a date.

Attributes

Attribute Type Static* Description
timestamp string Yes. The date as a UNIX

times-
tamp (for example
”567990000”) if the
date is a valid date,
NULL otherwise.

is valid boolean Yes. Returns TRUE if the
date is a valid date,
FALSE otherwise.

year string No. The year (for exam-
ple ”1988”).

month string No. The month (for ex-
ample ”01”).

day string No. The day (for exam-
ple ”01”).

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.19 Objects / ezdatetime 1002

5

5.5.19 ezdatetime

Summary

Contains information about a date and time.

Attributes

Attribute Type Static* Description
timestamp string Yes. The date/time value

as a UNIX times-
tamp (for example
”1147719660”)
if the date/time is
valid.

hour string No. The hour (for exam-
ple ”21”).

minute string No. The minute (for ex-
ample ”01”).

year string No. The year (for exam-
ple ”2006”).

month string No. The month (for ex-
ample ”05”).

day string No. The day (for exam-
ple ”15”).

is valid boolean Yes. Returns TRUE if the
date/time value is
valid, FALSE other-
wise.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.20 Objects / ezimagealiashandler 1003

5

5.5.20 ezimagealiashandler

Summary

Contains information about an image.

Attributes

Attribute Type Static* Description
alternative text string No. The alternative im-

age text (for exam-
ple ”Picture of an ap-
ple.”).

original filename string No. The original name
of the image file
(for example ”ap-
ple.png”).

is valid string No. Returns either 1 or 0
(valid or invalid).

name of variation array No. Attribute: name
Type: string
Description: The
name of the vari-
ation (for example
”original”).

Attribute: width
Type: string
Description: The
width as number of
pixels (for example
”320”).

Attribute: height
Type: string
Description: The
height as number of
pixels (for example
”256”).

Attribute: mime
type
Type: string
Description: The
MIME type (for ex-

5.5.20 Objects / ezimagealiashandler 1004

5

ample ”image/
png”).

Attribute: filename
Type: string
Description: The
name of the file
(for example ”my
image.png”).

Attribute: suffix
Type: string
Description: The
file suffix (for exam-
ple ”png”).

Attribute: dirpath
Type: string
Description: The
path
to the image (for ex-
ample ”var/storage/
images/test/
199-2-eng-GB”).

Attribute:
basename
Type: string
Description: The
basename of the im-
age file (for example
”apple”).

Attribute:
alternative text
Type: string
Description: The al-
ternative image text
(for example ”Pic-
ture of an apple.”).

Attribute: text
Type: string
Description: Con-
tains the
”alternative text” of

5.5.20 Objects / ezimagealiashandler 1005

5

the original image.

Attribute: original
filename
Type: string
Description: The
name of the origi-
nal file (for example
”apple.png”).

Attribute: url
Type: string
Description: Com-
plete path + name
of image file (for ex-
ample ”var/storage/
images/test/
199-2-eng-GB/
apple.png”).

Attribute: alias key
Type: string
Description: A in-
ternal CRC32 value
which is used when
an alias is created.
This value is based
on the filters that
were used (param-
eters included) and
is checked when an
alias is accessed. If
this values differs
from the configured
filters (in image.ini
or an override), the
system will recreate
the alias.

Attribute: times-
tamp
Type: string
Description:
A UNIX timestamp
pinpointing the ex-
act date/time when

5.5.20 Objects / ezimagealiashandler 1006

5

the alias was last
modified. For the
”original” alias, the
timestamp will re-
veal the time when
the image was orig-
inally uploaded.

Attribute: full path
Type: string
Description: Com-
plete path + name
of image file (for ex-
ample ”var/storage/
images/test/
199-2-eng-GB/
apple.png”).

Attribute: is valid
Type: string
Description: TRUE
if
the alias was created
properly, that means
all conversion and
filters were applied
without problems. It
will be FALSE if the
image man-
ager is wrongly con-
figured or if there
no compatible image
converters could be
found.

Attribute: is new
Type: boolean
Description: Will
be set to TRUE the
first time the alias
is created, the next
time (reload of the
same page) it will be
FALSE. It will also
be set to TRUE every
time the alias is re-

5.5.20 Objects / ezimagealiashandler 1007

5

created due
to changes in filters
(see alias key).

Attribute: filesize
Type: integer
Description: The
number of bytes that
the image consumes.

Attribute: info
Type: string
Description: Con-
tains extra informa-
tion about the im-
age, depending on
the image type. It
will typically contain
EXIF infor-
mation from digital
cameras or informa-
tion about animated
GIFs. If there is no
information, the info
will be a boolean
FALSE.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.21 Objects / ezimagelayer 1008

5

5.5.21 ezimagelayer

Summary

Contains information about an image layer.

Attributes

Attribute Type Static* Description
filepath string Yes. The path (for exam-

ple ”design/
example/images”).

filename string Yes. The name of the im-
age file (for example
”delorean.png”).

width integer Yes. The width of the im-
age (number of pix-
els).

height integer Yes. The height of the im-
age (number of pix-
els).

alternative text string Yes. The alternative im-
age text.

imagepath string No. The internal
(eZ publish) path to
the image (for exam-
ple ”design/
example/images/
delorean.png”).

has size boolean No. TRUE if ”width” and
”height” is set, oth-
erwise FALSE.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.22 Objects / ezimageobject 1009

5

5.5.22 ezimageobject

Summary

Contains information about an image.

Attributes

Attribute Type Static* Description
filepath string Yes. The path (for exam-

ple ”design/
example/images”).

filename string Yes. The name of the im-
age file (for example
”delorean.png”).

width integer Yes. The width of the im-
age (number of pix-
els).

height integer Yes. The height of the im-
age (number of pix-
els).

alternative text string Yes. The alternative im-
age text.

imagepath string No. The internal
(eZ publish) path to
the image (for exam-
ple ”design/
example/images/
delorean.png”).

has size boolean No. TRUE if ”width” and
”height” is set, oth-
erwise FALSE.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.23 Objects / ezinformationcollection 1010

5

5.5.23 ezinformationcollection

Summary

Contains information about a block of collected information.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the information col-
lection.

contentobject id string Yes. The ID number of
the object that col-
lected the informa-
tion.

user identifier string Yes. An unique identifier
of the user that sub-
mitted the informa-
tion (an MD5 hash
of the user’s ID num-
ber for registered
users; session iden-
tifier for anonymous
users).

creator id string Yes. The ID number of
the object represent-
ing the user who
submitted the infor-
mation (for exam-
ple, 14).

created string Yes. A UNIX timestamp
revealing the exact
date/time when the
information was col-
lected.

modified string Yes. A UNIX timestamp
revealing the exact
date/time when the
collection was last
modified.

attributes array No. An array of the col-
lection attributes (as
ezinformationcollec-
tionattribute (page

5.5.23 Objects / ezinformationcollection 1011

5

1012) objects).
data map array No. A hash containing

the attributes (as ez-
informationcollec-
tionattribute (page
1012) objects) that
the collection con-
sists of. The keys
of the hash are the
identifiers of the at-
tributes.

object object No. The actual object
that collected the in-
formation (as an ez-
contentobject (page
971) object).

creator object No. The user who sub-
mitted the informa-
tion (as ezuser (page
1056) object).

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.24 Objects / ezinformationcollectionattribute 1012

5

5.5.24 ezinformationcollectionattribute

Summary

Contains information about an attribute of a collection.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the information col-
lection attribute.

informationcollection string Yes. The ID number of
id the information col-

lection itself.
contentclass string Yes. The ID number of
attribute id the class attribute.
contentobject string Yes. The ID number of
attribute id the object attribute.
contentobject id string Yes. The ID number of

the object.
data text string Yes. Collected text.
data int string Yes. Collected integer.
data float string Yes. Collected float.
contentclass string No. The name of the at-
attribute name tribute that collected

the information.
contentclass object No. The class attribute
attribute (as an ezcontent-

classattribute (page
965) object).

contentobject object No. The object attribute
attribute (as an ezcontento-

bjectattribute (page
981) object).

contentobject object No. The content object
(as an ezcontentob-
ject (page 971) ob-
ject).

result template string No. The name of the
result template (for
example ”ezstring”).

has content boolean No. Returns TRUE if the
attribute
is not empty, FALSE

5.5.24 Objects / ezinformationcollectionattribute 1013

5

otherwise.
content string No. The actual content

of the attribute.
class content any No. The content of the

class attribute which
the col-
lection attribute is
made from.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.25 Objects / ezkeyword 1014

5

5.5.25 ezkeyword

Summary

Contains information about keywords.

Attributes

Attribute Type Static* Description
keywords array Yes. An array of strings

containing the key-
words/phrases.

keyword string string No. The actual keyword
string (comma sepa-
rated keywords/
phrases).

related nodes array No. An array of nodes
(as ezcontentobject-
treenode (page 990)
objects) that have at
least one of the same
keywords.

related objects array No. (Deprecated from
3.6.1, use related
nodes) An array of
nodes
(as ezcontentobject-
treenode (page 990)
objects) that have at
least one of the same
keywords.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.26 Objects / ezlocale 1015

5

5.5.26 ezlocale

Summary

Contains information about a locale.

Attributes

Attribute Type Static* Description
charset string Yes. The char-

acter set that the lo-
cale uses (for exam-
ple ”iso-8859-1”).

allowed charsets array Yes. An array
of strings containing
the allowed charac-
ter sets.

country name string Yes. The
name of the coun-
try that the locale
belongs to (for ex-
ample ”United King-
dom”).

country comment string Yes. A
comment about the
country that the lo-
cale belongs to (usu-
ally empty).

country code string Yes. The country code
(for example ”GB”
for Great Britian).

country variation string Yes. The country varia-
tion.

language name string Yes. The native name of
the language (for ex-
ample ”Norsk”,
”Magyar”, etc.).

intl language name string Yes. The in-
ternational name of
the language (for ex-
ample ”Norwegian”,
”Hungarian”, etc.).

language code string Yes. The language code
(for example ”eng”).

language comment string Yes. A comment about

5.5.26 Objects / ezlocale 1016

5

the language itself
(usually empty).

locale code string Yes. The actual lo-
cale code (for exam-
ple ”eng-GB”, ”nor-
NO”, etc.).

locale full code string No. The full locale code
(for example ”eng-
GB”).

http locale code string No. The HTTP lo-
cale code (for exam-
ple ”eng-GB”).

decimal symbol string Yes. The decimal symbol
(for example a dot
”.”).

thousands separator string Yes. The char-
acter (if any) that
is used to separate/
split large numbers.

decimal count string Yes. The number of dec-
imal digits that
should be displayed.

negative symbol string Yes. The symbol used for
displaying neg-
ative numbers (usu-
ally just a dash: ”-”).

positive symbol string Yes. The symbol used for
display-
ing positive numbers
(usually empty).

currency decimal string Yes. The symbol used for
symbol separating the inte-

ger part from the
decimal part of cur-
rency values.

currency thousands string Yes. The thousand sepa-
separator rator used for cur-

rencies.
currency decimal string Yes. The number of dec-
count imal

digits that should be
included when dis-
playing currencies.

currency negative string Yes. The symbol used for
symbol displaying nega-

tive currencies (usu-

5.5.26 Objects / ezlocale 1017

5

ally just a dash: ”-”).
currency positive string Yes. The symbol used for
symbol displaying posi-

tive currencies (usu-
ally empty).

currency symbol string Yes. The currency symbol
(for example ”£”).

currency name string Yes. The name of the cur-
rency (for example
”British
Pound”, ”Norwegian
Kroner”, etc.).

currency short name string Yes. A short/abbreviated
name for the cur-
rency (for example
”BSP”, ”NOK”, etc.).

is monday first boolean Yes. Returns
TRUE if monday is
considered to be the
first day of the week,
FALSE otherwise.

weekday name list array No. An array of strings
containing the
weekday names (for
example ”Monday”,
”Tuesday”, etc.).

weekday short array No. An array of strings
name list containing abbrevi-

ated weekday names
(for example ”Mon”,
”Tue”, etc.).

weekday number array Yes. An
list array of strings con-

taining the weekday
numbers (for exam-
ple ”0”, ”1”, etc.).

month list array Yes. An array
of strings containing
the month digits (for
example ”1” for Jan-
uary, ”2” for Febru-
ary, etc.).

month name list array Yes. An array of strings
containing the name
of the months (for
example ”January”,

5.5.26 Objects / ezlocale 1018

5

”February”, etc.).
is valid boolean Yes. Returns TRUE if the

locale is valid (suc-
cessfully read from
disk), FALSE other-
wise (unknown lo-
cale).

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.27 Objects / ezmatrix 1019

5

5.5.27 ezmatrix

Summary

Contains information about a matrix.

Attributes

Attribute Type Static* Description
name boolean Yes. Always FALSE (this

attribute is currently
not used).

rows array No. A collection of
miscellaneous struc-
tures that contain in-
formation about the
rows. Currently
there is only one
structure, called ”se-
quential”. It is built
up of an array of
hashes. The follow-
ing table reveals the
structure of the ar-
ray elements.
Name: identifier
Type: string
Description: The
identifier of the col-
umn (defined at the
class level).

Name: name
Type: string
Description: The
name of the column
(defined at the class
level).

Name: columns
Type: array
Description: An ar-
ray of strings hold-
ing the actual con-
tents of the columns.

5.5.27 Objects / ezmatrix 1020

5

columns array No. A collection of
miscellaneous struc-
tures that contain in-
formation about the
rows.
Currently there are
two types of struc-
tures: ”sequential”
and ”id”. The ”se-
quential” structure is
built up of an array
hashes. The follow-
ing table reveals the
structure of the ar-
ray elements.
Name: identifier
Type: string
Description: The
identifier of the col-
umn (defined at the
class level).

Name: index
Type: string
Description: The
row index (”0”, ”1”,
and so on).

Name: name
Type: string
Description: The
name of the column
(defined at the class
level).

Name: rows
Type: array
Description: An ar-
ray of strings hold-
ing the actual con-
tents of the rows.

The ”id” structure
consists
of hash where the

5.5.27 Objects / ezmatrix 1021

5

keys are the column
identifiers. The fol-
lowing table shows
the structure that is
available for each
column identifier.
Name: identifier
Type: string
Description: The
identifier of the col-
umn (defined at the
class level).

Name: index
Type: string
Description: The
column index (”0”,
”1”, and so on).

Name: name
Type: string
Description: The
name of the column
(defined at the class
level).

Name: rows
Type: array
Description: An ar-
ray of strings hold-
ing the actual con-
tents of the rows.

cells array Yes. A flat array of the
cells that make up
the matrix (from left
to right, top to bot-
tom).

matrix array Yes. Consists of ”rows”,
”columns” and
”cells” (see above).

rowCount integer No. The number of rows.
columnCount integer No. The number of

columns.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.28 Objects / ezmedia 1022

5

5.5.28 ezmedia

Summary

Contains information about a video file.

Attributes

Attribute Type Static* Description
contentobject string Yes. The identification
attribute id number of the con-

tent object attribute.
version string Yes. The content object

version.
filename string Yes. The name of the

file in the eZ
publish var direc-
tory (for example
”44b963c9e8d1ffa80cbb08e84d576735.avi”).

original filename string Yes. The orig-
inal filename (for
example ”ezpublish-
mediademo.avi”).

mime type string Yes. The MIME type (for
example ”video/
x-msvideo”).

width string Yes. The playback width -
in number of pixels
(for example ”640”).

height string Yes. The playback height
- in number of pixels
(for example ”480”).

has controller string Yes. Either 1 or 0 (show
controller or do not
show controller).

controls string Yes. Either 1 or 0 - Real
Media specific - con-
trols the control-bar.

is autoplay string Yes. Either 1 or 0 (auto-
matically start play-
back or not).

pluginspage string Yes. A URL that leads to
the plug-in that is
required for proper

5.5.28 Objects / ezmedia 1023

5

playback.
quality string Yes. Flash specific - con-

trols the quality of
the media.

is loop string Yes. Either 1 or 0 (looped
playback or single-
cycle).

filesize integer No. The number of bytes
the media file con-
sumes.

filepath string No. The path to the
media file (for ex-
ample ”var/storage/
original/video/
44b963c9e8d1ffa80cbb08e84d576735.avi”).

mime type category string No. The MIME type cat-
egory (for example
”video”).

mime type part string No. The MIME type part
(for example
”x-msvideo”).

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.29 Objects / ezmultioption 1024

5

5.5.29 ezmultioption

Summary

DEPRECATED (Contains information about multilpe options.)

Attributes

Attribute Type Static* Description
name string Yes. The name of the en-

tire multi-option set.
multioption list array Yes. An array of hashes

where each
hash consists of the
following elements:
Attribute: id
Type: integer
Description: The ID
number of the op-
tion.

Attribute: name
Type: string
Description:
The name of the
option (for example
”Color”).

Attribute: priority
Type: string
Description: The
option’s priority.

Attribute: default
option id
Type: string
Description: The ID
number of the de-
fault option.

Attribute: optionlist
Type: array
Description: Array
of hashes - the struc-
ture is described in

5.5.29 Objects / ezmultioption 1025

5

the documentation
page for the ezop-
tion (page 1035) ob-
ject.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.30 Objects / ezmultioption2 1026

5

5.5.30 ezmultioption2

Summary

Contains information about a group of multi-options.

Attributes

The ezmultioption2 objects can be used to store information about the following:

• Ordinary groups of multi-options (top level groups that are described in the reference docu-
mentation of the ”Multi-option2 (page 506)” datatype; these groups can be managed from
within the administration interface).

• A virtual root group that is located one level above the ordinary group (the parent of all
groups); it is not visible from within the administration interface.

• Virtual subgroups of multi-options (such a group contains all multi-options that are located
one level beneath an existing multi-option; subgroups are not visible from within the ad-
ministration interface).

For example, let’s say the site administrator creates the following multi-level structure with two
groups of multi-options called ”Exterior” and ”Interior”:

Exterior
- Body: Sedan, Combi, Hatchback
- Color: Black, Red
-- Bumpers: Same as body, Non-painted
-- Mirrors: Silver, Same as body, Non-painted

Interior
- Seats: Make your choice, Cloth, Leather

In this case, the system will create ”ezmultioption2” objects that store information about top
level groups (”Exterior” and ”Interior”), their parent group (virtual root group), plus an unnamed
subgroup that contains the ”Bumpers” and ”Mirrors” multi-options.

The following table reveals the structure of ”ezmultioption2” objects.

Attribute Type Static* Description
name string Yes. The name of the

group (for example
”Exterior”) if the ob-
ject represents a top
level group of multi-
options; otherwise

5.5.30 Objects / ezmultioption2 1027

5

an
empty string will be
returned (subgroups
and root groups are
unnamed).

id integer Yes. Not in use.
group id integer Yes. The ID number of

the group/subgroup
(for example 2). 0
means that the ob-
ject represents a root
group.

rules array Yes. The de-
pendency rules for
nested multi-options
as an array of arrays
if the object repre-
sents a root group;
otherwise an empty
array will be re-
turned.

multioption list array Yes. The multi-options
that belong to the
group/subgroup as
an array of hashes.
(If the object repre-
sents a root group,
an empty array will
be returned.)
Each hash describes
a multi-option lo-
cated at the first
level in the group/
subgroup. The hash-
structure consists of
the following ele-
ments:
Attribute: id
Type: integer
Description: The
internal ID number
of the multi-option
(unique within
the group/subgroup
that the multi-option
belongs to).

5.5.30 Objects / ezmultioption2 1028

5

Attribute:
multioption id
Type: string
Description: The ID
number of the multi-
option (for example
2).

Attribute: name
Type: string
Description: The
name of the multi-
option (for example
”Color”).

Attribute: priority
Type: string
Description:
Reserved for future
use.

Attribute: default
option id
Type: string
Description: The ID
number of the de-
fault option.

Attribute: imageop-
tion
Type: integer
Description: 1 if
one or more images
are added to the op-
tions in the multi-
option, FALSE other-
wise.

Attribute: optionlist
Type: array
Description:
The options that be-
long to the multi-
option as an array of
hashes. Each hash

5.5.30 Objects / ezmultioption2 1029

5

consists of the fol-
lowing elements:
Attribute: id
Type: integer
Description: The
internal ID number
of the option
(unique within the
multi-option that the
option belongs to).

Attribute: option id
Type: string
Description: The ID
number of the op-
tion.

Attribute: value
Type: string
Description: The
option text (for ex-
ample ”Red”).

Attribute:
additional price
Type: string
Description: Addi-
tional price (for ex-
ample ”100”).

Attribute: is
selectable
Type: string
Description: 1 if
the option is not dis-
abled, otherwise 0.

Attribute: child
group
Type: object
Description: The
subgroup (as an ez-
multioption2 object)
that contains
all multi-options lo-

5.5.30 Objects / ezmultioption2 1030

5

cated one level be-
neath this one. If
there are no nested
multi-options,
this element will not
be returned.

optiongroup list array Yes. The top level groups
(as ezmul-
tioption2 objects) if
the object represents
a root group; other-
wise an empty array
will be returned.

5.5.31 Objects / ezmultiprice 1031

5

5.5.31 ezmultiprice

Summary

Contains information about prices and currencies for a product.

Attributes

Attribute Type Static* Description
vat type array No. The available VAT

types (as an array
of ezvattype (page
1060) objects).

current user object No. The current user
(as an ezuser (page
1056) object).

is vat included boolean Yes. TRUE if the VAT is
included, FALSE oth-
erwise.

vat percent string No. The VAT percentage
(without the percent
symbol).

discount percent double Yes. The discount per-
centage.

has discount boolean No. TRUE if a
discount rule affects
the price, FALSE oth-
erwise.

selected vat type object No. The selected
VAT type (as an ez-
vattype (page 1060)
object).

price string No. The price in the pre-
ferred currency.

inc vat price string No. The price in the pre-
ferred currency in-
cluding the VAT.

ex vat price double No. The price in the pre-
ferred currency ex-
cluding the VAT.

discount price inc double No. The discounted price
vat in the preferred cur-

rency including the
VAT.

discount price ex double No. The discounted price

5.5.31 Objects / ezmultiprice 1032

5

vat in the preferred cur-
rency excluding the
VAT.

currency string No. The code of the pre-
ferred currency.

currency list array No. The available cur-
rencies (as an ar-
ray of ezcurrency-
data (page 999) ob-
jects).

auto currency list array No. The currencies that
the auto prices are
calculated for (as an
array of ezcurrency-
data (page 999) ob-
jects).

price list array No. The prices in all cur-
rencies (both cus-
tom prices and auto
prices).

auto price list array No. The auto prices.
custom price list array No. The custom prices.
inc vat price list array No. The prices including

the VAT.
ex vat price list array No. The prices excluding

the VAT.
discount inc vat array No. The
price list discounted prices in-

cluding the VAT.
discount ex vat array No. The discounted
price list prices excluding the

VAT.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.32 Objects / eznodeassignment 1033

5

5.5.32 eznodeassignment

Summary

Contains information about a node assignment.

Attributes

Attribute Type Static* Description
id string Yes. The ID

number of the node
assignment.

remote id string Yes. The remote ID of the
node assignment.

contentobject id string Yes. The ID number of
the object that the
node assignment be-
longs to.

contentobject string Yes. The version number
version which the node as-

signment belongs to.
parent node string Yes. The ID number of

the parent node.
sort field string Yes. The ID number of

the method for sort-
ing child nodes.

sort order string Yes. Either 1 (ascending)
or 0 (descending).
Reveals the order for
sorting child nodes.

is main string Yes. Either 1 or 0. 1
means that this is
the main node as-
signment for the ob-
ject.

from node id string Yes. The ID number of
the original node.
This attribute will
only have a valid
value if an exist-
ing node is moved,
in which case the
”parent node
id” will reveal the
new parent node.

5.5.32 Objects / eznodeassignment 1034

5

If the attribute con-
tains ”0” or ”-1”, it
means that the node
is not meant to be
moved.

parent remote id string Yes. The remote ID of the
parent node.

op code string Yes. Not documented
yet.

parent node obj object No. The parent node (as
ezcontentobject-
treenode (page 990)
object).

parent object No. The object (as ez-
contentobject contentobject (page

971) object) that is
referenced by the
parent node.

node object No. The actual node (as
ezcontento-
bjecttreenode (page
990)) that this as-
signment assigns to
the object.

is nop operation boolean No. Not documented
yet.

is create operation boolean No. Not documented
yet.

is move operation boolean No. Not documented
yet.

is remove operation boolean No. Not documented
yet.

is set operation boolean No. Not documented
yet.

temp node object No. A temporary node
(as ezcontentobject-
treenode (page 990)
object) for the object
that the version be-
longs to.
The temporary node
does not exist in the
database.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.33 Objects / ezoption 1035

5

5.5.33 ezoption

Summary

Contains information about a collection of options.

Attributes

Attribute Type Static* Description
name string Yes. The name of the

option (for example
”Color”).

option list array Yes. An array of hashes
where each hash
consits of the follow-
ing elements:
Attribute: id
Type: integer
Description: The ID
number of the op-
tion.

Attribute: value
Type: string
Description: The
option text
(for example ”Red”,
”Green”, etc.).

Attribute:
additional price
Type: string
Description: The
addition price.

Attribute: is default
Type: boolean
Description: TRUE
if it is the default
option, FALSE other-
wise.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.34 Objects / ezorder 1036

5

5.5.34 ezorder

Summary

Contains information about an order.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the order.
order nr string Yes. The number (count)

of the order.
is temporary string Yes. 1 if the order is tem-

porary, 0 otherwise.
user id string Yes. The ID number of

the user that the or-
der belongs to.

productcollection id string Yes. The ID number of
the product collec-
tion that belongs to
the order.

data text 1 string Yes. General purpose text
block for the shop
ac-
count handler. The
default shop han-
dler uses this at-
tribute to store an
XML structure with
the customer infor-
mation (name, ad-
dress, etc.). Exam-
ple:

5.5.34 Objects / ezorder 1037

5

<xml
version="1.0"
encoding="UTF-8"?>
<shop_account>

<first-name>Marty</
first-name>

<last-name>McFly</
last-name>

<email>marty@ez.no</
email>

<street1>7
Lyon Estates</
street1>

<street2>Outside
Hill Valley</
street2>

<zip>55532</
zip>

<place>Hill
Valley</
place>

<state>California</
state>

<country>USA</
country>

<comment>No
comment.</
comment>
</shop_account>

data text 2 string Yes. General purpose text
block #2 for the
shop account han-
dler. Similar to
”data text 1”.

account identifier string Yes. The account iden-
tifier (for example
”ez”).

created string Yes. A UNIX timestamp
pinpointing the ex-
act date/time when
the order was cre-

5.5.34 Objects / ezorder 1038

5

ated.
ignore vat string Yes. 1 if the VAT should

be ignored, 0 other-
wise.

email string Yes. The E-mail address
of the buyer.

status id string Yes. The global ID num-
ber of the order’s
current status.

status modified string Yes. A UNIX timestamp
pinpointing the ex-
act date/time when
the status was or-
der’s status was last
modified.

status modifier id string Yes. The ID number of
the user who last
modified the order’s
status.

is archived string Yes. Not documented
yet.

status name string No. The name of the or-
der’s current status
(for example ”Pend-
ing”).

status object No. The actual order sta-
tus (as an ezorder-
status (page 1041)
object).

status modification array No. The status log as an
list array of ezordersta-

tus (page 1041) ob-
jects.

product items array No. Not documented
yet.

order items array No. An array of order
items that are asso-
ciated with the or-
der (as ezorderitem
(page 1040)
objects).

product total inc vat double No. Not documented
yet.

product total ex vat double No. Not documented
yet.

total inc vat double No. Not documented

5.5.34 Objects / ezorder 1039

5

yet.
total ex vat double No. Not documented

yet.
user object No. Not documented

yet.
account view string No. Not documented
template yet.
account information array No. Not documented

yet.
account name string No. Not documented

yet.
account email string No. Not documented

yet.
productcollection object No. Not documented

yet.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.35 Objects / ezorderitem 1040

5

5.5.35 ezorderitem

Summary

Contains information about order items.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the order item.
order id string Yes. The ID number of

the order that the or-
der item is associ-
ated with.

description string Yes. The description of
the order item.

price string Yes. The price of the or-
der item.

vat value string Yes. The VAT value.
is vat inc string Yes. 1 if the price in-

cludes the VAT, 0
otherwise.

type string Yes. The type of the or-
der item. This string
reveals which part
of the system that
added the item (for
example ”ezsimple-
shipping”).

price inc vat integer No. The price of the or-
der item including
the VAT.

price ex vat integer No. The price of the or-
der item excluding
the VAT.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.36 Objects / ezorderstatus 1041

5

5.5.36 ezorderstatus

Summary

Contains information about an order status.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the status.
status id string Yes. The global ID num-

ber of the status.
name string Yes. The name of the

status (for example
”Delivered”).

is active string Yes. 1 if the status is ac-
tive, 0 otherwise.

is internal boolean No. TRUE if the status
is one of the built-
in/internal statuses,
FALSE if it is a cus-
tom status.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.37 Objects / ezpolicy 1042

5

5.5.37 ezpolicy

Summary

Contains information about a policy.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the policy.
role id string Yes. The ID number of

the role the policy
belongs to.

module name string Yes. The name of the
module that the pol-
icy grants access to
(for example ”con-
tent”).

function name string Yes. The name
of the function that
the policy grants ac-
cess to (for example
”read”).

limitations array No. The limitations (if
any) of the policy.

role object No. The role (as ezrole
(page 1048) object)
that the policy be-
longs to.

limit identifier string No. Not documented
yet.

limit value string No. Not documented
yet.

user role id string No. Not documented
yet.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.38 Objects / ezprice 1043

5

5.5.38 ezprice

Summary

Contains information about a price.

Attributes

Attribute Type Static* Description
vat type array No. The available VAT

types (as an array
of ezvattype (page
1060) objects).

current user object No. The current user
(as an ezuser (page
1056) object).

is vat included boolean Yes. TRUE if the VAT is
included, FALSE oth-
erwise.

vat percent string No. The VAT percentage
(without the percent
symbol).

discount percent double Yes. The discount per-
centage.

has discount boolean No. TRUE if a
discount rule affects
the price, FALSE oth-
erwise.

selected vat type object No. The selected
VAT type (as an ez-
vattype (page 1060)
object).

price string Yes. The entered price.
inc vat price string No. The price including

the VAT.
ex vat price double No. The price excluding

the VAT.
discount price inc double No. The discounted price
vat including the VAT.
discount price ex double No. The discounted price
vat excluding the VAT.
currency string Yes. An empty string.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.39 Objects / ezproductcategory 1044

5

5.5.39 ezproductcategory

Summary

Contains information about a product category.

Attributes

Attribute Type Static* Description
id integer Yes. The ID number

of the product cate-
gory.

name string Yes. The name of the
product category.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.40 Objects / ezproductcollectionitem 1045

5

5.5.40 ezproductcollectionitem

Summary

Contains information about an item of a product collection.

Attributes

Attribute Type Static* Description
id string Yes. Auto-incremented

ID number (used on
the database level).

productcollection id string Yes. The ID number of
the product collec-
tion.

contentobject id string Yes. The ID number of
the content object.

item count string Yes. The quantity.
price string Yes. The price of the

product (the object).
is vat inc string Yes. 1 if the price in-

cludes the VAT, 0 if
not.

vat value string Yes. The VAT value.
discount string Yes. Discount

percentage.
name string Yes. The name of the

product (the object).
contentobject object No. The actual content

object (as an ez-
contentobject (page
971) object).

option list array No. An ar-
ray representing the
selected product op-
tions.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.41 Objects / ezrangeoption 1046

5

5.5.41 ezrangeoption

Summary

Contains information about a range of options.

Attributes

Attribute Type Static* Description
name string Yes. The name of the

range option (for ex-
ample ”Shoe size”).

start value string Yes. The start value (for
example ”32”).

stop value string Yes. The stop value (for
example ”40”).

step value string Yes. The step value (for
example ”1”).

option list array Yes. The generated op-
tions as an array of
hashes where each
hash consists of the
following elements:
Attribute: id
Type: integer
Description: The ID
of the option.

Attribute: value
Type: string
Description: The
option value.

Attribute:
additional price
Type: integer
Description:
The additional price
(will always be 0).

Attribute: is default
Type: boolean
Description: TRUE
if it is the default
option, FALSE other-

5.5.41 Objects / ezrangeoption 1047

5

wise.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.42 Objects / ezrole 1048

5

5.5.42 ezrole

Summary

Contains information about a role.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the role.
version integer Yes. The current version

of the role, 0 is the
currently active role
while any other val-
ues are temporary
versions.

name string Yes. The name of the
role (for example
”Anonymous”).

is new integer Yes. The creation state of
the role, will be 1
if the role just got
created but have not
been activated yet, 0
otherwise.

policies array No. The
policies (as ezpolicy
(page 1042) objects)
that make up the
role.

limit identifier string No. The identifier of the
limited
assignment for the
currently logged in
user. Will be FALSE
if the limited assign-
ment is not used.

limit value string No. The value for the
”limit identifier” at-
tribute (when the
limitation feature is
in use).

user role id string No. Not documented
yet.

5.5.42 Objects / ezrole 1049

5

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.43 Objects / ezsection 1050

5

5.5.43 ezsection

Summary

Contains information about a section.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the section.
name string Yes. The name of the

section (for example
”Standard”).

navigation part string Yes. The identifier of the
identifier navigation part that

the sec-
tion belongs to (for
example ”ezcontent-
navigationpart”).

locale string Yes. Not in use.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.44 Objects / ezsimplifiedxmlinput 1051

5

5.5.44 ezsimplifiedxmlinput

Summary

Contains information about XML data.

Attributes

Attribute Type Static* Description
input xml string No. The text that the

end-user has input
to the system.

edit template name string No. The name
of the template that
is used when the ob-
ject attribute is be-
ing edited. The de-
fault is ”ezxmltext”,
but can be overrid-
den for a custom
handler (for exam-
ple the Online Edi-
tor).

information string No. The name of the
template name template that will be

used when the ob-
ject attribute is col-
lecting informa-
tion. The default is
”ezxmltext”, but can
be overridden for a
custom handler (for
example the Online
Editor).

aliased type string Yes. Returns the name of
the original handler.
This will normally
be FALSE (no alias)
- the Online Editor
takes control of the
XML field using an
alias.

alias handler string No. Returns the original
handler if
the ”aliased type” at-

5.5.44 Objects / ezsimplifiedxmlinput 1052

5

tribute is non-false.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.45 Objects / ezsubtreenotificationrule 1053

5

5.5.45 ezsubtreenotificationrule

Summary

Contains information about a subtree notification rule.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the subtree notifica-
tion rule.

user id string Yes. The ID number of
the user that the rule
belongs to.

use digest string Yes. When this attribute
is ”0”, the system
will check if the user
has digest settings
set; otherwise the
digest settings are
ignored and the no-
tification is sent im-
mediately.

node id string Yes. The ID number of
the subscribed node.

node object No. The actual node (as
an ezcontentobject-
treenode (page 990)
object).

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.46 Objects / eztime 1054

5

5.5.46 eztime

Summary

Contains information about a time value.

Attributes

Attribute Type Static* Description
timestamp integer No. The time as a UNIX

timestamp or NULL.
time of day integer Yes. Not documented

yet.
hour integer No. The hour.
minute integer No. The minute.
is valid boolean Yes. TRUE if the time is

valid, FALSE other-
wise.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.47 Objects / ezurl 1055

5

5.5.47 ezurl

Summary

Contains information about a URL.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the URL.
url string Yes. The actual address

(for example ”http:/
/
www.slashdot.org”).

original url md5 string Yes. The MD5 sum of the
URL.

is valid string Yes. Either 1 (valid) or 0
(invalid). Reveals if
the URL is valid or
not.

last checked string Yes. A UNIX timestamp
revealing when the
URL was validated
by the system.

created string Yes. A UNIX timestamp
pinpointing the ex-
act date/time when
the URL was cre-
ated.

modified string Yes. A UNIX timestamp
pinpointing the ex-
act date/time when
the URL last modi-
fied.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.48 Objects / ezuser 1056

5

5.5.48 ezuser

Summary

Contains information about a user.

Attributes

Attribute Type Static* Description
contentobject id string Yes. The ID number of

the object that rep-
resents the user.

login string Yes. The username of the
user.

email string Yes. The E-mail address
of the user (for ex-
ample
”marty@ez.no”).

password hash string Yes. The encrypted ver-
sion of the user’s
password.

password hash type string Yes. The type of encryp-
tion that was used to
obfuscate the user’s
password.

contentobject object No. The actual object (as
ezcontentob-
ject (page 971)) that
represents the user.

groups array No. The object ID
numbers of the user
groups that the user
is a member of.

has stored login boolean No. Returns TRUE if the
user has
a non-empty user-
name stored in the
database; otherwise
FALSE will be re-
turned.

original password string No. The password input
by the user from the
last page (from ”/
user/register” or
”/content/edit”). It

5.5.48 Objects / ezuser 1057

5

is only used for val-
idation of the pass-
word. It will be
FALSE if empty input
was provided.

original password string No. The confir-
confirm mation password for

the ”original
password” attribute
(FALSE if empty).

roles array No. The roles (as ezrole
(page 1048) objects)
that are assigned to
the user.

role id list array No. The ID numbers of
the roles that are as-
signed to the user.

limited assignment array No. Not documented
value list yet.
is logged in boolean No. Returns TRUE if the

user is logged in,
FALSE otherwise.

is enabled boolean No. Returns TRUE if the
user is
enabled, FALSE oth-
erwise.

last visit string No. Not documented
yet.

has manage boolean No. Not documented
locations yet.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.49 Objects / ezvatrule 1058

5

5.5.49 ezvatrule

Summary

Contains information about a VAT charging rule.

Attributes

Attribute Type Static* Description
id integer Yes. The ID number

of the VAT charging
rule.

country string Yes. The name of the
country.

vat type integer Yes. The ID number of
the VAT type.

product categories array No. The product cate-
gories
affected by this VAT
rule as an array of
hashes where each
hash consists of the
following elements:
Attribute: id
Type: integer
Description: The ID
number of the prod-
uct category.

Attribute: name
Type: string
Description: The
name of the product
category.

product categories string No. The names
string of the product cat-

egories affected by
this VAT rule (sepa-
rated by commas).

product categories array No. The ID numbers of
ids the product cat-

egories affected by
this VAT rule.

product categories array No. The names

5.5.49 Objects / ezvatrule 1059

5

names of the product cat-
egories affected by
this VAT rule.

vat type object object No. The VAT type (as ez-
vattype (page 1060)
object).

vat type name string No. The name of the VAT
type.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.50 Objects / ezvattype 1060

5

5.5.50 ezvattype

Summary

Contains information about a VAT.

Attributes

Attribute Type Static* Description
id string Yes. The ID number of

the VAT type.
name string Yes. The name of the

VAT type (for exam-
ple ”Standard”).

percentage string Yes. The actual VAT per-
centage value (with-
out the percent sym-
bol).

is dynamic boolean No. Returns TRUE if the
VAT type is dynamic,
FALSE otherwise.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.51 Objects / ezxhtmlxmloutput 1061

5

5.5.51 ezxhtmlxmloutput

Summary

Contains information about XML data.

Attributes

Attribute Type Static* Description
output text string No. The

resulting text which
is suitable for the
given output format,
for example the ren-
dered XHTML text.

view template name string No. The name
of the template that
will be used when
the object attribute
is viewed. The de-
fault is ”ezxmltext”,
but can be overrid-
den for a handler
(for example the On-
line Editor).

aliased type string Yes. Returns the name of
the original handler.
This will normally
be FALSE (no alias)
- the Online Editor
takes control of the
XML field using an
alias.

aliased handler string No. Returns the original
handler if
the ”aliased type” at-
tribute is non-false.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.52 Objects / ezxmlinputhandler 1062

5

5.5.52 ezxmlinputhandler

Summary

Contains information about XML data.

Attributes

Attribute Type Static* Description
input xml string Yes. The text that the

end-user has input
to the system.

edit template name string No. The name
of the template that
is used when the ob-
ject attribute is be-
ing edited. The de-
fault is ”ezxmltext”,
but can be overrid-
den for a custom
handler (for exam-
ple the Online Edi-
tor).

information string No. The name of the
template name template that will be

used when the ob-
ject attribute is col-
lecting informa-
tion. The default is
”ezxmltext”, but can
be overridden for a
custom handler (for
example the Online
Editor).

aliased type string Yes. Returns the name of
the original handler.
This will normally
be FALSE (no alias)
- the Online Editor
takes control of the
XML field using an
alias.

alias handler string No. Returns the original
handler if
the ”aliased type” at-

5.5.52 Objects / ezxmlinputhandler 1063

5

tribute is non-false.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.53 Objects / ezxmloutputhandler 1064

5

5.5.53 ezxmloutputhandler

Summary

Contains information about XML data.

Attributes

Attribute Type Static* Description
output text string Yes. The

resulting text which
is suitable for the
given output format,
for example the ren-
dered XHTML text.

view template name string No. The name
of the template that
will be used when
the object attribute
is viewed. The de-
fault is ”ezxmltext”,
but can be overrid-
den for a handler
(for example the On-
line Editor).

aliased type string Yes. Returns the name of
the original handler.
This will normally
be FALSE (no alias)
- the Online Editor
takes control of the
XML field using an
alias.

aliased handler string No. Returns the original
handler if
the ”aliased type” at-
tribute is non-false.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.5.54 Objects / ezxmltext 1065

5

5.5.54 ezxmltext

Summary

Contains information about an XML block.

Attributes

Attribute Type Static* Description
input object No. Returns the current

input handler, which
will
be an object of type
ezxmlinputhandler
(page 1062), default
is ezsimplifiedxmlin-
put (page 1051).

output object No. Returns the current
output
handler, which will
be an object of type
ezxmloutputhandler
(page 1064), default
is ezxhtmlxmloutput
(page 1061).

pdf output object No. Returns the PDF out-
put handler.

xml data string Yes. Returns the inter-
nal XML structure as
text.

is empty boolean No. Returns TRUE
if there is no XML
data, FALSE other-
wise.

* Indicates whether the attribute provides a pre-fetched value or if it needs to be computed upon
request.

5.6 Workflow events 1066

5

5.6 Workflow events

Approve (page 1067)
Makes it possible to have the contents of objects be approved by an editor.

Multiplexer (page 1069)
Starts other workflows from within a workflow.

Payment gateway (page 1070)
Generic solution for handling payment redirections.

Simple shipping (page 1072)
Adds shipping costs to orders.

Wait until date (page 1073)
Makes it possible to delay the publishing of objects.

5.6.1 Workflow events / Approve 1067

5

5.6.1 Approve

Summary

Makes it possible to have the contents of objects be approved by an editor.

Description

This event makes it possible to have the contents of objects be approved by an editor before they
are actually published. A workflow using this event must be connected to the ”content/publish/
before” trigger. The following screenshot shows the edit interface for this event.

(see figure 5.80)

Figure 5.80: Edit interface for the ”Approve” event.

Affected sections

The ”Affected sections” menu shows the sections (page 132) that are available on the system. It
allows the administrator to filter objects that belong to specific sections. Only objects that belong
to the selected sections will be affected by the event.

User who approves content

The ”User who approves content” menu shows a list of the user accounts on the system. It allows
the administrator to select which user(s) that should function as editors and thus have the power
to approve or deny content.

Excluded users and groups

The ”Excluded users and groups” menu allows the administrator to select users and user groups
that should not be affected by the event. In other words, if one of the selected users or a user
who is a member of a selected group publishes an object that normally would be affected by this
event, it will not be affected.

5.6.1 Workflow events / Approve 1068

5

This event makes use of the collaboration feature of eZ publish. A user’s pending items (items
waiting for approval) will be displayed under ”Pending items” within the ”My account” part of the
administration interface. The ”Collaboration” interface under ”My account” provides the review/
approve/reject interface for the editors.

Please note that the ”cronjobs/workflow.php” cronjob must be run periodically for this to work.

5.6.2 Workflow events / Multiplexer 1069

5

5.6.2 Multiplexer

Summary

Starts other workflows from within a workflow.

Description

This event makes it possible to spawn other workflows from within a workflow. It is compatible
with all of the predefined triggers. The following screenshot shows the edit interface of this
event.

(see figure 5.81)

Figure 5.81: Edit interface for the ”Multiplexer” event.

The ”Affected sections” menu makes it possible to isolate the workflow so that it only affects
content objects that belongs to the selected section(s). The ”Classes to run workflow” allows a
similar isolation on the class basis. In other words, only instances of the selected classes will be
affected. The ”Users without workflow IDs” makes it possible to select user groups that should not
be affected by the multiplexer. In other words, if the current user (who initiated the workflow)
is within one of the selected groups, the multiplexer event will simply be skipped by the system.
The ”Workflow to run” menu shows a list of the available workflows and thus allows the selection
of the workflow that should be spawned by this event.

5.6.3 Workflow events / Payment gateway 1070

5

5.6.3 Payment gateway

Summary

Generic solution for handling payment redirections.

Description

This event is a general solution that is capable of handling different kinds of payment redirec-
tions. It allows several payment gateway mechanisms to be plugged into the system through a
workflow. The workflow must be assigned to the ”shop/checkout/before” trigger. The following
screenshot shows the edit interface for this event.

(see figure 5.82)

Figure 5.82: Edit interface for the ”Payment gateway” event.

Type

The ”Type” menu shows the payment gateway solutions that are available (installed and acti-
vated) as eZ publish extensions. It allows the administrator to select which payment gateway(s)
that should be used. If several gateways are selected, the system will allow the customer to
choose between the available gateways during the checkout process. The selection interface is
presented using ”/templates/workflow/selectgateway.tpl” located in the current or one of the
fallback designs.

Execution

The following list shows the flow of execution when a payment gateway is used through the
interface that this workflow event provides.

1. The customer initiates the checkout process.

2. The browser is redirected to the target payment server (PayPal, PayNet, etc.).

5.6.3 Workflow events / Payment gateway 1071

5

3. The customer attempts to pay for the products using the payment gateway.

4. The browser is sent back to eZ publish, the order will be either approved or rejected.

Between steps 3 and 4, the selected payment server will notify eZ publish about the purchase.
The system will validate the authenticity (identity) of the message, and based on the reply it will
either approve or reject the order. In case of no reply, the validation process will time-out and
the customer will be asked to contact the shop owner.

This event provides a development framework which simplifies the implementation of payment
solutions.

5.6.4 Workflow events / Simple shipping 1072

5

5.6.4 Simple shipping

Summary

Adds shipping costs to orders.

Description

This event adds shipping costs to an order (the order that is being processed for the current
user). A workflow using this event must be assigned to the ”shop/confirmorder/before” trigger.
The following screenshot shows the edit interface for this event.

(see figure 5.83)

Figure 5.83: Edit interface for the ”Simple shipping” event.

The cost and the description can be set using the ”ShippingCost” and ”ShippingDescription” di-
rectives within the ”[SimpleShippingWorkflow]” group of a configuration override for ”work-
flow.ini”.

5.6.5 Workflow events / Wait until date 1073

5

5.6.5 Wait until date

Summary

Makes it possible to delay the publishing of objects.

Description

This event makes it possible to delay the publishing of certain objects. It can be connected to
either the ”content/publish/before” trigger or the ”content/publish/after” trigger. The following
screenshot shows the edit interface for this event.

(see figure 5.84)

Figure 5.84: Edit interface for the ”Wait until date” event.

Parameters and usage

The ”Class” menu makes it possible to select a class that should be affected by the event. When
a class is selected, the ”Update attributes” button must be used to update the contents of the
”Attribute” menu. It will allow the selection of the attribute which is used to enter the date and
time when the object should be published. This attribute must be represented by the ”Date and
time” (page 473) datatype. Once the correct attribute it selected, the ”Select attribute” button
must be used to add it to the list below (labeled ”Class / attribute combinations”). All objects
that are instances of the classes added to this list will be affected by the event. The objects will be
published automatically (by the way of the cronjob script) when the given date / time is reached.

If the ”Modify the objects’ publishing dates” checkbox is checked, the system will update the
modification time of the objects when they are published by the system. If unchecked, the date /
time when the objects were published by the users will be used.

5.7 Template operators 1074

5

5.7 Template operators

The template operators are documented in the following sections:

• Arrays (page 1075)

• Data and information extraction (page 1099)

• Formatting and internationalization (page 1114)

• Images (page 1127)

• Logical operations (page 1137)

• Mathematics (page 1165)

• Miscellaneous (page 1192)

• Strings (page 1219)

• URLs (page 1264)

• Variable and type handling (page 1272)

5.7.1 Template operators / Arrays 1075

5

5.7.1 Arrays

append (page 1077)
Returns the input array with appended elements.

array (page 1078)
Creates and returns a new array.

array sum (page 1079)
Returns the sum of all elements in an array.

begins with (page 1080)
Checks if an array starts with a specific element/sequence.

compare (page 1081)
Compares the contents of two arrays.

contains (page 1083)
Checks if an array contains a specific element.

ends with (page 1085)
Checks if an array ends with a specific element or sequence.

explode (page 1086)
Splits the input array and returns it as an array of sub-arrays.

extract (page 1087)
Returns a portion of the input array.

extract left (page 1088)
Returns a portion of the start of the input array.

extract right (page 1089)
Returns a portion of the end of the input array.

hash (page 1090)
Creates and returns a new associative array (a hash).

implode (page 1091)
Joins array elements with strings.

insert (page 1092)
Inserts an element/sequence at specified position in an array.

merge (page 1093)
Merges input and passed arrays into one array.

prepend (page 1094)
Returns the input array prepended with specified elements.

remove (page 1095)
Returns the input array without some of the original elements.

5.7.1 Template operators / Arrays 1076

5

repeat (page 1096)
Returns a repeated version of the input array.

reverse (page 1097)
Returns a reversed version of the input array.

unique (page 1098)
Returns the input array without duplicate elements.

5.7.1 Template operators / Arrays 1077

5

append

Summary

Returns the input array with appended elements.

Usage

input|append(element1 [, element2 [, ...]])

Parameters

Name Type Description Required
element1 any Element to be appended to the input array. Yes.
element2 any Another element to be appended to the input

array.
No.

Returns

An array consisting of the input array and the parameters.

Description

This operator appends the parameter value(s) at the end of the input array and returns the
resulting array.

Examples

Example 1

{array(1, 2, 3)|append(4, 5, 6)}

The following array will be returned: (1, 2, 3, 4, 5, 6).

Example 2

{array(1, 2, 3)|append(array(4, 5, 6)}

The following array will be returned: (1, 2, 3, (4, 5, 6)).

5.7.1 Template operators / Arrays 1078

5

array

Summary

Creates and returns a new array.

Usage

array(element1 [, element2 [, ...]])

Parameters

Name Type Description Required
element1 any Element / value of any kind. Yes.
element2 any Another element / value of any kind. No.

Returns

An array containing the specified elements.

Description

This operator builds an array using the specified elements. The elements must be passed as
parameters. The operator returns the resulting array.

Examples

Example 1

{array(1, 2, 3, 4, 5, 6, 7)}

The following array will be returned: (1, 2, 3, 4, 5, 6, 7).

Example 2

{array(1, 2, 3, array(4, 5, 6))}

The following array will be returned: (1, 2, 3, (4, 5, 6)).

5.7.1 Template operators / Arrays 1079

5

array sum

Summary

Returns the sum of all elements in an array.

Usage

input|array_sum()

Returns

An integer representing the sum of the elements.

Description

This operator attempts to calculate and return the sum of the input array’s elements.

Examples

Example 1

{array(1, 2, 3, 4, 5, 6, 7)|array_sum}

The following output will be produced: ”28” - which is the sum of 1, 2, 3, 4, 5, 6, 7.

5.7.1 Template operators / Arrays 1080

5

begins with

Summary

Checks if an array starts with a specific element/sequence.

Usage

input|begins_with(element1 [, element2 [, ...]])

Parameters

Name Type Description Required
element1 any An element that should be matched. Yes.
element2 any Another element that should be matched. No.

Returns

TRUE or FALSE.

Description

This operator checks if the input array starts with a specified sequence of elements. If yes, the
operator returns TRUE, otherwise FALSE will be returned.

Examples

Example 1

{array(1, 2, 3, 4, 5, 6, 7)|begins_with(1, 2, 3)}

Returns TRUE.

Example 2

{array(1, 2, 3, 4, 5, 6, 7)|begins_with(2, 3, 4)}

Returns FALSE.

5.7.1 Template operators / Arrays 1081

5

compare

Summary

Compares the contents of two arrays.

Usage

input|compare(array)

Parameters

Name Type Description Required
array array The array that should be compared with the

input array.
Yes.

Returns

TRUE if arrays are equal, FALSE if not.

Description

This operator compares the contents of two arrays, the input array and an array that is provided
as the first (and only) parameter. If the arrays are equal, the operator returns TRUE, otherwise
FALSE will be returned.

Examples

Example 1

{array(1, 2, 3, 4, 5)|compare(arrray(1, 2, 3, 4, 5))}

Returns TRUE.

Example 2

{array(1, 2, 3, 4, 5)|compare(arrray(5, 4, 3, 2, 1))}

Returns TRUE.

5.7.1 Template operators / Arrays 1082

5

Example 3

{array(1, 2, 3, 4, 5)|compare(arrray(1, 2, 4, 3, 3))}

Returns FALSE.

5.7.1 Template operators / Arrays 1083

5

contains

Summary

Checks if an array contains a specific element.

Usage

input|contains(element)

Parameters

Name Type Description Required
element any The element that should be matched. Yes.

Returns

TRUE if the element is found, FALSE if not.

Description

This operator checks if the input array contains a specific element (specified using the first pa-
rameter). If it does, the operator will return TRUE, otherwise FALSE will be returned.

Examples

Example 1

{array(1, 2, 3, 4, 5)|contains(3)}

Returns TRUE.

Example 2

{array(1, array(3, 4), 5)|contains(array(3, 4))}

Returns TRUE.

Example 3

5.7.1 Template operators / Arrays 1084

5

{array(1, array(3, 4), 5)|contains(3)}

Returns FALSE.

5.7.1 Template operators / Arrays 1085

5

ends with

Summary

Checks if an array ends with a specific element or sequence.

Usage

input|ends_with(element1 [, element2 [, ...]])

Parameters

Name Type Description Required
element1 any An element that should be matched. Yes.
element2 any Another element that should be matched. No.

Returns

TRUE or FALSE.

Description

This operator checks if the input array ends with a specified sequence of elements. If yes, the
operator returns TRUE, otherwise FALSE will be returned.

Examples

Example 1

{array(1, 2, 3, 4, 5, 6, 7)|ends_with(5, 6, 7)}

Returns TRUE.

Example 2

{array(1, 2, 3, 4, 5, 6, 7)|ends_with(4, 5, 6)}

Returns FALSE.

5.7.1 Template operators / Arrays 1086

5

explode

Summary

Splits the input array and returns it as an array of sub-arrays.

Usage

input|explode(offset)

Parameters

Name Type Description Required
offset integer The offset where the array should be split. Yes.

Returns

An array containing the original array as two arrays.

Description

This operator splits the input array at an offset specified by the ”offset” parameter. The operator
will return an array containing the two arrays.

Examples

Example 1

{array(1, 2, 3, 4, 5)|explode(3)}

The following array will be returned: ((1, 2, 3), (4, 5)).

5.7.1 Template operators / Arrays 1087

5

extract

Summary

Returns a portion of the input array.

Usage

input|extract(offset [, length])

Parameters

Name Type Description Required
offset integer The offset to start at. Yes.
length integer The number of elements that should be ex-

tracted.
No.

Returns

An array containing the extracted elements.

Description

This operator will return a portion of the input array. The desired portion must be defined by the
”offset” and ”length” parameters. If the ”length” parameter is omitted, the rest of the array (from
offset) will be returned.

Examples

Example 1

{array(1, 2, 3, 4, 5, 6, 7)|extract(2)}

The following array will be returned: (3, 4, 5, 6, 7).

Example 2

{array(1, 2, 3, 4, 5, 6, 7)|extract(3, 3)}

The following array will be returned: (4, 5, 6).

5.7.1 Template operators / Arrays 1088

5

extract left

Summary

Returns a portion of the start of the input array.

Usage

input|extract_left(length)

Parameters

Name Type Description Required
length integer The number of elements that should be ex-

tracted.
Yes.

Returns

An array containig the extracted elements.

Description

This operator extracts a portion from the start of the input array. The ”length” parameter must
be used to specify the number of elements that should be extracted.

Examples

Example 1

{array(1, 2, 3, 4, 5, 6, 7)|extract_left(3)}

The following array will be returned: (1, 2, 3).

5.7.1 Template operators / Arrays 1089

5

extract right

Summary

Returns a portion of the end of the input array.

Usage

input|extract_right(length)

Parameters

Name Type Description Required
length integer The number of elements that should be ex-

tracted.
Yes.

Returns

An array containing the extracted elements.

Description

This operator extracts a portion from the end of the input array. The ”length” parameter must be
used to specify the number of elements that should be extracted.

Examples

Example 1

{array(1, 2, 3, 4, 5, 6, 7)|extract_right(3)}

The following array will be returned: (5, 6, 7).

5.7.1 Template operators / Arrays 1090

5

hash

Summary

Creates and returns a new associative array (a hash).

Usage

hash(key1, value1 [, key2, value2 [, ...]])

Parameters

Name Type Description Required
key1 string The key of value1. Yes.
value1 any The value associated with key1. Yes.
key2 string The key of value2. No.
value2 any The value associated with key2. No.

Returns

An associative array (a hash).

Description

This operator builds an associative array using the specified key/value pairs. Odd parameters are
considered to be keys, even parameters will be values. The operator returns the generated hash.

Examples

Example 1

{hash(1, ’Red Eyes’, 2, ’Green Gremlins’, 3, ’Blue Thunder’)}

The following hash will be returned:

Key Value
1 Red Eyes
2 Green Gremlins
3 Blue Thunder

5.7.1 Template operators / Arrays 1091

5

implode

Summary

Joins array elements with strings.

Usage

input|implode(separator)

Parameters

Name Type Description Required
separator string The string that should be inserted between

the elements.
Yes.

Returns

String containing array elements separated a string.

Description

This operator returns a string representation of the elements of the input array. Each element
will be separated by the string specified using the ”separator” parameter.

Examples

Example 1

{array(1, 2, 3, 4, 5, 6, 7)|implode(’, ’)}

The following string will be returned: ”1, 2, 3, 4, 5, 6, 7”.

Example 2

{array(1, 2, 3, 4, 5, 6, 7)|implode(’_-_’)}

The following string will be returned: ”1 - 2 - 3 - 4 - 5 - 6 - 7”.

5.7.1 Template operators / Arrays 1092

5

insert

Summary

Inserts an element/sequence at specified position in an array.

Usage

input|insert(offset, element1 [, element2 [, ...]])

Parameters

Name Type Description Required
offset integer The offset where the element(s) should be

inserted at.
Yes.

element1 any An element that should be inserted into the
existing array.

Yes.

element2 any Another element that should be inserted into
the existing array.

No.

Returns

An array containing a combination of the original array and the inserted elements.

Description

This operator inserts an element or a sequence of elements at a specified position within the
input. The resulting array will be returned (original array with the inserted values).

Examples

Example 1

{array(1, 2, 5)|insert(2, 3, 4)}

The following array will be returned: (1, 2, 3, 4, 5).

5.7.1 Template operators / Arrays 1093

5

merge

Summary

Merges input and passed arrays into one array.

Usage

input|merge(array1 [, array2 [, ...]])

Parameters

Name Type Description Required
array1 array Array to be merged with the input array. Yes.
array2 array Another array to be merge with the input ar-

ray.
No.

Returns

New array containing all arrays merged.

Description

This operator will merge the input array with all arrays passed as parameters. The resulting array
will be returned.

Examples

Example 1

{array(1, 2)|merge(array(3, 4), array(5, 6, 7))}

The following array will be returned: (1, 2, 3, 4, 5, 6, 7).

5.7.1 Template operators / Arrays 1094

5

prepend

Summary

Returns the input array prepended with specified elements.

Usage

input|prepend(element1 [, element2 [, ...]])

Parameters

Name Type Description Required
element1 any Element to be prepended to the input array. Yes.
element2 any Another element to be prepended to the in-

put array.
No.

Returns

An array consisting of the parameters and the input array.

Description

This operator adds the parameter value(s) to the start of the input array and returns the resulting
array.

Examples

Example 1

{array(4, 5)|prepend(1, 2, 3)}

The following array will be returned: (1, 2, 3, 4, 5).

5.7.1 Template operators / Arrays 1095

5

remove

Summary

Returns the input array without some of the original elements.

Usage

input|remove(offset [, length])

Parameters

Name Type Description Required
offset integer The offset to start removing elements. Yes.
length integer The number of elements that should be re-

moved.
No.

Returns

A cut-down version of the input array.

Description

This operator removes element(s) from the input array and thus a chopped/cut-down version
of the input array will be returned. The ”offset” parameter must be used to define the start of
the portion that should be removed. The ”length” parameter can be used to define the number
of elements that should be removed. If the ”length” parameter is omitted, only one elemen
(specified by offset will be removed).

Examples

Example 1

{array(1, 2, 3, 4, 5)|remove(2, 2)}

The following array will be returned: (1, 2, 5).

Example 2

{array(1, 2, 3, 4, 5)|remove(2)}

The following array will be returned: (1, 2, 4, 5).

5.7.1 Template operators / Arrays 1096

5

repeat

Summary

Returns a repeated version of the input array.

Usage

input|repeat(times)

Parameters

Name Type Description Required
times integer The number of times the array should be re-

peated.
Yes.

Returns

An array containing the elements of the input array repeated n times.

Description

This operator returns a repeated version of the input array. The ”times” parameter must be used
to define the number of times the array should be repeated.

Examples

Example 1

{array(1, 2, 3, 4)|repeat(3)}

The following array will be returned: (1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4).

5.7.1 Template operators / Arrays 1097

5

reverse

Summary

Returns a reversed version of the input array.

Usage

input|reverse()

Returns

A reversed version of the input array.

Description

This operator returns a reversed version (elements in reverse order) of the input array.

Examples

Example 1

{array(1, 2, 3, 4)|reverse}

The following array will be returned: (4, 3, 2, 1).

5.7.1 Template operators / Arrays 1098

5

unique

Summary

Returns the input array without duplicate elements.

Usage

input|unique()

Returns

The input array containing only one occurance of every element.

Description

This operator removes duplicate elements from the input array.

Examples

Example 1

{array(1, 2, 2, 3, 4, 4, 5)|unique}

The following array will be returned: (1, 2, 3, 4, 5).

5.7.2 Template operators / Data and information extraction 1099

5

5.7.2 Data and information extraction

currentdate (page 1100)
Returns the timestamp of the current date/time.

ezhttp (page 1101)
Returns GET, POST and session variables.

ezhttp hasvariable (page 1103)
Returns TRUE if the specified HTTP variable is set.

ezini (page 1104)
Provides read access to settings in the configuration files.

ezini hasvariable (page 1106)
Returns TRUE if the specified configuration directive is set.

ezmodule (page 1107)
Returns TRUE if the specified module or view is enabled.

ezpreference (page 1109)
Provides access to a user’s preference values.

ezsys (page 1110)
Returns misc values such as wwwdir, sitedir, etc.

fetch (page 1112)
Provides access to the fetch functions of a module.

module params (page 1113)
Extracts parameters from the module that was run.

5.7.2 Template operators / Data and information extraction 1100

5

currentdate

Summary

Returns the timestamp of the current date/time.

Usage

currentdate()

Returns

The current date/time as a UNIX timestamp.

Description

This operator returns the UNIX timestamp for the current date/time.

Examples

Example 1

{def $timestamp=currentdate()}
Current timestamp: {$timestamp}

Outputs the current timestamp.

Example 2

{def $timestamp=currentdate()}
Current date/time: {$timestamp|l10n(’shortdatetime’)}

Outputs the current date/time in a user friendly format.

5.7.2 Template operators / Data and information extraction 1101

5

ezhttp

Summary

Returns GET, POST and session variables.

Usage

ezhttp(name [, type [, check_existence]])

Parameters

Name Type Description Required
name string The HTTP variable that should be fetched. Yes.
type string Source of variable. Default is is HTTP POST. No.
check existence mixed If the specified directive should be checked

for existence.
No.

Returns

Variable value

Description

This operator makes it possible to inspect the contents of HTTP variables (POST, GET or session
variables). The ”type” parameter can be used to specify which type of variable that should be
extracted. The following options are available:

• post (POST variable)

• get (GET variable)

• session (session variable)

The ”check existence” parameter can be set to TRUE or the string ”hasVariable” in order to check
if a directive is actually set. In this case, the operator will return either TRUE or FALSE. Note that
using the ”ezhttp hasvariable” operator is a better option. (page 1103)

Examples

Example 1

5.7.2 Template operators / Data and information extraction 1102

5

{ezhttp(’search’)}

Returns the ”search” POST variable.

Example 2

{ezhttp(’image’, ’get’)}

Returns the ”image” GET variable.

Example 3

{ezhttp(’user_id’, ’session’)}

Returns the ”user id” session variable.

5.7.2 Template operators / Data and information extraction 1103

5

ezhttp hasvariable

Summary

Returns TRUE if the specified HTTP variable is set.

