eZ Publish 4.0

Technical Manual

©1999 - 2007 eZ Systems AS

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License,Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license can be downloaded from http://www.gnu.org/copyleft/fdl.html.

Corrections and/or suggestions might be sent to info®@ez.no.

This PDF file is generated automatically from the online documentation available at
http://doc.ez.no.

This version was generated on July 23, 2008.

Contents

1
1.1

1.2

1.3

1.4
1.5

1.6
1.7

1.8

2.1

Installation 26
Normal installation 28
1.1.1 Requirements for doing a normal installation 29
1.1.2 Installing eZ Publish on a Linux/UNIX based system 33
1.1.3 Installing eZ Publish on Windows 37
Manual installation e e 41
1.2.1 Requirements for doing a manual installation 42
1.2.2 Manual installation on a Linux/UNIX based system 43
1.2.3 Manual installation on Windows 44
1.2.4 Manual configuration of eZPublish. 45
Automated installation o o oo L 51
1.3.1 Requirements for doing an automated installation 52
1.3.2 Automated installation of eZPublish 53
Thesetupwizard. i i e e e e e 57
Virtual hostsetup e 73
1.5.1 Virtualhostexample 76
RemovingeZ Publish 79
EXtensions o i i i i e e e e e e e e e 81
1.7.1 Extracting thefiles e 82
1.7.2 Activating theextension, 84
Troubleshooting e 86
Concepts and basics 88
The internal structure of eZ publish 89
2.1.1 DIirectory StruCture v bt e e e e e e e e e e e e e e 91

Contents 3

2.2 Contentand design 93
2.2.1 Storage e e e e e e e e e e e e e e e e e 95

2.3 Content Management ¢ v v v v v v vt e e e e e e e e e e e e 96
2.3 1 Datatypes . . . v . e i e 98
2.3.2 Thecontentclass. i e e 99
2.3.3 Classattributes e e e e e e 103
2.3.4 Thecontentobject 106
2.3.5 Object versioning v v i i it e e e e e e e e e 110
2.3.6 Multiplelanguages e 115
2.3.7 Thecontentnode 119
2.3.8 Thecontentnodetree v v v it i ittt 122
2.39 Toplevelnodes. e 125
2.3.10 Nodevisibility e e e 127
2.3.11 Objectrelations i 130
2.3.12 SeCtionS L. i i e e e e e e e e e e e e e 132
2.3.13 URLStOTage v v v v v vt it et et e e e e e e e e e 134
2.3.14 Information collection e 135

2.4 Configuration i i i i e e e e e e e e 136
2.4.1 Sitemanagement it et e e e e e e e e 138
2.4.2 Extension siteaccess Setting€s v v vt i vt e e e 141
2.4.3 Accessmethods e 142

2.5 Modules and VIEWS o v i e e e e e e e e e e 145
2.6 URL translation it e 148
2.7 DESIgNS . v v v e 152
2.7.1 Design combinations 154

2.8 Accesscontrol e e e 156
2.9 Webshop e e e e 160
2.10 Workflows e e e e e e e e e 165
3 Templates 167
3.1 Template basics e e 168
3.1.1 Nodetemplates. i i i i e e e e e e 171

3.1.2 Systemtemplates e e e e e e e e e e e 173

Contents 4

3.2 The pagelayout. e 175
3.2.1 Thepagehead 179
3.2.2 Variablesin pagelayout 183

3.3 The template language e 191
3.3. 1 COmMMENtS . . v v v v e 193
3.3.2 Variable types. e e e e e e e 194
3.3.3 Variableusage e e e e 199
3.3.4 Array and objectinspection 203
3.3.5 Control structures o vt ittt e e e e e 207
3.3.6 Functions and operators v . i vt e e e e e e e e e e e e 211

3.4 Basictemplatetasks 213
341 URLhandling. it 216

3.5 Information eXtraction v v i it e e e e e e e e e e e 219
3.5.1 Outputting node and objectdata 221

3.6 The template override system o v i it e e 224
3.6.1 Template overrideexample 226

4 Features 229

4.1 Audit trailing e 230

4.2 Policy functions o i i i e e 234

4.3 Multi-language e e e e e e e e 238
4.3.1 Configuring your sitelocale 242
4.3.2 Configuring the site languages 245
4.3.3 Managing the translation languages 250
4.3.4 Translatable class attributes L oL oL 252
4.3.5 Translatable countrynamesttt 257
4.3.6 Multilingual objects 259
4.3.7 Working with translations 0 0oL, 262
4.3.8 The bit-field algorithm 267
4.3.9 Language based permissionsl 269

4.4 Multi-language support for URL aliases 272
4.4.1 Managing URL aliases i it it ittt e et 277

4.4.2 URL transformationrules o o i i i e e 282

Contents 5
4.4.3 Custom transformation commands 285

4.5 Clustering o o i i e e e e e e e e e e e e e 287
4.5.1 Settingitup« « v i e e e e e e 291

4.6 Packages e e e e e e e e 294
4.6.1 Package types. . . . v v i i e e e e e e e e e e e e e e e e 296
4.6.2 Creatingnew packages 299
4.6.3 Exporting packagestofiles 308
4.6.4 Importing packagestothesystem 310
4.6.5 Removing packages from repository 311
4.6.6 Installing packages i e 312
4.6.7 Uninstalling packages 317
4.6.8 package.xmlformat 319
4.6.9 Custominstall scripts e 322

4.7 Cronjobs i i e 326
4.7.1 Thecronjob scripts v v v i e e e e e e e e 327
4.7.2 Configuring cronjobs e e 334
4.7.3 Running cronjobs e 337

4.8 Advanced redirection afterlogin, 340
4.9 VAT charging system v v v v i e e e e e e e e e e e e e e 345
4.9.1 Assigning VAT types to products v vt 347
4.9.2 Three approaches to VAT charging 349
4.9.3 Product Category« v v i e e e e e e e e e e e e e e e e e 354
4.9.4 USErCOUNITY . . v v v v v v e 356
4.9.5 Displaying VATs on the actualsite. 359
4.9.6 Managing VAT types o v v v v i it e e e e e e e e e 361
4.9.7 Managing product categories v . e e e e e e e 364
4.9.8 Managing VAT rules e 367
4.9.9 VAT SettingS . . . ¢ v v v v v et et e e e e e e e e e e e e e e e 369
4.9.10 Creatingnew VAT handlers 371

4.10 Improved shipping handling 373
4.11 Multi-CurrenCy ¢ o v vt e e e e e e e e e e e e e e e 377
4.11.1 Custom prices and auto PriCe€s v v v v v v v v e e e e e 378

Contents 6

4.11.2 Rounding auto PriCes« v v v v v v v e e e e e e e e e 381
4.11.3 CUITENCY TALES &« v v v v v v e e v e e e e e e e e e e e e e e e e e e 383
4.11.4 Creating @ NEW CUITENCY . + « « + « v v e v v e v e e v e et e e e e e e e e 385
4.11.5 Editing @ CUTENCY . « « v v v v v v v e e e e e e e e e e e e e e e e e e 390
4.11.6 RemoOvViNg @ CUITENCY .« . « ¢ v v v v v e e e e e e e e e e e e e e e e e e e 394
4.11.7 Preferred currency i i 395
4.11.8 Multi-price products i e e e e e e e e 397
4.11.9 ProductS OVEIVIEW v v v v vttt e e e e e e e e e e e 401
4.11.10Exchange rates update handlers 402
4.11.11Upgrading your webshop 405

4.12 Viewcaching e e e e e e e 407
4.12.1 Configuring theviewcache 410
4.12.2 Clearingtheviewcache 413
4.12.3 Smart view cache cleaning 416
4.12.4 Pre-generationof viewcache 422

4.13 Notifications o i i i i e e e e e e e e e e e e e e e e e 423
4.13.1 Using the admininterface, 425
4.13.2 Usingan actualsite e nnenin.. 431
4.13.3 Adding a "Keep me updated” button 434
4.13.4 CustomizingtheE-mails 435
4.13.5 Granting access to notifications 436
4.13.6 Notification events o v v v v it e e e e 442
4.13.7 Notification handlers. 445
4.13.8 Frequently Asked Questions it 448

4.14 Searchengine e e 450
4.15 WebDAV e e e e e e e 453
4.15.1 Settin@ it Up . . . v v v v i e e e e e e e e e e e e e e e e e e e 459

5 Reference 462
5.1 Datatypes . . . o v o o e 463
5.1.1 Authors e 465
5.1.2 Checkbox 467

Contents 7
514 Date. . . . oo e e e e e 471
5.1.5 Dateandtime 473
5.1.6 E-mail e e e e e 475
S.L.7 Enum e e e e e e 476
5.1.8 File e e e e e e e 477
5.1.9 Float e e e e e e e e e 481
5.1.10 Identifier o o i e 483
51,11 TMage . . . ¢ o v e 485
5.1.12 IniSetting . . . v v v v v v e e e e e e e e e e e e e e e e e e e 489
5.1.13 Integer v v i e e e e e e e e e e e e e e e e e e e 490
5.1.14 ISBN . . o e e e e e 492
5.1.15 Keywords o o i e e e e e e e e e 497
5.1.16 MatriX . .« v v v v e e e e e s e e e e e e e e e e e e e e 499
5.1.17 Media o o vt e e e e e e e e e e e e e e e 501
5.1.18 Multi-option e e e e e e e e e e e e 504
5.1.19 Multi-option2. o v v e e e e e e e e e e e e 506
5.1.20 Multi-price e e 513
5.1.21 Objectrelation o i i i e e e e 515
5.1.22 Objectrelations @ . i i i e e 517
5.1.23 OPHION . .« v v v it e e e e e e e e e e e e e e 522
5.1.24 Package e e e e e e e e e e 524
5.1.25 Price. e e e e e e e e e e e 525
5.1.26 Product category v i it e e e e e e e e e e e 527
5.1.27 Range option v v v v v v i e e e e e e e e e e e e e e e e e e e 529
5.1.28 Selection i e e e e e e e e 531
5.1.29 Subtree subscription 533
5.1.30 Textblock o 534
5.1.31 Textline o e e e e e e e 536
S.1.32 TimMe . . o o o e e e e 538
5.1.33 URL . . . o e e 540
5.1.34 User acCcount o v v v v it v it e e e e e e e e e e e 542
5.1.35 XMLblock e e e e e 544

Contents 8

5.2 Content classes v i i i e e e e e e e e 561
521 Content v vt i e e e e e e e e e e e e 562
522 Media . . . o oo e e e 578
5.23 USEIS . o v v vt e e e e 585

5.3 Modules e 588
531 classo e e e e e 590
5.3.2 collaboration 609
5.3.3 COMLENL . v v v v v vt e i e e e e e e e e e e e e e e e e e 624
5.3.4 EITOT . . .t v it i e e e e e e e e e e e e e 761
535 ezinfo 762
536 form. 767
5.3.7 infocollector e 770
5.3.8 layout e e e e e e e e e e 775
5.3.9 notification 780
5.3.10 package e e e e e e e e e e e 792
5.3.11 PAE v v e e e e 815
5.3.12 reference 819
5313 role ..o e 820
5.3 14 1SS . L e e e 828
5.3.15 search 834
5.3.16 SeCtiON e e e e e e 841
5.3.17 SELUP « v o v ot et e e e e e 856
53.18 shop o e e e e e 857
5.3.19 trigger. e e e e e e e e e e e e e e e e e e 900
5.3.20 url e e e e e e e 903
532 USET . v v v i e e e e e e 912
5.3.22 workflow 937

5.4 VIEWS . . o o e e e e e e e 949

5.5 ODbJeCtS i e e e e e e e e e e e e e e 950
551 ezauthor 954
5.5.2 ezbasket e 955

5.5.3 ezbinaryfile e 958

Contents 9
5.5.4 ezcontentbrowsebookmark 959
5.5.5 ezcontentbrowserecentttt 960
5.5.6 ezcontentclass e e e e e e 961
5.5.7 ezcontentclassattribute L L oo 965
5.5.8 ezcontentclassclassgroup e . 968
5.5.9 ezcontentclassgroup Lo e 969
5.5.10 ezcontentlanguaget e e e e e e e e 970
5.5.11 ezcontentobject e e e e 971
5.5.12 ezcontentobjectattribute oL oo oo 981
5.5.13 ezcontentobjecttranslation, 985
5.5.14 ezcontentobjecttrashnode, 986
5.5.15 ezcontentobjecttreenode L. 990
5.5.16 ezcontentobjectversion ittt e . 995
5.5.17 ezcurrencydatao o e e e e e e e e e e e e e e e e e e 999
5518 ezdate e e e e e e e e e 1001
5.5.19 ezdatetime e e e e 1002
5.5.20 ezimagealiashandler o oL, 1003
5.5.21 ezimagelayer e e e e e e e e e e e 1008
5.5.22 ezimageobject e e e e e e e e 1009
5.5.23 ezinformationcollection e 1010
5.5.24 ezinformationcollectionattribute 1012
5.5.25 ezkeyword e e e e 1014
5.5.26 ezlocale e e e e e 1015
5.5.27 ezmatriX i e e e e e e e e e e e 1019
5,528 ezmedia. e e e e e e e e e e 1022
5.5.29 ezmultioption e 1024
5.5.30 ezmultioption2 e e e e e e e e e 1026
5.5.31 ezmultiprice e 1031
5.5.32 eznodeassignmentttt e e e e e e e e e e e e 1033
5.5.33 €ZOPLiON e 1035
5.5.34 ezorder e e e e e e e 1036
5.5.35 ezorderitem. L. e e e e e e e e e 1040

Contents 10
5.5.36 ezorderstatus e e e e e e e e e e e e 1041
5.5.37 €zpoliCy i e e e e e e e e e e e e e e 1042
5.5.38 @zZprice L. e e e e e e e 1043
5.5.39 ezproductcategory i i i e e e e e e e e e e e 1044
5.5.40 ezproductcollectionitem 1045
5.5.41 ezrangeoption i e e e e e e e e e e e 1046
5.542 ezrole e 1048
5543 @ZSECHOM . v v v v v v e e e e e e e e e e e e e e e e e e 1050
5.5.44 ezsimplifiedxmlinput. 1051
5.5.45 ezsubtreenotificationrule 1053
5546 eztime. e e e e e e e 1054
5.547 ezurl ... e 1055
5548 €ZUSET e e e e e e e 1056
5.5.49 ezvatrule e 1058
5550 @zZvattyPe v i e 1060
5.5.51 ezxhtmlxmloutput it 1061
5.5.52 ezxmlinputhandler Lo oo oo, 1062
5.5.53 ezxmloutputhandler 1064
5.554 ezxmltexXt e 1065

5.6 Workflow events e 1066
561 ADPPIOVE . . . v i i i e 1067
5.6.2 Multiplexer e e e e e e e 1069
5.6.3 Payment GateWay ittt e e e e e e e e e e e e e e e 1070
5.6.4 Simpleshipping e e 1072
5.6.5 Waituntildate 1073

5.7 Template operators e e e 1074
5.7.1 AITays . . v v i i e 1075
5.7.2 Data and information extraction 1099
5.7.3 Formatting and internationalization 1114
5.7.4 IMages i i e e e e e e e e e e 1127
5.7.5 Logical operations it e 1137
5.7.6 Mathematics 1165

Contents 11

5.8

5.9

5.10

5.7.7 Miscellaneous 1192
5.7.8 Strings e e e e e e e e e e e e e e 1219
5.79 URLS . . vttt et e e e e e e e e e e e e e 1264
5.7.10 Variable and type handling 1272

Template functions e e e 1302
5.8.1 Debugging e e 1303
5.8.2 Miscellaneous 1308
5.83 Variables 1321
5.8.4 Visualization 1334

Template control Structures v v v v v e e e e e e e e 1354
5.9.1 Conditionalcontrol e 1355
592 LOOPING . .« v v v i i e e e e e e e e 1361
5.9.3 Deprecated e e e e e e e e e e e e e 1367

Template override conditions e 1369
5.10.1 node/view/*.tpl e e e e e e 1371
5.10.2 content/search.tpl e 1372
5.10.3 content/edit.tpl 1373
5.10.4 content/advancedsearch.tpl, 1374
5.10.5 content/versions.tpl e . 1375
5.10.6 content/browse.tpl. L Lo 1376
5.10.7 content/versionview.tpl L. 1377
5.10.8 node/view/pdfitpl e 1378
5.10.9 content/collectedinfo/*.tpl 1379
5.10.10content/collectedinfomail/*.tpl 1380
5.10.11content/collectedinfo/*.tpl 1381
5.10.12class/edit.tpl e e e 1382
5.10.13class/groupedit.tpl e 1383
5.10.14class/view.tpl L. 1384
5.10.15workflow/edit.tpl e 1385
5.10.16workflow/groupedit.tpl 1386
5.10.17workflow/view.tpl 1387

5.10.18layout/set.tpl e e e e e e e e e e e e e e 1388

Contents 12
5.10.19pagelayout.tpl 1389
5.10.20content/datatype/edit/*.tpl 1390
5.10.21content/datatype/view/*.tpl e 1391
5.10.22content/view/*.tpl L. 1392
5.10.23content/tipafriend.tpl 1393
5.10.24content/tipafriendmail.tpl L. L 1394
5.10.25content/history.tpl e e 1395

5.11 Template fetch functions 1396
5.12 Template PDF functions 1397
5.12.1 anchor e 1399
5.12.2 create indeX o i e e e e e e e e e e e e e e e 1400
5.12.3 filledcircle e 1401
5.12.4 filledrectangle e e e 1403
5.12.5 footer v v i e e e e e e e e e e e e 1405
5.12.6 footerblock e e e e 1407
5.12.7 frame header e e e 1408
5.12.8 frontpage e e e 1410
5.129 header 1411
5.12.10header block e e e e e 1413
S.I2.1TIMAGE « & v v v v e 1414
5.12.12keyword e e e e e e e e e e e e e e e 1416
5.12.13L0€ e e e e e e e e e e e e e e 1417
5.12.145nk e 1419
5.12.15new line e e e e e e e e e 1420
5.12.16NEWPATE . . . v o i e e e e e e e e e e e e e e e e e e e 1421
5.12.17pagenumber e e 1422
5.12.18Set fONt . v v v v v e e e e e e e e e e e e e e e e e e e 1423
5.12.19setmargin L. e e e e e e e e e e e e 1425
5.12.20strikeo e 1426
5.12.21table. e e e e e e e e e 1427
5.12.22t6XE . . o i e 1429

5.12.23textbox 1432

Contents 13

5.12.24text frameo 1433
S.12.2510C. .« o L o e e e e e e e e e 1435
5.12.26ul e 1436
5.13 Configurationfiles e e 1438
5.13.1 auditini.o e 1441
5.13.2 binaryfile.ini e e e e e e 1447
5.13.3 browse.ni 1448
5.13.4 collaboration.ini 1449
5.13.5 collectini L e 1450
5.13.6 content.ini oL e 1451
5.13.7 contentstructuremenu.ini Lo e e e e 1493
5.13.8 COUNtIyini . . . v v v v it e e e e e e e e e e e e e e 1499
5.13.9 cronjob.ini e e e e e e 1505
5.13.10datatype.dnio e e e e e e e e e e e e e e 1514
S5.13.11datetime.dni. Lo 1515
5.13.12dbschema.ini 1516
5.13.13debug.ini e e e e e 1517
5.13.14design.ini e e e e e e e 1518
SABUISEITOLIND & v v v v v v v e 1527
5.13.16extendedattributefilterini L 1528
5.13.17ezxmlini 1529
5.13.18fetchalias.ini 1532
5.13.19filedinio 1533
5.13.20118n.0ni e e e 1534
5.13.2Ticon.dni L e e e e e e e e e e 1537
5.13.22image.ini e e e e e e e e e e e e e e e 1538
5.13.23layout.ini e e e e e e e e e e e e e e 1539
5.13.241dap.ini e 1540
5.13.25logfile.ini e e 1542
5.13.26menu.ini e e e e e e e e e 1547
5.13.27module.ini L e 1548

5.13.28notification.dni vt e e e e e e e e e e e e e e e e e 1549

Contents 14
5.13.290verride.dni 1550
5.13.30package.ini e e e e e 1551
5.13.31paymentgateways.iniottt et e e e e e e e e e 1552
5.13.32setup.ini e e e e e e e e e e e e e e e e e 1553
5.13.33shopaccount.ini e e e e 1554
5.13.34sitedni.o e e e e e 1559
5.13.35s0ap.ini e e e e e e e e e e e e e e e 1820
5.13.36staticcache.ini 1821
5.13.37template.ini. e e e 1828
5.13.38textfile.ini 1829
5.13.39texttoimage.inio e e e e e e e 1830
5.13.40toolbarini e 1831
5.13.41transform.inio L e e 1832
S.A3.42UnitSdni « . . oL e e e e e e e e e e e e 1833
5.13.43upload.ini. e e e e e 1834
5.13.44viewcache.ini 1835
5.13.45webdavini L e 1846
5.13.46wordtoimage.ini e e e e e e 1847
5.13.47workflow.ini 1848

5.14 Libraries e e e e 1858
5141 ezdb e e e e e e e 1859
5.14.2 ezdbschema 1860
5.14.3 ezfile e 1861
5144 ezil8n. o i e 1862
S.14.5 €ZIMAZE . .« v v v v i e e e e e e e e e e e e e e e e e e 1863
5.14.6 ezlocale 1864
5.14.7 ezpdf e e e e e e e e 1865
S.14.8 €ZS0AD . . . v i e e e e e e e e e e e e e e e e 1866
5.14.9 eztemplate e e e e e e 1867
5.14.10ezutils 1868
5.14.11ezwebdav e 1869

S5.14.12ezxml oL 1870

Contents 15

5.15 XML agS . . & v v o e 1871
5.16 SCIiPtS v v v v o e 1872
5.16.1 Generic L e e e e e e e e e e e e e e e 1873
5.16.2 Upgrade. o i i e e e e e e e e e e e e 1934
5.16.3 Cronjobs e e e e e e e e e e 1935

5.16.4 Miscellaneous v v v v v i e e e e e e e e e e e e e e e 1936

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17

2.1
2.2
2.3
2.4
2.5
2.6
2.7

Step 1: Welcome page« o o i i it i e e e 58
System finetuning e e e e e e e e e e e e e e 59
Step 2: IsSUeS o i e e e e e e e e e e e e e 59
Step 3: Outgoing E-mail e 60
Step 4: Database choice 61
Step 5: Database initialization, 62
Step 6: Language SUPPOTL . . . v v v v v v e e e e e e e e e e e e e e e e e e 63
Step 7: Site selection e e 64
The list of imported packages 65
Package language options e e e e e e e e e 65
Step 8: Site access configuration 00 o el e e 68
Step9: Sitedetails L 69
Step 10: Site administrator e e 70
Step 11: Site registrationt ittt e e e 71
Step 12: Finished 72
Screenshot of extension configuration in administration interface. 84
The debug output appears at the bottom of thepage 87
Libraries, kernel and modules. 89
Content + Design = Webpage 94
STOTage OVEIVIEW . . v v v v v v v e 95
Example of acontentclass. 99
The class edit interface. e 100
Datatypes, attributes, a content class and objects. 106
Example of a content object that consists of two versions. 110

16

List of Figures 17

2.8

2.9

2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24
2.25
2.26
2.27
2.28
2.29

