
Hardening tHe
internet
The impact and importance of DNSSEC

3

ManageMent SuMMary 5

reading guide 5

1 tHe doMain naMe SySteM: road SignS on tHe internet 7
	 1.1	 Purpose	of	DNS	 7

	 1.2	 History	 7

	 1.3	 The	solution:	the	Domain	Name	System	 7

	 1.4	 Resolving	an	IP-address	 8

2 WHy tHe doMain naMe SySteM iS inSecure 11
	 2.1	 Introduction	 11

	 2.2	 Changing	a	road	sign	 11

	 2.3	 Replacing	the	road	sign	company:	the	Kaminsky	attack	 12

	 2.4	 Patching	against	Kaminsky	 12

	 2.5	 Example:	breaking	the	PiggyBank	 13

	 2.6	 How	DNSSEC	solves	this	problem	 13

3 WHat iS dnSSec? 15
	 3.1	 Definition	 15

	 3.2	 Security	by	signing	 15

	 3.3	 Chains	of	trust	 15

	 3.4	 Trust	anchors	 16

	 3.5	 Islands	of	trust	 16

	 3.6	 Alternatives	 16

4 iMpleMenting dnSSec 18
	 4.1	 Introduction	 18

	 4.2	 Timeline	 18

	 4.3	 Strategy	for	rolling	out	DNSSEC	in	an	organisation	 19

5 concluSionS 21
	 5.1	 DNSSEC	provides	trust	in	DNS	responses	 21

	 5.2	 There	is	no	alternative	in	the	long	term	 21

	 5.3	 Managing	DNSSEC	is	different	from	managing	DNS	 21

	 5.4	 You	need	to	do	it	 21

6 acknoWledgeMentS 22

7 endorSeMentS 23

appendix a terMS and abbreviationS 25
	 A.1	 Terms	 25

	 A.2	 Abbreviations	 26

appendix b referenceS 27
	 B.1	 Further	reading	 28

appendix c tecHnical diScuSSion of dnSSec 29
	 C.1	 Introduction	 29

	 C.2	 DNSSEC	for	resolvers	 29

	 C.3	 DNSSEC	for	authoritative	name	servers	 30

appendix d outSourcing 34
	 D.1	 Introduction	 34

	 D.2	 Division	of	responsibilities	 34

	 D.3	 Protecting	against	vendor	lock-in	 34

appendix e alternativeS 35
	 E.1	 Introduction	 35

	 E.2	 The	DNS	arms	race	 35

	 E.3	 TSIG	and	SIG(0)	 35

	 E.4	 DNScurve	 36

	 E.5	 IPsec	 36

	 E.6	 SSL	or	TLS	 36

table of contentS

4

ManageMent SuMMary
reading guide

5

The	Domain	Name	System	(DNS)	is	one	of	the	basic	

building	blocks	of	the	Internet.	Vulnerabilities	in	the	

DNS	system	can	affect	the	security	of	the	entire		

Internet.

DNS	converts	logical	names	for	resources	on	the		

Internet	to	IP	addresses,	making	it	possible	for	a	user	

to	type	a	logical	name	(such	as	www.surfnet.nl)	

rather	than	an	IP	address	(such	as	194.171.26.203).	

It	has	been	known	for	a	long	time	that	DNS	has	a	

number	of	vulnerabilities	in	its	basic	design.	However,	

a	recent	exploit	(the	Kaminsky	attack,	see	[5])	has	

shown	how	easy	it	is	to	abuse	these	vulnerabilities,	

leading	to	a	renewed	sense	of	urgency	within	the		

Internet	community.

An	extension	to	DNS	has	been	developed	to	address	

its	vulnerabilities:	DNSSEC1.	Although	DNSSEC	has	

been	available	for	some	time	now,	deployment	has	

not	yet	taken	off	on	a	large	scale.	This,	however,	is	

changing	rapidly,	as	the	need	to	secure	DNS	has	be-

come	more	apparent	by	the	Kaminsky	attack.	This	

specific	attack	may	have	been	mitigated,	but	others	

are	likely	to	follow.

While	DNSSEC	deployment	can	be	complex,	tools	

are	now	available	which	handle	most	of	the	com-

plexity,	resulting	in	a	more	straightforward	implemen-

tation.	It	still	requires	an	organisation	to	make	chan-

ges	to	its	systems	and	to	its	processes	though.