Usage

ezhttp_hasvariable(variable [, method])

Parameters

Name Type Description Required
variable string The name of the variable that should be

checked.
Yes.

method string Source of varialbe, default is HTTP POST. No.

Returns

TRUE if the specified HTTP variable is set, FALSE otherwise.

Description

This operator makes it possible to check if an HTTP variable (GET, POST or session) specified
using the ”variable” parameter is set. The ”method” parameter can be used to specify which
type of variables the system should check (default is POST variables); the following options are
available:

• post (POST variable)

• get (GET variable)

• session (session variable)

Examples

Example 1

{ezhttp_hasvariable(’user_id’, ’session’)}

Returns TRUE if the ”user id” session variable is set.

5.7.2 Template operators / Data and information extraction 1104

5

ezini

Summary

Provides read access to settings in the configuration files.

Usage

ezini(section, variable [, ini_file [, ini_path [, dynamic [, check_existence
]]]])

Parameters

Name Type Description Required
section string Section to read value from. Yes.
variable string The name of the directive that should be ac-

cessed.
Yes.

ini file string The target configuration file (default is
”site.ini”).

No.

ini path string Custom path to the configuration file(s). No.
dynamic boolean If the specified directive should be dynami-

cally checked.
No.

check existence mixed If the specified directive should be checked
for existence.

No.

Returns

A string containing the value of a configuration setting.

Description

This operator makes it possible to access the settings in the configuration (”*.ini”) files. The
”ini path” operator can be used to set a custom path where the configuration files are located
(default is the settings directory). The ”dynamic” parameter can be used to force the system to
actually check the ini file, otherwise the value will be checked upon template compilation and
”hardcoded” in the compiled template. The ”check existence” parameter can be set to TRUE or
the string ”hasVariable” in order to check if a directive is actually set. In this case, the operator
will return either TRUE or FALSE. Note that using the ”ezini hasvariable” (page 1106) operator
is a better option.

5.7.2 Template operators / Data and information extraction 1105

5

Examples

Example 1

{if eq(ezini(’SomeSettings’, ’Test’, ’example.ini’), ’hello’)}
[...display something...]

{else}
[...display something else...]

{/if}

Conditional branching based on an configuration setting.

5.7.2 Template operators / Data and information extraction 1106

5

ezini hasvariable

Summary

Returns TRUE if the specified configuration directive is set.

Usage

ezini_hasvariable(section, variable [, ini_file [, ini_path [, dynamic]]])

Parameters

Name Type Description Required
section string Section to read value from. Yes.
variable string The name of the directive that should be ac-

cessed.
Yes.

ini file string The target configuration file (default is
”site.ini”).

No.

ini path string Custom path to the configuration file(s). No.
dynamic boolean If the specified directive should be dynami-

cally checked.
No.

Returns

TRUE if the specified configuration directive is set, FALSE otherwise.

Description

This operator can be used to check if a configuration directive is set (or if it is empty). The ”sec-
tion”, ”variable” and ”ini file” parameters should be used to pinpoint the directive to be checked.
If the directive is not set, the operator will return FALSE, otherwise it will return TRUE. The ”ini
path” variable can be used to set a custom path. The ”dynamic” parameter can be used to force
the system to actually check the ini file, otherwise the value will be checked only upon template
compilation and ”hardcoded” in the compiled templates.

Examples

Example 1

{ezini_hasvariable(’VersionManagement’, ’DeleteDrafts’, ’content.ini’)}

Returns TRUE if ”DeleteDrafts” has been set to something within the ”[VersionManagement]”
block of ”content.ini” or an override; otherwise FALSE is returned.

5.7.2 Template operators / Data and information extraction 1107

5

ezmodule

Summary

Returns TRUE if the specified module or view is enabled.

Usage

ezmodule(name)

Parameters

Name Type Description Required
name string The name of the module or view that should

be checked (for example ”ezinfo” or ”con-
tent/search”).

Yes.

Returns

TRUE if the specified module or view is enabled, FALSE otherwise.

Description

This operator checks if the specified module or view is enabled according to the ”Rules (page
1711)” configuration array located in the [SiteAccessRules] section of ”site.ini” or an override.
Note that this operator can not be used to check whether the current user has access to a certain
function of the specified module (this can only be done using the ”has access to (page 916)” fetch
function of the ”user” module).

Examples

Example 1

{def $isShopEnabled = ezmodule(’shop’)}
{if $isShopEnabled}

The shop module is enabled.
{else}

The shop module is disabled.
{/if}

Outputs information about whether the ”shop” module is enabled or disabled.

5.7.2 Template operators / Data and information extraction 1108

5

Example 2

{ezmodule(’content/tipafriend’)}

Returns TRUE if ”tipafriend” view of the ”content” module is enabled, FALSE otherwise.

5.7.2 Template operators / Data and information extraction 1109

5

ezpreference

Summary

Provides access to a user’s preference values.

Usage

ezpreference(preference)

Parameters

Name Type Description Required
preference string The name of the preference that should be

extracted.
Yes.

Returns

A string containing the contents/value of the specified preference.

Description

This operator makes it possible to extract the preference values of the current user. The name of
the desired preference must be provided as a parameter. The function returns the value/contents
of the specified preference. The current user can set a preference by requesting a URL of the
following type:

/user/preferences/set/[name_of_preference]/[value]

Examples

Example 1

{ezpreference(’bookmark_menu’)}

Returns the value/contents of the ”bookmark menu” preference for the current user.

5.7.2 Template operators / Data and information extraction 1110

5

ezsys

Summary

Returns misc values such as wwwdir, sitedir, etc.

Usage

ezsys(system_variable)

Parameters

Name Type Description Required
system variable string The name of the desired variable. Yes.

Returns

A string containing the requested variable.

Description

This operator gives read access to certain eZ Publish system variables. The ”system variable” pa-
rameter must be used to specify the name of the variable that should be returned. The following
names can be used:

• indexfile - name of index file

• indexdir - relative path and index file

• sitedir - local path of eZ Publish installation

• wwwdir - relative directory path of eZ Publish installation

• hostname - hostname of eZ Publish server

Examples

Example 1

Example: news theme installed on server ”ez.no”, by user ”tom” in ”/home/tom/public html/
local/ez publish”

5.7.2 Template operators / Data and information extraction 1111

5

wwwdir - {ezsys(’wwwdir’)}

sitedir - {ezsys(’sitedir’)}

indexfile - {ezsys(’indexfile’)}

indexdir - {ezsys(’indexdir’)}

magicQuotes - {ezsys(’magicQuotes’)}

hostname - {ezsys(’hostname’)}

The following output will be produced:

wwwdir - /˜tom/local/ez publish
sitedir - /home/tom/public html/local/ez publish/
indexfile - /index.php/news
indexdir - /˜tom/local/ez publish/index.php/news
magicQuotes -
hostname - ez.no

5.7.2 Template operators / Data and information extraction 1112

5

fetch

Summary

Provides access to the fetch functions of a module.

Usage

fetch(...)

Parameters

Name Type Description Required
any any Please refer to the links below. Yes.

Returns

The returned result depends on the actual fetch operation.

Description

The fetch operator provides access to the fetch functions of an eZ Publish module. Please refer to
the ”Information extraction” (page 219) section of the ”Templates” chapter for more information
about the operator itself. The actual fetch functions are documented under the ”Template fetch
functions” (page 1396) section of the ”Reference” chapter.

5.7.2 Template operators / Data and information extraction 1113

5

module params

Summary

Extracts parameters from the module that was run.

Usage

module_params()

Returns

An array containing module information.

Description

This operator extracts some generic information from the module that was run. It seems that it
can only be called inside ”pagelayout.tpl”. Please refer to the example below. The operator does
not take any parameters.

Examples

Example 1

{module_params()|attribute(show)}

If the requested URL is ”/content/view/full/65” (or using URL alias that points to ”/content/
view/full/65”), the following output will be produced:

Attribute Type Value
module name string ’content’
function name string ’view’
parameters array Array(2)
-ViewMode string ’full’
-NodeID string 65

Please note that this operator can only be called in ”pagelayout.tpl”.

5.7.3 Template operators / Formatting and internationalization 1114

5

5.7.3 Formatting and internationalization

datetime (page 1115)
Formats dates/times according to settings in ”datetime.ini”.

i18n (page 1118)
Marks a string for translation.

l10n (page 1120)
Formats misc. numbers (times, dates, currencies, numbers, etc.).

si (page 1123)
Handles unit display of values (output formatting).

5.7.3 Template operators / Formatting and internationalization 1115

5

datetime

Summary

Formats dates/times according to settings in ”datetime.ini”.

Usage

{input|datetime(preset_format [, format])}

Parameters

Name Type Description Required
preset format string Preset datetime format set in ”datetime.ini”. Yes.
format string Custom format (when preset format is set to

”custom”).
No.

Returns

A string representation of the input parameter.

Description

This operator takes care of formatting dates and times according to the setting defined in ”date-
time.ini” (or a configuration override). In addition, the operator also allows custom formats
when the ”preset format” parameter is set to ”custom”. A custom format must be specified using
the ”format” parameter. The following table reveals the different elements that can be used in a
custom format.

Element Output Description
%a am Lowercase Ante meridiem

and Post meridiem.
%A AM Uppercase Ante meridiem

and Post meridiem.
%d 08 Day of the month, 2 digits

with leading zeros.
%D Wed A short textual representa-

tion of a day, in accordance
with the ”[ShortDayNames]”
section of the language .INI
file located in the ”share/
locale” directory.

%F October A full textual representation
of a month, such as January

5.7.3 Template operators / Formatting and internationalization 1116

5

or March.
%g 12 12-hour format of an hour

without leading zeros.
%G 0 24-hour format of an hour

without leading zeros.
%h 12 12-hour format of an hour

with leading zeros.
%H 00 24-hour format of an hour

with leading zeros.
%i 00 Minutes with leading zeros
%j 8 Day of the month without

leading zeros
%l Wednesday A full textual representation

of the day of the week.
%m 10 Numeric representation of a

month, with leading zeros.
%M Oct A short textual representa-

tion of a month, in accor-
dance with the ”[ShortMon-
thNames]” section of the lan-
guage .INI file located in the
”share/locale” directory.

%n 10 Numeric representation of a
month, without leading ze-
ros.

%O -0500 Difference to Greenwich time
(GMT) in hours.

%s 00 Seconds, with leading zeros.
%T CDT Timezone setting of this ma-

chine.
%U 1065589200 Seconds since the

Unix Epoch (January 1 1970
00:00:00 GMT).

%w 3 Numeric representation of
the day of the week.

%W 41 ISO-8601 week number of
year, weeks starting on Mon-
day.

%Y 2003 A full numeric representation
of a year, 4 digits.

%y 03 A two digit representation of
a year.

%z 280 The day of the year.
%Z -18000 Timezone offset in seconds.

The offset for timezones west
of UTC is always negative,

5.7.3 Template operators / Formatting and internationalization 1117

5

and for those east of UTC is
always positive.

The date used to generate the contents of this table was ”12:00 AM (Midnight) CDT on October
8, 2003”.

Examples

Example 1

{currentdate()|datetime(’mydate’)}

The following output will be produced: ”13:15 6 Feb 2004” (according to the configuration
settings).

Example 2

{currentdate()|datetime(’custom’, ’%h:%i %a %d %F %Y’)}

The following output will be produced: ”01:15 pm 06 February 2004” (custom format).

5.7.3 Template operators / Formatting and internationalization 1118

5

i18n

Summary

Marks a string for translation.

Usage

input|i18n([context [, comment [, arguments]]])

Parameters

Name Type Description Required
context string The context to which the string belongs. No.
comment string A comment describing the text. No.
arguments hash An associative array of arguments in the in-

put parameter.
No.

Returns

A string containing a translated version of the input parameter.

Description

This operator makes it possible to translate static strings that are defined in various templates.
It is typically useful to ensure that the HTML interface is available in several languages in a
multilanguage scenario.

The operator takes three optional parameters: ”context”, ”comment” and ”arguments”. The ”con-
text” parameter can be used to specify a group to which the input parameter should be related.
This is typically useful when there are a lot of strings that need to be structured/grouped. The
”comment” parameter makes it possible to add additional comment which can help the person
responsible for doing the actual translation. A comment could for example be ”Button label” -
revealing what that mysterious string actually is. The ”arguments” parameter makes it possible
to mix dynamic text into the translations. Please refer to ”Example 2” for a demonstration of this
feature.

Examples

Example 1

{"This is a test"|i18n}

Outputs ”This is a test” translated to the current language.

5.7.3 Template operators / Formatting and internationalization 1119

5

Example 2

{def $number=5}
{"Please enter %number characters."|i18n(’’, ’’, hash(’%number’, $number))}

Outputs ”Please enter 5 characters.”, the %number will be dynamically replaced by the variable.

Example 3

{"Are you sure you want to remove these items?"|i18n(’design/standard/node’)}

Outputs ”Are you sure you want to remove these items?” translated to the current language.
The translation is taken from the context block named ”design/standard/node” located in the
appropriate translation file.

For example, let’s say that the ”translation.ts” file located in the ”share/translations/ita-IT/” di-
rectory of your eZ Publish installation contains the following lines:

<context>
<name>design/standard/node</name>
...

<message>
<source>Are you sure you want to remove these items?</source>
<translation>Sei sicuro di voler rimuovere questi elementi?</translation>
</message>
...

</context>

If your current system locale is ”ita-IT” (as specified in the ” Locale (page 1667)” setting located
in the ”[RegionalSettings]” section of the ”settings/site.ini” configuration file or its override) then
the following output is produced: ”Sei sicuro di voler rimuovere questi elementi?”

5.7.3 Template operators / Formatting and internationalization 1120

5

l10n

Summary

Formats misc. numbers (times, dates, currencies, numbers, etc.).

Usage

input|l10n(type [, locale [, symbol]])

Parameters

Name Type Description Required
type string The format that should be used. Yes.
locale string The locale that should be used (when type is

set to ”currency”).
No.

symbol string The currency symbol that should be used
(when type is set to ”currency”).

No.

Returns

A string containing a formatted version of the input parameter.

Description

This operator formats/localizes miscellaneous numeric values according to the current locale
settings. The value that should be formatted must be input using the input parameter. The ”type”
parameter must be used to select the desired format. The following list reveals the available
formats/types.

• time

• shorttime

• date

• shortdate

• datetime

• shortdatetime

• currency

• clean currency

• number

5.7.3 Template operators / Formatting and internationalization 1121

5

In addition, the operator also formats numeric values according to the specified ”locale” and
”symbol” parameters when the ”type” parameter is set to ”currency”.

Examples

Example 1

{def $number=1234.567
$timestamp=currentdate()}

time: {$timestamp|l10n(’time’)}
shorttime: {$timestamp|l10n(’shorttime’)}
date: {$timestamp|l10n(’date’)}
shortdate: {$timestamp|l10n(’shortdate’)}
datetime: {$timestamp|l10n(’datetime’)}
shortdatetime: {$timestamp|l10n(’shortdatetime’)}
currency: {$number|l10n(’currency’)}
clean_currency: {$number|l10n(’clean_currency’)}
number: {$number|l10n(’number’)}

If the current locale is ”eng-GB”, the following output will be produced:

time : 1:46:05 pm
shorttime : 1:46 pm
date : Friday 06 February 2004
shortdate : 06/02/2004
datetime : Friday 06 February 2004 1:46:05 pm
shortdatetime : 06/02/2004 1:46 pm
currency : £ 1,234.57
clean currency : 1,234.57
number : 1,234.57

Example 2

{def $price=1234.57}
The price in local currency : {$price|l10n(’currency’)}

The price in Norwegian Krone : {$price|l10n(’currency’, ’nor-NO’)}

The price in Norwegian Krone with specified symbol : {$price|l10n(’currency’,
’nor-NO’, ’nok’)}

If the current locale is ”eng-GB”, the following output will be produced:

5.7.3 Template operators / Formatting and internationalization 1122

5

The price in local currency : £ 1,234.57
The price in Norwegian Krone : kr 1.234,57
The price in Norwegian Krone with specified symbol : nok 1.234,57

5.7.3 Template operators / Formatting and internationalization 1123

5

si

Summary

Handles unit display of values (output formatting).

Usage

input|si(unit [, prefix] [, decimals] [, symbol] [, separator])

Parameters

Name Type Description Required
unit string The unit that the input value should be con-

verted to.
Yes.

prefix string The prefix used to represent the input value. No.
decimals integer The number of decimal digits that should be

shown.
No.

symbol string The symbol that should be used as the deci-
mal separator.

No.

separator string The symbol that should be used as the thou-
sand separator.

No.

Returns

The input value formatted according to the given parameters.

Description

This operator handles formatting of different kind of values (file sizes, lengths, weights, etc.).
The value that should be formatted must be provided as the input parameter. The first parameter
must reveal the type of the input value. The following list shows the types that can be used.

• meter

• gram

• second

• ampere

• kelvin

• mole

• candela

5.7.3 Template operators / Formatting and internationalization 1124

5

• byte

• bit

The second parameter is optional and can be used to specify a desired prefix. The rest of the
parameters determine how the value should be formatted when it comes to decimals, separators,
etc. If these parameters are omitted, the operator will use the settings of the current locale.

Custom units

Custom units can be configured by extending the entries of the ”Base” group in a configuration
override for ”units.ini”.

Prefix tables

The prefix is either the name of the size like kilo or one of these

Prefix Description
binary Calculate using 2 as base, e.g. 2ˆ8
decimal Calculate using 10 as base, e.g. 10ˆ6
none Show value as it is with just the unit appended
auto Determine base from the type of unit (con-

trolled by the ”BinaryUnits” setting, default is
”bit” and ”byte”).

The following table shows the proper binary prefixes.

Prefix Power of 2 Symbol
kibi 2ˆ10 Ki
mebi 2ˆ20 Mi
gibi 2ˆ30 Gi
tebi 2ˆ40 Ti
pebi 2ˆ50 Pi
exbi 2ˆ60 Ei

The following table shows the commonly used binary prefixes (please note that they may be
inaccurate).

Prefix Power of 2 Symbol
kilo 2ˆ10 k
mega 2ˆ20 M
giga 2ˆ30 G
tera 2ˆ40 T
peta 2ˆ50 P
exa 2ˆ60 E

The following table shows the decimal prefixes.

5.7.3 Template operators / Formatting and internationalization 1125

5

Prefix Power of 10 Symbol
yotta 10ˆ24 Y
zetta 10ˆ21 Z
exa 10ˆ18 E
peta 10ˆ15 P
tera 10ˆ12 T
giga 10ˆ9 G
mega 10ˆ6 M
kilo 10ˆ3 k
hecto 10ˆ2 h
deca 10ˆ1 da
deci 10ˆ-1 d
centi 10ˆ-2 c
milli 10ˆ-3 m
micro 10ˆ-6
nano 10ˆ-9 n
pico 10ˆ-12 p
femto 10ˆ-15 f
atto 10ˆ-18 a
zepto 10ˆ-21 z
yocto 10ˆ-24 y

All of these values are defined in the ”units.ini” configuration file.

Examples

Example 1

{1025|si(byte)}
{1025|si(byte, binary)}
{1025|si(byte, decimal)}
{1025|si(byte, none)}
{1025|si(byte, auto)}
{1025|si(byte, kibi)}
{1025|si(byte, kilo)}

If the ”UseSIUnits” directive in a configuration override for ”site.ini” is set to ”false” (the default
value), the following output will be produced:

1.00 kB
1.00 kB
1.02 kB
1025 B
1.00 kB
1.00 KiB

5.7.3 Template operators / Formatting and internationalization 1126

5

1.02 kB

If the ”UseSIUnits” directive in a configuration override for ”site.ini” is set to ”true”, the following
output will be produced:

1.00 KiB
1.00 KiB
1.02 kB
1025 B
1.00 KiB
1.00 KiB
1.02 kB

5.7.4 Template operators / Images 1127

5

5.7.4 Images

image (page 1128)
Creates and returns an image object.

imagefile (page 1131)
Loads an image from a file.

texttoimage (page 1132)
Renders a string as an image using a truetype font.

5.7.4 Template operators / Images 1128

5

image

Summary

Creates and returns an image object.

Usage

image(value [,...])

Parameters

Name Type Description Required
value mixed Please refer to the description below. Yes.

Returns

An ezimage object.

Description

This operator makes it possible to merge/flatten several images into one image. It returns the
final image as an ”ezimage” (page 1009) object. Please note that this operator only works if
”ImageGD” is installed and enabled. It takes several parameters where each parameter can be a
different type. The following types can be used:

• String

• Image layer (an ”ezimagelayer” (page 1008) object).

• Array

String

If a parameter is a string, the contents of the string will be used as the alternative image text for
the image object that is returned by the operator.

Image layer

If a parameter is an image layer (an ”ezimagelayer” (page 1008) object), it will be merged with
the other layers and thus become a part of the final result. An image layer may be generated by
making use of the ”imagefile” (page 1131) or the ”texttoimage” (page 1132) operator.

5.7.4 Template operators / Images 1129

5

Array

If a parameter is an array, the operator will assume that the first element (element number zero)
is an image layer and that the second element is an associative array containing parameters that
the system will use when the image layer is processed. The following table shows the parameters
that can be used.

Name / key Description
transparency The image transparency as float value rang-

ing from 0.0 (0% transparency) to 1.0 (100%
transparency).

halign Horizontal alignment as a string: ”left”, ”right
or ”center”.

valign Vertical alignment as a string: ”top”, ”bottom”
or ”center”.

x Absolute horizontal placement as an integer
(works with ”left” and ”right” horizontal align-
ment.)

y Absolute vertical placement as an integer
(works with ”top” and ”bottom” vertical align-
ment.)

xrel Relative horizontal placement as a float value
ranging from 0.0 to 1.0 (works with ”left” and
”right” horizontal alignment.)

xrel Relative vertical placement as a float value
ranging from 0.0 to 1.0 (works with ”top” and
”bottom” vertical alignment.)

Please note that the ”x” and ”xrel” parameters can not be used at the same time. The same
goes for the ”y” and the ”yrel” parameters. When ”right” or ”bottom” alignment is used, the
coordinate system will shift to accommodate the alignment. This is useful for doing alignment
and placement since the placement is relative to the current coordinate system. Right alignment
will start the axis at the right (0) and go on to the left (width). Bottom alignment will start the
axis at the bottom (0) and go on to the top (height).

Template

If the operator is called directly, eZ Publish will display the resulting image using the ”layer/
imageobject.tpl” template located in the ”templates” directory of the current design or one of the
fallback designs. It is possible to override this template using the template override system (page
224).

5.7.4 Template operators / Images 1130

5

Examples

Example 1

{image(imagefile(’design/example/images/test1.png’),
imagefile(’design/example/images/test2.png’),
’My alternative image text...’)}

The ”imagefile” (page 1131) operator loads the images from the filesystem and returns them
as ”ezimagelayer” (page 1008) objects. The ”image” operator takes care of merging the images
(layers) together into one single image. When the ”image” operator is used directly (as in the
example above), eZ Publish will insert the ”imageobject.tpl” template (or an override) which in
turn takes care of displaying the image. The last parameter is a string, which will be used as the
alternative image text for the final image.

Example 2

{image("It’s A Kind Of Magic"|texttoimage(’arial’))}

This example will render the string ”It’s A Kind Of Magic” using a truetype font specified within
the ”arial” style. The image layer produced by the ”texttoimage” operator is wrapped inside an
image object and displayed using the ”imageobject.tpl” template (or an override).

Example 3

{image("It’s A Kind Of Magic",
imagefile(’design/example/images/test1.png’),
array("It’s A Kind Of Magic"|texttoimage(’smartie’),

hash(’transparency’, 0.64,
’halign’, ’right’,
’valign’, ’top’)))}

This example will generate an image with 64% transparent text using the ”smartie” style. The
text will be aligned to the upper right corner of the ”example1.png” image. The alternative image
text will be ”It’s A Kind Of Magic” - which is the same as the merged in transparent text.

5.7.4 Template operators / Images 1131

5

imagefile

Summary

Loads an image from a file.

Usage

imagefile(filename)

Parameters

Name Type Description Required
filename string The image file that should be loaded. Yes.

Returns

An ezimagelayer object.

Description

This operator loads an image from the filesystem and returns it as an ”ezimagelayer” (page 1008)
object. The location and the name of the file must be specified in the same way as it is shown in
the example below (the whole path must be specified without a starting slash). Please note that
this operator will only work if ”ImageGD” is installed and enabled.

If this operator is called directly, eZ Publish will display the specified image using the ”image.tpl”
template located in the ”templates/image/” directory of the current design or one of the fallback
designs. It is possible to override this template using the template override system (page 224).
An image layer can be provided as a parameter to the ”image” (page 1128) operator.

Examples

Example 1

{imagefile(’design/example/images/test.png’)}

This will load ”test.png” from the specified directory and display it using the image layer tem-
plate.

5.7.4 Template operators / Images 1132

5

texttoimage

Summary

Renders a string as an image using a truetype font.

Usage

input|texttoimage(style)

Parameters

Name Type Description Required
style string The name of the style that should be used. Yes.

Returns

Image layer.

Description

This operator creates an image that contains the input text rendered using a truetype font. The
style parameter must be used to specify the desired style. If the style parameter is omitted, the
default style will be used. The operator returns an ”ezimagelayer” (page 1008) object which can
be used as a parameter to the ”image” (page 1128) operator. If this operator is called directly,
eZ Publish will display the specified image using the ”layer/image.tpl” template located in the
”templates” directory of the current design or one of the fallback designs. It is possible to override
this template using the template override system (page 224). Please note that this operator will
only work if ”ImageGD” is installed and enabled.

An eZ Publish distribution comes with a small collection of truetype fonts that are used by the
default styles. These fonts are located in the ”/design/standard/fonts” directory. The fonts in-
cluded in this directory are free when it comes to costs and distribution. Information about the
author of a font is placed in a directory with the same name as the font itself.

Default styles

The default styles are defined in the ”texttoimage.ini” configuration file. The following list reveals
the names of the default styles.

• 1942

• a d mono

5.7.4 Template operators / Images 1133

5

• archtura

• arial

• gallery

• object text

• sketchy

• smartie

Please refer to the examples below to see the default styles in action.

Custom styles

It is possible to create custom styles and to make use of custom fonts. For each style, it is possible
to configure the following settings:

• The name of the style

• Font family

• Point size

• Background color

• Text color

• Angle/rotation

• X adjustment

• Y adjustment

• Width adjustment

• Height adjustment

• Absolute width

• Absolute height

When using fonts that are located outside the ”/design/standard/fonts” directory, for example ”/
design/example/fonts”, the FontDir[] array in a configuration override for ”texttoimage.ini” has
to include an additional FontDir[] line that specifies the secondary font directory.

Examples

Example 1

5.7.4 Template operators / Images 1134

5

{’Another World’|texttoimage(’1942’)}

The following output will be produced:

(see figure 5.85)

Figure 5.85: Text rendered as image using the 1942 font.

Example 2

{’Another World’|texttoimage(’a_d_mono’)}

The following output will be produced:

(see figure 5.93)

Figure 5.86: Text rendered as image using the a d mono font.

Example 3

{’Another World’|texttoimage(’archtura’)}

The following output will be produced:

(see figure 5.87)

Figure 5.87: Text rendered as image using the archtura font.

Example 4

5.7.4 Template operators / Images 1135

5

{’Another World’|texttoimage(’arial’)}

The following output will be produced:

(see figure 5.88)

Figure 5.88: Text rendered as image using the arial font.

Example 5

{’Another World’|texttoimage(’gallery’)}

The following output will be produced:

(see figure 5.89)

Figure 5.89: Text rendered as image using the gallery font.

Example 6

{’Another World’|texttoimage(’object_text’)}

The following output will be produced:

(see figure 5.90)

Figure 5.90: Text rendered as image using the object text font.

Example 7

{’Another World’|texttoimage(’sketchy’)}

The following output will be produced:

(see figure 5.91)

5.7.4 Template operators / Images 1136

5

Figure 5.91: Text rendered as image using the sketchy font.

Example 8

{’Another World’|texttoimage(’smartie’)}

The following output will be produced:

(see figure 5.92)

Figure 5.92: Text rendered as image using the smartie font.

Example 9

{’Another World’|texttoimage()}

The following output will be produced (the default font will be used):

(see figure 5.93)

Figure 5.93: Text rendered as image using the a d mono font.

5.7.5 Template operators / Logical operations 1137

5

5.7.5 Logical operations

and (page 1138)
Evaluates all parameters until one is found to be FALSE, returns that value.

choose (page 1140)
Returns one of the parameters (pinpointed by the input parameter).

cond (page 1141)
Returns the value of the first clause who’s condition is TRUE.

eq (page 1143)
Returns TRUE if the input equals the first parameter or if all parameters are equal.

false (page 1146)
Creates and returns a boolean FALSE.

first set (page 1147)
Returns the first parameter that is set (or FALSE).

ge (page 1149)
Returns TRUE if a parameter is greater than or equal to another parameter.

gt (page 1151)
Returns TRUE if a parameter is greater than another parameter.

le (page 1153)
Returns TRUE if a parameter is less than or equal to another parameter.

lt (page 1155)
Returns TRUE if a parameter is less than another parameter.

ne (page 1157)
Returns TRUE if one or more of the parameters do not match.

not (page 1159)
Returns the opposite of the input or the first parameter (TRUE/FALSE).

null (page 1161)
Returns TRUE if the input value is NULL (not the same as 0).

or (page 1162)
Evaluates all parameters until one is found to be TRUE, returns that value.

true (page 1164)
Creates and returns a boolean TRUE.

5.7.5 Template operators / Logical operations 1138

5

and

Summary

Evaluates all parameters until one is found to be FALSE, returns that value.

Usage

and(value1 [, value2 [, ...]])

Parameters

Name Type Description Required
value1 any A variable/value to be evaluated. Yes.
value2 any Another variable/value to be evaluated. No.

Returns

One of the parameters or TRUE (see below).

Description

This operator evaluates all parameters until one of them is found to be FALSE. The operator will
then return that parameter and thus stop evaluating the rest of the parameters. If none of the
parameters are found to be FALSE, the operator will return TRUE. The following table shows
how the different types are evaluated by this operator.

Type Evaluation
Number TRUE if the value is non-zero, FALSE other-

wise.
String TRUE if the string consists of at least one char-

acter, FALSE otherwise.
Boolean TRUE if the boolean is a TRUE value, FALSE is

otherwise.
Array TRUE if the array has one or more elements,

FALSE otherwise.
Object TRUE if the object provides the ”attributes”

and the ”attribute” methods, FALSE otherwise.
NULL Always FALSE.
Other Other types will be evaluated in the same way

as PHP would do.

5.7.5 Template operators / Logical operations 1139

5

Examples

Example 1

{if and(false(), true(), false())}
The truth is out there.

{else}
The day the earth stood still.

{/if}

The following output will be produced: ”The day the earth stood still.”.

Example 2

{def $a=array()
$b=array(1, 2, 3)
$c=array(4, 5, 6)}

{and($a, $b, $c)}

The code above will return the empty array that is represented by $a.

5.7.5 Template operators / Logical operations 1140

5

choose

Summary

Returns one of the parameters (pinpointed by the input parameter).

Usage

input|choose(value1 [, value2 [, ...]])

Parameters

Name Type Description Required
value1 any A variable/value of any kind. Yes.
value2 any Another variable/value of any kind. No.

Returns

One of the parameters.

Description

This operator returns one of the parameters. The input parameter must be an integer that pin-
points exactly which parameter that should be returned. If the input parameter is zero, the
operator will return the first parameter. If the input parameter is one, the operator will return
the second parameter, and so on. If the offset is wrong, the operator will return FALSE.

Examples

Example 1

{0|choose(’apples’, ’bananas’, ’coconuts’)}

The following output will be produced: ”apples”.

Example 2

{2|choose(’apples’, ’bananas’, ’coconuts’)}

The following output will be produced: ”coconuts”.

5.7.5 Template operators / Logical operations 1141

5

cond

Summary

Returns the value of the first clause who’s condition is TRUE.

Usage

cond(cond1, value1 [, cond2, value2 [, ...]])

Parameters

Name Type Description Required
cond1 boolean Match condition 1. Yes.
value1 any Return value for condition 1. Yes.
cond2 boolean Match condition 2. No.
value2 any Return value for condition 2. No.

Returns

One of the provided values or FALSE.

Description

This operator evaluates the provided conditions (odd numbered parameters). If one of the con-
ditions evaluates to TRUE then the value which is associated with that condition is returned. If
none of the conditions are TRUE, the operator will return FALSE. If an odd number of parameters
are provided, the operator will return the last parameter if all conditions fail.

Examples

Example 1

{cond(true(), ’apples’, true(), ’bananas’)}

The following output will be produced: ”apples”.

Example 2

{cond(false(), ’apples’, true(), ’bananas’)}

The following output will be produced: ”bananas”.

5.7.5 Template operators / Logical operations 1142

5

Example 3

{cond(false(), ’apples’, false(), ’bananas’)}

No output will be produced, the operator will return FALSE.

Example 4

{cond(false(), ’apples’, ’bananas’)}

The following output will be produced: ”bananas”.

5.7.5 Template operators / Logical operations 1143

5

eq

Summary

Returns TRUE if the input equals the first parameter or if all parameters are equal.

Usage

input|eq(value1 [, value2 [,...]])

Parameters

Name Type Description Required
value1 any A variable/value that should be compared. Yes.
value2 any Another variable/value that should be cop-

mared.
No.

Returns

TRUE or FALSE (see below).

Description

This operator compares the contents of two or more variables and/or values. If the input pa-
rameter is used, the operator will compare it with the first parameter. If the provided variables/
values match, the operator will return TRUE, otherwise FALSE will be returned. If more than
one parameter is provided, the operator will compare all parameters. If all parameters are found
to be equal, the operator will return TRUE, otherwise FALSE will be returned. If more than one
parameter is provided, the operator will simply ignore the input parameter.

Note that ”eq” compares the values in the same way as the ’==’ operator in PHP programming
language (for example, 0.1 and 0.10 will be equal). Refer to the PHP reference documentation
for more information. It is recommended to use the compare (page 1227) template operator for
string comparision.

Examples

Example 1

{if 1|eq(1)}
The truth is out there.

{else}
The day the earth stood still.

{/if}

http://www.php.net/manual/en/language.operators.comparison.php

5.7.5 Template operators / Logical operations 1144

5

The following output will be produced: ”The truth is out there”.

Example 2

{if 1|eq(2)}
The truth is out there.

{else}
The day the earth stood still.

{/if}

The following output will be produced: ”The day the earth stood still”.

Example 3

{if eq(1, 1)}
The truth is out there.

{else}
The day the earth stood still.

{/if}

The following output will be produced: ”The truth is out there”.

Example 4

{if eq(1, 2)}
The truth is out there.

{else}
The day the earth stood still.

{/if}

The following output will be produced: ”The day the earth stood still”.

Example 5

{if 1|eq(1, 1)}
The truth is out there.

{else}
The day the earth stood still.

{/if}

The following output will be produced: ”The truth is out there”.

5.7.5 Template operators / Logical operations 1145

5

Example 6

{if 2|eq(1, 1)}
The truth is out there.

{else}
The day the earth stood still.

{/if}

The following output will be produced: ”The truth is out there.”.

Example 7

{if 1|eq(1, 2)}
The truth is out there.

{else}
The day the earth stood still.

{/if}

The following output will be produced: ”The day the earth stood still”.

5.7.5 Template operators / Logical operations 1146

5

false

Summary

Creates and returns a boolean FALSE.

Usage

false()

Returns

FALSE.

Description

This operator creates and returns a boolean FALSE. It can be used to define a boolean variable
and in logical comparisons.

Examples

Example 1

{def $my_boolean=false()}

{if $my_boolean}
The truth is out there.

{else}
The day the earth stood still.

{/if}

The following output will be produced: ”The day the earth stood still.”.

5.7.5 Template operators / Logical operations 1147

5

first set

Summary

Returns the first parameter that is set (or FALSE).

Usage

first_set(value1 [, value2 [, ...]])

Parameters

Name Type Description Required
value1 any A variable/value that should be evaluated. Yes.
value2 any Another variable/value that should be evalu-

ated.
No.

Returns

The first value that is set or FALSE.

Description

This operator evaluates all parameters until one of them is found to be set. The parameter that
is found to be set will be returned. If none of the parameters are set, the operator will return
FALSE.

Examples

Example 1

{if first_set($a, $b, $c)}
The truth is out there.

{else}
The day the earth stood still.

{/if}

As long as $a, $b and $c are undeclared/unset, the following output will be produced: ”The day
the earth stood still”.

Example 2

5.7.5 Template operators / Logical operations 1148

5

{first_set($a, 256, $b)}

As long as $a is undeclared/unset, the following output will be produced: ”256”.

5.7.5 Template operators / Logical operations 1149

5

ge

Summary

Returns TRUE if a parameter is greater than or equal to another parameter.

Usage

input|ge(value1 [, value2])

Parameters

Name Type Description Required
value1 any A variable/value that should be compared. Yes.
value2 any Another variable/value that should be com-

pared.
Only
if the
input
param-
eter is
omitted.

Returns

TRUE or FALSE (see below).

Description

This operator compares two parameters. It returns TRUE if the first parameter is greater than
or equal to the second parameter; otherwise FALSE will be returned. If the input parameter is
provided, the operator will compare it with the first parameter; otherwise it is the first and the
second parameter that will be compared. The following table shows how the different types are
treated.

Type Value
Number The value of the number is used.
String The number of characters is used.
Boolean FALSE means 0 and TRUE means 1.
Array The number of elements is used.
Object The number of object attributes is used.
Other Always 0.

5.7.5 Template operators / Logical operations 1150

5

Examples

Example 1

{256|ge(128)}

or

{ge(256, 128)}

Returns TRUE.

Example 2

{128|ge(256)}

or

{ge(128, 256)}

Returns FALSE.

Example 3

{256|ge(256)}

or

{ge(256, 256)}

Returns TRUE.

Example 4

{128|ge(256, 64)}

Returns FALSE.

5.7.5 Template operators / Logical operations 1151

5

gt

Summary

Returns TRUE if a parameter is greater than another parameter.

Usage

input|gt(value1 [, value2])

Parameters

Name Type Description Required
value1 any A variable/value that should be compared. Yes.
value2 any Another variable/value that should be com-

pared.
Only
if the
input
param-
eter is
omitted.

Returns

TRUE or FALSE (see below).

Description

This operator compares two parameters. It returns TRUE if the first parameter is greater than
the second parameter; otherwise FALSE will be returned. If the input parameter is provided,
the operator will compare it with the first parameter; otherwise it is the first and the second
parameter that will be compared. The following table shows how the different types are treated.

Type Value
Number The value of the number is used.
String The number of characters is used.
Boolean FALSE means 0 and TRUE means 1.
Array The number of elements is used.
Object The number of object attributes is used.
Other Always 0.

5.7.5 Template operators / Logical operations 1152

5

Examples

Example 1

{256|gt(128)}

or

{gt(256, 128)}

Returns TRUE.

Example 2

{128|gt(256)}

or

{gt(128, 256)}

Returns FALSE.

Example 3

{256|gt(256)}

or

{gt(256, 256)}

Returns FALSE.

Example 4

{128|gt(64, 256)}

Returns TRUE.

5.7.5 Template operators / Logical operations 1153

5

le

Summary

Returns TRUE if a parameter is less than or equal to another parameter.

Usage

input|le(value1 [, value2])

Parameters

Name Type Description Required
value1 any A variable/value that should be compared. Yes.
value2 any Another variable/value that should be com-

pared.
Only
if the
input
param-
eter is
omitted.

Returns

TRUE or FALSE (see below).

Description

This operator compares two parameters. It returns TRUE if the first parameter is less than or
equal to the second parameter; otherwise FALSE will be returned. If the input parameter is
provided, the operator will compare it with the first parameter; otherwise it is the first and the
second parameter that will be compared. The following table shows how the different types are
treated.

Type Value
Number The value of the number is used.
String The number of characters is used.
Boolean FALSE means 0 and TRUE means 1.
Array The number of elements is used.
Object The number of object attributes is used.
Other Always 0.

5.7.5 Template operators / Logical operations 1154

5

Examples

Example 1

{256|le(128)}

or

{le(256, 128)}

Returns FALSE.

Example 2

{128|le(256)}

or

{le(128, 256)}

Returns TRUE.

Example 3

{256|le(256)}

or

{le(256, 256)}

Returns TRUE.

Example 4

{128|le(256, 64)}

Returns TRUE.

5.7.5 Template operators / Logical operations 1155

5

lt

Summary

Returns TRUE if a parameter is less than another parameter.

Usage

input|lt(value1 [, value2])

Parameters

Name Type Description Required
value1 any A variable/value that should be compared. Yes.
value2 any Another variable/value that should be com-

pared.
Only
if the
input
param-
eter is
omitted.

Returns

TRUE or FALSE (see below).

Description

This operator compares two parameters. It returns TRUE if the first parameter is less than the
second parameter; otherwise FALSE will be returned. If the input parameter is provided, the op-
erator will compare it with the first parameter; otherwise it is the first and the second parameter
that will be compared. The following table shows how the different types are treated.

Type Value
Number The value of the number is used.
String The number of characters is used.
Boolean FALSE means 0 and TRUE means 1.
Array The number of elements is used.
Object The number of object attributes is used.
Other Always 0.

5.7.5 Template operators / Logical operations 1156

5

Examples

Example 1

{256|lt(128)}

or

{lt(256, 128)}

Returns FALSE.

Example 2

{128|lt(256)}

or

{lt(128, 256)}

Returns TRUE.

Example 3

{256|lt(256)}

or

{lt(256, 256)}

Returns FALSE.

Example 4

{128|lt(256, 64)}

Returns TRUE.

5.7.5 Template operators / Logical operations 1157

5

ne

Summary

Returns TRUE if one or more of the parameters do not match.

Usage

input|ne(value1 [, value2 [, ...]])

Parameters

Name Type Description Required
value1 any A variable/value that should be compared.. Yes.
value2 any Another variable/value that should be com-

pared.
Only
if the
input
param-
eter is
omitted.

Returns

TRUE or FALSE (see below).

Description

This operator compares all the provided parameters. If the parameters are not equal, the operator
will return TRUE, otherwise FALSE will be returned. If more than one parameter is provided, the
operator will ignore the input parameter.

Note that ”ne” compares the values in the same way as the ’!=’ operator in PHP programming
language (refer to the PHP reference documentation for more information). It is recommended
to use the compare (page 1227) template operator for string comparision.

Examples

Example 1

{128|ne(128)}

or

http://www.php.net/manual/en/language.operators.comparison.php

5.7.5 Template operators / Logical operations 1158

5

{ne(128, 128)}

Returns FALSE.

Example 2

{128|ne(256)}

or

{ne(128, 256)}

Returns TRUE.

Example 3

{256|ne(256, 128)}

Returns TRUE.

Example 4

{ne(128, 128, 256)}

Returns TRUE.

Example 5

{ne(128, 128, 128)}

Returns FALSE.

5.7.5 Template operators / Logical operations 1159

5

not

Summary

Returns the opposite of the input or the first parameter (TRUE/FALSE).

Usage

input|not(test)

Parameters

Name Type Description Required
test any The variable/value that should be tested. No.

Returns

TRUE or FALSE

Description

This operator returns TRUE if the input value is FALSE and vice versa. It is also possible to use the
optional ”test” parameter for evaluation. If both the input parameter and the ”test” parameter
are used, it is the input parameter that will be evaluated.

Examples

Example 1

{if false()|not()}
The truth is out there.

{else}
The day the earth stood still.

{/if}

The following output will be produced: ”The truth is out there.”.

Example 2

{if true()|not()}
The truth is out there.

{else}

5.7.5 Template operators / Logical operations 1160

5

The day the earth stood still.
{/if}

The following output will be produced: ”The day the earth stood still.”.

Example 3

{if not(false())}
The truth is out there.

{else}
The day the earth stood still.

{/if}

The following output will be produced: ”The truth is out there.”.

Example 4

{if not(true())}
The truth is out there.

{else}
The day the earth stood still.

{/if}

The following output will be produced: ”The day the earth stood still.”.

5.7.5 Template operators / Logical operations 1161

5

null

Summary

Returns TRUE if the input value is NULL (not the same as 0).

Usage

input|null()

Returns

TRUE or FALSE.

Description

This operator returns TRUE if the input value is NULL, otherwise FALSE will be returned. Please
note that NULL is not the same as a numeric zero (0).

Examples

Example 1

{if 0|null()}
The truth is out there.

{else}
The day the earth stood still.

{/if}

The following output will be produced: ”The day the earth stood still”.

5.7.5 Template operators / Logical operations 1162

5

or

Summary

Evaluates all parameters until one is found to be TRUE, returns that value.

Usage

or(value1 [, value2 [, ...]])

Parameters

Name Type Description Required
value1 any A variable/value to be evaluated. Yes.
value2 any Another variable/value to be evaluated. No.

Returns

One of the parameters or FALSE (see below).

Description

This operator evaluates all parameters until one of them is found to be TRUE. The operator will
then return that parameter and thus stop evaluating the rest of the parameters. If none of the
parameters are found to be TRUE, the operator will return FALSE. The following table shows
how the different types are evaluated by this operator.

Type Evaluation
Number TRUE if the value is non-zero, FALSE other-

wise.
String TRUE if the string consists of at least one char-

acter, FALSE otherwise.
Boolean TRUE if the boolean is a TRUE value, FALSE is

otherwise.
Array TRUE if the array has one or more elements,

FALSE otherwise.
Object TRUE if the object provides the ”attributes”

and the ”attribute” methods, FALSE otherwise.
NULL Always FALSE.
Other Other types will be evaluated in the same way

as PHP would do.

5.7.5 Template operators / Logical operations 1163

5

Examples

Example 1

{if or(false(), true(), false())}
The truth is out there.

{else}
The day the earth stood still.

{/if}

The following output will be produced: ”The truth is out there.”.

Example 2

{def $a=array()
$b=array(1, 2, 3)
$c=array(4, 5, 6)}

{or($a, $b, $c)}

The code above will return the following array: (1, 2, 3).

5.7.5 Template operators / Logical operations 1164

5

true

Summary

Creates and returns a boolean TRUE.

Usage

true()

Returns

TRUE.

Description

This operator creates and returns a boolean TRUE. It can be used to define a boolean variable
and in logical comparisons.

Examples

Example 1

{def $my_boolean=true()}

{if $my_boolean}
The truth is out there.

{else}
The day the earth stood still.

{/if}

The following output will be produced: ”The truth is out there.”.

5.7.6 Template operators / Mathematics 1165

5

5.7.6 Mathematics

abs (page 1166)
Returns a positive value of either the input or the first parameter.

ceil (page 1168)
Returns the next highest integer value of input or parameter.

dec (page 1170)
Returns input or parameter decremented by one.

div (page 1172)
Divides input or first parameter by the remaining parameters.

floor (page 1174)
Returns the next lowest integer value of input or parameter.

inc (page 1176)
Increments either the input or the first parameter with one.

max (page 1178)
Returns the largest value of all parameters.

min (page 1179)
Returns the smallest value of all parameters.

mod (page 1180)
Returns the modulo of two parameters.

mul (page 1182)
Multiplies all parameters and returns the result.

rand (page 1184)
Returns a random integer.

round (page 1186)
Returns a rounded version of the input or a parameter value.

sub (page 1188)
Subtracts all remaining parameters from the first parameter.

sum (page 1190)
Returns the sum of all parameters.

5.7.6 Template operators / Mathematics 1166

5

abs

Summary

Returns a positive value of either the input or the first parameter.

Usage

input|abs(value)

Parameters

Name Type Description Required
value number Value to calculate absolute of. Only

if the
input
param-
eter is
omitted.

Returns

Absolute value of input or parameter.

Description

Returns a positive value of either the input or the ”value” parameter. If both are provided, it is
the ”value” parameter that will be used.

Examples

Example 1

{-16|abs}

or

{abs(-16)}

The following output will be produced: ”16”.

5.7.6 Template operators / Mathematics 1167

5

Example 2

{abs(256)}

The following output will be produced: ”256”.

Example 3

{-64|abs(-128)}

The following output will be produced: ”128”.

5.7.6 Template operators / Mathematics 1168

5

ceil

Summary

Returns the next highest integer value of input or parameter.

Usage

input|ceil(value)

Parameters

Name Type Description Required
value number Value to be rounded up. Only

if the
input
param-
eter is
omitted.

Returns

Integer (rounded up version of input/parameter).

Description

This operator returns the next highest integer value by rounding up either the input or the ”value”
parameter. If both are provided, it is the ”value” parameter that will be used.

Examples

Example 1

{1.5|ceil}

or

{ceil(1.5)}

The following output will be produced: ”2”.

5.7.6 Template operators / Mathematics 1169

5

Example 2

{5.5|ceil(8.2)}

The following output will be produced: ”9”.

5.7.6 Template operators / Mathematics 1170

5

dec

Summary

Returns input or parameter decremented by one.

Usage

input|dec(value)

Parameters

Name Type Description Required
value number The value that should be decremented. Only

if the
input
param-
eter is
omitted.

Returns

input/parameter decremented with one.

Description

This operator decrements either the input or the ”value” parameter with one and returns the
result as an integer. If both are provided, it is the ”value” parameter that will be used. Please
note that this operator can not be used directly to decrement the value of a variable (please refer
to the last example).

Examples

Example 1

{256|dec}

or

{dec(256)}

The following output will be produced: 255.

5.7.6 Template operators / Mathematics 1171

5

Example 2

{200|dec(250)}

The following output will be produced: 249.

Example 3

{def $i=256}
{set $i=dec($i)}
{$i}

This example demonstrates how the value of a variable can be decremented using the ”set” and
the ”dec” operators. The following output will be produced: ”255”.

5.7.6 Template operators / Mathematics 1172

5

div

Summary

Divides input or first parameter by the remaining parameters.

Usage

input|div(value1 [, value2 [, ...]])

Parameters

Name Type Description Required
value1 number Dividend or divisor. Yes.
value2 number Dividend. Only

if the
input
param-
eter is
omitted.

Returns

The result of the division.

Description

This operator divides a the first parameter (can be the input parameter) by the rest of the param-
eters.

Examples

Example 1

{10|div(5)}

or

{div(10, 5)}

The following output will be produced: ”2”.

5.7.6 Template operators / Mathematics 1173

5

Example 2

{12|div(3, 2)}

or

{div(12, 3, 2)}

The following output will be produced: ”2”.

5.7.6 Template operators / Mathematics 1174

5

floor

Summary

Returns the next lowest integer value of input or parameter.

Usage

input|floor(value)

Parameters

Name Type Description Required
value number Value to be rounded down. Only

if the
input
param-
eter is
omitted.

Returns

Integer (rounded down version of input/parameter).

Description

This operator returns the next lowest integer by rounding down either the input or the ”value”
parameter. If both are provided, it is the ”value” parameter that will be used.

Examples

Example 1

{256.7|floor}

or

{floor(256.7)}

The following output will be produced: ”256”.

5.7.6 Template operators / Mathematics 1175

5

Example 2

{999.2|floor(256.7)}

The following output will be produced: ”256”.

5.7.6 Template operators / Mathematics 1176

5

inc

Summary

Increments either the input or the first parameter with one.

Usage

input|inc(value)

Parameters

Name Type Description Required
value number The value that should be incremented. Only

if the
input
param-
eter is
omitted.

Returns

Number (input/parameter incremented with one).

Description

This operator increments either the input or the ”value” parameter with one and returns the
result as an integer. If both are provided, it is the ”value” parameter that will be used. Please
note that this operator can not be used directly to increment the value of a variable (please refer
to the last example).

Examples

Example 1

{255|inc}

or

{inc(255)}

The following output will be produced: ”256”.

5.7.6 Template operators / Mathematics 1177

5

Example 2

{def $i=255}
{set $i=inc($i)}
{$i}

The following output will be produced: ”256”.

5.7.6 Template operators / Mathematics 1178

5

max

Summary

Returns the largest value of all parameters.

Usage

max(value1, value2 [,...])

Parameters

Name Type Description Required
value1 any A value that should be evaluated. Yes.
value2 any Another value that should be evaluated. Yes.

Returns

The largest value of all parameters.

Description

This operator returns the largest value of all parameters. The input parameter is ignored.

Examples

Example 1

{max(2, 3, 1)}

The following output will be produced: ”3”.

Example 2

{max(array(1, 2), array(1, 2, 3))}

The following array will be returned: (1, 2, 3).

5.7.6 Template operators / Mathematics 1179

5

min

Summary

Returns the smallest value of all parameters.

Usage

min(value1, value2 [,...])

Parameters

Name Type Description Required
value1 any A value that should be evaluated. Yes.
value2 any Another value that should be evaluated. Yes.

Returns

The smallest value of all parameters.

Description

This operator returns the largest value of all parameters. The input parameter is ignored.

Examples

Example 1

{min(10, 20, 6, 40, 50)}

The following output will be produced: ”6”.

Example 2

{min(array(1, 2), array(1, 2, 3))}

The following array will be returned: (1, 2).

5.7.6 Template operators / Mathematics 1180

5

mod

Summary

Returns the modulo of two parameters.

Usage

input|mod(value1 [,value2])

Parameters

Name Type Description Required
value1 number Divisor or dividend. Yes.
value2 number Divisor or dividend. Only

if the
input
param-
eter is
omitted.

Returns

Integer (the modulo of the supplied parameters).

Description

This operator returns the modulo (rest after division) of the first parameter divided by the second.
The operator can also take an input parameter. If the input parameter is used, then it will be
divided by the first parameter (and thus the second parameter will be ignored).

Examples

Example 1

{5|mod(3)}

or

{mod(5, 3)}

The following output will be produced: ”2”.

5.7.6 Template operators / Mathematics 1181

5

Example 2

{6|mod(3, 7)}

The following output will be produced: ”0”.

5.7.6 Template operators / Mathematics 1182

5

mul

Summary

Multiplies all parameters and returns the result.

Usage

input|mul(value1 [, value2] [, ...])

Parameters

Name Type Description Required
value1 number Multiplicand. Yes.
value2 number Multiplicand. Only

if the
input
param-
eter is
omitted.

Returns

The result of the multiplication (integer or float).

Description

This operator multiplies all parameters and returns the result. If an input parameter is provided,
it will be included in the multiplication.

Examples

Example 1

{2|mul(3)}

or

{mul(2, 3)}

The following output will be produced: ”6”.

5.7.6 Template operators / Mathematics 1183

5

Example 2

{2|mul(3, 4)}

The following output will be produced: ”24”.

5.7.6 Template operators / Mathematics 1184

5

rand

Summary

Returns a random integer.

Usage

rand([min_val, max_val])

Parameters

Name Type Description Required
min val integer Lower limit (inclusive). No.
max val integer Upper limit (inclusive). No.

Returns

Integer.

Description

This operator returns a random integer. The optional parameters ”min val” and ”max val” can
be used to control the range from which the random number is picked. If you want a random
integer between 3 and 13 (inclusive), use (3, 13) as parameters.

Examples

Example 1

rand()

Returns a random integer.

Example 2

rand(5)

Returns a random integer that is greater than 4.

Example 3

5.7.6 Template operators / Mathematics 1185

5

rand(3, 13)

Returns a random integer that is greater than 2 and less than 14.

5.7.6 Template operators / Mathematics 1186

5

round

Summary

Returns a rounded version of the input or a parameter value.

Usage

input|round(value)

Parameters

Name Type Description Required
value number The number that should be rounded off. Only

if the
input
param-
eter is
omitted.

Returns

A rounded off version of the provided value (an integer or float).

Description

This operator rounds off the value that was specified using either the input or the ”value” param-
eter. If both are provided, it is the ”value” parameter that will be used. The operator returns the
rounded off value.

Examples

Example 1

{15.7|round}

or

{round(15.7)}

The following output will be produced: ”16”.

5.7.6 Template operators / Mathematics 1187

5

Example 2

{8.4|round(9.7)}

The following output will be produced: ”10”.

5.7.6 Template operators / Mathematics 1188

5

sub

Summary

Subtracts all remaining parameters from the first parameter.

Usage

input|sub(value [, ...])

Parameters

Name Type Description Required
value number A number that should be included in the sub-

traction.
Yes.

Returns

Number (result of subtraction).

Description

This operator subtracts all remaining parameters from the first parameter and returns the result.
If an input parameter is provided, all other parameters will subtracted from it.

Examples

Example 1

{10|sub(2)}

or

{sub(10, 2)}

The following output will be produced: ”8”.

Example 2

{sub(10, 2, 3)}

The following output will be produced: ”5”.

5.7.6 Template operators / Mathematics 1189

5

Example 3

{10|sub(10, 2, 3)}

The following output will be produced: ”-5”.

5.7.6 Template operators / Mathematics 1190

5

sum

Summary

Returns the sum of all parameters.

Usage

input|sum(value [,...])

Parameters

Name Type Description Required
value number A value that should be added to the result. Only

if the
input
param-
eter is
omitted.

Returns

Number (sum of all parameters + input).

Description

This operator adds up all the parameters (including the input parameter) and returns the result.

Examples

Example 1

{1|sum(2)}

or

{sum(1, 2)}

The following output will be produced: ”3”.

Example 2

5.7.6 Template operators / Mathematics 1191

5

{1|sum(2, -3, 4)}

The following output will be produced: ”4”.

5.7.7 Template operators / Miscellaneous 1192

5

5.7.7 Miscellaneous

action icon (page 1193)
Not documented yet.

attribute (page 1194)
Makes it possible to inspect the contents of arrays, hashes and objects.

classgroup icon (page 1197)
Outputs an image tag referencing a class group icon.

class icon (page 1198)
Outputs an image tag referencing a class icon.

content structure tree (page 1199)
Not documented yet.

ezpackage (page 1200)
Not documented yet.

flag icon (page 1201)
Outputs an image tag referencing a flag icon.

gettime (page 1202)
Converts a UNIX timestamp to a human friendly structure.

icon info (page 1204)
Not documented yet.

makedate (page 1205)
Generates the UNIX timestamp of a given date.

maketime (page 1206)
Generates the UNIX timestamp of a given date/time.

mimetype icon (page 1207)
Outputs an image tag referencing a MIME type icon.

month overview (page 1208)
Generates a structure that can be used to build a calendar.

pdf (page 1210)
Provides access to the PDF functions (DEPRECATED).

roman (page 1211)
Generates a roman representation of a number.

topmenu (page 1212)
Not documented yet.

treemenu (page 1213)
Fetches a subtree of nodes for the purpose of menu generation.

5.7.7 Template operators / Miscellaneous 1193

5

action icon

Summary

Not documented yet.

5.7.7 Template operators / Miscellaneous 1194

5

attribute

Summary

Makes it possible to inspect the contents of arrays, hashes and objects.

Usage

input|attribute([show_values [, level [, table]]])

Parameters

Name Type Description Required
show values string Sets whether to extract values in addition to

keys, names, etc. If ”show” is passed, the val-
ues will be returned. Otherwise, the operator
will not return any values.

No.

level integer The number of levels that should be pro-
cessed (default is 2).

No.

table boolean Return result as HTML table (default) or not. No.

Returns

A string revealing information about the target.

Description

This operator extracts all available keys, attribute names and/or methods that belong to the
input parameter (must be either an object, an array or a hash). By default, the array keys, object
attribute names and their types will be revealed. By passing ”show” as the first parameter, the
operator will also return the values. The second parameter can be used to control the number of
levels/children that should be expanded and included in the result (the default setting is 2). A
large level value may cause the system to be trapped in a recursive/infinite loop. The returned
result is an HTML table containing the retrieved information. If ”false()” is passed as the third
parameter, the output will be a plain string instead of an HTML table. Please refer to the ”Array
and object inspection” (page 203)section of the ”Templates” chapter for more information about
the use of this operator.

Examples

Example 1

5.7.7 Template operators / Miscellaneous 1195

5

{def $example=hash(’Name’, ’John Doe’,
’Age’, 24,
’Phone’, ’555-3212’)}

{$example|attribute()}

The following output will be produced:

Attribute Type
Name string
Age integer
Phone string

Example 2

{def $example=hash(’Name’, ’Jane Doe’,
’Age’, 23,
’Phone’, ’555-3213’)}

{$example|attribute(’show’)}

The following output will be produced:

Attribute Type Value
Name string ’Jane Doe’
Age integer 23
Phone string ’555-3213’

Example 3

{def $example=hash(’Name’, ’Jane Doe’,
’Age’, 25,
’Phone’, ’555-3213’)}

{$example|attribute(’something’)}

The following output will be produced:

5.7.7 Template operators / Miscellaneous 1196

5

Attribute Type
Name string
Age integer
Phone string

5.7.7 Template operators / Miscellaneous 1197

5

classgroup icon

Summary

Outputs an image tag referencing a class group icon.

Usage

input|classgroup_icon([size [, alt_text [, return_uri]]])

Parameters

Name Type Description Required
size string The preferred icon size (small, medium,

large, etc.).
No.

alt text string The alternative image text. No.
return uri boolean The return format (image tag or just the ad-

dress).
No.

Returns

A string containing an image tag.

Description

This operator generates an image tag that references a class group icon. The name of the icon
must be provided using the input parameter. The ”size”, ”alt text” and ”return url” parameters
are optional (see the description above). The operator uses the settings provided by the ”icon.ini”
configuration file (or an override).

Examples

Example 1

{’content’|classgroup_icon(’small’, ’Alternative image text’)}

The following output will be produced:

<img src="/share/icons/crystal-admin/16x16_indexed/filesystems/
folder_txt.png" width="16" height="16" alt="Content" title="Content" />

5.7.7 Template operators / Miscellaneous 1198

5

class icon

Summary

Outputs an image tag referencing a class icon.

Usage

input|class_icon([size, [, alt_text]])

Returns

A string containing an image tag.

Description

This operator generates an image tag that references a class icon. The name of the icon must be
provided using the input parameter. The ”size” and ”alt text” parameters are optional (see the
description above). The operator uses the settings provided by the ”icon.ini” configuration file
(or an override).

Examples

Example 1

{’folder’|class_icon(’small’, ’Alternative image text’)}

The following output will be produced:

5.7.7 Template operators / Miscellaneous 1199

5

content structure tree

Summary

Not documented yet.

5.7.7 Template operators / Miscellaneous 1200

5

ezpackage

Summary

Not documented yet.

5.7.7 Template operators / Miscellaneous 1201

5

flag icon

Summary

Outputs an image tag referencing a flag icon.

Usage

input|flag_icon()

Returns

A string containing an image tag.

Description

This operator generates an image tag that references a flag icon. The country code must be pro-
vided using the input parameter. This operator is frequently used by the administration interface.

Examples

Example 1

{’eng-GB’|class_icon()}

The following output will be produced:

5.7.7 Template operators / Miscellaneous 1202

5

gettime

Summary

Converts a UNIX timestamp to a human friendly structure.

Usage

gettime(timestamp)

Parameters

Name Type Description Required
timestamp integer A UNIX timestamp. Yes.

Returns

An associative array (see below).

Description

This operator takes a UNIX timestamp as a parameter and returns an associative array that con-
tains a human friendly representation of the provided timestamp. The following table shows the
keys of the returned hash.

Key Type Description
seconds integer Number of seconds.
minutes integer Number of minutes.
hours integer Number of hours.
day integer The day of the month (1-31).
month integer The month number (1 is Jan-

uary).
year integer A four digit representation

of the year (for example
”1978”).

weekday integer The day of the week (1-7).
weeknumber string The week of the year (1-52).
yearday integer The day of the year (1-365).
epoch integer The UNIX timestamp that

was provided.

5.7.7 Template operators / Miscellaneous 1203

5

Examples

Example 1

{gettime(currentdate())|attribute(show)}

The ”currentdate” (page 1100) operator is used to generate the UNIX timestamp for the current
date/time. This value is then fed to the ”gettime” operator, which converts it to a human friendly
structure. The array is viewed using the ”attribute” (page 1194) operator. The following output
will be produced:

Attribute Type Value
seconds integer 11
minutes integer 5
hours integer 15
day integer 13
month integer 4
year integer 2005
weekday integer 4
weeknumber string 15
yearday integer 102
epoch integer 1113397511

5.7.7 Template operators / Miscellaneous 1204

5

icon info

Summary

Not documented yet.

5.7.7 Template operators / Miscellaneous 1205

5

makedate

Summary

Generates the UNIX timestamp of a given date.

Usage

makedate([month [, day [, year [, dst]]]])

Parameters

Name Type Description Required
month integer The month of the year. No.
day integer The day of the month. No.
year integer The year. No.
dst integer Daylight savings (on/off). No.

Returns

A UNIX timestamp (an integer).

Description

This operator returns the UNIX timestamp corresponding to the provided parameters. The pa-
rameters may be left out in order from right to left. Parameters that are omitted will be set to
the current value according to the local date and time. The ”dst” parameter can be set to 1 if
the time is during daylight savings time (DST), 0 if it is not, or -1 (the default) if it is unknown
whether the time is within daylight savings time or not (the system will try to figure it out). If no
parameters are given, the operator will return the timestamp for the current day.