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

Overview of the object states. ittt 113
Content object structure (with versions and translations). 115
The list of existing languages for translation of content 116
Object-noderelation e 119
Objects, nodes and the contentnodetree 122
Content NOAE tTEE v v v v i e e e e e e e e e e e e e e e e e 123
Objects, node and the content node tree - multiple locations 123
Content node tree with multiple locations 124
Toplevelnodes. 125
Hidingavisiblenode, 128
Hiding an invisiblenode 128
Unhiding a node with a visible ancestor 129
Unhiding a node with an invisible ancestor 129
Example of sections. 133
Example of a setup with two siteaccesses., 138
Siteaccess directory example. Lo . 139
Configuration override example.o 140
Objects, nodes and nice URLS. o v v i vt it e i e a 150
The design fallback mechanism. 154
Users, groups, policiesand roles., 156
The integrated e-commerce solution. 160
The workflow system. e 165
Client - servercycle. o o o 0 i i i e e e e e 169
The module result as a part of the pagelayout. 169
Location of pagelayout and full view template in example design. 171
Pagelayout + node view full template. 172
The location of the pagelayout (main) template. 175
The structure of the "ezdate” object. 197
Typical components of a functioncall. 211
Typical components of a template operatorcall. 212
The override system. i i i e e e e e 224

Template override example. e 225

List of Figures 18

3.11
3.12
3.13

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29

Example contentnode tree. oL e 226
Pagelayout + override templates in example design. 227
Template override example. 228
The language selection step in the setup wizard. 246
The "Create here” interface. it 247
The list of translation languages. 250
Adding a new translation language. 0. .. 251
Choose a language for anew contentclass. 253
The main window of the class view interface. 254
The language selection interface for class attribute names. 254
Enabling the translations window. 255
Translations window. 256
List of countries containing translated country names. 258
The "Create here” interface., 259
Thelistof classes. 260
The class edit interface. 261
The language selection interface. 263
TheconteXt menu. o v v v v it e e e e e e e e e e e 264
Selecting the language forediting. 264
The "My drafts” interface. 265
The reduced language selection interface. 266
The policy edit interface. 269
The policy edit interface. 270
The role edit interface. e 271
The interface for managing the URL aliases of a contentnode 277
The interface for global URL aliases managing 280
The interface for managing wildcard URL aliases 281
The ”"Local” system repository isempty. v v v v v v v v v v a ... 299
The package creation dialog., 300
The content class export dialog. 300
The package creation wizard: package informationstep. 301
The package creation wizard: information about the package maintainer. . .. 301

List of Figures 19

4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44
4.45
4.46
4.47
4.48
4.49
4.50
4.51
4.52
4.53
4.54
4.55
4.56
4.57
4.58

4.59
4.60

The package creation wizard: changelog. 302
The package creation dialog. 302
The content object export dialog (no objects selected). 303
Browse the content tree and select which nodes that will be exported. 303
Browse the content tree and select which subtrees that will be exported. 304
The content object export dialog (one node and one subtree selected). 304
The content object package creation wizard: export properties for content objects.305
The extension package creationwizard. 306
The site style package creation wizard: choose thumbnail. 306
The site style package creation wizard: select CSSfiles. 307
The site style package creation wizard: add images. 307
The list of packages. e 308
The package summary view interface. 309
The list of packages. 310
The import package interface. 310
Removing a package. 311
The content class package summary. 312
The content class package installation wizard, step 1. 313
The content class package installation wizard, step2. 313
The content object package installation wizard, step 1. 314
The content object package installation wizard, step 2. 314
The content object package installation wizard, step3. 315
The content object package installation wizard, step4. 315
The extension package installation wizard, step 1. 316
The extension package installation wizard, step 2. 316
The package uninstallation wizard, step 1. 317
The package uninstallation wizard, step 2. 318
The package uninstallation wizard, step3. 318
Displaying a custom install script in the list of items during the package instal-
lation Process v v v e e e e e e e e e e e e e e e e e e e 323
Displaying a custom wizard step during the package installation process 324
Class attribute edit interface for the "Date and time” datatype. 329

List of Figures 20

4.61
4.62
4.63
4.64
4.65
4.66
4.67
4.68
4.69
4.70
4.71
4.72
4.73
4.74
4.75
4.76
4.77
4.78
4.79
4.80
4.81
4.82
4.83
4.84
4.85
4.86
4.87
4.88
4.89
4.90
4.91
4.92

A fragment of the class edit interface. 341
Setting the redirection URI for the userJohn 342
A fragment of the class edit interface. 342
Setting the redirection URI for the "Guest accounts” user group 343
A fragment of the object view interface for the user with two locations. 344
Setting the VAT type on the objectlevel. 347
Setting the default VAT type on the classlevel. 348
Class attribute edit interface for the "Product category” datatype. 354
A fragment of the product edit interface.. 355
Class attribute edit interface for the "Country” datatype. 356
The list of VAT types. o v v v e e e e e e e e e e e e e e e e e e e 361
The newly added VAT type in the list of VAT types. 362
The confirmation dialog. 363
The list of product categories. v v v v i it e e 364
The newly added category in the list of product categories. 364
The confirmation dialog. 366
The list of VAT chargingrules. 367
The VAT charging rule edit interface. 367
The newly created VAT rule in the list of VAT charging rules. 368
The base price in USD and two auto prices. v v v v v v v v ... 379
The base price in USD, non-base custom price in NOK and auto price in EUR. . 379
The results of removing the base custom price. 380
The list of available currencies. 385
The currency editinterface. 385
The list of available currencies. 386
The currency edit interface. 387
Unknown currency name in the list of currencies. 387
Displaying inactive currency in the list of currencies. 389
The list of currencies with disabled possibility to update auto rates. 391
The list of currencies with updated autorates. 391
The list of currencies with removed customrates. 392
The list of currencies with one customrate. 393

List of Figures 21

4.93

4.94

4.95

4.96

4.97

4.98

4.99

4.100
4.101
4.102
4.103
4.104
4.105
4.106
4.107
4.108
4.109
4.110
4.111
4.112
4.113
4.114
4.115
4.116
4.117
4.118
4.119
4.120
4.121
4.122
4.123
4.124

The class edit interface for a productclass. 398
Class attribute edit interface for the "Multi-price” datatype. 398
The products overview interface. 401
The resulting prices after product upgrading. 405
Clearing the view cache using popupmenu. 414
A part of the site content Structure. v v v v v e v e 419
The notification filter interface. 424
Browsing the content tree. ittt e e e 426
Subscribing to subtree notifications using the context menu. 427
The "notification added” confirmation for administrators. 427
Notification settings for administrators. 428
Browsing the contenttree. 429
The”Up”button e e e e e e 429
Digest SEttings v v v v e e e e e e e e e e e e e e e e e e e 429
The list of items for subtree notifications. 430
Settings for collaboration notifications. 430
The "keep me updated” button.o 431
The "notification added” confirmation for users. 431
Notification settings for users. i i, 432
The usergroup view interface. 436
Thelistofroles. e 437
Addinganewrole. e e e e e 437
The new policy wizard, step 1. 438
The new policy wizard, step 2. i e 439
The role edit interface. e 439
The role view interface. 440
Assigning arole to @ USEr roUpP. . . . « v v v v v v vt e e e e e e e e e . 440
The role view interface. e 441
Standard search interface 450
Advanced search interface L . 451
Search StatiStiCs v v v v i e e e e e e e e e e e e e e e e e 452
WebDAV - Virtual top folder 453

List of Figures 22

4.125
4.126
4.127
4.128
4.129

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27

WebDAV - Login it e e e e e e e e e e e 454
WebDAV - Top levelnodes i it 454
WebDAV - Content node tree v v v v v v v e e e e e e e e 455
WebDAV - IEopendialog 460
WebDAV - Content node tree v i i 461
Class attribute edit interface for the "Authors” datatype. 465
Object attribute edit interface for the "Authors” datatype. 466
Class attribute edit interface for the "Checkbox” datatype. 467
Object attribute edit interface for the "Checkbox” datatype. 467
Class attribute edit interface for the "Country” datatype. 469
Object attribute edit interface for the "Country” datatype. 470
Class attribute edit interface for the "Date” datatype. 471
Object attribute edit interface for the "Date” datatype. 472
Class attribute edit interface for the "Datetime” datatype. 473
Object attribute edit interface for the "Date and time” datatype. 474
Class attribute edit interface for the "Email” datatype. 475
Object attribute edit interface for the ”E-mail” datatype. 475
Class attribute edit interface for the "File” datatype. 477
Object attribute edit interface for the "File” datatype. 478
Object attribute edit interface for the ”File” datatype. 478
Complete directory structure with uploaded files. 479
Class edit interface for the “Float” datatype. 481
Object attribute edit interface for the "Float” datatype. 482
Class attribute edit interface for the ”Identifier” datatype. 484
Class attribute edit interface for the "Image” datatype. 485
Object attribute edit interface for the "Image” datatype. 486
Object attribute edit interface for the "Image” datatype. 486
Example of image path on the filesystem. 487
Example of an image subdirectory. oo, 487
Complete directory structure with uploaded image and generated variations. . 488
Class edit interface for the "Integer” datatype. 490

Object attribute edit interface for the "Integer” datatype. 491

List of Figures 23

5.28 Class attribute edit interface for the "ISBN” datatype.. 494
5.29 Class attribute edit interface for the "ISBN” datatype if the range data for ISBN-
13wasnotimported. e e e e e e e e e 494
5.30 Object attribute edit interface for the "ISBN” datatype. 495
5.31 Object attribute edit interface for the "ISBN” datatype when in ISBN-10 mode. 495
5.32 Class attribute edit interface for the "Keywords” datatype. 497
5.33 Obiject attribute edit interface for the "Keywords” datatype. 498
5.34 Class attribute edit interface for the "Matrix” datatype. 499
5.35 Object attribute edit interface for the "Matrix” datatype. 500
5.36 Class attribute edit interface for the "Media” datatype. 501
5.37 Object attribute edit interface for the "Media” datatype (Flash). 502
5.38 Object attribute edit interface for the "Media” datatype (QuickTime).. 502
5.39 Object attribute edit interface for the "Media” datatype (Real Media). 503
5.40 Object attribute edit interface for the "Media” datatype (Windows media). . . . 503
5.41 Class attribute edit interface for the "Multi-option” datatype. 504
5.42 Object attribute edit interface for the "Multi-option” datatype. 505
5.43 Class attribute edit interface for the "Multi-option2” datatype. 509
5.44 Obiject attribute edit interface for the "Multi-option2” datatype. 510
5.45 A part of the object attribute edit interface for the "Multi-option2” datatype. . . 511
5.46 Dependency rules in the object attribute edit interface for the "Multi-option2”
datatype. e 512
5.47 Class attribute edit interface for the "Multi-price” datatype. 513
5.48 Object attribute edit interface for the "Multi-price” datatype. 514
5.49 Class attribute edit interface for the "Object relation” datatype. 515
5.50 Object attribute edit interface for the "Object relation” datatype. 516
5.51 Class attribute edit interface for the "Object relations” datatype.. 517

5.52 Object attribute edit interface for the "Object relations” datatype (default selec-
tionmethod). 519

5.53 Object attribute edit interface for the ”"Object relations” datatype (list with
checkboxes). e e e e e e e e 520

5.54 Object attribute edit interface for the ”Object relations” datatype (multiple se-
lection list). o o e e e e e 520

5.55 Object attribute edit interface for the "Object relations” datatype (dropdown list).520

List of Figures 24

5.56

5.57
5.58
5.59
5.60
5.61
5.62
5.63
5.64
5.65
5.66
5.67
5.68
5.69
5.70
5.71
5.72
5.73
5.74
5.75
5.76
5.77
5.78
5.79
5.80
5.81
5.82
5.83
5.84
5.85
5.86

Object attribute edit interface for the "Object relations” datatype (list with radio
DULtons). e e e e e e e e e e e e e e e 520
Class attribute edit interface for the "Option” datatype. 522
Object attribute edit interface for the "Option” datatype. 523
Class attribute edit interface for the "Price” datatype. 525
Object attribute edit interface for the "Price” datatype. 526
Class attribute edit interface for the "Product category” datatype. 527
Object attribute edit interface for the "Product category” datatype. 527
Class attribute edit interface for the "Range option” datatype. 529
Obiject attribute edit interface for the "Range option” datatype. 530
Class attribute edit interface for the "Selection” datatype. 531
Object attribute interface for the "Selection” datatype. 532
Class edit interface for the "Text block” datatype. 534
Object attribute edit interface for the "Text block” datatype. 535
Class edit interface for the "Text line” datatype. 536
Object attribute interface for the "Text line” datatype. 537
Class attribute edit interface for the "Time” datatype.. 538
Object attribute edit interface for the "Time” datatype. 538
Class attribute edit interface for the "URI” datatype. 540
Object attribute edit interface for the "URL” datatype. 540
Class attribute edit interface for the "User account” datatype. 542
Object attribute edit interface for the "User account” datatype. 543
Settings interface for the "User account” datatype. 543
Class attribute edit interface for the XML block” datatype. 545
Object attribute edit interface for the XML block” datatype. 545
Edit interface for the "Approve” event.ttt 1067
Edit interface for the "Multiplexer” event. 1069
Edit interface for the "Payment gateway” event. 1070
Edit interface for the ”Simple shipping” event. 1072
Edit interface for the "Wait until date” event. 1073
Text rendered as image using the 1942 font. 1134
Text rendered as image using the ad mono font. 1134

List of Figures 25

5.87
5.88
5.89
5.90
5.91
5.92
5.93
5.94

Text rendered as image using the archturafont. 1134
Text rendered as image using the arial font. 1135
Text rendered as image using the galleryfont. 1135
Text rendered as image using the object text font. 1135
Text rendered as image using the sketchy font. 1136
Text rendered as image using the smartie font. 1136
Text rendered as image using the ad mono font. 1136
The contenttree o v v v i i i e e e e e e e e e 1215

Chapter 1

Installation

This chapter explains how to obtain and install eZ Publish using the different installation meth-
ods. In addition, it also describes how to upgrade or remove an existing eZ Publish installation. If
you don’t want to install eZ Publish yourself, you can always hire eZ Systems to install and setup
the software for you. It is also possible to purchase a hosted eZ Publish solution from various
providers and partners.

There are three ways of installing eZ Publish:

1. Normal installation
2. Manual installation

3. Automated installation

Normal installation

This option is the most common and recommended way of installing eZ Publish. It requires a
system which already has the proper environment installed, most notably a web server and a
database. eZ Publish needs to be downloaded and unpacked. A web-based setup wizard is initi-
ated using a browser. The setup wizard asks a couple of questions and automatically configures
eZ Publish. The method is explained under the "Normal installation” (page 28) section.

Manual installation

This option is for experienced users. No wizards or fancy dialogs, no bundled software, no
installers, no nothing. This method requires a system which already has a web-server and a
database set up and ready to go; eZ Publish needs to be downloaded and unpacked. The system
is then configured by manually altering various configuration files and making manual changes
to the database. This method is explained under the "Manual installation” (page 41) section.

26

27

Automated installation

This installation method (also named kickstart) is for experienced users. It is designed for system
administrators who wish to do pre-configured installations of eZ Publish that require a mini-
mum of interaction with the web based setup wizard. It requires a system which already has the
proper environment installed, most notably a web server and a database. eZ Publish needs to be
downloaded and unpacked. Instead of clicking through the setup wizard and manually providing
configuration parameters, the system is installed based on a group of settings defined in a con-
figuration file. This method is explained under the "Automated installation” (page 51) section.

1.1 Normal installation 28

1.1 Normal installation

The normal installation method is the most common and recommended way of deploying eZ
Publish. It requires a system which already has the proper environment installed, most notably
a web server and a database. The necessary requirements are explained in detail within the next
section (page 29). A typical normal installation process consists of the following steps:

* Setting up / creating a database
* Downloading a packaged eZ Publish distribution

* Unpacking the eZ Publish distribution

* Initiating and going through the web based setup wizard

Once the web based setup wizard has completed, eZ Publish will be ready for use.

The ”Installing eZ Publish on a Linux/UNIX based system (page 33)” and "Installing eZ Publish on
Windows (page 37)” sections (depending on the target OS) will take you through the necessary
steps.

1.1.1 Normal installation / Requirements for doing a normal installation 29

1.1.1 Requirements for doing a normal installation

eZ Publish makes use of and depends on four important things:

1. A web server
A server-side PHP scripting engine
The eZ Components library

A database server

I

An image conversion system (optional)

The first three things should be in place before an eZ Publish installation is deployed. The
image conversion system is optional and is only needed if you're planning to use eZ Publish with
images. The web server and the server-side PHP scripting engine has to run on the same machine.
The database server may run on a different computer. For the moment, the following software
solutions can be used:

Web server

Currently, only the Apache web server is supported. On Linux/UNIX based systems, it is rec-
ommended to use the latest version of the 2.x branch. Note that it must run in ”prefork” mode
instead of “threaded” mode - the reason for this is because some of the libraries that PHP exten-
sions use might not be thread-safe.

On Windows, it is recommended to use the latest version of the 1.3 branch. (Apache 2.x for
Windows is not supported since it only exists in "threaded” mode.)

The Apache web server is the most popular web server on the planet. It is free, open source and
can be downloaded from http://www.apache.org.

Server-side PHP scripting engine

Since most of the eZ Publish system is written using the PHP scripting language, a PHP (hypertext
preprocessor) server-side engine is needed. Make sure you have PHP 5.1.6 or later.

Note that it is strongly recommended to use the latest version of the 5.x branch, which is PHP
5.2.5 at the time of writing. The reason for this is that eZ Publish runs faster on PHP 5.2 than on
PHP 5.1. In addition, some extensions may require PHP 5.2 (for example, the eZ Flow extension
that comes together with eZ Publish). Make sure you use the PHP version that is required for
your specific eZ Components version.

PHP is free software and can be downloaded from http://www.php.net. The following table
reveals which functionality PHP needs to have compiled-in support for.

Name Description
MySQLi extension (recommended) Required if a MySQL database will be used.

http://www.apache.org
http://www.php.net
http://www.php.net/mysqli

1.1.1 Normal installation / Requirements for doing a normal installation 30

or MySQL functions

PostgreSQL functions Required if a PostgreSQL database will be
used.

Zlib compression functions Required (see below).

DOM functions Required (see below).

Session support Required (enabled in PHP by default).

PCRE functions Required (enabled in PHP by default).

GD2 support Required if ImageMagick is not installed.

CLI support Recommended (see below).

Client URL library functions Recommended (see below).

Multibyte string functions Recommended.

Exif functions Recommended.

Zlib extension

Make sure that zlib support in PHP is enabled, otherwise the setup wizard (page 57) will not be
able to unpack downloaded packages during the installation process.

DOM extension

In most cases, DOM functions are enabled by default as they are included in the PHP core.
However, some Linux distributions have PHP without compiled-in support for DOM. Instead,
they provide DOM as a shared module in a separate RPM package called "php-xml”.

PHP CLI

It is strongly recommended to have PHP CLI installed, otherwise some features like notifica-
tions (page 423), delayed search indexing, upgrade scripts, the collaboration system (content
approval), clearing caches from within the command line, etc. will not work.

CURL

It is recommended to enable CURL support, otherwise some features like outbound connections
via proxy (page 1651) and SSL support for eZSoap will not work.

PHP memory limit issue

eZ Publish needs at least 64 MB in order to complete the setup wizard. If you are using PHP 5.2.0
or earlier version, you’ll have to increase the default "memory limit” setting which is located in
the "php.ini” configuration file. (Don’t forget to restart Apache after editing "php.ini”.) Normal
operation requires about 16 MB. However, it is highly recommended that you keep the 64 MB
setting since eZ Publish consumes a lot more memory as soon as you reindex the search, execute
upgrade scripts, etc. Multilingual sites will also require at least 64 MB.

http://www.php.net/mysql
http://www.php.net/pgsql
http://www.php.net/zlib
http://www.php.net/dom
http://www.php.net/manual/en/ref.session.php
http://www.php.net/manual/en/ref.pcre.php
http://www.php.net/manual/en/ref.image.php
http://www.php.net/manual/en/features.commandline.php
http://www.php.net/curl
http://www.php.net/manual/en/ref.mbstring.php
http://www.php.net/exif
http://www.php.net/dom
http://www.php.net/manual/en/features.commandline.php
http://www.php.net/curl
http://pubsvn.ez.no/nextgen/trunk/doc/features/3.8/ssl_enhancement_with_ezsoapclient.txt

1.1.1 Normal installation / Requirements for doing a normal installation 31

If you are using PHP 5.2.1 or later, there is no need to change the default "memory limit” setting
(it is set to 128 MB by default).

PHP timezone

You need to set the “date.timezone” value in the ”php.ini” configuration file. If this setting is not
specified, you will most likely receive error messages like "It is not safe to rely on the system’s
timezone settings” when running eZ Publish on PHP 5. The following example shows how the
corresponding line in “php.ini” looks like:

date.timezone = <timezone>

Refer to the PHP documentation for the list of supported timezones. Don’t forget to restart
Apache after editing "php.ini”.

eZ Components library

eZ Publish is an object-oriented application where each class definition is stored in a separate
PHP source file. Instead of having a list of needed includes at the beginning of each source
file, eZ Publish 4 makes use of the autoload() function. When eZ Publish is installed, all class
definitions of the eZ Publish kernel will have their paths listed in the "autoload/ezp kernel.php”
file. In addition, the "autoload/ezp_extension.php” file will contain an array of paths for class
definitions that are a part of the extensions that come with eZ Publish. These arrays will most
likely need to be updated in the future (for example, when you install new extensions or configure
existing ones using the ”"Setup - Extensions” part of the administration interface). This requires
eZ Components version 2007.1.1 or higher to be installed. In particular, you need to install the
File and Base components ("ezcBase” and “ezcFile”), otherwise eZ Publish will not be able to
update autoload arrays.

eZ Components is an enterprise ready general purpose PHP components library used indepen-
dently or together for PHP application development. eZ Components can be downloaded from
http://ezcomponents.org/download. In the future, eZ Components will be bundled with eZ
Publish. Refer to http://ezcomponents.org/docs/install for information about how to install eZ
Components.

Important note

Starting from version 2008.1, the eZ Components library requires PHP version 5.2.1 or higher.

Database server

eZ Publish stores miscellaneous data structures and actual content using a database. This means
that a database server has to be available for eZ Publish at all times. By default, eZ Publish is
compatible with the following database solutions:

http://www.php.net/manual/en/ref.datetime.php#ini.date.timezone
http://www.php.net/timezones
http://www.php.net/autoload
http://ezcomponents.org/download
http://ezcomponents.org/docs/install

1.1.1 Normal installation / Requirements for doing a normal installation 32

* MySQL 4.1 or later, 5.x (recommended)

* PostgreSQL 7.3 or later

The setup wizard will automatically detect the database server as long as it is running on the same
computer that functions as the web server. Note that eZ Publish 4 requires a UTF-8 database.

Note that eZ Publish 4 does not support clustering (page 287) for PostgreSQL databases. The
clustering code is optimized for best performance and focused on MySQL databases using the
InnoDB storage engine. If you are not going to run eZ Publish in a clustered environment, the
use of InnoDB is not required but highly recommended. Contact your database administrator if
you are unsure about whether InnoDB is available on your server.

If you are going to use PostgreSQL, make sure the "pgcrypto” module is installed. On Linux/UNIX,
you may need to install a separate package called "postgresql-contrib” (refer to the PostgreSQL
documentation for more information), which contains the "pgcrypto” module. The "pgcrypto”
module provides cryptographic functions for PostgreSQL, including the ”digest” function, which
is needed for eZ Publish. When setting up a PostgreSQL database for eZ Publish, you will have
to register these functions in the database. Refer to the ”Setting up a database” part of the
”"Installing eZ Publish on a Linux/UNIX based system” and ”Installing eZ Publish on Windows”
documentation pages (depending on the target OS) for more information.

Oracle compatibility

The upcoming version 1.8 of the eZ Publish Extension for Oracle Database will make it possible
to use Oracle as a database for eZ Publish 4.0.1 and higher. Note that earlier versions of the
extension are not compatible with eZ Publish 4.