In	the	long	run,	every	organisation	will	have	to	imple-

ment	DNSSEC.	However,	given	the	stage	of	develop-

ments,	only	organisations	with	relatively	high	levels	

of	technical	expertise,	like	universities,	research	cen-

tres,	banks,	ISPs	and	some	top-level	domain	admini-

strators	are	currently	implementing	it.	At	the	time	of	

writing,	a	number	of	top-level	domains2	have	imple-

mented	DNSSEC,	while	many	others	are	in	the	pro-

cess	of	implementation3.	Any	organisation	with	any	

kind	of	IT	infrastructure	should	at	least	be	planning	

an	implementation	at	some	time	in	the	near	future.

This	white	paper	is	aimed	at	decision-makers,	res-

ponsible	for	the	IT	infrastructure,	in	non-commercial	

institutes	and	commercial	enterprises.	It	explains,	at	

an	abstract	level,	how	the	current	DNS	is	vulnerable	

and	what	organisations	should	be	doing	about	it.

The	first	five	chapters	give	a	high-level	overview	of	

the	following	subjects:	what	the	Domain	Name	Sy-

stem	is	and	why	it	was	introduced;	why	it	is	vulnera-

ble	to	attacks	by	design;	how	DNSSEC	can	address	

these	vulnerabilities,	what	DNSSEC	is,	a	strategy	for	

deploying	DNSSEC	and	finally	the	conclusions	of	this	

paper.

The	remainder	of	the	document	consists	of	several	

appendices	that	contain	more	detailed	technical	in-

formation	about	DNSSEC;	these	appendices	are	ai-

med	at	DNS	administrators	to	give	them	a	general	in-

sight	into	the	technical	implications	of	implementing	

DNSSEC	within	their	infrastructure.

ManageMent SuMMary reading guide

1 DNSSEC: Domain Name System Security Extensions

2 Currently (December 2008) the country top-level domains of

Sweden, Brazil, Bulgaria, the Czech Republic, Puerto Rico, as

well as the .museum top-level domain and the ENUM domain.

3 For example, the US government top-level domain .gov will

implement DNSSEC as of January 1, 2009.

6

tHe doMain naMe SySteM:
road SignS on tHe internet

1

7

1 tHe doMain naMe SySteM: road SignS on tHe internet

1.1 purpose of dnS
To	reach	a	computer	(or	any	other	resource)	on	the	

Internet,	some	form	of	addressing	is	needed.	The	ad-

dress	has	to	be	unique,	so	the	network	can	route	

your	requests	to	the	correct	destination.	For	this	pur-

pose,	every	computer	connected	to	the	Internet	has	

an	IP	address	–	a	numerical	identifier	which	routers	

and	other	networking	equipment	can	understand.

IP	addresses,	however,	are	meant	to	be	used	by	ma-

chines,	not	people.	They	are	hard	to	remember,	and	

have	no	logical	structure	people	can	relate	to.	For	

that	reason,	Internet	resources	usually	have	a	logical	

name	in	addition	to	an	IP	address.

	

In	order	to	translate	logical	names	into	IP	addresses,	

a	translation	system	is	needed.	This	translation	sys-

tem	is	called	the	Domain	Name	System	(DNS).	DNS	

translates	logical	names,	such	as	www.surfnet.nl,	into	

IP	addresses,	such	as	194.171.26.2034.	

1.2 History
To	understand	the	workings	of	the	Domain	Name	

System,	a	brief	explanation	of	its	history	is	needed.	

When	the	Internet	was	created,	each	node	on	the	

network	needed	to	have	an	address.	For	this	pur-

pose,	IP	addresses	were	defined.

Early	adopters	of	the	Internet	soon	ran	into	the	prob-

lem	of	missing	a	logical	structure	to	link	computer	

systems	to	IP	addresses	and	came	up	with	a	simple	

solution:	they	created	a	file	that	mapped	an	IP	ad-

dress	to	a	logical	name.	This	file	was	called	the	‘hosts’	

file	as	it	contained	a	list	of	hosts	connected	to	the	

network.	An	example	of	such	a	hosts	file	is	shown	in	

Table	1.