Examples

Example 1

{makedate(1, 2, 2005)}

The following output will be produced: ”1104620400” - which is the UNIX timestamp for
”00:00:00, 2nd of January, 2005”.

5.7.7 Template operators / Miscellaneous 1206

5

maketime

Summary

Generates the UNIX timestamp of a given date/time.

Usage

maketime([hour [, minute [, second [, month [, day [, year [, dst]]]]]]
])

Parameters

Name Type Description Required
hour integer Hour of the day. No.
minute integer Minute of the hour. No.
second integer Second of the minute. No.
month integer Month of the year. No.
day integer Day of the month. No.
year integer The year. No.
dst integer Daylight savings (on/off). No.

Returns

A UNIX timestamp (an integer).

Description

This operator returns the UNIX timestamp corresponding to the provided parameters. The pa-
rameters may be left out in order from right to left. Parameters that are omitted will be set to
the current value according to the local date and time. The ”dst” parameter can be set to 1 if
the time is during daylight savings time (DST), 0 if it is not, or -1 (the default) if it is unknown
whether the time is within daylight savings time or not (the system will try to figure it out). If no
parameters are given, the operator will return the current timestamp.

Examples

Example 1

{maketime(1, 2, 3, 4, 5, 2004)}

The following output will be produced: ”1081119723” - which is the UNIX timestamp for
”01:02:03, 5th of April, 2004”.

5.7.7 Template operators / Miscellaneous 1207

5

mimetype icon

Summary

Outputs an image tag referencing a MIME type icon.

Usage

input|mimetype_icon([size, [, alt_text [, return_type]]])

Parameters

Name Type Description Required
size integer The size of the icon (small, normal, large,

etc.).
No.

alt text string The alternative image text. No.
return url boolean The return type (FALSE=image tag,

TRUE=address only).
No.

Returns

A string containing an image tag.

Description

This operator generates an image tag that references a MIME type icon. The name of the icon
must be provided using the input parameter. The ”size” and ”alt text” parameters are optional
(see the description above). The operator uses the settings provided by the ”icon.ini” configura-
tion file (or an override).

Examples

Example 1

{’application/pdf’|mimetype_icon(’small’, ’Alternative image text’)}

This will output the MIME type icon that is associated with the ”.pdf” file extension (defined in
”icon.ini” or an override).

5.7.7 Template operators / Miscellaneous 1208

5

month overview

Summary

Generates a structure that can be used to build a calendar.

Usage

input|month_overview(field,
today_timestamp,
hash(’current’, current_timestamp,

’day_class’, day_class
’current_class’, current_class,
’link’, link,
’month_link’, month_link,
’year_link’, year_link,
’day_link’, day_link,
’next’, hash(’link’, next_link),
’previous’, hash(’link’, previous_link)))

Parameters

Name Type Description Required
field string The way the objects should be grouped. Yes.
today timestamp integer The UNIX timestamp for the day being

searched.
Yes.

current
timestamp

integer The UNIX timestamp of the current date/
time.

No.

day class string The CSS class that should be used for a nor-
mal day.

No.

current class string The CSS class that should be used for the cur-
rent day.

No.

link string Link to days containing objects (”content/
view/full/node id”).

No.

month link string Append ”/month/MON” to links or not. No.
year link string Append ”/year/YEAR” to links or not. No.
day link string Append ”/day/DAY” to links or not. No.
next link string Link to the next month. No.
previous link string Link to the previous month. No.

Returns

A complex structure (see below).

5.7.7 Template operators / Miscellaneous 1209

5

Description

This operator takes an array of content objects as input and analyzes and distributes them in a
given month. It returns a complex structure (see below) that can be used by the ”monthview.tpl”
template, which will highlight days when at least one object has been published (see ”design/
standard/templates/navigator/monthview.tpl”). The following structure will be returned:

.
|-- year
|-- month
|-- weekdays[]
| |-- day
| |-- class
|
|-- weeks[][]
| |--day
| |--link
| |--class
| |--highlight
|
|-- next
| |--month
| |--link
|
|-- previous

|--month
|--link

5.7.7 Template operators / Miscellaneous 1210

5

pdf

Summary

Provides access to the PDF functions (DEPRECATED).

Usage

{pdf(...)}

Returns

The returned result depends on the actual PDF function.

Description

This operator provides access to the PDF functions that may be used to generate PDF data in
a template. The actual PDF functions are documented in the ”Template PDF functions” (page
1397) section of the ”Reference” chapter.

5.7.7 Template operators / Miscellaneous 1211

5

roman

Summary

Generates a roman representation of a number.

Usage

input|roman(value)

Parameters

Name Type Description Required
value integer A number that should be converted. Only

if the
input
param-
eter is
omitted.

Returns

A string containing a roman number.

Description

This operator will convert either the input or the ”value” parameter to a roman number. If both
are provided, it is the ”value” parameter that will be used.

Examples

Example 1

{8|roman()}

or

{roman(8)}

The following output will be produced: ”VIII”.

5.7.7 Template operators / Miscellaneous 1212

5

topmenu

Summary

Not documented yet.

5.7.7 Template operators / Miscellaneous 1213

5

treemenu

Summary

Fetches a subtree of nodes for the purpose of menu generation.

Usage

treemenu(path
[, node_id]
[, class_filter]
[, depth_skip]
[, max_level]
[, is_selected_method]
[, indentation_level]
[, language])

Parameters

Name Type Description Required
path array An array of the path ($module result.path). Yes.
node id integer DEPRECATED (The node ID number, i.e. the

root of the subtree.)
No.

class filter array An array of classes that should be filtered. No.
depth skip integer Number of levels that should be skipped. No.
max level integer The max depth that should be explored. (2

by default)
No.

is selected
method

string Sets whether ”is selected=TRUE” should be
assigned to the parents of the current node
as well.

No.

indentation level integer The size of increment to use when calculat-
ing the indentation of the menu entries (15
by default).

No.

language string/
array

The language(s) to use when fetching the
nodes. Use either a string, e.g. ’nor-NO’, or
an array of strings, e.g. array(’nor-NO’, ’eng-
GB’).

No.

Returns

A complex structure that can be used to build a menu (see below).

5.7.7 Template operators / Miscellaneous 1214

5

Description

This operator fetches a subtree of nodes and returns a complex structure (an array of hashes)
that can be used to generate a menu. Note that the optional ”node id” parameter is deprecated
and no longer used (its value is ignored by the system, but the parameter itself is not removed
because of backwards compatibility reasons). The root of the subtree is determined by the ”path”
parameter. If the provided path array points to a node, then a subtree of this node will be
fetched. (Use ”$module result.path” to pass the path which leads to the page that is currently
being viewed.) If the ”path” parameter does not point to a node in the content tree, then a
subtree of the ”Content” top level node (page 125) will be fetched.

If the optional ”class filter” parameter is omitted, all nodes will be fetched without filtering. If an
empty array is passed, then only folder nodes (class ID = 1) will be fetched.

The optional ”language” parameter makes it possible to specify which languages to use when
fetching the nodes. The languages will be prioritized according to the array (this overrides the
language settings of the siteaccess).

The default value of the ”is selected method” parameter is ”tree”. This value determines that
the current node and its parent nodes will be considered as selected (is selected=TRUE). If this
parameter is set to ”node”, only the current node will be considered as selected.

The following table shows the hash-structure for each element in the array that will be returned.

Key Type Description
id integer The ID of the node.
level integer The depth of the node.
url alias string The URL alias of the node.
url string The system URL of the node.
text string The name of the node.
is selected boolean TRUE if the node is currently

being
viewed/selected, FALSE oth-
erwise.

If the ”path” parameter points to a node in the content tree, then the following additional keys
will be included in the hash structure:

Key Type Description
data map array The attributes (as ez-

contentobjectattribute (page
981) objects) of the actual
content object encapsulated
by the node.

class name string The name of the class which
the object encapsulated by
the node is an instance of, for
example ”Folder”.

is main node boolean TRUE if the node is a main

5.7.7 Template operators / Miscellaneous 1215

5

node, FALSE otherwise.
has children boolean TRUE if the node has chil-

dren, FALSE otherwise.
indent integer The indentation of the menu

entries. This value is cal-
culated according to the
depth of the node using
”indentation level” as incre-
ment. A menu item of the
level N will have indent=(N-
1)*indentation level.

Examples

Example 1 (explanatory)

Let’s use a small site with the following content structure (see the screenshot) for the purpose of
demonstration (see figure 5.94)

Figure 5.94: The content tree

and insert the following code into ”pagelayout.tpl”:

{def $mainMenu=treemenu($module_result.path) }
{foreach $mainMenu as $menu}
{$menu.level} - {$menu.text}

{/foreach}
{undef $mainMenu}

If the ”Weblog” node is being viewed, then the following output will be produced:

0 - Weblog
1 - July, 29
1 - July, 14

5.7.7 Template operators / Miscellaneous 1216

5

1 - June, 25
0 - Galleries
0 - Products

If the ”Blue flower” node is being viewed, then the following output will be produced:

0 - Weblog
0 - Galleries
1 - Misc flowers
1 - Landscape
0 - Products

Since the ”max level” parameter is omitted, only two levels are explored. To set the ”max level”
parameter to 3, change the first line of the previous code fragment in the following way:

{def $mainMenu=treemenu($module_result.path, , , , 3) }

This will produce the following output for the ”Blue flower” node:

0 - Weblog
0 - Galleries
1 - Misc flowers
2 - Red flower
2 - Blue flower
1 - Landscape
0 - Products

To skip the first level, set the ”depth skip” parameter to 1 by changing the first line of the code
fragment as shown below:

{def $mainMenu=treemenu($module_result.path, , , 1, 3) }

If the ”Blue flower” node is being viewed, then the following output will be produced:

0 - Misc flowers
1 - Red flower
1 - Blue flower
0 - Landscape

Now, let’s use another code fragment in order to see which items are selected:

{def $mainMenu=treemenu($module_result.path, , , , 3)}
{foreach $mainMenu as $menu}

{if $menu.is_selected}

5.7.7 Template operators / Miscellaneous 1217

5

{$menu.level} - {$menu.text} (selected)

{else}

{$menu.level} - {$menu.text}

{/if}

{/foreach}
{undef $mainMenu}

Since the ”is selected method” parameter is omitted, the ”tree” mode will be used and the fol-
lowing output will be produced for the ”Blue flower” node:

0 - Weblog
0 - Galleries (selected)
1 - Misc flowers (selected)
2 - Red flower
2 - Blue flower (selected)
1 - Landscape
0 - Products

To set the ”is selected method” parameter to ”node”, replace the first line of the last code fragment
by the following line:

{def $mainMenu=treemenu($module_result.path, , , , 3, ’node’)}

If the ”Blue flower” node is being viewed, then the following output will be produced:

0 - Weblog
0 - Galleries
1 - Misc flowers
2 - Red flower
2 - Blue flower (selected)
1 - Landscape
0 - Products

Example 2

These examples are from pagelayout.tpl.

Make a menu of folder and info page classes. Skip the first level and maximum go to depth 6.

{def $mainMenu=treemenu($module_result.path, ,

array(’folder’,’info_page’), 1, 6)}

{foreach $mainMenu as $menu}
<li class="level_{$menu.level}">

5.7.7 Template operators / Miscellaneous 1218

5

{if $menu.is_selected}
<div class="selected">
{$menu.text}
</div>

{else}
{$menu.text}

{/if}

{/foreach}

Make a menu which shows the sub menu items when clicked on the parent menu item. Notice
that only the objectclass ids: 1, 9, and 17 are visible.

{def $docs=treemenu($module_result.path, ,
array(1, 9, 17), 0, 4)}

{def $depth=1 $last=0}

{foreach $docs as $menu}
{if and($last | ne(0), $last.level|gt($menu.level))}

{/if}

{if and($last | ne(0), $last.level| lt($menu.level))}

{/if}

<a {$menu.is_selected|choose(’’,’class="selected"’)}
href={$menu.url_alias|ezurl}>{$menu.text|shorten(25)}

{set last=$menu}
{/foreach}

{while $depth |gt(1)}

{set depth=$depth|sub(1)}

{/while}

5.7.8 Template operators / Strings 1219

5

5.7.8 Strings

append (page 1222)
Returns the input string with a custom sequence appended to it.

autolink (page 1223)
Returns the input string with the addresses replaced by link tags.

begins with (page 1224)
Checks if a string starts with a specific character/sequence.

break (page 1225)
Returns the input string with all newlines converted to HTML breaks.

chr (page 1226)
Generates a string based on the input array of ASCII/UNICODE values.

compare (page 1227)
Compares the contents of two strings.

concat (page 1228)
Merges several strings into one string.

contains (page 1229)
Checks if a string contains a specific element.

count chars (page 1230)
Returns the length of the input string.

count words (page 1231)
Returns the number of words that make up the input string.

crc32 (page 1232)
Returns the CRC32 polynomial of the input string.

downcase (page 1233)
Returns a lowercased version of the input string.

ends with (page 1234)
Checks if a string ends with a specific character/sequence.

explode (page 1235)
Splits the input string and returns it as an array of strings.

extract (page 1236)
Returns a portion of the input string.

extract left (page 1237)
Returns a portion of the start of the input string.

extract right (page 1238)
Returns a portion of the end of the input string.

5.7.8 Template operators / Strings 1220

5

indent (page 1239)
Returns an indented version of the input string.

insert (page 1240)
Returns the input string with additional text inserted at a specified position.

md5 (page 1241)
Returns the MD5 hash of the input string.

nl2br (page 1242)
Returns the input string with all newlines converted to HTML breaks.

ord (page 1243)
Returns an array containing the ASCII/UNICODE values of the input string.

pad (page 1244)
Returns a lengthened version of the input string.

prepend (page 1245)
Returns the input string prepended with a custom sequence.

remove (page 1246)
Returns a pruned version of the input string.

repeat (page 1247)
Returns a repeated version of the input string.

reverse (page 1248)
Returns a reversed version of the input string.

rot13 (page 1249)
Returns a ROT13 transformation of the input string.

shorten (page 1250)
Returns a shortened version of the input string.

simpletags (page 1251)
Returns a partially marked up version of the input string.

simplify (page 1253)
Returns a simplified version of the input string.

trim (page 1255)
Returns a stripped version of the input string.

upcase (page 1256)
Returns a capitalized version of the input string.

upfirst (page 1257)
Returns the input string with a capitalized initial letter.

upword (page 1258)
Returns the input string with capitalized initial letters.

5.7.8 Template operators / Strings 1221

5

wash (page 1259)
Returns an HTML-safe version of the input string.

wordtoimage (page 1261)
Returns the input string with embedded image tags.

wrap (page 1262)
Returns a wrapped version of the input string.

5.7.8 Template operators / Strings 1222

5

append

Summary

Returns the input string with a custom sequence appended to it.

Usage

input|append(value1 [, value2 [, ...]])

Parameters

Name Type Description Required
value1 mixed Text to be appended. Yes.
value2 mixed More text that should be appended. No.

Returns

A string consisting of the input string and the parameters.

Description

This operator appends the parameter value(s) at the end of the input string and returns the
resulting string.

Examples

Example 1

{’The ’|append(’Last ’, ’Crusade ’)}

The following output will be produced: ”The Last Crusade”.

5.7.8 Template operators / Strings 1223

5

autolink

Summary

Returns the input string with the addresses replaced by link tags.

Usage

input|autolink()

Returns

A string with marked up links.

Description

This operator takes a string as an input. It will convert links and E-mail addresses to clickable
entities using HTML markup. The resulting string (containing markup here and there) will be
returned.

Examples

Example 1

{’Blah blah http://www.example.com blah hello@example.com blah.’|autolink()}

The following output will be produced:

Blah blah http://www.example.com</
a> blah hello@example.com blah.

5.7.8 Template operators / Strings 1224

5

begins with

Summary

Checks if a string starts with a specific character/sequence.

Usage

input|begins_with(sequence)

Parameters

Name Type Description Required
sequence string The string that should be matched. Yes.

Returns

TRUE if there is a match, FALSE otherwise.

Description

This operator checks if the input string starts with a specified sequence of characters. If yes, the
operator returns TRUE, otherwise FALSE will be returned.

Examples

Example 1

{’My cat is green.’|begins_with(’My cat’)}

Returns TRUE.

Example 2

{’My cat is green.’|begins_with(’My dog’)}

Returns FALSE.

5.7.8 Template operators / Strings 1225

5

break

Summary

Returns the input string with all newlines converted to HTML breaks.

Usage

input|break()

Returns

A string with HTML breaks.

Description

This operator takes a string as input. It replaces newline characters/sequences with HTML break
tags and returns a modified version of the input.

Examples

Example 1

{’The lazy
cat
jumps over
the quick rat.’|break()}

The following output will be produced:

The lazy
cat
jumps over
the quick rat.

5.7.8 Template operators / Strings 1226

5

chr

Summary

Generates a string based on the input array of ASCII/UNICODE values.

Usage

input|chr()

Returns

A string containing the requested characters.

Description

This operator creates and returns a string. The contents of the returned string is determined by
the input parameter which must be an array of ASCII/UNICODE values (as integers).

Examples

Example 1

{array(97, 98, 99)|chr()}

The following output will be produced: ”abc”.

5.7.8 Template operators / Strings 1227

5

compare

Summary

Compares the contents of two strings.

Usage

input|compare(compare_with)

Returns

TRUE if the strings match, FALSE otherwise.

Description

This operator compares the contents of two strings and returns TRUE if they’re identical, FALSE
if they differ.

Examples

Example 1

{’Hello world’|compare(’Hello world’)}

Returns TRUE.

Example 2

{’Hello world’|compare(’Goodbye world’)}

Returns FALSE.

5.7.8 Template operators / Strings 1228

5

concat

Summary

Merges several strings into one string.

Usage

concat(value1, value2 [,...])

Parameters

Name Type Description Required
value1 mixed A string that should be added. Yes.
value2 mixed Another string that should be added. Yes.

Returns

A string consisting of all the parameters.

Description

This operator merges several strings into one and returns the resulting string.

Examples

Example 1

{concat(’what’, ’ever’)}

The following output will be produced: ”whatever”.

Example 2

{def $number=256}
{concat(’The number is: ’, $number, ’!’)}

The following output will be produced: ”The number is: 256!”

5.7.8 Template operators / Strings 1229

5

contains

Summary

Checks if a string contains a specific element.

Usage

input|contains(sequence)

Parameters

Name Type Description Required
sequence string The string that should be matched. Yes.

Returns

TRUE if there is a match, FALSE otherwise.

Description

This operator checks if the input string contains a specific sequence of characters. If a match is
found, the operator will return TRUE, otherwise FALSE will be returned.

Examples

Example 1

{’Welcome to my homepage!’|contains(’my’)}

Returns TRUE.

Example 2

{’Welcome to my homepage!’|contains(’your’)}

Returns FALSE.

5.7.8 Template operators / Strings 1230

5

count chars

Summary

Returns the length of the input string.

Usage

input|count_chars()

Returns

An integer revealing the string length.

Description

This operator counts and returns the number of characters (all of them, whitespaces included)
that make up the input string.

Examples

Example 1

{’Testing 1 2 3’|count_chars()}

The following output will be returned: ”13”.

Example 2

{’Testing’|count_chars()}

The following output will be returned: ”7”.

5.7.8 Template operators / Strings 1231

5

count words

Summary

Returns the number of words that make up the input string.

Usage

input|count_words()

Returns

An integer revealing the number of words that make up a string.

Description

This operator counts and returns the number of words that are found within the input string.

Examples

Example 1

{’Where do you want to publish today?’|count_words()}

The following output will be returned: ”7”.

5.7.8 Template operators / Strings 1232

5

crc32

Summary

Returns the CRC32 polynomial of the input string.

Usage

input|crc32()

Returns

The CRC32 polynomial of the input string.

Description

This operator calculates and returns the CRC32 polynomial of the input string.

Examples

Example 1

{’filename.txt’|crc32()}

The following output will be produced: ”-460339180”.

5.7.8 Template operators / Strings 1233

5

downcase

Summary

Returns a lowercased version of the input string.

Usage

input|downcase()

Returns

A lowercase version of the input string.

Description

This operator returns a lowercased version of the input string.

Examples

Example 1

{"My StriNG Is CoOl!"|downcase()}

The following output will be produced: ”my string is cool!”.

5.7.8 Template operators / Strings 1234

5

ends with

Summary

Checks if a string ends with a specific character/sequence.

Usage

input|ends_with(sequence)

Parameters

Name Type Description Required
sequence string The string that should be matched. Yes.

Returns

TRUE if there is a match, FALSE otherwise.

Description

This operator checks if the input string ends with a specified sequence of characters. If yes, the
operator returns TRUE, otherwise FALSE will be returned.

Examples

Example 1

{’Linux is great!’|ends_with(’great!’)}

Returns TRUE.

Example 2

{’Linux is great!’|begins_with(’great’)}

Returns FALSE.

5.7.8 Template operators / Strings 1235

5

explode

Summary

Splits the input string and returns it as an array of strings.

Usage

input|explode(separator)

Parameters

Name Type Description Required
separator string Split sequence. Yes.

Returns

An array of strings.

Description

This operator takes a string as input and returns an array of strings. Each element in the array will
be a part of the input string extracted on the basis of the specified sequence of split characters.

Examples

Example 1

{’All-your-base-are-belong-to-us!’|explode(’-’)}

The following array will be returned: (’All’, ’your’, ’base’, ’are’, ’belong’, ’to’, ’us!’).

5.7.8 Template operators / Strings 1236

5

extract

Summary

Returns a portion of the input string.

Usage

input|extract(offset [, length])

Parameters

Name Type Description Required
offset integer The offset to start at. Yes.
length integer The number of characters that should be ex-

tracted.
No.

Returns

A string containing a portion of the input string.

Description

This operator will return a portion of the input string. The returned portion must be defined by
the ”offset” and ”length” parameters. If the ”length” parameter is omitted, the rest of the string
(from offset) will be returned.

Examples

Example 1

{’I love monday mornings!’|extract(7)}

The following output will be produced: ”monday mornings!”.

Example 2

{’Big apples.’|extract(4, 5)}

The following output will be produced: ”apple”.

5.7.8 Template operators / Strings 1237

5

extract left

Summary

Returns a portion of the start of the input string.

Usage

$input_string|extract_left(length)

Parameters

Name Type Description Required
length integer The number of characters that should be ex-

tracted.
Yes.

Returns

A string containing a chunk of the input string.

Description

This operator extracts a portion from the start of the input string. The ”length” parameter must
be used to define the length (number of characters) of the portion.

Examples

Example 1

{’Gooooood morning Vietnam!’|extract_left(8)}

The following output will be produced: ”Gooooood”.

5.7.8 Template operators / Strings 1238

5

extract right

Summary

Returns a portion of the end of the input string.

Usage

input|extract_right(length)

Parameters

Name Type Description Required
length integer The number of characters that should be ex-

tracted.
Yes.

Returns

A string containing a chunk of the input string.

Description

This operator extracts a portion from the end of the input string. The ”length” parameter must
be used to define the length (number of characters) of the portion.

Examples

Example 1

{"Gooooood morning Vietnam!"|extract_right(8)}

The following output will be produced: ”Vietnam!”.

5.7.8 Template operators / Strings 1239

5

indent

Summary

Returns an indented version of the input string.

Usage

input|indent(count [, type [, filler]])

Parameters

Name Type Description Required
count integer Number of indentations. Yes.
type string Type of indentation (”space”, ”tab” or ”cus-

tom”).
No.

filler string Custom indentation. No.

Returns

An indented version of the input string.

Description

This operator indents the input string and returns it. The indentation type can be set to ”space”,
”tab” or ”custom”. The default indentation is ”space”. If the indentation type is set to ”custom”,
the ”filler” parameter must be set to the desired indentation string.

Examples

Example 1

{’This is my text’|indent(1)}

The following string will be returned: ” This is my text”.

Example 2

{’This is my second line’|indent(3, ’custom’, ’.’)}

The following string will be returned: ”...This is my second line”.

5.7.8 Template operators / Strings 1240

5

insert

Summary

Returns the input string with additional text inserted at a specified position.

Usage

input|insert(offset, sequence)

Parameters

Name Type Description Required
offset integer The position where the sequence should be

inserted.
Yes.

sequence string The string that should be inserted. Yes.

Returns

A string consisting of the input and the inserted sequence.

Description

This operator inserts a sequence of characters at a specified position of the input string. The
resulting string will be returned.

Examples

Example 1

{’My string is simple.’|insert(3, ’static ’)}

The following output will be produced: ”My static string is simple.”.

5.7.8 Template operators / Strings 1241

5

md5

Summary

Returns the MD5 hash of the input string.

Usage

input|md5()

Returns

The MD5 hash of the input string.

Description

This operator calculates and returns the MD5 hash of the input string.

Examples

Example 1

{’Desktop computer’|md5()}

The following output will be produced: ”8cae7108f44d1958b9febc65e44cbbc8”.

5.7.8 Template operators / Strings 1242

5

nl2br

Summary

Returns the input string with all newlines converted to HTML breaks.

Usage

input|nl2br()

Returns

A string with HTML breaks.

Description

This operator takes a string as input. It replaces newline characters/sequences with HTML break
tags and returns a modified version of the input.

Examples

Example 1

{’The lazy
cat
jumps over
the quick rat.’|nl2br()}

The following output will be produced:

The lazy
cat
jumps over
the quick rat.

5.7.8 Template operators / Strings 1243

5

ord

Summary

Returns an array containing the ASCII/UNICODE values of the input string.

Usage

input|ord()

Returns

An array with ASCII/UNICODE values.

Description

This operator returns an array containing the ASCII/UNICODE values of the characters that make
up the input string.

Examples

Example 1

{’abcdef’|ord()}

The following array will be returned: (97, 98, 99, 100, 101, 102).

5.7.8 Template operators / Strings 1244

5

pad

Summary

Returns a lengthened version of the input string.

Usage

input|pad(length [, padding])

Parameters

Name Type Description Required
length integer The desired length of the string. Yes.
padding character Custom character to be used for padding. No.

Returns

A padded version of the input string.

Description

This operator makes sure that the input string is at least ”length” characters long by inserting
extra characters at the end. It is possible to specify a custom character using the ”padding”
parameter (default is space). The operator returns a padded version of the input string.

Examples

Example 1

{’Too short!’|pad(15)}

The following string will be produced: ”Too short! ”.

Example 2

{’Too short!’|pad(16, ’-’)}

The following string will be produced: ”Too short!-––-”.

5.7.8 Template operators / Strings 1245

5

prepend

Summary

Returns the input string prepended with a custom sequence.

Usage

input|prepend(sequence)

Parameters

Name Type Description Required
sequence string The string that should be prepended. Yes.

Returns

A string consisting of the first parameter and the input string.

Description

This operator puts the ”sequence” parameter at the start of the input string and returns the
resulting string.

Examples

Example 1

{’Weaver’|prepend(’Sigourney ’)}

The following string will be produced: ”Sigourney Weaver”.

5.7.8 Template operators / Strings 1246

5

remove

Summary

Returns a pruned version of the input string.

Usage

input|remove(offset, length)

Parameters

Name Type Description Required
offset integer The offset to start at. Yes.
length integer The number of characters that should be re-

moved.
Yes.

Returns

A pruned version of the input string.

Description

This remove operator removes characters from the input string and returns the pruned version.
The ”offset” and ”length” parameters must be used to define the start and length of the portion
that should be removed.

Examples

Example 1

’My string is simple.’|remove(3, 2)

The following string will be produced: ”My ring is simple.”.

5.7.8 Template operators / Strings 1247

5

repeat

Summary

Returns a repeated version of the input string.

Usage

input|repeat(count)

Parameters

Name Type Description Required
count integer The number of repeats. Yes.

Returns

A repeated version of the input string.

Description

This operator returns a repeated version of the input string. The ”count” parameter must be used
to define the desired number of repetitions.

Examples

Example 1

{’*DJ Cat Show*’|repeat(2)}

The following string will be produced: ”*DJ Cat Show* *DJ Cat Show* ”.

5.7.8 Template operators / Strings 1248

5

reverse

Summary

Returns a reversed version of the input string.

Usage

input|reverse()

Returns

A reversed version of the input string.

Description

This operator returns a reversed version of an input string.

Examples

Example

{"Hello World"|reverse}

The following output will be produced: ”dlroW olleH”.

5.7.8 Template operators / Strings 1249

5

rot13

Summary

Returns a ROT13 transformation of the input string.

Usage

input|rot13()

Returns

A rotated version of the input string.

Description

Returns a ROT13 transformation of the input string.

Examples

Example 1

{’Hello World’|rot13()}

The following output will be produced: ”Uryyb Jbeyq”.

Example 2

{’Uryyb Jbeyq’|rot13()}

The following output will be produced: ”Hello world”.

5.7.8 Template operators / Strings 1250

5

shorten

Summary

Returns a shortened version of the input string.

Usage

input|shorten([length [, sequence [, trim_type]]])

Parameters

Name Type Description Required
length integer The desired length of the returned string. No.
sequence string Custom trailing/end-sequence. No.
trim type string Controls the type of trimming: ”right” (de-

fault) or ”middle”.
No.

Returns

A shortened version of the input string.

Description

This operator shortens the input string to ”length” characters and adds a trailing sequence. Please
note that the ”length” parameter also includes the length of the trailing sequence. If the input
string is shorter than ”length”, it will not be shortened. The default length is 80, the default
trailing sequence is three dots: ”...”. The third parameter controls the type of trimming, it can be
set to either ”right” (default) or ”middle”.

Examples

Example 1

{’Led Zeppelin rocks!’|shorten(15)}

The following output will be produced: ”Led Zeppelin...”.

Example 2

{"eZ Systems"|shorten(7, ’...’ , ’middle’)}

The following output will be produced: ”eZ...ms”.

5.7.8 Template operators / Strings 1251

5

simpletags

Summary

Returns a partially marked up version of the input string.

Usage

input|simpletags([taglist])

Parameters

Name Type Description Required
taglist string The name of the custom tag group that

should be used.
No.

Returns

A partially marked up version of the input string.

Description

This operator returns a partially marked up version of the input string. It can be used to allow
the usage/pass-through of a small subset of HTML/custom tags (other/disallowed tags will be
removed). This operator is typically useful when it comes to allowing some kind of formatting
in for example comments (instances of a class that does not support formatting through the
XML block datatype). The optional ”taglist” parameter can be used to select the list of allowed
tags (the default is ”TagList”). The tags/groups must be defined in a configuration override for
”template.ini”. The following table shows the tags that are allowed by default.

Custom tag HTML replacement
literal

<pre>...</pre>

code
<pre class="code">...</pre>

strong
...

emphasize
<i>...</i>

5.7.8 Template operators / Strings 1252

5

Examples

Example 1

{’Back To The Future’|simpletags()}

The following output will be produced:

Back To The Future

5.7.8 Template operators / Strings 1253

5

simplify

Summary

Returns a simplified version of the input string.

Usage

input|simplify([char])

Parameters

Name Type Description Required
char character The character that should be simplified. No.

Returns

A simplified version of the input string.

Description

This operator takes a string as the input parameter. It transforms multiple consecutive characters
into one. The operator can be used to remove the duplicates as it leaves only a single copy of each
character. It is possible to specify only one character that should be simplified, this can be done
using the optional ”char” parameter. By default, the operator removes multiple spaces. Special
characters must be specified using regular expression style, please refer to the table below.

Character Description
\t Tab (HT, TAB)
\n Newline (LF, NL)
\r Return (CR)
\f Form feed (FF)
\a Alarm / bell (BEL)
\e Escape / think troff (ESC)

Examples

Example 1

{’We don’t need no whitespaces!’|simplify()}

The following output will be produced: ”We don’t need no whitespaces!”.

5.7.8 Template operators / Strings 1254

5

Example 2

{’This____string__is___annoying.’|simplify(’_’)}

The following output will be produced: ”This string is annoying.”.

5.7.8 Template operators / Strings 1255

5

trim

Summary

Returns a stripped version of the input string.

Usage

input|trim([char_list])

Parameters

Name Type Description Required
char list string Characters that should be removed. No.

Returns

A stripped version of the input string.

Description

This operator removes characters from the beginning and the end of the input string. By default,
it will get rid of the following characters:

Character ASCII value (dec) ASCII value (hex) Description
32 0x20 An ordinary space.

\t 9 0x09 A tab.
\n 10 0x0A A new line (line

feed).
\r 13 0x0D A carriage return.
\0 0 0x00 The NUL-byte.
\x0B 11 0x0B A vertical tab.

Examples

Example 1

{’ Gizmo is not a gremlin. ’|trim()}

The following output will be produced: ”Gizmo is not a gremlin.”

5.7.8 Template operators / Strings 1256

5

upcase

Summary

Returns a capitalized version of the input string.

Usage

input|upcase()

Returns

A capitalized version of the input string.

Description

This operator returns a capitalized version of the input string.

Examples

Example 3

{’This is my string.’|upcase()}

The following output will be produced: ”THIS IS MY STRING.”.

5.7.8 Template operators / Strings 1257

5

upfirst

Summary

Returns the input string with a capitalized initial letter.

Usage

input|upfirst()

Returns

The input string with a capitalized initial letter.

Description

This operator converts the first character of the input string to a capital letter. The resulting string
is returned.

Examples

Example 1

{’good bye!’|upfirst()}

The following string will be returned: ”Good bye!”.

5.7.8 Template operators / Strings 1258

5

upword

Summary

Returns the input string with capitalized initial letters.

Usage

input|upword()

Returns

The input string with capitalized initial letters.

Description

This operator returns the input string with capitalized initial letters.

Examples

Example 3

{’good bye lenin!’|upword()}

The following output will be produced: ”Good Bye Lenin!”.

5.7.8 Template operators / Strings 1259

5

wash

Summary

Returns an HTML-safe version of the input string.

Usage

input|wash([type])

Parameters

Name Type Description Required
type string The type of text that should be washed. No.

Returns

An HTML-safe version of the input string.

Description

This operator translates the input string into an HTML friendly version. It will take care of
converting bogus characters to HTML-friendly replacements. The ”type” parameter can be used
to specify the washing type, it can be set to either ”xhtml” or ”email” (the default is ”xthml”).
E-mail washing can be controlled using the setting of the [WashSettings] configuration block of
”template.ini”. All strings that may break the HTML should always be washed using this operator.

Examples

Example 1

{’Bogus & stuff <’|wash()}
The following output will be produced: "Bogus & stuff <".

Example 2

{’hello@example.com’|wash(’email’)}

The following output will be produced:

helloSPAMFILTER@example.com

5.7.8 Template operators / Strings 1260

5

Example 3

{’hello@example.com’|wash(’email’)}

If a configuration override for ”template.ini” exists and contains...

[WashSettings]
EmailDotText=[dot]
EmailAtText=[at]

...the following output will be produced: ”hello[at]example[dot]com”.

5.7.8 Template operators / Strings 1261

5

wordtoimage

Summary

Returns the input string with embedded image tags.

Usage

input|wordtoimage()

Returns

The input string with embedded image tags.

Description

This operator looks for special character sequences in the input string. When a match is found,
it will be replaced by an image tag. For example, the sequence ”:-)” will be replaced by a small
image of a smiling face. The character sequences that should be replaced and the images that
should be used are defined in the ”wordtoimage.ini” configuration file.

Examples

Example 1

{’No problemo... :-)’|wordtoimage()}

This would return the input string where the ”:-)” sequence would be replaced by an image tag
referencing a small image of a smiling face.

5.7.8 Template operators / Strings 1262

5

wrap

Summary

Returns a wrapped version of the input string.

Usage

input|wrap([width [, break_sequence [, cut]]])

Parameters

Name Type Description Required
width integer The width at which the text should be

wrapped.
No.

break sequence string A custom break/newline sequence. No.
cut boolean TRUE (force wrap) or FALSE (do not force

wrap).
No.

Returns

A wrapped version of the input string.

Description

This operator returns a wrapped version of the input string. The string will be wrapped at either
the default width (80 characters) or at a width specified using the optional ”width” parameter.
It inserts newline characters (”\n”) or a character/sequence which is specified using the optional
”break sequence” parameter. The ”cut” parameter can be set to either TRUE or FALSE - it controls
whether the string should always be wrapped at the specified width or not (a word that is larger
than the desired width, it will be broken apart).

Examples

Example 1

{’Hello world’|wrap(5)}

The following output will be produced:

5.7.8 Template operators / Strings 1263

5

Hello
world

5.7.9 Template operators / URLs 1264

5

5.7.9 URLs

exturl (page 1265)
Not documented yet.

ezdesign (page 1266)
Returns the input string prepended with the current design directory.

ezimage (page 1267)
Returns the input string prepended with the current image directory.

ezroot (page 1269)
Same as ”ezurl” without ”index.php” and the siteaccess name in the returned address.

ezurl (page 1270)
Returns a working version of an eZ Publish URL (provided as input).

5.7.9 Template operators / URLs 1265

5

exturl

Summary

Not documented yet.

5.7.9 Template operators / URLs 1266

5

ezdesign

Summary

Returns the input string prepended with the current design directory.

Usage

input|ezdesign([quote])

Parameters

Name Type Description Required
quote string Quote style: ”no”, ”single” or ”double” (de-

fault).
No.

Returns

The input string prepended with the current image directory.

Description

This operator returns the input string prepended with the current design directory. If the operator
is unable to find the specified file within the current design, it will attempt to locate it in the
fallback designs or the standard design. The ”ezdesign” operator should always be used when
a design related file is included in a template. It will make sure that the path to the file is
always correct, regardless of the location of the eZ Publish directory, the access method, the
environment, and so on.

By default, this operator returns a double-quoted string. The optional ”quote” parameter can be
used to control the way the address is returned: ”no” (no quotes), ”single” (single quotes) or
”double” (double quotes, the default). Dropping quotes is useful when specifying CSS files in the
following way:

<style type="text/css">
@import url({’stylesheets/core.css’|ezdesign(’no’)});
@import url({’stylesheets/ezmain.css’|ezdesign(’no’)});
@import url({’stylesheets/ezsystems.css’|ezdesign(’no’)});

</style>

5.7.9 Template operators / URLs 1267

5

ezimage

Summary

Returns the input string prepended with the current image directory.

Usage

input|ezimage([quote [, slash_skip]])

Parameters

Name Type Description Required
quote string Quote style: ”no”, ”single” or ”double” (de-

fault).
No.

skip slash boolean Include (FALSE, default) or skip (TRUE) the
first slash.

No.

Returns

The input string prepended with the current image directory.

Description

This operator prepends the input string with the location of the image directory used by the
current design. If the operator is unable to find the specified file within the ”images” subdirectory
of the current design, it will attempt to locate it in the ”images” subdirectory of the fallback
designs or the standard design. The ”ezimage” operator should always be used when an image is
included in a template. It will make sure that the path to the image is always correct, regardless
of the location of the eZ Publish directory, the access method, the environment, and so on.

By default, this operator returns a double-quoted string. The optional ”quote” parameter can be
used to control the way the address is returned: ”no” (no quotes), ”single” (single quotes) or
”double” (double quotes, the default). The optional ”skip slash” parameter can be used to get rid
of the first slash within the string that is being returned (when set to false()).

Examples

Example 1

In this example, the design ”my company” is used by the siteaccess. Images should be included
in the following way:

5.7.9 Template operators / URLs 1268

5

The following output will be produced:

If eZ Publish is unable to find the image within the images directory of the current design direc-
tory, it will attempt to find it within the images subdirectory of the additional designs. At last, it
will fallback to the standard design. In this case, the output will be the following:

5.7.9 Template operators / URLs 1269

5

ezroot

Summary

Same as ”ezurl” without ”index.php” and the siteaccess name in the returned address.

Usage

input|ezurl([quote [, type]])

Parameters

Name Type Description Required
quote string Quote style: ”no”, ”single” or ”double” (de-

fault).
No.

type string URL type: ”full” or ”relative” (default). No.

Returns

A string containing a working version of the input address.

Description

This operator works almost in the same way as the ”ezurl” (page 1270) operator. The only
difference is that it does not include ”index.php” or the name of the siteaccess in the returned
address. In other words, it returns an address which points to the root of the eZ Publish directory.

5.7.9 Template operators / URLs 1270

5

ezurl

Summary

Returns a working version of an eZ Publish URL (provided as input).

Usage

input|ezurl([quote [, type]])

Parameters

Name Type Description Required
quote string Quote style: ”no”, ”single” or ”double” (de-

fault).
No.

type string URL type: ”full” or ”relative” (default). No.

Returns

A quoted string containing a valid / working version of the input URL.

Description

This operator takes an eZ Publish URL as input (either a system URL or a virtual URL); based on
the location of the eZ Publish folder, the access settings and the environment, it will produce a
valid address. All eZ Publish URLs that are specified in templates should always be piped through
this operator; it will make sure that the URLs work regardless where eZ Publish is installed, which
access method is used, and so on.

By default, this operator returns a relative URL as a double-quoted string. The optional ”quote”
parameter can be used to control the way the address is returned: ”no” (no quotes), ”single”
(single quotes) or ”double” (double quotes, the default). The optional ”type” parameter controls
whether relative or full URL is returned.

Examples

Example 1

Let’s say that we’re running a site called ”my company” (name of the siteaccess) and that we
wish to create a link to the full view of node number 1024. Instead of specifying the entire URL
(domain and all included) in the link tag, we pipe ”/content/view/full/1024” or the virtual URL
(for example ”/test”) through the ”ezurl” operator:

5.7.9 Template operators / URLs 1271

5

Test
Test

The operator will take care of translating the URLs into valid addresses depending on the setup
and the environment eZ Publish is running in. If eZ Publish is running in a virtual host environ-
ment (page 73) and uses the host access method, the following type of URLs will be produced:

”http://www.example.com/content/view/full/1024”
”http://www.example.com/test”

The ”index.php” part of the URL will be supressed by the virtual host configuration (page 76).
The name of the siteaccess will not appear in the URL because eZ Publish will use the domain/
host to figure out which siteaccess to use.

If eZ Publish is running in a non-virtual host environment and uses the uri access method, the
following URLs will be produced:

”http://www.example.com/index.php/my company/content/view/full/1024”
”http://www.example.com/index.php/my company/test”

Example 2

Test
Test

If eZ Publish is running in a virtual host environment and uses the host access method, the
following type of URLs will be produced:

”/content/view/full/1024”
”/test”

The ”index.php” part of the URL will be supressed by the virtual host configuration. The name of
the siteaccess will not appear in the URL because eZ Publish will use the domain/host to figure
out which siteaccess to use.

If eZ Publish is running in a non-virtual host environment and uses the uri access method, the
following URLs will be produced:

”/index.php/my company/content/view/full/1024”
”/index.php/my company/test”

5.7.10 Template operators / Variable and type handling 1272

5

5.7.10 Variable and type handling

count (page 1273)
Returns the count of the input parameter.

float (page 1274)
Converts the input parameter to a float.

get class (page 1275)
Returns the class name of an object.

get type (page 1277)
Returns the type of the provided variable.

int (page 1279)
Converts the input parameter to an integer.

is array (page 1280)
Returns TRUE if the provided variable is an array.

is boolean (page 1282)
Returns TRUE if the provided variable is a boolean.

is class (page 1284)
Returns TRUE if an object is an instance of a specific class.

is float (page 1286)
Returns TRUE if the provided variable is a float.

is integer (page 1288)
Returns TRUE if the provided variable is an integer.

is null (page 1290)
Returns TRUE if the provided variable is NULL.

is numeric (page 1292)
Returns TRUE if the provided variable is a number.

is object (page 1294)
Returns TRUE if the target variable is an object.

is set (page 1296)
Returns TRUE if the value of the provided variable is set.

is string (page 1298)
Returns TRUE if the provided variable is a string.

is unset (page 1300)
Returns TRUE if the provided variable is not set (has no value).

5.7.10 Template operators / Variable and type handling 1273

5

count

Summary

Returns the count of the input parameter.

Usage

input|count()

Returns

An integer revealing the count.

Description

This operator returns the count of the input parameter. The following table shows how the
operator works with different variable types.

Type Description
Array The number of elements is returned.
Object The number of object attributes is returned.
String The length of the string is returned.
Number The value itself is returned.
Boolean FALSE results in 0 and TRUE results in 1.
Other 0 is returned.

Examples

Example 1

{array(1, 2, 5)|count()}

The following output will be produced: ”3”.

5.7.10 Template operators / Variable and type handling 1274

5

float

Summary

Converts the input parameter to a float.

Usage

input|float()

Returns

A float representation of the input parameter.

Description

This operator attempts to convert the input parameter to a float. It returns the converted value
as a float. If the operator is unable to do the conversion, it will return a value of zero (0).

Examples

Example 1

{def $pi=’3.1415’}
Value: {$pi|float()}

Converts the string ”3.1415” and returns it as a float. The following output will be produced:
”Value: 3.1415”.

Example 2

{def $pi=’three point fourteen’}
Value: {$pi|float()}

The following output will be produced: ”Value: 0”.

5.7.10 Template operators / Variable and type handling 1275

5

get class

Summary

Returns the class name of an object.

Usage

input|get_class(target)

Parameters

Name Type Description Required
target any The target variable. Only

if the
input
param-
eter is
omitted.

Returns

A string containing the class name or FALSE.

Description

This operator gets the class of the input parameter or the target variable. It returns the PHP class
name as a string. If both the input parameter and the target variable are provided, it is the target
variable that will be evaluated. If the provided variable is not an object then the operator will
return FALSE.

Examples

Example 1

{def $my_variable="Test"}

{if get_class($my_variable)}
Class detected.

{else}
There is no class.

{/if}

The following output will be produced: ”There is no class.”.

5.7.10 Template operators / Variable and type handling 1276

5

Example 2

{get_class($node)}

If $node is an actual content node, the following output will be produced: ”ezcontentobjecttreen-
ode”.

5.7.10 Template operators / Variable and type handling 1277

5

get type

Summary

Returns the type of the provided variable.

Usage

input|get_type(target)

Parameters

Name Type Description Required
target any The target variable. Only

if the
input
param-
eter is
omitted.

Returns

A string containing the type of the provided variable.

Description

This operator can be used to check the type of a variable. It returns the type of the input pa-
rameter or the target variable as a string. If both the input parameter and the target variable are
provided, it is the target variable that will be evaluated.

• If the data is an object, the string ”object” and the name of the class will be returned.

• If the data is an array, the string ”array” and the number of elements will be returned.

• If the data is a string, the string ”string” and the length of the string will be returned.

Examples

Example 1

{def $my_variable=’ich bin’}
{$my_variable|get_type()}

The following output will be produced: ”string”.

5.7.10 Template operators / Variable and type handling 1278

5

Example 2

{def $my_variable=’ich bin’
$your_variable=array(’du’, ’bist’)}

{$my_variable|get_type($your_variable)}

The following output will be produced: ”array[2]”.

5.7.10 Template operators / Variable and type handling 1279

5

int

Summary

Converts the input parameter to an integer.

Usage

input|int()

Returns

An integer representation of the input parameter.

Description

This operator attempts to convert the input parameter to an integer. It will return the converted
value as an integer. If the operator is unable to do the conversion, it will return the value of zero
(0).

Examples

Example 1

{def $number=’57’}
Value: {$number|int()}

Converts the string ”57” and returns it as an integer. The following output will be produced:
”Value: 57”.

Example 2

{def $number=’fiftyseven’}
Value: {$number|int()}

The following output will be produced: ”Value: 0”.

5.7.10 Template operators / Variable and type handling 1280

5

is array

Summary

Returns TRUE if the provided variable is an array.

Usage

input|is_array(target)

Parameters

Name Type Description Required
target any The target variable. Only

if the
input
param-
eter is
omitted.

Returns

TRUE or FALSE.

Description

This operator checks if the input parameter or the target variable is an array. If it is, the operator
will return TRUE, otherwise FALSE will be returned. If both the input parameter and the target
variable are provided, it is the target variable that will be evaluated.

Examples

Example 1

{def $my_variable=array(1, 2, 3)}

{if $my_variable|is_array()}
It is an array.

{else}
It is not an array.

{/if}

The following output will be produced: ”It is an array.”.

5.7.10 Template operators / Variable and type handling 1281

5

Example 2

{def $my_variable=array(1, 2, 3)}

{if is_array($my_variable)}
It is an array.

{else}
It is not an array.

{/if}

The following output will be produced: ”It is an array.”.

Example 3

{def $a=array(1, 2, 3)
$b=’Mobile instrument.’}

{if $a|is_array($b)}
It is an array.

{else}
It is not an array.

{/if}

The following output will be produced: ”It is not an array.”.

5.7.10 Template operators / Variable and type handling 1282

5

is boolean

Summary

Returns TRUE if the provided variable is a boolean.

Usage

input|is_boolean(target)

Parameters

Name Type Description Required
target any Target variable. Only

if the
input
param-
eter is
omitted.

Returns

TRUE or FALSE.

Description

This operator checks if the input parameter or the target variable is a boolean. If it is, the operator
will return TRUE, otherwise FALSE will be returned. If both the input parameter and the target
variable are provided, it is the target variable that will be evaluated.

Examples

Example 1

{def $my_variable=true
{if $my_variable|is_boolean()}

It is a boolean.
{else}

It is not a boolean.
{/if}

The following output will be produced: ”It is a boolean.”.

5.7.10 Template operators / Variable and type handling 1283

5

Example 2

{def $my_variable=true
{if is_boolean($my_variable)}

It is a boolean.
{else}

It is not a boolean.
{/if}

The following output will be produced: ”It is a boolean.”.

Example 3

{def $my_variable=true
$your_variable=’BOFID’}

{if $my_variable|is_boolean($your_variable)}
It is a boolean.

{else}
It is not a boolean.

{/if}

The following output will be produced: ”It is not a boolean.”.

5.7.10 Template operators / Variable and type handling 1284

5

is class

Summary

Returns TRUE if an object is an instance of a specific class.

Usage

input|is_class(name [, object])

Parameters

Name Type Description Required
name string The class name that should be matched. Yes.
object object An object of any type (instead of the input

parameter).
Only
if the
input
param-
eter is
omitted.

Returns

TRUE or FALSE.

Description

This operator attempts to find out the class name of the object that is provided either as the input
parameter or the ”object” parameter. If the name of the class matches the name provided using
the ”name” parameter, the function will return TRUE; otherwise FALSE will be returned.

Examples

Example 1

{if $node|is_class(’ezcontentobjecttreenode’)}
Everything is okay.
{else}
Something is wrong.
{/if}

As long as the $node refers to an instance of the ”ezcontentobjecttreenode” class, the following
output will be produced: ”Everything is okay.”.

5.7.10 Template operators / Variable and type handling 1285

5

Example 2

{if is_class(’ezcontentobjecttreenode’, $node)}
Everything is okay.
{else}
Something is wrong.
{/if}

As long as the $node refers to an instance of the ”ezcontentobjecttreenode” class, the following
output will be produced: ”Everything is okay.”.

5.7.10 Template operators / Variable and type handling 1286

5

is float

Summary

Returns TRUE if the provided variable is a float.

Usage

input|is_float(target)

Parameters

Name Type Description Required
target any The target variable. Only

if the
input
param-
eter is
omitted.

Returns

true of false, see description for details.

Description

This operator checks if the input parameter or the target variable is a float. If it is, the operator
will return TRUE, otherwise FALSE will be returned. If both the input parameter and the target
variable are provided, it is the target variable that will be evaluated.

Examples

Example 1

{def $my_variable=3.1415}

{if $my_variable|is_float()}
It is a float.

{else}
It is not a float.

{/if}

The following output will be produced: ”It is a float.”.

5.7.10 Template operators / Variable and type handling 1287

5

Example 2

{def $my_variable=3.1415}

{if is_float($my_variable)}
It is a float.

{else}
It is not a float.

{/if}

The following output will be produced: ”It is a float.”.

Example 3

{def $a=3.1415
$b=’Mobile instrument.’}

{if $a|is_float($b)}
It is a float.

{else}
It is not a float.

{/if}

The following output will be produced: ”It is not a float.”.

5.7.10 Template operators / Variable and type handling 1288

5

is integer

Summary

Returns TRUE if the provided variable is an integer.

Usage

input|is_integer(target)

Parameters

Name Type Description Required
target any The target variable. Only

if the
input
param-
eter is
omitted.

Returns

TRUE or FALSE.

Description

This operator checks if the input parameter or the target variable is an integer. If it is, the operator
will return TRUE, otherwise FALSE will be returned. If both the input parameter and the target
variable are provided, it is the target variable that will be evaluated.

Examples

Example 1

{def $my_variable=3}

{if $my_variable|is_float()}
It is an integer.

{else}
It is not an integer.

{/if}

The following output will be produced: ”It is an integer.”.

5.7.10 Template operators / Variable and type handling 1289

5

Example 2

{def $my_variable=3}

{if is_float($my_variable)}
It is an integer.

{else}
It is not an integer.

{/if}

The following output will be produced: ”It is an integer.”.

Example 3

{def $a=3
$b=’Mobile instrument.’}

{if $a|is_float($b)}
It is an integer.

{else}
It is not an integer.

{/if}

The following output will be produced: ”It is not an integer.”.

5.7.10 Template operators / Variable and type handling 1290

5

is null

Summary

Returns TRUE if the provided variable is NULL.

Usage

input|is_null(target)

Parameters

Name Type Description Required
target any The target variable. Only

if the
input
param-
eter is
omitted.

Returns

TRUE or FALSE.

Description

This operator checks if the input parameter or the target variable is NULL. If it is, the operator
will return TRUE, otherwise FALSE will be returned. If both the input parameter and the target
variable are provided, it is the target variable that will be evaluated. Please note that an integer
with a value of zero is not the same as NULL.

Examples

Example 1

{def $my_variable=3}

{if $my_variable|is_null()}
It is NULL.

{else}
It is not NULL.

{/if}

The following output will be produced: ”It is not NULL.”.

5.7.10 Template operators / Variable and type handling 1291

5

Example 2

{def $my_variable=3}

{if is_null($my_variable)}
It is NULL.

{else}
It is not NULL.

{/if}

The following output will be produced: ”It is not NULL.”.

Example 3

{def $a=3
$b=’Mobile instrument.’}

{if $a|is_null($b)}
It is NULL.

{else}
It is not NULL.

{/if}

The following output will be produced: ”It is not NULL.”.

5.7.10 Template operators / Variable and type handling 1292

5

is numeric

Summary

Returns TRUE if the provided variable is a number.

Usage

input|is_numeric(target)

Parameters

Name Type Description Required
target any The target variable. Only

if the
input
param-
eter is
omitted.

Returns

TRUE or FALSE.

Description

This operator checks if the input parameter or the target variable is a number or a numeric string
(a string containing a number). If it is, the operator will return TRUE, otherwise FALSE will be
returned. If both the input parameter and the target variable are provided, it is the target variable
that will be evaluated.

Examples

Example 1

{def $my_variable=3}

{if $my_variable|is_numeric()}
It is a number.

{else}
It is not a number.

{/if}

The following output will be produced: ”It is a number.”.

5.7.10 Template operators / Variable and type handling 1293

5

Example 2

{def $my_variable=’256’}

{if is_numeric($my_variable)}
It is a number.

{else}
It is not a number.

{/if}

The following output will be produced: ”It is a number.”.

Example 3

{def $a=3
$b=’Mobile instrument.’}

{if $a|is_numeric($b)}
It is a number.

{else}
It is not a number.

{/if}

The following output will be produced: ”It is not a number.”.

5.7.10 Template operators / Variable and type handling 1294

5

is object

Summary

Returns TRUE if the target variable is an object.

Usage

input|is_object(target)

Parameters

Name Type Description Required
target any The target variable. Only

if the
input
param-
eter is
omitted.

Returns

TRUE or FALSE.

Description

This operator checks if the input parameter or the target variable is an object (as opposed to
simple types like integer, string, etc.). If it is, the operator will return TRUE, otherwise FALSE
will be returned. If both the input parameter and the target variable are provided, it is the target
variable that will be evaluated.

Examples

Example 1

{def $my_variable=3}

{if $my_variable|is_object()}
It is an object.

{else}
It is not an object.

{/if}

The following output will be produced: ”It is not an object.”.

5.7.10 Template operators / Variable and type handling 1295

5

Example 2

{def $my_variable=’256’}

{if is_object($my_variable)}
It is an object.

{else}
It is not an object.

{/if}

The following output will be produced: ”It is not object.”.

Example 3

{def $a=3
$b=’Mobile instrument.’}

{if $a|is_object($b)}
It is an object.

{else}
It is not an object.

{/if}

The following output will be produced: ”It is not an object.”.

5.7.10 Template operators / Variable and type handling 1296

5

is set

Summary

Returns TRUE if the value of the provided variable is set.

Usage

is_set(target)

Parameters

Name Type Description Required
target any The target variable. Yes.

Returns

TRUE or FALSE.

Description

This operator checks if the value of the target parameter is a non-false value (meaning that it is
set). If it is, the operator will return TRUE, otherwise FALSE will be returned. Please note that
this operator does not take an input parameter.

Examples

Example 1

{if is_set($whatever)}
It is set.

{else}
It is not set.

{/if}

The following output will be produced: ”It is not set.” - because $whatever is not declared and/
or defined.

Example 2

5.7.10 Template operators / Variable and type handling 1297

5

{def $whatever=’We need more rocket fuel!’}
{if is_set($whatever)}

It is set.
{else}

It is not set.
{/if}

The following output will be produced: ”It is set.”.

5.7.10 Template operators / Variable and type handling 1298

5

is string

Summary

Returns TRUE if the provided variable is a string.

Usage

input|is_string(target)

Parameters

Name Type Description Required
target any The target variable. Only

if the
input
param-
eter is
omitted.

Returns

TRUE or FALSE.

Description

This operator checks if the input parameter or the target variable is a string. If it is, the operator
will return TRUE, otherwise FALSE will be returned. If both the input parameter and the target
variable are provided, it is the target variable that will be evaluated.

Examples

Example 1

{def $my_variable=’Commodore’}

{if $my_variable|is_string()}
It is a string.

{else}
It is not a string.

{/if}

The following output will be produced: ”It is a string.”.

5.7.10 Template operators / Variable and type handling 1299

5

Example 2

{def $my_variable=’Amiga’}

{if is_string($my_variable)}
It is a string.

{else}
It is not a string.

{/if}

The following output will be produced: ”It is a string.”.

Example 3

{def $a=’C64’
$b=128}

{if $a|is_string($b)}
It is a string.

{else}
It is not a string.

{/if}

The following output will be produced: ”It is not a string.”.

5.7.10 Template operators / Variable and type handling 1300

5

is unset

Summary

Returns TRUE if the provided variable is not set (has no value).

Usage

is_unset(target)

Parameters

Name Type Description Required
test any The target variable. Yes.

Returns

TRUE or FALSE.

Description

This operator checks if the target variable is set (has a value). If it is, the operator returns FALSE,
otherwise TRUE will be returned.

Examples

Example 1

{def $my_variable=true()}
{if is_unset($my_variable)}

Yes.
{else}

No.
{/if}

The following output will be produced: ”No.”.

Example 2

{def $my_variable=false()}
{is_unset($my_variable)}

Yes.

5.7.10 Template operators / Variable and type handling 1301

5

{else}
No.

{/if}

The following output will be produced: ”Yes.”.

5.8 Template functions 1302

5

5.8 Template functions

The template functions are documented in the following sections:

• Debugging (page 1303)

• Miscellaneous (page 1308)

• Variables (page 1321)

• Visualization (page 1334)

5.8.1 Template functions / Debugging 1303

5

5.8.1 Debugging

debug-accumulator (page 1304)
Generates debug statistics for a block of template code.

debug-timing-point (page 1306)
Measures the time it takes to process a block of template code.

debug-trace (page 1307)
Generates an XDebug dump which can be traced/analyzed.

5.8.1 Template functions / Debugging 1304

5

debug-accumulator

Summary

Generates debug statistics for a block of template code.

Usage

{debug-accumulator [id=id] [name=name]}
...
{/debug-accumulator}

Parameters

Name Type Description Required
id string A unique identifier string for an accu-

mulator.
No.

name string A name that will be used in the debug
output.

No.

Description

This mechanism generates some debug statistics based on the code that is encapsulated by
”{debug-accumulator}” and ”{/debug-accumulator}”. The encapsulated code will be processed
normally. The number of calls, total time and average time will be shown in the debug output.

The ”id” and the ”name” parameters are optional. The ”id” parameter can be used to uniquely
identify one accumulator. This means that if the same accumulator is used at multiple locations,
the values will be accumulated and appended. The ”name” parameter can be used to assign a
name which will be used in the debug output.

Examples

Example 1

{debug-accumulator}

{def $nodes=fetch(’content’, ’tree’, hash(’parent_node_id’, 2))}

{foreach $nodes as $node}
{$node.name|wash()}

{/foreach}

{/debug-accumulator}

5.8.1 Template functions / Debugging 1305

5

This example demonstrates how the ”debug-accumulator” mechanism can be used to generate
some debug statistics based on the encapsulated template code.

5.8.1 Template functions / Debugging 1306

5

debug-timing-point

Summary

Measures the time it takes to process a block of template code.

Usage

{debug-timing-point [id=id]}
...
{/debug-timing-point}

Parameters

Name Type Description Required
id string An identification string for the timing

point.
No.

Description

This mechanism starts a timer, executes the template code that is encapsulated by ”{debug-
timing-point...}” and ”{/debug-timing-point}”, finally it stops the timer. It can be used to figure
out how much time it takes to process a block of template code and/or to isolate debug messages
that are generated between the timing points. The measurements will show up in the debug
message. The optional ”id” parameter can be used to assign an identification string to the block.

Examples

Example 1

{debug-timing-point id=’test’}

{def $nodes=fetch(’content’, ’tree’, hash(’parent_node_id’, 2))}

{foreach($nodes as $node)}
{$node.name|wash()}

{/foreach}

{/debug-timing-point}

This example demonstrates how the ”debug-timing-point” mechanism can be used to measure
the amount of time it takes to fetch and print the names of all nodes that are below node number
2.

5.8.1 Template functions / Debugging 1307

5

debug-trace

Summary

Generates an XDebug dump which can be traced/analyzed.

Usage

{debug-trace [id=id]}
...
{/debug}

Parameters

Name Type Description Required
id string The name of the debug file. No.

Description

This mechanism makes it possible to trace a block of code using ”XDebug”. The result will be a
trace file made by XDebug which can be analyzed. If XDebug is not installed and enabled, this
mechanism will not do anything. The ”id” parameter can be used to name the trace file. The file
extension will be ”.xt”. The default ID/name is ”template-debug”. Please note that the trace file
will be reset every time a debug-trace is encountered; it is a good idea to have one unique ID per
entry.

Examples

Example 1

{debug-trace id=’fetch-trace’}

{def $nodes=fetch(’content’, ’tree’, hash(’parent_node_id’, 2))}

{foreach($nodes as $node)}
{$node.name|wash()}

{/foreach}

{/debug-trace}

This will generate an XDebug trace file called ”fetch-trace.xt”.

5.8.2 Template functions / Miscellaneous 1308

5

5.8.2 Miscellaneous

cache-block (page 1309)
Caches the contents of a template block.

fetch alias (page 1313)
Executes a fetch based on configuration settings.

include (page 1316)
Includes a file.

ldelim (page 1317)
Outputs a left curly bracket, ”{”.

literal (page 1318)
Instructs the parser to ignore a block of template code.

rdelim (page 1319)
Outputs a right curly bracket, ”}”.

run-once (page 1320)
Assures that a block of template code is run only once within a page view.

5.8.2 Template functions / Miscellaneous 1309

5

cache-block

Summary

Caches the contents of a template block.

Usage

{cache-block [keys=keys]
[expiry=expiry]
[ignore_content_expiry]
[subtree_expiry=subtree_expiry]}

...

{/cache-block}

Parameters

Name Type Description Required
keys string or ar-

ray
Cache key(s) - either as a string or an
array of strings.

No.

expiry integer The number of seconds that the cache
should be allowed to live.

No.

ignore content expiry - Disables cache expiry when new con-
tent is published.

No.

subtree expiry string A subtree that expires the cache block. No.

Description

This solution makes it possible to reduce the processing time of the main template (”pagelay-
out.tpl”), which often contains a lot of dynamic elements. It can be used to instruct the system
to store and reuse cached blocks of template code based on different conditions.

A typical example of where the ”cache-block” mechanism should be used is the main menu of
a site. The menu is often dynamically generated by fetching and displaying information about
some nodes. It is usually the same for almost every page, therefore it should not be generated
from scratch every time eZ Publish is instructed to render a page. This is where the ”cache-block”
solution comes in. In this particular scenario, it can be used to cache the contents of the main
menu and thus reduce the processing time for each page load.

5.8.2 Template functions / Miscellaneous 1310

5

Cache keys

The ”keys” parameter can be used to define the uniqueness of a cache block. It must be either a
string or an array of strings. By default, eZ Publish uses the name of the template and the position
of the cache block as keys. This means that if the cache block is common for all cases that use
the given template (normally ”pagelayout.tpl”), there is no need to define any keys. However,
the ”keys” parameter is quite handy when it comes to relating a cache block to something specific
(for example URLs, users, etc.). Please refer to the examples below for a demonstration of how
this parameter can be used.