Image conversion system (optional)

In order to scale, convert or modify images, eZ Publish needs to make use of an image conversion
system. One of the following software packages (both are free) can be used:

¢ GD2 (comes with PHP)

* ImageMagick (http://www.imagemagick.org)

ImageMagick supports more formats than GD and usually produces better results (better scaling,
etc.). The setup wizard will automatically detect the pre-installed image conversion system(s).

The installation and setup of required software solutions (outlined above) is far beyond the scope
of this document. Please refer to the homepage and documentation of the different software
solutions.

http://www.mysql.com
http://www.postgresql.org
http://dev.mysql.com/doc/refman/5.1/en/storage-engine-overview.html
http://www.postgresql.org/docs/8.3/static/pgcrypto.html
http://www.postgresql.org/docs/8.3/static/contrib.html
http://www.postgresql.org/docs/8.3/static/contrib.html
http://www.imagemagick.org

1.1.2 Normal installation / Installing eZ Publish on a Linux/UNIX based system 33

1.1.2 Installing eZ Publish on a Linux/UNIX based system

The requirements for doing a normal installation must be met! Read the "Requirements for
doing a normal installation (page 29)” section first. Proceed only if you have access to a Linux/
UNIX based system with Apache, PHB MySQL or PostgreSQL already installed and running. As
mentioned earlier, the database server may run on a different computer than the web server. This
section will guide you through the following steps:

e Setting up a database (MySQL or PostgreSQL)

* Downloading eZ Publish

* Unpacking eZ Publish

* Initiating the setup wizard

Setting up a database

A database must be created before running the setup wizard. The following text explains how to
set up a database using either MySQL or PostgreSQL.
MySQL

1. Log in as the root user (or any other MySQL user that has the CREATE, CREATE USER and
GRANT OPTION privileges):

$ mysql --host=<mysql_host> --port=<port> -u <mysql_user> -p<mysql_password>

Note that if MySQL is installed on the same server, the ”--host” parameter can be omitted.
If the ”--port” parameter is omitted, the default port for MySQL traffic will be used (port
3306).

The MySQL client should display a "mysql>" prompt.

2. Create a new database:

mysql> CREATE DATABASE <database> CHARACTER SET utfS§;

3. Grant access permissions:

mysql> GRANT ALL ON <database>.* TO <user>@<ezp_host> IDENTIFIED BY
’<password>’;

Note that if the specified user account does not exist, it will be created.

http://dev.mysql.com/doc/refman/5.1/en/privileges-provided.html

1.1.2 Normal installation / Installing eZ Publish on a Linux/UNIX based system 34

<mysql host>

The hostname of the MySQL database server.

<port>

The port number that will be used to connect
to the MySQL database server.

<mysql user>

The MySQL user (if no user is set up, use
“root”).

<mysql password >

The password that belongs to the <mysql.
user>.

<database> The name of the database, for example "my_
new database”.

<user> The username that will be used to access the
database.

<ezp_host> The hostname of the server on which eZ Pub-
lish will be running. (may be ’localhost’ if
MySQL is installed on the same server).

<password > The password you wish to set in order to limit
access to the database.

PostgreSQL

1. Log in as the postgres user (or any other PostgreSQL user that has sufficient privileges to

create roles and databases):

$ psql -h <psql_host> -p <port> -U <psql_user> -W

Note that if PostgreSQL is installed on the same server, the ”-h” parameter can be omitted.
If the ”-p” parameter is omitted, the default port for PostgreSQL traffic will be used (in most

cases, port 5432).

The PostgreSQL client will ask you to specify the password that belongs to the <psql user>.
If the password is correct, the client should display a ”<psql user>=#”" prompt.

2. Create a new database:

postgres=# CREATE DATABASE <database> ENCODING=’utf8’;

3. Create a new user:

postgres=# CREATE USER <user> PASSWORD ’<password>’;

4. Grant access permissions:

postgres=# GRANT ALL PRIVILEGES ON DATABASE <database> TO <user>;

5. Import the "pgcrypto” module into the new database:

http://www.postgresql.org/docs/current/interactive/sql-grant.html
http://www.postgresql.org/docs/8.3/static/pgcrypto.html

1.1.2 Normal installation / Installing eZ Publish on a Linux/UNIX based system 35

postgres=# \c <database>
<database>=# \i ’<path_to_pgcrypto>’

<psql_host> The hostname of the PostgreSQL database
server.

<port> The port number that will be used to connect
to the PostgreSQL database server.

<psql user> The PostgreSQL user (if no user is set up, use
”postgresql”).

<database> The name of the database, for example "my_
new database”.

<user> The username that will be used to access the
database.

<password > The password you wish to set in order to limit
access to the database.

<path_to_pgcrypto> The path to the "pgcrypto.sql” file, for exam-
ple ”/usr/share/pgsql/contrib/pgcrypto.sql”.

Downloading eZ Publish

The latest stable version of eZ Publish can be downloaded from http://ez.no/download/ez
publish.

Unpacking eZ Publish

Use your favorite tool to unpack the downloaded eZ Publish distribution to a web-served direc-
tory (a directory that is reachable using a web browser). The following example shows how to
do this using the tar utility (to unpack a tar.gz file, assuming that the ”tar” and the ”gzip” utilities
are installed on the system):

$ tar zxvf ezpublish-<version_number>-gpl.tar.gz -C <web_served_directory>

<version number> The version number of eZ Publish that was
downloaded.
<web _served directory> Full path to a directory that is served by the

web server. This can be the path to the doc-
ument root of the web server, or a personal
web-directory (usually called ”public_ html” or
"www”, and located inside a user’s home di-
rectory).

The extraction utility will unpack eZ Publish into a subdirectory called ”ezpublish-<version_
number>". Feel free to rename this directory to something more meaningful, for example "my_
site”.

http://ez.no/download/ez_publish
http://ez.no/download/ez_publish

1.1.2 Normal installation / Installing eZ Publish on a Linux/UNIX based system 36

Initiating the setup wizard

The setup wizard can be started using a web browser immediately after the previous steps (de-
scribed in this section) are completed. It will be automatically run the first time someone tries
to access/browse the index.php file located in the eZ Publish directory. Let’s assume that we are
using a server with the hostname "www.example.com” and that after unpacking, the eZ Publish
directory was renamed to “my site”.

Document root example

If eZ Publish was unpacked into a directory called “my site” under the document root, the
setup wizard can be initiated by browsing the following URL: http://www.example.com/my_
site/index.php.

Home directory example

If eZ Publish was unpacked to a web-served directory located inside the home directory of a user
with the username "peter”, (usually called "public_html”, "www”, "http”, "html” or "web”), the
setup wizard can be initiated by browsing the following URL: http://www.example.com/ " peter/
my site/index.php.

Refer to "The setup wizard (page 57)” section for a detailed description of the web based setup
wizard.

1.1.3 Normal installation / Installing eZ Publish on Windows 37

1.1.3 Installing eZ Publish on Windows

The requirements for doing a normal installation must be met! Read the "Requirements for doing
a normal installation (page 29)” section first. Proceed only if you have access to a Windows
based system with Apache, PHE MySQL or PostgreSQL already installed and running. (Do not
use Apache 2.x for Windows.) As mentioned earlier, the database server may run on a different
computer than the web server. This section will guide you through the following steps:

e Setting up a database (MySQL or PostgreSQL)

* Downloading eZ Publish

* Unpacking eZ Publish

* Initiating the setup wizard

Setting up a database

A database must be created before running the setup wizard. The following text explains how to
set up a database using either MySQL or PostgreSQL.
MySQL

1. Log in as the root user (or any other MySQL user that has the CREATE, CREATE USER and
GRANT OPTION privileges):

mysql --host=<mysql_host> --port=<port> -u <mysql_user> -p<mysql_password>

Note that if MySQL is installed on the same server, the ”--host” parameter can be omitted.
If the ”--port” parameter is omitted, the default port for MySQL traffic will be used (port
3306).

The MySQL client should display a "mysql>" prompt.

2. Create a new database:

mysql> CREATE DATABASE <database> CHARACTER SET utfS§;

3. Grant access permissions:

mysql> GRANT ALL ON <database>.* TO <user>@<ezp_host> IDENTIFIED BY
’<password>’;

Note that if the specified user account does not exist, it will be created.

http://dev.mysql.com/doc/refman/5.1/en/privileges-provided.html

1.1.3 Normal installation / Installing eZ Publish on Windows 38

<mysql host>

The hostname of the MySQL database server.

<port>

The port number that will be used to connect
to the MySQL database server.

<mysql user>

The MySQL user (if no user is set up, use
“root”).

<mysql password >

The password that belongs to the <mysql.
user>.

<database> The name of the database, for example "my_
new database”.

<user> The username that will be used to access the
database.

<ezp_host> The hostname of the server on which eZ Pub-
lish will be running. (may be ’localhost’ if
MySQL is installed on the same server).

<password > The password you wish to set in order to limit
access to the database.

PostgreSQL

1. Log in as the postgres user (or any other PostgreSQL user that has sufficient privileges to

create roles and databases):

psql -h <psql_host> -p <port> -U <psql_user> -W

Note that if PostgreSQL is installed on the same server, the ”-h” parameter can be omitted.
If the ”-p” parameter is omitted, the default port for PostgreSQL traffic will be used (in most

cases, port 5432).

The PostgreSQL client will ask you to specify the password that belongs to the <psql_user>.
If the password is correct, the client should display a ”<psql_user>=#”" prompt.

2. Create a new database:

postgres=# CREATE DATABASE <database> ENCODING=’utf8’;

3. Create a new user:

postgres=# CREATE USER <user> PASSWORD ’<password>’;

4. Grant access permissions:

postgres=# GRANT ALL PRIVILEGES ON DATABASE <database> TO <user>;

5. Import the "pgcrypto” module into the new database:

http://www.postgresql.org/docs/current/interactive/sql-grant.html
http://www.postgresql.org/docs/8.3/static/pgcrypto.html

1.1.3 Normal installation / Installing eZ Publish on Windows 39

postgres=# \c <database>

<database>=# \i ’<path_to_pgcrypto>’ 1
<psql_host> The hostname of the PostgreSQL database
server.
<port> The port number that will be used to connect
to the PostgreSQL database server.
<psql user> The PostgreSQL user (if no user is set up, use
”postgresql”).
<database> The name of the database, for example "my_
new database”.
<user> The username that will be used to access the
database.
<password > The password you wish to set in order to limit
access to the database.
<path_to_pgcrypto> The path to the ”pgcrypto.sql”
file, for example ”C:\\Program
Files\ \PostgreSQL\ \8.2\ \share) \ contrib\ \ pgcrypto.sql”.

Downloading eZ Publish

The latest stable version of eZ Publish can be downloaded from http://ez.no/download/ez
publish. Windows users should download the ”.zip” archive.

Unpacking eZ Publish

Use your favorite utility to unpack the downloaded eZ Publish archive to a web-served directory
(a directory that is reachable using a web browser). The extraction utility will unpack eZ Publish
into a subdirectory called ”ezpublish-4.x.y”. Feel free to rename this directory to something more
meaningful, for example "my site”.

Initiating the setup wizard

The setup wizard can be started using a web browser immediately after the previous steps (de-
scribed in this section) are completed. It will be automatically run the first time someone tries
to access/browse the index.php file located in the eZ Publish directory. Let’s assume that we are
using a server with the hostname "www.example.com” and that after unpacking, the eZ Publish
directory was renamed to “my site”.

Document root example

If eZ Publish was unpacked into a directory called “my site” under the document root, the
setup wizard can be initiated by browsing the following URL: http://www.example.com/my_

http://ez.no/download/ez_publish
http://ez.no/download/ez_publish

1.1.3 Normal installation / Installing eZ Publish on Windows 40

site/index.php.
Refer to "The setup wizard (page 57)” section for a detailed description of the web based setup 1
wizard.

1.2 Manual installation 41

1.2 Manual installation

This installation method is for advanced users who know what they are doing, all other users
should use the "Normal installation method” (page 28). The manual installation method requires
an environment which already has a web server, a database and etc. setup and ready to go;
eZ Publish needs to be downloaded and unpacked. Instead of running the setup wizard, all
configuration is done manually using the command line interface of the target operating system.
The following sections (depending on the target OS) will take you through the necessary steps.

1.2.1 Manual installation / Requirements for doing a manual installation 42

1.2.1 Requirements for doing a manual installation

1

The requirements for doing a manual installation are the same as for the normal installation.
Please refer to the "Requirements for doing a normal installation” (page 29) section.

1.2.2 Manual installation / Manual installation on a Linux/UNIX based system 43

1.2.2 Manual installation on a Linux/UNIX based system

The requirements for doing a manual installation must be met. Please read the previous section
(page 42) if you’re not sure about the requirements. Proceed only if you have access to a UNIX
based environment with Apache, PHB MySQL or PostgreSQL already installed and running. As
mentioned earlier, the database server may run on a different computer than the web server. A
manual installation consists of the following steps:

e Setting up a database (MySQL or PostgreSQL)

* Downloading eZ Publish

* Unpacking eZ Publish

* Manual configuration of eZ Publish
The only difference between a normal and a manual installation is the last step. Instead of
running the web based setup wizard, eZ Publish is manually configured by editing a couple of
files. The first three steps are explained under the ”Installing eZ Publish on a Linux/UNIX based

system” (page 33) section. The last step is explained under the "Manual configuration of eZ
Publish” (page 45) section.

1.2.3 Manual installation / Manual installation on Windows 44

1.2.3 Manual installation on Windows

The requirements for doing a manual installation must be met. Please read the previous section
(page 42) if you're not sure about the requirements. Proceed only if you have access to a Win-
dows based system with Apache, PHE MySQL or PostgreSQL already installed and running. As
mentioned earlier, the database server may run on a different computer than the web server. A
manual installation consists of the following steps:

e Setting up a MySQL database

* Downloading eZ Publish

* Unpacking eZ Publish

* Manual configuration of eZ Publish
The only difference between a normal and a manual installation is the last step. Instead of
running the web based setup wizard, eZ Publish is manually configured by editing a couple of
files. The first three steps are explained under the "Installing eZ Publish on Windows” (page 37)

section. The last step is explained under the "Manual configuration of eZ Publish” (page 45)
section.

1.2.4 Manual installation / Manual configuration of eZ Publish 45

1.2.4 Manual configuration of eZ Publish

This section describes how to manually configure eZ Publish instead of using the setup wizard
to do all the work. Keep in mind that the manual installation method is for expert users only. It
should only be used by people who know what they are doing. The following steps will work on
both Linux/UNIX and Windows environments.

Database initialization

A clean eZ Publish database is created using two very important SQL scripts: “kernel schema”
and “cleandata” (note that an empty database should be created before launching these scripts).
The first of them initializes the necessary database structure and the second one imports the pre-
defined data to the database. While the "kernel schema” script differs for each database engine,
the ”cleandata” script is the same for all solutions.

MySQL

Use the following command to run the MySQL specific "kernel schema” script:

$ mysql -u USERNAME -pPASSWORD DATABASE < PATH/kernel/sql/mysql/
kernel_schema.sql

The script will use the InnoDB storage engine when creating new tables. Make sure that the
default storage engine is also set to InnoDB, otherwise future upgrades might leave you with
a mix of table types. Refer to the MySQL documentation for information about how to set the
default storage engine.

Use the following command to run the generic "cleandata” script:

$ mysql -u USERNAME -pPASSWORD DATABASE < PATH/kernel/sql/common/cleandata.sql

USERNAME The MySQL user (if no user is set up, use
”root”).

PASSWORD The password that belongs to the username.

DATABASE The name of the database, for example "my_
database”.

PATH The full path to the root directory of your eZ
Publish installation, for example ”/opt/ezp”.

File permissions

Windows users can skip this part. If eZ Publish is installed on a Linux/UNIX based system, some
of the file permissions need to be changed. There is a shell script that takes care of this. This
script must be run, or else, eZ Publish will not function properly. The script needs to be run from
within the eZ Publish directory:

http://dev.mysql.com/doc/refman/5.1/en/storage-engines.html

1.2.4 Manual installation / Manual configuration of eZ Publish 46

$ cd /opt/ezp
$ bin/modfix.sh

Replace ”/opt/ezp” with the full path to the root directory of your eZ Publish installation.

The modfix script recursively alters the permission settings of the following directories inside the
eZ Publish installation:

* var/*
* settings/*

* design/*

Note that in eZ Publsh 4, there is one more directory that must have the permission settings
altered by the modfix script. The directory is called “autoload” and the script will be updated to
handle it in the near future (refer to this page for more information).

If you know the user and group of the webserver it is recommended to use a different set of
permissions:

chown -R user.usergroup var/ settings/ design/ autoload/
chmod -R 770 var/ settings/ design/ autoload/

The "user.usergroup” notation must be changed to user and group name that the webserver runs
as.

Configuring eZ Publish

The ”site.ini.append.php” configuration file located in the ”settings/override” directory of your
eZ Publish installation must be changed, or else eZ Publish will not function properly. This file is
the global override for the site.ini (page 1559) configuration file. There are a lot of things that
need to be configured (database, mail transport system, var directory, etc.). The following text
shows a generic example of a configuration that can be used:

<7php /* #7ini charset="utf-8"7

[DatabaseSettings]
DatabaseImplementation=ezmysql
Server=localhost
User=root
Password=
Database=my_database

[FileSettings]
VarDir=var/example

http://issues.ez.no/13367

1.2.4 Manual installation / Manual configuration of eZ Publish

47

[Session]
SessionNameHandler=custom

[SiteSettings]
DefaultAccess=example
SiteList[]
SiteList[]=example

[SiteAccessSettings]
CheckValidity=false
AvailableSiteAccessList[]
AvailableSiteAccessList []=example
AvailableSiteAccessList[]=example_admin
RelatedSiteAccessList[]
RelatedSiteAccessList []=example
RelatedSiteAccessList[]=example_admin
MatchOrder=host ;uri

Host matching
HostMatchMapItems []=www.example.com;example
HostMatchMapItems[]=admin.example.com;example_admin

[InformationCollectionSettings]
EmailReceiver=webmaster@example.com

[MailSettings]
Transport=sendmail
AdminEmail=webmaster@example.com
EmailSender=test@example.com

[RegionalSettings]
Locale=eng-GB
ContentObjectLocale=eng-GB
TextTranslation=disabled

x/ 7>

In the example above the ”AvailableSiteAccessList[]” array located in the ”[SiteAccessSettings]”
section of this file determines the available siteaccesses (page 138) called “example” and
“example admin”. The “CheckValidity” setting located in the same section should be set to false,

otherwise the setup wizard will be initiated when trying to access the site.

In addition, two siteaccess configurations must be created, a public siteaccess ("example”) and
an administration siteaccess ("example admin”). The following subdirectories have to be created

in the root of your eZ Publish installation:

1.2.4 Manual installation / Manual configuration of eZ Publish

48

* settings/siteaccess/example

* settings/siteaccess/example_ admin

Both siteaccesses must have a file called "site.ini.append.php”.

The public siteaccess
The following text shows a generic solution for the "example” siteaccess:
<7php /* #7ini charset="utf-8"7

[SiteSettings]
SiteName=Example
SiteURL=www.example.com
LoginPage=embedded

[SiteAccessSettings]
RequireUserLogin=false
ShowHiddenNodes=false

[DesignSettings]
SiteDesign=example

[ContentSettings]
ViewCaching=disabled

[TemplateSettings]
TemplateCache=disabled
TemplateCompile=disabled
#ShowXHTMLCode=enabled
#Debug=enabled

[DebugSettings]
DebugOutput=enabled
Debug=inline
#DebugRedirection=enabled

[RegionalSettings]
SiteLanguagelList[]
SiteLanguageList []=eng-GB
ShowUntranslatedObjects=disabled

x/ 7>

1.2.4 Manual installation / Manual configuration of eZ Publish 49

The admin siteaccess
The following text shows a generic solution for the "example admin” siteaccess:
<7php /* #7ini charset="utf-8"7

[SiteSettings]
SiteName=Example
SiteURL=admin.example.com
LoginPage=custom

[SiteAccessSettings]
RequireUserLogin=true
ShowHiddenNodes=true

[DesignSettings]
SiteDesign=admin

[ContentSettings]

CachedViewPreferences[full]l=admin_navigation_content=0;
admin_navigation_details=0;admin_navigation_languages=0;
admin_navigation_locations=
0;admin_navigation_relations=0;admin_navigation_roles=0;
admin_navigation_policies=0;admin_navigation_content=0;
admin_navigation_translatio
ns=0;admin_children_viewmode=list;admin_list_limit=1;
admin_edit_show_locations=0;admin_url_list_limit=10;admin_url_view_limit=10;
admin_sec

tion_list_limit=1;admin_orderlist_sortfield=user_name;
admin_orderlist_sortorder=desc;admin_search_stats_limit=1;admin_treemenu=1;
admin_boo

kmarkmenu=1;admin_left_menu_width=13

[DebugSettings]
DebugOutput=disabled
Debug=inline

[RegionalSettings]
SiteLanguageList[]
SiteLanguagelist []=eng-GB
ShowUntranslatedObjects=enabled

x/ 7>

Note that database settings, mail settings, regional and other settings defined in ”settings/
override/site.ini.append.php” will be used for each siteaccess regardless of what is specified in

1.2.4 Manual installation / Manual configuration of eZ Publish 50

the siteaccess settings. In the example above, the "Database=my database” is specified under
the ”[DatabaseSettings]” section of this file so this database will be used for both "example” and
“example admin” siteaccesses. Refer to the ”Site management (page 138)” and ”Configuration
(page 136)” sections of the "Concepts and basics” chapter for more information.

Unicode support

There is no need to override the ”i18n.ini” configuration file since Unicode support is enabled by
default in eZ Publish 4.

Languages

Available languages and their priorities can be controlled per siteaccess using the ”SiteLanguage-
List (page 1656)” configuration setting located under the ”[RegionalSettings]” section of the
siteaccess “site.ini.append.php” file. If this setting is not specified, the system will use the old
”ContentObjectLocale (page 1664)” setting and thus only the default language will be shown.
Refer to the ”"Configuring the site languages (page 245)” section for more information and exam-
ples.

The ”cleandata.sql” script creates only one language which is the British English (eng-GB). All
other languages should be added using the ”Setup - Languages” part of the administration inter-
face (http://admin.example.com in the example above).

Dynamic tree menu

If you have a large site with many nodes, it is strongly recommended to enable the "Dynamic
(page 1495)” switch for your administration siteaccess. This will make the left tree menu in the
administration interface work much faster and decrease the usage of network bandwidth.

Administrator’s login and password

The following username and password are set by the “creandata.sql” script and can be used for
logging in to the administration interface.

* Username: admin

* Password: publish
It is strongly recommended to change this password as soon as possible. Note that if you need

another username for site administrator, you can create a new administrator user, log in as this
user and remove the old one.

1.3 Automated installation 51

1.3 Automated installation

The automated installation method (also known as ”kickstart”) is for experienced users. It pro-
vides an automated version of the "Normal installation method” and is designed for system ad-
ministrators who wish to roll out pre-configured installations of eZ Publish. This method requires
minimum interaction with the web based setup wizard and thus it can be used to rapidly deploy
eZ Publish on a massive scale. This method has the same requirements as the "Normal installa-
tion” method. A typical automated installation process consists of the following steps:

* Setting up / creating a database

* Downloading a packaged eZ Publish distribution

* Unpacking the eZ Publish distribution

* Configuring the “kickstart.ini” file

* Initiating the web based setup wizard

Once the web based setup wizard has completed, eZ Publish will be ready for use.

1.3.1 Automated installation / Requirements for doing an automated installation 52

1.3.1 Requirements for doing an automated installation

The requirements for an automated installation are the same as for the normal installation
method. Please refer to the "Requirements for doing a normal installation” (page 29) page for
more information.

At the minimum, a web server, a PHP engine, and a database server must be installed. Addi-
tional server-side software is only necessary if the kickstart configuration file instructs the system
to make use of such software. For example, "ImageMagick” has to be available if it has been
specified as the primary image manipulation solution.