The	hosts	file	was	maintained	and	shared	between	

the	system	administrators	of	the	computer	systems	

that	were	connected	to	the	early	Internet.	But	when	

the	Internet	started	to	expand,	it	soon	became	clear	

that	this	solution	would	not	scale	to	fit	the	need	of	

the	many	new	users	connecting	to	the	network.

1.3 the solution: the domain name
System

In	response	to	the	fast	expansion	of	the	Internet	and	

with	it	an	increase	in	IP	addresses,	the	Domain	Name	

System	–	or	DNS	for	short	–	was	introduced	in	1983.	

Domain	names,	and	the	DNS	system,	are	hierarchical:	

there	is	a	root	domain	(represented	by	a	single	dot	

“.”),	a	set	of	top-level	domains,	such	as	.com	or	.nl,	

and	any	number	of	levels	under	these	top	level	do-

mains.	Figure	1	shows	an	example	of	the	domain	

name	hierarchy.

The	DNS	translates	human-friendly	domain	names	

(such	as	www.surfnet.nl)	into	IP	addresses	used	by	

computers	to	look	up	its	destination.	

Information	for	a	certain	domain	is	stored	on	a	com-

puter	system,	a	so-called	authoritative name server.	

This	name	server	manages	what	is	called	a	“zone”.		

A	zone	contains	records,	mapping	names	to	resources	

–	for	instance:	the	zone	for	surfnet.nl	contains	a	

record	that	maps	the	name	www	to	the	IP	address	

194.171.26.203.	Each	entry	in	the	zone	is	a	domain	

name.	

A	name	server	may	redirect	entities	that	are	request-

ing	information	for	a	resource	within	a	zone	to	anoth-

er	name	server.	This	is	called	delegation.	For	in-

stance:	the	name	server	for	the	‘.nl’	zone	can	

delegate	management	of	information	for	the		

‘surfnet.nl’	zone	to	SURFnet’s	name	server.	

The	zone	containing	the	top	of	the	hierarchy	(the	“.”	

domain)	is	called	the	root	zone.	The	entries	in	this	

zone	are	the	top-level	domains.	At	the	moment	there	

are	two	types	of	top-level	domains:	generic	top-level	

domains	(such	as	.com	for	companies, .edu	for	edu-

cational	institutions,	etc.)	and	country	code	top-level	

domains	(such	as .nl	for	The	Netherlands,	.cn	for	Chi-

na,	etc.).

figure 1 - example of the dnS hierarchy

4 Although all the examples in this paper use IPv4 addresses,

the issues are exactly the same for IPv6.

194.171.26.203 www.surfnet.nl

194.171.26.204 tag.surf.nl

194.171.26.205 redactie.surfnet.nl

... ...

table 1 - example of a hosts file

8

1.4 resolving an ip-address
What	has	not	been	discussed	yet	is	how	a	user	can	

query	the	DNS	to	find	the	address	for	a	given	name.	

To	do	this,	a	so-called resolver	is	used.	If	a	resolver	is	

asked	to	find	the	address	for	www.surfnet.nl,	it	que-

ries	the	DNS	top-down.	The	diagram	below	shows	

how	this	is	done:

The	diagram	shows	how	a	resolver	goes	about	finding	

the	IP	address:

1.			The	resolver	asks	one	of	the	root	name	servers	if	it	

knows	the	IP	address	for	www.surfnet.nl.	The	serv-

er	tells	the	resolver	that	it	doesn’t	know,	but	that	

the	resolver	can	ask	one	of	the	name	servers	for	

the	.nl	domain.	It	also	provides	the	names	and	ad-

dresses	of	these	.nl name	servers.

2.			The	resolver	asks	one	of	the	name	servers	for	the	

.nl	domain	if	it	knows	the	IP	address	for	www.surf-

net.nl.	The	server	tells	the	resolver	that	it	doesn’t	

know,	but	that	the	resolver	can	ask	one	of	the	

name	servers	for	the	surfnet.nl	domain.	It	also	

provides	the	names	and	addresses	of	these	name	

servers.