Time based expiration

The ”expiry” parameter makes it possible to manually specify how long a cache block should live
(number of seconds). The default expiration time is two hours (this is hardcoded in the system
and can not be configured). If an object is published, all blocks will automatically be expired. A
value of zero will produce a cache block that will never expire.

Content expiration

By default, all cache blocks will be expired whenever an object is published. If the ”ignore
content expiry” parameter is used, the cache block will not be expired when an object is pub-
lished. However, it will still expire after two hours unless an alternative time is specified using
the ”expiry” parameter.

Subtree expiration

The ”subtree expiry” parameter can be used to bind the expiration of a cache block to a certain
part of the content node tree. When this is done, the block will expire if an object is published
below the given subtree instead of the entire tree. In addition, it will also expire after two hours
unless an alternative time is specified using the ”expiry” parameter.

Tips and tricks

Since cache blocks themselves also produce some overhead, too many blocks may lead to longer
response times than expected. Because of this, only a few cache blocks should be used; and their
keys should be as unique as possible. It is often very efficient to have two large cache blocks.
One which caches all header information (title, path, etc.) and one which will take care of the
bottom/footer of the page. This solution combined with a nested cache block used for the main
menu (or several menus, etc.) often leads to good results. Please note that although the cache
block mechanism was designed to minimize the processing of the main template, it may also be
used in view templates. For example, it is possible to cache a part of a view - this is typically
useful when the viewcache is frequently deleted. Another scenario is when the view cache is
turned off and there is a need to create a cache on a per-user basis.

5.8.2 Template functions / Miscellaneous 1311

5

Examples

Example 1

...
{include uri=’design:page_toppath.tpl’}

{cache-block}
{include uri=’design:menu.tpl’}

{/cache-block}

{$module_result.content}

{include uri=’design:page_bottom.tpl’}
...

This example demonstrates how the cache block solution can be used to cache the contents of a
menu (which will be the same for all pages) in the pagelayout.

Example 2

{cache-block expiry=130}
...
{/cache-block}

This example demonstrates how to create a cache block that will expire after 130 seconds.

Example 3

{cache-block keys=$uri_string}
...
{/cache-block}

This example demonstrates how to create a cache block that will be unique for every URL.

Example 4

{cache-block keys=array($uri_string, $current_user.contentobject_id)}
...
{/cache-block}

This example demonstrates how to create a cache block that is unique for each URL and each
user.

5.8.2 Template functions / Miscellaneous 1312

5

Example 5

{cache-block ignore_content_expiry}
...
{/cache-block}

This example demonstrates how to create a cache block that will not expire when new content is
published. However, it will expire every second hour unless an alternative ”time to live” value is
specified using the ”expiry” parameter.

Example 6

{cache-block subtree_expiry=’products/’}
...
{/cache-block}

This example demonstrates how to create a cache block that will expire only if something is
modified within the ”products/” subtree, for example if a product is modified or a new product
is published.

5.8.2 Template functions / Miscellaneous 1313

5

fetch alias

Summary

Executes a fetch based on configuration settings.

Usage

fetch_alias(alias_name, hash([parameter1, value1,]
[parameter2, value2]))

Parameters

Name Type Description Required
alias name string The name of the fetch alias that should

be used.
Yes.

parameter1 string The name of parameter 1. No.
value1 string The value of parameter 1. No.
parameter2 string The name of parameter2. No.
value2 string The value of parameter 2. No.

Description

This function can be thought of as a configuration-file based version of the ”fetch” (page 1112)
operator. It makes it possible to move data fetching blocks from template code to a configuration
file and thus gather all fetches at one place. The advantage of such a scenario is that it allows
quick modifications without the need of having to locate and modify different templates. The
fetch aliases must be defined in a configuration override for ”fetchalias.ini”. Each fetch has to be
defined within its own block with a unique name. The following code shows the basic syntax/
structure of a fetch block.

[fetch_alias_name]
Module=module_name
FunctionName=function_name
Parameter[parameter1]=fetch_alias_name1
Parameter[parameter2]=fetch_alias_name2
...
Constant[parameter3]=<any value>
Constant[parameter4]=<any value>
...

Directive Description
Module The name of the target module (for example

”content”).
FunctionName The name of the target fetch function (for ex-

5.8.2 Template functions / Miscellaneous 1314

5

ample ”list”).
Parameter The ”Parameters” array may be used to specify

variables that will be set in the template(s).
The ”parameter name” maps to the parame-
ter name used in normal fetch functions. The
”fetch alias name” will be the parameter name
used in the template(s).

Constant Parameters that are defined as constants
within the regular fetch function(s).

Examples

Example 1

Configuration block:

[object]
Module=content
FunctionName=object
Parameter[object_id]=id

Template code:

{def $object=fetch_alias(’object’, hash(’id’, 1))}

This example demonstrates how to fetch an object.

Example 2

Configuration block:

[comments]
Module=content
FunctionName=list
Constant[sort_by]=published;0
Parameter[parent_node_id]=parent_node_id
Constant[class_filter_type]=include
Constant[class_filter_array]=comment

Template code:

{def $comments=fetch_alias(’comments’, hash(’parent_node_id’, 42))}

This example demonstrates how to fetch comments.

5.8.2 Template functions / Miscellaneous 1315

5

Example 3

Configuration block:

[news_list]
Module=content
FunctionName=tree
Constant[sort_by]=published;0
Constant[class_id]=2
Constant[parent_node_id]=2
Constant[class_filter_type]=include
Constant[limit]=10
Constant[class_filter_array]=2

Template code:

{foreach fetch_alias(’news_list’) as $article}
{node_view_gui node=$article}

{/foreach}

This example demonstrates how to fetch and display the 10 latest news articles using full view.

5.8.2 Template functions / Miscellaneous 1316

5

include

Summary

Includes a file.

Usage

{include uri=’path_to_file’ [name=’namespace’] [parameter(s)=’value(s)’]}

Parameters

Name Type Description Required
uri string Path + name of the file that should be

included.
Yes.

name string Alternative namespace for the included
template.

No.

other parameters any Parameters that will be passed to the
included template.

No.

Description

This function includes a file in the template from where the function was called. The ”uri” param-
eter must be used to specify the target file. In most cases, the value of this parameter starts with
a ”design:”, which tells the system to look for the desired template within the current (and fall-
back) design resources. The ”name” parameter can be used to specify an alternative namespace
for the included template, this is useful for avoiding variable name clashes when including other
templates. All other parameters will be passed to the included template as template variables.
This function makes it possible to share template code among different parts of the solution.

Examples

Example 1

{include uri=’design:example/menu.tpl’ something=’Hello world’}

This example demonstrates how to include a template called ”menu.tpl” (which is located within
the ”example” subdirectory of the ”templates” directory. If eZ Publish is unable to find the tem-
plate in the current design, it will automatically attempt to locate it in one of the fallback designs
or the standard design. The value of the ”something” parameter will be available through a
variable called $something within the template that is included.

5.8.2 Template functions / Miscellaneous 1317

5

ldelim

Summary

Outputs a left curly bracket, ”{”.

Usage

{ldelim}

Description

This function displays a left curly bracket, ”{”. It can for example be used to add JavaScript
functions in a template.

Examples

Example 1

<script language="JavaScript" type="text/javascript">
<!--
function foo()
{ldelim}

alert (’Call me!’);
{rdelim}
//-->
</script>

This example demonstrates how to use the ”ldelim” and ”rdelim” template functions to generate
curly brackets.

5.8.2 Template functions / Miscellaneous 1318

5

literal

Summary

Instructs the parser to ignore a block of template code.

Usage

{literal}
...
{/literal}

Description

This function can be used to encapsulate foreign code (for example JavaScript) that makes use
of characters that may confuse the template parser. Everything that is inside a literal block will
be completely ignored by the parser.

Examples

Example 1

{literal}
<script language="JavaScript" type="text/javascript">
<!--
function foo()
{

alert ("Call me");
}
//-->
</script>
{/literal}

This example demonstrates how to include a JavaScript snippet in a template using the ”{literal}”
and ”{/literal}” notation.

5.8.2 Template functions / Miscellaneous 1319

5

rdelim

Summary

Outputs a right curly bracket, ”}”.

Usage

{rdelim}

Description

This function displays a right curly bracket, ”}”. It can for example be used to add JavaScript
functions in a template.

Examples

Example 1

<script language="JavaScript" type="text/javascript">
<!--
function foo()
{ldelim}

alert (’Call me!’);
{rdelim}
//-->
</script>

This example demonstrates how to use the ”ldelim” and ”rdelim” template functions to generate
curly brackets.

5.8.2 Template functions / Miscellaneous 1320

5

run-once

Summary

Assures that a block of template code is run only once within a page view.

Usage

{run-once}
...

{/run-once}

Description

This function makes sure that a block of template code is processed only once within a page
view. It is typically useful when it comes to displaying elements that should appear once or to
do timeconsuming calculations that only has to be processed once (and the result is included in
multiple templates).

Examples

Example 1

{def $elements=array(’A’, ’B’, ’C’)}

{foreach $elements as $element}

{run-once}
Hello world

{/run-once}

{$element}

{/foreach}

The following output will be produced:

Hello World
A
B
C

5.8.3 Template functions / Variables 1321

5

5.8.3 Variables

append-block (page 1322)
Redirects the output from multiple blocks of template code to an array.

def (page 1324)
Declares (and defines) a variable. Warns if the variable already exists.

default (page 1326)
Deprecated.

let (page 1327)
Deprecated.

sequence (page 1328)
Creates a sequence that can be iterated.

set (page 1329)
Sets the value of a variable.

set-block (page 1331)
Redirects the output from a block of template code to a string.

undef (page 1333)
Destroys previously defined variable(s).

5.8.3 Template functions / Variables 1322

5

append-block

Summary

Redirects the output from multiple blocks of template code to an array.

Usage

{append-block variable=$variable [name=name] [scope=scope]}
...
{/append-block}

Parameters

Name Type Description Required
name string Name of the namespace. No.
scope string The scope (”global”, ”root” or ”rela-

tive”).
No.

variable string The name of variable that will be re-
turned.

Yes.

Description

This mechanism will silently process all template code which is encapsulated by ”{append-block
...}” and ”{/append-block}”. It will not produce any actual output. Instead, the generated output
will be assigned to a variable specified by the ”variable” parameter (as an array). If the variable
does not exist, it will be automatically created. If the same target variable is used in several
blocks, the function will simply add new elements to the array and thus the previous contents
will be preserved.

Examples

Example 1

{append-block variable=$alien}
It seems to have a life,

{/append-block}

...

{append-block variable=$alien}
organic life...

{/append-block}

5.8.3 Template functions / Variables 1323

5

...

{foreach $alien as $element}
{$element}

{/foreach}

This example demonstrates how to create an array called $alien using the ”append-block” mech-
anism. The output from the code that is encapsulated by ”{append-block ...}” and ”{/append-
block}” will be assigned as elements to the target variable. When the $alien array is inspected,
the following output will be produced:

It seems to have a life,
organic life...

5.8.3 Template functions / Variables 1324

5

def

Summary

Declares (and defines) a variable. Warns if the variable already exists.

Usage

{def $var1=value1 [$var2=value2 [...]]}

Parameters

Name Type Description Required
$var1 string Name of variable number one (with a

dollar sign in front of it).
Yes.

value1 any The value that should be assigned to
variable one.

Yes.

$var2 string Name of variable number two (with a
dollar sign in front of it).

No.

value2 any The value that should be assigned to
variable two.

No.

Description

This function allows the declaration and definition of a single variable or a group of variables.
The ”undef” (page 1333) function can be used to flush/destroy variables that were created using
the ”def” function. Please note that this function does not support the ”name” and the ”scope”
parameters (like the old {let} did).

Replacement for ”default”

The following technique can be used as a replacement for the old ”default” function:

{if is_set($a)|not}
{def $a=5}

Examples

Example 1

{def $oranges=13}

This example demonstrates how the ”def” function can be used to declare a variable called ”or-
anges”. The variable will be declared as an integer with a value of 13.

5.8.3 Template functions / Variables 1325

5

Example 2

{def $oranges=13 $apples=’There are no apples.’}

or

{def $oranges=13
$apples=’There are no apples.’}

These code snippets demonstrates how the ”def” function can be used to declare multiple vari-
ables. A variable called ”oranges” will be declared as an integer with a value of 13. A variable
called ”apples” will be declared as a string containing the following characters: ”There are no
apples.”.

5.8.3 Template functions / Variables 1326

5

default

Summary

Deprecated.

Description

This function is deprecated and should not be used. If you need more information, please refer to
the documentation of the old template syntax (it is still present in some of the default templates
included in the distributions).

http://ez.no/products/ez_publish/documentation/development/libraries/ez_template/functions/function_list

5.8.3 Template functions / Variables 1327

5

let

Summary

Deprecated.

Description

This function is deprecated and should not be used. If you need more information, please refer to
the documentation of the old template syntax (it is still present in some of the default templates
included in the distributions).

http://ez.no/products/ez_publish/documentation/development/libraries/ez_template/functions/function_list

5.8.3 Template functions / Variables 1328

5

sequence

Summary

Creates a sequence that can be iterated.

Usage

{sequence name=name loop=loop}

Parameters

Name Type Description Required
name string The name of the target namespace. Yes.
loop array The iteration elements (as an array). Yes.

Description

This function allows the creation of a sequence which can be iterated. If the number of iterations
exceed the length of the sequence, the contents of the sequence will be wrapped and thus re-
peated. It is typically useful when it comes to the creation of lists / tables with alternating colors.
Both the name and the elements (which will be iterated) must be defined.

5.8.3 Template functions / Variables 1329

5

set

Summary

Sets the value of a variable.

Usage

{set $var1=value1 [var2=value2 [...]] [name=name] [scope=scope]}

Parameters

Name Type Description Required
var1 string Name of variable number one (with a

dollar sign in front of it).
Yes.

value1 any The value that should be assigned to
variable 1.

Yes.

var2 string Name of variable number two (with a
dollar sign in front of it).

No.

value2 any The value that should be assigned to
variable 2.

No.

name string The name of the target namespace. No.
scope string The scope (”global”, ”root” or ”rela-

tive”).
No.

Description

This function makes it possible to assign new values to variables that previously have been de-
clared using either the ”def” (page 1324) function. The ”name” and ”scope” parameters are
optional and can be used to set the desired namespace and scope.

Examples

Example 1

{def $apples=4}
Before: {$apples}

...
{set $apples=8}
After: {$apples}

The following output will be produced:

5.8.3 Template functions / Variables 1330

5

Before: 4
After: 8

Example 1

{def name=ns1 $var1=’ns1 org value’}
{def name=ns2 $var1=’ns2 org value’}

Original values:

$ns1:var1 : {$ns1:var1}

$ns1:ns2:var1 : {$ns1:ns2:var1}

...
{set name=ns1 scope=root var1=’new value’}
{set var1=’new value’}
...
New values:

$ns1:var1 : {$ns1:var1}

$ns1:ns2:var1 : {$ns1:ns2:var1}

The following output will be produced:

Original values:
$ns1:var1 : ns1 org value
$ns1:ns2:var1 : ns2 org value

New values:
$ns1:var1 : new value
$ns1:ns2:var1 : new value

5.8.3 Template functions / Variables 1331

5

set-block

Summary

Redirects the output from a block of template code to a string.

Usage

{set-block variable=$variable [name=name] [scope=scope]}
...
{/set-block}

Parameters

Name Type Description Required
variable string The name of the variable (with dollar

sign).
Yes.

name string The name of the target namespace. No.
scope string The scope (”global”, ”root” or ”rela-

tive”).
No.

Description

This mechanism will silently process all template code which is encapsulated by ”{set-block ...}”
and ”{/set-block}”. It will not produce any actual output. Instead, the generated output will be
assigned to a variable specified by the ”variable” parameter (as a string). If the variable does not
exist, it will be automatically created. If the same target variable is used in several blocks, its
contents will be overwritten every time a new block is processed.

Examples

Example 1

{set-block variable=$example}
{def $test=array(’x’, ’y’, ’z’)}
Hello world - {$test[1]}

{/set-block}
...
{$example}

The code which is encapsulated by ”set-block” will not produce any output. Instead, the output
will be put into a string called $example. When this variable is accessed directly, the following
output will be produced: ”Hello world - y”.

5.8.3 Template functions / Variables 1332

5

Example 2

{set-block scope=root variable=cache_ttl}0{/set-block}

This will put zero into the ”cache ttl” global variable and thus disable view caching for this page.

5.8.3 Template functions / Variables 1333

5

undef

Summary

Destroys previously defined variable(s).

Usage

{undef [$var1 [...]]}

Parameters

Name Type Description Required
var1 string The name of the variable that should

be destroyed ($-notation).
No.

Description

This function destroys variables that have previously been created using the ”def” (page 1324)
function. The names of the variables that should be destroyed can be provided as parameters.
If no parameters are specified, the function will automatically get rid of all variables that were
previously defined within the current/same namespace.

Examples

Example 1

{def $a=1 $b=2 $c=3}
...
{undef}

This example demonstrates how the ”undef” function can be used to clean up / get rid of a
previously the variables that were previously created using the ”def” function .

Example 2

{def $a=1 $b=2 $c=3}
...
{undef $b}

This example demonstrates how the ”undef” function can be used to clean up / get rid of a
previously created variable. The variables $a and $c will not be destroyed.

5.8.4 Template functions / Visualization 1334

5

5.8.4 Visualization

attribute edit gui (page 1336)
Outputs the edit template for a content object attribute.

attribute pdf gui (page 1337)
Outputs the PDF template for a content object attribute (DEPRECATED).

attribute result gui (page 1338)
Outputs the result template for a content object attribute.

attribute view gui (page 1339)
Outputs the view template for a content object attribute.

class attribute edit gui (page 1340)
Outputs the edit template for a content class attribute.

class attribute view gui (page 1341)
Outputs the view template for a content class attribute.

collaboration icon (page 1342)
Outputs the icon for a collaboration item.

collaboration participation view (page 1343)
Outputs information about a collaboration participant.

collaboration simple message view (page 1344)
Outputs the view template for a collaboration message.

collaboration view gui (page 1345)
Outputs the template for a collaboration item.

content pdf gui (page 1346)
Outputs the PDF template for a content object (DEPRECATED).

content version view gui (page 1347)
Outputs a view template for a content object version.

content view gui (page 1348)
Outputs a view template for a content object.

event edit gui (page 1349)
Outputs the edit template for a workflow event.

node view gui (page 1350)
Outputs the view template for a node.

related view gui (page 1351)
Not documented yet.

shop account view gui (page 1352)
Outputs the view template for a specified order.

5.8.4 Template functions / Visualization 1335

5

tool bar (page 1353)
Outputs the template for a toolbar.

5.8.4 Template functions / Visualization 1336

5

attribute edit gui

Summary

Outputs the edit template for a content object attribute.

Usage

{attribute_edit_gui attribute=attribute [parameter=value [...]]}

Parameters

Name Type Description Required
attribute object The target content object attribute. Yes.
parameter any Parameter(s) that will be passed to the

included template.
No.

Description

This function shows the edit interface for a content object attribute. The attribute must be speci-
fied (as a ”ezcontentobjectattribute” (page 981) object) using the ”attribute” parameter. All other
parameters (of any type) will be passed on and thus become available as template variables in
the included template.

5.8.4 Template functions / Visualization 1337

5

attribute pdf gui

Summary

Outputs the PDF template for a content object attribute (DEPRECATED).

Usage

{attribute_pdf_gui attribute=attribute [parameter=value [...]]}

Parameters

Name Type Description Required
attribute object The target content object attribute. Yes.
parameter any Parameter(s) that will be passed to the

included template.
No.

Description

This function shows the PDF view interface for a content object attribute. The target attribute
must be specified (as a ”ezcontentobjectattribute” (page 981) object) using the ”attribute” param-
eter. All other parameters (of any type) will be passed on and thus become available as template
variables in the included template

5.8.4 Template functions / Visualization 1338

5

attribute result gui

Summary

Outputs the result template for a content object attribute.

Usage

{attribute_result_gui attribute=attribute [parameter=value [...]]}

Parameters

Name Type Description Required
attribute object The target content object attribute. Yes.
parameter any Parameter(s) that will be passed to the

included template.
No.

Description

This function shows the information collection result interface for a content object attribute.
The attribute must be specified (as a ”ezcontentobjectattribute” (page 981) object) using the
”attribute” parameter. All other parameters (of any type) will be passed on and thus become
available as template variables in the included template.

5.8.4 Template functions / Visualization 1339

5

attribute view gui

Summary

Outputs the view template for a content object attribute.

Usage

{attribute_view_gui attribute=attribute [parameter=value [...]]}

Parameters

Name Type Description Required
attribute object The target content object attribute. Yes.
parameters any Parameter(s) that will be passed to the

included template.
No.

Description

This function shows the view interface for a content object attribute. The attribute must be
specified (as a ”ezcontentobjectattribute” (page 981) object) using the ”attribute” parameter. All
other parameters (of any type) will be passed on and thus become available as template variables
in the included template.

5.8.4 Template functions / Visualization 1340

5

class attribute edit gui

Summary

Outputs the edit template for a content class attribute.

Usage

{class_attribute_edit_gui class_attribute=attribute [parameter=value [...]]}

Parameters

Name Type Description Required
class attribute object The target content class attribute. Yes.
other parameters any Parameter(s) that will be passed to the

included template.
No.

Description

This function shows the edit interface for a content class attribute. The attribute must be specified
(as a ”ezcontentclassattribute” (page 965) object) using the ”attribute” parameter. All other
parameters (of any type) will be passed on and thus become available as template variables in
the included template.

5.8.4 Template functions / Visualization 1341

5

class attribute view gui

Summary

Outputs the view template for a content class attribute.

Usage

{class_attribute_view_gui class_attribute=attribute [parameter=value [...]]}

Parameters

Name Type Description Required
class attribute object The target content class attribute. Yes.
parameter any Parameter(s) that will be passed to the

included template.
No.

Description

This function shows the view interface for a content class attribute. The attribute must be speci-
fied (as a ”ezcontentclassattribute” (page 965) object) using the ”attribute” parameter. All other
parameters (of any type) will be passed on and thus become available as template variables in
the included template.

5.8.4 Template functions / Visualization 1342

5

collaboration icon

Summary

Outputs the icon for a collaboration item.

Usage

{collaboration_icon collaboration_item=item [view=view [parameter=value
[...]]]}

Parameters

Name Type Description Required
collaboration item object Collaboration item object. Yes.
view string The view mode to use. No.
parameter any Parameters passed to the GUI tem-

plate.
No.

Description

This function outputs the icon for a collaboration item. The ”collaboration item” parameter must
be used to specify the target collaboration item. The ”view” parameter is optional, it can be used
to specify a view mode (for example ”small”). All other parameters (of any type) will be passed
on and thus become available as template variables in the included template.

5.8.4 Template functions / Visualization 1343

5

collaboration participation view

Summary

Outputs information about a collaboration participant.

Usage

{collaboration_participation_view collaboration_participant=link [view=view [
parameter=value [...]]]}

Parameters

Name Type Description Required
collaboration
participant

object The target collaboration participant
object.

Yes.

view string The view mode to use. No.
parameters mixed Parameters passed to the GUI tem-

plate.
No.

Description

This function shows a collaboration participant. The ”collaboration participant” parameter must
be used to specify the target collaboration participant (as an ”ezcollaborationItemparticipantlink”
object). The optional ”view” parameter can be used to specify the view mode (for example ”text
linked”). All other parameters (of any type) will be passed on and thus become available as
template variables in the included template.

5.8.4 Template functions / Visualization 1344

5

collaboration simple message view

Summary

Outputs the view template for a collaboration message.

Usage

{collaboration_simple_message_view
sequence=sequence
is_read=status
item_link=message_link
collaboration_message=simple_message

[view=mode]
[parameter=value [...]]}

Parameters

Name Type Description Required
collaboration message object An eZCollaborationSimpleMessage ob-

ject.
Yes.

sequence string Display sequence value Yes.
is read boolean TRUE if the message has been read,

FALSE if not.
Yes.

item link object eZCollaborationItemMessageLink ob-
ject.

Yes.

view string The view mode that should be used. No.
other parameters mixed Parameter(s) that will be passed to the

included template.
No.

Description

This function shows the interface for a collaboration message.

5.8.4 Template functions / Visualization 1345

5

collaboration view gui

Summary

Outputs the template for a collaboration item.

Usage

{collaboration_view_gui item_class=class
collaboration_item=item

[view=mode]
[parameter=value [...]]}

Parameters

Name Type Description Required
item class string The item class. Yes.
collaboration item object The collaboration item. Yes.
view string The view mode that should be used. No.
parameter any Parameter(s) that will be passed to the

included template.
No.

Description

This function shows the view interface for a collaboration item. The class and the target object
must be specified using the ”item class” and the ”collaboration item” parameters. The ”view”
parameter is optional, it can be used to specify a desired view. All other parameters (of any type)
will be passed on and thus become available as template variables in the included template.

5.8.4 Template functions / Visualization 1346

5

content pdf gui

Summary

Outputs the PDF template for a content object (DEPRECATED).

Usage

{content_pdf_gui content_object=object [view=reserved] [parameter=value [
...]]}

Parameters

Name Type Description Required
content object object The target content object. Yes.
view string Reserved for future use. No.
parameter any Parameter(s) that will be passed to the

included template.
No.

Description

This function shows the PDF interface for a content object. The target object must be specified
(as an ”ezcontentobject” (page 971) object) using the ”content object” parameter. The ”view”
parameter is reserved for future use. All other parameters (of any type) will be passed on and
thus become available as template variables in the included template.

5.8.4 Template functions / Visualization 1347

5

content version view gui

Summary

Outputs a view template for a content object version.

Usage

{content_version_view_gui content_version=version [view=mode] [
parameter=value [...]]}

Parameters

Name Type Description Required
content version object The target version. Yes.
view string The view mode that should be used. No.
parameter any Parameter(s) that will be passed to the

included template.
No.

Description

This function shows the view interface for a content object version. The target version must be
specified (as a ”ezcontentobjectversion” (page 995) object) using the ”content version” parame-
ter. The ”view” parameter is optional, it can be used to specify a desired view (for example ”full”,
”plain”, ”text”, etc.). The function will attempt to use the following template from within either
the current design or one of the fallback designs: ”templates/content/version/view/[name of
view mode].tpl”. All other parameters (of any type) will be passed on and thus become available
as template variables in the included template.

5.8.4 Template functions / Visualization 1348

5

content view gui

Summary

Outputs a view template for a content object.

Usage

{content_view_gui content_object=object [view=view] [parameter=value [...]
]}

Parameters

Name Type Description Required
content object object The target content object. Yes.
view string The view mode that should be used. No.
other parameters any Parameter(s) that will be passed to the

included template.
No.

Description

This function shows the view interface for a content object. The target object must be specified
(as an ”ezcontentobject” (page 971) object) using the ”content object” parameter. The ”view”
parameter is optional, it can be used to specify a desired view (for example ”text”, ”text linked”,
”embed”, etc.). The function will attempt to use the following template from either the current
design or one of the fallback designs: ”templates/content/view/[name of view mode].tpl”. All
other parameters (of any type) will be passed on and thus become available as template variables
in the included template.

5.8.4 Template functions / Visualization 1349

5

event edit gui

Summary

Outputs the edit template for a workflow event.

Usage

{event_edit_gui event=event [parameter=value [...]] }

Parameters

Name Type Description Required
event object The target workflow event object. Yes.
parameter any Parameter(s) that will be passed to the

included template.
No.

Description

This function shows the edit interface for a content object attribute. The target workflow event
must be specified using the ”event” parameter. All other parameters (of any type) will be passed
on and thus become available as template variables in the included template.

5.8.4 Template functions / Visualization 1350

5

node view gui

Summary

Outputs the view template for a node.

Usage

{node_view_gui content_node=node [view=view_mode [parameter=value [...]]
]}

Parameters

Name Type Description Required
content node object The target node (as an ezcontentob-

jecttreenode object).
Yes.

view string The view mode that should be used. Yes.
parameter any Parameter(s) that will be passed to the

included template.
No.

Description

This function makes it possible to display a node using its view (or override) template. The target
node must be specified as an ”ezcontentobjecttreenode” (page 990) object using the ”content
node” parameter. The ”view” parameter specifies which view mode that should be used. All other
parameters (of any type) will be passed on and thus become available as template variables in
the view template.

Examples

Example 1

{def $my_node=fetch(’content’, ’node’, hash(’node_id’, 96))}
{node_view_gui view=’example’ content_node=$my_node}

In this example, node number 96 is fetched and stored in $my node. The ”node view gui” func-
tion is used to display the target node using the ”example” view mode. If there are no override
rules for the specified view mode, the system will search for ”example.tpl” in the ”templates/
node/view/” directory of the current design. If the requested template file is not found, eZ Pub-
lish will continue searching for it in the fallback designs and the standard design.

5.8.4 Template functions / Visualization 1351

5

related view gui

Summary

Not documented yet.

Description

Not documented, the templates seem to be missing from the distribution(s).

5.8.4 Template functions / Visualization 1352

5

shop account view gui

Summary

Outputs the view template for a specified order.

Usage

{shop_account_view_gui order=order [view=view [parameter=value [...]]]}

Parameters

Name Type Description Required
order object The target order object. Yes.
view string The view mode that should be used. No.
other parameters any Parameter(s) that will be passed to the

included template.
No.

Description

This function shows the view interface for an order. The order must be specified (as a ”ezorder”
(page 1036) object) using the ”order” parameter. The ”view” parameter is optional, it can be
used to select a desired view mode: either ”html” or ”ascii”. All other parameters (of any type)
will be passed on and thus become available as template variables in the included template.

5.8.4 Template functions / Visualization 1353

5

tool bar

Summary

Outputs the template for a toolbar.

Usage

{tool_bar name=name view=view [parameter=value [...]]}

Parameters

Name Type Description Required
name string The name of the toolbar. Yes.
view string The view mode that should be used. Yes.
parameter any Parameter(s) that will be passed to the

included template.
No.

Description

This function can be used to display a toolbar template. The name parameter must be used to
specify the name of the toolbar that should be show. The default/standard names are ”top”,
”right” and ”bottom” - custom names are also allowed. The ”view” parameter can be used to
specify a desired view mode (”line”, ”full”, etc.). All other parameters (of any type) will be
passed on and thus become available as template variables in the included template.

Examples

Example 1

{tool_bar name=’top’ view=’line’}

Shows a toolbar called ”top” using the ”line” view mode.

5.9 Template control structures 1354

5

5.9 Template control structures

The template control structures are documented in the following sections:

• Conditional control (page 1355)

• Looping (page 1361)

• Deprecated (page 1367)

5.9.1 Template control structures / Conditional control 1355

5

5.9.1 Conditional control

if (page 1356)
Allows conditional control by the way of an IF-THEN-ELSE mechanism.

switch (page 1358)
Allows conditional control of code execution.

5.9.1 Template control structures / Conditional control 1356

5

if

Summary

Allows conditional control by the way of an IF-THEN-ELSE mechanism.

Usage

{if <condition>}
...
[{elseif <condition>}]
...
[{else}]
...
{/if}

Description

This construct allows for conditional execution of code fragments. It is one of the most important
features of many programming languages. The eZ Publish implementation makes it possible to
do conditional branching by the way of the following elements: IF, ELSE and ELSEIF. The ELSE
and ELSEIF elements are optional.

Examples

Example 1

{if eq($var, 128)}
Hello world

{/if}

If $var equals 128, the following output will be produced: ”Hello world”. If it does not equal
128, no output will be produced.

Example 2

{if eq($var, 128)}
Hello world

{else}
No world here, move along.

{/if}

If $var equals 128, the following output will be produced: ”Hello world”. If it does not equal
128, the output will be ”No world here, move along.”.

5.9.1 Template control structures / Conditional control 1357

5

Example 3

{if eq($fruit, ’apples’)}
Apple tree

{elseif eq($fruit, ’oranges’)}
Orange juice

{else}
Banana split

{/if}

If $fruit equals ”apples”, the output will be ”Apple tree”, if it equals ”oranges” then the output
will be ”Orange juice” - otherwise the output will be ”Banana split”.

5.9.1 Template control structures / Conditional control 1358

5

switch

Summary

Allows conditional control of code execution.

Usage

{switch match=<variable>}

{case match=<value>}
{case in=<array>}
...
{/case}

{case}
...
{/case}

{/switch}

Description

This mechanism is similar to a series of IF statements used on the same expression. This construct
is typically useful when the same variable needs to be compared to different values. It executes
a piece of code depending on which value that matched a given criteria. A default case should
always be provided.

Please note that it is also possible to match inside arrays. This can be done by making use of the
”in” argument, it is demonstrated in the last (third) example.

Examples

Example 1

{def $fruits=’oranges’}

{switch match=$fruits}

{case match=’apples’}
Apples

{/case}

{case match=’oranges’}
Oranges

5.9.1 Template control structures / Conditional control 1359

5

{/case}

{case}
Unidentified fruit!

{/case}

{/switch}

The following output will be produced: ”Oranges”.

Example 2

{def $fruits=’Hello world’}

{switch match=$fruits}

{case match=’apples’}
Apples

{/case}

{case match=’oranges’}
Oranges

{/case}

{case}
Unidentified fruit!

{/case}

{/switch}

The following output will be produced: ”Unidentified fruit!” - which is the outcome of the default
case (none of the other cases matched).

Example 3

{def $digit=1}

{switch match=$digit}

{case in=array(1, 2)}
This one matches.

{/case}

{case in=array(2, 3)}

5.9.1 Template control structures / Conditional control 1360

5

This one does not match.
{/case}

{case}
Not this one either.

{/case}

{/switch}

The following output will be produced: ”This one matches.”.

5.9.2 Template control structures / Looping 1361

5

5.9.2 Looping

do (page 1362)
Creates a do...while loop.

for (page 1363)
Creates a generic for loop.

foreach (page 1364)
Iterates over arrays in different ways.

while (page 1366)
Creates a while loop.

5.9.2 Template control structures / Looping 1362

5

do

Summary

Creates a do...while loop.

Usage

{do}
[{delimiter}...{/delimiter}]
[{break}]
[{continue}]
[{skip}]

{/do while <condition> [sequence <array> as $seqVar]}

Description

This mechanism is very similar to the ”while” (page 1364) construct, except that the expression is
checked at the end of each iteration instead of in the beginning. The main difference is that this
construct will always execute the first iteration (regardless of how the test expression evaluates).
It supports breaking, continual and skipping.

Examples

Example 1

{do}

Keep printing this line ({$counter})

{set $counter=inc($counter)}

{/do while ne($counter, 8)}

If the initial value of $counter is 0, the following output will be produced:

Keep printing this line (0)
Keep printing this line (1)
Keep printing this line (2)
Keep printing this line (3)
Keep printing this line (4)
Keep printing this line (5)
Keep printing this line (6)
Keep printing this line (7)
Keep printing this line (8)

5.9.2 Template control structures / Looping 1363

5

for

Summary

Creates a generic for loop.

Usage

{for <number> to <number> as $itemVar [sequence <array> as $seqVar]}
[{delimiter}...{/delimiter}]
[{break}]
[{continue}]
[{skip}]

{/for}

Description

This mechanism makes it possible to do generic looping. It supports looping over numerical
ranges in both directions. In addition it also supports breaking, continual and skipping.

Examples

Example 1

{for 0 to 7 as $counter}

Value of counter: {$counter}

{/for}

The following output will be produced:

Value of counter: 0
Value of counter: 1
Value of counter: 2
Value of counter: 3
Value of counter: 4
Value of counter: 5
Value of counter: 6
Value of counter: 7

5.9.2 Template control structures / Looping 1364

5

foreach

Summary

Iterates over arrays in different ways.

Usage

{foreach <array> as [$keyVar =>] $itemVar
[sequence <array> as $sequenceVar]
[offset <offset>]
[max <max>]
[reverse]}

[{delimiter}...{/delimiter}]
[{break}]
[{continue}]
[{skip}]

{/foreach}

Description

This construct makes it possible to iterate over arrays in different ways. The loop can be tweaked
using the parameters (see above).

Examples

Example 1

{foreach $objects as $object}

{$object.name}

{/foreach}

This example will print out the names of the objects that are stored in the $objects array. If
this array stores 4 objects with the following names: ”Emmett Brown”, ”Marty McFly”, ”Lorraine
Baines” and ”Biff Tannen”, the following output will be produced:

Emmett Brown
Marty McFly
Lorraine Baines
Biff Tannen

5.9.2 Template control structures / Looping 1365

5

Example 2

{foreach $objects as $index => $object}

{$index} : {$object.name}

{/foreach}

This example demonstrates how to create an iteration counter.

0: Emmett Brown
1: Marty McFly
2: Lorraine Baines
3: Biff Tannen

Example 3

{foreach $objects as $object sequence array(’dark’, ’light’) as $style}

<div class="{$style}">{$object.name}</div>

{/foreach}

This example demonstrates how to create a loop where the iterations are displayed using alter-
nating styles (in this case dark, light, dark, light and so on).

5.9.2 Template control structures / Looping 1366

5

while

Summary

Creates a while loop.

Usage

{while <condition> [sequence <array> as $seqVar]}
[{delimiter}...{/delimiter}]
[{break}]
[{continue}]
[{skip}]

{/while}

Description

This construct is the simplest loop mechanism that the template language offers. It tells eZ
Publish to execute the nested statement(s) repeatedly, as long as a given expression evaluates
to TRUE. The value of the expression is checked for every loop iteration (at the beginning of
the iteration). If the given expression evaluates to FALSE from the very beginning, the nested
statement(s) will not be executed.

Examples

Example 1

{while ne($counter, 8)}

Print this line eight times ({$counter})

{set $counter=inc($counter)}

{/while}

If the initial value of $counter is zero, the following output will be produced:

Print this line eight times (0)
Print this line eight times (1)
Print this line eight times (2)
Print this line eight times (3)
Print this line eight times (4)
Print this line eight times (5)
Print this line eight times (6)
Print this line eight times (7)

5.9.3 Template control structures / Deprecated 1367

5

5.9.3 Deprecated

section (page 1368)
Deprecated looping, branching, etc.

5.9.3 Template control structures / Deprecated 1368

5

section

Summary

Deprecated looping, branching, etc.

Description

Refer to the documentation of the old template syntax for more information about this control
structure.

Please note that this control structure has been deprecated and should not be used. It is included
here only because some of the default templates in the distributions are still using it.

http://ez.no/products/ez_publish/documentation/reference/template_functions/program_flow/section

5.10 Template override conditions 1369

5

5.10 Template override conditions

This section contains an overview of the override conditions that can be used to override the
system templates.

Override example

[magic_pockets] (1)
Source=node/view/full.tpl (2)
MatchFile=magic_pocket.tpl (3)
Subdir=templates (4)
Match[class_identifier]=pocket (5)
Match[section]=34 (6)
... ...

1. The name of the override.

2. The template that should be overridden.

3. The alternate template that should be used.

4. The location of the override templates.

5. Match condition #1

6. Match condition #2

The following sections reveal the override rules for the different template files:

• class/edit.tpl (page 1382)

• class/groupedit.tpl (page 1383)

• class/view.tpl (page 1384)

• content/advancedsearch.tpl (page 1374)

• content/browse.tpl (page 1376)

• content/collectedinfo/*.tpl (page 1379)

• content/collectedinfo/*.tpl (page 1381)

• content/collectedinfomail/*.tpl (page 1380)

• content/datatype/edit/*.tpl (page 1390)

• content/datatype/view/*.tpl (page 1391)

• content/edit.tpl (page 1373)

5.10 Template override conditions 1370

5

• content/history.tpl (page 1395)

• content/search.tpl (page 1372)

• content/tipafriend.tpl (page 1393)

• content/tipafriendmail.tpl (page 1394)

• content/versions.tpl (page 1375)

• content/versionview.tpl (page 1377)

• content/view/*.tpl (page 1392)

• layout/set.tpl (page 1388)

• node/view/*.tpl (page 1371)

• node/view/pdf.tpl (page 1378)

• pagelayout.tpl (page 1389)

• workflow/edit.tpl (page 1385)

• workflow/groupedit.tpl (page 1386)

• workflow/view.tpl (page 1387)

5.10.1 Template override conditions / node/view/*.tpl 1371

5

5.10.1 node/view/*.tpl

Module/view: view

Condition Description
object Matches the ID number of the object.
node Matches the ID number of the node.
parent node Matches the ID number of the parent node.
class Matches the ID number of the class which the

object is an instance of.
class identifier Matches the identifier of the class which the

object is an instance of.
view offset Matches the offset view parameter.
depth Matches the depth of the node. The depth of

a top level node is 1.
section Matches the number of the section which the

object belongs to.
navigation part identifier Matches the identifier of the navigation part.
viewmode Matches the name of the view mode (full, line,

etc.)
url alias Matches the virtual URL of the node.
class group Matches the ID number of the group that the

class which the object is an instance of belongs
to.

parent class Matches the ID number of the parent class.
parent class identifier Matches the identifier of the parent class.

5.10.2 Template override conditions / content/search.tpl 1372

5

5.10.2 content/search.tpl

Module/view: search

Condition Description
section Matches the number of the section in which

the search was conducted.

5.10.3 Template override conditions / content/edit.tpl 1373

5

5.10.3 content/edit.tpl

Module/view: edit

Condition Description
object Matches the ID number of the object.
class Matches the ID number of the class which the

object is an instance of.
class identifier Matches the identifier of the class which the

object is an instance of.
section Matches the number of the section which the

object belongs to.
class group Matches the ID number of the group that the

class which the object is an instance of belongs
to.

5.10.4 Template override conditions / content/advancedsearch.tpl 1374

5

5.10.4 content/advancedsearch.tpl

Module/view: advancedsearch

Condition Description
section Matches the number of the section in which

the search was conducted.

5.10.5 Template override conditions / content/versions.tpl 1375

5

5.10.5 content/versions.tpl

Module/view: versions

Condition Description
object Matches the ID number of the object.
class Matches the ID number of the class which the

object is an instance of.
class identifier Matches the identifier of the class which the

object is an instance of.
section id Matches the number of the section which the

object belongs to.

5.10.6 Template override conditions / content/browse.tpl 1376

5

5.10.6 content/browse.tpl

Module/view: browse

Condition Description
object Matches the ID number of the object.
node Matches the ID number of the node.
parent node Matches the ID number of the parent node.
class Matches the ID number of the class which the

object is an instance of.
class identifier Matches the identifier of the class which the

object is an instance of.
view offset Matches the offset view parameter.
depth Matches the depth of the node. The depth of

a top level node is 1.
navigation part identifier Matches the identifier of the navigation part.
url alias Matches the virtual URL of the node.

5.10.7 Template override conditions / content/versionview.tpl 1377

5

5.10.7 content/versionview.tpl

Module/view: versionview

Condition Description
navigation part identifier Matches the identifier of the navigation part.

5.10.8 Template override conditions / node/view/pdf.tpl 1378

5

5.10.8 node/view/pdf.tpl

Module/view: pdf

Condition Description
object Matches the ID number of the object.
node Matches the ID number of the node.
parent node Matches the ID number of the parent node.
class Matches the ID number of the class which the

object is an instance of.
class identifier Matches the identifier of the class which the

object is an instance of.
depth Matches the depth of the node. The depth of

a top level node is 1.
url alias Matches the virtual URL of the node.
class group Matches the ID number of the group that the

class which the object is an instance of belongs
to.

5.10.9 Template override conditions / content/collectedinfo/*.tpl 1379

5

5.10.9 content/collectedinfo/*.tpl

Module/view: collectinformation

Condition Description
object Matches the ID number of the object.
node Matches the ID number of the node.
parent node Matches the ID number of the parent node.
class Matches the ID number of the class which the

object is an instance of.
class identifier Matches the identifier of the class which the

object is an instance of.
depth Matches the depth of the node. The depth of

a top level node is 1.
navigation part identifier Matches the identifier of the navigation part.
url alias Matches the virtual URL of the node.

5.10.10 Template override conditions / content/collectedinfomail/*.tpl 1380

5

5.10.10 content/collectedinfomail/*.tpl

Module/view: collectinformation

Condition Description
object Matches the ID number of the object.
node Matches the ID number of the node.
parent node Matches the ID number of the parent node.
class Matches the ID number of the class which the

object is an instance of.
class identifier Matches the identifier of the class which the

object is an instance of.
depth Matches the depth of the node. The depth of

a top level node is 1.
navigation part identifier Matches the identifier of the navigation part.
url alias Matches the virtual URL of the node.

5.10.11 Template override conditions / content/collectedinfo/*.tpl 1381

5

5.10.11 content/collectedinfo/*.tpl

Module/view: collectedinfo

Condition Description
object Matches the ID number of the object.
node Matches the ID number of the node.
parent node Matches the ID number of the parent node.
class Matches the ID number of the class which the

object is an instance of.
depth Matches the depth of the node. The depth of

a top level node is 1.
navigation part identifier Matches the identifier of the navigation part.
url alias Matches the virtual URL of the node.

5.10.12 Template override conditions / class/edit.tpl 1382

5

5.10.12 class/edit.tpl

Module/view: edit

Condition Description
class Matches the ID number of the class.

5.10.13 Template override conditions / class/groupedit.tpl 1383

5

5.10.13 class/groupedit.tpl

Module/view: groupedit

Condition Description
object Matches the ID number of class group.

5.10.14 Template override conditions / class/view.tpl 1384

5

5.10.14 class/view.tpl

Module/view: view

Condition Description
class Matches the ID number of the class.
class identifier Matches the identifier of the class (for exam-

ple ”folder”).

5.10.15 Template override conditions / workflow/edit.tpl 1385

5

5.10.15 workflow/edit.tpl

Module/view: edit

Condition Description
workflow Matches the ID number of the workflow.

5.10.16 Template override conditions / workflow/groupedit.tpl 1386

5

5.10.16 workflow/groupedit.tpl

Module/view: groupedit

Condition Description
workflowgroup Matches the ID number of the workflow

group.

5.10.17 Template override conditions / workflow/view.tpl 1387

5

5.10.17 workflow/view.tpl

Module/view: view

Condition Description
workflow Matches the ID number of the workflow.

5.10.18 Template override conditions / layout/set.tpl 1388

5

5.10.18 layout/set.tpl

Module/view: set

Condition Description
layout Matches the name of the layout (for example

”print”, ”fullpage”, etc.).

5.10.19 Template override conditions / pagelayout.tpl 1389

5

5.10.19 pagelayout.tpl

Module/view: none.

Condition Description
persistent variable Matches the value of the persistent variable

if the ”view” view of the ”content” module
was executed. (The persistent variable should
be set in the ”node/view/<view mode>.tpl”
template that was used by this view.)

[any] The pagelayout may be overridden using the
same keys that are available for the view
which was used within the request. For exam-
ple, if the ”view” view of the ”content” module
was accessed, then the override conditions of
that view will be matched. This makes it pos-
sible to create a pagelayout override that will
be triggered when, for example, nodes refer-
encing objects that belong to a certain section
are requested.

5.10.20 Template override conditions / content/datatype/edit/*.tpl 1390

5

5.10.20 content/datatype/edit/*.tpl

Module/view: none.

Condition Description
class identifier Matches the identifier of the class.
attribute identifier Matches the identifier of the attribute.

5.10.21 Template override conditions / content/datatype/view/*.tpl 1391

5

5.10.21 content/datatype/view/*.tpl

Module/view: none.

Condition Description
class identifier Matches the identifier of the class.
attribute identifier Matches the identifier of the attribute.

5.10.22 Template override conditions / content/view/*.tpl 1392

5

5.10.22 content/view/*.tpl

Module/view: view

Condition Description
object Matches the ID number of the object.
class Matches the ID number of the class which the

object is an instance of.
class identifier Matches the identifier of the class which the

object is an instance of.
section Matches the number of the section which the

object belongs to.
class group Matches the ID number of the group that the

class which the object is an instance of belongs
to.

5.10.23 Template override conditions / content/tipafriend.tpl 1393

5

5.10.23 content/tipafriend.tpl

Module/view: tipafriend

Condition Description
object Matches the ID number of the object.
class Matches the ID number of the class which the

object is an instance of.
class identifier Matches the identifier of the class which the

object is an instance of.
class group Matches the ID number of the group that the

class which the object is an instance of belongs
to.

section Matches the number of the section which the
object belongs to.

node Matches the ID number of the node.
parent node Matches the ID number of the parent node.
depth Matches the depth of the node. The depth of

a top level node is 1.
url alias Matches the virtual URL of the node.

5.10.24 Template override conditions / content/tipafriendmail.tpl 1394

5

5.10.24 content/tipafriendmail.tpl

Module/view: none.

Condition Description
object Matches the ID number of the object.
class Matches the ID number of the class which the

object is an instance of.
class identifier Matches the identifier of the class which the

object is an instance of.
class group Matches the ID number of the group that the

class which the object is an instance of belongs
to.

section Matches the number of the section which the
object belongs to.

node Matches the ID number of the node.
parent node Matches the ID number of the parent node.
depth Matches the depth of the node. The depth of

a top level node is 1.
url alias Matches the virtual URL of the node.

5.10.25 Template override conditions / content/history.tpl 1395

5

5.10.25 content/history.tpl

Module/view: history

Condition Description
object Matches the ID number of the object.
class Matches the ID number of the class which the

object is an instance of.
class identifier Matches the identifier of the class which the

object is an instance of.
section Matches the number of the section which the

object belongs to.

5.11 Template fetch functions 1396

5

5.11 Template fetch functions

The template fetch functions are documented in the following sections:

• class (page 590)

• collaboration (page 609)

• content (page 624)

• error (page 761)

• ezinfo (page 762)

• form (page 767)

• infocollector (page 770)

• layout (page 775)

• notification (page 780)

• package (page 792)

• pdf (page 815)

• reference (page 819)

• role (page 820)

• rss (page 828)

• search (page 834)

• section (page 841)

• setup (page 856)

• shop (page 857)

• trigger (page 900)

• url (page 903)

• user (page 912)

• workflow (page 937)

5.12 Template PDF functions 1397

5

5.12 Template PDF functions

anchor (page 1399)
Creates an internal link anchor (DEPRECATED).

create index (page 1400)
Creates an index based on the specified keywords (DEPRECATED).

filled circle (page 1401)
Creates a filled circle (DEPRECATED).

filled rectangle (page 1403)
Creates a filled rectangle (DEPRECATED).

footer (page 1405)
Sets the footer (DEPRECATED).

footer block (page 1407)
Inserts complex footers (DEPRECATED).

frame header (page 1408)
Sets the header text (DEPRECATED).

frontpage (page 1410)
Adds content to the frontpage (DEPRECATED).

header (page 1411)
Inserts a header / title (DEPRECATED).

header block (page 1413)
Inserts a complex header (DEPRECATED).

image (page 1414)
Inserts an image to the PDF document (DEPRECATED).

keyword (page 1416)
Adds a keyword to the keyword index (DEPRECATED).

line (page 1417)
Draws a line (DEPRECATED).

link (page 1419)
Inserts an external link (DEPRECATED).

new line (page 1420)
Inserts a new line (DEPRECATED).

new page (page 1421)
Inserts a new page (DEPRECATED).

page number (page 1422)
Starts the page number counter (DEPRECATED).

5.12 Template PDF functions 1398

5

set font (page 1423)
Changes the default font (DEPRECATED).

set margin (page 1425)
Sets the page margins or line spacing (DEPRECATED).

strike (page 1426)
Inserts striked text (DEPRECATED).

table (page 1427)
Inserts a table (DEPRECATED).

text (page 1429)
This function inserts formatted text into the PDF document (DEPRECATED).

text box (page 1432)
Inserts text at a specified location (DEPRECATED).

text frame (page 1433)
Inserts a text with a frame (DEPRECATED).

toc (page 1435)
Inserts a generated table of contents (DEPRECATED).

ul (page 1436)
Inserts a bullet list (DEPRECATED).

5.12.1 Template PDF functions / anchor 1399

5

5.12.1 anchor

Summary

Creates an internal link anchor (DEPRECATED).

Usage

{pdf(anchor, label)}

Parameters

Name Type Description Required
label string The name of the anchor. Yes.

Description

This function does not work. It is supposed to create an anchor for making internal links in PDF
documents.

Examples

Example 1

{pdf(’anchor’, ’image_1’)}

5.12.2 Template PDF functions / create index 1400

5

5.12.2 create index

Summary

Creates an index based on the specified keywords (DEPRECATED).

Usage

pdf(create_index)

Description

This function creates an index page from a collection of keywords. The keywords must be spec-
ified using the ”keyword” (page 1416) PDF template function. The index will start on the next
page, and consists of the specified keywords with their corresponding page number.

Examples

Example 1

{pdf(’text’, ’Index page demo.’ | wash(’pdf’))}
{pdf(’keyword’, ’apples’)}
{pdf(’keyword’, ’bananas’)}
{pdf(’create_index’)}

This example creates an index page using the following keywords ”apples” and ”bananas”.

5.12.3 Template PDF functions / filled circle 1401

5

5.12.3 filled circle

Summary

Creates a filled circle (DEPRECATED).

Usage

pdf(filled_circle, hash(radius, circle_radius,
x, x_position,
y, y_position,

[rgb, rgb_color,]
[cmyk, cmyk_color]))

Parameters

Name Type Description Required
radius integer The radius of the circle. Yes.
x integer The x position of the circle placement. Yes.
y integer The y position of the circle placement. Yes.
rgb array The RGB color of the circle. Only

if the
”cmyk”
param-
eter is
omitted.

cmyk array The CMYK color of the circle. Only if
the ”rgb”
param-
eter is
omitted.

Description

This function creates a filled circle with a given radius and color. The position of the circle
is specified with the ”x” and ”y” parameters. The given coordinate must be within the page
margins. The lower-left corner is at (0,0).

Examples

Example 1

5.12.3 Template PDF functions / filled circle 1402

5

{pdf(’new_page’)}

{pdf(’filled_circle’, hash(’radius’, 100,
’x’, 300,
’y’, 400,
’rgb’, array(0, 0, 0)))}

{pdf(’filled_circle’, hash(’radius’, 98,
’x’, 300,
’y’, 400,
’rgb’, array(255, 0, 0)))}

This example creates a black circle with red filling on a new page.

5.12.4 Template PDF functions / filled rectangle 1403

5

5.12.4 filled rectangle

Summary

Creates a filled rectangle (DEPRECATED).

Usage

pdf(filled_rectangle, hash(x, x_position,
y, y_position,
width, width,
height, height,

[rgb, rgb_color,]
[rgbTop, rgb_top_color,

rgbBottom, rgb_bottom_color,]
[cmyk, cmyk_color,]
[cmykTop, cmyk_top_color,

cmykBottom, cmyk_bottom_color,]))

Parameters

Name Type Description Required
x integer/

float
X coordinate. Yes.

y integer/
float

Y coordinate. Yes.

width integer/
float

Rectangle width. Yes.

height integer/
float

Rectangle height. Yes.

rgb array Rectangle RGB color. No.
rgbTop array Rectangle top RGB color. No.
rgbBottom array Rectangle bottom RGB color. No.
cmyk array Rectangle CMYK color. No.
cmykTop array Rectangle top CMYK color. No.
cmykBottom array Rectangle bottom CMYK color. No.

Description

This function creates a filled rectangle. The ”x” and ”y” parameters specify the lower-left corner
of the rectangle. The ”width” and ”height” parameters determine the size of the rectangle.

The color of the rectangle can be specified using either the ”rgb” or the ”cmyk” parameter. The
”rgb” parameter must be an array consisting of three numbers between 0 and 255. The ”cmyk”
parameter must be an array of four floats between 0 and 1. The ”rgb” or ”cmyk” parameter

5.12.4 Template PDF functions / filled rectangle 1404

5

fills the entire rectangle with the same color; no color interpolation. This option has the same
result as setting the ”rgbTop”, ”rgbBottom” or ”cmykTop”, ”cmykBottom” with the same color. A
different top and bottom color results in a gradient fill. The color will be linearly interpolated
from the top color to the bottom color of the rectangle.

This function uses features that appeared in the PDF1.3 specification. Because of this, rectangles
will not visible in PDF-viewers that are not PDF 1.3 compliant (for example ”Ghostview”, etc.).

Examples

Example 1

{pdf(’filled_rectangle’, hash(’x’, -10,
’y’, 30.5,
’width’, 282.9,
’height, 821.9,
’cmykTop, array(0.96, 0.30, 0, 0),
’cmykBottom’, array(0.15, 0.04, 0, 0)))}

{pdf(’filled_rectangle’, hash(’x’, 272.9,
’y’, 30.5,
’width’, 333,
’height’, 821.9,
’cmykTop’, array(0.34, 0.05, 0, 0),
’cmykBottom’, array(0.10, 0.02, 0, 0))) }

{pdf(’filled_rectangle’, hash(’x’, -10,
’y’, -10,
’width’, 606,
’height’, 40.5,
’cmyk’, array(0.89, 0.43, 0.01, 0)))}

This example fills the page with three different rectangles.

5.12.5 Template PDF functions / footer 1405

5

5.12.5 footer

Summary

Sets the footer (DEPRECATED).

Usage

pdf(footer, hash([text, text,]
[align, text_alignment,]
[font, font_name,]
[size, font_size,]
[page, page_interval,]
[pageOffset, page_offset,]

[margin, hash([bottom, bottom_margin,]
[left, left_margin,]
[right, right_margin,]),]

[line, hash([leftMargin, left_margin,]
[rightMargin, right_margin,]
[thickness, line_thickness,]),]

[newline, boolean]))

5.12.5 Template PDF functions / footer 1406

5

Parameters

Name Type Description Required
text string Text used in the footer. No.
align string Alignment of the text. No.
page string Page occurence is all, even or odd. No.
pageOffset integer Page number where the footer starts. No.
size integer Size of the font. No.
font string Type of the font. No.
margin hash The definition of the margins. No.
left integer/

float
Left footer margin. No.

right integer/
float

Right footer margin. No.

bottom integer/
float

Bottom footer margin. No.

line hash The definition of a line. No.
leftMargin integer/

float
Left line margin. No.

rightMargin integer/
float

Right line margin. No.

thickness integer/
float

The thickness of the line. No.

newline boolean Adds a new line to the footer. Force
footer entry to new line

No.

Description

This function makes it possible to create a footer for a collection of pages. Please note that it
does not work correctly. The page number from where the footer starts can be specified using the
”pageOffset” parameter. The ”page” parameters can be used to specify whether the footer should
occur on ”all”, ”even” or ”odd” pages.

If the ”text” parameter is used, the parameters ”align”, ”type”, and ”size” can be used to change
the default alignment, font type and size. Please refer to the ”text” (page 1429) function for more
information about these parameters.

There are two keywords reserved in the text string (parameter):

• #page: will be replaced by the current page number.

• #total: will be replaces by the total number of pages.

The footer should only be included once in the PDF document.

5.12.6 Template PDF functions / footer block 1407

5

5.12.6 footer block

Summary

Inserts complex footers (DEPRECATED).

Usage

{pdf(footer_block, hash(block_code, $variable))}

Parameters

Name Type Description Required
block code mixed Variable of template code set using

”set block”.
Yes.

Description

This function makes it possible to create complex footers. There are some known problems with
this function.

5.12.7 Template PDF functions / frame header 1408

5

5.12.7 frame header

Summary

Sets the header text (DEPRECATED).

Usage

{pdf(frame_header, hash([text, text,]
[align, text_alignment,]
[page, page_interval,]
[pageOffset, page_offset,]
[size, font_size,]
[font, font_name,]
[margin, hash([bottom, bottom_margin,]

[left, left_margin,]
[right, right_margin,]),]

[line, hash([leftMargin, left_margin,]
[rightMargin, right_margin,]
[thickness, line_thickness,]),])) }

Parameters

Name Type Description Required
text string The header text. No.
align string The text alignment. No.
page string Page occurence (”all”, ”even” or

”odd”).
No.

pageOffset integer Page number to start footer at. No.
size integer The font size. No.
font string The font name. No.
margin hash Margin definition. No.
left integer/

float
Left header margin. No.

right integer/
float

Right header margin. No.

bottom integer/
float

Bottom footer margin. No.

line hash Line definition. No.
leftMargin integer/

float
Left line margin. No.

rightMargin integer/
float

Right line margin. No.

thinkness integer/
float

Line thickness. No.

newline boolean Force header entry to new line. No.

5.12.7 Template PDF functions / frame header 1409

5

Description

This function is deprecated and should not be used.

5.12.8 Template PDF functions / frontpage 1410

5

5.12.8 frontpage

Summary

Adds content to the frontpage (DEPRECATED).

Usage

pdf(frontpage, hash(text, page_text,
[align, text_alignment,]
[size, text_size,]
[top_margin, top_text_margin]))

Parameters

Name Type Description Required
text string Text that will be added to the front

page.
Yes.

align string The text alignment. No.
size int The font size. No.
top margin int The top margin. No.

Description

This function makes it possible to add text to the front page. If the frontpage is not present, a
new front page will be created when the function is used for the first time. This function should
be called after all other content has been added to the PDF document. The ”align” and ”size”
parameters control the alignment and the size of the text. The ”top margin” parameter can be
used to specify the top margin (vertical positioning) for the text.

Examples

Example 1

{pdf(’frontpage’, hash(’text’, ’eZ Publish
’|wash(’pdf’), ’align’, ’center’, ’size’, 32, ’top_margin’, 350))}

{pdf(’frontpage’, hash(’text’, ’The road ahead’| wash(’pdf’), ’align’,
’center’, ’size’, 22, ’top_margin’, 400))}

This example adds a main and a sub title to the front page. The sub title is smaller and positioned
below the main title. Both titles are centered. Notice that the main title ends with a new line,
this assures that the sub title is correctly centered.

5.12.9 Template PDF functions / header 1411

5

5.12.9 header

Summary

Inserts a header / title (DEPRECATED).

Usage

pdf(header, hash(text, header_text,
level, header_level,
size, font_size,

[align, text_alignment,]
[font, font_type]))

Parameters

Name Type Description Required
text string The header text. Yes.
level integer The header level. Yes.
size integer The font size. Yes.
align string The text alignment. No.
font string The font that should be used. No.

Description

This function inserts a header or title. The main difference between the ”text” and the header
function is the ”level” parameter. This parameter specifies the type of the header. The level
number goes from 1 and up:

1. Chapters

2. Section

3. Subsection

4. Subsubsection

5. etc.

The level has nothing to do with the header text, it controls how the text appears in the table
of contents (page 1435). The font size, font type, and text alignment can be specified using the
”size”, ”font”, and ”align” parameters. Please refer to the documentation of the ”text” function
for an explanation of these parameters.

5.12.9 Template PDF functions / header 1412

5

Examples

Example 1

{pdf(’header’, hash(’level’, 1, ’text’, ’The first chapter’|wash(’pdf’),
’size’, 20))}
{pdf(’header’, hash(’level’, 2, ’text’, ’The first section’|wash(’pdf’),
’size’, 16))}
{pdf(’header’, hash(’level’, 2, ’text’, ’The second section’|wash(’pdf’),
’size’, 16))}
{pdf(’header’, hash(’level’, 3, ’text’, ’The first subsection’|wash(’pdf’
), ’size’, 14))}
{pdf(’header’, hash(’level’, 1, ’text’, ’The second chapter’|wash(’pdf’),
’size’, 20))}

This example shows how to create a chapters, section and subsections.

5.12.10 Template PDF functions / header block 1413

5

5.12.10 header block

Summary

Inserts a complex header (DEPRECATED).

Usage

{pdf(header_block, hash(block_code, $variable))}

Parameters

Name Type Description Required
block code mixed Variable of template code set using the

”set block” function.
Yes.

Description

This function is not documented because there are some problems with it.

5.12.11 Template PDF functions / image 1414

5

5.12.11 image

Summary

Inserts an image to the PDF document (DEPRECATED).

Usage

pdf(image, hash(src, image_path,
[width, image_width,]
[height, image_height,]
[align, justification,]
[x, x_position,]
[y, y_position,]
[dpi, resolution,]
[static, flow_properties]))

Parameters

Name Type Description Required
src string The path to the image. Yes.
width integer The width of the image. No.
height integer The height of the image. No.
align string The alignment of the image. No.
x integer The absolute horizontal offset. No.
y integer The absolute y offset. No.
dpi integer The image resolution. No.
static boolean Float properties of the image. No.

Description

This function makes it possible to insert an image. The image location or image source points to
the root directory of the eZ publish installation. The image location is relative to this directory.
Currently, the supported image types are ”jpg” and ”png” without alpha channel.

The width and height of the image can be specified using the ”width” and ”height” parameters. If
these parameters are omitted, the image will be scaled to 100 by 100 dots. The ”align” parameter
can be used to specify the horizontal position of the image. Possible alignments are ”left”, ”right”,
and ”center” - the default is ”left”. The ”x” and ”y” parameter makes it possible to place the image
at an exact location. These parameters will override the settings from the image alignment
(”align”) and float properties (”static”).

If the image is too sharp, the dots-per-inch can be decreased using the ”dpi” parameter. (It is not
possible to make the image sharper than the original.)

The ”static” parameter can be used to specify whether the content around the image will float

5.12.11 Template PDF functions / image 1415

5

around the image or not. When the ”static” parameter is set to TRUE, additional content will not
float around and may actually overlap the image.