The next section (page 53) explains how eZ Publish can be configured to do an automated
installation of itself.

1

1.3.2 Automated installation / Automated installation of eZ Publish 53

1.3.2 Automated installation of eZ Publish

1

The requirements for doing an automated installation must be met. Please read the previous sec-
tion if you’re not sure about the requirements. This section will guide you through the following
steps:

* Setting up a database (MySQL or PostgreSQL)

* Downloading eZ Publish

* Unpacking eZ Publish

* Configuring the kickstart system

* Starting the installation by initiating the web based setup wizard
Depending on the target system, please refer to either "Installing eZ Publish on a Linux/UNIX
based system” (page 33) or "Installing eZ Publish on Windows” (page 37) for information about

the first three steps (database setup, download and unpacking). The rest of the steps are ex-
plained below.

Configuring the kickstart system

The behavior of the automated installation is controlled by the “kickstart.ini” configuration file.
This file makes it possible to specify parameters for each installation step of the web based setup
wizard. For example, by providing the database connection parameters, the corresponding setup

wizard step will have the input forms pre-filled. It is also possible to instruct the wizard to skip
certain steps.

Initialization
Create a copy of the “kickstart.ini-dist” file (located in the root of your eZ Publish installation)

and make sure that the copy is named “kickstart.ini” (located in the root of eZ Publish). The
following example shows how this can be done on a Linux/UNIX based system:

1. Navigate into the eZ Publish directory:

$ cd /path/to/ezpublish/

2. Copy and rename the configuration file:

$ cp kickstart.ini-dist kickstart.ini

1.3.2 Automated installation / Automated installation of eZ Publish 54

Security issues

The web server must have read access to the “kickstart.ini” file during the installation process.
This might become a security problem at a later stage if the file contains usernames, passwords,
etc. To prevent this from happening, it is recommended to do one of the following:

* Remove the file when the installation has completed.

e Use rewrite rules to make sure that it is not readable from outside.

Configuration blocks

The ”kickstart.ini” file contains a configuration block for every step of the setup wizard. The
block names are encapsulated by square brackets. The following list shows an overview of the
available blocks.

* [email settings]

e [database choice]

* [database init]

* [language options]

* [site types]

¢ [site access]

¢ [site details]

¢ [site admin]

* [security]

* [registration]
In the default kickstart file, everything is commented out. The blocks and the corresponding
settings have to be uncommented in order to take effect. This can be done by removing the hash

("#”) characters from the start of the lines that you should be activated. Make sure that there
are no leading whitespace characters at the start of the lines.

Configuration parameters

Each parameter takes a text string as an input value. Some parameters are able to handle an
array of strings. The following examples demonstrate the two parameter types.

* Single parameter:

1.3.2 Automated installation / Automated installation of eZ Publish 55

Server=www.example.com

* Array parameter:

Titlel[]
Title[news]=The news site
Title [forums]=The forum site

Documentation and examples
The ”kickstart.ini” file contains documentation in the file itself. Please refer to the embedded

instructions and examples for a detailed explanation of the steps. The following table shows how
the examples / inline instructions deal with required and optional parameters.

Syntax Description

<value> Angle brackets indicate that the parameter
value is required, example:
#Server=<hostname>

[value] Squared brackets indicate that the parameter
value is optional, example:

#FirstName=[string]

A parameter will only take effect if it has been uncommented. Remove the leading hash ("#”)
and make sure that there ar no whitespace characters at the start of the lines that include the
uncommented parameters.

Skipping steps

A step can be skipped by uncommenting and setting the "Continue” parameter to "true”. This
parameter can be used for each step / block. The following table shows the outcome for the
different configurations of the "Continue” parameter.

Assignment Result

Continue=false The step will be shown and the input values
will be pre-filled with the values (if any) de-
fined in the ”kickstart.ini” configuration file.
This is the same as when the ”"Continue” pa-
rameter is missing or if it has been commented
out.

Continue=true The system will automatically use the values
defined in the kickstart file and thus the step
will not be shown. However, if something
goes wrong (missing or wrong values, etc.),
the step will be shown.

1.3.2 Automated installation / Automated installation of eZ Publish 56

Starting the installation

1

The installation can be started by initiating the web based setup wizard. Please refer to the
“Initiating the setup wizard” part of the "Normal installation” section.

1.4 The setup wizard 57

1.4 The setup wizard

This section contains a comprehensive guide through the web based setup wizard of eZ Publish.
The setup wizard is designed to ease the initial configuration of the system. It can be started using
a web browser when the necessary installation steps (described in the previous sections) are
completed. The setup wizard will automatically start the first time the "index.php” file (located
in the root of the eZ Publish directory) is accessed/browsed.

The setup wizard does not store or modify any data before the final step; thus, it can be safely
restarted by reloading the URL containing only the ”"index.php” part. The back button (located
at the bottom) can be used to jump back to previous steps in order to modify settings. A typical
setup cycle consists of 12 steps:

—

Welcome page

System check

Outgoing E-mail

Database choice (optional)
Database initialization
Language support

Site selection

Access method

v o N ViR

Site details

[
e

Site security

—
—

. Site registration

12. Finish

Note that some of the steps will be omitted when an eZ Publish bundle is being installed.

Welcome page

(see figure 1.1)

This is the initial page of the setup wizard. This step allows the user to select which language
that will be used during the installation process. In addition, the wizard also checks the system
configuration and displays a note if it is not optimal (in this case, an additional button called
“Finetune” will be available at the bottom of the page).

The system automatically pre-selects one of the languages according to your browser’s language
settings. You can choose another language by selecting the desired language using the dropdown

1.4 The setup wizard 58

Eie Edit Yiew Bookmarks widgets Tools Help

v (G

1
HEE T S | T — ~ IS = Dea
@, P Find niext ummrm- K| showimages + s Finio wian | @) yo0n -

M eZ publish
Setup

Welcome to eZ Publish 4.0.0

Help
Walzcome 1o the &2 Punlish contant ayatem and o
Thiz wizard will Relp you g8t up eZ Pubiish. Thiz section Wil contain
¥our systam Is not optimal, it you wish you can click the Finsfune button. This will Information/heip about each stop
presant hints on how to fix these issuss. In the setup wizard.
gk Mext to continue without finetuning.
Select Installation language: ion about

English (United Kingdom) v configured setlings

G tion batow will

Mo data will be stored In the

Finstune | LTI database until the final step of the

setup.
Information about how to set up.
oZ publish manually is available

Summary

Figure 1.1: Step 1: Welcome page

list. (The list of available languages is built using the INI files located in the ”share/locale”
directory).

After you click "Finetune” (if available), the wizard will load the ”System finetuning” page, which
contains information about configuration issues. The following screenshot shows an example of
this page.

(see figure 1.2)

After you click "Next”, the wizard will either load the ”System check” page (if some critical issues
need to be fixed) or the "Outgoing E-mail” page (if everything is okay).

System check

(see figure 1.3)

This page usually appears if critical issues/problems are detected. The setup wizard will display
information about the issues that need to be fixed and suggestions describing how they can be
fixed.

Issues

There may be several issues/problems. A suggestion to each problem is presented below the
description of the problem itself. The setup wizard will probably suggest the execution of miscel-
laneous shell commands (in order to fix ownerships, permissions, etc.). These commands must

1.4 The setup wizard

59

Flle Edit Yiew Booksarks Widgets Tooks Help

W o e D 7[R rupitestihezeel LIMEN

Q, P Find naxt _‘]aworm * [K]snowimages 4 3 Fitto wiom Q\\M%L

Is eZ publish

System finetuning

There are some issues Mat should be resolved 10 get Maximum perfomance and
features. A list of ssues |s presented below. Each section contains a description and a
suggesiad | recommended solution.

Onge the issues are handled, you may click the Fingfune bution 10 continue. The sy sbem
check will be run again. If everyihing s ckay, the setup will go to the next siage. If the
Izswes are not solved the system finetune page will reappear.

I you do ol warl bo fx ihese isSues just click Next.

Issues

1. PHP option Magic Quoles is enabled

eZ Publish will work with this option on however it will lead lo some minor perdormance
Izaues since all input vanables nesd 1o be be convenad back to momal.

It Is recommanded that the option is tumed off. To turn it off edil your phg.ini
configuration and set magic_quoles_gpc anﬂmagn‘b quotes_nmtime to OFf. More
Infeemnation on the subject can be found af

php.inl exampila:
P rr———
mnglr_gustan_runtinn = &

Altemativaly you may create a file called .htaccess in your eZ Publish root folder and
ackd the following:

hiaccess example:

Fhp_wnl un nagin_quarse_gpn D

Figure 1.2: System finetuning

=loix
| Fle Edt View Mavigation Bookmarks Mal Chat Took Window Help - 8%
] ewpage h |
A > e D (B nwdesbhennor [=] [& Googe search [/ (a0 100% =] o o~

Ii|eZ publish

System check

There are some important issues that have to be resolved. & list of issues / problems is presented below. Each section contains a di
recommended solution.

Once the problems /issues are fized, you may click the Next button to continue, The system check will be run again, If everything is
stage. If there are problems, the system check page will reappear.

Some issues may be ignored by checking the fgnore this test checkbox(es); however, this is not recommended.
It is also possible to do some finetuning of your system, click Ainetune instead Next if you want to see the finetuning hints.

Issues

1. Insufficient directory permissions

eZ publish cannot write to some important directories, without this the setup cannat finish and pam of 82 publish will fall
The affected directories are: settings settings/overrids var ge var/cache setling e tting design

Shell commands
These shell commands will give proper permission to the webserver.

cd var wwstest
nod -R ug+rvz ssttings settings/override var var/storage var/cache settings/sitsaccess settings/siteac
chown -R wwu-data wwv—data settings settings/override var var-/storage var/cache settings/siteaccess sett

Alternative shell commands
If you don't have permissions to change the ownership you can try these commands,

cd svar wwwstest
chuod -R a+rux settings settings/override var var/storage var/cache settings/siteaccess ssttings/siteacc —

[Ignore this test

< Bat
|

|l 1 |

Figure 1.3: Step 2: Issues

1.4 The setup wizard 60

be executed using a system shell. Simply copy the commands from the browser window and
paste them into an open shell. The setup wizard will run the system check again when the "Next”
button is clicked. The ”System check” page will keep reappearing until all issues have been fixed
(or ignored, see the next section). Once everything is okay, the setup wizard will display the next
step.

Ignoring tests

Some issues/problems may be ignored using a checkbox labelled ”Ignore this test”. However, it
is recommended to fix all issues rather than ignoring them.

Outgoing E-mail

(see figure 1.4)

7 /860:640 - Email settings - e2 publish - Opera =10/ x|
] Fie Edt View Mavigation Bookmarks Mal Chat Tools ‘Window Help - @|x

JR LT T Bl Settings - o2 publish |

- - - - G @ apdmestoheznol =] [Googe search [+ (e 100w [=] of -

I eZ publish
Setur

Outgoing E-mail Help
The eZ publish system us
This section is used to configure how eZ publish delivers its outgoing E-mail. 5
There are two options:
- Direct delivery through sendmail (must be available on the server).
- Indirect delivery using an SMTP relay server,

E-mail delivery:
(» sendmail
_ SMTP

Server name: endmail binary
available on most Linux/UN

If sendmail is not
Passwaord (optional): then SMTP should be

Username (optional):

< Back
I ered through an
rver. At the minimum,

your E-mail ap)

Summary

s aK

Figure 1.4: Step 3: Outgoing E-mail
eZ Publish uses E-mail to send out miscellaneous notices. This step is used to configure how eZ

Publish delivers outgoing E-mail. There are two options:

* Direct delivery through sendmail (must be available on the server)

* Indirect delivery using an SMTP (Simple Mail Transfer Protocol) relay server

On Linux/UNIX: try to use sendmail; use SMTP if sendmail is unavailable. On Windows: use the
SMTP setting.

1.4 The setup wizard 61

Sendmail
Mail is delivered directly using the sendmail transfer agent. The agent must be running on the

same host as the webserver is running on. The sendmail binary is usually available on most
Linux/UNIX systems. If sendmail is not available then SMTP should be used.

SMTP

Mail is delivered through an SMTP server. At the minimum, the hostname of the SMTP server
must be specified.

Database type

(see figure 1.5)

640 - Dot abase choice - e2 publish - Opera
Fle Edt vew Nwigston Socimaks M Chat Todk Widow Meb
Bl - - e |

LA A L T L]

I= eZ publish

Setup

Choose database sysiem

B0 MySOL 80 PesigieSTL SLOpOR wes JSLeCsd o your SySten. Please chooss
dulabase sysiem you woud [lhe 10 use.

Database:
MySOL
PosigeSOL

o MySOL Iproved

Figure 1.5: Step 4: Database choice

The setup will automatically detect database support that has been made available for the PHP
scripting engine. If both MySQL and PostgreSQL are supported, the database choice dialog will
appear. If PHP is setup only to support one type of database, eZ Publish will automatically use it
and thus the database choice dialog will not be displayed.

Note that if the MySQLi extension is enabled in PHB the "MySQL Improved” option will be avail-
able on the list. If you are going to use a MySQL database, it is recommended to select "MySQL
Improved” instead of "MySQL’.

Database initialization

(see figure 1.6)

http://php.net/mysqli

1.4 The setup wizard 62

1,/860:640 - Database initalization - eZ publish - Opera =10 _)ﬂ
|| File Edt Miew Mavigation Bookmarks Mal Chat Tools ‘Window Help - 8%

R L T Dtabase nlalzaton - e2 ...

W o e D[R heptestbh exnof =] [soogle search v @ 100% v o -

& eZ publish
Setup

Database initialization Help

Please input database access information in the form below.

Database

Type MySQL
Servername: localhost
eate several
'ou plan to run
Password: ase refer to

er
Socket (optianal):

Username: root

g MySQL and do
ter in the

: ImageMagick
sendmail
MySQL

Figure 1.6: Step 5: Database initialization

Information about the hostname of the server running the database engine, and a username/
password combination needs to be provided. After you click "Next”, if MySQL or MySQL Im-
proved are used, the setup wizard will attempt to connect to the database. The setup will only
continue if it is able to connect to the specified MySQL server with the specified username/
password combination. PostgreSQL parameters are tested at a later stage during the setup wiz-
ard.

Language support

(see figure 1.7)

This step allows the user to choose a language configuration for the site that is being installed.
The setup wizard automatically pre-selects one of the languages according to your browser’s
language settings. Use the radio buttons to choose the default language (required), and the
checkboxes to choose the additional languages (optional). All the selected languages will be
added to the system and put on the list of prioritized languages. You will be able to use any of
these languages for creating and translating your content after the setup wizard is finished.

Note that choosing the default language at this step will determine default language, system
locale (page 242) and the most prioritized language for your site. If you select for example
”German” as default language, then both locale and default language will be set to "ger-DE”,
your administration interface will be translated into German, and this language will be recorded
as the most prioritized one for your site. Languages can be reconfigured at any time (even when
a site is up and running) using the administration interface.

1.4 The setup wizard

63

Flle
W e > o D [Errensnene

Edt Yiew Bookmans ook Help

s jeZ publish

Language support

Use the rado butons b choose the defaut language, and he checkboxes 1o chaose
addiional languages. You will 4 able ta use any of he selectad languages for
transiating your condent. The defaull language will delermine the locala settings and
will be used as Me mast priorfizad language for your ste,

DitniilV Addl onal:

Catalan

| Chinese
| Gamch
| Danis

Dutch

| English {Australia)
| English (Canada)
| English {United Kingdom}

English {American)

| Castitan (Spain)
| Castitan
| Finnish

Franch (Canada)
Franeh France)

| German
| Hobw

Hindl india)

' Hungarian

Hakan

| Japangse

Nonwaglan [Mynorsk)

~ Norwaglan (Bokmaly
| Palish
| Potuguese (Brast)
| Potuguese (Mozamibigue)

Portuguese (Pomsgal)

| Russian
| Stovak
| Swadish

Turkssh

| Unrainian

56 and ofher addonal
150 ba instabad

o ot
IangUAge customizalon, pleass
refor o the X

Summary

System: oK
Image 5 mageMagick
1

Figure 1.7: Step 6: Language support

Note that regardless of the selected language configuration, the site will be created using UTF-8

as the character set.

Site selection

(see figure 1.8)

This step allows the user to select one of the standard site packages. These packages are intended
to provide basic examples mostly for the purpose of demonstration and learning. However, it is
possible to use them as a basic framework which you can extend/tweak in order to make it
suitable for a specific purpose. A demo site usually contains some artwork (images), CSS code,

actual content and template files. The plain type should be used when starting from scratch.

The setup wizard automatically fetches the list of available site packages from remote and
The default remote repository is
http://packages.ez.no/ezpublish/4.0. Note that it only contains the following three site pack-

internal repositories and asks the user to choose one.

ages:

¢ Plain site

e Website Interface

http://packages.ez.no/ezpublish/4.0

1.4 The setup wizard 64

(s L el A apera
Flle Edit Yiew Bookmarks Jook Help

0 oo | (R |

o > D S [Brepresbherns

Is eZ publish

Site package

Please choose a sie package you would ke io test of Base your sie on.

1| Plain site (ver. 1.1-2)

Stripped install. Contains no special toolbar or
manu cholces

Summary

Sy oK

Dependencles nage system: imageMagick

sendmall
ninos: MysSQL

Website Interface (ver. 1.3-0) wot . § el

imported i
Waballe Intertace i n web based CMS solusion ""zg
based on eZ Publish. |1 contans tempiates ang ger
satlings thal meats the most common
requiremants for content Management systems.

Dependencles
UIniknawn,

&Z Flow (ver. 1.0-0)

The aZ Flow axlenaion 1o eZ Publish enabies
editors bo bulld complex page layouts and pre-
pian the pubication schedule to ensure a
canstant fiow of nch contant,

Cepandencies
Uik
Upload package:
| .Chooaa || Uptoad |

Figure 1.8: Step 7: Site selection

e eZ Flow

Older site packages such as "News site”, "Shop site” and ”Gallery site” are currently not available
for eZ Publish 4.

The wizard will automatically download the selected site package and all its dependent packages,
import them to the system and display a list of successfully imported packages as shown in the
following screenshot. (This step will be omitted if all these packages are already stored under
internal repositories.)

(see figure 1.9)
All dependent packages except for the site style package will be automatically installed.

Package language options

(see figure 1.10)

If the language configuration selected at the “Language support” step doesn’t match the lan-
guages used in the packages being installed, the “Package language options” interface will appear
as shown on the screenshot above. For example, the "Website interface” site package makes it

1.4 The setup wizard 65

le Edt Yiew Bookmarks Took Help

Site package

Package ‘exwebin_sfie’ and I's dopendancies have been downloadod
successiully. Press Moext' to continue,

_ ‘Websilte Inlerface (ver. 1.3-0)

“l_};-.f Watsite Inledacs s 2 web based GMS soutlon

- based on o Publigh. It contaings femplales and
- sattings that maats the moet comman

requirsmants for canlan management eystome.

Dapandsnciss
ezwenin_classes (wer 1.3} Imparied
‘erweinin_eteraion [ver 1 3) Imparted
‘arwanin_banners (ver, 1.3): Imported
ezwetin_gemccontent (ver.1.3): Imparted
‘azwanin_design_gray (ver.1.3): Imparted
‘arvesiin_ design_bive ver. 1.3): Imparied

(Bﬂﬂl Next rl

Elle Edit Wiew Bockmarks Widgels Tools Help
7 hewtan [1

opt X ||
o€ D epiethem T1EN

Q P Find next] Autmor mode - (K] Showimages 5 Fittowiamn & 100% v

ez publish

Package language options

Language mapping

The languages you have chosa for site do not maich languages in chosen packages,
To resclve conflict plesse select language mapping:

Language Action

French (France) Skip content in thes language |>)

Figure 1.10: Package language options

possible to have demo content created in 2 languages: English (United Kingdom) and French. If
the same languages are selected at the "Language support” step, the packages will be installed
silently. Otherwise, the user will need to specify how the system should act towards the ”su-
perfluous” languages (i.e. languages that exist in the package but aren’t present in the selected

1.4 The setup wizard 66

language configuration for the site). Possible actions are:

 Skip content in this language

* Create language (extend the language configuration of the site and create demo content in
this language)

* Map to another language (use demo data to create content in another language)

Dealing with possible problems

If the web server is not able to contact the remote repository (due to firewall rules for example),
the setup wizard will display an error message at the ”Site selection” step. To fix this, allow out-
bound connections to http://packages.ez.no in your firewall (port 80) or download the packages
manually.

Outbound connections via proxy

If you allow only outbound connections via a proxy server, then you need to configure eZ Publish
in the following way:

1. Create a file called ”site.ini.append.php” in the "settings/override” directory and make sure
it contains the following lines:

[ProxySettings]
ProxyServer=proxy.example.com:3128
User=myuser

Password=secret

Replace "proxy.example.com:3128” with the actual address and port number that can be
used to access the web through the proxy server. If the proxy server requires authentication,
you will also need to provide a valid username/password combination.

2. Restart the setup wizard.

Note that CURL support must be enabled in PHE otherwise outbound connections via proxy will
not work.

Manual download of packages

If the wizard fails to connect the external packages repository, you can manually download the
desired site package and all the dependent packages it requires and then upload/import them
via the setup wizard. The following instructions reveal how this can be done.

http://www.php.net/curl

1.4 The setup wizard 67

1. Go to the packages download page. The ”Sites” section of this page contains the list of
available site packages including the following information for each of them:

¢ Name
* Description

* Dependencies (if any)

Click on the name of the desired site package to download it. (A package is downloaded as
an ”.ezpkg” file.)

2. Download all the dependent packages required by this site package (these are listed under
"Dependencies”). You can download a package by clicking on its name. The packages are
downloaded as ”.ezpkg” files.

3. Use the package import interface located at the bottom of the page in the setup wizard to
upload/import the downloaded site package (click the "Choose” button, select the down-
loaded ”.ezpkg” file that contains the site package and click the ”"Upload” button). The
imported site package will appear on the list.

4. Upload/import all the dependent packages using the same import interface.

Note: it is also possible to download packages manually from the remote repository. The follow-
ing instructions reveal how this can be done.

1. Go to the packages repository, find the desired site package and download it manually. (A
package is downloaded as an ”.ezpkg” file.)

2. Unpack the ”.ezpkg” file into a temporary folder and view the ”package.xml” file in or-
der to figure out which dependent packages are required (these are listed between the
<dependencies> and </dependencies> XML tags as described here). Download all the
dependent packages that are required.

Additional functionality

In eZ Publish 3.7 and earlier versions, the setup wizard included one more step called Site
functionality” that allowed to select additional features that should be installed. This step is
no longer used. Additional functionality can be added after the setup wizard is finished by
downloading the desired packages from the "Content objects” section of the packages download
page, importing (page 310) the packages and installing (page 312) them.

Access method

(see figure 1.11)

This step allows the configuration of the access method that should be used when eZ Publish
receives a request. There are three options:

http://ez.no/download/ez_publish/ez_publish_4_stable_releases/4_0/packages/4_0_0
http://packages.ez.no/ezpublish/4.0
http://ez.no/download/ez_publish/ez_publish_4_stable_releases/4_0/packages/4_0_0
http://ez.no/download/ez_publish/ez_publish_4_stable_releases/4_0/packages/4_0_0

1.4 The setup wizard 68

+)860:640 - Site access - eZ publish - Opera =101
) Fle Edt Wiew Mavigation Bookmarks Mal Chat Tools Window Help - a@lx
e TR

W o e D[R heptestbh exnof =] [& sooge ssarch |2 [1oow =] of G-

I&eZ publish
Setup

Site access configuration Help

Please choose the access method you wish to use for your site, The access UG
method determines how the site will be accessed from within a web browser. If .9 ez.nofadmin and ez.no/web
unsure: choose URL.