3.			The	resolver	asks	one	of	the	name	servers	for	the	

surfnet.nl	domain	if	it	knows	the	IP	address	for	

www.surfnet.nl.	It	responds	by	telling	the	resolver	

that	www.surfnet.nl	is	at	194.171.26.203.

This	only	leaves	the	question:	“how	does	the	resolver	

know	where	to	find	the	root	name	servers?”.	The	an-

swer	to	this	is	simple:	the	‘boot	strap’	for	a	DNS	re-

solver	is	the	so-called	hints file.	This	file	contains	a	

list	with	the	names	of	the	root	name	servers	together	

with	their	addresses.	Regular	updates	of	this	file	are	

made	available	by	InterNIC	on	their	website5.

5 http://www.internic.net/zones/named.root

figure 2 - resolving an ip address

9

Instead	of	having	a	fully	functional	resolver	on	each	

client,	it	is	common	practice	to	expedite	the	resolving	

process	to	a	recursive name server.	This	recursive	

name	server	allows	clients	to	request	any	name	to	be	

resolved.	It	then	does	all	the	‘hard	work’	for	the	cli-

ent,	resolving	the	name.	An	additional	bonus	is	that	

the	recursive	name	server	can	maintain	a	cache	of	

answers	that	it	has	received	(thus	becoming	a recur-

sive caching name server).	The	answers	can	be	re-

used	when	another	client	asks	for	the	same	name	to	

be	resolved.	All	answers	provided	by	name	servers	

have	a	time-to-live;	when	this	period	expires	the	an-

swer	is	removed	from	the	cache.	

In	this	case,	the	client	has	only	a	very	simple	resolver	

(called	a	stub resolver)	that	cannot	perform	the	re-

cursive	lookups	itself.	The	stub	resolver	is	configured	

to	talk	to	a	recursive	(caching)	name	server.	Figure	3	

below	shows	a	recursive	caching	name	server	in	ac-

tion.

The	first	time	a	client	requests	the	address	for		

www.surfnet.nl (1)	the	server	goes	through	the	entire	

resolving	process.	The	second	time	(2),	however,	it	

can	re-use	the	address	that	has	already	been	stored	

in	its	cache.

A	recursive	caching	name	server	actually	stores	a	lot	

more	information	in	its	cache	than	just	the	address		

of	www.surfnet.nl.	During	the	process	of	resolving	

www.surfnet.nl,	it	also	encountered	the	names	and	

addresses	of	the	name	servers	for	the	.nl zone	and	

for	the	surfnet.nl zone.	As	a	result,	it	now	knows	

where	to	go	for	other	names	within	the	surfnet.nl	

zone,	so	that	a	subsequent	query	for		

showcase.surfnet.nl	can	be	directed	straight		

to	the	surfnet.nl name	server.

figure 3 - a recursive caching name server in action

10

WHy tHe doMain naMe
SySteM iS inSecure

2

11

2 WHy tHe doMain naMe SySteM iS inSecure

2.1 introduction
The	Domain	Name	System	was	designed	during	the	

early	years	of	the	Internet.	During	this	era	all	users	

were	academia,	military	organisations	and	computer	

enthusiasts,	who	–	in	general	–	could	be	trusted	not	

to	abuse	the	network.

All	the	above	implies	that	security	was	not	one	of	the	

main	design	goals	of	the	Domain	Name	System.	As	a	

consequence,	there	are	vulnerabilities	in	the	system	

(some	of	which	are	even	by	design).	The	most	signifi-

cant	vulnerability	results	from	the	fact	that	name	

servers	query	each	other,	without	a	method	to	verify	

that	the	results	are	genuine,	or	even	originate	from	

the	proper	name	server.	This	allows	for	a	type	of	at-

tack	called	cache poisoning.

To	illustrate	the	problem	of	cache	poisoning,	an	anal-

ogy	is	used.	An	apt	analogy	for	DNS	is	the	use	of	

road	signs.	Similar	to	road	signs	which	point	you	in	

the	direction	of	a	geographical	location	if	you	are	

looking	for	an	address,	DNS	points	you	in	the	right	

direction	if	you	are	looking	for	a	specific	Internet		

address.