Examples

Example 1

{pdf(’text’, ’The logo is on the right hand side of this text.’|wash(’pdf’)
)}
{pdf(’image’, hash(’src’, ’design/mysite/images/company_logo.png’,

’width’, 200,
’height’, 200,
’align’, ’right’))}

This example displays an image with some text on the left hand side.

Example 2

{pdf(’image’, hash(’src’, $image.full_path, ’width’, $image.width, ’height’,
$image.height))}

This example adds the image assigned to the $image variable.

5.12.12 Template PDF functions / keyword 1416

5

5.12.12 keyword

Summary

Adds a keyword to the keyword index (DEPRECATED).

Usage

pdf(keyword, word)

Parameters

Name Type Description Required
word string The keyword that should be added. Yes.

Description

This function adds a word to the keywords. When generating the keyword index (using the
”create index” (page 1400) function), an internal link to the position where the keyword was
added will be created.

Examples

Example 1

{pdf(’keyword’, ’alien’)}

This example will add the ”alien” word to the keywords.

5.12.13 Template PDF functions / line 1417

5

5.12.13 line

Summary

Draws a line (DEPRECATED).

Usage

pdf(line, hash(x1, x_start,
y1, y_start,
x2, x_stop,
y2, y_stop,

[page, occurence,]
[thickness, line_thickness]))

Parameters

Name Type Description Required
x1 float Start coordinate of the X-ax. Yes.
y1 float Start coordinate of the Y-ax. Yes.
x2 float Stop coordinate of the X-ax. Yes.
y2 float Stop coordinate of the Y-ax. Yes.
pages string The pages on which the line should ap-

pear.
No.

thickness float The thickness of the line. No.

Description

This function draws a line. The line will be drawn from the (x1, y1) coordinate to the (x2, y2)
coordinate. If the ”pages” parameter is omitted or set to ”current”, the line will only be present
on the current page. If ”pages” is set to all, it will appear on all the pages. The thickness of the
line can be set with the ”thickness” parameter; the default thickness is 1.

When the line must be visible on all the pages, the line definition must be set after the content
is written to the PDF-document (at the end of the template) and the line should be defined only
once. A common technique is to use the ”include” (page 1316) operator.

Examples

Example 1

{pdf(’line’, hash(’x1’, 100, ’y1’, 100, ’x2’, 100, ’y2’, 300))}

This example draws a vertical line, from (100, 100) to (100, 300) on the current page.

5.12.13 Template PDF functions / line 1418

5

Example 2

{pdf(’line’, hash(’x1’, 20, ’y1’, 30, ’x2’, 20, ’y2’, 40, pages, ’all’))}
{pdf(’line’, hash(’x1’, 20, ’y1’, 40, ’x2’, 30, ’y2’, 40, pages, ’all’))}
{pdf(’line’, hash(’x1’, 30, ’y1’, 40, ’x2’, 30, ’y2’, 35, pages, ’all’))}
{pdf(’line’, hash(’x1’, 25, ’y1’, 35, ’x2’, 33, ’y2’, 35, pages, ’all’))}
{pdf(’line’, hash(’x1’, 33, ’y1’, 35, ’x2’, 33, ’y2’, 27, pages, ’all’))}
{pdf(’line’, hash(’x1’, 25, ’y1’, 35, ’x2’, 25, ’y2’, 27, pages, ’all’))}
{pdf(’line’, hash(’x1’, 25, ’y1’, 27, ’x2’, 33, ’y2’, 27, pages, ’all’))}
{pdf(’line’, hash(’x1’, 20, ’y1’, 30, ’x2’, 25, ’y2’, 30, pages, ’all’))}

This example draws the eZ logo in the lower left corner of every page.

5.12.14 Template PDF functions / link 1419

5

5.12.14 link

Summary

Inserts an external link (DEPRECATED).

Usage

pdf(link, hash(url, url,
text, link_text))

Parameters

Name Type Description Required
url string The URL that should be called. Yes.
text string The text of the link. Yes.

Description

This function insert a link to an external document.

Examples

Example 1

{pdf(’link’, hash(’url’, ’http://www.ez.no’,
’text’, ’eZ Systems website’))}

This example creates an link to the eZ Systems website.

5.12.15 Template PDF functions / new line 1420

5

5.12.15 new line

Summary

Inserts a new line (DEPRECATED).

Usage

pdf(new_line)

Description

This function inserts a new line.

Examples

Example 1

{pdf(’text’, ’Some text.’|wash(’pdf’))}
{pdf(’text’, ’This sentence is written at the same line.’|wash(’pdf’))}
{pdf(’new_line’)}
{pdf(’text’, ’The start of a new line.’|wash(’pdf’))}
{pdf(’new_line’)}
{pdf(’new_line’)}
{pdf(’text’, ’There is a blank line above this one.’|wash(’pdf’))}

This example demonstrates everything that can be done with the ”new line” function.

5.12.16 Template PDF functions / new page 1421

5

5.12.16 new page

Summary

Inserts a new page (DEPRECATED).

Usage

pdf(new_page)

Description

This function inserts a new page, following content will be placed on a new page. Please note
that the system automatically takes care of adding new pages when needed. This function simply
makes it possible to manually insert a new page.

Examples

Example 1

{pdf(’text’, ’Text that will be on page #1.’)}
{pdf(’new_page’)}
{pdf(’header’, hash(’text’, ’Text that will be on page #2.’, ’level’, 1,
’size’, 18))}

This example demonstrates the manual insertion of a new page.

5.12.17 Template PDF functions / page number 1422

5

5.12.17 page number

Summary

Starts the page number counter (DEPRECATED).

Usage

{pdf(page_number)}

Description

This function starts the page number counter.

5.12.18 Template PDF functions / set font 1423

5

5.12.18 set font

Summary

Changes the default font (DEPRECATED).

Usage

pdf(set_font, hash([name, font_name,]
[size, font_size,]
[colorCMYK, cmyk_color,]
[colorRGB, rgb_color,]
[justification, text_justification]))

Parameters

Name Type Description Required
name string The font type (name). No.
size integer The size of the font. No.
colorCMYK array The CMYK color. No.
colorRGB array The RGB color. No.
justification string The text alignment. No.

Description

This function makes it possible to change the default/current font and the text color, style, etc.
The following list shows the fonts that can be used.

• Courier-Bold

• Courier-BoldOblique

• Courier-Oblique

• Courier

• Helvetica-Bold

• Helvetica-BoldOblique

• Helvetica-Oblique

• Helvetic

• Symbol

• Times-Bold

5.12.18 Template PDF functions / set font 1424

5

• Times-BoldItalic

• Times-Italic

• Times-Roman

Either the ”colorRGB” or the ”colorCMYK” parameter can be used to specify the font color. The
”colorRGB” parameter must be an array consisting of three integers between 0 and 255. The
”colorCMYK” parameter must be an array of four decimal values between 0 and 1.

The justification parameter controls the text alignment, it can be:

• left

• right

• center

• full

Examples

Example 1

{pdf(’set_font’, hash(’name’, ’Times-Roman’, ’size’, 12))}

{pdf(’text’, ’Hello world’|wash(’pdf’))}

{pdf(’new_line’)}
{pdf(’new_line’)}
{pdf(’set_font’, hash(’name’, ’Times-Italic’,

’size’, 10,
’justification’, ’full’,
’colorRGB’, array(255, 255, 128)))}

{pdf(’text’, ’Example’|wash(’pdf’))}

This example demonstrates how to change the default font type, size, style, and color.

5.12.19 Template PDF functions / set margin 1425

5

5.12.19 set margin

Summary

Sets the page margins or line spacing (DEPRECATED).

Usage

pdf(set_margin, hash([left, left_margin,]
[right, right_margin,]
[top, top_margin,]
[bottom, bottom_margin,]
[x, x_offset,]
[y, y_offset,]
[line_space, line_space]))

Parameters

Name Type Description Required
left float Left page margin. No.
right float Right page margin. No.
top float Top page margin. No.
bottom float Bottom page margin. No.
x float Page x offset. No.
y float Page y offset. No.
line space float Line space size. No.

Description

This function sets the page margins of the current and following pages. The ”left”, ”right”, ”top”,
and ”bottom” parameters specify the distances from the edges. The parameters ”x” and ”y” specify
a point on the current page where the new margin starts. For the next pages, the parameters ”x”
and ”y” are ignored and thus the margins will affect the entire area of the upcoming pages.
The ”line space” parameter specifies the amount of white space between each line. The default
margins are configured in the ”pdf.ini” file.

Examples

Example 1

{pdf(’set_margin’, hash(’left’, 370, ’right’, 100))}
{pdf(’text’, ’The text written on this page is presented in a small column.
The space between each new line is also adjusted.’|wash(’pdf’))}

This example creates a small column with some text.

5.12.20 Template PDF functions / strike 1426

5

5.12.20 strike

Summary

Inserts striked text (DEPRECATED).

Usage

pdf(strike, text)

Parameters

Name Type Description Required
text string Text to strike through. Yes.

Description

This function draws a line through the specified text. The ”set font” (page 1423) function is the
only way to change the font type, font size, font color, and text alignment.

Examples

Example 1

{pdf(’strike’, ’A strike is a deliberate absence from work.’|wash(’pdf’))}

This example demonstrates a striked sentence.

5.12.21 Template PDF functions / table 1427

5

5.12.21 table

Summary

Inserts a table (DEPRECATED).

Usage

pdf(table, table_rows, hash([showLines, number,]
[firstRowTitle, boolean,]
[titleCellCMYK, cmyk_color,]
[titleTextCMYK, cmyk_color,]
[titleFontSize, font_size,]
[cellCMYK, cmyk_color,]
[textCMYK, cmyk_color,]
[rowGap, row_gap,]
[colGap, col_gap,]
[cellPadding, cell_padding,]
[width, table_width,]
[repeatTableHeader, repeat_table_header]))

Parameters

Name Type Description Required
showLines integer Defines the drawing style of the table. No.
firstRowTitle boolean Defines whether the first row should be

displayed as a title header (or not).
No.

titleCellCMYK array CMYK color of the title cell. No.
titleTextCMYK array CMYK color of the title text. No.
titleFontSize integer Font size of the title. No.
cellCMYK array CMYK color of the cells. No.
textCMYK array CMYK color of the text. No.
rowGap integer/

float
Space between the table rows. No.

colGap integer/
float

Space between the table columns. No.

cellPadding integer/
float

Padding around the text in each cell. No.

width integer/
float

Width of the table. No.

repeatTableHeader boolean Defines whether the table header
should be repeated on a new page.

No.

5.12.21 Template PDF functions / table 1428

5

Description

This function inserts a table. The table data must defined using the ”table rows” parameter. Use
the ”set-block” (page 1331) template function to specify the rows and the cells. The rows and
cells are defined the same way as rows and cells are defined in HTML. Note that nested tables
are not supported.

The ”showLines” parameter specifies the drawing style of the table, it must be one of the following
numbers:

• 0 - Don’t draw lines at all.

• 1 - Draw only the inner lines.

• 2 - Draw all the lines.

The ”firstRowTitle” expects an boolean value. This parameter defines whether the first row in
the table, should be used for column descriptions. With the ”titleCellCMYK” and ”titleTextCMYK”
parameters the color of the cell-background and the text of the column titles can be controlled.
The title font size can be changed with the ”titleFontSize” parameter.

For the rest of the cells can the background and text color be changed with the ”cellCMYK” and
”textCMYK”.

The size of the table and the space between the columns and rows is defined with the ”rowGap”,
”colGap”, ”cellPadding”, and ”width” parameters.

The parameter ”repeatTableHeader” defines whether the title should be repeated on each new
page, if the table is stretched over multiple pages.

5.12.22 Template PDF functions / text 1429

5

5.12.22 text

Summary

This function inserts formatted text into the PDF document (DEPRECATED).

Usage

pdf(text, page_text, hash([font, font_name,]
[size, font_size,]
[rgb, rgb_color,]
[cmyk, cmyk_color,]
[align, text_alignment]))

Parameters

Name Type Description Required
text string The text that should be inserted. Yes.
font string The font type. No.
size integer The size of the font. No.
rgb array The RGB text color. No.
cmyk array The CMYK text color. No.
align text The text alignment. No.

Description

This function inserts regular text into the PDF document. The font type, font size, font color,
and text alignment can be specified. If not specified, this function uses the current settings. The
available font types are:

• Courier-Bold

• Courier-BoldOblique

• Courier-Oblique

• Courier

• Helvetica-Bold

• Helvetica-BoldOblique

• Helvetica-Obliqu

• Helvetic

• Symbol

5.12.22 Template PDF functions / text 1430

5

• Times-Bold

• Times-BoldItalic

• Times-Italic

• Times-Roman

The ”rgb” and ”cmyk” parameters can be used to specify the font color. Only one of these two
parameters can be used at the same time. The ”rgb” parameter must be an array of three integers
between 0 and 255. The ”cmyk” parameter must be an array of four decimal values between 0.0
and 1.0.

The alignment parameter can be used to set the text alignment, possible values are:

• left

• right

• center

• full

The last options will spread/justify the text from the left to the right margin if it covers at least
80% of the margin-width.

Examples

Example 1

{pdf(’text’, ’eZ publish and PDF’|wash(’pdf’),
hash(’font’, ’Times-Bold’, ’size’, 22, ’align’, ’center’))}

This example generates a centered text using ”Times-Bold” at 22 points.

Example 2

{pdf(’text’, ’red’|wash(’pdf’), hash(’rgb’, array(255, 0, 0)))}
{pdf(’text’, ’green’|wash(’pdf’), hash(’rgb’, array(0, 255, 0)))}
{pdf(’text’, ’blue’|wash(’pdf’), hash(’rgb’, array(0, 0, 255)))}

This example demonstrates text coloring.

Example 3

5.12.22 Template PDF functions / text 1431

5

{pdf(’text’, ’A primary color is a color that can not be created by mixing
other colors in the gamut of a given color space. Primary colors may
themselves be mixed to produce most of the colors in a given color
space.’|wash(’pdf’), hash(’align’, ’full’))}

This example demonstrates how the text can be justified.

5.12.23 Template PDF functions / text box 1432

5

5.12.23 text box

Summary

Inserts text at a specified location (DEPRECATED).

Usage

pdf(text_box, hash(text, text
x, x_offset,
y, y_offset,
width, total width,

[align, text_alignment,]
[size, text_size]))

Parameters

Name Type Description Required
text string The text that should be inserted into

the box.
Yes.

x float X coordinate of the text box. Yes.
y float Y coordinate of the text box. Yes.
width float The width of the text box. Yes.
align string The alignment of the text. No.
size float The font size. No.

Description

This function creates a text box at the specified place on the current page. The font properties
(type, size, and color) are not affected by the ”set font” (page 1423) function.

If the text box is positioned before any other content, the content will flow nicely over and under
the text box. If other content is present before the text box is added, the text box will overlap it.

Examples

Example 1

{pdf(’text_box’, hash(’text’, ’This text appears in a text box.’|wash(
’pdf’),

’x’, 250,
’y’, 400,
’width’, 30))}

This example will write a sentence at coordinate (250, 400).

5.12.24 Template PDF functions / text frame 1433

5

5.12.24 text frame

Summary

Inserts a text with a frame (DEPRECATED).

Usage

pdf(text_frame, text, hash([frameRGB, rgb_frame_color,]
[frameCMYK, cmyk_frame_color,]
[textRGB, rgb_text_color,]
[textCMYK, cmyk_text_color,]
[fontSize, font_size,]
[fontName, font_name,]
[padding, text_padding,]
[leftPadding, left_text_padding,]
[rightPadding, right_text_padding,]
[topPadding, top_text_padding,]
[bottomPadding, bottom_text_padding,]
[roundEnds, round_ends]))

Parameters

Name Type Description Required
frameRGB array Frame RGB color. No.
frameCMYK array Frame CMYK color. No.
textRGB array Text RGB color. No.
textCMYK array Text CMYK color. No.
fontSize integer Font size. No.
fontName string Font name. No.
padding integer Padding around the text. No.
leftPadding integer Padding left of the text. No.
rightPadding integer Padding right of the text. No.
topPadding integer Padding above the text. No.
bottomPadding integer Padding below the text. No.
roundEnds boolean Squared or rounded frame edges. No.
text string The text that should be displayed in-

side the frame.
Yes.

Description

This function creates a text with a colored frame around it. The frame has the size of the text
plus the amount of padding. The padding can be specified for each side of the text with the
parameters ”leftPadding”, ”rightPadding”, ”topPadding”, and ”bottomPadding”. If the padding is
equal for each side, the ”padding” parameter can be used instead.

5.12.24 Template PDF functions / text frame 1434

5

The ”leftPadding” and ”rightPadding” parameters may be set to ”-1”, which will result in padding
that reaches the page margin.

By default the frame has squared corners. If the ”roundEnds” parameter is set to TRUE, the frame
will have rounded corners.

The colors of the frame and the text can be specified using the ”frameRGB”, ”frameCMYK”, ”tex-
tRGB”, and ”textCMYK” parameters. The RGB parameters must be arrays consisting of three
integers between 0 and 255. The CMYK parameters must be arrays consisting of four decimal
values between 0.0 and 1.0.

The font can be changed using the ”fontSize” and ”fontName” parameters.

Examples

Example 1

{pdf(text_frame, "Test frame", hash(roundEnds, true(),
textCMYK, array(0.89, 0.43, 0.01, 0),
frameRGB, array(255,255,128),
padding, 8,
fontSize, 14))}

This example creates a frame (with round edges) around the sentence ”Test frame”.

5.12.25 Template PDF functions / toc 1435

5

5.12.25 toc

Summary

Inserts a generated table of contents (DEPRECATED).

Usage

pdf(toc, hash(contentText, toc_header_text,
[size, size_array,]
[dots, boolean,]
[indent, indent_array]))

Parameters

Name Type Description Required
contentText string Table of contents header. Yes.
size array An array of numbers, indicating the

font sizes for each header level.
No.

indent array An array of booleans, indicating
whether the title should be indented
for each header level.

No.

dots boolean Display dots between the titles and
page numbers.

No.

Description

This function generates and inserts the table of contents after the front page. If the front page is
not available, the table of contents is inserted at the beginning of the PDF document.

Examples

Example 1

{pdf(’toc’, hash(’size’, array(18, 16, 14, 12, 10),
’dots’, true(),
’contentText’, ’Content’|wash(’pdf’),
’indent’, array(0, 4, 6, 8, 10)))}

This example creates a table of contents. The size of the level 1 headers will be 18 and will not
indented, level 2 headers will have size 16 and will be indented 4 dots, etc. There will be dots
between the headers and the page numbers.

5.12.26 Template PDF functions / ul 1436

5

5.12.26 ul

Summary

Inserts a bullet list (DEPRECATED).

Usage

pdf(ul, text, hash([rgb, rgb_color,]
[cmyk, cmyk_color,]
[radius, dot_radius,]
[indent, text_indent,]
[pre_indent, bullet_indent]))

Parameters

Name Type Description Required
text string Bullet text. Yes.
rgb array Array of RGB colors. No.
cmyk array Array of CMYK colors. No.
radius float The radius of the dot. No.
indent float Text indentation after the dot. No.
pre indent float Indentation before the bullet. No.

Description

This function inserts a bullet list into the PDF document.

The colors of the bullet can be specified using the ”rgb” or the ”cmyk” parameter. The ”rgb” pa-
rameter must be an array consisting of three integers between 0 and 255. The ”cmyk” parameter
must be array of four decimal numbers between 0.0 and 1.0.

The size of the bullet can be controlled using the ”radius” parameter. The indentation (in dots)
before and after the dot can be specified using the ”pre indent” and ”indent” parameters.

Examples

Example 1

{pdf(’text’, "Most popular internet browsers in 2004:" |wash(’pdf’)}

{pdf(’ul’, ’Internet Explorer (88,9%)’|wash(’pdf’))}
{pdf(’ul’, ’Version 6 (80.95%)’|wash(’pdf’), hash(’pre_indent’, 15))}
{pdf(’ul’, ’Version 5.5 (4.18%)’|wash(’pdf’), hash(’pre_indent’, 15))}
{pdf(’ul’, ’Version 5.0 (3.66%)’|wash(’pdf’), hash(’pre_indent’, 15))}

5.12.26 Template PDF functions / ul 1437

5

{pdf(’ul’, ’Mozilla-based browsers (7.35%)’|wash(’pdf’))}
{pdf(’ul’, ’Rest (3.75%)’|wash(’pdf’))}

This example generates a bullet list where some of the bullets are indented.

5.13 Configuration files 1438

5

5.13 Configuration files

audit.ini (page 1441)
Settings related to audit trailing of various user operations.

binaryfile.ini (page 1447)
Not documented yet.

browse.ini (page 1448)
Not documented yet.

collaboration.ini (page 1449)
Not documented yet.

collect.ini (page 1450)
Not documented yet.

content.ini (page 1451)
Settings related to content.

contentstructuremenu.ini (page 1493)
Settings related to the ”Content structure” tree menu in the admin interface.

country.ini (page 1499)
List of countries for the ”ezcountry” datatype.

cronjob.ini (page 1505)
Settings related to cronjobs.

datatype.ini (page 1514)
Not documented yet.

datetime.ini (page 1515)
Not documented yet.

dbschema.ini (page 1516)
Not documented yet.

debug.ini (page 1517)
Not documented yet.

design.ini (page 1518)
Settings related to designs and design related files like css and javascripts.

error.ini (page 1527)
Not documented yet.

extendedattributefilter.ini (page 1528)
Not documented yet.

ezxml.ini (page 1529)
Settings related to XML handling (the XML Block datatype).

5.13 Configuration files 1439

5

fetchalias.ini (page 1532)
Not documented yet.

file.ini (page 1533)
Not documented yet.

i18n.ini (page 1534)
Settings related to internationalization.

icon.ini (page 1537)
Not documented yet.

image.ini (page 1538)
Not documented yet.

layout.ini (page 1539)
Not documented yet.

ldap.ini (page 1540)
Not documented yet.

logfile.ini (page 1542)
Settings related to log files.

menu.ini (page 1547)
Not documented yet.

module.ini (page 1548)
Not documented yet.

notification.ini (page 1549)
Not documented yet.

override.ini (page 1550)
Not documented yet.

package.ini (page 1551)
Not documented yet.

paymentgateways.ini (page 1552)
Not documented yet.

setup.ini (page 1553)
Not documented yet.

shopaccount.ini (page 1554)
Settings related to shop account handlers

site.ini (page 1559)
Controls the overall/main behavior of the system.

soap.ini (page 1820)
Not documented yet.

5.13 Configuration files 1440

5

staticcache.ini (page 1821)
Settings related to the static cache.

template.ini (page 1828)
Not documented yet.

textfile.ini (page 1829)
Not documented yet.

texttoimage.ini (page 1830)
Not documented yet.

toolbar.ini (page 1831)
Not documented yet.

transform.ini (page 1832)
Not documented yet.

units.ini (page 1833)
Not documented yet.

upload.ini (page 1834)
Not documented yet.

viewcache.ini (page 1835)
Settings related to the view cache system.

webdav.ini (page 1846)
Not documented yet.

wordtoimage.ini (page 1847)
Not documented yet.

workflow.ini (page 1848)
Settings related to workflows.

5.13.1 Configuration files / audit.ini 1441

5

5.13.1 audit.ini

The configuration blocks are documented in the following sections:

• [AuditSettings] (page 1442)

5.13.1 Configuration files / audit.ini 1442

5

[AuditSettings]

Audit (page 1445)
Enables or disables the generation of audit logs.

AuditFileNames (page 1443)
Sets which types of activities that should be logged and to which files.

LogDir (page 1446)
Sets the directory where eZ Publish stores the audit log files.

5.13.1 Configuration files / audit.ini 1443

5

AuditFileNames

Summary

Sets which types of activities that should be logged and to which files.

Usage

AuditFileNames[audit function1]=logfile1
AuditFileNames[audit function2]=logfile2
...

Description

This directive makes it possible to control which types of activities that should be logged and
to which files they should be logged. By default, this configuration array lists all the built-in
audit functions along with a default set of corresponding log file names (see below). The target
directory of the audit logs is defined by the ”LogDir (page 1446)” directive. Note that the master
”Audit (page 1445)” configuration directive must be enabled for auditing to work.

The default configuration enables all the built-in audit function and suggests a default set of files:

AuditFileNames[]
AuditFileNames[user-login]=login.log
AuditFileNames[user-failed-login]=failed_login.log
AuditFileNames[content-delete]=content_delete.log
AuditFileNames[content-move]=content_move.log
AuditFileNames[role-change]=role_change.log
AuditFileNames[role-assign]=role_assign.log
AuditFileNames[section-assign]=section_assign.log
AuditFileNames[order-delete]=order_delete.log

Refer to the Audit trailing (page 230) section of the ”Features” chapter for more information.

Examples

Example 1

Audit=enabled
LogDir=var/log/audit
AuditFileNames[]
AuditFileNames[user-login]=login.log

With this configuration, the system will only record information about successful login attempts
(all other audit functions will be skipped). The information will be put to the ”login.log” file

5.13.1 Configuration files / audit.ini 1444

5

located in the ”var/log/audit” directory. Each record in the file will contain information about
the user’s name and ID number, IP address, plus the date and time when the user logged into the
system.

5.13.1 Configuration files / audit.ini 1445

5

Audit

Summary

Enables or disables the generation of audit logs.

Usage

Audit=enabled|disabled

Description

This directive controls whether eZ Publish should generate audit logs based on user activity. By
default, this setting is disabled, which means that the system will not generate audit logs. If
enabled, the system will store information about various user operations in audit log files. You
can use the ”AuditFileNames (page 1443)” setting to specify which operations that should be
logged using which log files. The ”LogDir (page 1446)” setting can be used to specify where the
audit log files should be stored.

Refer to the Audit trailing (page 230) section of the ”Features” chapter for more information.

5.13.1 Configuration files / audit.ini 1446

5

LogDir

Summary

Sets the directory where eZ Publish stores the audit log files.

Usage

LogDir=directory name

Description

This directive makes it possible to control where the audit logs should be stored. The default
value is ”var/log/audit”. The ”AuditFileNames (page 1443)” setting can be used to control which
activities that should be logged and to which files they should be logged. Note that the master
”Audit (page 1445)” configuration directive must be enabled for auditing to work.

Refer to the Audit trailing (page 230) section of the ”Features” chapter for more information.

5.13.2 Configuration files / binaryfile.ini 1447

5

5.13.2 binaryfile.ini

5.13.3 Configuration files / browse.ini 1448

5

5.13.3 browse.ini

5.13.4 Configuration files / collaboration.ini 1449

5

5.13.4 collaboration.ini

5.13.5 Configuration files / collect.ini 1450

5

5.13.5 collect.ini

5.13.6 Configuration files / content.ini 1451

5

5.13.6 content.ini

The configuration blocks are documented in the following sections:

• [ActionSettings] (page 1452)

• [ContentOverrideSettings] (page 1454)

• [DataTypeSettings] (page 1456)

• [HideSettings] (page 1460)

• [ISBNSettings] (page 1463)

• [name of XML tag] (page 1465)

• [RelationAssignmentSettings] (page 1468)

• [RemoveSettings] (page 1472)

• [UnpublishSettings] (page 1477)

• [VersionManagement] (page 1480)

• [VersionView] (page 1488)

5.13.6 Configuration files / content.ini 1452

5

[ActionSettings]

ExtensionDirectories (page 1453)
Sets the directories where eZ Publish will look for action extensions.

5.13.6 Configuration files / content.ini 1453

5

ExtensionDirectories

Summary

Sets the directories where eZ Publish will look for action extensions.

Usage

ExtensionDirectories[]= directory1

ExtensionDirectories[]= directory2

...

Description

eZ Publish will look for actions in ” ExtensionDirectory (page 1615)/ directory/actions/
content actionhandler.php”. In that file eZ Publish will look for the function directory
ContentActionHandler. This function will be invoked when your action is triggered.
The function must accept three parameters: ”module”, ”http” and ”objectID”.

5.13.6 Configuration files / content.ini 1454

5

[ContentOverrideSettings]

EnableClassGroupOverride (page 1455)
Sets whether it should be possible to override templates based on the ”class group” condi-
tion.

5.13.6 Configuration files / content.ini 1455

5

EnableClassGroupOverride

Summary

Sets whether it should be possible to override templates based on the ”class group” condition.

Usage

EnableClassGroupOverride=true|false

Description

This directive sets whether it should be possible to override templates based on the ”class group”
condition. (Refer to the ”Template override conditions (page 1369)” section of the ”Reference”
chapter for information about which templates that can be overriden based on this condition.)
The default value is ”false”, which means that the class group condition will not work.

5.13.6 Configuration files / content.ini 1456

5

[DataTypeSettings]

AvailableDatatypes (page 1457)
Sets the datatypes available to eZ Publish.

ExtensionDirectories (page 1458)
Sets the extensions that contains datatypes.

RepositoryDirectories (page 1459)
Sets the directories where eZ Publish should look for datatypes.

5.13.6 Configuration files / content.ini 1457

5

AvailableDatatypes

Summary

Sets the datatypes available to eZ Publish.

Usage

AvailableDatatypes[]= datatype1

AvailableDatatypes[]= datatype2

...

Description

eZ Publish will look for the datatypes in the directories specified by RepositoryDirectories (page
1459) and ExtensionDirectories (page 1458).

Examples

ExtensionDirectory[]=my_extension
AvailableDatatypes[]=my_datatype

This example shows a typical configuration of content.ini.append in an extension with a datatype.
If extensions are located in the ”extension” directory (default) these settings will make eZ Pub-
lish look for the datatype extension in the directory ”/extension/my extension/datatypes/my
datatype/”.

5.13.6 Configuration files / content.ini 1458

5

ExtensionDirectories

Summary

Sets the extensions that contains datatypes.

Usage

ExtensionDirectories[]= directory1

ExtensionDirectories[]= directory2

...

Description

eZ Publish will look for datatypes in ” ExtensionDirectory (page 1615)/ directory/datatypes/”.
You must also add your datatype to AvailableDataTypes (page 1457) in order to make eZ Publish
recognize it.

5.13.6 Configuration files / content.ini 1459

5

RepositoryDirectories

Summary

Sets the directories where eZ Publish should look for datatypes.

Usage

RepositoryDirectories[]= directory1

RepositoryDirectories[]= directory2

Description

Directories should be specified relative to your eZ Publish root directory.

This setting is for kernel datatypes only. If you add your own datatype you should put it in an
extension and use the ExtensionDirectories (page 1458) setting to tell eZ Publish where to find
it.

5.13.6 Configuration files / content.ini 1460

5

[HideSettings]

HideDateAttributeList (page 1461)
Sets which date/time attributes the hide cronjob should use.

RootNodeList (page 1462)
Sets which subtrees that will be affected by the ”hide.php” cronjob.

5.13.6 Configuration files / content.ini 1461

5

HideDateAttributeList

Summary

Sets which date/time attributes the hide cronjob should use.

Usage

HideDateAttributeList[class id1]=attribute id1
HideDateAttributeList[class id2]=attribute id2
...

Description

This directive can be used to tell the ”hide.php” cronjob about which date/time values it should
look for when hiding nodes. Both the class and the attribute (which needs to be represented by
the ”Date and time (page 473)” datatype) must be specified using identifiers (not ID numbers).
In addition, the ”RootNodeList (page 1462)” directive must be used to specify which subtrees
that can have their nodes affected by the cronjob script.

Examples

Example 1

HideDateAttributeList[article]=hide_date

The hide cronjob will check date/time values specified in the ”hide date” attribute of your articles.

5.13.6 Configuration files / content.ini 1462

5

RootNodeList

Summary

Sets which subtrees that will be affected by the ”hide.php” cronjob.

Usage

RootNodeList[]=node id1
RootNodeList[]=node id2
...

Description

If you are using the ”hide.php” cronjob to control the visibility of your nodes (based on a date/
time-attribute), you must use this directive to specify which subtrees that can have their children
(recursively) affected by this feature. Please note that the default value is empty, which means
that no nodes will be hidden.

Examples

Example 1

RootNodeList[]=2

This tells the system that the ”hide.php” cronjob can affect all items in the content node tree.

5.13.6 Configuration files / content.ini 1463

5

[ISBNSettings]

StrictValidation (page 1464)
Enables or disables the strict validation of the ISBN-13 numbers.

5.13.6 Configuration files / content.ini 1464

5

StrictValidation

Summary

Enables or disables the strict validation of the ISBN-13 numbers.

Usage

StrictValidation=true|false

Description

This directive makes it possible to enable or disable strict validation of ISBN-13 numbers. All
ISBN-13 numbers consist of five elements called ”Prefix”, ”Registration group”, ”Registrant”,
”Publication” and ”Check digit”; they are separated by dashes (refer to the documentation of
the ”ISBN (page 492)” datatype for more information).

The default value of this setting is ”true”, which means that strict validation is enforced. All
elements of each ISBN-13 number will be validated according to the rules stored in three range
tables of the database. Note that the rules may be outdated. It is possible to add new areas
(regions) to the list of group identifiers. You can update the ranges stored in the database by
running the ”updateisbn13.php” script. If an incorrect ISBN-13 number is entered, it will not
be accepted and a warning will be shown. For example, currently the system does not accept
”978-650-123-456-4” because the area number ”650” doesn’t exist in the corresponding range
table.

If set to ”false”, only the ”Prefix” and ”Check digit” elements will be validated. In other words,
the system will accept input regardless if the ”Registration group”, ”Registrant” and ”Publica-
tion” elements are correct or not. This is typically useful if you need to enter ISBN-13 numbers
containing values that aren’t present in the range tables at the moment.

Note that the system will automatically add missing dashes and/or correct misplaced ones. How-
ever, this will only happen if the range exists in the database. If it doesn’t, you will need to
separate the ISBN-13 elements by entering the dashes manually.

5.13.6 Configuration files / content.ini 1465

5

[name of XML tag]

AvailableClasses (page 1467)
Sets the available classes for XML tags of the ”name of XML tag” type.

CustomAttributes (page 1466)
Sets which custom attributes that can be used within XML tags of this particular type.

5.13.6 Configuration files / content.ini 1466

5

CustomAttributes

Summary

Sets which custom attributes that can be used within XML tags of this particular type.

Usage

CustomAttributes[]=attribute1
CustomAttributes[]=attribute2
...

Description

This setting makes it possible to specify which custom attributes that can be used within XML tags
of the ”name of XML tag” type. (From 3.9, custom attributes are supported for all XML tags.) It
is an array of custom attribute names. If empty, the system will not allow the use of custom
attributes within XML tags of the ”name of XML tag” type.

Examples

Example 1

If you wish to use a specific summary field in your tables, you can add a custom attribute called
”summary” to the ”table” XML tag by adding the following lines to the [table] section of your
”content.ini.append.php” file:

CustomAttributes[]
CustomAttributes[]=summary

Now, if you create a table using an XML code like this:

<table summary="The meaning of my favourite smiles">
...
</table>

and put the following code into an override template for the ”content/datatype/view/ezxmltags/
table.tpl” template:

summary: {$summary}

the following output will be produced: ”summary: The meaning of my favourite smiles”.

5.13.6 Configuration files / content.ini 1467

5

AvailableClasses

Summary

Sets the available classes for XML tags of the ”name of XML tag” type.

Usage

AvailableClasses[]=class1
AvailableClasses[]=class2
...

Description

This setting makes it possible to specify which custom classes that can be used within XML tags of
the ”name of XML tag” type. It is an array of values that can be assigned to the ”class” attribute
of the XML tags. If empty, the system will not allow the use of classified ”name of XML tag” tags.
Note that the classification of anchor tags and custom tags is not supported.

Examples

Example 1

If you wish to use ”pRed” and ”pBlue” classified paragraphs in your XML blocks, make sure that
the [paragraph] section in ”content.ini.append.php” contains the following lines:

AvailableClasses[]
AvailableClasses[]=pRed
AvailableClasses[]=pBlue

5.13.6 Configuration files / content.ini 1468

5

[RelationAssignmentSettings]

ClassSpecificAssignment (page 1469)
Sets the rules for automatic location assignment when uploading related objects.

DefaultAssignment (page 1471)
Sets where the newly created related objects should be placed in the node tree.

5.13.6 Configuration files / content.ini 1469

5

ClassSpecificAssignment

Summary

Sets the rules for automatic location assignment when uploading related objects.

Usage

ClassSpecificAssignment[]=list of classes and class groups1;list of locations1;

main location1

ClassSpecificAssignment[]=list of classes and class groups2;list of locations2;

main location2

...

Description

While the ”DefaultAssignment (page 1471)” directive sets the default location for newly created
(uploaded) related objects, the ”ClassSpecificAssignment” directive makes it possible to specify
a set of override rules. These rules make it possible to place specific types of objects at desired
locations in the tree.

The value of this setting has to be provided as an array where each element must contain two or
three values separated by semicolons.

The first value sets which types of objects that should be affected. It has to be a class and/or class
group or a comma separated list of classes and/or class groups (both identifiers and ID numbers
can be used). Note that classes should come before class groups because it is always the first
match that will be used.

The second value tells the system where to place newly uploaded objects of the specified type.
It has to be a location or a comma separated list of locations (both paths and ID numbers of the
desired nodes can be used). If multiple locations are specified, you can use the optional third
parameter to set which of the locations that should be the main node. If the third (main node)
parameter is omitted, the first location in the list will be the main node.

From 3.9, the ”ClassSpecificAssignment” array may contain several entries using the same first
value. This means that you can specify multiple sets of locations for the same class. The system
will use the one (the others will be skipped) under which the current user has sufficient ”create”
privileges.

If the class is not mentioned anywhere in the ”ClassSpecificAssignment” setting or if it is men-
tioned but the current user does not have sufficient ”create” privileges at the specified locations,
the value (location) specified by the ”DefaultAssignment” setting will be used.

5.13.6 Configuration files / content.ini 1470

5

Examples

Example 1

ClassSpecificAssignment[]=flash;media/movies,media/multimedia,media/myflash;
media/multimedia

With this configuration, newly uploaded flash files will be placed at three locations: ”media/
movies”, ”media/myflash” and ”media/multimedia”. The main node will be located under ”me-
dia/multimedia”.

Example 2

Let’s say that you have several folders called ”computers”, ”news”, ”company” and ”john photo”
located under the ”Media” top level node. In addition, you create the following rules:

ClassSpecificAssignment[]=image;media/computers,media/news
ClassSpecificAssignment[]=image;media/company
ClassSpecificAssignment[]=image;media/john_photo

In this case, the system will choose a location for uploaded images according to the current
user’s privileges. If the user has sufficient ”create” privileges under both ”media/computers” and
”media/news”, all images uploaded by this user will be put to these folders (the system will create
main nodes under ”media/computers” and additional locations under ”media/news”). However,
if the user does not have the necessary privileges, the system will skip this line and go to the next
one. If the user has sufficient ”create” privileges under ”media/company”, the images will be put
inside that folder. If not, the system will skip that line as well and check the next one. If the user
has sufficient ”create” privileges under ”media/john photo”, the images will be put in that folder.
Otherwise, the default location (page 1471) will be used.

5.13.6 Configuration files / content.ini 1471

5

DefaultAssignment

Summary

Sets where the newly created related objects should be placed in the node tree.

Usage

DefaultAssignment=location

Description

When you add related objects using the ”Upload new” button located in the ”Related objects”
window in the object edit interface, the ”Location” dropdown in the upload dialog allows you
to choose where the uploaded file should be placed in the node tree. If ”Automatic” is selected,
then the location specified by the ”DefaultAssignment” setting will be used.

The default value of this setting is ”root”, which means that related objects will be placed directly
under the ”Content” top level node. The following options can be also used:

• The ID number or the desired parent node (for example ”2”).

• The path to the desired parent node in the content tree (for example ”users”, ”media” or
”media/files”).

Note that this setting alone doesn’t allow you to specify multiple locations for related objects that
are being uploaded. Multiple locations can however be specified using the ”ClassSpecificAssign-
ment” (page 1469) directive; making it possible to set up rules for different types of objects that
override the value of the ”DefaultAssignment” directive. If the current user doesn’t have sufficient
”create” privileges under the locations specified using the ”ClassSpecificAssignment” , the system
will fallback to and use the value of the ”DefaultAssignment” directive.

Examples

Example 1

DefaultAssignment=media

Newly created (uploaded) related objects will (by default) be placed under the ”Media” top level
node. This will be the case unless specified otherwise by the ”ClassSpecificAssignment” directive
or if the current user doesn’t have sufficient ”create” privileges at the locations specified by the
”ClassSpecificAssignment” directive.

5.13.6 Configuration files / content.ini 1472

5

[RemoveSettings]

DefaultRemoveAction (page 1475)
Sets the default remove action for objects (move to trash or delete).

HideRemoveConfirmation (page 1473)
Sets whether the removal confirmation dialog should be shown or not.

MaxNodesRemoveSubtree (page 1476)
Sets the maximum number of nodes that subtrees subject to removal can contain.

ShowRemoveToTrashCheck (page 1474)
Sets whether the ”Move to trash” checkbox is displayed or not.

5.13.6 Configuration files / content.ini 1473

5

HideRemoveConfirmation

Summary

Sets whether the removal confirmation dialog should be shown or not.

Usage

HideRemoveConfirmation=true|false

Description

This setting controls wether the system should ask for confirmation when objects are being re-
moved. The default value is ”false”, which means that the removal confirmation dialog will be
shown. If set to ”true”, the system will not display the dialog. When the dialog is not shown (or
if the ”Move to trash” checkbox is hidden), it is the DefaultRemoveAction (page 1475)” directive
that controls whether objects should be moved to the trash or permanently deleted.

Examples

Example 1

HideRemoveConfirmation=true

With this configuration, the system will not ask for confirmation when objects are being removed.
If you specify ”DefaultRemoveAction=delete”, the system will permanently delete objects (they
will not be put into the trash).

5.13.6 Configuration files / content.ini 1474

5

ShowRemoveToTrashCheck

Summary

Sets whether the ”Move to trash” checkbox is displayed or not.

Usage

ShowRemoveToTrashCheck=true|false

Description

This setting controls the visibility of the ”Move to trash” checkbox in the removal confirmation
dialog. The default value of this setting is ”true”, which means that the ”Move to trash” checkbox
will be displayed.

The removal confirmation dialog is shown when objects are being removed and only if the dialog
is enabled (default behavior). When the dialog is not shown (or if the ”Move to trash” checkbox
is hidden), it is the DefaultRemoveAction (page 1475)” directive that controls whether objects
should be moved to the trash or permanently deleted.

Examples

Example 1

HideRemoveConfirmation=false
ShowRemoveToTrashCheck=false

With this configuration, the system will always ask for confirmation when objects are being re-
moved by users. However, there will be no ”Move to trash” checkbox in the removal confirmation
dialog. (You can use the ”DefaultRemoveAction” directive to control whether objects should be
moved to trash or permanently deleted.)

5.13.6 Configuration files / content.ini 1475

5

DefaultRemoveAction

Summary

Sets the default remove action for objects (move to trash or delete).

Usage

DefaultRemoveAction=trash|delete

Description

This directive controls the default behavior of the system when objects are being removed. If a
user doesn’t specify whether an object should be removed completely or moved to trash (either
because the dialog is not being shown or the ”Move to trash” checkbox is hidden), the system
will behave according to the value of ”DefaultRemoveAction”.

The default value of this setting is ”trash”, which means that removed objects will be moved to
trash instead of being deleted. If the directive is set to ”delete”, the system will not move removed
objects to the trash (they will be deleted/lost forever).

If the dialog and the checkbox is being shown, the users are allowed to override the default
setting and thus control whether objects should be deleted or moved to trash.

5.13.6 Configuration files / content.ini 1476

5

MaxNodesRemoveSubtree

Summary

Sets the maximum number of nodes that subtrees subject to removal can contain.

Usage

MaxNodesRemoveSubtree=number

Description

This directive makes it possible to disallow the removal of big subtrees (for all users). When using
the administration interface and trying to remove subtrees containing more nodes than ”MaxN-
odesRemoveSubtree” allows, a warning will be shown while the subtrees will be displayed in red.
In such cases, the user will be suggested to use the ”ezsubtreeremove.php” script located in the
”bin/php/” directory. Subtrees containing more nodes than the value of ”MaxNodesRemoveSub-
tree” can and will not be removed through HTTP (using a web browser to access a siteaccess).

If several subtrees are selected for removal, only the ones containing less nodes than allowed
will be removed when the ”OK” button is clicked within the removal dialog of the administration
interface. The default value of this setting is 100, which means that subtrees containing more
than 100 nodes can’t be removed through HTTP, not even by users with administrator privileges.

This setting has been introduced in order to avoid cases which might lead to corrupt databases.
The time it takes to remove a subtree is proportional with the number of nodes that it contains.
If the required processing time exceeds the maximum execution time for PHP scripts, the con-
nection will be lost and thus the database will most likely be left in an inconsistent state.

Examples

Example 1

MaxNodesRemoveSubtree=50

This configuration will not allow the removal of subtrees that contain more than 50 nodes over
HTTP. Subtrees containing more than 50 nodes will have to be removed manually using the
”ezsubtreeremove.php” script.

5.13.6 Configuration files / content.ini 1477

5

[UnpublishSettings]

ClassList (page 1478)
Sets the content classes that use the ”Date and time” datatype (used by the ”unpublish.php”
cronjob).

RootNodeList (page 1479)
Controls which subtrees that will be affected by the ”unpublish.php” cronjob.

5.13.6 Configuration files / content.ini 1478

5

ClassList

Summary

Sets the content classes that use the ”Date and time” datatype (used by the ”unpublish.php”
cronjob).

Usage

ClassList[]=class id1
ClassList[]=class id2
...

Description

This setting reveals the content classes that contain attributes which can be used by the ”un-
publish.php” script. Please note that you’ll have to use ID numbers here, not identifiers. Only
objects that are of these classes will be affected by the script. In addition, the ”RootNodeList
(page 1479)” directive must be used to specify which subtrees that can have their nodes affected
by the cronjob script.

Examples

Example 1

ClassList[]=2

Assuming that the ID number of your article class is 2, this configuration will tell the ”unpub-
lish.php” cronjob to check the date and time values specified in the ”unpublish date” attribute of
the article(s).

5.13.6 Configuration files / content.ini 1479

5

RootNodeList

Summary

Controls which subtrees that will be affected by the ”unpublish.php” cronjob.

Usage

RootNodeList[]=node id1
RootNodeList[]=node id2
...

Description

If you are using the ”unpublish.php” cronjob to delete (move to Trash) your content objects when
a specified date and time is reached, you can use this directive to specify which parent nodes that
will have their children (recursively) affected by the unpublish feature. The ”RootNodeList”
configuration array is empty by default, i.e. no objects will be removed.

Examples

Example 1

RootNodeList[]=2

This will tell the system that the ”unpublish.php” cronjob can be applied to any item in the
content tree.

5.13.6 Configuration files / content.ini 1480

5

[VersionManagement]

Read more (page 106) about the versioning system in eZ Publish.

DefaultVersionHistoryLimit (page 1487)
Sets the number of concurrent versions that can exist of an object.

DeleteDrafts (page 1485)
Sets if drafts should be discarded if there is no room to create a new draft.

DraftsCleanUpLimit (page 1482)
Sets the maximum number of drafts to remove at one call of the ”old drafts cleanup.php”
cronjob script.

DraftsDuration (page 1484)
Sets how long a draft can exist in the system before it is considered old and can be removed.

InternalDraftsCleanUpLimit (page 1481)
Sets the maximum number of internal drafts to remove at one call of the ”internal drafts
cleanup.php” cronjob script.

InternalDraftsDuration (page 1483)
Sets how long an internal draft can exist in the system before it is considered old and can
be removed.

VersionHistoryClass (page 1486)
Sets the number of concurrent versions that can exist of an object per class.

5.13.6 Configuration files / content.ini 1481

5

InternalDraftsCleanUpLimit

Summary

Sets the maximum number of internal drafts to remove at one call of the ”internal drafts
cleanup.php” cronjob script.

Usage

InternalDraftsCleanUpLimit=number

Description

This setting allows to limit the number of internal drafts that can be removed at one call of the
”internal drafts cleanup.php” cronjob script.

Examples

Example 1

InternalDraftsCleanUpLimit=100

This will tell the system that the ”internal drafts cleanup.php” cronjob script should not remove
more than 100 drafts at a time.

5.13.6 Configuration files / content.ini 1482

5

DraftsCleanUpLimit

Summary

Sets the maximum number of drafts to remove at one call of the ”old drafts cleanup.php” cronjob
script.

Usage

DraftsCleanUpLimit=number

Description

This setting allows to limit the number of drafts that can be removed at one call of the ”old drafts
cleanup.php” cronjob script.

Examples

Example 1

DraftsCleanUpLimit=100

This will tell the system that the ”old drafts cleanup.php” cronjob script should not remove more
than 100 drafts at a time.

5.13.6 Configuration files / content.ini 1483

5

InternalDraftsDuration

Summary

Sets how long an internal draft can exist in the system before it is considered old and can be
removed.

Usage

InternalDraftsDuration[days]=number of days
InternalDraftsDuration[hours]=number of hours
InternalDraftsDuration[minutes]=number of minutes
InternalDraftsDuration[seconds]=number of seconds

Description

Use this setting to specify the number of days, hours, minutes and seconds before an internal
draft is considered old and can be removed. Note that the ”internal drafts cleanup.php” cronjob
script must be run periodically for this setting to have any effect.

Examples

Example 1

InternalDraftsDuration[]
InternalDraftsDuration[days]=0
InternalDraftsDuration[hours]=20
InternalDraftsDuration[minutes]=0
InternalDraftsDuration[seconds]=0

With this configuration, the ”internal drafts cleanup.php” cronjob script will remove untouched
drafts that have been in the system for over 20 hours.

5.13.6 Configuration files / content.ini 1484

5

DraftsDuration

Summary

Sets how long a draft can exist in the system before it is considered old and can be removed.

Usage

DraftsDuration[days]=number of days
DraftsDuration[hours]=number of hours
DraftsDuration[minutes]=number of minutes
DraftsDuration[seconds]=number of seconds

Description

Use this setting to specify the number of days, hours, minutes and seconds before a draft is
considered old and can be removed. Note that the ”old drafts cleanup.php” cronjob script must
be run periodically for this setting to have any effect.

Examples

Example 1

DraftsDuration[]
DraftsDuration[days]=30
DraftsDuration[hours]=0
DraftsDuration[minutes]=0
DraftsDuration[seconds]=0

With this configuration, the ”old drafts cleanup.php” cronjob script will remove drafts that have
been in the system for over 30 days.

5.13.6 Configuration files / content.ini 1485

5

DeleteDrafts

Summary

Sets if drafts should be discarded if there is no room to create a new draft.

Usage

DeleteDrafts=enabled|disabled

Description

This settings controls what eZ Publish should do if a user wants to create a new draft but there
are no ”empty” versions.

• disabled - (default) The oldest archived version is discarded. If there are no archived
versions to discard the user is shown an error screen and is given the possibility to remove
drafts.

• enabled - The oldest archived version is discarded. If there are no archived versions to
discard eZ Publish discards the oldest draft.

5.13.6 Configuration files / content.ini 1486

5

VersionHistoryClass

Summary

Sets the number of concurrent versions that can exist of an object per class.

Usage

VersionHistoryClass[class id1]= number

VersionHistoryClass[class id2]= number

...

Description

This setting is similar to DefaultVersionHistoryLimit (page 1487) but allows you to set the maxi-
mum number of versions per class giving you more fine grained control.

A typical scenario is to limit the number of versions of posts in your public forum, but not for the
other classes in the system.

Examples

VersionHistoryClass[1]=5
VersionHistoryClass[3]=3

Using these settings eZ Publish will allow 5 versions for objects of classes with id 1 and 3 versions
for objects of class 3. Other objects in your system will use the global DefaultVersionHistoryLimit
(page 1487) to determine the maximum number of versions.

5.13.6 Configuration files / content.ini 1487

5

DefaultVersionHistoryLimit

Summary

Sets the number of concurrent versions that can exist of an object.

Usage

DefaultVersionHistoryLimit= number

Description

This setting globally determines how many versions eZ Publish will store of a specific object
including drafts.
You should never set this setting below 2 since you need to allow at least one published version
and one draft.

5.13.6 Configuration files / content.ini 1488

5

[VersionView]

AllowChangeButtons (page 1490)
This setting is not used anymore.

AllowVersionsButton (page 1489)
This setting is not used anymore.

AvailableSiteDesignList (page 1492)
DEPRECATED (Sets the sitedesigns that are used by the complete site.)

DefaultPreviewDesign (page 1491)
Sets the default preview design for eZ Publish releases prior to 3.6.

5.13.6 Configuration files / content.ini 1489

5

AllowVersionsButton

Summary

This setting is not used anymore.

Usage

AllowVersionsButton=enabled|disabled

5.13.6 Configuration files / content.ini 1490

5

AllowChangeButtons

Summary

This setting is not used anymore.

Usage

AllowChangeButtons=enabled|disabled

5.13.6 Configuration files / content.ini 1491

5

DefaultPreviewDesign

Summary

Sets the default preview design for eZ Publish releases prior to 3.6.

Usage

DefaultPreviewDesign= design name

5.13.6 Configuration files / content.ini 1492

5

AvailableSiteDesignList

Summary

DEPRECATED (Sets the sitedesigns that are used by the complete site.)

Usage

AvailableSiteDesignList[]=design1
AvailableSiteDesignList[]=design2
...

Description

Note: This setting is deprecated and no longer used.

This setting defines the complete set of designs (page 152) that is used by your site. The value is
used by the caching system to clear the correct caches when your site is updated. In addition the
designs listed here will be available when you are previewing content.

eZ Publish will only clear the caches of the listed designs when content is published. To ensure
the correct operation of your site it is important that you list all the designs you are using with
this setting.

Examples

AvailableSiteDesignList[]=standard
AvailableSiteDesignList[]=base
AvailableSiteDesignList[]=admin

5.13.7 Configuration files / contentstructuremenu.ini 1493

5

5.13.7 contentstructuremenu.ini

The configuration blocks are documented in the following sections:

• [TreeMenu] (page 1494)

5.13.7 Configuration files / contentstructuremenu.ini 1494

5

[TreeMenu]

Dynamic (page 1495)
Sets which implementation of the tree menu that should be used.

MaxDepth (page 1496)
Sets the maximal depth for the tree menu.

RootNodeID (page 1497)
Sets the root node for the tree menu.

ShowClasses (page 1498)
Sets which types of nodes to show in the tree menu.

5.13.7 Configuration files / contentstructuremenu.ini 1495

5

Dynamic

Summary

Sets which implementation of the tree menu that should be used.

Usage

Dynamic=enabled|disabled

Description

This directive can be used to switch between the original and the new implementation of the
tree menu. If you have a large site with many nodes, make sure that this switch is enabled
for your administration siteaccess; it will boost the performance of the tree menu and eliminate
unoptimized usage of network bandwidth by reducing the amount of traffic involved.

The dynamic tree menu has been introduced in eZ Publish 3.10. It makes use of AJAX technology,
which is supported by all modern browsers. The new implementation makes it possible to avoid
problems with the tree menu on sites that have huge amount of nodes. Unlike the original
implementation, instead of fetching information about the whole content structure tree for every
page that is requested, the new one generates menu structures on the fly. The amount of data
transferred between the client and the server is minimized. Since the tree menu structure is
cached in the browser, only necessary information is transferred through the network.

Refer to the specifications for more information about this feature.

http://en.wikipedia.org/wiki/Ajax_(programming)
http://pubsvn.ez.no/nextgen/trunk/doc/specifications/3.10/dynamic_content_structure_menu/

5.13.7 Configuration files / contentstructuremenu.ini 1496

5

MaxDepth

Summary

Sets the maximal depth for the tree menu.

Usage

MaxDepth=number

Description

Sets the maximum level of depth that should be explored. The default value is 0 which means
”unlimited”. If a non-zero number is specified, the tree will only go to this depth.

Note that this setting will be ignored when the ”Dynamic (page 1495)” switch is enabled.

Examples

Example 1

MaxDepth=1

This will tell the system to show only the ”Content” top level node without subitems.

Example 2

MaxDepth=2

This will instruct the system to show only the root node and its children without further exploring.

5.13.7 Configuration files / contentstructuremenu.ini 1497

5

RootNodeID

Summary

Sets the root node for the tree menu.

Usage

RootNodeID=node id

Description

This setting controls which node to use as the root one for the tree menu. The default value is
2 which means that the ”Content structure” menu will display a tree containing the nodes that
belong to the ”Content” top level node (node ID= 2).

5.13.7 Configuration files / contentstructuremenu.ini 1498

5

ShowClasses

Summary

Sets which types of nodes to show in the tree menu.

Usage

ShowClasses[]=class identifier1
ShowClasses[]=class identifier2
...

Description

The ”Content structure” tree in the administration interface only shows certain types of nodes by
default. The ”ShowClasses” setting determines which types of nodes to show. If a content class
is not listed in this array, then a node that encapsulates an object of this class will not be shown
in the tree menu.

Examples

Example 1

ShowClasses[]
ShowClasses[]=folder
ShowClasses[]=product
ShowClasses[]=article

This will tell the system to show folders, products and articles in the tree menu. Any other nodes
will not be shown.

Example 2

ShowClasses[]

This allows the tree menu to show all kinds of nodes.

5.13.8 Configuration files / country.ini 1499

5

5.13.8 country.ini

The configuration blocks are documented in the following sections:

• [two-letter country code] (page 1500)

5.13.8 Configuration files / country.ini 1500

5

[two-letter country code]

Alpha2 (page 1503)
Sets the alpha-2 code of the country.

Alpha3 (page 1502)
Sets the alpha-3 code of the country.

IDC (page 1501)
Sets the International dialing code of the country.

Name (page 1504)
Sets the name of the country.

5.13.8 Configuration files / country.ini 1501

5

IDC

Summary

Sets the International dialing code of the country.

Usage

IDC=number

Description

Use this directive to specify the International dialing code of the country that is represented by
”two-letter country code” (name of the configuration block).

http://en.wikipedia.org/wiki/List_of_country_calling_codes

5.13.8 Configuration files / country.ini 1502

5

Alpha3

Summary

Sets the alpha-3 code of the country.

Usage

Alpha3=code

Description

Use this directive to specify the ISO 3166-1 alpha-3 code of the country that is represented by
”two-letter country code” (name of the configuration block).

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-3

5.13.8 Configuration files / country.ini 1503

5

Alpha2

Summary

Sets the alpha-2 code of the country.

Usage

Alpha2=code

Description

Use this directive to specify the ISO 3166-1 alpha-2 code of the country that is represented by
”two-letter country code” (name of the configuration block).

Examples

Example 1

[NO]
Name=Norway
Alpha2=NO
Alpha3=NOR
IDC=47

With this configuration, the system will know that ISO 3166-1 alpha-2 code for Norway is ”NO”,
alpha-3 code is ”NOR” and International dialing code is +47.

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

5.13.8 Configuration files / country.ini 1504

5

Name

Summary

Sets the name of the country.

Usage

Name=name of country

Description

Use this directive to specify the name of the country that is represented by ”two-letter country
code” (name of the configuration block).

5.13.9 Configuration files / cronjob.ini 1505

5

5.13.9 cronjob.ini

The configuration blocks are documented in the following sections:

• [CronjobPart-group of tasks] (page 1506)

• [CronjobSettings] (page 1510)

• [linkCheckSettings] (page 1508)

5.13.9 Configuration files / cronjob.ini 1506

5

[CronjobPart-group of tasks]

Scripts (page 1507)
Specifies the cronjob scripts that will be executed for this cronjob part.

5.13.9 Configuration files / cronjob.ini 1507

5

Scripts

Summary

Specifies the cronjob scripts that will be executed for this cronjob part.

Usage

Scripts[]=cronjob script1
Scripts[]=cronjob script2
...

Description

This setting contains a list of cronjob scripts that will be run when the ”group of tasks” set of
cronjobs is executed. Please refer to the ”Configuring cronjobs (page 334)” section for more
information and examples.

5.13.9 Configuration files / cronjob.ini 1508

5

[linkCheckSettings]

SiteURL (page 1509)
Sets the site URLs to use when validating internal links by the linkcheck cronjob.

5.13.9 Configuration files / cronjob.ini 1509

5

SiteURL

Summary

Sets the site URLs to use when validating internal links by the linkcheck cronjob.

Usage

SiteURL[]=URL1
SiteURL[]=URL2
...

Description

Specify your site URLs so that the ”linkcheck.php” cronjob will handle relative URLs (internal
links) properly.

Examples

SiteURL[]=http://admin.mysite.com
SiteURL[]=http://mysite.com

This example will tell the linkcheck script to use ”http://admin.mysite.com” and ”http://
mysite.com” site URLs when checking relative URLs like ”/products/black box”.

5.13.9 Configuration files / cronjob.ini 1510

5

[CronjobSettings]

ExtensionDirectories (page 1511)
Sets one or multiple extension directories that may contain cronjobs.

ScriptDirectories (page 1513)
Sets one or multiple directories that may contain cronjobs.

Scripts (page 1512)
Specifies the cronjob scripts that will be executed.

5.13.9 Configuration files / cronjob.ini 1511

5

ExtensionDirectories

Summary

Sets one or multiple extension directories that may contain cronjobs.

Usage

ExtensionDirectories[]= extension1

ExtensionDirectories[]= extension2

...

Description

The cronjob script will search through all the ”cronjobs” directories of the specified extensions.

Examples

Scripts[]=workflow.php
Scripts[]=notification.php
Scripts[]=linkcheck.php
ExtensionDirectories[]=myExtension

This example will search through the myExtension/cronjobs directories to find the workflow,
notification, and linkcheck cronjobs.

5.13.9 Configuration files / cronjob.ini 1512

5

Scripts

Summary

Specifies the cronjob scripts that will be executed.

Usage

Scripts[]= cronjob script

Scripts[]= cronjob script2

...

Examples

ScriptDirectories[]=cronjobs
ScriptDirectories[]=cronjobs2
Scripts[]=workflow.php
Scripts[]=notification.php
Scripts[]=linkcheck.php

This example will search through the cronjobs and cronjobs2 directories to find the workflow,
notification, and linkcheck cronjobs.

5.13.9 Configuration files / cronjob.ini 1513

5

ScriptDirectories

Summary

Sets one or multiple directories that may contain cronjobs.

Usage

ScriptDirectories[]= directory

ScriptDirectories[]= directory2

...

Description

The cronjob script will search through all the ScriptDirectories to find cronjobs.

Examples

ScriptDirectories[]=cronjobs
ScriptDirectories[]=cronjobs2
Scripts[]=workflow.php
Scripts[]=notification.php
Scripts[]=linkcheck.php

This example will search through the cronjobs and cronjobs2 directories to find the workflow,
notification, and linkcheck cronjobs.

5.13.10 Configuration files / datatype.ini 1514

5

5.13.10 datatype.ini

5.13.11 Configuration files / datetime.ini 1515

5

5.13.11 datetime.ini

5.13.12 Configuration files / dbschema.ini 1516

5

5.13.12 dbschema.ini

5.13.13 Configuration files / debug.ini 1517

5

5.13.13 debug.ini

5.13.14 Configuration files / design.ini 1518

5

5.13.14 design.ini

The configuration blocks are documented in the following sections:

• [ExtensionSettings] (page 1525)

• [JavaScriptSettings] (page 1519)

• [StylesheetSettings] (page 1521)

5.13.14 Configuration files / design.ini 1519

5

[JavaScriptSettings]

JavaScriptList (page 1520)
Sets the JavaScript files to include in the pagelayout.

5.13.14 Configuration files / design.ini 1520

5

JavaScriptList

Summary

Sets the JavaScript files to include in the pagelayout.

Usage

JavaScriptList[]= javascript1

JavaScriptList[]= javascript2

...

Description

You should provide the full path relative to the design directory.

Examples

JavaScriptList[]=javascipts/mynewticker.js

Using this configuration eZ Publish will load the file ”/design/ mydesign/javascripts/
mynewsticker.js”

5.13.14 Configuration files / design.ini 1521

5

[StylesheetSettings]

ClassesCSS (page 1523)
Sets the CSS files which contains class definitions for the base layout.

CSSFileList (page 1522)
Sets the CSS files to include in the pagelayout.

SiteCSS (page 1524)
Sets the global CSS file for designs based on the base layout.

5.13.14 Configuration files / design.ini 1522

5

CSSFileList

Summary

Sets the CSS files to include in the pagelayout.

Usage

CSSFileList[]= css file1

CSSFileList[]= css file2

...

Description

Sets the CSS files that should automatically be included in the pagelayout. You should provide
the full path relative to the stylesheets subdirectory in the design directory.

Examples

CSSFileList[]=mycss.css

Using this configuration eZ Publish will load the file ”/design/ mydesign/stylesheets/mycss.css”.

5.13.14 Configuration files / design.ini 1523

5

ClassesCSS

Summary

Sets the CSS files which contains class definitions for the base layout.

Usage

ClassesCSS= path to CSS file

5.13.14 Configuration files / design.ini 1524

5

SiteCSS

Summary

Sets the global CSS file for designs based on the base layout.