81 and ez.no:80
(@) URL (recommended)

() Port
() Hostname

< Back Next > |

Site: Plain

64% completed

92 Publish™ copyright © 1999-200

Figure 1.11: Step 8: Site access configuration

e URL
e Port

e Hostname

URL

When the URL access method is used, eZ Publish selects the site that should be accessed based
on the contents of the URL (in particular the part that comes right after "index.php”). This is the
default and most generic option. It doesn’t require any additional configuration. Use this setting
when installing eZ Publish for the first time.

Port

When the port access method is used, eZ Publish selects the site that should be accessed based on
a port number that is specified in the URL. The port number must be appended to the hostname
of the web server: ”http://www.example.com:81/index.php”. This option requires additional
web server and firewall configuration. Use this setting only if you know what you’re doing.

1.4 The setup wizard 69

Hostname

When this access method is used, each site is assigned a unique hostname. For example,
"www.example.com” and "admin.example.com” can be assigned to the public and the adminis-
tration interface respectively. This option requires additional web and DNS server configuration.
Use this setting only if you know what you’re doing.

Site details

(see figure 1.12)

PUBTER T opers

File Edit View Bookmans Took Help
1 e sooe (G G-

o > D [epneashezns ~ @ ~ B3

I& eZ publish
setup

Site details Help

This page lots you medify information abeul the $ite you've chosen o insall In addiion, IRESRIEVRIEELEIETEEER E

it also lets you choose a database for e site. wach site.
For more informaticn about how 1o
configure site access, plase
rofer to e documant
Use the refrash bution to update
the database lising.

Summary

System: oK

Image system: imageMagick
Mail: sendmail
Userpath. plain_sito Database: MySQL
Admin pathc plain_site_asdmin Language: hun-HU
Database @ test - nor-NG

ang-GB
=Back| Refresh| Mext >|

Dutalls for site:
Title: Pladn site
Site urd: Ptp s bhez 0o

plain_site

Figure 1.12: Step 9: Site details

This step allows the modification of settings related to the site that is being installed. Note that
the "User path” and "Admin path” access values depend on which access method you choose.
When the port access method is used these values are port numbers. If you use the URL access
method then ”User path” and "Admin path” should only contain letters, digits and underscores.
If the hostname access method is used then some additional symbols like dashes, dots and colons
are allowed whereas underscores aren’t.

The available databases will be displayed in the database dropdown menu. The "Refresh” button
can be used to update the list (if a database is being created at this point). It is required that the
database uses UTF-8 as character set.

If the selected database already contains data, the "Site Details” page will reappear and ask what
to do. Possible actions are:

e Leave the data and add new

1.4 The setup wizard 70

* Remove existing data
* Leave the data and do nothing

¢ I've chosen a new database

Use the last option if another database has been chosen.

Site security

(see figure 1.13)

% J860:640 - Site administrator - e2 publish - Opera =100x(
| Fle Edt View Mavigstion Bookmarks Mal Chat Tooks Window Help

JA LTSN ™ St schmiristrator - =2 pub. .

W o e D[R eptest.bh eznof ‘:" [@ Google search |r @ L‘ o @

I&|eZ publish
Setup

Site administrator
This page lets you modify the administrator for your site. This ensures that your

site is secure and has proper name and E-mail set.

Administrator settings
Login: admin
First name: Administrator

Last name: User

3 Sy Ok
E-mail address: test@example.com . o

- 2 Sy : ImageMagick
Password: bl

Confirm password; | *****+*

nor-KNo
eng=GB
Plain

78% completed

<opyright © 1939-2007

Figure 1.13: Step 10: Site administrator

This step suggests some basic modifications that should be carried out in order to secure the
site being installed. The suggested security tweak protects the configuration files from unwanted
access. Don’t worry about this unless you're setting up a site for public use.

Note that the administrator’s username (login) is set to “admin” by default and can not be
changed. If you need another username for site administrator, you can install eZ Publish, create
a new administrator user, log in as this user and remove the old one.

Site registration

(see figure 1.14)

1.4 The setup wizard 71

7)860:640 - Registration - eZ publish - Opera =10 x|
|| Fle Edr View Mavigotion Bookmarks Mal Chat Tooks Window Help - alx
Dinemonee | (SR

W D B hepdftestbheznof =] [@, csoge search |2 [1oow =] of G-

I&eZ publish
Setup

Site registration

. : " " registration
If you wish, you can register this installation by sending some information to eZ will b
systems. Mo confidential data will be transmitted and eZ systems will not use or
sell your details for unsolicited e-mails.

The registration e-mail:

+ The test results
Commants:

= ~ The datab
= - Thesite n
gt « The ur of
T:tr:p L pmnm » Languages chosen

URL - httpi/ftestbh.ez nofplain e r—
Admin URL - http:d/te st.bh.ez.nofplain_sdmin This dal help to improve
Accass tyga - ud future releases of 82 publish.
Accass valus - plain

If you wish, you can also add some comments, which will be included in Ee
registration E-mail. ! Summa ry

Comments:

System: OK
ystem: ImageMagick
il

-

Database:
Language:
B = = = Z eng-GB
Note: Sending out the e-mail and generating your site will take about 10 Sita: s
to 30 seconds depending on your machine. Please wait until the next page Site: Flain

loads. Clicking the button again will only send out duplicate e-mails, and
ray corrupt the installation,

~/Send registration

< Back Next >

Figure 1.14: Step 11: Site registration

This step allows you to control whether the setup should send an information E-mail to eZ Sys-
tems or not. The information will be used internally for statistics and for improving eZ Publish.
No confidential data will be transmitted and eZ Systems will not misuse or sell these details. The
following information will be sent:

* System details (OS type, etc)

¢ The test results

The type of database that is being used

The name of the site

The URL of the site

* The languages that were chosen

Finished

(see figure 1.15)

The setup wizard has finished, eZ Publish is ready for use. Click on one of the links to access the
various interfaces (public site, administration interface, etc.).

Note that it is possible to restart the installation wizard after its successful finishing by specifying
”CheckValidity=true” in the ”settings/override/site.ini.append.php” file so that the setup wizard
will be initiated when trying to access the site.

1.4 The setup wizard

72

=10
[Fe Edk Wiew Mavigation Bockmarks Mal Chet Took Window Help -lalx
T New page
W - - D (B hepitest.oheznof =] [sooge search [= (@ 00w 7] of G-

Finished

eZ publish has been installed with the following sites. You will find the username
and password mentioned for each site

Note: The first time the user or admin site is accessed it will take some
time (30 ta 60 seconds). This is because eZ publish prepares the site for
your machine.

Title: Plain
URL: User site, Admin site
Username: admin

Figure 1.15: Step 12: Finished

1.5 Virtual host setup 73

1.5 Virtual host setup

This section describes how to set up a virtual host for eZ Publish using the Apache webserver. A
virtual host setup is only needed if eZ Publish has been configured to use the host access method,
which is the most secure method.

By making use of virtual hosts, it is possible to have several sites running on the same server. The
sites are usually differentiated by the name they are accessed. Apache will look for a specified
set of domains and use different configuration settings based on the domain that is accessed.

Generic virtual host setup

Virtual hosts are usually defined at the end of "httpd.conf”, which is the main configuration file
for Apache. Adding a virtual host for eZ Publish can be done by copying the following lines and
replacing the text encapsulated by the square brackets with actual values. Please refer to the next
section for a real life example of using virtual hosts.

NameVirtualHost [IP_ADDRESS]

<VirtualHost [IP_ADDRESS] : [PORT]>
<Directory [PATH_TO_EZPUBLISH]>
Options FollowSymLinks
AllowOverride None
</Directory>

<IfModule mod_php5.c>
php_admin_flag safe_mode Off
php_admin_value register_globals 0
php_value magic_quotes_gpc O
php_value magic_quotes_runtime O
php_value allow_call_time_pass_reference 0
</IfModule>

DirectoryIndex index.php

<IfModule mod_rewrite.c>

RewriteEngine On
RewriteRule content/treemenu/?$ /index_treemenu.php [L]
Rewriterule ~/var/storage/.* - [L]
Rewriterule ~/var/["/]+/storage/.* - [L]
RewriteRule ~/var/cache/texttoimage/.* - [L]
RewriteRule ~/var/[~/]+/cache/texttoimage/.* - [L]
Rewriterule ~/design/["/]+/(stylesheets|images|javascript)/.* - [L]
Rewriterule ~/share/icons/.* - [L]
Rewriterule ~/extension/["/]+/design/[~/]1+/

(stylesheets|images|javascripts?)/.* - [L]

1

1.5 Virtual host setup

74

Rewriterule ~/packages/styles/.+/(stylesheets|images|javascript)/[~/]1+/

% — [L]

RewriteRule ~/packages/styles/.+/thumbnail/.* - [L]

RewriteRule ~/favicon\.ico - [L]
RewriteRule ~/robots\.txt - [L]

Uncomment the following lines when using popup style debug.
RewriteRule ~/var/cache/debug\.html.* - [L]
RewriteRule ~/var/["/]+/cache/debug\.html.* - [L]

RewriteRule .* /index.php
</IfModule>

DocumentRoot [PATH_TO_EZPUBLISH]
ServerName [SERVER_NAME]
ServerAlias [SERVER_ALIAS]

</VirtualHost>

[IP_ ADDRESS]

The IP address of the virtual host, for example
”128.39.140.28”. Apache allows the usage of
a wildcards here ("*”).

[PORT]

The port on which the webserver listens for
incoming requests. This is an optional setting,
the default port is 80. The combination of an
IP address and a port is often referred to as
a socket. Apache allows the usage of a wild-
cards here (7*”).

[PATH TO_EZPUBLISH]

Path to the directory that contains eZ Publish.
This must be the full path, for example ”/var/
www/ezpublish-3.6.0”.

[SERVER NAME]

The host or the IP address that Apache should
look for. If a match is found, the virtual host
settings will be used.

[SERVER ALIAS]

Additional hosts/IP addresses that Apache
should look for. If a match is found, the vir-
tual host settings will be used.

Please note that the "mod_rewrite” module must be enabled in ”httpd.conf” in order to use the

Rewrite Rules.

NameVirtualHost

The "NameVirtualHost” setting might already exist in the default configuration. Defining a new
one will result in a conflict. If Apache reports errors such as "NameVirtualHost [IP. ADDRESS]
has no VirtualHosts” or "Mixing * ports and non-* ports with a NameVirtualHost address is not
supported”, try skipping the NameVirtualHost line. For more info about the NameVirtualHost
directive, see http://httpd.apache.org/docs/1.3/mod/core.html#namevirtualhost.

http://httpd.apache.org/docs/1.3/mod/core.html#namevirtualhost

1.5 Virtual host setup 75

SOAP and WebDAV

If you would like to use the SOAP and/or the WebDAV features of eZ Publish, you’ll have to add 1
the following lines in the virtual host configuration:

RewriteCond %{HTTP_HOST} ~webdav\..x*
RewriteRule ~(.*) /webdav.php [L]

RewriteCond %{HTTP_HOST} “soap\..*
RewriteRule ~(.*) /soap.php [L]

ServerAlias soap.example.com
ServerAlias webdav.example.com

1.5.1 Virtual host setup / Virtual host example 76

1.5.1 Virtual host example

This example demonstrates how to set up a virtual host on the Apache web server for an eZ
Publish installation located in ”/var/www/example”. Let’s say that we want to access eZ Publish
by using the following URLs:

* http://www.example.com (actual website for public access)
* http://admin.example.com (administration interface for the webmaster)

In order to achieve this, we need to set up both eZ Publish and the web server so that they
respond correctly to the different requests.

eZ Publish configuration: siteaccess settings

eZ Publish needs to be configured to use the host access method. This can be done from within the
web based setup wizard or by manually editing the global override for the site.ini configuration
file: ”/settings/override/site.ini.append.php”. A typical configuration would look something like
this:

[SiteAccessSettings]
AvailableSiteAccessList[]
AvailableSiteAccessList []=example
AvailableSiteAccessList[]=example_admin
MatchOrder=host

HostMatchMapItems []=www.example.com;example
HostMatchMapItems[]=admin.example.com;example_admin

This configuration tells eZ Publish that it should use the "example” siteaccess if a request starts
with "www.example.com” and "example_admin” if the request starts with admin.example.com”.
For more information about site management in eZ Publish, please refer to the ”Site manage-
ment” (page 138) part of the "Concepts and basics” chapter.

Apache configuration: virtual host settings

Assuming that...

* eZ Publish is located in ”/var/www/example”
* the server’s IP address is 128.39.140.28

* we wish to access eZ Publish using "www.example.com” and “admin.example.com”

1.5.1 Virtual host setup / Virtual host example

77

...the following virtual host configuration needs to be added at the end of "http.conf”:

NameVirtualHost 128.39.140.28

<VirtualHost 128.39.140.28>
<Directory /var/www/example>
Options FollowSymLinks
AllowOverride None
</Directory>

<IfModule mod_php5.c>
php_admin_flag safe_mode Off
php_admin_value register_globals 0
php_value magic_quotes_gpc O
php_value magic_quotes_runtime O
php_value allow_call_time_pass_reference 0
</IfModule>

DirectoryIndex index.php
<IfModule mod_rewrite.c>

RewriteEngine On
RewriteRule content/treemenu/?$ /index_treemenu.php [L]

Rewriterule ~/var/storage/.* - [L]

Rewriterule ~/var/["/]+/storage/.* - [L]

RewriteRule ~/var/cache/texttoimage/.* - [L]

RewriteRule ~/var/["/]+/cache/texttoimage/.* - [L]

Rewriterule ~/design/["/]+/(stylesheets|images|javascript)/.* - [L]

Rewriterule
Rewriterule

~/share/icons/.* - [L]
~/extension/[~/]+/design/["~/]1+/

(stylesheets|images|javascripts?)/.* - [L]

Rewriterule ~/packages/styles/.+/(stylesheets|images|javascript)/[~/]1+/

= [L]
RewriteRule ~/packages/styles/.+/thumbnail/.* - [L]
RewriteRule ~/favicon\.ico - [L]
RewriteRule ~/robots\.txt - [L]
Uncomment the following lines when using popup style debug.
RewriteRule ~/var/cache/debug\.html.* - [L]
RewriteRule ~/var/["/]+/cache/debug\.html.* - [L]
RewriteRule .* /index.php

</IfModule>

DocumentRoot /var/www/example

ServerName www.example.com

ServerAlias admin.example.com
</VirtualHost>

1.5.1 Virtual host setup / Virtual host example 78

Note that it isn’t necessary to create a separate virtual host block for “admin.example.com”, it
can be added to the existing block using the ”ServerAlias” directive.

You can have apachel and apache2 part in the sample vhost. That way allows to use one vhost
for both servers.

<IfModule mod_phpb5.c>
If you are using Apache 2, you have to use <IfModule sapi_apache2.c>
instead of <IfModule mod_php5.c>.
some parts/addons might only run safe mode on
php_admin_flag safe_mode Off
security just in case
php_admin_value register_globals 0
performance
php_value magic_quotes_gpc O
performance
php_value magic_quotes_runtime O
#http://www.php.net/manual/en/
ini.core.php#ini.allow-call-time-pass-reference
php_value allow_call_time_pass_reference O
</IfModule>

<IfModule sapi_apache2.c>
If you are using Apache 2, you have to use <IfModule sapi_apache2.c>
instead of <IfModule mod_php5.c>.
some parts/addons might only run safe mode on
php_admin_flag safe_mode Off
security just in case
php_admin_value register_globals 0
performance
php_value magic_quotes_gpc O
performance
php_value magic_quotes_runtime O
#http://www.php.net/manual/en/
ini.core.php#ini.allow-call-time-pass-reference
php_value allow_call_time_pass_reference 0
</IfModule>

1

1.6 Removing eZ Publish 79

1.6 Removing eZ Publish

This section describes how to completely remove an eZ Publish installation from a system.

Removing eZ Publish is done in four steps:

1. Deleting the eZ Publish directory
2. Removing the database

3. Reconfiguring Apache (optional)
4.

Removing the cronjobs (optional)

WARNING! By following these steps, you will remove both eZ Publish and all the data/content
that you have put into the system. Everything will be lost.

Deleting the eZ Publish directory

Remove the eZ Publish directory using your favorite tool.

Linux/UNIX
On Linux/UNIX systems, the removal would most likely be carried out using the "rm” command:

$ rm -Rf /path/to/ez_publish

Please note that some file/directory permissions might be messed up. If this is the case, it will
prevent a regular user from removing all eZ Publish files. You'll probably have to gain root access
to solve this problem.

Windows

Windows users may simply delete the eZ Publish directory using the "Explorer”.

Removing the database
MySQL
1. Start the MySQL client, log in using your username and password:

$ mysql -u <username> -p

If the username/password is correct, the client will then present a "mysql>" prompt.

1.6 Removing eZ Publish 80

2. Delete/remove the database using the drop command followed by the name of the database
used by eZ Publish:

mysql> drop database <database-name>;

PostgreSQL
1. Remove the database by executing the PostgreSQL dropdb command from shell:

$ dropdb <database-name>

Reconfiguring Apache (optional)

If a virtual host setup was used, it is likely that the Apache configuration file contains eZ Publish
specific settings. These settings will not be needed anymore and thus they can be removed.
Open the ”httpd.conf” file using a text editor, scroll down to the bottom and remove the eZ
Publish specific virtual host settings. Remember to restart Apache after altering the configuration
file.

Removing the cronjobs (optional)

Windows users should skip this part. If cron was configured to run eZ Publish specific jobs, then
these will have to be removed. You may have to edit a global cron file (under ”/etc/cron*”) or
use the “crontab” command with the -e (edit) parameter to edit a user’s private cron file. Remove
the eZ Publish specific entries.

1.7 Extensions 81

1.7 Extensions

Extensions are plugins to eZ Publish, providing additional custom functionality. Various exten-
sions are available for eZ Publish. All of them require the same basic steps for an installation.
This chapter will show how to perform the following:

1. Extract the compressed archive containing the extension

2. Activate the extension

Some extensions might require further action to make them fully functional, e.g. creating new
database tables, adding certain content classes to eZ Publish, etc. Such additional measures are
explained in the documentation for each extension.

As outlined before, this section deals with the basic steps only. For demonstration purposes, the
installation will be examplified by an imaginery extension called "ezfoo”.

1.7.1 Extensions / Extracting the files 82

1.7.1 Extracting the files

Each extension is distributed as a compressed archive. The name of the archive file includes the
name of the extension and its release version. Furthermore, the compression type is indicated by

” »

the file ending, either "tgz”, "tar.gz”, "bz2”, or "zip”. For example:

* ezfoo-extension-1.0.tgz
* ezfoo-extension-1.0.tar.gz
* ezfoo-extension-1.0.bz2
* ezfoo-extension-1.0.zip

Windows users should download the ”zip” archive. Linux/UNIX users may download any archive
format as long as the necessary unpacking tools are available.

Extension base directory

Copy the downloaded archive into the ”extension” directory of your eZ Publish installation. If this
directory does not exist yet, then create it. (Do not create the directory with the plural naming
”extensions” - this is a common error.)

The following shell commands can be used to create the “extension” directory and copy the
archive on a Linux/UNIX system:

mkdir /opt/ezp/extension/
cp /home/myuser/download/ezfoo-extension-1.0.tar.gz /opt/ezp/extension/

Replace ”/opt/ezp/” with the actual path to your eZ Publish installation and ”/home/myuser/
download/ezfoo-extension-1.0.tar.gz” with the actual path to the downloaded archive.

Unpack the archive

The archive should be unpacked inside the "extension” directory. When done correctly, an “ezfoo”
directory will be created inside the ”extension” directory.

See the following table for the correct shell command to use on a Linux/UNIX system, depending
on the compression type:

Archive type Command to extract
tar.gz or tgz

tar -zxvf ezfoo-extension-1.0.tar.gz

or
tar -zxvf ezfoo-extension-1.0.tgz

bz2

1.7.1 Extensions / Extracting the files

83

tar -jxvf ezfoo-extension-1.0.bz2

zZip

unzip ezfoo-extension-1.0.zip

On Windows, you can just unzip the ”zip” file using the built-in zip features.

At this point, the unpacked files should be available under “extension/ezfoo”.

1.7.2 Extensions / Activating the extension 84

1.7.2 Activating the extension

Each extension needs to be activated, which means that it is being registered for eZ Publish to be
available from within the eZ Publish framework. Every extension can either be activated in the
eZ Publish administration interface or in a configuration file. Furthermore, the activation can be
done either for the whole eZ Publish installation or for only certain siteaccesses.

Administration interface

Log in to your eZ Publish administration interface, click on the ”Setup” tab, and then click "Ex-
tensions” on the left. You will see the list of available extensions with checkboxes. To activate the
sample extension, select “ezfoo” as shown in the screenshot below and click the ”Apply changes”
button.

(see figure 1.16)

o« v D 7[R nipunocalhostss10/plain_site_admin/setup/extensions L = [+

GContent structure Media library User accounts Webshop Design m My account

> Extension configuration

[sewr___f Avaiiable extensions [2] [curent uscr R

* Cache management e e Admlnlstralor User
Classes « Change Information
‘) . ol ezodf
@ Collected information « Change password
e Extensions ™ EHED * Logout
Llobal settings
e [Apiy changes | Regenerate autoload arrays for extensions |
o Ini settings Bookmarks =]
® Lanquages
« PDF export
+ Panages Clear cache |—
| o BAD
 Roles and pollcles Quick settings ol
¢ RSS

Figure 1.16: Screenshot of extension configuration in administration interface.

This will activate the extension for all siteaccesses of your eZ Publish installation.

Configuration file

Alternatively, an extension can be enabled manually in the site.ini (page 1559) configuration file.

1.7.2 Extensions / Activating the extension 85

Activating for the whole installation
To enable the sample extension for all of your siteaccesses, edit the ”site.ini.append.php” file
located in the ”settings/override” directory of your eZ Publish installation. Add the following

line under the ”[ExtensionSettings]” configuration block (page 136):

ActiveExtensions[]=ezfoo

Multiple extensions can be present within the ”[ExtensionSettings]” block. You’ll have to manu-
ally create the file and/or the section if they do not exist.

Activating for a certain siteaccesses
To enable the sample extension for only a single siteaccess called “example”, edit the
”site.ini.append.php” file located in the ”settings/siteaccess/example” directory of your eZ Pub-

lish installation. Add the following line under the ”[ExtensionSettings]” configuration block:

ActiveAccessExtensions[]=ezfoo

Note that the line registering the extension is not called ”ActiveExtensions”, but “ActiveAccessEx-
tensions”. You'll have to manually create the file and/or the section if they do not exist.

Updating the autoload arrays

After updating the configuration file(s), you need to run the ”ezpgenerateautoloads.php” script,
in order to add the information about all PHP class definitions of this extension to the "autoload/
ezp_extension.php” file, otherwise eZ Publish might not be able to execute the PHP code of the
newly added extension. The following example shows how to run the script.

1. Navigate into the eZ Publish directory.

2. Run the script using the following shell command:

bin/php/ezpgenerateautoloads.php --extension

The script will look for class definitions in the “extensions” directory and update the ”autoload/
ezp_extension.php” file accordingly.

1.8 Troubleshooting 86

1.8 Troubleshooting

This section will explain what can be done if installation fails because of some unknown reason.

First of all, make sure that all the requirements (page 29) without exception are met. The
requirements are strict and extremely important. Please read them very carefully.

If all the requirements are met but you still have problems, it is recommended to check the debug
information during the installation process. To enable the debug output, do the following:

1. Go to the "settings/override” directory of your eZ Publish installation.

2. Create a new file called ”site.ini.append.php” and put the following lines to it:

[DebugSettings]
DebugOutput=enabled

The debug output will appear at the bottom of the page as shown in the following screenshot.
(see figure 1.17)

The debug output will be displayed in the setup wizard, in the administration interface and on
the actual site. This option can be disabled at any time by replacing "enabled” with ”disabled” in
the same place of the configuration file.