2.2 changing a road sign
As	was	already	described	in	the	previous	chapter,	it	is	

common	practice	for	clients	to	make	use	of	a	recur-

sive	caching	name	server	that	does	all	the	hard	work	

of	resolving,	and	keeps	the	answers	in	a	cache	so	

they	can	be	re-used	for	other	clients.	Most	LANs	

have	one	or	more	recursive	caching	name	servers.	

Such	a	server	is	contacted	by	clients	on	the	LAN,	and	

thus	its	cache	is	an	ideal	tool	for	reducing	the	strain	

put	on	the	Internet’s	DNS	infrastructure.	This	is	a	win-

win	situation:	clients	get	their	results	more	quickly,	

and	downstream	DNS	servers	have	less	work	to	do.

But	imagine	that	it	would	be	possible	to	fool	the	re-

cursive	caching	name	server	into	accepting	a	wrong	

answer	for	a	query	it	has	sent	downstream.	This	in-

correct	answer	would	then	end	up	in	its	cache	and	be	

served	out	to	all	clients	requesting	the	same	address	

until	the	time-to-live	of	the	wrong	answer	runs	out.	

As	a	result,	users	could	be	sent	to	the	wrong	bank,	or	

to	a	website	with	malware	on	it;	their	e-mails	could	

be	sent	to	the	wrong	address	and	even	their	tele-

phone	calls	could	be	redirected.

This	would	be	the	equivalent	of	replacing	a	road	sign	

by	a	new	one	pointing	in	another	direction.	And	if	it’s	

done	correctly,	the	worst	thing	is	that	users	can’t	tell	

the	difference	between	the	real	and	the	fake	road	

sign.	

This	scenario	is	exactly	what	is	possible	in	the	Domain	

Name	System	at	the	moment.	When	a	resolver	sends	

out	a	request,	it	is	possible	for	an	attacker	to	send	

wrong	answers	to	the	resolver.	If	the	attacker	serves	

up	an	acceptable	answer	quickly	enough,	then	the	

resolver	will	accept	that	answer6	.	The	real	answer	will	

be	discarded,	since	the	resolver	has	already	received	

a	response	to	its	request.

Now	this	attack	is	only	possible	if	the	attacker	either	

intercepts	the	original	request	or	generates	the	re-

quest	himself,	and	if	he	succeeds	in	giving	the	resolver	

a	spoofed	answer	before	the	authoritative	server	

does.

figure 4 - a road sign showing where piggybank can be found

figure 5 - changing a road sign

6 Technically, this involves getting some numbers right, an

excellent – albeit very technical – explanation is given in [15]

12

2.3 replacing the road sign company:
the kaminsky attack

The	trouble	doesn’t	end	there.	Going	back	to	the	

road	sign	analogy:	what	if	it	would	be	possible	to	

trick	the	local	council	into	hiring	a	different	company	

for	putting	up	road	signs?

Unfortunately,	this	is	possible	in	the	Domain	Name	

System.	This	is	known	as	the	Kaminsky	attack.	

To	explain	this	attack,	a	little	bit	more	detail	is	needed.	

In	the	previous	chapter	the	process	of	resolving	was	

explained.	In	this	process,	name	servers	can	tell	a	client	

that	they	don’t	know	the	answer	but	redirect	the	client	

to	look	elsewhere.	The	information	that	is	supplied	by	

the	name	server	is	so-called	‘authority’	information.	

The	name	server	says	“I’m	not	authoritative	for	the	

domain	you’re	looking	for	but	this	other	server	is”.	It	

then	very	conveniently	supplies	both	the	name	and	

the	address	for	this	authoritative	name	server	as	part	

of	the	answer	to	the	query.	This	information	is	com-

monly	known	as	“glue”.	In	effect,	the	answer	to	every	

query	consists	of	3	parts:

•	 	The	answer	to	the	query		

(can	be	empty	if	the	query	cannot	be	answered)

•	 	Authority	information		

(who	is	authoritative	for	the	domain	being	queried)

•	 	Additional	information		

(the	address	information	for	the	authoritative	

servers)

It	is	easy	to	see	how	this	can	be	abused:	the	attacker	

can	try	to	answer	before	the	name	server	to	which	the	

request	was	sent.	If	the	attacker	succeeds,	he	can	sup-

ply	falsified	“glue”	referring	all	further	requests	for	the	

domain	that	is	being	subverted	to	his	own	name	serv-

ers	(i.e.	he	replaces	the	“additional	information”	sec-

tion	of	the	reply	with	information	of	his	own).