Usage

SiteCSS= path to css file

5.13.14 Configuration files / design.ini 1525

5

[ExtensionSettings]

DesignExtensions (page 1526)
Sets which extensions that have designs.

5.13.14 Configuration files / design.ini 1526

5

DesignExtensions

Summary

Sets which extensions that have designs.

Usage

DesignExtensions[]= extension1

DesignExtensions[]= extension2

...

Description

By default eZ Publish will only look for designs in the ”/design” directory. If your extensions
provide designs you must tell eZ Publish by providing the extension name in the DesignExtensions
setting.

eZ Publish will look for designs in the directory ”/extension/ extension name/design/”

This setting is typically overriden in the design.ini.append in extensions.

Examples

DesignExtensions[]=myextension

eZ Publish will now search for designs in ”/extension/myextension/design”.

5.13.15 Configuration files / error.ini 1527

5

5.13.15 error.ini

5.13.16 Configuration files / extendedattributefilter.ini 1528

5

5.13.16 extendedattributefilter.ini

5.13.17 Configuration files / ezxml.ini 1529

5

5.13.17 ezxml.ini

The configuration blocks are documented in the following sections:

• [InputSettings] (page 1530)

5.13.17 Configuration files / ezxml.ini 1530

5

[InputSettings]

AllowNumericEntities (page 1531)
Controls wether numerical HTML entities should be allowed.

5.13.17 Configuration files / ezxml.ini 1531

5

AllowNumericEntities

Summary

Controls wether numerical HTML entities should be allowed.

Usage

AllowNumericEntities=enabled|disabled

Description

This directive can be used to control wether numerical HTML entities entered into XML fields
(when using the XML block datatype) should be translated to their corresponding characters/
symbols. By default, numerical HTML entities are disabled, but this doesn’t disallow the direct
entry of entities in XML fields. What happens is that if you enter the following...

Ӓ

...you will see the exact same text when the page containing the XML is being shown.

When enabled, the entered entities will be translated and thus the system will show their cor-
responding symbols/characters/letters instead of the entered values. The syntax for entities is
standard HTML: an ampersand followed by a hash, the number of the entity and a semicolon.

This feature is useful when there is a need to enter single special characters like for example
Greek letters even if they are not supported by the character set being used. For example, the
following...

Ω

...the system will produce a Greek capital omega letter instead of showing the code.

5.13.18 Configuration files / fetchalias.ini 1532

5

5.13.18 fetchalias.ini

5.13.19 Configuration files / file.ini 1533

5

5.13.19 file.ini

5.13.20 Configuration files / i18n.ini 1534

5

5.13.20 i18n.ini

The configuration blocks are documented in the following sections:

• [CharacterSettings] (page 1535)

5.13.20 Configuration files / i18n.ini 1535

5

[CharacterSettings]

Charset (page 1536)
Sets the character set that eZ Publish should use

5.13.20 Configuration files / i18n.ini 1536

5

Charset

Summary

Sets the character set that eZ Publish should use

Usage

Charset=character set

Description

This directive can be used to set the internal charset for the site. The default value is ”utf-8”.
Note that eZ Publish 4 requires UTF-8 to be used as the character set in the database, and thus
you should never change this setting.

Examples

Example 1

Charset=utf-8

This will set the output character set of eZ Publish to UTF-8 (default).

5.13.21 Configuration files / icon.ini 1537

5

5.13.21 icon.ini

5.13.22 Configuration files / image.ini 1538

5

5.13.22 image.ini

5.13.23 Configuration files / layout.ini 1539

5

5.13.23 layout.ini

5.13.24 Configuration files / ldap.ini 1540

5

5.13.24 ldap.ini

The configuration blocks are documented in the following sections:

• [LDAPSettings] (page 1541)

5.13.24 Configuration files / ldap.ini 1541

5

[LDAPSettings]

5.13.25 Configuration files / logfile.ini 1542

5

5.13.25 logfile.ini

The configuration blocks are documented in the following sections:

• [AccessLogFileSettings] (page 1543)

5.13.25 Configuration files / logfile.ini 1543

5

[AccessLogFileSettings]

LogFileName (page 1545)
Sets the name of the Apache log file.

SitePrefix (page 1544)
Sets which prefixes that are used in the Apache log of requested URLs.

StorageDir (page 1546)
Sets the directory where eZ Publish will look for the Apache log file.

5.13.25 Configuration files / logfile.ini 1544

5

SitePrefix

Summary

Sets which prefixes that are used in the Apache log of requested URLs.

Usage

SitePrefix[]=siteaccess1
SitePrefix[]=siteaccess2
...

Description

If the ”updateviewcount.php” cronjob script is run periodically, it will analyze the requested
URLs stored in the Apache log file. When the URI access method is used, the requested URLs will
contain the name of the target siteaccess. For example, the following URL will tell eZ Publish to
use the ”example admin” siteaccess: http://www.mysite.com/example admin. If you wish these
prefixes to be removed before analyzing the log file, specify the names of the siteaccesses using
the ”SitePrefix” directive.

5.13.25 Configuration files / logfile.ini 1545

5

LogFileName

Summary

Sets the name of the Apache log file.

Usage

LogFileName=file name

Description

The node view count (number of page views) in the database isn’t updated by the module/view
system when the different nodes are being shown. To make the view counter work, you must
periodically run the ”updateviewcount.php” cronjob script. The script will extract information
from the Apache log file and store it in the database. Please note that this directive can only be
used to set the name of the log file. The path to the file must be specified using the StorageDir
(page 1546) directive.

Examples

Example 1

StorageDir=/var/log/httpd/
LogFileName=access_log

This configuration will tell eZ Publish to use the ”access log” file inside the ”/var/log/httpd/”
directory.

5.13.25 Configuration files / logfile.ini 1546

5

StorageDir

Summary

Sets the directory where eZ Publish will look for the Apache log file.

Usage

StorageDir=directory name

Description

The node view count (number of page views) in the database isn’t updated by the module/view
system when the different nodes are being shown. To make the view counter work, you must
periodically run the ”updateviewcount.php” cronjob script. The script will extract information
from the Apache log file and store it in the database. Please note that this directive can only be
used to specify the path to the log file. Use the ”LogFileName” (page 1545) directive to set the
actual name of the file.

Examples

Example 1

StorageDir=/var/log/httpd/
LogFileName=access_log

This configuration will tell eZ Publish to use the ”access log” file inside the ”/var/log/httpd/”
directory.

5.13.26 Configuration files / menu.ini 1547

5

5.13.26 menu.ini

5.13.27 Configuration files / module.ini 1548

5

5.13.27 module.ini

5.13.28 Configuration files / notification.ini 1549

5

5.13.28 notification.ini

5.13.29 Configuration files / override.ini 1550

5

5.13.29 override.ini

Please refer to the following pages:

• The template override system (page 224)

• Template override example (page 226)

• Template override conditions (page 1369)

5.13.30 Configuration files / package.ini 1551

5

5.13.30 package.ini

5.13.31 Configuration files / paymentgateways.ini 1552

5

5.13.31 paymentgateways.ini

5.13.32 Configuration files / setup.ini 1553

5

5.13.32 setup.ini

5.13.33 Configuration files / shopaccount.ini 1554

5

5.13.33 shopaccount.ini

The configuration blocks are documented in the following sections:

• [AccountSettings] (page 1555)

5.13.33 Configuration files / shopaccount.ini 1555

5

[AccountSettings]

Handler (page 1556)
Controls which shop account handler that will be used.

5.13.33 Configuration files / shopaccount.ini 1556

5

Handler

Summary

Controls which shop account handler that will be used.

Usage

Handler=ezuser|ezdefault|ezsimple

Description

This directive controls how the webshop system will get and store the information about the
user when he/she initiates the checkout process. More generally, this directive sets which shop
account handler that will be used. A shop account handler is a PHP class providing a mechanism
that handles and stores customer information for webshop orders. The system behavior during
the checkout process will depend on which shop account handler that is used. The default value
of this setting is ”ezuser”, which means that users do not need to be logged in when making their
orders.

There are three built-in shop account handlers called ”ezuser”, ”ezdefault” and ”ezsimple”. These
are located in the ”kernel/classes/shopaccounthandlers” directory. The following table describes
the built-in shop account handlers and how the checkout process behaves when the different
handlers are selected.

Handler Description Details of the checkout pro-
cess

ezuser Users do not need to be When the ”Checkout” button
logged in when making or- is clicked, the system will
ders (the checkout form will bring up the checkout form
be used). asking the user to provide

necessary information for the
order (name, email, country
and address of the customer,
plus optional company name
and comment). After that,
the ”Confirm order” interface
will be displayed.
Note that if the user is logged
in, then some of the fields
in the checkout form (e.g.
”First Name”) will be auto-
matically pre-filled according
to the user’s account data
(fetched from the content ob-
ject representing the user).

5.13.33 Configuration files / shopaccount.ini 1557

5

In order to use this shop ac-
count handler, you need to
make sure that anonymous
users are granted access to
the ”buy” function of the
”shop” module.

ezdefault Users need to be logged in When the ”Checkout” but-
when making orders. ton is clicked, the system

will check whether the user
is logged in or not. If
yes, the system will bring
up the ”Confirm order” in-
terface. Otherwise, the user
will be suggested to log in
first and then (if successful)
the ”Confirm order” interface
will be displayed.

ezsimple Users need to fill in the shop When the ”Checkout” button
account registration form is clicked, the system will
when making orders. bring up the ”Register ac-

count information” form ask-
ing the user to provide neces-
sary information for creating
a new shop account (name,
email and post address of
the customer). After that,
the ”Confirm order” interface
will be displayed.
Note that logged in users
can make orders for other
people by providing some-
one else’s contact details in
the shop account registra-
tion form. The system will
not compare the informa-
tion provided in the registra-
tion form with the currently
logged in user’s actual ac-
count data.
In order to use this shop ac-
count handler, you need to
make sure that anonymous
users are granted access to
the ”buy” function of the
”shop” module.
It is not recommended to use

5.13.33 Configuration files / shopaccount.ini 1558

5

the ”ezsimple” handler if you
charge different VAT (page
345) percentage depending
on the country the customer
lives in. The main reason is
that users are not supposed
to specify their country while
filling the ”Register account
information” form; and thus
the system will not be able
to calculate the amount of
VAT for users that are not
logged in (they will get an er-
ror message).

5.13.34 Configuration files / site.ini 1559

5

5.13.34 site.ini

The configuration blocks are documented in the following sections:

• [BackwardCompatibilitySettings] (page 1561)

• [ContentSettings] (page 1563)

• [DatabaseSettings] (page 1575)

• [DebugSettings] (page 1597)

• [DesignSettings] (page 1608)

• [ExtensionSettings] (page 1612)

• [FileSettings] (page 1616)

• [FormProcessSettings] (page 1626)

• [HTTPHeaderSettings] (page 1628)

• [InformationCollectionSettings] (page 1630)

• [MailSettings] (page 1632)

• [OverrideSettings] (page 1645)

• [PortAccessSettings] (page 1647)

• [ProxySettings] (page 1649)

• [RegionalSettings] (page 1653)

• [RoleSettings] (page 1668)

• [RSSSettings] (page 1674)

• [SearchSettings] (page 1680)

• [Session] (page 1692)

• [SetupSettings] (page 1701)

• [ShopSettings] (page 1706)

• [SiteAccessRules] (page 1710)

• [SiteAccessSettings] (page 1713)

• [SiteSettings] (page 1747)

• [SSLZoneSettings] (page 1758)

• [TemplateSettings] (page 1762)

5.13.34 Configuration files / site.ini 1560

5

• [TimeZoneSettings] (page 1776)

• [TipAFriend] (page 1778)

• [UnitSettings] (page 1782)

• [URLTranslator] (page 1785)

• [UserSettings] (page 1792)

5.13.34 Configuration files / site.ini 1561

5

[BackwardCompatibilitySettings]

ObjectRelationTyped (page 1562)
Controls how relations of the ”XML linked” type are handled.

5.13.34 Configuration files / site.ini 1562

5

ObjectRelationTyped

Summary

Controls how relations of the ”XML linked” type are handled.

Usage

ObjectRelationTyped=enabled|disabled

Description

In eZ Publish versions prior to 3.9, object relations of the ”XML linked” type are not supported.
From 3.9, a relation of the ”XML linked” type is created automatically when an internal link is
inserted into an attribute represented by the ”XML block” datatype. The ”ObjectRelationTyped”
setting controls whether the system should include relations of the ”XML linked” type when
fetching/inspecting all relations. This directive is enabled by default. If disabled, the system
will skip relations of the ”XML linked” type when fetching/inspecting all relations. In particular,
related objects that have relations of the ”XML linked” type will not be shown in the ”Related
objects” window when you edit content, nor will they be present in the list of related objects
when an object/node is being viewed from within the administration interface.

5.13.34 Configuration files / site.ini 1563

5

[ContentSettings]

CacheDir (page 1574)
Sets the directory where eZ publish stores view cache files.

CachedViewModes (page 1572)
Sets which of the content view modes that use view cache.

CachedViewPreferences (page 1571)
Sets the user preferences each view mode depends on.

CacheThreshold (page 1568)
Sets the treshold for content cache cleanup

ComplexDisplayViewModes (page 1569)
Sets content views that have their content cache expired whenever an object is published.

EditDirtyObjectAction (page 1567)
Sets what eZ Publish should do if the user tries to edit a page that has a draft that is newer
than the published version.

PreCacheSiteaccessArray (page 1565)
Sets the siteaccesses that will have view cache created when an object is published.

PreViewCache (page 1566)
Sets if eZ publish should generate the view cache when an object is published.

PreviewCacheUsers (page 1564)
Sets the users that should have view cache generated when an object is published.

StaticCache (page 1570)
Sets if static caching should be enabled or not.

ViewCaching (page 1573)
Sets if view caching should be enabled or not.

5.13.34 Configuration files / site.ini 1564

5

PreviewCacheUsers

Summary

Sets the users that should have view cache generated when an object is published.

Usage

PreviewCacheUsers[]=anonymous|current|user id1
PreviewCacheUsers[]=anonymous|current|user id2
...

Description

By default eZ publish will generate view cache for the anonymous user. Using this setting you
can specify additional user IDs that eZ publish will generate view cache for.
You must enable PreViewCache (page 1566) for this setting to have any effect.

Examples

PreviewCacheUsers[]=anonymous
PreviewCacheUsers[]=current
PreviewCacheUsers[]=23

Using these settings eZ publish will generate view cache for the anonymous user, the current user
and the user with ID 23 when an object is published.

5.13.34 Configuration files / site.ini 1565

5

PreCacheSiteaccessArray

Summary

Sets the siteaccesses that will have view cache created when an object is published.

Usage

PreCacheSiteaccessArray[]=siteaccess1
PreCacheSiteaccessArray[]=siteaccess2
...

Description

You must enable PreViewCache (page 1566) for this setting to have any effect. The ”Pre-
CacheSiteaccessArray” setting controls which siteaccesses the view cache should be generated
for when an object is published. Please refer to the ”Pre-generation of view cache (page 422)”
section for more information.

Examples

PreViewCache=enabled
PreCacheSiteaccessArray[]=admin
PreCacheSiteaccessArray[]=base

With these settings eZ publish will create view cache when an object is published for the admin
and the base siteacesses.

5.13.34 Configuration files / site.ini 1566

5

PreViewCache

Summary

Sets if eZ publish should generate the view cache when an object is published.

Usage

PreViewCache=enabled|disabled

Description

Enabling this setting will make the publishing process a bit slower. However, the first request to
the page will be a bit faster. For sites with lots of content editors you should disable this setting.
Please refer to the ”Pre-generation of view cache (page 422)” section for more information.

5.13.34 Configuration files / site.ini 1567

5

EditDirtyObjectAction

Summary

Sets what eZ Publish should do if the user tries to edit a page that has a draft that is newer than
the published version.

Usage

EditDirtyObjectAction=showversions|usecurrent

Description

If you select showversions eZ Publish will display a page with all the available versions, including
drafts. The user can then select which version he wants to base the new draft on.
If you select usecurrent eZ Publish will create a new draft based on the published version and let
the user edit that.

5.13.34 Configuration files / site.ini 1568

5

CacheThreshold

Summary

Sets the treshold for content cache cleanup

Usage

CacheTreshold= number

Description

The threshold for file cleanup, if it is exceeded a global expiry is used instead. The value is
calculated with the number of affected nodes * viewmodes * translations * sitedesign.
Note: This is an internal change that you should not change unless you are a developer.

5.13.34 Configuration files / site.ini 1569

5

ComplexDisplayViewModes

Summary

Sets content views that have their content cache expired whenever an object is published.

Usage

ComplexDisplayViewModes= view1 [; view2]...

5.13.34 Configuration files / site.ini 1570

5

StaticCache

Summary

Sets if static caching should be enabled or not.

Usage

StaticCache=enabled|disabled

Description

Static caching means that some pages on your system will be stored and served completely in
HTML with a huge speed improvement. You can only use static caching for pages that do not
have any dynamic elements (e.g the pages are available to everyone and looks exactly the same
to all users).

Static caching is configured in staticcache.ini (page 1821).

5.13.34 Configuration files / site.ini 1571

5

CachedViewPreferences

Summary

Sets the user preferences each view mode depends on.

Usage

CachedViewPreferences[viewmode1]=setting1[=defaultvalue1];
setting2[=defaultvalue2]...
CachedViewPreferences[viewmode2]=setting1[=defaultvalue1];
setting2[=defaultvalue2]...
...

Description

Sometimes you have conditions based on user preferences (page 1109) in the templates of cached
view modes (page 1572). eZ publish needs to know the preferences you use per view mode in
order to make sure that the caches are correct. You should use this setting if at least one of your
templates (including override templates) use a condition based on a user preference.

A typical symptom of a missing CachedViewPreferences setting is if you change a preference
setting and the interface is not updated until you clear the cache. Refer to ”Configuring the view
cache” for more information.

Examples

CachedViewPreferences[full]=mysetting;myothersetting=1

This example shows a site where at least one of the templates of the ”full” view mode uses the
mysetting and myothersetting.

5.13.34 Configuration files / site.ini 1572

5

CachedViewModes

Summary

Sets which of the content view modes that use view cache.

Usage

CachedViewModes=view1[;view2][;view3]...

Description

This setting enables the viewcache for the specified view modes (page 171) inside the ”view
(page 760)” view of the content module. When view caching is enabled, the entire result of the
module will be cached. The cache is stored for each possible role combination on your site. This
means that your templates can have conditions based on roles even when caching is on.

In addition, you can enable view caching for the ”pdf (page 741)” view of the content module
by specifying ”pdf” in this setting. In this case, the actual PDF file will be cached. However, note
that the ”pdf” view of the content module is deprecated.

Note:Do not change this setting unless you know what you are doing.

Examples

CachedViewModes=full;sitemap;pdf

This makes eZ publish use view cache on the ”full” and ”sitemap” content view modes (”content/
view/full” and ”content/view/sitemap”). The output of the ”pdf” view within the content module
(”content/pdf”) will also be cached.

5.13.34 Configuration files / site.ini 1573

5

ViewCaching

Summary

Sets if view caching should be enabled or not.

Usage

ViewCaching=enabled|disabled

Description

Viewcache is the terminology we use for cache that stores the complete HTML output of a view
(page 145).

You can turn off view cache during development of a site to force eZ publish to render all tem-
plates on each request.

Note: Live sites should always have ViewCache enabled.

5.13.34 Configuration files / site.ini 1574

5

CacheDir

Summary

Sets the directory where eZ publish stores view cache files.

Usage

CacheDir=directory name

Description

CacheDir is set relative to CacheDir (page 1618). This means that view cache files are stored
within ”var dir/cache dir/directory name/” where ”var dir” is specified by the VarDir (page 1619)
setting and ”cache dir” is specified by the CacheDir (page 1618) setting.

Examples

[FileSettings]
VarDir=var
CacheDir=cache

[ContentSettings]
CacheDir=content

Using these settings the viewcache will be stored in ”var/cache/content/”.

5.13.34 Configuration files / site.ini 1575

5

[DatabaseSettings]

Charset (page 1590)
Sets the character set that eZ publish uses when communicating with the database.

ConnectRetries (page 1592)
Sets the number of database connection retries.

Database (page 1594)
Sets the database to use when connecting to the database server.

DatabaseImplementation (page 1578)
Sets the type of database you are using.

DatabasePluginPath (page 1577)
Sets the path to an external database driver.

ImplementationAlias (page 1584)
Sets alias names for database implementations

Password (page 1595)
Sets the password that eZ publish uses when logging in to the database.

Server (page 1593)
Sets the hostname or the IP address of the database server.

SlaverServerDatabase (page 1579)
The databases to use when logging in to the slaveservers.

SlaverServerPassword (page 1580)
The passwords to use when logging in to the slaveservers.

SlaverServerUser (page 1581)
The usernames to use when logging in to the slaveservers.

SlaveServerArray (page 1582)
The hostnames of the slaveservers to use for read queries.

SlowQueriesOutput (page 1586)
Show queries that where slower than a set amount of time.

Socket (page 1588)
Sets the socket eZ publish should use when connecting to the database.

SQLOutput (page 1587)
Enables the output of SQL queries in the debug output.

Transactions (page 1591)
Enables to make eZ publish use transactions to ensure database integrity.

UseBuiltInEncoding (page 1589)
Use the built in character conversion in the database if available.

5.13.34 Configuration files / site.ini 1576

5

UsePersistentConnection (page 1585)
Controls if database connections should be kept open between eZ publish runs.

User (page 1596)
Sets the username that eZ publish uses when logging in to the database.

UseSlaveServer (page 1583)
Enables the usage of slave database servers for read queries. (MySQL only)

5.13.34 Configuration files / site.ini 1577

5

DatabasePluginPath

Summary

Sets the path to an external database driver.

Usage

DatabasePluginPath= path to database driver

Description

If you want to use a custom database driver you must tell eZ publish where to find it. Use the path
relative to the root of your eZ publish installation. eZ publish will search for the file ”dbname” +
”db.php” in that directory.

Examples

DatabaseImplementation=custom
DatabasePluginPath=extensions/mydbdriver/classes/

eZ publish will now search for the file customdb.php in the directory extensions/mydbdriver/
classes/

5.13.34 Configuration files / site.ini 1578

5

DatabaseImplementation

Summary

Sets the type of database you are using.

Usage

DatabaseImplementation=ezmysql|ezpostgresql|ezoracle

Description

Set this option to ”ezmysql” if you are using a MySQL database. If you are using PostgreSQL
set this option to ”ezpostgresql”. In case you are using an Oracle database (note that the eZ
Publish Extension for Oracle Database is required for this) you should specify ”ezoracle” in the
”DatabaseImplementation” directive.

5.13.34 Configuration files / site.ini 1579

5

SlaverServerDatabase

Summary

The databases to use when logging in to the slaveservers.

Usage

SlaveServerDatabase[]
SlaveServerDatabase[]= database1

SlaveServerDatabase[]= database2

...

Description

Specify one database name on each row of the setting. The order is significant and you have to
use the same order for the settings in SlaveServerArray, SlaverServerUser and SlaverServerPass-
word

Examples

SlaverServerDatabase[]
SlaverServerDatabase[]=publishslave
SlaverServerDatabase[]=publishslave2

This setup will use the database publishslave in the first slave server and the database publish-
slave2 in the second slave server.

5.13.34 Configuration files / site.ini 1580

5

SlaverServerPassword

Summary

The passwords to use when logging in to the slaveservers.

Usage

SlaveServerPassword[]
SlaveServerPassword[]= password1

SlaveServerPassword[]= password2

Description

Specify one password on each row of the setting. The order is significant and you have to use the
same order for the settings in SlaveServerArray, SlaverServerUser and SlaverServerDatabase.

Examples

SlaverServerPassword[]
SlaverServerPassword[]=secret
SlaverServerPassword[]=verysecret

This setup will use the password secret to log in to the first slave server and the password very-
secret to log in to the second slave server.

5.13.34 Configuration files / site.ini 1581

5

SlaverServerUser

Summary

The usernames to use when logging in to the slaveservers.

Usage

SlaveServerUser[]
SlaveServerUser[]= user1

SlaveServerUser[]= user2

Description

Specify one username on each row of the setting. The order is significant and you have to use the
same order for the settings in SlaveServerArray, SlaverServerPassword and SlaverServerDatabase

Examples

SlaverServerUser[]
SlaverServerUser[]=admin
SlaverServerUser[]=root

This setup will use the username admin to log in to the first slave server and the username root
to log in to the second slave server.

5.13.34 Configuration files / site.ini 1582

5

SlaveServerArray

Summary

The hostnames of the slaveservers to use for read queries.

Usage

SlaveServerArray[]
SlaveServerArray[]= hostname1

SlaveServerArray[]= hostname2

...

Description

Specify one database server on each row of the setting. The order is significant and you have to
use the same order for the settings in SlaverServerUser, SlaverServerPassword and SlaverServer-
Database.

Examples

SlaveServerArray[]
SlaveServerArray[]=donald
SlaveServerArray[]=mickey

This setup will load balance read queries between the main database server and the database
servers located on donald and mickey.

5.13.34 Configuration files / site.ini 1583

5

UseSlaveServer

Summary

Enables the usage of slave database servers for read queries. (MySQL only)

Usage

UseSlaveServer=enabled|disabled

Description

Set this option to enabled to make eZ publish load balance read queries between several SQL
servers. This option is database independent and works for all database implementations. You
can set the location and loginingormation for the slave servers using the settings:

• SlaveServerArray

• SlaverServerUser

• SlaverServerPassword

• SlaverServerDatabase

For all other connection options the values set for the standard database will be used.

This option only works on MySQL setups. You can read more about how to set up MySQL
replication here.

5.13.34 Configuration files / site.ini 1584

5

ImplementationAlias

Summary

Sets alias names for database implementations

Usage

ImplementationAlias[aliasname]=ezpostgresql|ezmysql
....

Description

The various database implementatations in eZ publish uses a database driver. These database
drivers have names like ezmysql and ezpostgresql. In order to make let users use more commonly
known names like mysql and postgresql you can set up aliases for the database drivers.

Don’t change this setting unless you know what you are doing.

Examples

ImplementationAlias[]
ImplementationAlias[mysql]=ezmysql

This setting means that you can use the alias mysql when you want to use the ezmysql driver.

5.13.34 Configuration files / site.ini 1585

5

UsePersistentConnection

Summary

Controls if database connections should be kept open between eZ publish runs.

Usage

UsePersistentConnection=enabled|disabled

Description

Persistent connections are usually faster but have had a lot of unwanted effects in the past. Don’t
turn this on unless you know what you are doing.

5.13.34 Configuration files / site.ini 1586

5

SlowQueriesOutput

Summary

Show queries that where slower than a set amount of time.

Usage

SlowQueriesOutput= number

Description

The number controls how many milliseconds a query must take in order to be displayed in the
debug output. 0 means that all queries will be shown.

5.13.34 Configuration files / site.ini 1587

5

SQLOutput

Summary

Enables the output of SQL queries in the debug output.

Usage

SQLOutput=enabled|disabled

Description

Debug (page 1773) must be enabled for this setting to have any effect.

5.13.34 Configuration files / site.ini 1588

5

Socket

Summary

Sets the socket eZ publish should use when connecting to the database.

Usage

Socket= number |disabled

Description

Set this option to 0 to use the default socket for the selected database.

5.13.34 Configuration files / site.ini 1589

5

UseBuiltInEncoding

Summary

Use the built in character conversion in the database if available.

Usage

UseBuiltInEncoding=true|false

Description

If this option is set to false or if the conversion is not available in the database the conversion will
be performed by eZ publish at a somewhat slower speed.

5.13.34 Configuration files / site.ini 1590

5

Charset

Summary

Sets the character set that eZ publish uses when communicating with the database.

Usage

Charset=charset

Description

If this setting is left empty the setting from i18n.ini will be used. Usually this setting is sufficient.

5.13.34 Configuration files / site.ini 1591

5

Transactions

Summary

Enables to make eZ publish use transactions to ensure database integrity.

Usage

Transactions=enabled|disabled

Description

If you enable this setting eZ publish will perform all queries that naturally belong together within
a transaction. This ensure that your database integrity will be kept even if the webserver crashes
in the middle of the transaction. Don’t turn this off unless you know what you are doing.

MySQL requires tables of the type InnoDB in order to use transactions.

5.13.34 Configuration files / site.ini 1592

5

ConnectRetries

Summary

Sets the number of database connection retries.

Usage

ConnectRetries=number

Description

This directive can be used to set the number of times eZ Publish should attempt to connect to the
database if the initial attempt fails. Note that the number of actual connection attempts equals
the initial attempt plus the number of retries specified by this directive. In other words, if the
number of connection retries is set to 3, eZ Publish will attempt to connect to the database 4
times before giving up and generating an error message.

Examples

ConnectRetries=3

This setting makes eZ publish attempt to connect to the database four times in total. One main
attempt and three retries.

5.13.34 Configuration files / site.ini 1593

5

Server

Summary

Sets the hostname or the IP address of the database server.

Usage

Server=hostname|ip address

Description

Specify either the hostname or the IP address of the server running the eZ Publish database (may
be ”localhost” if the database engine and the web server are installed on the same machine).

5.13.34 Configuration files / site.ini 1594

5

Database

Summary

Sets the database to use when connecting to the database server.

Usage

Database=databasename

5.13.34 Configuration files / site.ini 1595

5

Password

Summary

Sets the password that eZ publish uses when logging in to the database.

Usage

User= password

5.13.34 Configuration files / site.ini 1596

5

User

Summary

Sets the username that eZ publish uses when logging in to the database.

Usage

User= username

5.13.34 Configuration files / site.ini 1597

5

[DebugSettings]

Debug (page 1603)
Sets if you want to display debug information in the rendered page or in a separate popup.

DebugByIP (page 1605)
Enables debug output for some IP addresses only. Useful when debugging live sites.

DebugByUser (page 1599)
Sets whether debug output visibility should be controlled per user.

DebugIPList (page 1604)
Sets the hosts that receive debug output.

DebugLogOnly (page 1600)
Choose if you want debug strings in the debugoutput or in the log only.

DebugOutput (page 1607)
Main switch for debug output

DebugRedirection (page 1602)
Enables debugging of internal and external module redirections.

DebugUserIDList (page 1598)
Sets user IDs that will receive debug output.

DisplayDebugWarnings (page 1601)
Choose if debug warnings should be displayed explicitely on the top of the page or in the
debug log only.

ScriptDebugOutput (page 1606)
Enables debug output for PHP scripts run from the command line.

5.13.34 Configuration files / site.ini 1598

5

DebugUserIDList

Summary

Sets user IDs that will receive debug output.

Usage

DebugUserIDList[]=user id1

DebugUserIDList[]=user id2

Description

This configuration array controls which users that should see the debug output. The array must
contain a list of valid user ID numbers (object ID numbers of user accounts). This setting af-
fects all users regardless of which group they belong to. The ”DebugByUser (page 1599)” setting
must be enabled for this directive to work. Note that these settings (”DebugByUser” and ”Debu-
gUserIDList”) work regardless of the value assigned to the master ”DebugOutput” directive.

Examples

Example 1

[DebugSettings]
DebugByUser=enabled
DebugUserIDList[]
DebugUserIDList[]=14
DebugUserIDList[]=70

Only users with accounts having user/object ID ”14” and ”70” will see the debug output regard-
less if the master ”DebugOutput” switch is enabled or not.

5.13.34 Configuration files / site.ini 1599

5

DebugByUser

Summary

Sets whether debug output visibility should be controlled per user.

Usage

DebugByUser=enabled|disabled

Description

This directive makes it possible to control debug output visibility per user. By default, this setting
is disabled and debug output is shown to all users. If enabled, debug output will only be shown to
the users that have their ID numbers listed in the ”DebugUserIDList (page 1598)” configuration
array. Note that this setting works regardless of the value assigned to the master ”DebugOutput”
directive.

5.13.34 Configuration files / site.ini 1600

5

DebugLogOnly

Summary

Choose if you want debug strings in the debugoutput or in the log only.

Usage

DebugLogOnly=enabled|disabled

Description

Enable this option to remove debug strings from the inline (or popup) debug output. Instead the
debug strings will only be appended to the logs which are located in the directory your publish
root/var/log.

5.13.34 Configuration files / site.ini 1601

5

DisplayDebugWarnings

Summary

Choose if debug warnings should be displayed explicitely on the top of the page or in the debug
log only.

Usage

DisplayDebugWarnings=enabled|disabled

5.13.34 Configuration files / site.ini 1602

5

DebugRedirection

Summary

Enables debugging of internal and external module redirections.

Usage

DebugRedirection=enabled|disabled

Description

Whenever an internal redirection occurs the execution of eZ Publish will be stopped and a redi-
rection page with a redirect button will appear. This allows you to see any errors that have
occurred before the redirection takes place.

This setting is only useful for developers the eZ Publish core and custom extensions.

5.13.34 Configuration files / site.ini 1603

5

Debug

Summary

Sets if you want to display debug information in the rendered page or in a separate popup.

Usage

Debug=inline|popup

Description

Inline means that the debug output will be displayed together with the page that was rendered.
Popup means that a separate popup window will be displayed with the debug information. Not
all browsers support debug information in a popup. Choose inline if you have any problems.

Please note that if debug is set to ”popup” in a virtual host environment then the following rewrite
rules must be added to the virtual host block:

RewriteRule ^/var/cache/debug.html.* - [L]
RewriteRule ^/var/[^/]+/cache/debug.html.* - [L]

5.13.34 Configuration files / site.ini 1604

5

DebugIPList

Summary

Sets the hosts that receive debug output.

Usage

DebugIPList[]
DebugIPList[]= ip1|network1
DebugIPList[]= ip2|network2
...

Description

The setting DebugByIP must be set to enabled to make this setting have any effect.

Examples

DebugIPList[]=1.2.3.4
DebugIPList[]=192.0.0.42
DebugIPList[]=192.0.0.0/27

These settings enable debug output for the hosts 1.2.3.4, 192.0.0.42 and the network specified
by the range 192.0.0.0/27

5.13.34 Configuration files / site.ini 1605

5

DebugByIP

Summary

Enables debug output for some IP addresses only. Useful when debugging live sites.

Usage

DebugByIP=enabled|disabled

Description

The setting DebugIPList controls which hosts will receive debug output. Debug output is sent to
everyone if this setting is disabled.

5.13.34 Configuration files / site.ini 1606

5

ScriptDebugOutput

Summary

Enables debug output for PHP scripts run from the command line.

Usage

ScriptDebugOutput=enabled|disabled

Description

This setting relies on DebugOutput to be enabled.

5.13.34 Configuration files / site.ini 1607

5

DebugOutput

Summary

Main switch for debug output

Usage

DebugOutput=enabled|disabled

Description

Set this switch to enabled to turn on debug output in the rendered pages. There are several
options that control what kind of debug output you will get.

5.13.34 Configuration files / site.ini 1608

5

[DesignSettings]

The DesignSettings are typically overridden for each siteaccess.

AdditionalSiteDesignList (page 1609)
Sets the additional site designs.

SiteDesign (page 1610)
Sets the most significant design resource.

StandardDesign (page 1611)
Sets the least significant (fallback) design resource.

5.13.34 Configuration files / site.ini 1609

5

AdditionalSiteDesignList

Summary

Sets the additional site designs.

Usage

AdditionalSiteDesignList[]= design1

AdditionalSiteDesignList[]= design2

...

Description

The design resources in AdditionalSiteDesignList[] are checked for templates after the sitedesign
(page 1610) but before the standard design (page 1611). The designs are checked in the order
they are listed.

You can read more about how design resources are used in the StandardDesign (page 1611)
setting.

5.13.34 Configuration files / site.ini 1610

5

SiteDesign

Summary

Sets the most significant design resource.

Usage

SiteDesign=design name

Description

This design resource is considered the most significant design resource. eZ publish will always
search for templates in this design first.

You can read more about how design resources are used in the StandardDesign (page 1611)
setting.

5.13.34 Configuration files / site.ini 1611

5

StandardDesign

Summary

Sets the least significant (fallback) design resource.

Usage

StandardDesign= design name

Description

The design resource set by StandardDesign is considered the least significant design resource.
eZ publish will only use templates found in the standard design if the template could not be
found in any of the other designs. It is generally a good idea not to change the standard design
to anything different than standard. The design named standard comes with eZ publish and
provides a default fallback template for all possible templates.

By default eZ publish will look for designs in the design directory in the eZ publish root. Using
the setting DesignExtensions (page 1526) you can configure extensions to have designs as well.

For general information about designs and siteaccess read the SiteManagement (page 138) doc-
umentation.

The settings described here are usually overridden per siteaccess to provide a unique look.

Examples

StandardDesign=standard
SiteDesign=mydesign
AdditionalSiteDesignList[]=base
AdditionalSiteDesignList[]=extras

This setup will make eZ publish check the design directories in the following order:

1. mydesign

2. base

3. extras

4. standard

5.13.34 Configuration files / site.ini 1612

5

[ExtensionSettings]

ActiveAccessExtensions (page 1613)
Sets the extensions that are available to eZ publish per siteaccess.

ActiveExtensions (page 1614)
Sets the extensions that are available to eZ publish.

ExtensionDirectory (page 1615)
Sets the directory where extensions are located.

5.13.34 Configuration files / site.ini 1613

5

ActiveAccessExtensions

Summary

Sets the extensions that are available to eZ publish per siteaccess.

Usage

ActiveAccessExtensions[]= extension1

ActiveAccessExtensions[]= extension2

Description

Each extension will have its settings automatically loaded. This setting works similarly to the
ActiveExtensions setting but is loaded after the siteaccess is loaded. This means that the settings
activated will only be available in the siteaccess this setting is specified.

5.13.34 Configuration files / site.ini 1614

5

ActiveExtensions

Summary

Sets the extensions that are available to eZ publish.

Usage

ActiveExtensions[]= extension1

ActiveExtensions[]= extension2

...

Description

Each extension will have its settings automatically loaded. This setting is loaded before the
siteaccesses are loaded. Overriding this setting in a siteaccess has no effect.

Examples

ActiveExtensions[]
ActiveExtensions[]=ezdhtml
ActiveExtensions[]=myextension

This setup loads the extension ezdhtml (Online Editor) and your personal extension myextension.

5.13.34 Configuration files / site.ini 1615

5

ExtensionDirectory

Summary

Sets the directory where extensions are located.

Usage

ExtensionDirectory= path relative to ez publish root

Description

This setting is set to extension by default. Do not change it unless you know what you are doing.

5.13.34 Configuration files / site.ini 1616

5

[FileSettings]

CacheDir (page 1618)
Sets the directory where eZ publish stores cache files.

DirDepth (page 1620)
Sets the number of extra directories that will be made when storing a file.

LogDir (page 1617)
Sets the directory where eZ publish will store its logfiles.

StorageDir (page 1623)
Sets the directory eZ publish uses to store files.

StorageDirPermissions (page 1622)
Sets the permissions set on directories created in the storage directory.

StorageFilePermission (page 1621)
Sets the permissions set on files created in the storage directory.

TemporaryDir (page 1625)
Sets the directory eZ publish uses to store temporary files.

TemporaryPermissions (page 1624)
Sets the permissions on temporary files created by eZ publish

VarDir (page 1619)
Sets the main directory for file storage in eZ publish.

5.13.34 Configuration files / site.ini 1617

5

LogDir

Summary

Sets the directory where eZ publish will store its logfiles.

Usage

LogDir= directory name

Description

The log files are stored within / var dir/ directory name where var dir is specified by the VarDir
(page 1619) setting.

Examples

VarDir=var
LogDir=log

These settings will make eZ publish use the log dir ”/var/log”

5.13.34 Configuration files / site.ini 1618

5

CacheDir

Summary

Sets the directory where eZ publish stores cache files.

Usage

CacheDir=directory name

Description

eZ publish creates many cache files to speed up execution. The cache files are stored within ”var
dir/directory name/” where ”var dir” is specified by the VarDir (page 1619) setting.

Note: Don’t change the default setting ”cache” unless you know what you are doing.

Examples

VarDir=var
CacheDir=cache

These settings will make eZ publish use the cache dir ”var/cache/”.

5.13.34 Configuration files / site.ini 1619

5

VarDir

Summary

Sets the main directory for file storage in eZ publish.

Usage

VarDir=directory name

Description

The directory specified by vardir is used by eZ publish for file storage. This includes both content
related files, cache files and other temporary files.

Note: Don’t change the default setting ”var” unless you know what you are doing.

Examples

VarDir=var

The directory ”var/” is used to store files.

5.13.34 Configuration files / site.ini 1620

5

DirDepth

Summary

Sets the number of extra directories that will be made when storing a file.

Usage

DirDepth= number

Description

Filesystems have limitations on how many files you can store within one directory. In order to
avoid these problems eZ publish creates extra directories based on the first letters in the filename.
This solution spreads the files over many directories. The DirDepth settings controls how many
levels of extra directories eZ publish should make.
The default setting ’3’ support millions of files and should be enough for most sites.

Examples

DirDepth=3

If you store the file test.jpg eZ publish will store the file in the directory ”t/e/s/” the complete
path for the file will be ”t/e/s/test.jpg”.

5.13.34 Configuration files / site.ini 1621

5

StorageFilePermission

Summary

Sets the permissions set on files created in the storage directory.

Usage

StorageFilePermission= permission setting

Description

Note that:

• It is important that the webserver has sufficient permissions to both write and remove
directories.

• Settting the permissions to 0666 (read and write to all) is a potential security risk.

The preferred setting is 0660 (full read and write to user and group). This requires apache to
have the correct user/group access.

5.13.34 Configuration files / site.ini 1622

5

StorageDirPermissions

Summary

Sets the permissions set on directories created in the storage directory.

Usage

StorageDirPermissions= permission setting

Description

Note that:

• It is important that the webserver has sufficient permissions to both write and remove
directories.

• Settting the permissions to 0777 (read and write to all) is a potential security risk.

The preferred setting is 0770 (full read and write to user and group). This requires apache to
have the correct user/group access.

5.13.34 Configuration files / site.ini 1623

5

StorageDir

Summary

Sets the directory eZ publish uses to store files.

Usage

StorageDir= dir name

Description

The directory name specified is relative to the var directory specified by VarDir (page 1619). The
directory specified by StorageDir is used to store files related to the content of your site.

5.13.34 Configuration files / site.ini 1624

5

TemporaryPermissions

Summary

Sets the permissions on temporary files created by eZ publish

Usage

TemporaryPermissions= permission setting

Description

The permission setting should be specified using the UNIX file permission schema.
Note that:

• It is important that the webserver has sufficient permissions to both write and remove files.

• Settting the permissions to 0777 (read and write to all) is a potential security risk.

The preferred setting is 0770 (full read and write to user and group). This requires apache to
have the correct user/group access.

5.13.34 Configuration files / site.ini 1625

5

TemporaryDir

Summary

Sets the directory eZ publish uses to store temporary files.

Usage

TemporaryDir= dir name

Description

eZ publish will use the directory name you choose inside / var dir/ cache dir/ dir name where
var dir is set by VarDir (page 1619) and cache dir is set by CacheDir (page 1618).

This directory is only used to store files that are used during the rendering of one page. After the
page is rendered any temporary files are removed.

5.13.34 Configuration files / site.ini 1626

5

[FormProcessSettings]

Module (page 1627)
Sets if the form module should be enabled or not.

5.13.34 Configuration files / site.ini 1627

5

Module

Summary

Sets if the form module should be enabled or not.

Usage

Module=enabled|disabled

Description

The form module is insecure by design and should not be used.

5.13.34 Configuration files / site.ini 1628

5

[HTTPHeaderSettings]

HeaderList (page 1629)
Not documented yet.

5.13.34 Configuration files / site.ini 1629

5

HeaderList

Summary

Not documented yet.

5.13.34 Configuration files / site.ini 1630

5

[InformationCollectionSettings]

EmailReceiver (page 1631)
Sets the receiver of e-mail generated by the information collection system.

5.13.34 Configuration files / site.ini 1631

5

EmailReceiver

Summary

Sets the receiver of e-mail generated by the information collection system.

Usage

EmailReceiver= e-mail address

Description

Each time the information collector system receives data it is sent to the Email address specified
by this setting.

5.13.34 Configuration files / site.ini 1632

5

[MailSettings]

AdminEmail (page 1639)
Sets the mail address of the site administrator.

AllowedCharsets (page 1637)
Sets the character sets that eZ Publish sends directly in mail.

ContentType (page 1635)
Sets the content type for email sent from eZ Publish.

EmailSender (page 1638)
Sets the default sender address for mail sent from eZ Publish.

HeaderLineEnding (page 1634)
Sets the line ending character used in emails sent from eZ Publish.

OutputCharset (page 1636)
Sets the character set to convert mail into if they are formatted with the wrong character
set.

SendmailOptions (page 1633)
Sets the additional sendmail options.

Transport (page 1644)
Controls how eZ Publish delivers outgoing mail.

TransportPassword (page 1640)
Sets the password to use for authentication with the SMTP server.

TransportPort (page 1642)
Sets the port that should be used when connecting to the SMTP server.

TransportServer (page 1643)
Sets the hostname of the SMTP server.

TransportUser (page 1641)
Sets the user to use for authentication with the SMTP server.

5.13.34 Configuration files / site.ini 1633

5

SendmailOptions

Summary

Sets the additional sendmail options.

Usage

SendmailOptions[]= option1

SendmailOptions[]= option2

...

Examples

SendmailOptions[]=-r
SendmailOptions[]=nospam@ez.no

The resulting option ”-r nospam@ez.no” will be passed to sendmail.

5.13.34 Configuration files / site.ini 1634

5

HeaderLineEnding

Summary

Sets the line ending character used in emails sent from eZ Publish.

Usage

HeaderLineEnding=auto| url encoded value

Description

If you have problems with linebreaks in mail you may want to change this setting. Use URL a
URL encoded value if you choose not to use the auto setting. E.g Specify Carriage Return with
%0D and Line Feed with %0A.

Examples

HeaderLineEnding=%0A%0D

Sets linebreaks in e-mail to be LineFeed CarriageReturn.

5.13.34 Configuration files / site.ini 1635

5

ContentType

Summary

Sets the content type for email sent from eZ Publish.

Usage

ContentType=text/plain|text/html

Description

The default setting is text/plain which means that mails sent are written in plain text. You can
change this setting into text/html if you want to send HTML formatted mail. If you do this, you
must also reformat all the mail templates with HTML tags.

5.13.34 Configuration files / site.ini 1636

5

OutputCharset

Summary

Sets the character set to convert mail into if they are formatted with the wrong character set.

Usage

OutputCharset= characterset

Description

If you try to send an e-mail formatted in character set not listed in AllowedCharsets (page 1637)
eZ Publish will automatically convert the mail into the characterset specified.

5.13.34 Configuration files / site.ini 1637

5

AllowedCharsets

Summary

Sets the character sets that eZ Publish sends directly in mail.

Usage

AllowedCharsets[]= characterset1

AllowedCharsets[]= characterset2

...

Description

E-mail that are not in an accepted format will be converted to the format specified by Out-
putCharset (page 1636).

Examples

AllowedCharsets[]
AllowedCharsets[]=us-ascii
AllowedCharsets[]=utf-8

With this setup eZ Publish will send all e-mail using the character sets us-ascii and utf-8 without
conversion.

5.13.34 Configuration files / site.ini 1638

5

EmailSender

Summary

Sets the default sender address for mail sent from eZ Publish.

Usage

EmailSender= email address

Description

The specified e-mail address will be used as the default value in the from field for mail sent from
eZ Publish. If this field is left blank the value in AdminEmail (page 1639) is used instead.

5.13.34 Configuration files / site.ini 1639

5

AdminEmail

Summary

Sets the mail address of the site administrator.

Usage

AdminEmail= email address

Description

The admin email is used for notification mail for the administrator of the site. It is used through-
out the system for important updates e.g when new users are created.

5.13.34 Configuration files / site.ini 1640

5

TransportPassword

Summary

Sets the password to use for authentication with the SMTP server.

Usage

TransportPassword= password

Description

You must set Transport (page 1644) to ”smtp” for this setting to have any effect.

5.13.34 Configuration files / site.ini 1641

5

TransportUser

Summary

Sets the user to use for authentication with the SMTP server.

Usage

TransportUser= username

Description

If your SMTP server requires authentication you must provide a username with this setting.

You must set Transport (page 1644) to ”smtp” for this setting to have any effect.

5.13.34 Configuration files / site.ini 1642

5

TransportPort

Summary

Sets the port that should be used when connecting to the SMTP server.

Description

You must set Transport (page 1644) to ”smtp” for this setting to have any effect.

5.13.34 Configuration files / site.ini 1643

5

TransportServer

Summary

Sets the hostname of the SMTP server.

Usage

TransportServer= hostname

Description

You can use both a normal hostname and an IP address.

You must set Transport (page 1644) to ”smtp” for this setting to have any effect.

5.13.34 Configuration files / site.ini 1644

5

Transport

Summary

Controls how eZ Publish delivers outgoing mail.

Usage

Transport=sendmail|smtp|file

Description

This setting controls how eZ Publish should deliver outgoing mail. There are three options:

• ”sendmail” - direct delivery through sendmail (must be available on the server)

• ”smtp” - indirect delivery using an SMTP relay server

• ”file” - mail is stored on the file system instead of being sent

The default value of this setting is ”sendmail”, which means that mail is delivered directly using
the sendmail transfer agent (available on UNIX/Linux systems only).

If sendmail is not available then SMTP should be used. (Make sure that SMTP server details
are specified using the TransportServer (page 1643), TransportPort (page 1642), TransportUser
(page 1641) and TransportPassword (page 1640) settings.) Due to a bug in eZ Publish 4.0.0, you
need to download the updated version of the ”ezsmtp” class and replace the corresponding file
in your installation in order to use an SMTP relay server for mail delivery. This bug will be fixed
in the upcoming eZ Publish 4.0.1 release.

If you need to check/view emails generated by the system without actually sending them out, set
this directive to ”file”. Outgoing mails will be stored as separate files under the ”var/log/mail”
directory of your eZ Publish installation. Note that this option is for testing purposes only and
should not be used on production/live sites.

http://pubsvn.ez.no/nextgen/stable/4.0/lib/ezutils/classes/ezsmtp.php

5.13.34 Configuration files / site.ini 1645

5

[OverrideSettings]

Cache (page 1646)
Sets if the template override cache should be enabled.

5.13.34 Configuration files / site.ini 1646

5

Cache

Summary

Sets if the template override cache should be enabled.

Usage

Cache=enabled|disabled

Description

Note: Don’t turn off the template override cache unless you know what you are doing.

5.13.34 Configuration files / site.ini 1647

5

[PortAccessSettings]

Portnumber to siteaccess mapping (page 1648)
Creates a mapping between a portnumber and a siteaccess.

5.13.34 Configuration files / site.ini 1648

5

Portnumber to siteaccess mapping

Summary

Creates a mapping between a portnumber and a siteaccess.

Usage

number1 = siteaccessname1

number2 = siteaccessname2

Description

You should have one line of this type for each port that is used to access your site.

Examples

80=user
81=admin

This setup has two siteaccesses. All requests to port 80 use the user siteaccess, while all requests
to port 81 use the admin siteaccess.

5.13.34 Configuration files / site.ini 1649

5

[ProxySettings]

Password (page 1650)
The password for outgoing web traffic through a proxy server.

ProxyServer (page 1651)
Sets the proxy server that can be used for outgoing web traffic.

User (page 1652)
The username for outgoing web traffic through a proxy server.

5.13.34 Configuration files / site.ini 1650

5

Password

Summary

The password for outgoing web traffic through a proxy server.

Usage

Password=password

Description

In case outgoing web traffic is only allowed through a proxy server that requires authentication,
you need to provide a valid username/password combination. This directive can be used to
provide the password for the proxy authentication. Note that the proxy server address and the
username also need to be specified using the ”ProxyServer (page 1651)” and ”User (page 1652)”
settings.

5.13.34 Configuration files / site.ini 1651

5

ProxyServer

Summary

Sets the proxy server that can be used for outgoing web traffic.

Usage

ProxyServer=<hostname|IP address>:<port>

Description

In case outgoing web traffic is only allowed through a proxy server, you need to inform eZ Publish
about this (otherwise the system will not be able to do certain tasks). You can either use the host-
name or the IP address of the proxy server, followed by a colon and a port number. Most proxy
servers allow anonymous connections. However, if the proxy server requires authentication, you
will also need to provide a valid username/password combination using the ”User (page 1652)”
and ”Password (page 1650)” settings.

Note that CURL support must be enabled in PHP, otherwise outbound connections via proxy will
not work.

Examples

Example 1

[ProxySettings]
ProxyServer=proxy.example.com:3128

This configuration tells the system to use an anonymous proxy server, ”proxy.example.com” and
port 3128 to access the web. In this case, a username/password combination is not needed.

Example 2

[ProxySettings]
ProxyServer=proxy.example.com:3128
User=joshua
Password=secret

This configuration tells the system to use ”proxy.example.com” and port 3128 to access the web.
In addition, a username/password combination is provided because the proxy server requires
authentication.

http://www.php.net/curl

5.13.34 Configuration files / site.ini 1652

5

User

Summary

The username for outgoing web traffic through a proxy server.

Usage

User=username

Description

In case outgoing web traffic is only allowed through a proxy server that requires authentication,
you need to provide a valid username/password combination. This directive can be used to
provide the username for the proxy authentication. Note that the proxy server address and the
password also need to be specified using the ”ProxyServer” (page 1651) and ”Password” (page
1650) settings.

5.13.34 Configuration files / site.ini 1653

5

[RegionalSettings]

ContentObjectLocale (page 1664)
Sets the default language for content objects.

ContentXMLCharset (page 1663)
Sets the characterset used when storing XML in content objects.

Debug (page 1659)
Sets if debug mode should be enabled or disabled.

DevelopmentMode (page 1660)
Sets if development mode should be on or off.

HTTPLocale (page 1666)
Sets the locale transmitted to the web clients.

Locale (page 1667)
Sets the locale (currency, date and time settings etc.)

ShowUntranslatedObjects (page 1654)
Sets whether all languages are shown or not.

SiteLanguageList (page 1656)
The prioritized list of site languages.

SystemLocale (page 1665)
Tells PHP to be run in a specific locale.

TextTranslation (page 1662)
Sets if text translation is enabled for template translation.

TranslationCache (page 1661)
Sets if the translation cache should be anabled or disabled.

TranslationExtensions (page 1657)
Sets the extensions that hold translations

TranslationRepository (page 1658)
Sets the default translation repository for eZ publish.

5.13.34 Configuration files / site.ini 1654

5

ShowUntranslatedObjects

Summary

Sets whether all languages are shown or not.

Usage

ShowUntranslatedObjects=enabled|disabled

Description

This setting has two possible values:

1. disabled - Means that only languages listed in the ”SiteLanguageList (page 1656)” setting
are displayed.

2. enabled - Means that all languages are displayed. The system will still use the language
priorities determined by the ”SiteLanguageList[]” array, but it will not filter away languages
that are not on the list.

This setting is usually enabled for admin siteaccess and disabled for public siteaccess(es). Please
refer to the ”Configuring the site languages (page 245)” section for more information.

Examples

Example 1

SiteLanguageList[]
SiteLanguageList[]=eng-GB
SiteLanguageList[]=ger-DE
ShowUntranslatedObjects=disabled

This will tell the system that British English has the highest priority and German is the second
prioritized language. Any other languages will not be shown.

Example 2

SiteLanguageList[]
SiteLanguageList[]=eng-GB
SiteLanguageList[]=ger-DE
ShowUntranslatedObjects=enabled

5.13.34 Configuration files / site.ini 1655

5

This will tell the system that British English has the highest priority and German is the second
prioritized language. All other languages will still be shown (and editable) but will have less
priority.

5.13.34 Configuration files / site.ini 1656

5

SiteLanguageList

Summary

The prioritized list of site languages.

Usage

SiteLanguageList[]=language1
SiteLanguageList[]=language2
...

Description

Sets which languages the contents of a site should be displayed in. The first element in this
array determines the most prioritized language. The system will try to display content in this
language first. If an object is not translated to this language then the second prioritized language
(specified as the second element of the array) will be displayed, and so on. If an object does
not exist in any of the site languages, it will not be shown unless it is always available or the
”ShowUntranslatedObjects (page 1654)” setting is enabled. Refer to the ”Configuring the site
languages (page 245)” section for more information and examples.

Note: If this setting is not specified then only default language will be shown.

5.13.34 Configuration files / site.ini 1657

5

TranslationExtensions

Summary

Sets the extensions that hold translations

Usage

TranslationExtensions[]= extension1

TranslationExtensions[]= extension2

...

Description

eZ publish will search for additional translations in the ”translations” directory of your extension.

This setting is commonly overriden in the extension settings to tell eZ publish that the extension
provides translations.

Examples

TranslationExtensions=myextension

eZ publish will now search the directory ”/extension/myextension/translations” for additional
translations.

5.13.34 Configuration files / site.ini 1658

5

TranslationRepository

Summary

Sets the default translation repository for eZ publish.

Usage

TranslationRepository= path to repository

Description

This setting should point to the default directory for eZ publish translations. This setting should
be changed by developers only.

5.13.34 Configuration files / site.ini 1659

5

Debug

Summary

Sets if debug mode should be enabled or disabled.

Usage

Debug=enabled|disabled

Description

If debug is enabled eZ publish will display information about the locale files that are loaded. You
need to turn on Debug (page 1603) globally to see debug output.

5.13.34 Configuration files / site.ini 1660

5

DevelopmentMode

Summary

Sets if development mode should be on or off.

Usage

DevelopmentMode=enabled|disabled

Description

Development mode makes eZ publish translate all untranslated string using bork mode. This can
be handy when spotting untranslated text.

You should never use development mode in a production environment.

5.13.34 Configuration files / site.ini 1661

5

TranslationCache

Summary

Sets if the translation cache should be anabled or disabled.

Usage

TranslationCache=enabled|disabled

Description

This setting is for debugging purposes only. You should never use eZ publish without translation
cache in a production environment.

5.13.34 Configuration files / site.ini 1662

5

TextTranslation

Summary

Sets if text translation is enabled for template translation.

Usage

TextTranslation=enabled|disabled

Description

This setting controls if eZ publish should translate strings marked with i18n in the templates. eZ
publish runs slightly faster when this setting is set to ”disabled” This setting is automatically set
to disabled if your Locale (page 1667) is set to ”eng-GB”.

5.13.34 Configuration files / site.ini 1663

5

ContentXMLCharset

Summary

Sets the characterset used when storing XML in content objects.

Usage

ContentXMLCharset=enabled|disabled| character set

Description

• enabled - Stores XML fields using the current character set. The current character set is set
by the Charset (page 1536) setting. This setting is the correct setting for most people.

• disabled - Forces storage in UTF8.

• character set - Forces storage in this character set.

5.13.34 Configuration files / site.ini 1664

5

ContentObjectLocale

Summary

Sets the default language for content objects.

Usage

ContentObjectLocale=locale

Description

Sets the default language for content objects. This language will be used as the default value
in PHP functions that support an optional parameter for language, e.g. in the ”eZContent-
Class::instantiate()” function. The default value of this setting is ”eng-GB”.

Note: It is possible but not recommended to change this setting after you have run the setup
wizard and added content to your site. If the specified language does not exist in eZ Publish then
it will be automatically added (as a new entry in the ”ezcontent language” database table).

Examples

ContentObjectLocale=nor-NO

Sets the default language to Norwegian (Bokmal).

5.13.34 Configuration files / site.ini 1665

5

SystemLocale

Summary

Tells PHP to be run in a specific locale.

Usage

SystemLocale=locale name1[,locale name2][,locale name3]...

Description

Use this directive to set locale for the entire PHP system (this functionality is similar to using
the ”setlocale” PHP function where ”LC ALL” is passed as the first parameter). You can specify a
comma separated list of locale names. If you use a character set specific locale (for example, ”no
NO.UTF-8”), make sure this character set matches the output character set of eZ Publish (page
1536). Please note that different operating systems have different naming schemes for locales,
and thus you might need to use multiple names in order for your installation to work on multiple
platforms (such as developing on Windows and running Linux in production).

Examples

Example 1

SystemLocale=de_DE.ISO-8859-1,german

This will tell PHP to first use the ”de DE.ISO-8859-1” locale, and if this is not available, then the
”german” locale will be used.

Example 2

SystemLocale=no_NO.UTF-8,no_NO,norwegian

With this configuration each of the three listed elements (starting from ”no NO.UTF-8”) will be
tried to be set as new locale until success.

http://www.php.net/setlocale

5.13.34 Configuration files / site.ini 1666

5

HTTPLocale

Summary

Sets the locale transmitted to the web clients.

Usage

HTTPLocale= locale setting

Description

This setting is usually set automatically from the Locale (page 1667) setting. However you can
override it for this setting. For most people the default setting (empty) is sufficient.

5.13.34 Configuration files / site.ini 1667

5

Locale

Summary

Sets the locale (currency, date and time settings etc.)

Usage

Locale= locale name

Description

The locale controls settings related to country specific settings, e.g. language, currency and
date and time formating. eZ publish provides many default locale settings in the ”/share/locale”
directory. Use the filename without the extension (.ini) to tell eZ publish to use that locale.

If you want custom locale settings, simply copy the locale configuration file that is the closest
to the configuration you want. Then edit it and make it conform to your needs. Finally, tell eZ
publish to use that locale using this setting. Please refer to the ”Configuring your site locale (page
242)” section for more information about locales.

Examples

Locale=nor-NO

Sets the locale to Norwegian settings.

5.13.34 Configuration files / site.ini 1668

5

[RoleSettings]

EnableCaching (page 1673)
Controls whether role caching should be enabled or disabled.

MaxParentDepthLimitation (page 1669)
Not documented yet.

PolicyOmitList (page 1671)
Excludes modules and views from the permission checking.

ShowAccessDeniedReason (page 1670)
Sets if eZ Publish elaborates on the reason for getting access denied when viewing a page.

UserPolicyCache (page 1672)
Sets which users’ policies to cache.

5.13.34 Configuration files / site.ini 1669

5

MaxParentDepthLimitation

Summary

Not documented yet.

5.13.34 Configuration files / site.ini 1670

5

ShowAccessDeniedReason

Summary

Sets if eZ Publish elaborates on the reason for getting access denied when viewing a page.

Usage

ShowAccessDeniedReason=enabled|disabled

Description

This option is for site debugging purposes and is disabled by default. Enabling elaborate messages
can pose a security threat since details about the role setup of your system will be exposed.

5.13.34 Configuration files / site.ini 1671

5

PolicyOmitList

Summary

Excludes modules and views from the permission checking.

Usage

PolicyOmitList[]= module1 [/ view1]
PolicyOmitList[]= module2 [/ view2]
...

Description

This setting allows you to exclude complete modules or specific views from permission control.
Modules and views excluded from permission control are always accessible for all users.

Examples

PolicyOmitList[]=ezinfo
PolicyOmitList[]=user/login
PolicyOmitList[]=user/register

These settings excludes all the views in the ezinfo module, and the views login and register in
the user module from permission checking.

5.13.34 Configuration files / site.ini 1672

5

UserPolicyCache

Summary

Sets which users’ policies to cache.

Usage

UserPolicyCache=enabled|disabled| id1, id2,...

Description

This setting has three possible values

1. enabled - Cache the policies of all users.

2. disabled - No policy cache will be stored.

3. Comma separated list of IDs - Store policy cache for all users with their IDs in this list.

Examples

UserPolicyCache=23,44,24

With this configuration eZ Publish will store policy cache for the users with IDs 23,24 or 44 only.

5.13.34 Configuration files / site.ini 1673

5

EnableCaching

Summary

Controls whether role caching should be enabled or disabled.

Usage

EnableCaching=true|false

Description

When role caching is enabled eZ Publish stores the complete permissions set for each user once
it is computed. This saves both SQL queries and computation time on consequent requests.

Do not disable role caching unless you know what you are doing.

5.13.34 Configuration files / site.ini 1674

5

[RSSSettings]

AvailableVersionList (page 1676)
Sets the available RSS versions

CacheTime (page 1677)
Sets the cachetime for RSS feeds in seconds.

DefaultVersion (page 1675)
Sets the default RSS version to use.

NumberOfObjectsDefault (page 1678)
Sets the default value for the number of items in an RSS export.

NumberOfObjectsList (page 1679)
Sets the number of items in an RSS export that the user can choose between in the admin-
istration interface.

5.13.34 Configuration files / site.ini 1675

5

DefaultVersion

Summary

Sets the default RSS version to use.

Usage

DefaultVersion= version

Description

This setting controls the RSS version that is selected by default when you create a new RSS
export. The specified version must be found in the AvailableVersionList (page 1676) setting.

5.13.34 Configuration files / site.ini 1676

5

AvailableVersionList

Summary

Sets the available RSS versions

Usage

AvailableVersionList[]= version1

AvailableVersionList[]= version2

...

Description

This setting should only be changed by eZ Publish developers.

5.13.34 Configuration files / site.ini 1677

5

CacheTime

Summary

Sets the cachetime for RSS feeds in seconds.