Note that the "CheckValidity (page 1717)” setting located in the ”[SiteAccessSettings]” section
of the same file controls if the setup wizard should automatically start the first time the site is
accessed/browsed. If you want to restart the wizard after its successful finishing, you can specify
”CheckValidity=true” in the ”settings/override/site.ini.append.php” file so that the setup wizard
will be initiated when trying to access the site.

1.8 Troubleshooting

fle Edit Yiew Bookmorks Jook Help

‘,'j"wwa = Site

il

Site access configuration

Please choose e access method you wish (o use for your sita, The access method
datemines how the site will be accessed from within a web browsar. I usure: choose
URL.

Access mothod:
(@ URL {racommendad) e
5. admin.ez.n0 and Www.ez.no

tup.

oF publh

debug

Quick settings:

= ' Debug outpui
" Debug mdiection
| Template debug
' Inline template debug
| List of used templates
|| sOL debug sutput

May 22 2006 151955

May 22 2006 151955
tart *mmeupt

May 22 2006 15:18:35
wmloading file ‘var/zacke/packages/indes.anl® fron hitp://packages.sr.me/eepublish/3, 8/ indes. ml

May 22 2006 15:10:35

May 22 2006 15:19:35
dule =nd *astup’
iming: May 22 2006 15:19:35
nd

rror; eZMySQLDE May 22 2006 15:19:35
onnedthen errerl 10451 Unimown database ‘nestgen”

May 22 2006 15:19:35

yund, ESUINLRG ampmyTsiuR

May 22 2006 15:19:35

mymaas aEer not found, TeTMTRing Mouser

Figure 1.17: The debug output appears at the bottom of the page

Chapter 2

Concepts and basics

The purpose of this chapter is to introduce and describe the most important concepts of eZ
publish. A rookie developer should definitively read through this chapter in order to understand
the basic terms, models, structures and building blocks of the system. This chapter is more
generic than technical, it is meant to teach the concepts rather than explaining details. People
previously unfamiliar with eZ publish should be able to collect enough information in order to
understand the following issues:

* The way eZ publish is built up

* The main directory structure

* The concept and necessity of separating content and design

* How eZ publish stores and manages content

* How eZ publish handles issues related to design

* How eZ publish manages different sites

* The concept of modules and views

* The way eZ publish works with URLs

* The configuration system

* The structure of the workflow system

* How the access/permission system works

* How the webshop works

* A typical page request cycle

88

2.1 The internal structure of eZ publish 89

2.1 The internal structure of eZ publish

This section describes the internal structure of eZ publish by presenting an brief overview of
the different software-layers of the system. eZ publish is a complex, object oriented application
written in the PHP language. The system consists of three major parts:

* Libraries

¢ Kernel

e Modules

The following illustration shows how the different parts of the system are connected.

(see figure 2.1)

=
@]
lw]
c
=
=
ey
o
=)
=
m
m
ezxml ezpdf ezwebdav
C
=]
A

ezdb ezfile ezimage £

Figure 2.1: Libraries, kernel and modules.

The libraries

The libraries are the main building blocks of the system. These are reuseable general purpose
PHP classes. The libraries are in no way dependent on the eZ publish kernel. However, some of
them are strongly interconnected and thus inseparable. People looking for general PHP libraries
should take a look in the ”lib” folder within the root directory of an eZ publish installation.
The reference chapter contains a complete list and a short description of the currently available
libraries (page 1858).

The kernel

The eZ publish kernel can be described as the system core. It takes care of all the low level
functionality like content handling, content versioning, access control, workflows, etc. The kernel
consists of various engines that build upon and make use of the general purpose libraries.

2.1 The internal structure of eZ publish 90

The modules

An eZ publish module offers an HTTP interface which can be used for web based interaction with
the system. While some modules offer an interface to kernel functionality, others are more or less
independent of the kernel. eZ publish comes with a collection of modules that cover the needs
of typical everyday tasks. For example, the content module provides an interface that makes it
possible to use a web browser to manage content. The reference chapter contains a complete
list and a short description of all the currently available modules (page 588). A module can be
broken down into the following components:

e Views

e Fetch functions

A view provides an actual web interface. For example, the ”search” (page 749) view of the
“content” (page 624) module provides a web interface to the built-in search engine. Every eZ
publish module provides at least one view. A fetch function makes it possible to extract data
through a module from within a template. For example, the “current user” (page 915) fetch
function of the "user” (page 912) module makes it possible to access information related to the
user who is currently logged in. Some modules provide fetch functions, some don’t.

2.1.1 The internal structure of eZ publish / Directory structure 91

2.1.1 Directory structure

The eZ publish root directory contains multiple subdirectories. Each subdirectory is dedicated
to a specific part of the system and contains a collection of logically related files. The following
table gives an overview of the main eZ publish directories.

Directory Description

bin The ”bin” directory contains various PHE Perl
and shell scripts. For example, it contains
the ”ezcache.php” script which can be used
to clear all eZ publish caches from within a
system shell. The scripts are mainly used for
manual maintenance.

cronjobs The ”cronjobs” directory contains miscella-
neous scripts for automated periodical main-
tenance.

design The ”design” directory contains all design

related files such as templates, images,
stylesheets, etc.

doc The ”doc” directory contains documentation
and change logs.
extension The ”extension” directory contains eZ publish

plugins. The extension system of eZ pub-
lish allows external code to plug in and co-
exsit with the rest of the system. By using
extensions it is possible to create new mod-
ules, datatypes, template operators, workflow
events and so on.

kernel The "kernel” directory contains all the kernel
files such as the core kernel classes, modules,
views, datatypes, etc. This is where the core of
the system resides. Only experts should tam-
per with this part.

lib The ”1ib” directory contains the general pur-
pose libraries. These libraries are collections
of classes that perform various low level tasks.
The kernel makes use of these libraries.
packages The "packages” directory contains the bun-
dled packages (themes, classes, templates,
etc.) that can be installed using either the
setup wizard or the administration interface.

settings The ”settings” directory contains dynamic, site
specific configuration files.
share The ”share” directory contains static configu-

ration files such as codepages, locale descrip-

2.1.1 The internal structure of eZ publish / Directory structure 92

tions, translations, icons, etc.

support

The ”support” directory contains the source
code for additional applications that can be
used to do various advanced tasks. For exam-
ple, it contains the "lupdate” program that can
be used to create and maintain eZ the transla-
tion files.

update

The ”update” directory contains various
scripts that should be used when an eZ pub-
lish installation is being upgraded.

var

The ”var” directory contains cache files and
logs. It also contains actual content that
doesn’t go into the database (images and
files). The size of this directory will most likely
increase as the system is being used.

2.2 Content and design 93

2.2 Content and design

This section explains the fundamental concepts of content and design. It is important to under-
stand what content and design actually are, how they interconnect and how the system handles
these fundamental elements.

Content

In the world of eZ publish, content and design are separated. By content we mean information
that is to be organized and stored using some structure. For example, it may be the actual
contents of a news article (title, intro, body, images), the properties of a car (make, model, year,
color) and so on. In other words, all custom information that is stored for the purpose of later
retrieval is referred to as content.

Design

The information stored in a content structure must be presented somehow, preferably in a way
that is easily understood by humans. While content means actual data, design is all about the
way the data is marked up and visually presented. When talking about design, we'’re talking
about the things that make up a web interface: HTML, style sheets, images that are not a part of
the content, etc.

Templates

eZ publish uses templates as the fundamental unit of site design. For example, a template might
dictate that a page should appear with the site’s title bar on the top, and then main content in
the middle. When the page is accessed, it then becomes the content management system’s job to
“flow” the content into the appropriate places in the template. An eZ publish template is basically
a custom HTML file that describes how some particular type of content should be visualized. In
addition to standard HTML syntax, it is possible to use eZ publish specific code to for example
extract content from the system. The HTML syntax in the built-in/default templates follow the
XHTML 1.0 Transitional specification.

The separation of content and design

While content is all about storing and structuring custom/raw data, the purpose of the design is
to dictate how the content should be visualized. The result of a combination of these elements is
a complete interface, as illustrated in the following diagram.

(see figure 2.2)

This distinction, and the system’s ability to handle it is one of the key features of eZ publish.
The separation of content and design opens up an entire range of possibilities that simply cannot

2.2 Content and design

94

CONTENT

Love ipsum

Lofem iprsum dolor s amel
Consacielir adpesong e, sed
o esusmod lsmpor incidkdunt u
Labory ef dolore magra akgua. LR
B 8] Minke verkaem, qus
rosind ewerctaton ulamoo
Laoris e A SR 0% 98
comman contagust

DESIGN

WEE PAGE

Lorem ipsum
deies 3 wmed

consectets

Bobpaacng et

sad g0 sismod
- .

dunt 8 kabore et dodor

Figure 2.2: Content + Design = Web page

be achieved otherwise. The following list outlines some of the most important benefits of this

technique:

* Content authors and designers can work separately without conflicts
* Content can be published easily in multiple formats

* Content can easily be transferred and re-purposed

* Global redesigns/changes can be applied by simple modifications

2.2.1 Content and design / Storage 95

2.2.1 Storage

This section explains where eZ publish stores information that belongs to a site (not the system
itself). A typical eZ publish site consists of the following elements:

* Actual content
* Design related files

* Configuration files

Actual content is structured and stored inside a database. This is true for all content except
for images and files, which are stored on the filesystem. The main reason for this is because
the filesystem is much faster than the database when it comes to the storage and retrieval of
large data chunks. Having the files on the filesystem allows the webserver to serve them directly
without the need of going through the database. In addition, this technique makes it easier to
use external tools to manipulate/scan/index the contents of the uploaded files. For example, the
built in search engine is capable of using external utilities to index the contents of miscellaneous
files (PDE, Word documents, Excel sheets, etc.). Having the files on the filesystem dramatically
decreases the size of the database and thus makes it easier to copy and handle. Everything that is
related to design (template files, CSS files, non content specific images, etc.) and configuration
settings are also stored on the filesystem. A backup of an eZ publish site must therefore contain
both a dump of the database and a copy of the necessary files. The following illustration shows
an overview of how the system makes use of the database and the filesystem to store the different
elements of a site.

(see figure 2.3)
DATABASE WEB PAGES
PRSI P
FILESYSTEM ey

‘_,..-‘7

Content

v Text
- v Structure x X
« Images v HTML + CS5

+ Ini fil
+ Files + Templates s

Figure 2.3: Storage overview

2.3 Content management 96

2.3 Content management

The role of a content management system is to organize and store content regardless of type
and complexity. The main goal of such a system is to provide a well structured, automated
yet flexible solution allowing information to be freely distributed and instantly updated across
various communication channels (such as the world wide web, intranets and miscellaneous front
and back-end systems). This section describes how eZ Publish actually handles content.

A typical example

Let’s consider a scenario at a university with a need of storing information about students. Most
off-the-shelf content management systems will offer a selection of built in content types. There
might for example exist a "Person” type, consisting of fields like "name”, ”birthdate”, ”phone
number” and so on. However, the custom student data will probably not fit perfectly into this
predefined model since it might consist of information that is specific for the university (for
example student ID, department, etc.). Even though some systems allow the creation of custom
structures, the solution is often a complicated and timeconsuming process that requires both
programming and manipulation of the database. In addition, once the solution is in use, future
alternation of the structure itself will most likely become a problem.

Content management in eZ Publish

Unlike other content management systems, eZ Publish does not make use of a predefined “one-
size-fits-all” approach. Instead of desperately trying to fit data into predefined and rigid struc-
tures, the system allows the creation of custom structures by the way of a unique object oriented
approach. For example, the site developer can build custom structures that perfectly satisfies the
storage needs of the university. This is one of the key features that make eZ Publish a flexible
and successful system. In addition to offering the freedom of custom structures, it also allows the
modification of the content structures at runtime. In other words, if the custom student structure
used in the example above needs to be modified, then eZ Publish will automatically alter it based
on the administrator’s commands.

Although the possibility to create and modify content structures is a wonderful feature, there
isn’t always need for using it. This is why an eZ Publish distribution comes with a selection of
predefined content structures and thus allows the developer to choose between the following
scenarios:

* Use the standard/built-in structures

* Use modified versions of the standard/built-in structures

* Use only custom structures

e Use a combination of standard, modified and custom structures

2.3 Content management 97

An object oriented content structure

The eZ Publish content structure is based on ideas borrowed from the object oriented world of
popular programming languages like Smalltalk, C++, JAVA, etc. Superficially, object-oriented
means nothing more than looking at the world in terms of objects. In real life, people are sur-
rounded by several objects: furniture, cars, pets, humans, etc. Each of these objects have traits
that we use to identify them. This is also the way eZ Publish defines and manages content.

The system offers a selection of fundamental building blocks and mechanisms that together pro-
vide a flexible content management solution. An actual data structure is described using some-
thing called a content class. A content class is built up of attributes. An attribute can be thought
of as a field, for example the ”"birthdate” field in a structure designed to store information about
students. The description of the entire structure would be refferred to as the ”student class”. The
characteristics of an attribute inside the class are determined by the datatype that was chosen to
represent that attribute.

It is important to understand that a content class is just a definition of an arbitrary structure. In
other words, the class itself describes the structure but it does not store any actual data. Once
a content class has been defined, it is possible to create instances of that class. An instance of a
content class is called a content object. Actual content is stored inside objects of different types.
A content object consists of one or more versions. The versioning layer makes it possible to have
different versions of the same content. Each version consists of one or more translations. The
translation layer makes it possible to represent the same version of the same content in multiple
languages. A translation consists of attributes. The attributes are the final elements in the content
structure chain, this is where actual data is stored.

The content objects are wrapped and organized by the way of nodes that are placed inside a
tree-like structure. This tree is often refferred to as the node tree. The following sections contain
comprehensive explanations related to the elements that were introduced above.

2.3.1 Content management / Datatypes 98

2.3.1 Datatypes

A datatype is the smallest possible entity of storage. It determines how a specific type of in-
formation should be validated, stored, retrieved, formatted and so on. eZ publish comes with
a collection of fundamental datatypes that can be used to build powerful and complex content
structures. In addition, it is possible to extend the system by creating custom datatypes for spe-
cial needs. Custom datatypes have to be programmed in PHP However, the built in datatypes are
usually sufficient enough for typical scenarios. The following table gives an overview of the most
basic datatypes that come with eZ publish.

Datatype Description

Text line (page 536) Stores a single line of unformatted text

Text block (page 534) Stores multiple lines of unformatted text

XML block (page 544) Validates and stores multiple lines of format-
ted text

Integer (page 490) Validates and stores a numerical integer value

Float (page 481) Validates and stores a numerical floating point
value

Please refer to the ”Datatypes” (page 463) section of the reference chapter for a compre-
hensive list of all the built-in datatypes. Additional datatypes can be downloaded from
http://ez.no/community/contribs/datatypes; they are created by the members of the eZ pub-
lish community.

Input validation

As the list above indicates, some datatypes take care of more than just storing data. For example,
the XML block” datatype apparently supports validation. This means that the inputted XML will
be validated before it is actually stored in the database. In other words, the system will only
accept and store the data if it is a valid XML structure. Input validation is supported by most (but
not all) of the built in datatypes. The validation feature of a datatype can not be turned on or
off. In other words, if a datatype happens to support validation, it will always try to validate the
incoming data and thus the system will never allow the storage of incorrectly formatted input.

http://ez.no/community/contribs/datatypes

2.3.2 Content management / The content class 99

2.3.2 The content class

A content class is a definition of an arbitrary data structure. It does not store any actual data.
A content class is made up of attributes. The characteristics of an attribute are determined by
the datatype that is chosen for that specific attribute. By combining different datatypes, it is
possible to represent complex data structures. The following illustration shows the anatomy of a
content class called "Article”, which defines a data structure for storing news articles. It consists
of attributes dedicated for storing the title, an introduction text and the actual body of an article.

(see figure 2.4)

ARTICLE CLASS

Name | Datatype '
E Title Text line
g Intro Text line
(-4
E Body XML field

Figure 2.4: Example of a content class.

An eZ publish distribution comes with a set of general purpose classes (page 561) that are de-
signed for typical web scenarios. For example, the default image class defines a structure for
storing image files. It consists of attributes for storing the name of the image, the actual image
file, the caption and an alternative image text. The built-in classes can be modified in order to
become more suitable for a specific case. In addition, it is possible to create completely new
and custom classes. Content classes can be created, modified and removed easily using the ad-
ministration interface. When a content class is removed, all instances of that class (containing
actual data) will also be removed from the system. The following screenshot shows the class edit
interface in action.

(see figure 2.5)

Class structure

A content class consists of the following elements:

* Name

* Identifier

* Object name pattern

* URL alias name pattern
* Container flag

* Default sorting of children

2.3.2 Content management / The content class 100

' Edit <Documentation page> [Class]

Last modified: 07/24/2007 04:39 pm, Administrator English (American) B

Name:
Documentation page

Identifier:
documentation_page

Object name pattern:
<title=

URL alias name pattern:
=alias=

Container:
v

]

Default sorting of children:
Path String |~ | Ascending |+

Default object availability:
A

Class attributes:

|| 1. Title [Text line] (id:188) [&] [#] ,

Name:
Title

Identifier:
title

v Required |v/Searchable | |Information collector | | Disable translation

Default value:

Figure 2.5: The class edit interface.

* Default object availability flag

e Attributes

Name

The name is for storing a user friendly name which describes the data structure that the class
defines. A class name can consist of letters, digits, spaces and special characters. The maximum
length is 255 characters. For example, if a class defines a data structure for storing information
about graduate students, the name of the class would most likely be "Graduate student”. This
name will appear in various class lists throughout the administration interface, but it will not be
used internally by the system. If a blank name is provided, eZ publish will automatically generate
a unique name when the class definition is stored.

2.3.2 Content management / The content class 101

Identifier

The identifier is for internal use. In particular, class identifiers are used in configuration files,
templates and in PHP code. A class identifier can only consist of lowercase letters, digits and
underscores. The maximum length is 50 characters. For example, if a class defines a data struc-
ture for storing information about graduate students, the identifier of the class would probably
be "graduate student”. If a blank identifier is provided, eZ publish will automatically generate a
unique identifier when the class definition is stored.

Object name pattern

The object name pattern controls how the name of an actual object (an instance of a class)
will be generated. A pattern usually consists of attribute identifiers (described later) that tell
eZ publish about which attributes it should use when generating the name of an object. Each
attribute identifier has to be encapsulated by angle brackets. Text outside the angle brackets will
be included directly. If a blank pattern is provided, eZ publish will automatically use the identifier
of the first attribute.

URL alias name pattern

The URL alias name pattern controls how the virtual URLs of the nodes will be generated when
the objects (instances of a class) are created. Note that only the last part of the virtual URL is
affected. The pattern works in the same way as the object name pattern. Text outside the angle
brackets will be converted using the selected method of URL transformation. If a blank pattern
is provided, eZ Publish will automatically use the name of the object itself.

Container flag

The container flag controls whether an instance of the class should be allowed to have sub items
(often called child nodes, children) or not. This setting only affects the administration interface,
it was added in order to provide a more convenient environment for administrators and content
authors. In other words, it doesn’t control any actual low level logic, it simply controls the way
the graphical user interface behaves.

Default sorting of children

From 3.9, it is possible to set the “default sorting of children” while editing the classes. When new
objects are created and their corresponding nodes appear in the tree, they will use the sorting
settings that were specified at the class level. In other words, if you set the ”default sorting of
children” to priority/ascending for the "Folder” class, the sub items of newly created folders will
be sorted by their priorities, starting with the lowest priority.

Note that sorting parameters can always be changed for each individual node by using the sorting
controls located in the ”Sub items” window. Modifying the default sorting parameters at the

2.3.2 Content management / The content class 102

class level will not affect the nodes that encapsulate existing objects of the class (only the nodes
of newly created objects will be affected). Refer to “sort method” and ”sort order” for more
information about sorting parameters.

Default object availability flag

This flag is related to the multi-language features that were added in eZ publish 3.8. It simply
dictates the default value of the “object availability” flag for new instances (objects) of the class.
This flag can be further controlled (on the object level) by a checkbox labelled "Use the main
language if there is no prioritized translation” in the "Languages” window of the administration
interface. In other words, the object availability can be modified individually for each object.
When the flag is set, an object that does not exist in one of the site/prioritized languages will be
shown using it’s initial/main language. If the flag isn’t set, the object will not be shown as long
as it does not exist in one of the prioritized languages.

Attributes

As pointed out earlier, it is the structure and type of the attributes that make up the actual data
structure that the class defines. A content class must at least have one attribute. On the other
hand, a class can contain virtually an unlimited number of attributes. Class attributes can be
added, removed and rearranged at any time using the administration interface. If an attribute
is added to a class, it will be added to all current and upcoming instances of that class. If an
attribute is removed, it will also be removed from all instances.

Although it is possible to remove and add attributes using the administration interface, in some
cases these operations may corrupt the database. This usually happens when there are too many
instances that need to be updated. If the required processing time exceeds the maximum exe-
cution time for PHP scripts, the sequence will be interrupted and thus the database will most
likely be left in an inconsistent state. At the time of writing, this problem can only be solved by
increasing the maximum execution time, which is defined in ”php.ini” as "max_execution_time”.
The default value is 30 seconds, it should be increased to a couple of minutes. A more reliable
solution (a PHP script that takes care of adding/removing attributes and run it from within a
shell) will probably be added in the future.

2.3.3 Content management / Class attributes 103

2.3.3 Class attributes

A content class is made up of one or more attributes where each attribute is represented by a
datatype. The characteristics of an attribute are determined by the datatype that is chosen for
that specific attribute. An attribute is made up of the following elements:

* Name

* Identifier

¢ Generic controls

* Datatype specific controls

Name

The name is for storing a user friendly name for the attribute. For example, if the attribute is
supposed to store birthdates, the name of the attribute would most likely be “Date of birth”.
This string will appear in various parts of the administration interface, but it will not be used
internally by the system. The name of an attribute can consist of letters, digits, spaces and special
characters. The maximum length is 255 characters. If a blank name is provided, eZ publish will
automatically generate a unique name for the attribute when the class definition is stored.

Identifier

The identifier of an attribute is for internal use. In particular, attribute identifiers are used in
configuration files, templates and in PHP code. An attribute identifier can only consist of low-
ercase letters, digits and underscores. The maximum length is 50 characters. For example, if
the attribute is supposed to store birthdates, the identifier of the attribute would probably be
“date_of birth”. If a blank identifier is provided, eZ publish will automatically generate a unique
identifier when the class definition is stored.

Generic controls

Each attribute has a set of generic controls. These controls are the same for each attribute, re-
gardless (but not independent) of the datatype that represents the attribute. The generic controls
are a set of switches that can be turned on or off:

* Required

* Searchable

e Information collector

e Translatable

2.3.3 Content management / Class attributes 104

Required

The required switch controls the behavior of the storage procedure for content objects (instances
of a content class). It can be used regardless of the datatype that represents the attribute. When
the required flag of an attribute is set, the system will keep rejecting the inputted data until all
required information is provided. If the required flag is unset, eZ publish will not care whether
any actual data was provided or not. When an attribute is added, the required switch is off.
Please note that inputted data will be validated according to the chosen datatype’s validation
rules regardless of the state of the attribute’s required switch. Input validation is supported by
most (but not all) of the built in datatypes. The following example demonstrates how these
features actually work.

Let’s say that we have created a content class that defines a data structure for storing information
about prisoners. The class would typically consist of various attributes for storing different kinds
of data: name, identification number, date of birth, cell, block, etc. Having at least the name and
the birthdate attributes required will eliminate the possibility of storing convicts without names
and/or birthdates. If the birthdate attribute is represented by the built-in “date” datatype, the
system will only accept the input if the birthdate is provided using a correct date format.