Usage

CacheTime= number of seconds

Description

In order to minimize the server load, generated RSS feeds are cached and updated at a regular
interval. This settings controls the time between each update of the cache.
Changes to the content being fed will show up in the RSS feed after the number of seconds set at
the latest.

5.13.34 Configuration files / site.ini 1678

5

NumberOfObjectsDefault

Summary

Sets the default value for the number of items in an RSS export.

Usage

NumberOfObjectsDefault= number

Description

The number must be present in the NumberOfObjectsList (page 1679) setting.

5.13.34 Configuration files / site.ini 1679

5

NumberOfObjectsList

Summary

Sets the number of items in an RSS export that the user can choose between in the administration
interface.

Usage

NumberOfObjectsList[]= number1

NumberOfObjectsList[]= number2

...

Description

The administration interface displays a dropdown with the numbers set by this setting in the RSS
export edit screen.. The dropdown is used to determine the number of items to export in the RSS
feed.

5.13.34 Configuration files / site.ini 1680

5

[SearchSettings]

AllowEmptySearch (page 1687)
Sets if users can search for nothing

DelayedIndexing (page 1682)
Sets if new content objects are indexed in the search engine upon publishing or if indexing
is done by the cronjob

EnableWildcard (page 1686)
Sets if wildcard searching is allowed or not

ExtensionDirectories (page 1681)
Tells the system where to look for search engine plugins.

LogSearchStats (page 1689)
Sets if search statistics should be saved or not.

MaximumSearchLimit (page 1688)
Sets the maximum number of returned hits.

MinCharacterWildcard (page 1685)
The minimum number of characters a wildcard can represent

SearchEngine (page 1691)
Sets which search engine to use.

SearchViewHandling (page 1690)
Sets if searches are handled by the search view or in the template.

StopWordThresholdPercent (page 1683)
Sets the percentage of hits that a word should be present in before ignoring the word
completely

StopWordThresholdValue (page 1684)
Sets the minimum number of objects in the database before the stopword functionality is
used.

5.13.34 Configuration files / site.ini 1681

5

ExtensionDirectories

Summary

Tells the system where to look for search engine plugins.

Usage

ExtensionDirectories[]=extension1
ExtensionDirectories[]=extension2
...

Description

This setting can be used to specify the extension directories where eZ Publish will look for search
engine plugins. By default, eZ Publish will look for plugins in the ”search/plugins/” subdirectory
inside your extension(s).

Examples

Example 1

If you have an extension ”findme” that includes a search engine plugin called ”myengine”, you’ll
need to put the following lines into an override for the ”site.ini” configuration file:

[SearchSettings]
ExtensionDirectories[]=findme
SearchEngine=myengine

eZ Publish will look for the search engine plugin at ”extension/findme/search/plugins/
myengine/myengine.php”.

Example 2

If your site makes use of the eZ Find extension, the ”site.ini.append.php” configuration file located
in the ”extension/ezfind/settings/” directory will contain the following lines:

[SearchSettings]
ExtensionDirectories[]=ezfind
SearchEngine=ezsolr

This will instruct the system to use the search engine plugin located at ”extension/ezfind/search/
plugins/ezsolr/ezsolr.php”.

http://ez.no/ezfind

5.13.34 Configuration files / site.ini 1682

5

DelayedIndexing

Summary

Sets if new content objects are indexed in the search engine upon publishing or if indexing is
done by the cronjob

Usage

DelayedIndexing=enabled|disabled

Description

Delaying the indexing means that some objects will not be found by the search engine even after
they have been published. However, indexing can be CPU intensitive and delaying the indexing
can mean better performance and a more responsive administration interface for editors.

5.13.34 Configuration files / site.ini 1683

5

StopWordThresholdPercent

Summary

Sets the percentage of hits that a word should be present in before ignoring the word completely

Usage

StopWordThresholdPercent= number

Description

Searching for common words can lead to extremely many hits. In order to provide a better result
the stop word system has been implemented. If a word is present in more than a set percantage
of all the objects in the system then this word will be ignore when searched for.

Examples

StopWordThresholdPercent=60

If you search for a word that is present in more than 60% of all the objects then the search word
will be ignored.

5.13.34 Configuration files / site.ini 1684

5

StopWordThresholdValue

Summary

Sets the minimum number of objects in the database before the stopword functionality is used.

Usage

StopWordThresholdValue= number

Description

This setting should be used together with the StopWordThresholdPercent setting.

5.13.34 Configuration files / site.ini 1685

5

MinCharacterWildcard

Summary

The minimum number of characters a wildcard can represent

Usage

MinCharacterWildcard= number

Description

This setting controls the minimum number of characters required for the wildcard to match. If
MinCharacterWildcard is set to 2 and you search for ”dus*” then ”dust” will not be found while
”duster” will.

5.13.34 Configuration files / site.ini 1686

5

EnableWildcard

Summary

Sets if wildcard searching is allowed or not

Usage

EnableWildcard=true|false

Description

When wildcard searching is enabled you can match on partial words. E.g searching for ”dust*”
will match both duster and dustdevil. Wildcard search requires a lot of resources and can heavily
influence the performance of your site.

5.13.34 Configuration files / site.ini 1687

5

AllowEmptySearch

Summary

Sets if users can search for nothing

Usage

AllowEmptySearch=enabled|disabled

Description

Empty searches take a lot of resources and can slow down your site considerably. If you enable
empty searches you must use template search view handling and make sure that your template
submits enough limitations on the search.

5.13.34 Configuration files / site.ini 1688

5

MaximumSearchLimit

Summary

Sets the maximum number of returned hits.

Usage

MaximumSearchLimit= integer

Description

It is possible for the user to select the number of returned hits via a POST variable. In order to
avoid very high limits resulting in high server load you can use this setting to set a cap on the
number of returned hits.

Examples

MaximumSearchLimit=25

This setting will limit the maximum number of search hits to 25.

5.13.34 Configuration files / site.ini 1689

5

LogSearchStats

Summary

Sets if search statistics should be saved or not.

Usage

LogSearchStats=enabled|disabled

Description

If enabled statistics about each search are written to the database. You can view the statistics
from the administration interface.

5.13.34 Configuration files / site.ini 1690

5

SearchViewHandling

Summary

Sets if searches are handled by the search view or in the template.

Usage

SearchViewHandling=default|template

Description

This setting has two options

• default - The view code does the search and passes the result to template. The template is
only responsible for displaying the result.

• template - The template does the search and passes the result back to the view code. This
way you have to ”program” the search yourself providing more flexibility.

5.13.34 Configuration files / site.ini 1691

5

SearchEngine

Summary

Sets which search engine to use.

Usage

SearchEngine=search engine name

Description

This directive tells the system which search engine to use. The default value is ”eZSearchEngine”,
which means that the built-in eZ Publish search engine will be used.

In previous versions of eZ Publish, the ”openFts” value made it possible to enable built-in sup-
port for a PostgreSQL-based search engine called OpenFTS. This functionality was mainly for
demonstration purposes. It has been deprecated and should not be used.

To add support for your favorite search engine, you can implement your own search engine
plugin. Note that it is not recommended to modify the eZ Publish kernel and thus you should
implement it as an extension. Make sure you specify correct values in the ”SearchEngine” and
”ExtensionDirectories (page 1681)” settings located in the [SearchSettings] section of the ”ex-
tension/<your extension>/settings/site.ini.append.php” configuration file.

Examples

Example 1

[SearchSettings]
SearchEngine=eZSearchEngine

This will tell the system to use default eZ Publish search mechanism.

Example 2

If your site makes use of the eZ Find extension, the ”site.ini.append.php” configuration file located
in the ”extension/ezfind/settings/” directory will contain the following lines:

[SearchSettings]
ExtensionDirectories[]=ezfind
SearchEngine=ezsolr

This will instruct the system to use the search engine plugin located at ”extension/ezfind/search/
plugins/ezsolr/ezsolr.php”.

http://openfts.sourceforge.net/
http://ez.no/ezfind

5.13.34 Configuration files / site.ini 1692

5

[Session]

ActivityTimeout (page 1693)
Sets the number of second before a user is considered inactive.

BasketCleanup (page 1694)
Sets how the shopping baskets for expired and removed sessions are cleaned up.

BasketCleanupAverageFrequency (page 1695)
Sets how often the basket cleanup cronjob will actually work when being executed.

CookieTimeout (page 1696)
Sets the number of seconds that the session cookie lasts.

SessionNameHandler (page 1697)
Sets how session names should be generated

SessionNamePerSiteAccess (page 1698)
Prepends session names with the current siteaccess.

SessionNamePrefix (page 1699)
Sets the prefix eZ publish should use when creating session names.

SessionTimeOut (page 1700)
Sets the number of seconds a session lasts.

5.13.34 Configuration files / site.ini 1693

5

ActivityTimeout

Summary

Sets the number of second before a user is considered inactive.

Usage

ActivityTimeout= number

Description

This setting is only used for lists and statistical purposes in the setup area in the administration
interface. It does not have any impact on the session duration.

5.13.34 Configuration files / site.ini 1694

5

BasketCleanup

Summary

Sets how the shopping baskets for expired and removed sessions are cleaned up.

Usage

BasketCleanup=cronjob|pageload

Description

If a user added some products into his basket and then stopped shopping (e.g. closed his browser
window) without initiating the checkout process, the user’s session will expire after a while. The
eZ Publish session handling, which is based on the PHP session functionality, takes care about
removing expired sessions from the database. It is also possible to remove sessions (either expired
or not) using the ”Setup - Sessions” part of the admin interface.

If the ”BasketCleanup” setting is set to ”cronjob” (default), removing a user’s session from the
database will not delete the shopping basket that was created during this session. These un-
needed baskets can be cleaned up periodically by running the ”basket cleanup.php” cronjob.

If you specify ”BasketCleanup=pageload”, removing a user’s session from the database (either
automatically by session cleanup or manually by the site administrator) will delete the corre-
sponding shopping basket. The ”basket cleanup.php” cronjob will not do anything. Please note
that this configuration is not recommended for sites with many visitors because removing baskets
on session cleanup will take a lot of time.

http://php.net/session

5.13.34 Configuration files / site.ini 1695

5

BasketCleanupAverageFrequency

Summary

Sets how often the basket cleanup cronjob will actually work when being executed.

Usage

BasketCleanupAverageFrequency=number

Description

Use this directive to specify how often the shopping baskets will actually be cleaned up when
the ”basket cleanup.php” cronjob is executed. This setting is extremely useful in case you are
running this cronjob frequently together with other tasks. The default value is 10, which means
that baskets will be cleaned about 1 out of 10 times. If you wish to run ”basket cleanup.php”
separately from other cron jobs, you can specify ”BasketCleanupAverageFrequency=1”.

You must set BasketCleanup (page 1694) to ”cronjob” for this setting to have any effect.

5.13.34 Configuration files / site.ini 1696

5

CookieTimeout

Summary

Sets the number of seconds that the session cookie lasts.

Usage

CookieTimeout=number

Description

This setting is set in the cookie used by the client browsers to store the session information. When
the cookie times out it will be removed by the client browser. Note that the maximum session
duration is the minimum of this setting and the SessionTimeout setting.

Examples

[Session]
Number of seconds a session will last
3 days is standard
SessionTimeout=259200
Number of seconds before a session is considered inactive/logged out
1 hour is standard
ActivityTimeout=3600
Number of seconds a session cookie will last,
0 means until browser is closed
Leaving the field empty means to use the default PHP settings
(session.cookie_lifetime)
Example for 6 minutes
CookieTimeout=360

With this configuration, HTTP cookies will expire in six minutes. If the site visitor is inactive for
six minutes without closing his browser window, the cookie will expire and thus the user’s session
will be ended. If the user reloads the page later then a new session will be created. However, the
previous session will not be removed from the database. It will become inactive in one hour and
expired in three days.

5.13.34 Configuration files / site.ini 1697

5

SessionNameHandler

Summary

Sets how session names should be generated

Usage

SessionNameHandler=default|custom

Description

There are two possible options

1. default:The default setting uses PHP to generate session names. If you use the default
handler the session will be valid across siteaccess (e.g admin and user site) if they use the
same database.

2. custom: The custom setting allows you to prefix the session name. The prefix is set with
the SessionNamePrefix setting.

5.13.34 Configuration files / site.ini 1698

5

SessionNamePerSiteAccess

Summary

Prepends session names with the current siteaccess.

Usage

SessionNamePerSiteAccess=enabled|disabled

Description

When this setting is enabled the generated session names are prepended with the name of the
siteaccess used to access the site. This generated unique session names per siteaccess.

5.13.34 Configuration files / site.ini 1699

5

SessionNamePrefix

Summary

Sets the prefix eZ publish should use when creating session names.

Usage

SessionNamePrefix= prefix

Description

The prefix set in this variable is prepended to the generated session name. You can override this
setting for each siteaccess to generate unique session names per siteaccess.

5.13.34 Configuration files / site.ini 1700

5

SessionTimeOut

Summary

Sets the number of seconds a session lasts.

Usage

SessionTimeOut= number

Description

After the specified time has passed the session will no longer be considered valid, and the user
will be logged out even if he/she is active on the site.

5.13.34 Configuration files / site.ini 1701

5

[SetupSettings]

CriticalTests (page 1704)
Sets the tests that must be passed in order to complete the setup procedure.

OptionalTests (page 1703)
Sets the tests optional tests run during the setup procedure.

OverrideSiteDesign (page 1702)
Sets the sitedesign that should be used by the setup wizard.

PageLayout (page 1705)
Sets which pagelayout template to use for the setup wizzard.

5.13.34 Configuration files / site.ini 1702

5

OverrideSiteDesign

Summary

Sets the sitedesign that should be used by the setup wizard.

Usage

OverrideSiteDesign= sitedesign name

5.13.34 Configuration files / site.ini 1703

5

OptionalTests

Summary

Sets the tests optional tests run during the setup procedure.

Usage

OptionalTests= test1, test2,...

Description

Optional tests can be bypassed simply by clicking next.

5.13.34 Configuration files / site.ini 1704

5

CriticalTests

Summary

Sets the tests that must be passed in order to complete the setup procedure.

Usage

CriticalTests= test1, test2,...

5.13.34 Configuration files / site.ini 1705

5

PageLayout

Summary

Sets which pagelayout template to use for the setup wizzard.

Usage

PageLayout= template name

Description

Don’t change this setting unless you are an eZ publish developer.

5.13.34 Configuration files / site.ini 1706

5

[ShopSettings]

ClearBasketOnCheckout (page 1709)
Sets when the basket is cleared.

ClearBasketOnLogout (page 1707)
Sets whether the basket should be cleared after logging out.

RedirectAfterAddToBasket (page 1708)
Controls where the user is redirected after adding an item to the basket.

5.13.34 Configuration files / site.ini 1707

5

ClearBasketOnLogout

Summary

Sets whether the basket should be cleared after logging out.

Usage

ClearBasketOnLogout=enabled|disabled

Description

This setting has two possible values:

1. disabled - Means that the basket is NOT cleared when the user logs out.

2. enabled - Means to clear the basket as soon as the user logs out from the system.

Both anonymous and registered users are affected.

Examples

ClearBasketOnLogout=enabled

This will instruct eZ publish to clear the user’s basket as soon as the user logs out from the system.

5.13.34 Configuration files / site.ini 1708

5

RedirectAfterAddToBasket

Summary

Controls where the user is redirected after adding an item to the basket.

Usage

RedirectAfterAddToBasket=basket|reload

Description

This setting has two possible values:

1. basket - Redirect the user back to the basket to show the newly added item.

2. reload - Redirect the user back to the page he came from, this allows the user to continue
shopping.

5.13.34 Configuration files / site.ini 1709

5

ClearBasketOnCheckout

Summary

Sets when the basket is cleared.

Usage

ClearBasketOnCheckout=enabled|disabled

Description

This setting has two possible values:

1. disabled - Means that the basket is cleared when the shop/checkout trigger is done. In
practice this means when a user has payed the product and payment system is finished.
This is the default value since it means the user can cancel the order and go back to the
shop with the basket still intact.

2. enabled - Means to clear the basket as soon as the user clicks confirm in the shop/
confirmorder trigger. This may needed by some payment systems. Check the documen-
tation for your payment system to see if this setting must be enabled. The impact on the
users is that the basket will not be available when the payment is cancelled.

5.13.34 Configuration files / site.ini 1710

5

[SiteAccessRules]

Rules (page 1711)
Sets which modules and views to enable or disable.

5.13.34 Configuration files / site.ini 1711

5

Rules

Summary

Sets which modules and views to enable or disable.

Usage

Rules[]=function1;parameter1
Rules[]=function2;parameter2

Description

The ”Rules” setting defines a ruleset that eZ publish uses to determine wether module and views
should be available or not. Each line of the ruleset is read and evaluated. The order in which you
enable/disable modules does not matter, but more specific rules will override global rules.

The available functions are:

access

The access function is used to change if subsequent module or moduleall rules should be enabled
or disabled. The access function has two possible parameter options

1. enable - enable subsequently mentioned modules and views

2. disable - disables subsequently mentioned modules and views

module

The module function is used to specify complete modules or specific views.
The module or view will get the access level of the last access level set. To specify a module
simply provide the module name as the parameter value:

Rules[]=module;name_of_module

If you specify a module, the access mode is set for all views in that module.

To specify a single view you need to specify both the name of the module and the view as the
parameter value:

Rules[]=module;name_of_module/name_of_view

5.13.34 Configuration files / site.ini 1712

5

moduleall

Moduleall is a special mode that should be used on a line on itself without a trailing function
definition. It is used to set the current access mode to all modules in the system.

Examples

Example 1

Rules[]=access;enable
Rules[]=moduleall

This configuration enables all modules and views. This is equal to the default ruleset.

Example 2

Rules[]=access;enable
Rules[]=moduleall
Rules[]=access;disable
Rules[]=module;ezinfo
Rules[]=module;content/search

This configuration enables all modules and views except all views in the ezinfo module and the
view content/search.

Example 3

Rules[]=access;disable
Rules[]=moduleall
Rules[]=access;enable
Rules[]=module;content/view

This configuration takes a different approach. It disables all modules by default and enables only
the modules that you want to use. In this case only the content/view module is available.

5.13.34 Configuration files / site.ini 1713

5

[SiteAccessSettings]

AnonymousAccessList (page 1715)
Specifies a lists of modules and views that are accessible regardless of the RequireUserLogin
setting.

AvailableSiteAccessList (page 1716)
Sets the siteaccesses that your eZ Publish installation provides.

CheckValidity (page 1717)
Sets if the setup wizard should be activated or not.

DebugAccess (page 1718)
Turns on debug output for access matching.

DebugExtraAccess (page 1719)
Enables verbose access matching debug information.

ForceVirtualHost (page 1720)
Sets if eZ Publish should force virtual host mode.

HostMatchElement (page 1721)
Sets which element (separated by a dot) to use when using element host matching.

HostMatchMapItems (page 1722)
Sets the mapping between hostname and siteaccess when using map host-matching.

HostMatchRegexp (page 1723)
Sets the regular expression that is used to fetch the siteaccess from the hostname with
regexp hostmatching.

HostMatchRegexpItem (page 1724)
Sets which submatch to use to determine the siteaccess name with regexp hostmatching.

HostMatchSubtextPost (page 1725)
Sets the postfix that occurs in the hostname behind the siteaccess when using text host
matching.

HostMatchSubtextPre (page 1726)
Sets the prefix that occurs in the hostname in front of the siteaccess when using text host
matching.

HostMatchType (page 1727)
Sets which type of host matching to use to select the siteaccess.

MatchOrder (page 1729)
Sets the matching algorithms that will be tried to determine which siteaccess to use.

PathPrefix (page 1730)
Sets the hidden prefix that will be added to virtual URLs entered by users.

5.13.34 Configuration files / site.ini 1714

5

PathPrefixExclude (page 1736)
Sets which virtual URLs not to add the hidden prefix to.

RelatedSiteAccessList (page 1737)
Sets which siteaccesses the view cache should be cleared for when it is cleared for the
current siteaccess.

RequireUserLogin (page 1739)
Sets if you allow anonymous access to your site.

ServerVariableName (page 1740)
Not documented yet.

ShowHiddenNodes (page 1741)
Sets if hidden nodes should be shown by default or not.

URIMatchElement (page 1742)
Specifies which element (separated by ”/”) of the URI that contains the siteaccess.

URIMatchRegexp (page 1743)
Sets the regular expression that is used to extract the siteaccess from the URI.

URIMatchRegexpItem (page 1744)
Sets the submatch that is used for siteaccess matching when using regexp URIMatching.

URIMatchType (page 1745)
Configures the URI match access method

5.13.34 Configuration files / site.ini 1715

5

AnonymousAccessList

Summary

Specifies a lists of modules and views that are accessible regardless of the RequireUserLogin
setting.

Usage

AnonymousAccessList[]=module1 /view1
AnonymousAccessList[]=module2 /view2
...

Description

Using the RequireUserLogin (page 1739) setting you can force users to log in in order to get
access to a site. However, those users still need access to the log in page in order to log in. This
setting controls the modules and views that are accessible regardless of the RequireUserLogin
(page 1739) setting.

The default settings allow access to the modules and views related to logging in and registering
a user.

Examples

AnonymousAccessList[]=user/register
AnonymousAccessList[]=user/forgotpassword

These settings allow access to the register page and the forgotpassword page even if RequireUser-
Login is enabled.

5.13.34 Configuration files / site.ini 1716

5

AvailableSiteAccessList

Summary

Sets the siteaccesses that your eZ Publish installation provides.

Usage

AvailableSiteAccessList[]=site access name1
AvailableSiteAccessList[]=site access name2
...

Description

This setting controls the siteaccesses that are available from eZ Publish. Most installations have
two siteaccesses: the user site and the administration interface.

This setting has to be set in settings/override/site.ini.append(.php). eZ Publish will use the
matching rules to decide which siteaccess a user wants to access. More information about the
site access system can be found in the site management (page 138) chapter.

Examples

AvailableSiteAccessList[]=example
AvailableSiteAccessList[]=example_admin

This system has two siteaccesses: example and example admin. Specific override settings for
the public siteaccess can be found in the directory settings/siteaccess/example/. Specific over-
ride settings for the admin siteaccess can be found in the directory settings/siteaccess/example
admin/.

5.13.34 Configuration files / site.ini 1717

5

CheckValidity

Summary

Sets if the setup wizard should be activated or not.

Usage

CheckValidity=true|false

5.13.34 Configuration files / site.ini 1718

5

DebugAccess

Summary

Turns on debug output for access matching.

Usage

DebugAccess=enabled|disabled

Description

This option is for eZ Publish developers only.

5.13.34 Configuration files / site.ini 1719

5

DebugExtraAccess

Summary

Enables verbose access matching debug information.

Usage

DebugExtraAccess=enabled|disabled

Description

This option is for eZ Publish developers only.

5.13.34 Configuration files / site.ini 1720

5

ForceVirtualHost

Summary

Sets if eZ Publish should force virtual host mode.

Usage

ForceVirtualHost=true|false

Description

Normally eZ Publish automatically detects if virtual host or non virtualhost should be used. How-
ever, some special cases require virtual host mode to be forced.

You can read more about the various access methods for eZ Publish in the Access Methods (page
142) chapter. Specific information about virtual host setups can be found in the Virtual host
setup (page 73) chapter.

5.13.34 Configuration files / site.ini 1721

5

HostMatchElement

Summary

Sets which element (separated by a dot) to use when using element host matching.

Usage

HostMatchElement= number

Description

See HostMatchType (page 1727) for examples and more information about host matching.

5.13.34 Configuration files / site.ini 1722

5

HostMatchMapItems

Summary

Sets the mapping between hostname and siteaccess when using map host-matching.

Usage

HostMatchMapItems[]= hostname1 ; siteaccess1

HostMatchMapItems[]= hostname2 ; siteaccess2

...

Description

Each row in the array defines one hostname to match and the siteaccess that will be used for that
hostname.

See HostMatchType (page 1727) for examples and more information about host matching.

5.13.34 Configuration files / site.ini 1723

5

HostMatchRegexp

Summary

Sets the regular expression that is used to fetch the siteaccess from the hostname with regexp
hostmatching.

Usage

HostMatchRegexp= regular expression

Description

The regular expression should contain at least one submatch. The setting HostMatchRegexpItem
(page 1724) controls which submatch that is used for the siteaccess name.

See HostMatchType (page 1727) for examples and more information about host matching.

5.13.34 Configuration files / site.ini 1724

5

HostMatchRegexpItem

Summary

Sets which submatch to use to determine the siteaccess name with regexp hostmatching.

Usage

HostMatchRegexpItem= number

Description

The setting HostMatchRegexp (page 1723) sets the regular expression that is used for matching.

See HostMatchType (page 1727) for examples and more information about host matching.

5.13.34 Configuration files / site.ini 1725

5

HostMatchSubtextPost

Summary

Sets the postfix that occurs in the hostname behind the siteaccess when using text host matching.

Usage

HostMatchSubtextPost= number

Description

Use this setting together with HostMatchSubtextPre (page 1726) to configure text host-matching.

See HostMatchType (page 1727) for examples and more information about host matching.

5.13.34 Configuration files / site.ini 1726

5

HostMatchSubtextPre

Summary

Sets the prefix that occurs in the hostname in front of the siteaccess when using text host match-
ing.

Usage

HostMatchSubtextPre= text

Description

Use this setting together with HostMatchSubtextPost to configure text host-matching.
See HostMatchType (page 1727) for examples and more information about host matching.

5.13.34 Configuration files / site.ini 1727

5

HostMatchType

Summary

Sets which type of host matching to use to select the siteaccess.

Usage

HostMatchType=disabled|map|element|text|regexp

Description

Use host match when you want to select the siteaccess based on the host part of the URL. Host
matching can be used in four different modes or be disabled completely. The available options
are:

• disabled - Disables host matching. If host matching is specified in the MatchOrder (page
1729) setting it will be ignored.

• map - Select the siteaccess based on the complete hostname. Specify the mapping between
a hostname and the siteaccess to use with the HostMatchMapItems (page 1722) setting.

• element - The siteaccess is specified by a one of the subdomains that are part of the host-
name. Select which part of the hostname (separated by dots) that specifies the siteaccess
with the HostMatchElement (page 1721) setting.

• text - The siteaccess is given by some arbitrary part of the hostname with a fixed pre
and post text. Set the pre and post text with the HostMatchSubtextPre (page 1726) and
HostMatchSubtextPost (page 1725) settings.

• regexp - Use a regular expression to obtain the siteaccess name from the hostname. Set the
regular expression and the submatch to use with the HostMatchRegexp (page 1723) and
HostMatchRegexpItem (page 1724) settings.

Examples

Map matching

HostMatchType=map
HostMatchMapItems[]=mydomain.no;user
HostMatchMapItems[]=admin.mydomain.no;admin

This configuration uses the map hostmatching type. If the site is acccessed using the domain
mydomain.no the siteaccess named user is used. If the domain admin.mydomain.no is used the
admin siteaccess is used instead.

5.13.34 Configuration files / site.ini 1728

5

Element matching

HostMatchType=element
HostMatchElement=1

This configuration uses the second element in the hostname as siteaccess using element matching.
For example the hostname first.second.third.com yields the siteaccess second.

Text matching

HostMatchType=text
HostMatchSubtextPre=my
HostMatchSubtextPost=site.ez.no

This text mathcing configuration uses everything between my and site.ez.no as the siteaccess.
E.g myadminsite.ez.no would produce the siteaccess admin. The hostname myusersite.ez.no
produces the siteaccessname user.

Regexp matching

HostMatchType=regexp
HostMatchRegexp=^(.+)\.example\.com
HostMatchRegexpItem=1

This regexp setup uses the regular expression ˆ(.+)\.example\.com to match anything in front of
.example.com. The first match is set up to hold the siteaccess. E.g the hostname test.example.com
yields the siteaccess test.

5.13.34 Configuration files / site.ini 1729

5

MatchOrder

Summary

Sets the matching algorithms that will be tried to determine which siteaccess to use.

Usage

MatchOrder= match type1 [; match type2]...

Description

You can specify several matching types separated by a semicolon. eZ Publish will try each match-
ing type, in the order specified, until a match is found.

The possible algorithms are:

• host - Fetch the siteaccess from the hostname. E.g admin.mydomain.com for the admin
site and www.mydomain.com for the user site. Use the settings starting with HostMatch to
configure host matching.

• uri - Fetch the siteaccess from the requested path. E.g mydomain.com/index.php/
siteaccess name/. If you ommit the siteaccess in the URL the default siteaccess will be used.
Use the settings starting with UriMatch to configure URI matching.

• port - Select the siteaccess based on the port used to access the site. E.g mydomain.com
for the user site, and mydomain.com:99 for the administration interface. Use the [PortAc-
cessSettings] group to configure port matching.

• servervar - Fetches the siteaccess to use from a server variable found in the PHP $ SERVER
global. Use the ServerVariableName setting to choose the server variable that contains the
siteaccess to use.

The most common access methods are described in detail in the access methods (page 142)
chapter.

5.13.34 Configuration files / site.ini 1730

5

PathPrefix

Summary

Sets the hidden prefix that will be added to virtual URLs entered by users.

Usage

PathPrefix=prefix

Description

This directive sets the hidden prefix that will be added to virtual URLs entered by users. It is
typically useful for multiple public siteaccesses that are used to display different parts of the
content tree.

Consider an example siteaccess called ”news” that should display content located under the ”info”
folder, which can be accessed at ”www.example.com/news/info/”. Normally, if an article called
”conference” is located one level beneath the ”info” folder, the URL to access this article will be
”www.example.com/news/info/conference”. If you specify ”PathPrefix=info” in the ”settings/
siteaccess/news/site.ini.append.php” configuration file, the ”conference” article will also be ac-
cessible through a shortened URL ”www.example.com/news/conference” (in addition to the full
URL mentioned above). This is because the system will automatically add the specified prefix
after the siteaccess in the URL and look for the matching entry in the database table that stores
the URL aliases. Since the URL alias table contains the ”info/conference” entry, which points
to the ”conference” article node, this article will be displayed. The prefix is considered hidden
because the URL in the browser remains as ”news/conference”.

With this configuration, only content located under the ”info” folder will be accessible for the
”news” siteaccess. To make other subtrees available for this siteaccess, you need to specify the
corresponding prefixes using the ”PathPrefixExclude” configuration array. For example, let’s say
that another folder called ”articles” is located at the same level as the ”info” folder in the content
tree. If somebody enters ”www.example.com/news/articles” as a URL, the system will automat-
ically add the ”info” prefix and attempt to access, without any success, ”www.example.com/
news/info/articles”. To make the system properly handle virtual URLs in the ”articles” subtree,
you need to specify ”PathPrefixExclude[]=articles” in the same configuration file. This will make
all content located in the ”articles” folder available for the ”news” siteaccess.

If the ”news” siteaccess makes use of multiple site languages, make sure you use the most priori-
tized one when setting the prefix for virtual URLs (see Example 3).

Note that the explanation above only uses URL aliases with lowercase Latin letters. In real-
ity, folder names may contain different characters (spaces, uppercase letters, Unicode charac-
ters), while URL aliases are generated according to the ”TransformationGroup (page 1788)” and
”WordSeparator (page 1787)” configuration directives. By default, the system uses the ”urlalias”
transformation method and dashes as word separators. For example, if you create a folder
called ”Company news”, it will get an auto-generated URL alias ”Company-news” (stored in

5.13.34 Configuration files / site.ini 1731

5

the database), while the actual URLs for site visitors can contain ”company-news”, ”COMPANY-
NEWS”, ”company-News” and so on. (Refer to ”URL transformation rules” for more information.)

However, the ”PathPrefix” directive is case sensitive, and when used, the prefix part becomes case
sensitive when the full URL is accessed. In the example above, the prefix for the ”Company news”
folder must be specified as shown below:

PathPrefix=Company-news

If you specify ”company-news”, ”COMPANY-NEWS” or ”company-News” as a prefix, it will not
work correctly.

With this configuration, if an article called ”Conference” is located one level beneath the ”Com-
pany news” folder, it can be accessed at both ”www.example.com/news/Conference” (short URL)
and ”www.example.com/news/Company-news/Conference” (full URL). While the short URL is
not case sensitive, the prefix part of the full URL is. This means that both URLs can contain, for
example, ”conference” instead of ”Conference”. However, if you replace ”Company-news” with
”company-news”, ”COMPANY-NEWS” or ”company-News” in the full URL, it will not work any
longer.

The ”PathPrefixExclude” directive is also case sensitive. To make the content located in the ”My
articles” folder available for the ”news” siteaccess, you need to add the corresponding URL alias
to the PathPrefixExclude[] configuration array as shown below:

PathPrefixExclude[]=My-articles

In addition, it is recommended to have ”Users” and ”Media” listed in the ”PathPrefixExclude[]”
configuration array in order to make user accounts and media content available for this siteaccess
through virtual URLs (otherwise only system URLs like ”www.example.com/content/view/full/
45/” will work for these items). In the URLs that point to user accounts and media content, the
prefix part will become case sensitive.

If your site makes use of another URL alias configuration, URL aliases are generated differently
than in the examples above, so be sure to use URLs appropriate for your setup. For example, if
the ”urlalias compat” transformation method is used, only lowercase letters are allowed in URL
aliases. (This also means that you’ll have to specify ”users” and ”media” in the ”PathPrefixEx-
clude” setting in order to make user accounts and media content accessible.)

Examples

Example 1

Suppose you have two folders called ”Books” and ”Postcards” located right under the ”Content”
top level node. If you use two public siteaccesses called ”bookshop” and ”cards” for displaying
content located in these folders, you will most likely have something like this in the ”[SiteAccess-
Settings]” section of the ”settings/override/site.ini.append.php” configuration file:

5.13.34 Configuration files / site.ini 1732

5

...
AvailableSiteAccessList[]
AvailableSiteAccessList[]=bookshop
AvailableSiteAccessList[]=cards
RelatedSiteAccessList[]
RelatedSiteAccessList[]=bookshop
RelatedSiteAccessList[]=cards
...

With this configuration, content located in both folders will be available for both siteaccesses.
The ”Books” folder can be accessed using URLs like ”www.example.com/bookshop/Books/”
and ”www.example.com/cards/Books/”. In the same way, the ”Postcards” folder will be acces-
sible through both ”www.example.com/bookshop/Postcards/” and ”www.example.com/cards/
Postcards/”.

Now, you can configure the ”bookshop” siteaccess to only display content located in the ”Books”
folder. To do that, add the following lines to the ”site.ini.append.php” configuration file of the
”bookshop” siteaccess:

[SiteAccessSettings]
PathPrefix=Books

With this configuration, content located in the ”Books” folder can be accessed using URLs like
”www.example.com/bookshop/MyBook” and ”www.example.com/cards/Books/MyBook”. URLs
like ”www.example.com/bookshop/Postcards/MyPostcard” will not work any longer.

To configure the ”cards” siteaccess to only display content located in the ”Postcards” folder,
add the following lines to the ”site.ini.append.php” configuration file located in the ”settings/
siteaccess/cards” directory:

[SiteAccessSettings]
PathPrefix=Postcards

With this configuration, content located in the ”Postcards” folder can be accessed using URLs like
”www.example.com/cards/MyPostcard” and ”www.example.com/cards/Postcards/MyPostcard”.
URLs like ”www.example.com/bookshop/Postcards/MyPostcard” and ”www.example.com/
cards/Books/MyBook” will not work any longer.

Example 2

Let’s have a look at the previous example assuming that the host access method is used instead
of the default one. This means that eZ Publish is set up to use different siteaccesses based on
the host/domain combinations of the incoming requests. In this case, the ”[SiteAccessSettings]”
section in the ”settings/override/site.ini.append.php” configuration file will most likely contain
the following additional lines:

5.13.34 Configuration files / site.ini 1733

5

...
MatchOrder=host
HostMatchType=map
HostMatchMapItems[]=www.books.example.com;bookshop
HostMatchMapItems[]=www.greetings.example.com;cards
...

With this configuration, the system will use the ”bookshop” siteaccess if the requested URL
starts with ”www.books.example.com”. The ”cards” siteaccess will be used if the requested
URL starts with ”www.greetings.example.com”. The ”Books” folder can be accessed using
URLs like ”www.books.example.com/Books/” and ”www.greetings.example.com/Books/”. The
”Postcards” folder will be accessible through both ”www.books.example.com/Postcards/” and
”www.greetings.example.com/Postcards/”.

If you specify ”PathPrefix=Books” for the ”bookshop” siteaccess as shown above, content located
in the ”Books” folder will be accessible through the following URLs:

• www.books.example.com/MyBook (short URL)

• www.books.example.com/Books/MyBook (full URL)

• www.greetings.example.com/Books/MyBook (full URL for the ”cards” siteaccess)

URLs like ”www.books.example.com/Postcards/MyPostcard” will not work any longer.

If you also specify ”PathPrefix=Postcards” for the ”cards” siteaccess, content located in the ”Post-
cards” folder will be accessible through the following URLs:

• www.greetings.example.com/MyPostcard (short URL)

• www.greetings.example.com/Postcards/MyPostcard (full URL)

URLs like ”www.greetings.example.com/Books/MyBook” will not work any longer.

Example 3

Let’s say that your site content exists in English and French languages and you have two public
siteaccesses called ”gb” and ”fr” with the following language configuration:

Siteaccess ”gb” Siteaccess ”fr”

[RegionalSettings]
SiteLanguageList[]
SiteLanguageList[]=eng-GB
SiteLanguageList[]=fre-FR

[RegionalSettings]
SiteLanguageList[]
SiteLanguageList[]=fre-FR
SiteLanguageList[]=eng-GB

If a folder is called ”Company” in English and ”Compagnie” in French, it can be accessed using
the following URLs:

5.13.34 Configuration files / site.ini 1734

5

• www.example.com/gb/Company

• www.example.com/gb/Compagnie

• www.example.com/fr/Company

• www.example.com/fr/Compagnie

While the first two URLs bring up the English version of the folder, the other ones will bring up
the French version.

If you want the ”gb” siteaccess to only display content located in this subtree, you need to add
the following lines to the ”settings/siteaccess/gb/site.ini.append.php” configuration file:

[SiteAccessSettings]
PathPrefix=Company

For the ”fr” siteaccess, you would have to specify ”Compagnie” as a prefix, since French is the
most prioritized language for this siteaccess.

Example 4

Suppose that your site content exists in the Norwegian language. If you create a folder called
”Ostehovel” (Cheese slicer) located in the ”Produkter” (Products) folder, the system will auto-
matically generate a URL alias for it depending on which transformation method is used:

Transformation method URL alias
urlalias (default) Produkter/Ostehoevel
urlalias iri Produkter/Ostehovel
urlalias compat produkter/ostehoevel

You can configure a siteaccess to only display content located in the ”Ostehovel” folder and
skip the corresponding prefix in the URLs. If the default transformation method is used,
this can be done by adding the following line to the ”[SiteAccessSettings]” section of the
”site.ini.append.php” file for this siteaccess:

PathPrefix=Produkter/Ostehoevel

If the ”urlalias iri” transformation method is used, the corresponding line will look like this:

PathPrefix=Produkter/Ostehvel

If the ”urlalias compat” transformation method is used, you need to specify the prefix as shown
below:

5.13.34 Configuration files / site.ini 1735

5

PathPrefix=produkter/ostehoevel

5.13.34 Configuration files / site.ini 1736

5

PathPrefixExclude

Summary

Sets which virtual URLs not to add the hidden prefix to.

Usage

PathPrefixExclude[]=url alias1
PathPrefixExclude[]=url alias2
...

Description

This directive tells the system which subtrees’ virtual URLs should be unaffected by the ”Path-
Prefix (page 1730)” directive. To add a subtree, specify the auto-generated URL alias of the top
node in the most prioritized language.

Examples

Example 1

PathPrefixExclude[]
PathPrefixExclude[]=Media
PathPrefixExclude[]=Users
...

Assuming that the default configuration of URL aliases is used, this will tell the system not to
add any hidden prefix to virtual URLs that point to user accounts and media content (everything
located in the ”Users” and ”Media” folders). For example, a URL like ”www.mysite.com/Media/
Images/MyPic” will be handled ”as is”, regardless of what is specified in the ”PathPrefix” directive.

5.13.34 Configuration files / site.ini 1737

5

RelatedSiteAccessList

Summary

Sets which siteaccesses the view cache should be cleared for when it is cleared for the current
siteaccess.

Usage

RelatedSiteAccessList[]=site access name1
RelatedSiteAccessList[]=site access name2
...

Description

This setting controls which siteaccesses need to have their view cache cleared when the content
is changed on the current siteaccess. When clearing the view cache of a node, the system will
clear it for all related siteaccesses. If this setting is not specified, the cache subsystem will use the
”AvailableSiteAccessList (page 1716)” setting instead.

If you have several siteaccesses that are using different databases, this setting must be set per
siteaccess.

Examples

Example 1

Let’s say that you have several siteaccesses called ”gb”, ”no”, ”fr” and ”myadmin” using the same
database. When you change the site pages using the admin interface, the view cache of these
pages should be cleared not only for your admin siteaccess but for three public siteaccesses as
well. Add the following lines to the ”settings/override/site.ini.append.php”:

RelatedSiteAccessList[]=gb
RelatedSiteAccessList[]=no
RelatedSiteAccessList[]=fr
RelatedSiteAccessList[]=myadmin

This will instruct the system to clear the view caches for all your siteaccesses.

If you remove ”RelatedSiteAccessList[]=gb” then only three siteaccesses will be considered as
related and thus editing a site page in the admin interface will lead to clearing the view cache of
this page for ”myadmin”, ”no” and ”fr” siteaccess (the view cache for ”gb” will not be cleared).

Example 2

Let’s say that you have the following siteaccesses:

5.13.34 Configuration files / site.ini 1738

5

• ”gb”, ”no” and ”myadmin” using the ”mydb” database

• ”shop” and ”shopadmin” using the ”myshopdb” database

This means you have to specify the following settings in their ”site.ini.append.php” configuration
files:

settings/siteaccess/gb/site.ini.append.php

RelatedSiteAccessList[]=no
RelatedSiteAccessList[]=myadmin

settings/siteaccess/no/site.ini.append.php

RelatedSiteAccessList[]=gb
RelatedSiteAccessList[]=myadmin

settings/siteaccess/myadmin/site.ini.append.php

RelatedSiteAccessList[]=gb
RelatedSiteAccessList[]=no

settings/siteaccess/shop/site.ini.append.php

RelatedSiteAccessList[]=shopadmin

settings/siteaccess/shopadmin/site.ini.append.php

RelatedSiteAccessList[]=shop

5.13.34 Configuration files / site.ini 1739

5

RequireUserLogin

Summary

Sets if you allow anonymous access to your site.

Usage

RequireUserLogin=true|false

Description

If this setting is set to true, eZ Publish will redirect all requests from users that are not logged in
to the log in page.

This setting is typically overridden for each siteaccess. Private siteaccesses like intranets or the
admin interface will typically have RequireUserLogin set to true while public sites that everyone
can access typically have RequireUserLogin set to false.

5.13.34 Configuration files / site.ini 1740

5

ServerVariableName

Summary

Not documented yet.

Usage

ServerVariableName

5.13.34 Configuration files / site.ini 1741

5

ShowHiddenNodes

Summary

Sets if hidden nodes should be shown by default or not.

Usage

ShowHiddenNodes=true|false

Description

eZ Publish has the concept of node visibility (page 127). These settings controls whether hidden
nodes should be displayed by default or not. The settings controls the behavior of the content
fetch functions. ShowHiddenNodes is typically overridden for siteaccesses where all content
should be shown regardless of the state, e.g in the administration interface.

5.13.34 Configuration files / site.ini 1742

5

URIMatchElement

Summary

Specifies which element (separated by ”/”) of the URI that contains the siteaccess.

Usage

URIMatchElement= number

Description

See URIMatchType (page 1745) for examples and more information about URI matching.

5.13.34 Configuration files / site.ini 1743

5

URIMatchRegexp

Summary

Sets the regular expression that is used to extract the siteaccess from the URI.

Usage

URIMatchRegexp= regular expression

Description

Use the setting URIMatchRegexpItem (page 1744) to determine the submatch that contains the
siteaccess.

See URIMatchType (page 1745) for examples and more information about URI matching.

5.13.34 Configuration files / site.ini 1744

5

URIMatchRegexpItem

Summary

Sets the submatch that is used for siteaccess matching when using regexp URIMatching.

Usage

URIMatchRegexpItem= number

Description

The setting URIMatchRegexp (page 1743) specifies the regular expression that should be used
for matching.

See URIMatchType (page 1745) for examples and more information about URI matching.

5.13.34 Configuration files / site.ini 1745

5

URIMatchType

Summary

Configures the URI match access method

Usage

URIMatchType=disabled|map|element|text|regexp

Description

URI matching is used to select the siteaccess from the location part of the URL: URL matching can
be used in two different modes or be disabled completely. The options you have for this settings
are:

• disabled - Disables URI matching. If URI matching is present in the MatchOrder (page
1729) setting it will be ignored.

• map - Select the siteaccess to use based on the first element of a given URL. Specify the
mapping between the URL element and the siteaccess to use with the URIMatchMapItems
setting.

• element - Select the siteaccess to use based on the elements separated by ”/” in the loca-
tion part. If you specify ”URIMatchElement=N”, the system will take N parts of the URL
(separated by ”/”) and replace slashes with underscores in the resulting string.

• text - Match URL using pre- or post- substrings (URIMatchSubtextPre, URIMatchSub-
textPost).

• regexp - Works similarly to the element setting but you can specify the delimiter with a
regular expression. The settings URIMatchRegExp and URIMatchRegExpItem control how
to split the URL and what part to use for the siteaccess.

Examples

Example 1 (element matching)

URIMatchType=element
URIMatchElement=1

With this configuration the second element (the first element is element 0) of the URI will be used
as the siteaccess. For example, in the URL ”http://www.mysite.com/news/site/admin/content/
view/full/32” the siteaccess name will be ”news”.

5.13.34 Configuration files / site.ini 1746

5

Example 2 (element matching)

URIMatchType=element
URIMatchElement=3

With this configuration the second element (the first element is element 0) of the URI will be used
as the siteaccess. For example, in the URL ”http://www.mysite.com/news/site/admin/content/
view/full/32” the siteaccess name will be ”news site admin”.

Example 3 (map matching)

URIMatchType=map
URIMatchMapItems[]=myadmin_de;admin_de
URIMatchMapItems[]=MYADMIN_DE;admin_de

This will tell the system to use the ”admin de” siteaccess when the first element of a given URI is
’myadmin de’ or ’MYADMIN DE’.

5.13.34 Configuration files / site.ini 1747

5

[SiteSettings]

64bitCompatibilityMode (page 1749)
Enables 64bit compatibility mode

DefaultAccess (page 1753)
Sets the default site access when the URI access method is used.

IndexPage (page 1754)
Sets the page to display when the root ”/” of your site is accessed.

LoginPage (page 1752)
Sets if eZ Publish should use a custom pagelayout for the log in page.

MetaDataArray (page 1755)
Sets the site metadata that is used on several places on your site.

SiteList (page 1750)
Sets the siteaccesses available to outside sources (currently used for webdav only)

SiteName (page 1757)
The name of your site.

SiteURL (page 1756)
Sets the URL of your site. Used e.g when generating links for notifactions and emails.

SSLPort (page 1751)
The port that that should be used for SSL requests.

SSLProxyServerName (page 1748)
Sets which virtual host that functions as a proxy server for incoming SSL requests.

5.13.34 Configuration files / site.ini 1748

5

SSLProxyServerName

Summary

Sets which virtual host that functions as a proxy server for incoming SSL requests.

Usage

SSLProxyServerName=virtual host name

Description

This setting was introduced in eZ Publish 3.10 as a part of a functionality that provides support
for using SSL proxy servers.

The purpose of this feature is to reduce complexity by decreasing the number of entries in the
Apache configuration file. For each eZ Publish installation, only one virtual host is needed, plus
the one that handles all incoming SSL requests. It is typically useful when several SSL-enabled eZ
Publish sites/installations are running through different virtual hosts on the same server. Using
this feature, it is possible to create an additional virtual host that functions as an SSL proxy server
(a single-point-of-contact interface between the clients and the sites/installations). It will listen
on port 443 and handle all incoming SSL requests no matter which site they were meant for.
The requests are internally redirected to the corresponding virtual hosts running the actual sites.
Finally, eZ Publish will handle them and provide the actual response. The responses are passed
back to the SSL proxy server which then returns them to the clients that issued the corresponding
requests.

When redirecting an SSL request to a virtual host, the proxy server sets the ”HTTP X
FORWARDED SERVER” header. The value will be the name of the proxy server (the name of
the virtual host as configured in Apache). All eZ Publish installations running on different virtual
hosts must have the ”SSLProxyServerName” directive set to the same value. This makes it possi-
ble for eZ Publish to distinguish SSL requests from usual HTTP requests. The system will identify
a request as an SSL request if the value of the ”HTTP X FORWARDED SERVER” header matches
the value of the ”SSLProxyServerName” configuration setting. Otherwise, it will be classified as
an ordinary HTTP request. The response will be passed to the SSL proxy server and then returned
to the client.

The default value of the ”SSLProxyServerName” directive is ”localhost”.

5.13.34 Configuration files / site.ini 1749

5

64bitCompatibilityMode

Summary

Enables 64bit compatibility mode

Usage

64bitCompatibilityMode=enabled|disabled

Description

This setting allows to enable or disable 64bit compatibility mode. This will affect some PHP
functions like crc32.

Examples

64bitCompatibilityMode=enabled

This enables 64bit compatibility mode in eZ publish.

5.13.34 Configuration files / site.ini 1750

5

SiteList

Summary

Sets the siteaccesses available to outside sources (currently used for webdav only)

Usage

SiteList[]= siteaccess1

SiteList[]= siteaccess2

...

5.13.34 Configuration files / site.ini 1751

5

SSLPort

Summary

The port that that should be used for SSL requests.

Usage

SSLPort= integer

Description

Note:The default 443 should suffice for most users.

5.13.34 Configuration files / site.ini 1752

5

LoginPage

Summary

Sets if eZ Publish should use a custom pagelayout for the log in page.

Usage

LoginPage=custom|embedded

Description

If LoginPage is set to custom, eZ Publish will use loginpagelayout.tpl when users access the login
page.

If LoginPage is set to embedded the normal pagelayout.tpl will be used.

5.13.34 Configuration files / site.ini 1753

5

DefaultAccess

Summary

Sets the default site access when the URI access method is used.

Usage

DefaultAccess= siteaccess name

Description

When you use the URI access method (page 142) it is not possible to see which siteaccess you
want to use if you are accessing the root of your site. The DefaultAccess setting specifies which
siteaccess to choose when this happens.

5.13.34 Configuration files / site.ini 1754

5

IndexPage

Summary

Sets the page to display when the root ”/” of your site is accessed.

Usage

IndexPage= internal url

Description

Use either a system or a nice URL to specify the index page. System URL’s are a bit faster and
should be used for the IndexPage setting since the root of your site will be accessed very often.

Examples

IndexPage=/content/view/full/2

This example shows the full view of node 2 as the index page of your site.

5.13.34 Configuration files / site.ini 1755

5

MetaDataArray

Summary

Sets the site metadata that is used on several places on your site.

Usage

MetaDataArray[meta name1]= meta data1

MetaDataArray[meta name2]= meta data2

...

Description

This setting can be used to control meta data that is used in several different locations in your
site. The default installation defines author, copyright, description and keywords. You are free to
define your own metadata. To fetch the metadata use the ezini template operator.

Examples

MetaDataArray[author]=eZ Systems
MetaDataArray[copyright]=eZ Systems
MetaDataArray[description]=Content Management System
MetaDataArray[keywords]=cms, publish, e-commerce, content management, development
framework

5.13.34 Configuration files / site.ini 1756

5

SiteURL

Summary

Sets the URL of your site. Used e.g when generating links for notifactions and emails.

Usage

SiteURL= site url

Description

The URL should contain the full hostname and any additional path to the root of your eZ Publish
installation.

Examples

SiteURL=ez.no

A typical generated link will now look like http://ez.no/some url here.

5.13.34 Configuration files / site.ini 1757

5

SiteName

Summary

The name of your site.

Usage

SiteName=the name of your site

Description

This setting is used in the title of the default templates. You may use spaces in the title.

Examples

SiteName=Sigges megaphone warehouse

5.13.34 Configuration files / site.ini 1758

5

[SSLZoneSettings]

ModuleViewAccessMode (page 1759)
Not documented yet.

SSLSubtrees (page 1760)
Not documented yet.

SSLZones (page 1761)
Not documented yet.

5.13.34 Configuration files / site.ini 1759

5

ModuleViewAccessMode

Summary

Not documented yet.

5.13.34 Configuration files / site.ini 1760

5

SSLSubtrees

Summary

Not documented yet.

5.13.34 Configuration files / site.ini 1761

5

SSLZones

Summary

Not documented yet.

5.13.34 Configuration files / site.ini 1762

5

[TemplateSettings]

You can read more about the template system in the templates (page 167) chapter.

AutoloadPathList (page 1775)
Sets the directories inside eZ publish itself where eZ publish will look for operator and
function definitions.

Debug (page 1773)
Turns on/off template debug output.

DevelopmentMode (page 1763)
Not documented yet.

ExtensionAutoloadPath (page 1774)
Sets the extensions that contain template function or operator definitions.

NodeTreeCaching (page 1769)
Sets if the template interpreter should cache parsed template files.

ShowMethodDebug (page 1771)
Sets if debug information about called functions and operators should be displayed.

ShowUsedTemplates (page 1770)
Enables a table in the debug displaying all the templates used to render the current page.

ShowXHTMLCode (page 1772)
Sets if eZ publish should display template load debug inline or not.

TemplateCache (page 1765)
Main switch for all the template related caches.

TemplateCompile (page 1768)
Sets if the template compiler should be used or not.

TemplateCompression (page 1764)
Sets if compiled templates should be compressed or not.

TemplateOptimization (page 1767)
Sets if the template compiler should try to optimize the produced PHP code.

UseFormatting (page 1766)
Sets if the template compiler should keep whitespace in the compiled template.

5.13.34 Configuration files / site.ini 1763

5

DevelopmentMode

Summary

Not documented yet.

5.13.34 Configuration files / site.ini 1764

5

TemplateCompression

Summary

Sets if compiled templates should be compressed or not.

Usage

TemplateCompression=enabled|disabled

Description

Enable template compression to make eZ publish store compiled templates using gzip. This saves
a lot of space but is a bit slower.

5.13.34 Configuration files / site.ini 1765

5

TemplateCache

Summary

Main switch for all the template related caches.

Usage

TemplateCache=enabled|disabled

Description

If you disable TemplateCache the template system will not do any caching at all. This includes
cache-blocks and compiled templates.

Note: Template caching is essential to speed up your site. Do not turn TemplateCache off unless
you are developing.

5.13.34 Configuration files / site.ini 1766

5

UseFormatting

Summary

Sets if the template compiler should keep whitespace in the compiled template.

Usage

UseFormatting=enabled|disabled

Description

Enabling this setting makes the template compiler keep whitespace formatting in the compiled
templates. This results in HTML output that bigger but easier to read.

This setting has no effect if TemplateCompile (page 1768) is disabled.

5.13.34 Configuration files / site.ini 1767

5

TemplateOptimization

Summary

Sets if the template compiler should try to optimize the produced PHP code.

Usage

TemplateOptimization=enabled|disabled

Description

Optimized templates will be slightly faster than templates that are not compiled.

This setting has no effect if TemplateCompile (page 1768) is disabled.

5.13.34 Configuration files / site.ini 1768

5

TemplateCompile

Summary

Sets if the template compiler should be used or not.

Usage

TemplateCompile=enabled|disabled

Description

If you enable TemplateCompile eZ publish will convert your templates into executable PHP files.
If this option is disabled eZ publish will interpret each template separately for each page.

eZ publish will compile the templates on demand. Once a template is compiled it takes less time
to process. However, compiling templates takes a lot of time. This can be noticed after you have
cleared the cache. If this is a problem for your site you can use the ”bin/php/eztc.php” script to
compile all your templates before you go live.

5.13.34 Configuration files / site.ini 1769

5

NodeTreeCaching

Summary

Sets if the template interpreter should cache parsed template files.

Usage

NodeTreeCaching=enabled|disabled

Description

Enable this setting to make eZ publish go faster if you have disabled TemplateCompile (page
1768). If TemplateCompile (page 1768) is enabled this setting will have no effect.

5.13.34 Configuration files / site.ini 1770

5

ShowUsedTemplates

Summary

Enables a table in the debug displaying all the templates used to render the current page.

Usage

ShowUsedTemplates=enabled|disabled

Description

Debug (page 1773) must be enabled for this setting to have any effect.

Note: If you have caching enabled you will have to clear the cache for the table to display all
templates used to render a page.

5.13.34 Configuration files / site.ini 1771

5

ShowMethodDebug

Summary

Sets if debug information about called functions and operators should be displayed.

Usage

ShowMethodDebug=enabled|disabled

Description

Debug (page 1773) must be enabled for this setting to have any effect.

The extra debug output provided by this setting is only useful for kernel developers.

5.13.34 Configuration files / site.ini 1772

5

ShowXHTMLCode

Summary

Sets if eZ publish should display template load debug inline or not.

Usage

ShowXHTMLCode=enabled|disabled

Description

If ShowXHTMLCode is enabled eZ publish will display a comment in the rendered output of the
browser for each time a new template is loaded.
Debug (page 1773) must be enabled for this setting to have any effect.

Note: If you have caching enabled you may will have to clear the cache for this setting to take
effect.

5.13.34 Configuration files / site.ini 1773

5

Debug

Summary

Turns on/off template debug output.

Usage

Debug=enabled|disabled

Description

If you enable this setting eZ publish will display a list of debug messages at the bottom of each
page. The output is configurable but will typically consist of information about the time used to
render the page, warnings or errors while executing your template, information about the SQL
queries executed and a list of the templates used.
Turning on debug will also make eZ publish output comments in the HTML output each time it
loads a new template.

If things don’t work as you expected while developing your site, turn on Debug and make sure
that there are no warnings or errors while rendering your page.

Note: If you have caching enabled, some debug messages may disappear the second time you
load a page. This is because the cache was used instead of rerendering the page. If you want to
see all the debug messages you have to clear the cache or turn off caching alltogether.

5.13.34 Configuration files / site.ini 1774

5

ExtensionAutoloadPath

Summary

Sets the extensions that contain template function or operator definitions.

Usage

ExtensionAutoloadPath[]= directory name1

ExtensionAutoloadPath[]= director namey2

...

Description

eZ publish will look for the file eztemplateautoload.php inside the directory ”/extension/
directory name/autoloads”. The eztemplateautoload.php file should contain the function and
operator definitions provided by the corresponding extension.

This setting is typically set in the settings for each extension that contain template operators of
functions.

Examples

ExtensionAutoloadPath[]=myextension

This setting will make eZ publish load template function and operator definitions from the file ”/
extension/myextension/autoloads/eztemplateautoload.php”

5.13.34 Configuration files / site.ini 1775

5

AutoloadPathList

Summary

Sets the directories inside eZ publish itself where eZ publish will look for operator and function
definitions.

Usage

AutoloadPathList[]= directory1

AutoloadPathList[]= directory2

...

Description

If you want to specify additional paths that eZ publish should search for template operators and
functions use the ExtensionAutoLoadPath setting.

Note: Do not change this setting unless you know what you are doing.

5.13.34 Configuration files / site.ini 1776

5

[TimeZoneSettings]

TimeZone (page 1777)
Sets the timezone to use in eZ Publish.

5.13.34 Configuration files / site.ini 1777

5

TimeZone

Summary

Sets the timezone to use in eZ Publish.

Usage

TimeZone=Area/Location

Description

In order to run multiple installations of eZ Publish on one server using different timezones it is
now possible to override the OS default timezone. The time zones are named as ”Area/Location”,
where ”Area” is the name of a continent or ocean, and ”Location” is the name of a specific
location within that region, usually cities or small islands. (The list of timezones can be found at
http://www.php.net/manual/en/timezones.php)

This setting is empty by default, which means that eZ Publish will use the PHP default timezone
(controlled by the ”date.timezone” value in the ”php.ini” configuration file).

Examples

Example 1

TimeZone=America/Antigua

This will instruct the system to use the ”America/Antigua” timezone instead of the PHP default
timezone / OS default timezone.

http://www.php.net/manual/en/timezones.php
http://www.php.net/manual/en/ref.datetime.php#ini.date.timezone

5.13.34 Configuration files / site.ini 1778

5

[TipAFriend]

FromEmail (page 1779)
Sets the from address used when sending tip a friend e-mail.

MaxRequestsPerTimeframe (page 1780)
Set the maximum number of tip a friend mail the system will send to one email address.

TimeFrame (page 1781)
Sets the time frame for the tip a friend functionality.

5.13.34 Configuration files / site.ini 1779

5

FromEmail

Summary

Sets the from address used when sending tip a friend e-mail.

Usage

FromEmail= email address

Description

The specified e-mail address is used as the ”From:” address when sending ”tip-a-friend” e-mails.
This setting is empty by default, so the email address specified in the ”tip-a-friend” form will be
used as the ”From:” address when sending the e-mail.

Examples

FromEmail=no@spam.org

This makes eZ Publish use ”no@spam.org” as the from address when sending ”tip-a-friend” e-
mails.

5.13.34 Configuration files / site.ini 1780

5

MaxRequestsPerTimeframe

Summary

Set the maximum number of tip a friend mail the system will send to one email address.

Usage

MaxRequestsPerTimeframe= number

Description

eZ Publish will not allow anyone to send more than MaxRequestsPerTimeframe tip a friend mail
per TimeFrame (page 1781) to any single mail address. This prevents the possibility to spam a
random email addresses.

Examples

MaxRequestsPerTimeframe=10
TimeFrame=2

Using these settings eZ Publish will not allow users to send more than 10 tip a friend mails to a
single email address per two hours.

5.13.34 Configuration files / site.ini 1781

5

TimeFrame

Summary

Sets the time frame for the tip a friend functionality.

Usage

TimeFrame= number of hours

Description

You can control the maximum number of tip a friend mail the system can send to one address
using this setting and the MaxRequestsPerTimeframe (page 1780) setting.

5.13.34 Configuration files / site.ini 1782

5

[UnitSettings]

BinaryUnits (page 1784)
Sets which units eZ publish considers binary units.

UseSIUnits (page 1783)
Sets if eZ publish should use OSI or SI prefixes for binary numbers

5.13.34 Configuration files / site.ini 1783

5

UseSIUnits

Summary

Sets if eZ publish should use OSI or SI prefixes for binary numbers

Usage

UseSIUnits=true|false

Description

If this setting is set to true eZ publish will use SI prefixes for binary numbers. If the setting is set
to false eZ publish uses OSI prefixes for binary numbers. You can set the units that eZ publish
should consider binary with the BinaryUnits (page 1784) setting.

5.13.34 Configuration files / site.ini 1784

5

BinaryUnits

Summary

Sets which units eZ publish considers binary units.

Usage

BinaryUnits= unit1 ; unit2 ;...

Description

Binary units will get binary prefixes in front of the ’B’ for byte or ’b’ for bit. The possible units are
listed in units.ini (page 1833).

Use the UseSIUnits (page 1783) settings to force eZ publish to use SI prefixes instead of the
standard OSI approved prefixes.

The configuration file units.ini (page 1833) allows you to alter the prefixes.

Examples

OSI prefixes

The binary number 1 048 576 byte will be displayed as 1 MB
The binary number 1 048 576 bit will be displayed as 1 Mb

SI prefixes

The binary number 1 048 576 byte will be displayed as 1 MiB
The binary number 1 048 576 bit will be displayed as 1 Mib

5.13.34 Configuration files / site.ini 1785

5

[URLTranslator]

Filters (page 1786)
Sets the active filters that will be used to filter the text in the URLs.

MaximumWildcardIterations (page 1789)
Sets how many times the wildcard matches can iterate

TransformationGroup (page 1788)
Sets the type of transformation for the URLs.

Translation (page 1791)
Enables/disables the URL translation functionality

WildcardTranslation (page 1790)
Enables subtree URL translation

WordSeparator (page 1787)
Sets which word separator that should be used in the URLs.

5.13.34 Configuration files / site.ini 1786

5

Filters

Summary

Sets the active filters that will be used to filter the text in the URLs.

Usage

Filters[]=filter1
Filters[]=filter2
...

Description

This configuration array tells the system which filters that should be used for URL aliases text
filtering. Each line contains the name of the class which implements the filtering. The name
of the class in lowercase specifies the name of the PHP file which the system will search for to
perform filtering. Note that all filters must be placed under the ”urlfilters” subdirectory located
inside the directory of an extension.

Examples

Example 1

Extensions[]
Extensions[]=myfilters

Filters[]
Filters[]=MyFilter

This configuration tells the system to use the ”MyFilter” filter from the ”myfilter.php” file located
in the ”extension/myfilters/urlfilters” directory. The filter will be used every time a URL alias is
created (either by the system or by users).

5.13.34 Configuration files / site.ini 1787

5

WordSeparator

Summary

Sets which word separator that should be used in the URLs.

Usage

WordSeparator=dash|underscore|space

Description

This directive controls which word separator that should be used in the URLs. The default value
is ”dash”, which means that system will use dashes as word separators in virtual URLs (e.g.
”www.example.com/about-us”). It is also possible to specify ”space” or ”underscore” so that the
system will use spaces or underscores as word separators. However, if the ”TransformationGroup
(page 1788)” directive is set to ”urlalias compat” (which is the old, pre-eZ Publish 3.10 URL
transformation method), the system will ignore the ”WordSeparator” setting and use underscores
as separators.

Make sure you specify the same ”WordSeparator” value for all siteaccesses that share the same
database.

Every time this setting is changed, the ”bin/php/updateniceurls.php” script must be run in order
to update existing URL aliases. Refer to ”TransformationGroup (page 1788)” for information
about how to run the script.

5.13.34 Configuration files / site.ini 1788

5

TransformationGroup

Summary

Sets the type of transformation for the URLs.

Usage

TransformationGroup=urlalias iri|urlalias|urlalias compat

Description

This directive sets which method of transformation that should be used when generating vir-
tual URLs. The default value is ”urlalias”. Refer to the ”Character transformation” part of the
”Multi-language support for URL aliases” documentation page for information about the avail-
able transformation methods. Make sure you specify the same value for all siteaccesses that share
the same database.

Every time this setting is changed, the ”bin/php/updateniceurls.php” script must be run in order
to update the URL aliases stored in the database. This script should be run once for each database,
specifying one siteaccess per database:

php bin/php/updateniceurls.php --fetch-limit=number -s example

Replace ”example” with the actual name of the siteaccess and specify the desired number of
items to handle per one iteration instead of ”number”; the script will automatically do as many
iterations as necessary to update all the URLs, based on the number specified. Note that the
”fetch-limit” parameter is optional.

The script will create new virtual URLs for all content object nodes in accordance with the se-
lected method of transformation. The time it takes to update all URL aliases is proportional to
the number of nodes on your site.

Note that after running the ”updateniceurls.php” script, you need to review your configuration
settings and update the URL aliases that are used in configuration files. For example, if your
site makes use of the ”PathPrefix (page 1730)” and ”PathPrefixExclude (page 1736)” directives,
this functionality might stop working if the specified URL aliases have changed. Also, you need
to review the configuration settings in your ”override.ini.append.php” file(s), otherwise your
override templates activated by the ”url alias” condition will most likely stop working.

5.13.34 Configuration files / site.ini 1789

5

MaximumWildcardIterations

Summary

Sets how many times the wildcard matches can iterate

Usage

MaximumWildcardIterations= number of iterations

Description

The wildcard matcher system will iterate if the translated url is not a complete url, this allows
urls lookup to be recursive and is required for proper subtree history.

Note:This is an implementation specific setting which should not be changed unless you know
what you are doing.

5.13.34 Configuration files / site.ini 1790

5

WildcardTranslation

Summary

Enables subtree URL translation

Usage

WildcardTranslation=enabled|disabled

Description

Wildcard translations can be used to translate a complete node tree into another one. This is
used for example if you move a complete tree of nodes. It is also possible to specify wildcard
translations from the admin interface.

Note:Do no disable this option unless you are having problems with wildcardtranslations.

5.13.34 Configuration files / site.ini 1791

5

Translation

Summary

Enables/disables the URL translation functionality

Usage

Translation=enabled|disabled

Description

When URL translation is enabled, eZ Publish automatically generates easy URL’s for all content
objects based on the object names. These URL’s can be used instead of using system URL’s. Addi-
tionaly the custom URL translation system (available from the admin interface) is enabled.

More information about URL translation can be found in the URL translation (page 148) section

5.13.34 Configuration files / site.ini 1792

5

[UserSettings]

AnonymousUserID (page 1817)
Sets the eZ Publish user that should be used for anonymous page requests.

AuthenticateMatch (page 1805)
Sets the fields that are accepted for login authentication.

DefaultSectionID (page 1815)
Sets the section ID of self registered users.

DefaultUserPlacement (page 1816)
Sets the parent object of all users who register themselves

ExtensionDirectory (page 1800)
Sets the extensions that contain login handlers

GeneratePasswordIfEmpty (page 1819)
Sets if eZ Publish should generate passwords if the password field is empty.

GeneratePasswordLength (page 1818)
Sets the length of passwords generated by eZ Publish.

HashType (page 1807)
Sets the type of encryption that will be used when storing user passwords in the database.

LoginHandler (page 1801)
Sets the various methods eZ Publish will try to authenticate user logins.

LoginRedirectionUriAttribute (page 1798)
Sets which attribute of the user/usergroup class contains redirection URI for the user.

LogoutRedirect (page 1802)
Sets which page to redirect to when a user has logged out.

MaxNumberOfFailedLogin (page 1797)
Sets the number of failed login attempts before user accounts are locked.

RegistrationEmail (page 1812)
Sets the receiver of notification emails about new users.

RegistrationFeedback (page 1814)
Sets the kind of feedback that is sent to users that have registered.

RequireUniqueEmail (page 1804)
Sets if all users must have unique email addresses when registering.

ShowMessageIfExceeded (page 1795)
Sets whether to display a warning when a user is not allowed to log in.

SiteName (page 1794)
Sets the site name to use when encrypting user passwords.

5.13.34 Configuration files / site.ini 1793

5

TrustedIPList (page 1796)
Sets IP addresses that users can log in from even though their accounts are locked.

UpdateHash (page 1806)
Sets if eZ Publish should update hashes if you have changed the HashType setting

UserClassGroupID (page 1809)
Sets which classes you can create in the user section in the administration interface.

UserClassID (page 1811)
Sets the class to use for user registration

UserCreatorID (page 1808)
Sets the user that will bet set as the creator of self registering users.

UserGroupClassID (page 1810)
Sets the class ID of the class that represents user groups.

UseSpecialCharacters (page 1803)
Sets if special characters are allowed in passwords.

VerifyUserEmail (page 1813)
Sets if new users have to verify their account by email.

5.13.34 Configuration files / site.ini 1794

5

SiteName

Summary

Sets the site name to use when encrypting user passwords.

Usage

SiteName=name of site

Description

The provided site name will be used by the system while encrypting user account passwords
when the ”HashType (page 1807)” directive is set to ”md5 site”. The default value is ”ez.no”.

5.13.34 Configuration files / site.ini 1795

5

ShowMessageIfExceeded

Summary

Sets whether to display a warning when a user is not allowed to log in.

Usage

ShowMessageIfExceeded=true|false

Description

If a user’s account is automatically locked because of too many invalid login attempts (page
1797), the user will not be able to log in. If the ”ShowMessageIfExceeded” setting is set to ”true”,
the message ”User is not allowed to login because count of failed login attempts for this user
exceeded max number of failed login attempts!” will appear when a siteaccess using the ”admin”
design is accessed. The default value of this setting is ”false”, which means that no warning is
shown for locked user accounts.

This message is not shown on the user siteaccess by default. If you wish to display it on the user
siteaccess, you will have to check the ”user is not allowed to login” field of the ”$User” variable
within the ”templates/user/login.tpl” template of the design being used, or an override. Refer to
the ”design/admin/templates/user/login.tpl” template to see how this can be done.

5.13.34 Configuration files / site.ini 1796

5

TrustedIPList

Summary

Sets IP addresses that users can log in from even though their accounts are locked.

Usage

TrustedIPList[]
TrustedIPList[]=ip1|network1
TrustedIPList[]=ip2|network2

Description

This configuration array can contain a set of IP addresses and/or ranges. The entered values
define trusted hosts and/or zones. Login requests coming from trusted locations will be processed
regardless if the user accounts are locked. For example, if the site administrator’s account is
locked, the administrator will still be able to login from a host/zone which is defined in the
trusted IP list.

Examples

Example 1

TrustedIPList[]
TrustedIPList[]=192.168.0.1
TrustedIPList[]=192.0.0.0/27

If a user’s account is locked, the user will still be able to login if the request is coming from
192.168.0.1 or 192.0.0.1 - 192.0.0.30.

5.13.34 Configuration files / site.ini 1797

5

MaxNumberOfFailedLogin

Summary

Sets the number of failed login attempts before user accounts are locked.

Usage

MaxNumberOfFailedLogin=number

Description

Sets the number of failed login attempts before user accounts are automatically locked by the
system. Note that a locked user account differs from a disabled user account. A locked account
can be unlocked by a user with administrator privileges. The default value of this setting is 0,
which means that the number of invalid login attempts is unlimited (no user accounts will be
locked).

Examples

Example 1

MaxNumberOfFailedLogin=5

This setting will limit the maximum number of failed login attempts for each user to 5. If a user
attempts to log in 6 times with an invalid password, the account will be locked.

5.13.34 Configuration files / site.ini 1798

5

LoginRedirectionUriAttribute

Summary

Sets which attribute of the user/usergroup class contains redirection URI for the user.

Usage

LoginRedirectionUriAttribute[user]=attribute identifier1

LoginRedirectionUriAttribute[group]=attribute identifier2

Description

The redirection URI can be specified for a user/usergroup using an attribute of the ”Text line”
datatype. The ”LoginRedirectionUriAttribute” setting specifies which attribute of the user/
usergroup class is used for storing the redirection URI. Please refer to the ”Advanced redirec-
tion after login (page 340)” section of the ”Features” chapter for more information.

Examples

Example 1

[UserSettings]
LoginRedirectionUriAttribute[user]=redirection_uri

This will tell the system that a user should always be redirected after login to the URL that is
specified in the ”redirection uri” attribute for this user.

Example 2

[UserSettings]
LoginRedirectionUriAttribute[group]=start_page

This will tell the system that a user should always be redirected after login to the URL that is
specified in the ”start page” attribute for the user group that this user belongs to.

Example 3

[UserSettings]
LoginRedirectionUriAttribute[user]=redirection_uri
LoginRedirectionUriAttribute[group]=start_page

5.13.34 Configuration files / site.ini 1799

5

This will tell the system that a user should always be redirected after login to the URL that is
specified in the ”redirection uri” attribute for this user. If no URL is specified in this attribute then
the user will be redirected to the URL that is specified in the ”start page” attribute for the user
group that this user belongs to.

5.13.34 Configuration files / site.ini 1800

5

ExtensionDirectory

Summary

Sets the extensions that contain login handlers

Usage

ExtensionDirectory[]= extension name1

ExtensionDirectory[]= extension name2

...

Description

It is possible to provide custom login handlers using the extension system. This setting specifies
the extensions that contain a login handler. eZ Publish will look for the handlers in the path:
extension/ extension name/login handler/

5.13.34 Configuration files / site.ini 1801

5

LoginHandler

Summary

Sets the various methods eZ Publish will try to authenticate user logins.

Usage

LoginHandler[]= handler1

LoginHandler[]= handler2

...

Description

eZ Publish will try to authenticate users using the login handlers in the order they are specified.
eZ Publish provides the following login handlers:

• standard - The default login handler for eZ Publish. Users are authenticated using the user
objects found in eZ Publish itself.

• LDAP - The LDAP login handler. Users are authenticated through an LDAP server. Settings
related to the LDAP login handler can be found in ldap.ini (page 1540).

• textfile - The textfile login handler allows users to be specified in a textfile similar to the
passwd file on *NIX systems. Settings related to the textfile login handler can be found in
textfile.ini (page 1829).

Common for the login handlers different from the standard login handler is that eZ Publish
automatically creates these users in eZ Publish itself. These users can then log in using the
standard log in handler. Users created this way are updated automatically using cronjobs.

Examples

LoginHandler[]=standard
LoginHandler[]=LDAP

This configuration will try to log in users using the standard handler. If the standard handler fails,
eZ Publish will try to authenticate the user via LDAP. If that also fails, the login is unsuccessful.

5.13.34 Configuration files / site.ini 1802

5

LogoutRedirect

Summary

Sets which page to redirect to when a user has logged out.

Usage

LogoutRedirect= URL

Examples

LogoutRedirect=/user/login

The default setting redirects the user to the log in page when logging out.

5.13.34 Configuration files / site.ini 1803

5

UseSpecialCharacters

Summary

Sets if special characters are allowed in passwords.

Usage

UseSpecialCharacters=true|false

Description

If UseSpecialCharacters is set to false, eZ Publish will only accept passwords with characters in
the range a-z, A-Z and 0-9.

5.13.34 Configuration files / site.ini 1804

5

RequireUniqueEmail

Summary

Sets if all users must have unique email addresses when registering.

Usage

RequireUniqueEmail=true|false

Description

We highly recomend setting RequireUniqueEmail to true.

5.13.34 Configuration files / site.ini 1805

5

AuthenticateMatch

Summary

Sets the fields that are accepted for login authentication.

Usage

AuthenticateMatch= type1 [; type2]

Description

Types accepted are

• login - The username field can be used identify a user.

• email - The email field can be used to identify a user. If your site allows several users with
the same email address, all the users with this email address will be tested for the correct
password.

In order to log in successfully the password field must always be provided.

Examples

AuthenticateMatch=login;email
The default setting allows users to log in using both the email address or the username.

AuthenticateMatch=login
This setting allows users to log in using only the username.

5.13.34 Configuration files / site.ini 1806

5

UpdateHash

Summary

Sets if eZ Publish should update hashes if you have changed the HashType setting

Usage

UpdateHash=true|false

Description

If this setting is enabled and eZ Publish discovers a password stored with one of the other hash
types the hash is automatically converted. Note that you can’t change between any of the md5
settings and the plaintext setting.

5.13.34 Configuration files / site.ini 1807

5

HashType

Summary

Sets the type of encryption that will be used when storing user passwords in the database.

Usage

HashType=md5 user|md5 password|md5 site|crypt|plaintext

Description

This setting controls how the system will encrypt user passwords that are stored in the database.
The following table reveals the possible values:

Type Description
md5 user Generates a hash using the MD5 algorithm

based on the username and password.
md5 password Generates a hash using the MD5 algorithm

based solely on the password.
md5 site Generates a hash using the MD5 algorithm

based on the site name (page 1794), user-
name and password. Note that hashes which
are generated using this option will not work
after the value of the ”SiteName” setting is
changed (the users will not be able to log in).

crypt Generates a hash using the crypt() PHP func-
tion which again uses the standard Unix DES-
based encryption algorithm.

plaintext The passwords are not encrypted. Instead,
they are stored as plain text.

The default value is ”md5 user”. Note that ”plaintext” is not recommended because of security
reasons.

http://en.wikipedia.org/wiki/Md5
http://php.net/crypt

5.13.34 Configuration files / site.ini 1808

5

UserCreatorID

Summary

Sets the user that will bet set as the creator of self registering users.

Usage

UserCreatorID= userid

Description

Users that register themselves will have a user object generated by eZ Publish. This setting
controls which user on the system that will be considered the creator of the user objects.
Note that userid is equal to the ID number of the actual object that represents the user account.

5.13.34 Configuration files / site.ini 1809

5

UserClassGroupID

Summary

Sets which classes you can create in the user section in the administration interface.

Usage

UserClassGroupID= class group id

Description

This setting controls the classes that are listed in the ”Create here” dropdown menu in the users
section. You must specify a class group that contains all the user types and group types that you
want to create.

Note that there can be only one usergroup class and that all classes representing users must have
the ezuser datatype.

5.13.34 Configuration files / site.ini 1810

5

UserGroupClassID

Summary

Sets the class ID of the class that represents user groups.

Usage

UserClassGroupID= classid

Description

There can only be one class representing user groups on your system.
Note that classid is the ID number of the class (not the identifier of the class).

5.13.34 Configuration files / site.ini 1811

5

UserClassID

Summary

Sets the class to use for user registration

Usage

UserClassID= classid

Description

The UserClassID must specify a content class containing the ezuser datatype. This class will be
used when new users are registering on your site.
Note that classid is the ID number of the class (not the identifier of the class).

5.13.34 Configuration files / site.ini 1812

5

RegistrationEmail

Summary

Sets the receiver of notification emails about new users.

Usage

RegistrationEmail= email address

Description

If RegistrationEmail is left empty the setting [MailSettings], AdminEmail will be used instead.

Examples

RegistrationEmail=no@spam.org

eZ Publish will send notification emails about new users to ”no@spam.org”.

5.13.34 Configuration files / site.ini 1813

5

VerifyUserEmail

Summary

Sets if new users have to verify their account by email.

Usage

VerifyUserEmail=enabled|disabled

Description

If enabled, new users can’t log in to your site before they have activated their account. An email
will be sent to the new users with a link that activates their user.

5.13.34 Configuration files / site.ini 1814

5

RegistrationFeedback

Summary

Sets the kind of feedback that is sent to users that have registered.

Usage

RegistrationFeedback=email

Description

email is the only feedback type supported at the moment.

5.13.34 Configuration files / site.ini 1815

5

DefaultSectionID

Summary

Sets the section ID of self registered users.

Usage

DefaultSectionID= number

Description

This setting controls the section ID assigned to new self registering users. If DefaultSectionID
is set to ”0”, new self registering users will get the section id from the parent object set by the
DefaultUserPlacement (page 1816) setting.

5.13.34 Configuration files / site.ini 1816

5

DefaultUserPlacement

Summary

Sets the parent object of all users who register themselves

Usage

DefaultUserPlacement= nodeid

Description

DefaultUserPlacement should be set to the ID of the node that should hold all self registered
users.

5.13.34 Configuration files / site.ini 1817

5

AnonymousUserID

Summary

Sets the eZ Publish user that should be used for anonymous page requests.

Usage

AnonymousUserID= userid

Description

When a user that is not logged in is accessing an eZ Publish installation, the request will be
handled with the permissions of the anonymous user. You can select any user on your system to
represent the anonymous user.
Take care to give the correct permissions to the anonymous user since these permissions are
available for all users on your site.
Note that userid is equal to the ID number of the actual object that represents the user account.

5.13.34 Configuration files / site.ini 1818

5

GeneratePasswordLength

Summary

Sets the length of passwords generated by eZ Publish.

Usage

GeneratePasswordLength= number

Description

This setting controls the length of passwords generated if GeneratePasswordIfEmpty (page 1819)
is set to true

5.13.34 Configuration files / site.ini 1819

5

GeneratePasswordIfEmpty

Summary

Sets if eZ Publish should generate passwords if the password field is empty.

Usage

GeneratePasswordIfEmpty=true|false

Description

If GeneratePasswordIfEmpty is set to true, eZ Publish will automatically accept and generate
passwords for users if the password field is empty. You can simply leave out the password field
in the user register template.

If GeneratePasswordIfEmpty is set to false the user must select a password that is at least three
characters long. Shorter passwords will not be accepted.

5.13.35 Configuration files / soap.ini 1820

5

5.13.35 soap.ini

5.13.36 Configuration files / staticcache.ini 1821

5

5.13.36 staticcache.ini

The configuration blocks are documented in the following sections:

• [CacheSettings] (page 1822)

5.13.36 Configuration files / staticcache.ini 1822

5

[CacheSettings]

AlwaysUpdateArray (page 1823)
Sets the static caches that should always be updated when an object is published.

CachedURLArray (page 1824)
Sets the content that should be statically cached.

HostName (page 1827)
Sets the hostname of the machine generating the static content.

MaxCacheDepth (page 1825)
Sets the number of levels that will be statically cached relative to the root of your installa-
tion.

StaticStorageDir (page 1826)
Sets the directory where the static cache is stored.

5.13.36 Configuration files / staticcache.ini 1823

5

AlwaysUpdateArray

Summary

Sets the static caches that should always be updated when an object is published.

Usage

AlwaysUpdateArray[]= url1

AlwaysUpdateArray[]= url2

...

Description

Each line specifies the url of a node that will have its static cache removed whenever an object is
updated on the system.
In addition to this the static cache of each node is updated whenever the corresponding object is
updated.

5.13.36 Configuration files / staticcache.ini 1824

5

CachedURLArray

Summary

Sets the content that should be statically cached.

Usage

CachedURLArray[]= url1 [*]
CachedURLArray[]= url2 [*]
...

Description

Each line specifies one part of the content tree that will be statically cached. You can specify
single nodes or complete subtrees using a wildcard (*). You must specify the full URL of the
nodes, not the node names.

Note that the wildcard literally matches all characters. E.g the rule ”/weblog*” will match both
”/weblog/hello” and ”/weblogs/hello”.

Examples

CachedURLArray[]=/
CachedURLArray[]=/news*
CachedURLArray[]=/weblog*

This setup will statically cache the root node and all nodes under the node with the URL news
and all nodes under the node with the URL weblog.

5.13.36 Configuration files / staticcache.ini 1825

5

MaxCacheDepth

Summary

Sets the number of levels that will be statically cached relative to the root of your installation.

Usage

MaxCacheDepth= number

5.13.36 Configuration files / staticcache.ini 1826

5

StaticStorageDir

Summary

Sets the directory where the static cache is stored.

Usage

StaticStorageDir= directory name

Description

StaticStorageDir is set relative to the root directory of your eZ Publish installation. Note that you
must adjust your rewrite rules if you change this setting.

Examples

StaticStorageDir=static

This setup will make eZ Publish store the statically cached files in ”/static”.

5.13.36 Configuration files / staticcache.ini 1827

5

HostName

Summary

Sets the hostname of the machine generating the static content.

Usage

Hostname= hostname [: portnumber]

Description

HostName sets the host of the server that serves the uncached pages. The static cache feature
uses this to retrieve the generated content if there is no cache available.

Examples

HostName=localhost

The server that generates the pages is available on localhost.

5.13.37 Configuration files / template.ini 1828

5

5.13.37 template.ini

5.13.38 Configuration files / textfile.ini 1829

5

5.13.38 textfile.ini

5.13.39 Configuration files / texttoimage.ini 1830

5

5.13.39 texttoimage.ini

5.13.40 Configuration files / toolbar.ini 1831

5

5.13.40 toolbar.ini

5.13.41 Configuration files / transform.ini 1832

5

5.13.41 transform.ini

5.13.42 Configuration files / units.ini 1833

5

5.13.42 units.ini

5.13.43 Configuration files / upload.ini 1834

5

5.13.43 upload.ini

5.13.44 Configuration files / viewcache.ini 1835

5

5.13.44 viewcache.ini

The configuration blocks are documented in the following sections:

• [class identifier] (page 1840)

• [ViewCacheSettings] (page 1836)

5.13.44 Configuration files / viewcache.ini 1836

5

[ViewCacheSettings]

ClearRelationTypes (page 1838)
Controls whether the view caches for objects related in various ways should be cleared or
not.

SmartCacheClear (page 1837)
Sets if the smart viewcache cleaning system is turned on/off.

5.13.44 Configuration files / viewcache.ini 1837

5

SmartCacheClear

Summary

Sets if the smart viewcache cleaning system is turned on/off.

Usage

SmartCacheClear=enabled|disabled

Description

This setting makes it possible to activate the smart viewcache cleaning system (page 416) (dis-
abled by default).

5.13.44 Configuration files / viewcache.ini 1838

5

ClearRelationTypes

Summary

Controls whether the view caches for objects related in various ways should be cleared or not.

Usage

ClearRelationTypes[]=type1
ClearRelationTypes[]=type2
...

Description

This directive sets which related and reverse related objects the view caches should be cleared
for as a response to the view cache being cleared for a specific object. More precisely, it can be
used to control whether the view caches for objects that are related in various ways (common,
linked, embedded and so on) should be cleared or not. This setting is an array of strings where
only eight pre-defined values can be used (refer to the following table).

Type Description
common Clear cache for related objects that have rela-

tions of the ”common” type.
reverse common Clear cache for reverse related objects that

have relations of the ”common” type.
linked Clear cache for related objects that have rela-

tions of the ”XML linked” type.
reverse linked Clear cache for reverse related objects that

have relations of the ”XML linked” type.
embedded Clear cache for related objects that have rela-

tions of the ”XML embedded” type.
reverse embedded Clear cache for reverse related objects that

have relations of the ”XML embedded” type.
attribute Clear cache for related objects that have rela-

tions at the attribute level.
reverse attribute Clear cache for reverse related objects that

have relations at the attribute level.

Note that if you need to set up additional/custom rules that control which nodes the view cache
should be cleared for when the view cache for a specific object is being cleared, you’ll have to use
smart viewcache cleaning (page 416).

5.13.44 Configuration files / viewcache.ini 1839

5

Examples

Example 1

[ViewCacheSettings]
ClearRelationTypes[]
SmartCacheClear=disabled

When clearing the view cache for an object, the system will automatically clear the view cache
for the following nodes:

• All published nodes of this object and their parent nodes

• Nodes of the objects that have the same keyword (if any)

Since the ”ClearRelationTypes” configuration array is empty, the view caches for related and
reverse related objects will not be cleared.

Example 2

[ViewCacheSettings]
ClearRelationTypes[]
ClearRelationTypes[]=common
ClearRelationTypes[]=reverse_common
ClearRelationTypes[]=reverse_embedded
SmartCacheClear=disabled

When clearing the view cache for an object, the system will automatically clear the view cache
for the following nodes:

• All published nodes of this object and their parent nodes

• Nodes of the objects that have the same keyword (if any)

• Nodes of related and reverse related objects that have relations of the ”common” type

• Nodes of reverse related objects that have relations of the ”XML embedded” type

Note that the first two items on the list are not controlled by the ”ClearRelationTypes” setting.

5.13.44 Configuration files / viewcache.ini 1840

5

[class identifier]

AdditionalObjectIDs (page 1841)
Sets which arbitrary objects that the view caches will be cleared for when an object of the
”class identifier” class is changed.

ClearCacheMethod (page 1843)
Sets which method(s) to use when clearing the view caches for additional (parent) nodes.

DependentClassIdentifier (page 1842)
Sets which content classes that will be considered as ”dependent classes” when an object
of the ”class identifier” class is changed.

MaxParents (page 1845)
Limits clearing the view caches for additional nodes to a specified number of levels.

ObjectFilter (page 1844)
Limits clearing the view caches for additional nodes to a specified list of object IDs.

5.13.44 Configuration files / viewcache.ini 1841

5

AdditionalObjectIDs

Summary

Sets which arbitrary objects that the view caches will be cleared for when an object of the ”class
identifier” class is changed.

Usage

AdditionalObjectIDs[]=object id1
AdditionalObjectIDs[]=object id2
...

Description

If smart viewcache cleaning is enabled, this directive can be used to make the system clear the
view caches for a set of arbitrary objects when an object of the ”class identifier” class is changed.
If you specify a list of object ID numbers using the ”AdditionalObjectIDs[]” configuration array,
the view cache will be cleared for all the locations (nodes) of these objects. You can find more
information and examples in the ”Smart view cache cleaning (page 416)” section.

5.13.44 Configuration files / viewcache.ini 1842

5

DependentClassIdentifier

Summary

Sets which content classes that will be considered as ”dependent classes” when an object of the
”class identifier” class is changed.

Usage

DependentClassIdentifier[]=class identifier1
DependentClassIdentifier[]=class identifier2
...

Description

If smart viewcache cleaning is enabled, this directive can be used to specify the list of dependent
classes. When a published object of the ”class identifier” class is changed, svcs will check the
parent nodes that are listed in the ”path string” attribute for all the object’s nodes/locations and
clear the view cache for each parent node that encapsulates an object of a dependent class. You
can find more information and examples in the ”Smart view cache cleaning (page 416)” section.

5.13.44 Configuration files / viewcache.ini 1843

5

ClearCacheMethod

Summary

Sets which method(s) to use when clearing the view caches for additional (parent) nodes.

Usage

ClearCacheMethod[]=method1
ClearCacheMethod[]=method2
...

Description

If smart viewcache cleaning is enabled, this directive sets which method(s) that will be used when
clearing the view caches for additional (parent) nodes. This setting is an array of strings where
only the following pre-defined values can be used: ”object”, ”parent”, ”relating”, ”keyword”,
”siblings”, ”all”. These methods are described in the ”Smart view cache cleaning (page 416)”
section.

5.13.44 Configuration files / viewcache.ini 1844

5

ObjectFilter

Summary

Limits clearing the view caches for additional nodes to a specified list of object IDs.

Usage

ObjectFilter[]=object id1
ObjectFilter[]=object id2
...

Description

If smart viewcache cleaning is enabled, this directive can be used to set a limitation for clearing
the view caches of additional nodes (svcs will only clear the view caches of those additional nodes
that encapsulate the objects listed in the ”ObjectFilter[]” configuration array). You can find more
information and examples in the ”Smart view cache cleaning (page 416)” section.

5.13.44 Configuration files / viewcache.ini 1845

5

MaxParents

Summary

Limits clearing the view caches for additional nodes to a specified number of levels.

Usage

MaxParents=number

Description

If smart viewcache cleaning is enabled, this directive can be used to set a limitation for clearing
the view caches of additional nodes. When a published object of the ”class identifier” class is
changed, svcs will scan the parent nodes that are listed in the ”path string” attribute for all the
object’s nodes/locations and clear the view cache for each parent node that encapsulates an
object of a dependent class. The maximal quantity of nodes that will be scanned is controlled by
the ”MaxParents” setting.

You can find more information and examples in the ”Smart view cache cleaning (page 416)”
section.

5.13.45 Configuration files / webdav.ini 1846

5

5.13.45 webdav.ini

5.13.46 Configuration files / wordtoimage.ini 1847

5

5.13.46 wordtoimage.ini

5.13.47 Configuration files / workflow.ini 1848

5

5.13.47 workflow.ini

You can find an overview over the workflow system in the workflows (page 165) concept chapter.

The configuration blocks are documented in the following sections:

• [EventSettings] (page 1854)

• [OperationSettings] (page 1852)

• [SimpleShippingWorkflow] (page 1849)

5.13.47 Configuration files / workflow.ini 1849

5

[SimpleShippingWorkflow]

ShippingCost (page 1851)
Sets the cost of the shipping.

ShippingDescription (page 1850)
Sets the description that will appear on the order when using the simle shipping workflow.

5.13.47 Configuration files / workflow.ini 1850

5

ShippingDescription

Summary

Sets the description that will appear on the order when using the simle shipping workflow.

Usage

ShippingDescription= description

5.13.47 Configuration files / workflow.ini 1851

5

ShippingCost

Summary

Sets the cost of the shipping.

Usage

ShippingCost= number

Description

Adds the specified amount to orders if the workflow is enabled.. The currency is the same as the
currency of the order.

Note: This workflow does not work with multilangauge sites.

5.13.47 Configuration files / workflow.ini 1852

5

[OperationSettings]

AvailableOperations (page 1853)
Sets the triggers that are avaible from the administration interface.

5.13.47 Configuration files / workflow.ini 1853

5

AvailableOperations

Summary

Sets the triggers that are avaible from the administration interface.

Usage

AvailableOperations=[before|after] module1 trigger1 [;[before|after] module2

trigger2 [;...]

Description

The availableOperations specifies the triggers that are available in the system. Triggers are spec-
ified per module and are given a trigger name. Additionally, each trigger point can have both a
before and after trigger. Each section of AvailableOperations specifies one module and a trigger
name. Additionally you can specify if the trigger is a before trigger by adding before or after in
front of the module name. If the trigger is both a before and an after trigger, simply don’t specify
anything.

eZ publish will look for the file operation definition.php in the module directory. Each trigger ac-
tivated in this setting must be properly set up in the operation definition.php of the corresponding
module.

Examples

AvailableOperations=content_publish;before_shop_confirmorder;shop_checkout

These settings will enable and make eZ publish search for the following triggers:

Module Trigger name Trigger time
content publish before
content publish after
shop confirmorder before
shop checkout before
shop checkout after

5.13.47 Configuration files / workflow.ini 1854

5

[EventSettings]

AvailableEventTypes (page 1855)
Sets the name of the event types that eZ publish should search for.

ExtensionDirectories (page 1856)
Sets the extensions that contain event types.

RepositoryDirectories (page 1857)
Sets the directories where eZ publish will search for event types.

5.13.47 Configuration files / workflow.ini 1855

5

AvailableEventTypes

Summary

Sets the name of the event types that eZ publish should search for.

Usage

AvailableEventTypes[]= event group1 event name1

AvailableEventTypes[]= event group2 event name2

...

Description

This setting contains a list of event types. These event types consist of an event group and an
event name. These two items are separated with an underscore ().

The combination of the settings ExtensionDirectories (page 1856), and AvailableEventTypes spec-
ify where eZ publish will look for additional event types.
eZ publish will search for the extensions in ”/extension/ extension name/eventtypes/ event group/
event nametype.php” where extension name is specified by ExtensionDirectories (page 1856) and
event group and event name are specified by AvailableEventTypes.

Examples

ExtensionDirectories[]=ezpaynetdirect
AvailableEventTypes[]=event_ezapprove
AvailableEventTypes[]=paynet_ezpaynetdirect

These settings will make eZ publish search for the following files for the events.
extensions/ezpaynetdirect/eventtypes/event/ezapprove/ezapprove.php
extensions/ezpaynetdirect/eventtypes/paynet/ezpaynetdirect/ezpaynetdirecttype.php

5.13.47 Configuration files / workflow.ini 1856

5

ExtensionDirectories

Summary

Sets the extensions that contain event types.

Usage

ExtensionDirectories[]= extension1

ExtensionDirectories[]= extension2

...

Description

eZ publish will automatically search the extensions specified by ExtensionDirectories for event
types. By default eZ publish will search inside the ”eventtypes” directory inside your extension.
The exact location of the events in this directory is specified with the AvailableEventTypes (page
1855) setting.

Most frequently ExtensionDirectories is specified in the workflow.ini.append inside custom ex-
tensions to indicate that the extensions has custom event types. This makes eZ publish recognize
the events as soon as the extension is enabled.

Examples

ExtensionDirectories[]=ezpaynetdirect

The ezpaynetdirect extension uses a workflow which is located in: ”/extension/ezpaynetdirect/
eventtypes/ AvailabeEventTypes”
This setting makes eZ publish search for event types in ”/extension/ezpaynetdirect/eventtypes/
AvailabeEventTypes”.

The AvailableEventTypes are described in the AvailableEventTypes (page 1855) setting.

5.13.47 Configuration files / workflow.ini 1857

5

RepositoryDirectories

Summary

Sets the directories where eZ publish will search for event types.

Usage

RepositoryDirectories[]= directory1

RepositoryDirectories[]= directory2

...

Description

The RepositoryDirectories specifies a list of directories where built in workflow event types can be
found. The exact location of the workflow in this directory is specified with the AvailableEvent-
Types (page 1855) setting.

If you have an extension with a workflow, then use the ExtensionDirectories (page 1856) setting
to register the event types.

Note: Don’t change this setting unless you know what you are doing.

5.14 Libraries 1858

5

5.14 Libraries

ezdb (page 1859)
Provides a database abstraction layer.

ezdbschema (page 1860)
Provides a cross database schema checker and update tool.

ezfile (page 1861)
Provides cross platform file and compression utilities.

ezi18n (page 1862)
Provides functionality for reading ”.ts” files and for translating text in templates.

ezimage (page 1863)
Provides an abstracted image manipulation interface.

ezlocale (page 1864)
Provides functionality for localizing dates, currencies, etc.

ezpdf (page 1865)
Provides a solution for using the template system to generate PDFs (DEPRECATED).

ezsoap (page 1866)
Provides a low level interface for the SOAP protocol.

eztemplate (page 1867)
Provides the template interpreter, compiler and the basic functions and operators.

ezutils (page 1868)
Provides small utilities (ini file parser, MIME type handlers, E-mail handling, etc.).

ezwebdav (page 1869)
Provides a low level communication interface for the WebDAV protocol.

ezxml (page 1870)
Provides low level XML DOM parsing and construction utilities (DEPRECATED).

5.14.1 Libraries / ezdb 1859

5

5.14.1 ezdb

Provides a database abstraction layer.

5.14.2 Libraries / ezdbschema 1860

5

5.14.2 ezdbschema

Provides a cross database schema checker and update tool.

5.14.3 Libraries / ezfile 1861

5

5.14.3 ezfile

Provides cross platform file and compression utilities.

5.14.4 Libraries / ezi18n 1862

5

5.14.4 ezi18n

Provides functionality for reading ”.ts” files and for translating text in templates.

5.14.5 Libraries / ezimage 1863

5

5.14.5 ezimage

Provides an abstracted image manipulation interface.

5.14.6 Libraries / ezlocale 1864

5

5.14.6 ezlocale

Provides functionality for localizing dates, currencies, etc.

5.14.7 Libraries / ezpdf 1865

5

5.14.7 ezpdf

Provides a solution for using the template system to generate PDFs (DEPRECATED).

5.14.8 Libraries / ezsoap 1866

5

5.14.8 ezsoap

Provides a low level interface for the SOAP protocol.

5.14.9 Libraries / eztemplate 1867

5

5.14.9 eztemplate

Provides the template interpreter, compiler and the basic functions and operators.

5.14.10 Libraries / ezutils 1868

5

5.14.10 ezutils

Provides small utilities (ini file parser, MIME type handlers, E-mail handling, etc.).

5.14.11 Libraries / ezwebdav 1869

5

5.14.11 ezwebdav

Provides a low level communication interface for the WebDAV protocol.

5.14.12 Libraries / ezxml 1870

5

5.14.12 ezxml

In previous versions of eZ Publish, this library provided low level XML DOM parsing and con-
struction utilities. It has been deprecated in eZ Publish 4. Instead, the system makes use of
the DOM functions in PHP 5 (refer to ”Requirements for doing a normal installation ” for more
information).

http://www.php.net/dom

5.15 XML tags 1871

5

5.15 XML tags

The ”XML block” (page 544) datatype supports the following tags / elements:

• Headings (page 546)

• Bold text (page 547)

• Italic text (page 548)

• Unformatted text (page 549)

• Lists (page 550)

• Tables (page 551)

• Hyperlinks (page 553)

• Anchors (page 555)

• Object embedding (page 556)

• Custom tags (page 559)

• Paragraphs (page 560)

5.16 Scripts 1872

5

5.16 Scripts

eZ Publish comes with a collection of scripts that cover the needs of various typical tasks. The
scripts are grouped based on their type and purpose. The following table contains an overview
of available script groups.

5.16.1 Scripts / Generic 1873

5

5.16.1 Generic

Generic Generic scripts for manual maintenance. ./bin/php

The ”./bin/php” directory contains generic PHP scripts that are mainly used for manual mainte-
nance (clearing the caches, updating the search index, copying and removing large subtrees and
so on). In order to be able to run these scripts, you need to have PHP CLI installed. The scripts
must be run from the root directory of your eZ Publish installation.

http://php.net/manual/en/features.commandline.php

5.16.1 Scripts / Generic 1874

5

ezcache.php

ezcache.php Clears the eZ Publish caches. parent

This script makes it possible to clear various eZ Publish caches - that is, either expire the specified
caches (default) or physically remove the cache files (requires the ”--purge” parameter).

To run the script, navigate into the root directory of your eZ Publish installation and use the
following shell command:

php bin/php/ezcache.php [<parameters>]

Replace ”[<parameters>]” with one or more of the script parameters described above. Note that
you need to have PHP CLI installed in order to run the script from within a system shell.

Sometimes the script is unable to clear the caches because of restrictive file/directory permission
settings. You can check whether the caches have been cleared by inspecting the contents of the
various cache subdirectories within the ”var” directory (typically ”var/cache/” and ”var/<name
of siteaccess>/cache/” directories).

Selective cache cleanup

eZ Publish generates different types of caches. While the ”--clear-all” parameter gets rid of ev-
erything, the ”--clear-id” parameter makes it possible to remove only certain types of caches
(configuration settings, compiled templates, URL aliases, image variations, etc.). The identifiers
of the caches to be removed must be specified as a comma separated list.

A ”cache tag” is assigned to every cache type. The cache tag reveals which group a particular
cache belongs to (ini, image, template, content and so on). The ”--clear-tag” parameter makes it
possible to clear all caches that belong to a specified group. Note that a cache type (for example,
the ”Template block cache”) can be assigned to several groups.

The following table shows the different caches, the corresponding identifiers and cache tags (the
group they belong to).

http://php.net/manual/en/features.commandline.php

5.16.1 Scripts / Generic 1875

5

Name Identifier Cache tags
INI cache ini ini
Global INI cache global ini ini
Image alias cache imagealias image
Template cache template template
Template override cache template-override template
Template block cache template-block template, content
Content view cache content content
URL alias cache urlalias content
RSS cache rss cache content
Class identifier cache classid content
Sort key cache sortkey content
Tree menu cache content tree menu content
User info cache user info cache user
Codepage cache codepage codepage
Character transformation chartrans i18n
cache

Clustering compatibility

The script also works if the caches are stored in the database (typically happens when running
eZ Publish in a cluster environment (page 287)). When the ”--purge” parameter is specified, the
cache entries are DELETEd from the tables. When it is not specified, the system will only mark
the entries as expired either using UPDATE queries or using the expiry values in ”expiry.php”.

Example 1

php bin/php/ezcache.php --clear-all

Expire all caches.

Example 2

php bin/php/ezcache.php --clear-all --purge

Clear all caches (either physically remove all cache files or delete all cache entries from the
database).

Example 3

5.16.1 Scripts / Generic 1876

5

php bin/php/ezcache.php --clear-all --purge -dwarning

Clear all caches and output warnings that occur during execution. For example, if the system is
not able to locate one of the enabled extensions, the console output could look like this:

Purging : Content view cache, Global INI cache, INI cache, Codepage cache,
Class identifier cache, Sort key cache, URL alias cache, Character
transformation cache, Image alias, Template cache, Template block cache,
Template override cache, RSS cache, User info cache, Content tree menu
(browser cache)

################### DEBUG ###################
Warning: ()
Extension ’ezdhtml’ does not exist, looked for directory ’extension/ezdhtml’

Example 4

php bin/php/ezcache.php --clear-id=user_info_cache

Expire all user info caches.

Example 5

php bin/php/ezcache.php --clear-tag=ini --purge

Clear both INI cache and global INI cache.

Example 6

php bin/php/ezcache.php --clear-all --iteration-sleep=’5.5’
--iteration-max=100 --purge

Clear all caches. The purging will be done with the interval between the iterations equal to 5.5
seconds. During one iteration, a maximum number of 100 items will be removed.

Example 7

php bin/php/ezcache.php --expiry=’-2 days’

Expire all caches that are older than two days.

5.16.1 Scripts / Generic 1877

5

Example 8

php bin/php/ezcache.php --expiry=’last monday’ --purge

Clear all caches generated before last Monday.

5.16.1 Scripts / Generic 1878

5

clear-id

clear-id --clear-id=<cache id>[,<cache id2>]

Expire all caches of a particular type specified by ”cache id”. Multiple identifiers can be provided
as a comma separated list. When combined with the ”--purge” parameter, the script will clear the
caches instead of expiring them.

5.16.1 Scripts / Generic 1879

5

clear-tag

clear-tag --clear-tag=<cache tag>[,<cache tag2>...]

Expire all caches related to the specified cache tag. Multiple tags can be provided as a comma
separated list. When combined with the ”--purge” parameter, the script will clear the caches
instead of expiring them.

5.16.1 Scripts / Generic 1880

5

purge

purge --purge

Remove the cache files or DELETE the corresponding cache entries if the caches are stored in the
database. This parameter must be used together with ”--clear-all”, ”--clear-id”, ”--clear-tag” or
”--expiry”.

5.16.1 Scripts / Generic 1881

5

list-ids

list-ids --list-ids

Output a list of cache type identifiers that are supported by the ”--clear-id” parameter. When used
together with the ”--verbose” parameter, the script will output additional information about the
cache types and their identifiers.

5.16.1 Scripts / Generic 1882

5

list-tags

list-tags --list-tags

Output a list of cache tags that are supported by the ”--clear-tag” parameter. When used together
with the ”--verbose” parameter, the script will output additional information about the cache tags.

5.16.1 Scripts / Generic 1883

5

iteration-sleep

iteration-sleep --iteration-sleep=<number of seconds>

The number of seconds to wait between cache purge iterations.

5.16.1 Scripts / Generic 1884

5

iteration-max

iteration-max --iteration-max=<number of items>

The maximum number of items to remove during one iteration of cache purging.

5.16.1 Scripts / Generic 1885

5

expiry

expiry --expiry=<textual date format>

Expire caches that are older than the specified date. The date must be provided according to the
GNU Date Input Formats syntax. When combined with the ”--purge” parameter, the script will
clear the caches instead of expiring them.

http://www.gnu.org/software/tar/manual/html_node/tar_113.html

5.16.1 Scripts / Generic 1886

5

help

help -h, --help

Output information about the script and supported parameters.

5.16.1 Scripts / Generic 1887

5

siteaccess

siteaccess -s <siteaccess>, --siteaccess=<siteaccess>

The siteaccess to run the script for. If omitted, the default siteaccess (page 1753) will be used.

5.16.1 Scripts / Generic 1888

5

quiet

quiet -q, --quiet

Run the script in ”quiet” mode. No output will be generated.

5.16.1 Scripts / Generic 1889

5

debug

debug -d[<option>[,<option2>...]], --debug[=<option>[,<option2>...]]

Output debug information. The following options can be used to control what the debug out-
put should include: ”all” (everything), ”accumulator” (accumulators), ”include” (included files),
”timing” (timing points), ”error” (errors), ”warning” (warnings), ”notice” (notices).

5.16.1 Scripts / Generic 1890

5

colors

colors -c, --colors

Use ANSI colors when generating debug output (default).

5.16.1 Scripts / Generic 1891

5

no-colors

no-colors --no-colors

Do not use ANSI colors when generating debug output.

5.16.1 Scripts / Generic 1892

5

logfiles

logfiles --logfiles

Generate log files. This parameter must be used together with the debug parameter (”-d” or
”--debug”). The log files (for example ”warning.log”) will be stored in the ”var/log” directory of
the eZ Publish installation.

5.16.1 Scripts / Generic 1893

5

no-logfiles

no-logfiles --no-logfiles

Do not generate log files (default).

5.16.1 Scripts / Generic 1894

5

verbose

verbose -v, --verbose

Output verbose / additional information.

5.16.1 Scripts / Generic 1895

5

ezsubtreeremove.php

ezsubtreeremove.php Safely removes large subtrees. parent

This script makes it possible to remove subtrees. Typically, it is used to remove subtrees contain-
ing more nodes than the ”MaxNodesRemoveSubtree (page 1476)” setting allows (these cannot
be removed from within the administration interface).

By default, the script will remove content in the same way as it is done from within the admin-
istration interface when the ”Move to trash” checkbox is selected. In other words, the removed
objects will end up in the trash while the tree structure itself (the nodes) will be lost forever. The
”--ignore-trash” parameter allows objects to be removed without being put in the trash first.

An object processed by this script will only be put in the trash (or removed when the ”--ignore-
trash” parameter is used) if it doesn’t have other/additional locations than the ones that were
specified using the ”--nodes-id” parameter.

Note that the script will access the node tree as a certain user. This is controlled by the ”UserCre-
atorID (page 1808)” setting. If the specified user is not allowed to remove a particular subtree,
the script will output an error message.

Example 1

php bin/php/ezsubtreeremove.php --nodes-id=65

Remove node 65 and all its sub items. If the object encapsulated by node 65 does not have other
locations, it will be moved to the trash.

Example 2

php bin/php/ezsubtreeremove.php --nodes-id=65 --ignore-trash

Remove node 65 and all its sub items. If the object encapsulated by node 65 does not have other
locations, it will be permanently removed.

Example 3

php bin/php/ezsubtreeremove.php --nodes-id=60,65,78

Nodes 60, 65, 78 and all their sub items will be removed.

5.16.1 Scripts / Generic 1896

5

colors

colors -c, --colors

Use ANSI colors when generating debug output (default).

5.16.1 Scripts / Generic 1897

5

debug

debug -d[<option>[,<option2>...]], --debug[=<option>[,<option2>...]]

Output debug information. The following options can be used to control what the debug out-
put should include: ”all” (everything), ”accumulator” (accumulators), ”include” (included files),
”timing” (timing points), ”error” (errors), ”warning” (warnings), ”notice” (notices).

5.16.1 Scripts / Generic 1898

5

help

help -h, --help

Output information about the script and supported parameters.

5.16.1 Scripts / Generic 1899

5

ignore-trash

ignore-trash --ignore-trash

Permanently delete the specified subtrees. Without this parameter, the content will be moved to
the trash (note that the tree structure will be lost forever).

5.16.1 Scripts / Generic 1900

5

logfiles

logfiles --logfiles

Generate log files. This parameter must be used together with the debug parameter (”-d” or
”--debug”). The log files (for example ”warning.log”) will be stored in the ”var/log” directory of
the eZ Publish installation.

5.16.1 Scripts / Generic 1901

5

no-colors

no-colors --no-colors

Do not use ANSI colors when generating debug output.

5.16.1 Scripts / Generic 1902

5

no-logfiles

no-logfiles --no-logfiles

Do not generate log files (default).

5.16.1 Scripts / Generic 1903

5

nodes-id

nodes-id --nodes-id=<node id>[,<node id2>]

The node ID of the subtree or subtrees that should be removed. In case multiple subtrees are to
be removed, their node IDs must be provided as a comma separated list. Both the specified nodes
and their sub items will be removed. This parameter is required.

5.16.1 Scripts / Generic 1904

5

quiet

quiet -q, --quiet

Run the script in ”quiet” mode. No output will be generated.

5.16.1 Scripts / Generic 1905

5

siteaccess

siteaccess -s <siteaccess>, --siteaccess=<siteaccess>

The siteaccess to run the script for. If omitted, the default siteaccess (page 1753) will be used.

5.16.1 Scripts / Generic 1906

5

Parameters

This page provides an overview of generic parameters that are used by many of the PHP scripts
located in the ”./bin/php” directory.

5.16.1 Scripts / Generic 1907

5

help

help -h, --help

Output information about the script and supported parameters.

5.16.1 Scripts / Generic 1908

5

siteaccess

siteaccess -s <siteaccess>, --siteaccess=<siteaccess>

The siteaccess to run the script for. If omitted, the default siteaccess (page 1753) will be used.

5.16.1 Scripts / Generic 1909

5

quiet

quiet -q, --quiet

Run the script in ”quiet” mode. No output will be generated.

5.16.1 Scripts / Generic 1910

5

debug

debug -d[<option>[,<option2>...]], --debug[=<option>[,<option2>...]]

Output debug information. The following options can be used to control what the debug out-
put should include: ”all” (everything), ”accumulator” (accumulators), ”include” (included files),
”timing” (timing points), ”error” (errors), ”warning” (warnings), ”notice” (notices).

5.16.1 Scripts / Generic 1911

5

colors

colors -c, --colors

Use ANSI colors when generating debug output (default).

5.16.1 Scripts / Generic 1912

5

no-colors

no-colors --no-colors

Do not use ANSI colors when generating debug output.

5.16.1 Scripts / Generic 1913

5

login

login -l <username>, --login=<username>

The username of the account that the script should run as (for example ”Administrator”). Note
that a corresponding password should be specified using the ”password (page 1914)” parameter.

5.16.1 Scripts / Generic 1914

5

password

password -p <password>, --password=<password>

The password that belongs to the user account which is specified using the ”login (page 1913)”
parameter.

5.16.1 Scripts / Generic 1915

5

logfiles

logfiles --logfiles

Generate log files. This parameter must be used together with the debug parameter (”-d” or
”--debug”). The log files (for example ”warning.log”) will be stored in the ”var/log” directory of
the eZ Publish installation.

5.16.1 Scripts / Generic 1916

5

no-logfiles

no-logfiles --no-logfiles

Do not generate log files (default).

5.16.1 Scripts / Generic 1917

5

verbose

verbose -v, --verbose

Output verbose / additional information.

5.16.1 Scripts / Generic 1918

5

updateisbn13.php

updateisbn13.php Imports the latest ISBN ranges to the database. parent

This script makes it possible to import the latest ISBN ranges to the database. Without this
information, the system may not be able to handle ISBN-13 codes properly (refer to the docu-
mentation of the ISBN datatype (page 492) for more information). Since the calculation rules
for ISBN codes can be changed on a monthly basis, you may need to run the script regularly in
order to keep the range information in the database up to date.

Before running the script, download the ”ranges.js” file that contains information about the dif-
ferent ranges from http://www.isbn-international.org/converter/ranges.js and copy it to your eZ
Publish installation. When running the script, use the ”--file” parameter to tell the script where to
look for the downloaded file. By default, the database configuration of the default siteaccess will
be used. You can use the optional ”--siteaccess” parameter to make the script import ranges to
the database that is used by a particular siteaccess. In addition, the optional ”--db-database”, ”--
db-driver”, ”--db-host”, ”--db-user” and ”--db-password” parameters make it possible to combine
custom database options with the database configuration of the specified (or default) siteaccess.

Example 1

php bin/php/updateisbn13.php --file=var/ranges.js

Import data from the ”ranges.js” file to the database that is used by the default siteaccess. The
script will look for ”ranges.js” in the ”var” directory of the eZ Publish installation.

Example 2

php bin/php/updateisbn13.php --file=ranges.js --siteaccess=example

Import data from the ”ranges.js” file to the database that is used by the ”example” siteaccess. The
script will look for ”ranges.js” in the root directory of the eZ Publish installation.

Example 3

php bin/php/
updateisbn13.php --file=ranges.js --siteaccess=example --db-database=test

Import data from the ”ranges.js” file located in the root directory of the eZ Publish installation.
The script will use the database configuration of the ”example” siteaccess but ignore the value of
the ”Database” directive and use the specified custom database name instead. If the ”example”
siteaccess makes use of a database called ”foo” on localhost, the script will import ISBN ranges
to the ”test” database on localhost.

http://www.isbn-international.org/converter/ranges.js

5.16.1 Scripts / Generic 1919

5

Example 4

php bin/php/updateisbn13.php --file=ranges.js --db-database=test db-user=root
db-password=secret

Import data from the ”ranges.js” file located in the root directory of the eZ Publish installation.
The script will use the specified custom database name, user name and password, while the type
of the database and the hostname will still be fetched from the database configuration of the
default siteaccess.

5.16.1 Scripts / Generic 1920

5

db-driver

db-driver --db-driver=<database type>

The type of the database, for example ”ezmysql”. If omitted, the type specified in the ”Databa-
seImplementation (page 1578)” configuration directive will be used.

5.16.1 Scripts / Generic 1921

5

db-database

db-database --db-database=<database name>

The name of the database to update. If omitted, the database name specified in the ”Database
(page 1594)” configuration directive will be used.

5.16.1 Scripts / Generic 1922

5

db-password

db-password --db-password=<password>

The password that belongs to the database user. If omitted, the password specified in the ”Pass-
word (page 1595)” configuration directive will be used.

5.16.1 Scripts / Generic 1923

5

db-user

db-user --db-user=<database user>

The username that will be used to access the database. If omitted, the name specified in the
”User (page 1596)” configuration directive will be used.

5.16.1 Scripts / Generic 1924

5

db-host

db-host --db-host=<database host>

The hostname or the IP address of the server running the database engine, for example ”local-
host”. If omitted, the value specified in the ”Server (page 1593)” configuration directive will be
used.

5.16.1 Scripts / Generic 1925

5

file

file --file=<path to file>

The path to the file that contains the list of ranges (relative to the root directory of eZ Publish).
This parameter is required.

5.16.1 Scripts / Generic 1926

5

no-logfiles

no-logfiles --no-logfiles

Do not generate log files (default).

5.16.1 Scripts / Generic 1927

5

logfiles

logfiles --logfiles

Generate log files. This parameter must be used together with the debug parameter (”-d” or
”--debug”). The log files (for example ”warning.log”) will be stored in the ”var/log” directory of
the eZ Publish installation.

5.16.1 Scripts / Generic 1928

5

no-colors

no-colors --no-colors

Do not use ANSI colors when generating debug output.

5.16.1 Scripts / Generic 1929

5

colors

colors -c, --colors

Use ANSI colors when generating debug output (default).

5.16.1 Scripts / Generic 1930

5

debug

debug -d[<option>[,<option2>...]], --debug[=<option>[,<option2>...]]

Output debug information. The following options can be used to control what the debug out-
put should include: ”all” (everything), ”accumulator” (accumulators), ”include” (included files),
”timing” (timing points), ”error” (errors), ”warning” (warnings), ”notice” (notices).

5.16.1 Scripts / Generic 1931

5

quiet

quiet -q, --quiet

Run the script in ”quiet” mode. No output will be generated.

5.16.1 Scripts / Generic 1932

5

siteaccess

siteaccess -s <siteaccess>, --siteaccess=<siteaccess>

The siteaccess to run the script for. If omitted, the default siteaccess (page 1753) will be used.

5.16.1 Scripts / Generic 1933

5

help

help -h, --help

Output information about the script and supported parameters.

5.16.2 Scripts / Upgrade 1934

5

5.16.2 Upgrade

Upgrade Scripts for updating the existing content of sites when upgrading from older versions.
./update/common/scripts

The ”./update/common/scripts” directory contains various scripts that are intended to update
the existing site data when an eZ Publish installation is being upgraded. Refer to ”The system
upgrade scripts” documentation page for more information.

5.16.3 Scripts / Cronjobs 1935

5

5.16.3 Cronjobs

Cronjobs Scripts for automated periodic and scheduled maintenance. ./cronjobs

The ”./cronjobs” directory contains cronjob scripts for automated periodic and scheduled main-
tenance. These are executed by the main maintenance script called ”runcronjobs.php”. Refer to
”The cronjob scripts (page 327)” documentation page for more information.

5.16.4 Scripts / Miscellaneous 1936

5

5.16.4 Miscellaneous

Miscellaneous Scripts that do not belong to any of the groups above. ./

Not documented yet.

	Installation
	Normal installation
	Requirements for doing a normal installation
	Installing eZ Publish on a Linux/UNIX based system
	Installing eZ Publish on Windows

	Manual installation
	Requirements for doing a manual installation
	Manual installation on a Linux/UNIX based system
	Manual installation on Windows
	Manual configuration of eZ Publish

	Automated installation
	Requirements for doing an automated installation
	Automated installation of eZ Publish

	The setup wizard
	Virtual host setup
	Virtual host example

	Removing eZ Publish
	Extensions
	Extracting the files
	Activating the extension

	Troubleshooting

	Concepts and basics
	The internal structure of eZ publish
	Directory structure

	Content and design
	Storage

	Content management
	Datatypes
	The content class
	Class attributes
	The content object
	Object versioning
	Multiple languages
	The content node
	The content node tree
	Top level nodes
	Node visibility
	Object relations
	Sections
	URL storage
	Information collection

	Configuration
	Site management
	Extension siteaccess settings
	Access methods

	Modules and views
	URL translation
	Designs
	Design combinations

	Access control
	Webshop
	Workflows

	Templates
	Template basics
	Node templates
	System templates

	The pagelayout
	The page head
	Variables in pagelayout

	The template language
	Comments
	Variable types
	Variable usage
	Array and object inspection
	Control structures
	Functions and operators

	Basic template tasks
	URL handling

	Information extraction
	Outputting node and object data

	The template override system
	Template override example

	Features
	Audit trailing
	Policy functions
	Multi-language
	Configuring your site locale
	Configuring the site languages
	Managing the translation languages
	Translatable class attributes
	Translatable country names
	Multilingual objects
	Working with translations
	The bit-field algorithm
	Language based permissions

	Multi-language support for URL aliases
	Managing URL aliases
	URL transformation rules
	Custom transformation commands

	Clustering
	Setting it up

	Packages
	Package types
	Creating new packages
	Exporting packages to files
	Importing packages to the system
	Removing packages from repository
	Installing packages
	Uninstalling packages
	package.xml format
	Custom install scripts

	Cronjobs
	The cronjob scripts
	Configuring cronjobs
	Running cronjobs

	Advanced redirection after login
	VAT charging system
	Assigning VAT types to products
	Three approaches to VAT charging
	Product category
	User country
	Displaying VATs on the actual site
	Managing VAT types
	Managing product categories
	Managing VAT rules
	VAT settings
	Creating new VAT handlers

	Improved shipping handling
	Multi-currency
	Custom prices and auto prices
	Rounding auto prices
	Currency rates
	Creating a new currency
	Editing a currency
	Removing a currency
	Preferred currency
	Multi-price products
	Products overview
	Exchange rates update handlers
	Upgrading your webshop

	View caching
	Configuring the view cache
	Clearing the view cache
	Smart view cache cleaning
	Pre-generation of view cache

	Notifications
	Using the admin interface
	Using an actual site
	Adding a "Keep me updated" button
	Customizing the E-mails
	Granting access to notifications
	Notification events
	Notification handlers
	Frequently Asked Questions

	Search engine
	WebDAV
	Setting it up

	Reference
	Datatypes
	Authors
	Checkbox
	Country
	Date
	Date and time
	E-mail
	Enum
	File
	Float
	Identifier
	Image
	Ini setting
	Integer
	ISBN
	Keywords
	Matrix
	Media
	Multi-option
	Multi-option2
	Multi-price
	Object relation
	Object relations
	Option
	Package
	Price
	Product category
	Range option
	Selection
	Subtree subscription
	Text block
	Text line
	Time
	URL
	User account
	XML block

	Content classes
	Content
	Media
	Users

	Modules
	class
	collaboration
	content
	error
	ezinfo
	form
	infocollector
	layout
	notification
	package
	pdf
	reference
	role
	rss
	search
	section
	setup
	shop
	trigger
	url
	user
	workflow

	Views
	Objects
	ezauthor
	ezbasket
	ezbinaryfile
	ezcontentbrowsebookmark
	ezcontentbrowserecent
	ezcontentclass
	ezcontentclassattribute
	ezcontentclassclassgroup
	ezcontentclassgroup
	ezcontentlanguage
	ezcontentobject
	ezcontentobjectattribute
	ezcontentobjecttranslation
	ezcontentobjecttrashnode
	ezcontentobjecttreenode
	ezcontentobjectversion
	ezcurrencydata
	ezdate
	ezdatetime
	ezimagealiashandler
	ezimagelayer
	ezimageobject
	ezinformationcollection
	ezinformationcollectionattribute
	ezkeyword
	ezlocale
	ezmatrix
	ezmedia
	ezmultioption
	ezmultioption2
	ezmultiprice
	eznodeassignment
	ezoption
	ezorder
	ezorderitem
	ezorderstatus
	ezpolicy
	ezprice
	ezproductcategory
	ezproductcollectionitem
	ezrangeoption
	ezrole
	ezsection
	ezsimplifiedxmlinput
	ezsubtreenotificationrule
	eztime
	ezurl
	ezuser
	ezvatrule
	ezvattype
	ezxhtmlxmloutput
	ezxmlinputhandler
	ezxmloutputhandler
	ezxmltext

	Workflow events
	Approve
	Multiplexer
	Payment gateway
	Simple shipping
	Wait until date

	Template operators
	Arrays
	Data and information extraction
	Formatting and internationalization
	Images
	Logical operations
	Mathematics
	Miscellaneous
	Strings
	URLs
	Variable and type handling

	Template functions
	Debugging
	Miscellaneous
	Variables
	Visualization

	Template control structures
	Conditional control
	Looping
	Deprecated

	Template override conditions
	node/view/*.tpl
	content/search.tpl
	content/edit.tpl
	content/advancedsearch.tpl
	content/versions.tpl
	content/browse.tpl
	content/versionview.tpl
	node/view/pdf.tpl
	content/collectedinfo/*.tpl
	content/collectedinfomail/*.tpl
	content/collectedinfo/*.tpl
	class/edit.tpl
	class/groupedit.tpl
	class/view.tpl
	workflow/edit.tpl
	workflow/groupedit.tpl
	workflow/view.tpl
	layout/set.tpl
	pagelayout.tpl
	content/datatype/edit/*.tpl
	content/datatype/view/*.tpl
	content/view/*.tpl
	content/tipafriend.tpl
	content/tipafriendmail.tpl
	content/history.tpl

	Template fetch functions
	Template PDF functions
	anchor
	create_index
	filled_circle
	filled_rectangle
	footer
	footer_block
	frame_header
	frontpage
	header
	header_block
	image
	keyword
	line
	link
	new_line
	new_page
	page_number
	set_font
	set_margin
	strike
	table
	text
	text_box
	text_frame
	toc
	ul

	Configuration files
	audit.ini
	binaryfile.ini
	browse.ini
	collaboration.ini
	collect.ini
	content.ini
	contentstructuremenu.ini
	country.ini
	cronjob.ini
	datatype.ini
	datetime.ini
	dbschema.ini
	debug.ini
	design.ini
	error.ini
	extendedattributefilter.ini
	ezxml.ini
	fetchalias.ini
	file.ini
	i18n.ini
	icon.ini
	image.ini
	layout.ini
	ldap.ini
	logfile.ini
	menu.ini
	module.ini
	notification.ini
	override.ini
	package.ini
	paymentgateways.ini
	setup.ini
	shopaccount.ini
	site.ini
	soap.ini
	staticcache.ini
	template.ini
	textfile.ini
	texttoimage.ini
	toolbar.ini
	transform.ini
	units.ini
	upload.ini
	viewcache.ini
	webdav.ini
	wordtoimage.ini
	workflow.ini

	Libraries
	ezdb
	ezdbschema
	ezfile
	ezi18n
	ezimage
	ezlocale
	ezpdf
	ezsoap
	eztemplate
	ezutils
	ezwebdav
	ezxml

	XML tags
	Scripts
	Generic
	Upgrade
	Cronjobs
	Miscellaneous