Searchable

The searchable switch can be used to control whether the actual data stored using the attribute
should be indexed by the search engine or if it should be left unindexed. Search indexing is
supported by the majority of the built-in datatypes. Please refer to the "Datatypes” (page 463)
section of the reference chapter to see which datatypes that support search indexing.

Information collector

The information collector switch can be used to control the attribute’s behavior in view mode.
The default view mode behavior results in the display of the information that was provided in
edit mode. For example, when viewing a news article, the contents of the article are displayed
but can not be edited. However, if an attribute is marked as a collector, it will allow information
to be input in view mode. At first, this feature might seem a bit odd. However, it is actually
quite handy. For example, it can be used to quickly create simple feedback forms. The contents
of a form created using this technique will be e-mailed to the site administrator (or to a specified
address) once the form is submitted. Information collection is only supported by a small set of
the built in datatypes. The following example demonstrates how this feature could be used to
create a basic feedback form.

Let’s say that we have created a content class called "Feedback form” using the following at-
tributes: name, subject and message. The subject and the message attributes would be marked
as information collectors. When an instance of this class is viewed, the subject and the message
attributes will be displayed as input fields along with a ”Send” button.

2.3.3 Content management / Class attributes 105

Translatable

The translatable switch controls whether actual data stored using the attribute should exist in
only one language (the default language) or if it should be possible to translate it using the
additional languages. The translation mechanism is completely independent of the datatype
layer. In other words, this switch can be used regardless of the datatype that was chosen to
represent the attribute.

When an attribute is added, the translation switch is "on”. Turning it off is typically useful
when the attribute is supposed to store non-translatable input. For example, translating dates,
numerical values, prices, email addresses, etc. doesn’t make much sense.

Datatype specific controls

An attribute can have a set of additional controls that are specific for the datatype that was
chosen to represent that attribute. Some datatypes allow fine grained customization, some not.
For example, the built-in "Text line” datatype provides two settings: default value and maximum
length.

2.3.4 Content management / The content object 106

2.3.4 The content object

A content object is an instance of a content class. While the class only defines the data structure,
it is the content objects themselves that contain actual data. Once a content class is defined,
several content objects / instances of that class can be created. For example, if a class for storing
news articles is created, several article objects (each containing a different story) can then be
instantiated. The following illustration summarizes and shows the relation between datatypes,
attributes, a content class and content objects.

(see figure 2.6)

ARTICLE CLASS

Name Datatype
g Title Text line
s Intro Text line
E Body XML field

SN

ARTICLE OBJECT ARTICLE OBJECT ARTICLE OBJECT

Title: Penguin Title: Scooter Title: Megaphone

Intro: The penguin is Intro: Sigge rides a Intro: Sigge has a
called "Sigge” yellow scooter megaphone

Body: He is an angry Body: He wants a Body: "So watch out!”,
old penguin parking spot he shouts.

far his scooter

Figure 2.6: Datatypes, attributes, a content class and objects.

Please note that the illustration above is a simplified version of the reality. It doesn’t show the
exact structure of the objects since the versioning and the translation layers have been left out.
The following text gives a more in-depth explanation of the object structure. The versioning and
the translation layers will be explained in the upcoming sections.

Object structure

A content object consists of the following elements:

* Object ID
* Name

* Type

* Owner

¢ Creation time

2.3.4 Content management / The content object 107

* Modification time
s Status

¢ Section ID

* Versions

e Current version

Object ID

Every object has a unique identification number. The ID numbers are used by the system to
organize and keep track of different objects. These ID numbers are not recycled. In other words,
if an object is deleted, the ID number of that object will not be reused when a new object is
created.

Name

The name of an object is nothing more than a friendly name that appears in various lists through-
out the administration interface. It helps the user to identify different objects by their names in-
stead of having to deal with identification numbers. An object’s name is generated automatically
by the system when the object is published. It is the object name pattern definition of a class
that dictates how objects of that class should be named. This mechanism makes it possible to
automatically generate names based on the object’s attributes. Since the object name is not used
by the system, different objects can have the exact same name.

For example, when dealing with news articles, the title of the article would most likely be used
to generate the object names. When an article object is published, its name will be a copy of the
object’s title attribute. The name of the object will be updated every time the object is published.
In other words, if the title is changed, the object’s name will automatically also be changed.

Type

The type information indicates which class that was used to create the object.

Owner

The object’s owner contains a reference to the user who initially created the object. At any time,
an object can only be owned by one user. This reference is set by the system the first time the
object is published. The ownership of an object can not be manipulated and will not change even
if the owner the object is removed from the system.

2.3.4 Content management / The content object 108

Creation time

The published field contains a timestamp pinpointing the exact date and time when the object
was published for the first time. This information is set by the system and it can not be modified.
The published timestamp will remain the same regardless of what happens to the object.

Modification time

The modified field contains a timestamp revealing the exact date and time when the object was
modified. This information is set by the system and it can not be modified. The modified times-
tamp will change every time the object is published.

Status

The status indicates the current state of the object. There are three possibilities:

¢ (0) Draft
* (1) Published
e (2) Archived

When initially created, the object’s status is set to draft. This status will remain until the object is
published and thus the status will be set to published. Once published, the object can not become
a draft. When a published object is moved to the trash, the status will be set to archived. If a
published object is removed from the trash (or removed without being put in the trash first), it
will be permanently deleted.

Section

The section ID of an object denotes which section that object belongs to. Each object can belong
to one section. By assigning different sections to objects, it is possible to have different groups of
objects. The section mechanism is explained under ”Sections” (page 132).

Versions

The actual contents of an object is stored inside different versions. A version can be thought of
as a timestamped collection of data (the object’s attributes) that belongs to a specific user. Every
time the contents of an object is edited, a new version is created. It is always the new version that
will be edited. The current / published version along with earlier versions will remain untouched.
This makes it possible to revert unwanted or accidental changes. An object always has at least one
version of its content. Each version is identified by a number which is automatically increased
for every new version that is created. The structure and logic of the versioning mechanism is
explained in the next section.

2.3.4 Content management / The content object 109

Current version

The current version is a number that pinpoints the currently published version of the object. As
described above, the contents of an object may exist in several versions. However, only one of
them can be the current version (also referred to as the published version). The current/published
version is the version that will be displayed when the object is viewed.

2.3.5 Content management / Object versioning 110

2.3.5 Object versioning

eZ publish comes with a built in versioning system which is implemented at the object level. This
mechanism makes it possible to have several versions of the contents (attributes) of an object.
It basically provides a generic, out-of-the-box version control framework that can be used with
any kind of content. The different versions are encapsulated by the object itself. The following
illustration shows a more detailed example of the object structure seen from the outside world.

(see figure 2.7)

ARTICLE OBJECT

SYSTEM SPECIFIC ELEMENTS

Element Value

Object ID 13
Name "The penguin has a megaphone”
Type Article
[...] [...]
VERSIONS

Version Attributes and content

1 Title: | Penguins and megaphones
INtro: | First draft
Body: ' glah, blah, blah...

Version Attributes and content

2 Title: | The penguin has a megaphane

INtro: : He knows how to use it

Body: | “Se watch out”®

Figure 2.7: Example of a content object that consists of two versions.

Every time an object is edited, a new version of the object’s contents will be created. It is always
the new version that will be edited, the old version(s) remains untouched. This is how eZ publish
keeps track of changes made by various users. An accidental or unwanted change can thus be
undone by simply reverting an object back to the previous version.

Version limitations

Since every edit procedure results in the creation of a new version (unless the new version is dis-
carded), the database can be quickly filled up by different versions of the same content. In order
to prevent this problem, the versioning system can be limited to a certain number of versions
per object. It is possible to assign different version limitations for different object types (differ-
ent classes). The default limitation is 10, which means that every object can have a maximum
number of 10 versions of its content. If the maximum count is reached, the oldest version will be
automatically deleted and thus a free slot will be available for the new one. This is the default
behavior. An alternative setting can be used to disallow the creation of new versions until an

2.3.5 Content management / Object versioning 111

existing version is manually deleted by a user.

Version structure

A version consist of the following elements:

* Version number
* Creation time

* Modification time
* Creator

e Status

e Translations

Version number

Every version has a unique version number. This number is used by the system to organize and
keep track of the different versions of an object. The version number is automatically increased
for each version that is created inside an object.

Creation time

The creation time contains a timestamp pinpointing the exact date and time when the version
was initially created. This information is set by the system and will remain the same regardless
of what happens to the version.

Modification time

The modification time contains a timestamp revealing the exact date and time when the version
was last modified. This information is set by the system every time the version is stored and
when the version is finally published. When a version is published, the modification time of the
object itself will be updated (it will simply be set to the same value as modification time of the
version that was published).

Creator

The version’s creator contains a reference to the user that created the version. Although a content
object can only belong to a single user (revealed by the "Owner” field), each version may belong
different users. The creator reference is set by the system when the version is created. It can not
be manipulated and will not change even if the user who created the version is removed from
the system.

2.3.5 Content management / Object versioning 112

Status

The state of a version is determined by its status. There are five possibilities:

Draft (0)

Published (1)
* Pending (2)

Archived (3)
* Rejected (4)

In eZ Publish versions 3.8 and later, there is an additional possibility: if a version of a content
object is created but not modified (for example, if someone clicked an "Add comments” button
but didn’t actually post anything), the status of the version will be "Internal draft (5)”. In the
administration interface, status ”5” drafts are called "untouched drafts”. From 3.9, you can set
the number of days, hours, minutes and seconds before an internal draft is considered old and
removed by the ”internal_drafts_cleanup.php” cronjob script. Another cronjob script called ”old_
drafts cleanup.php” can be configured to remove status ”"0” drafts that have been in the system
for a specified period of time.

A newly created version is a draft. This status will remain until that version becomes published.
Although an object can have many versions, there can only be one published version (the others
are usually drafts and archived versions). The published version can be considered as the "cur-
rent” version and it is the one that is accessed when the object is viewed. A published version can
not become a draft. However, it will become archived as soon as another version is published.
The following illustration shows how the versioning system actually works.

(see figure 2.8)

The illustration above shows the most common states of a content object. When a new object
is created (step 1), eZ publish will also create a new draft version. Because the object has not
been published yet, its status is set to draft and the current version is unknown. Storing the draft
(steps 2a and 2b) will not change the state of the object. The only thing that will happen is
that the contents of the draft will be stored in version 1. If the draft (which is the only existing
version) is discarded, the object is completely removed from the system (step 2c). When the
draft is published (step 2), both the draft and the object’s states will be set to published. In
addition, the current version will be set to 1, which reveals the currently published version of
the object. When published, the contents of the object can be viewed by others. A published
object can be removed/deleted from the system (step 3a). When removed, the object’s state will
be set to ”Archived” and thus it will be in the trash. The object can be recovered from the trash
to its previous state. Among other things, this involves the status field being set to “Published”
again. When a published object is edited (step 4), the current version (version 1 in this case) will
remain untouched and a completely new version will be created. The contents of the new version
(version 2 in this case) will be a copy of the contents of the current version. Again, storing the
draft (steps 4b and 4c) will not change the state of the object. If the draft is discarded (step 4a),
it will be completely removed from the system and thus the object will be in the exact same state

2.3.5 Content management / Object versioning 113

OBJECT STATES

New object

Store
draft Status: Draft
Store c o Discard draft
urrent version:
& exit @B
d{_‘) Publish

TRASH

Status: Published

. Current version: 1 @ Status: Archived
Discard

draft (_4a) Remove Version |: Published
Edit
Current version: 1

Status: Published

Store Current version: 1
& exit
@ Publish Status: Archived
Version 1; Archived
Status: Published

Remove Current version: 2

Current version: 2

Figure 2.8: Overview of the object states.

as it was in before it was edited. If the newly created and edited draft is published, it will become
the current version of the object and thus the previous version (version 1 in this case) will be
set to "Archived”. Step 5a illustrates what would happen if the object (now with two versions)
would be removed.

The pending and the rejected states are used by the collaboration system. When a version is
waiting to be approved by an editor, the status is set to pending. If the version is approved, it will
be automatically published and thus the status will be set to published. On the other hand, if a
pending version is rejected by the editor, the status will be set to rejected.

A version can only be edited if it is a draft and it can only be edited by the same user who initially
created it. In addition, rejected versions can also be edited. When a rejected version is edited, it
will become a draft. Published and archived versions can not be edited. However, it is possible
to make copies of them. When a published or an archived version is copied, the status of the
copy is set to draft and thus it becomes editable. When/if the new draft is published, the system
automatically sets the status of the previously published version to archived and the new draft
will become the published version.

2.3.5 Content management / Object versioning 114

Translations

The actual contents of a version is stored inside different translations. A translation is a repre-
sentation of the information in a specific language. In other words, the translation layer allows a
version of the object’s actual contents to exist in different languages. A version always has at least
one translation of the content (which represents the data in the default/standard language).

2.3.6 Content management / Multiple languages 115

2.3.6 Multiple languages

In addition to the versioning system, the content model of eZ publish also provides a built-in
multilanguage framework. This feature allows an object’s contents to exist in several languages.
The system is able to support up to 30 different languages at the same time.

The multi-language feature provides a generic one-to-one translation mechanism that can be used
to translate any kind of content. A one-to-one translation solution makes it possible to represent
the exact same content in multiple languages. For example, when a news article is available in
English, Norwegian and Hungarian (same content in all three cases), we say that we have one-
to-one translation of the content. The translation mechanism is completely independent of the
datatypes. In other words, any kind of content can be translated regardless of the datatypes that
are used to realize the content’s structure. It is possible to start with only one language and when
time comes, add translations and thus extend the spectrum of the target audience.

The following illustration shows a simplified example of an object with two versions where each
version exists in several languages. A language in this case is often referred to as a translation.

(see figure 2.9)

ARTICLE OBJECT

SYSTEM SPECIFIC ELEMENTS

Element Value

Object ID 13
Name "The penguin has a megaphone”
Type Article
[...] [...]

WVERSIONS

Version Language Attributes and content

1 Title: : Penguins and megaphones

English Intra: First draft
Body: [8lah, blah, blah..

Version Language Attributes and content
2 Title: [The penguin has a megaphone
Engl ish IAtro: | He knaws haw to use it

Body: "5 watch ount”

Title: | Fingwinen har en megafan

Norwegian Intro: | Han ver bvordan den brukes
Body! {"sa pass dere!”

Figure 2.9: Content object structure (with versions and translations).

As the illustration indicates, each version can have a different set of translations. At minimum,
a version always has one translation which by default is the initial’main translation. The initial/
main translation can not be removed. However, if the object exists in several languages, it is
possible to select which of the translations that should be initial/main and thus the previous
initial/main translation can be removed.

2.3.6 Content management / Multiple languages 116

It is important to note that from 3.8, when a user edits an object, it is no longer the entire
version that gets edited. Instead, a combination of a version and a translation that is edited. This
approach avoids the locking of entire versions (along with all the translations) and thus it allows
multiple translators to work with the same content in several languages at the same time.

The global translation list

An object can only be edited/translated using languages that exist in the global translation list.
Initially, this list contains the languages that were selected during step six of the setup wizard.
Additional languages can be added at any time while the site is up and running. The following
screenshot shows the global translation list as it appears in the administration interface (under
”Setup” and “Languages”).

(see figure 2.10)

Available languages for translation of content [3] ‘

%| Language Country Locale Translations
| Enalish (United Kingdom) United Kingdom eng-GB 31
[~ M German Germany ger-DE 0
[~ & Nowegian (Bokmal) MNorway nor-NO 0
| Remove selec i | Add 1anguag ‘

Figure 2.10: The list of existing languages for translation of content

The global translation list simply keeps track of the languages that users are allowed to use when
editing/translating content. A translation added to the list will immediately become available for
use. Note that from 3.8, it is no longer possible to remove languages from the global translation
list unless they are not used by any objects. The global translation list is capable of handling up
to 30 languages.

Differences between 3.8 and earlier versions

In eZ publish 3.7 and earlier versions, objects had to be created in the primary language before
they could be translated to additional languages. Multiple translators could not work simultane-
ously because the edit process locked the entire version which also contained the translations.

In eZ publish 3.8, the primary language concept is gone and thus objects can be created using
different languages. This means that you can for example have an article available only in English
and another article available only in Norwegian. Multiple translators can work on the same
object because when editing, they actually edit the translation itself instead of the entire version.
This means that if you have written an article in English, different translators can go ahead and
add translations (for example Hungarian, Norwegian and Russian) to the object simultaneously.
They no longer have to wait for eachother because they can work with different translations at
the same time on the same object. However, this also means that a user can no longer work with

2.3.6 Content management / Multiple languages 117

multiple translations at the same time. The problem is that the user must leave the edit interface
in order to be able to add (and then edit) new translations for an object. There are some other
drawbacks as well. For example, unless a user is editing the very first version of an object, it is no
longer possible to change the object’s locations from the edit interface. However, the locations
can still be changed using the "Locations” window when the object isn’t being edited.

Whenever an object is published, the system automatically collects all the latest translations that
the previous version(s) of the object contains and puts them into the version being published.
The result is a version that contains all the up-to-date translations. The contents of an object can
be translated to a maximum number of 30 languages.

Please refer to the "Updating INI settings for multi-language” part of the "Upgrading from 3.6.x
(3.7.x) to 3.8.0” page for information about multi-language related INI settings.

Multilingual classes

From 3.9, it is possible to translate the class names and the attribute names. In other words, you
can for example have ”Car” and ”Bil” as class names in English and Norwegian along with "Top
speed” and "Topphastighet” as attribute names. Refer to the ”"Translatable class attributes (page
252)” documentation page for more information.

Non-translatable attributes

The data structure defined by a class is built up of attributes where each attribute is represented
by a datatype. Among other things, an attribute of a class can be made translatable or not. If an
attribute is translatable, the system will allow the translation of its contents when an object of
that class is being edited. This is typically convenient when the attribute contains actual text. For
example, the written part of a news article can be translated into different languages. However,
some attributes are non-translatable by nature. This is typical for images without text, numbers,
dates, e-mail addresses and so on. Such attributes can be made non-translatable and thus their
contents will simply be copied from the initial/main translation. The copied values can not be
edited.

For example, let’s say that we need to store information about furniture in multiple languages.
We could build a furniture class using the following attributes: name, photo, description, height,
width, depth and weight. Allowing the translation of anything else then the description attribute
would be pointless since the values stored by the other attributes are the same regardless of the
language used to describe the furniture. In other words, the name, photo, height, width, depth
and weight would be the same in for example both English and Norwegian. Conversion between
different measuring units would have to be done within the template that is used to display the
information.

Access control

It is possible to control whether a user (or a group of users) should be able to translate content
or not. This policy can be controlled on a class, section, language and owner basis. In particular,

2.3.6 Content management / Multiple languages 118

the language limitation makes it possible to control which user (or user groups) should be able
to edit and/or translate different parts of the content using different languages. In addition, it is
also possible to control access to the global translation list. This makes it possible to allow users
other than the site administrator to add and remove translations on a global basis.

Please refer to the multi-language (page 238) part of the features section for further details.

2.3.7 Content management / The content node 119

2.3.7 The content node

When the system is in use, new content objects are created on the fly. For example, when a news
article is composed, a new article object is created. Obviously, the content objects can’t just hover
around in space, they have to be organized in some way. This is where the nodes and the content
node tree comes in. A content node is nothing more than an encapsulation of a content object. In
eZ publish, every object is usually represented by one or more nodes. The following illustration
shows a simplified example of a node and a corresponding object (which is referenced by the
node) as it would have been represented inside the system.

(see figure 2.11)

OBJECT NODE

Figure 2.11: Object - node relation

The content node tree is built up of nodes. A node is simply a location of an object within the
tree structure. The tree is the actual mechanism used to hierarchically organize the objects that
are present on the system. The content node tree is explained in the next section.

Node structure

A content node consists of the following elements:

* Node ID

e Parent node ID
* Object ID

* Sort method

* Sort order

* Priority

Node ID

Every node has a unique identification number. The ID numbers are used by the system to
organize and keep track of the different nodes. These ID numbers are not recycled. In other
words, if a node is deleted, the ID number of that node will not be reused when a new node is
created.

2.3.7 Content management / The content node 120

Parent node ID

The parent node ID of a node reveals the node’s superior node in the tree.

Object ID

Every object that exists in the system has a unique identification number. The object ID of a node
pinpoints the actual object that the node encapsulates.

Sort method

The sorting method of a node determines how the children of the node should be sorted. The
following sorting methods are possible:

Method ID Description

Class identifier 6 The nodes are sorted by the
class identifiers of the ob-
jects.

Class name 7 The nodes are sorted by the
class names of the objects.

Depth 5 The nodes are sorted by their

depth in the tree. A node fur-
ther down in the three has
a higher level of depth. The
root node has a depth of 1.

Modified 3 The nodes are sorted by the
modification time of the ob-
jects.

Modified subnode 10 The nodes are sorted based

on the modification time of
their children.

Name 9 The nodes are sorted by the
names of the objects.

Path 1 The nodes are sorted by their
path strings.

Priority 8 The nodes are sorted by their

priority. Every node has a
priority field that can be set
by the user. This solution al-
lows the nodes to be sorted
in a custom order. The prior-
ity field is described below.

Published 2 The nodes are sorted by the
creation time of the objects’

2.3.7 Content management / The content node 121

current/published versions.
Section 4 The nodes are sorted by the
section IDs of the objects.

Please note that it is possible to combine the available sort methods in order to sort nodes in a
more complex way. However, since a node is incapable of “remembering” a combination (you
can only set one method and one order for each node), this has to be done in the templates.

Sort order

The sorting order determines the order in which the children of the node should be sorted. There
are two possibilities:

* Descending (0 / FALSE)

* Ascending (1 / TRUE)
For example, if the sorting method is set to "Name” and the sort method is set to "Ascending”,

the underlying nodes will be alphabetically sorted from A to Z. If the sort method is set to "De-
scending”, the underlying nodes will be sorted from Z to A.

Priority

The priority field allows a user to assign both positive and negative integer values to a node (zero
is also allowed). This field makes it possible to sort nodes in a custom way. If the sorting method
of a node is set to "Priority”, the children of that node will be sorted by their priorities.

2.3.8 Content management / The content node tree 122

2.3.8 The content node tree

The content node tree is a hierarchical organization of the objects. Each leaf in the tree is a node
(also known as a location). Each node refers to one object. The usual case is that an object is
referenced by only one node. Because of the node-encapsulation of objects, any type of content
object can be placed anywhere in the tree. At the minimum, the tree consists of one node, called
the root node. The identification number of the root node is 1. The root node is a virtual node,
it does not encapsulate an actual object. A node that is directly below the root node is called a
top level node (the top level nodes are described in the next section). The depth and width of the
tree is virtually unlimited. The following illustration shows a simplified example of how objects
are referenced by nodes which together make up the content node tree.

(see figure 2.12)

OBJECTS NODES

N

“
3341 JA0N LNILNOD

Figure 2.12: Objects, nodes and the content node tree

The following illustration shows the same node structure seen from the outside world.

(see figure 2.13)

Multiple locations

An object may be referenced by several nodes, which means that the same object can appear at
different locations within the tree. This feature can for example be used to place a specific news
article at two locations: the frontpage and the archive. In the case of multiple nodes/locations,
only one node can be considered as the main node of an object. The main node usually represents
the object’s original location in the tree. The other nodes can be thought of as additional nodes /
locations. If an object is referenced by a single node then of course that node would be the main
node. Among other things, the main node is used to avoid multiple search hits, infinite recursive
loops, smart filtering, etc. The following illustration shows an example of a structure where an
object has multiple locations in the tree. It will simply be empty and will have the possibility to
contain a different set of sub items.

(see figure 2.14)

2.3.8 Content management / The content node tree 123

CONTENT NODE TREE

/N
/N

Name: About Name: Contact
Type: Article Type: Article
Object ID: 33 Object ID: 34
Node ID: 47 Node ID: 48

Figure 2.13: Content node tree

OBJECTS NODES

e N

3341 JA0ON LNILNOD

Figure 2.14: Objects, node and the content node tree - multiple locations

The following illustration shows the same node structure seen from the outside world.

(see figure 2.15)

Pitfall

A very common mistake when planning the structure of a site is thinking of multiple locations
as shortcuts/links on a filesystem. Unfortunately, this is not how the node tree works. When
a new location is added to an object, eZ publish will not go through and create replica of the
node structure below the object’s original location. For example, if a folder containing several
subfolders with articles, images, etc. is assigned a secondary location, the subfolders with articles,
images, etc. will not be automatically available below the new location of the folder.

2.3.8 Content management / The content node tree 124

CONTENT NODE TREE

7N
\.._ 7N

Name: Contact
Type: Article
Object ID: 33
Mode ID: 48

Figure 2.15: Content node tree with multiple locations

Additional notes

Only published objects appear in the tree. A newly created object (status set to draft) does not
get a node assignment until the object is published for the first time. An object is considered
to be deleted (status set to archived) when all nodes referencing that object are removed from
the tree. A deleted object will appear in the system trash. It is important to understand that
the trash in eZ publish is a flat structure. This is different from what people are used to from
the trash implementation in modern operating systems. Objects in the trash can be recovered
to their original locations. However, this is only possible if their original parent nodes have not
been deleted. Otherwise, the user must specify a new/alternate location for the objects during
recovery. Note that specifying an alternate/new location can be done regardless if the system is
able to restore a deleted object at its original location or not.

Furthermore, if a folder containing some news articles is deleted, both the folder and the articles
will appear on the same level within the trash. Recovering the folder itself will not bring back the
articles since the links between the folder and the articles got lost when the nodes were deleted.
In this case, the folder needs to be recovered first. After that, each article has to be manually
recovered and given a location.

2.3.9 Content management / Top level nodes 125

2.3.9 Top level nodes

A typical eZ publish installation comes with the following set of top level nodes:

* Content
* Media
¢ Users
* Setup

* Design

The top level nodes can not be deleted. However, they can be swapped with other nodes. The
swap function can be used to change the type of a top level node. For example, the "Content”
node references a folder object. By swapping it with another node which refers to a different kind
of object, it is possible to change the type of the top level node itself. The following illustration
shows the virtual root node and the standard top level nodes:

(see figure 2.16)

/7
-

-

-

—

-

Figure 2.16: Top level nodes

Content

The actual contents of a site is placed under the "Content” node. This node is typically used for
organizing folders, articles, information pages, etc. and thus defines the actual content structure
of the site. A sitemap can be easily created by traversing the contents of this top level node.
The default identification number of the "Content” node is 2. The contents of this node can be
viewed by selecting the "Content structure” tab in the administration interface. By default, this
node references a "Folder” object.

Media

The "Media” node is typically used for storing and organizing information that is frequently
used by the nodes located below the "Content” node. It usually contains images, animations,
documents and other files. For example, it can be used to create an image gallery containing

2.3.9 Content management / Top level nodes 126

images that are used in different news articles. The default identification number of the "Media”
node is 43. The contents of this node can be viewed by selecting the "Media library” tab in the
administration interface. By default, this node references a "Folder” object.

Users

The built-in multiuser solution makes use of the native content structure of eZ publish. An actual
user is just an instance of a class that contains the “User account” (page 542) datatype. The user
nodes are organized within "User group” nodes below the ”"Users” top level node. In other words,
this node contains the actual users and user groups. The default identification number of the
“Users” node is 5. The contents of this node can be viewed by selecting the "User accounts” tab
in the administration interface. By default, this node references a "User group” object.

Setup

The ”Setup” node contains miscellaneous nodes related to configuration and is used internally.
The default identification number of the ”Setup” node is 48. By default, this node references a
“Folder” object.

Design

The ”"Design” node contains miscellaneous nodes related to design issues and is used internally.
The default identification number of the “Design” node is 58. By default, this node references a
“Folder” object.

2.3.10 Content management / Node visibility 127

2.3.10 Node visibility

Since publishing means adding an object (by the way of a node) to the content tree, unpublishing
would imply the removal of the object from the tree. Once an object is published, it can not be
unpublished because eZ publish does not provide such a feature. Instead, the system provides a
hiding mechanism which can be used to change the visibility of nodes. The hide feature makes it
possible to prevent the system from displaying the contents of published objects. This is achieved
by denying access to the nodes. A single node or a subtree of nodes can be hidden either by a
user or by the system. A node can have one of the following visibility statuses:

¢ Visible
e Hidden

* Hidden by superior

All nodes are visible by default and thus the objects they reference can be accessed. A user
can hide or unhide a node using the administration interface. Once a node is hidden, all its
descendants will automatically be marked "Hidden by superior” and thus the descendants will
also become hidden. A node can not become visible if its parent is hidden.

A hidden node will not be available unless the ”ShowHiddenNodes” directive within the ”[SiteAc-
cessSettings]” block of a configuration override for "site.ini” is set to true. The most common way
to use this setting is to disallow all but the administration interface to show hidden nodes.

Implementation

Each node has two flags: "H” and ”X”. While "H” means ”hidden”, ”X” means "invisible”. The
hidden flag reveals whether the node has been hidden by a user or not. A raised invisibility flag
means that the node is invisible either because it was hidden by a user or by the system. Together,
the flags represent the three visibility statuses that were described above:

H X Status

- - The node is visible.

1 1 The node is invisible. It was
hidden by a user.

- 1 The node is invisible. It

was hidden by the system be-
cause its ancestor is hidden/
invisible.

If a user tries to hide an already invisible node then the node’s hidden flag will be set in addition
to the invisible flag. If a node is hidden and its parent becomes visible, the node will remain
hidden while the descendants will remain invisible. The following illustrations show how the
node hiding algorithm works.

2.3.10 Content management / Node visibility 128

Case 1: Hiding a visible node

The following illustration shows what happens when a visible node is hidden by a user. The node
will be marked hidden. Underlying nodes will be marked invisible (hidden by superior). The
visibility status of underlying nodes already marked hidden or invisible will not be changed.

(see figure 2.17)

BEFORE AFTER

s A Vi \
rd hY i N,

Invisible Invisible

V4
/s

Invisible

Invisible Invisible

Figure 2.17: Hiding a visible node

Case 2: Hiding an invisible node

The following illustration shows what happens when an invisible node (hidden by superior) is
explicitly hidden by a user. The node will be marked as hidden. Since the underlying nodes are
already either hidden or invisible, their visibility status will not be changed.

(see figure 2.18)

BEFORE AFTER

Invisible Invisible Invisible
Invisible Invisible

Invisible Invisible

Figure 2.18: Hiding an invisible node

2.3.10 Content management / Node visibility 129

Case 3: Unhiding a node with a visible ancestor

The following illustration shows what happens when a user unhides a node that has a visible
ancestor. Underlying invisible nodes will become visible. An underlying node that was explicitly
hidden by a user will remain hidden (and its children will be remain invisible).

(see figure 2.19)

BEFORE AFTER

7
4

Invisible
Invisible

Invisible Invisible

Figure 2.19: Unhiding a node with a visible ancestor

Case 4: Unhiding a node with an invisible ancestor

The following illustration shows what happens when a user unhides a node that has an invisible
ancestor. Since the target node is unhided in a subtree that is currently invisible (because a node
further up in the hierarchy has been explicitly hidden), the node will not become visible. Instead,
it will be marked as invisible and will become visible when the hidden superior node is unhided.

(see figure 2.20)

BEFORE AFTER

i AY
s A

Invisible Invisible Invisible Invisible
\ / AN M / A

i

Invisible nvisible Invisible

Figure 2.20: Unhiding a node with an invisible ancestor

2.3.11 Content management / Object relations 130

2.3.11 Object relations

The content model of eZ publish makes it possible to create relations between different objects.
Any type of object can be connected to any other type of object. This feature is typically useful in
situations when there is a need to bind and/or reuse information that is scattered around in the
system.

For example, the concept of related objects makes it possible to add images to news articles.
Instead of using a fixed set of image attributes, the images are stored as separate objects outside
the article. These objects can then be related to the article and used directly in attributes repre-
sented by the "XML block” (page 544) datatype. This approach is quite flexible because it does
not enforce any limitations when it comes to the amount and the type of information that is to
be included.

Relation types

A relation between two objects can be created either at the object level or at the object attribute
level. The system stores the different types of relations using the same database table. An object
can not have a relation to itself.

Relations at the object level

In eZ Publish 3.8 and earlier versions, the relations at the object level were generic and could not
be grouped in any way. From 3.9, there are three types of relations at the object level:

¢ Common

e XML linked

¢ XML embedded

Common

A relation of the "common” type is created when a user manually adds a content object to the
related object list of another object. (In most cases, this is done by using the "Related objects”
window in the object edit interface.) This method is always available for use.

XML linked

Whenever an internal link (a link to other node or object) is inserted into an attribute represented
by the "XML block (page 544)” datatype, the system will automatically create a relation of the
”XML linked” type. Note that a relation of this type is automatically removed from the system
when the corresponding ”link” tag is removed from the content.

2.3.11 Content management / Object relations 131

XML embedded

Whenever an “embed” tag is inserted into an attribute of the XML block (page 544)” datatype,
the system will automatically create a relation of the "XML embedded” type, i.e. relate the
embedded object to the one that is being edited. Note that a relation of this type is automatically
removed from the system when the corresponding "embed” tag is removed.

Relations at the attribute level

Relations of this type will be automatically generated whenever the "Object relation” (page 515)
or the "Object relations” (page 517) datatypes are used. While the first one allows only a single
relation, the second allows multiple relations. There is no grouping of the relations. However, by
making use of several attributes that are represented by one of these datatypes, it is possible to
create a custom structure with grouped relations.

2.3.12 Content management / Sections 132

2.3.12 Sections

A section is a number that can be assigned to an object. The section ID of an object denotes
which section the object belongs to. Each object can belong to one section. By assigning different
sections to objects, it is possible to have different groups of objects. Although the sectioning
mechanism is implemented at the object level, it is more likely to be used in conjunction with the
content node tree. This is why the administration interface makes it possible to manage sections
on the node level. Using sections makes it possible to:

* Segment the node tree into different subtrees

* Set up custom template override rules

e Limit and control access to content

* Assign discount rules to a group of products

A default eZ publish installation comes with the following sections:

ID Name Description

1 Standard The ”Standard” section is the
default section. The ”Con-
tent” top level node makes
use of this section.

2 Users The ”Users” section is dedi-
cated for user accounts and
user groups that exist on the
system. The "Users” top level
node makes use of this sec-

tion.

3 Media The "Media” section is used
by the ”Media” top level
node.

4 Setup The ”Setup” section is used
by the ”Setup” top level
node.

Section definitions can be added, modified and removed using the administration interface. The
following illustration shows an example of how the section feature can be used to segment the
content node tree.

(see figure 2.21)
Behavior
When a new object is created, its section ID will be set to the default section (which is usually

the standard section). When the object is published, it will automatically inherit the section that
is assigned to the object encapsulated by the parent node. For example, if an object is created in

2.3.12 Content management / Sections 133

SECTION 1:
Main
/ 3
/
N\
/ N\
SECTION 2: Article SECTION 3:
News Company
/ N\ / N
4 AN AN
/ \ \ \

Figure 2.21: Example of sections.

a folder that belongs to section 13, the section ID of the newly created object will be set to 13. If
an object has multiple node assignments then it is always the section ID of the object referenced
by the parent of the main node that will be used. In addition, if the main node of an object with
multiple node assignments is changed then the section ID of that object will be updated.

The administration interface makes it possible to assign sections to objects using the node tree.
When a section is assigned to a node, the section ID of the object referenced by that node will be
updated. In addition, the section assignment of all subsequent children of that node will also be
changed. For example, if the section ID of a folder containing news articles is changed, then the
section ID of the articles in that folder will also be changed.

The removal of sections may corrupt permission settings, template output and other things in the
system. In other words, a section should only be removed if it is completely unused. When a
section is removed, it is only the section definition itself that will be removed. Other references
to the section will remain and thus the system will most likely be in an inconsistent state. The
section ID numbers are not recycled. If a section is removed, the ID number of that section will
not be reused when a new section is created.

2.3.13 Content management / URL storage 134

2.3.13 URL storage

Every address that is input as a link into an attribute using the XML block” (page 544) or the
"URLY (page 540) datatype is stored in a separate part of the database. Actual data stored using
these datatypes only contain references to entries in the separate URL table. This feature makes
it possible to inspect and edit the published URLs without having to interact with the content
objects. The addresses in the URL table can be checked by running the ”linkcheck.php” script
(which is also executed by the cronjob script) that comes with eZ publish. This script will simply
check if the links in the table actually work by accessing them one by one. If the target server
of a URL returns an invalid response (404 Page not found, 500 Internal Server Error, 403 Access
Denied, etc.) or if there is simply no response, the URL will be marked invalid. Invalid URLs and
the objects that are using them can be easily filtered out and edited using the "URL management”
part of the administration interface. An entry in the URL table consists of the following data:

e ID

* Address

* Creation time

* Modification time
* Last checked

e Status

Every URL has a unique identification number. The address contains the actual link. The creation
time is the exact date/time when the object containing that URL was published. The modification
time is updated every time the URL is changed using the URL management part of the admin-
istration interface (and not when the object containing that URL is edited). Whenever a URL
is checked by the script, the last checked field will be updated. The status of a URL can be ei-
ther valid or invalid. By default, all URLs are valid. When the cronjob script is running, it will
automatically update the status of the URLs. If a broken link is found, its status will be set to
”invalid”. Whenever an already existing URL is stored, the system will simply reuse the existing
entry in the table.

Please note that the link check script must be able to contact the outside world through port 80.
In other words, the firewall must be opened for outgoing HTTP traffic from the web server that
is running eZ publish.

2.3.14 Content management / Information collection 135

2.3.14 Information collection

The information collection feature makes it possible to gather user input when a node referencing
an information collector object is viewed. It is typically useful when it comes to the creation of
feedback forms, polls, etc.

An object can collect information if at least one of the class attributes is marked as an information
collector. When the object is viewed, each collector attribute will be displayed using the chosen
datatype’s data collector template. Instead of just outputting the attributes’ contents, the collec-
tor templates provide interfaces for data input. The generated input interface depends on the
datatype that represents the attribute. The following table reveals the datatypes that are capable
of collecting information.

Datatype Input interface Input validation
Checkbox (page 467) Checkbox. No.
E-Mail (page 475) Single line of text. Yes.
Option (page 522) Radio buttons or a dropdown | No.
menu.
Text block (page 534) Multiple lines of unformatted | No.
text.
Text line (page 536) Single line of unformatted | No.
text.

The input interfaces must be encapsulated by an HTML form that posts the data using a submit
button named ”ActionCollectInformation” to ”/content/action” (the ”action” (page 724) view of
the “content” (page 624) module). The submitted data will be stored in a dedicated part of the
database, separated from but related to the object itself. In addition, whenever the object collects
any data, the information can be sent to a specified E-mail address. The ”Collected information”
section within the ”Setup” part of the administration interface can be used to view and delete
information that was collected through content objects.

2.4 Configuration 136

2.4 Configuration

This section explains the configuration model of eZ publish. The default configuration files end
with a ”.ini” extension and are located in the ”/settings” directory. Each file controls the behavior
of a specific part of the system. For example, the ”content.ini” file controls the behavior of the
content engine, the "webdav.ini” file controls the behavior of the WebDAV subsystem, and so
on. The main and most important configuration file is called ”site.ini”. Among other things, it
tells eZ publish which database, design, etc. that should be used. The default configuration files
contain all the possible directives (with default settings) along with brief explanations. These
files files should only be used for reference. In other words, they should never be modified.
The ”Configuration files” (page 1438) section of the reference chapter contains a comprehensive
explanation of the different configuration files and their settings.

File structure

An eZ publish configuration file is divided into blocks, each block contains a collection of settings.
The following example shows a part of the main (site.ini) configuration file.

This line contains a comment.
[DatabaseSettings]
Server=localhost

User=allman

Password=qwerty
Socket=disabled
SQLOutput=enabled

This line contains another comment.
[ExtensionSettings]
ActiveExtensions[]=ezdhtml
ActiveExtensions[]=ezpaypal

The example above shows two blocks: "DatabaseSettings” and "ExtensionSettings”. Each block
has several settings which control the behavior of the system. A setting can usually be set to
enabled/disabled, a string of text or an array of strings. If the name of a setting ends with a pair
of square brackets, it means that the setting accepts an array of values. In the example above,
the ”ActiveExtensions” setting tells eZ publish to use two different extensions: ”ezdhtml” and
”paypal”. Lines starting with a hash are treated as comments.

Configuration overrides

As pointed out earlier, the default configuration files should never be modified because they will
most likely be overwritten by a new set of files during an upgrade. Making a backup will still
not be sufficient because the configuration settings change over time. For example, a previous

2.4 Configuration 137

version of the files will not contain settings that were recently added. Because of these issues,
custom configuration settings must be placed elsewhere. Global configuration overrides can be
placed in the ”/settings/override” directory . The settings of the configuration files located in this
directory will override the default settings. The name of the configuration files in the override
directory must end with one of the following extensions:

* .ini.append

e .ini.append.php

If an override configuration file exist with both ”.ini.append” and ”.ini.append.php” extensions,
eZ publish will process the one which ends with ”.php”. Because of possible security issues, the
latter (.ini.append.php) should be used; specially if eZ publish is running in a non virtual host
environment. The ”.php” extension will trick the web server into handling the configuration file
as a PHP script. If someone attempts to read it using a browser, the server will not display the
contents. Instead, it will attempt to process it as PHB which again will not produce any output
since the configuration settings are commented out (see below). This method makes it more dif-
ficult for a hacker to get access to the configuration settings (for example the database password)
by attempting to access one of the configuration files from outside. In order for this to work,
the contents of the configuration file must be encapsulated by a pair of PHP comment markers:
/* and */. The following example shows how an override (for example "test.ini.append.php”)
should be set up:

<7php /* #7ini charset="utf-8"7
These are my example settings
[ExampleSettings]

ExampleSettingOne=enabled
ExampleSettingTwo=disabled

x/ 7>

The ”charset” directive reveals the character set that was used to construct the ini file (usually
UTE-8).

2.4.1 Configuration / Site management 138

2.4.1 Site management

A single eZ publish installation is capable of hosting multiple sites by making use of something
called the siteaccess system. This system makes it possible to use different configuration settings
based on a set of rules. The rules control which group of settings that should be used in a
particular case. The siteaccess rules must be specified in the global override for the site.ini
configuration file (”/settings/override/site.ini.append.php”).

Siteaccess

A collection of configuration settings is called a siteaccess. When a siteaccess is in use, the de-
fault configuration settings will be overridden by the settings that are defined for the siteaccess.
Among other things, a siteaccess dictates which database, design and var directory that should
be used (these are sometime referred to as "resources”). By making use of different siteaccesses,
it is possible to combine different content and designs. A typical eZ publish site consists of two
siteaccesses: a public interface for visitors and a restricted interface for administrators. Both
siteaccesses use the same content (same database and same var directory) but they use different
designs. While the administration siteaccess would most likely use the built in administration
design, the public siteaccess would use a custom design. The following illustration shows this
scenario.

(see figure 2.22)

ACCESS RULES

Match criteria Siteaccess
- www.example.com public
o | -
admin.example.com admin

SITE ACCESSES

public admin
N, /’
. Database: example Database: example
' Design: public Design: admin A

Var: example Var: example
[[

/ \ .
K \ | —a

| ¥ % -
s
=
a
DATABASE DESIGNS VAR DIRECTORY a

Figure 2.22: Example of a setup with two siteaccesses.

A siteaccess is nothing more than a set of configuration files that override the default settings
when the siteaccess is used. A single eZ publish installation can virtually host an unlimited
number of sites by the way of siteaccesses. The configuration settings for a siteaccess are lo-
cated inside a dedicated subdirectory within the ”/settings/siteaccess” directory. The name of

2.4.1 Configuration / Site management 139

the subdirectory is the actual name of the siteaccess. (Please note that siteaccess name should
only contain letters, digits and underscores.) The following illustration shows a setup with two
siteaccesses: admin and public.

(see figure 2.23)

=11 eZ publish
=] settings
= [:l siteaccess
21 admin
[~ public

Figure 2.23: Siteaccess directory example.

When a siteaccess is in use, eZ publish reads the configuration files using the following sequence:

1. Default configuration settings (/settings/*.ini)
2. Siteaccess settings (/settings/siteaccess/[name_of siteaccess]/*.ini.append.php)

3. Global overrides (/settings/override/*.ini.append.php)

In other words, eZ publish will first read the default configuration settings. Secondly, it will
determine which siteaccess to use based on the rules that are defined in the global override for
“site.ini” (”/settings/override/site.ini.append.php”). When it knows which siteaccess to use, it
will go into the directory of that siteaccess and read the configuration files that belong to that
siteaccess. The settings of the siteaccess will override the default configuration settings. For ex-
ample, if the siteaccess uses a database called ”Amiga”, the system will see this and automatically
use the specified database when an incoming request is processed. Finally, eZ publish reads the
configuration files in the global override directory. The settings in the global override directory
will override all other settings. In other words, if a database called "CD32” is specified in the
global override for ”site.ini” then eZ publish will attempt to use that database regardless of what
is specified in the siteaccess settings. If a setting is not overridden by either the siteaccess or from
within a global override then the default setting will be used. The default settings are set by
the ini files located in the ”/settings” directory. The following figure illustrates how the system
reads the configuration files using the ”site.ini” file as an example. As already mentioned, settings
placed in the override files will be used instead of the default ones.

(see figure 2.24)

2.4.1 Configuration / Site management 140

DEFAULT /settings/site.ini

SITEACCESS OVERRIDE /settings/siteaccess/example/site.ini.append.php

GLOBAL OVERRIDE /settings/override/site.ini.append.php

Final site.ini settings

Figure 2.24: Configuration override example.

2.4.2 Configuration / Extension siteaccess settings 141

2.4.2 Extension siteaccess settings

The extension siteaccess settings makes it possible to place siteaccess specific settings in the
extensions.

The directory structure must be as follows :
extension/<my_extension>/settings/siteaccess/<my siteaccess>/<file.ini.append.php>

Example:
extension/ezno/settings/siteaccess/ezno/override.ini.append.php :

<?php /*

[article_full_ezno]
Source=node/view/full.tpl
MatchFile=article/full.tpl
Match([class_identifier]=article
Subdir=templates

x/ 7>

Note:
All settings except debug settings and including/activating extensions can be set this way.

2.4.3 Configuration / Access methods 142

2.4.3 Access methods

Based on a set of rules, eZ publish determines which siteaccess it should use every time it pro-
cesses an incoming request. The rules must be set up in the global override for the site.ini
configuration file: ”/settings/override/site.ini.append.php”. The behavior of the siteaccess sys-
tem is controlled by the "MatchOrder” setting within the [SiteAccessSettings] block. This setting
controls the way eZ publish interprets the incoming requests. There are three possible methods:

e URI
e Host

¢ Port

The following text gives a brief explanation of the different access methods. Please note that the
access methods can be combined. The documentation page of the "MatchOrder” (page 1729)
directive reveals how this can be done.

URI

This is the default setting for the "MatchOrder” directive. When the URI access method is used,
the name of the target siteaccess will be the first parameter that comes after the “index.php” part
of the requested URL. For example, the following URL will tell eZ publish to use the "admin”
siteaccess: http://www.example.com/index.php/admin. If another siteaccess by the name of
”public” exists, then it would be possible to reach it by pointing the browser to the following
address: http