Three	things	are	particularly	troublesome	about	this	

attack:

•	 	The	attacker	can	carry	out	this	attack	at	any	time	

(instead	of	having	to	wait	for	cached	replies	to	

time	out).	He	simply	queries	the	recursive	caching	

name	server	he	wants	to	subvert	for	(non-exist-

ent)	host	names	he	knows	are	likely	not	to	be	

present	in	the	cache.	He	knows	that	the	server	

will	forward	this	request	because	the	name	is	not	

in	the	cache,	giving	the	attacker	the	opportunity	

to	insert	his	own	incorrect	answers	which	will	

then	automatically	be	entered	in	the	cache.

•	 	This	attack	subverts	a	whole	domain	instead	of	

just	one	host	name.	And	an	attacker	will	typically	

set	a	long	time-to-live	on	the	falsified	answer,	to	

make	sure	it	stays	in	the	cache	for	a	long	time.	

Because	the	whole	domain	has	been	subverted	all	

traffic	to	it	can	be	redirected,	including	e-mail.

•	 	This	attack	cannot	be	mitigated	by	protecting	

your	web	site	using	SSL	(https).	As	the	example	

in	section	2.5	will	show,	it	is	trivial	for	an	attacker	

to	redirect	users	to	an	SSL	secured	site	that	may	

seem	completely	valid	from	a	user’s	point	of	view.

2.4 patching against kaminsky
The	Kaminsky	attack	was	made	public	only	after	a	

patch	was	available	for	all	of	the	common	name	server	

software,	and	a	large	number	of	caching	name	servers	

had	already	been	patched.	This	is,	however,	not	a	so-

lution	that	works	for	the	long	term	since	it	is	part	of	

an	arms	race	between	system	administrators	and	at-

tackers	(see	also	section	E.2).	The	basic	flaw	in	the	

Domain	Name	System	–	that	there	is	no	way	to	en-

sure	that	answers	to	queries	are	genuine	–	remains.

Why	patching	is	not	the	solution	is	best	illustrated	by	

some	numbers:

•	 	Unpatched	servers	can	be	poisoned	within	as	

short	a	time	as	3	seconds

•	 	Research	performed	by	CZ.NIC	–	the	top-level	

domain	registrar	for	the	Czech	Republic’s	.cz		

domain	–	has	shown	that	it	is	possible	to	poison		

a	fully	patched	server	within	one	to	eleven	hours

So	even	though	patching	helps	delay	an	attack	–	giving	

administrators	a	warning	window	in	which	to	detect	

the	attack,	for	instance	using	traffic	analysis	–	it	

shows	that	an	attack	is	still	viable.	And	since	an	at-

tacker	has	“all	the	time	in	the	world”	there	are	many	

ways	in	which	an	attacker	can	mask	the	attack,	for		

instance	by	performing	it	in	small	bursts	from	many	

different	hosts.

figure 6 - replacing the road sign company

13

2.5 example: breaking the piggybank
The	example	described	below	shows	how	insidious	

the	Kaminsky	attack	actually	is.	It	also	demonstrates	

that	even	an	SSL	secured	web	site	is	not	safe.

Assume	that	there	is	a	bank	called	PiggyBank.	This	

bank	provides	Internet	banking	services	to	its	cus-

tomers.	The	bank	provides	a	link	to	its	online	banking	

portal	through	its	web	page	on		

http://www.piggybank.nu.	Normally,	when	a	user	

clicks	on	this	link,	he	is	redirected	to	the	online		

banking	portal	https://my.piggybank.nu.

Now	suppose	an	attacker	intends	to	hack	PiggyBank’s		

on-line	banking	system	and	wants	to	trick	customers	

into	allowing	him	access	to	their	bank	accounts.	Us-

ing	the	Kaminsky	attack,	this	is	really	straightforward:

•	 	The	attacker	would	begin	by	copying	PiggyBank’s	

web	site	and	on-line	banking	portal	to	make	sure	

that	they	look	familiar	to	the	customer;

•	 	Then	the	attacker	would	set	up	his	own	domain,	

secure-piggybank.nu;

•	 	Using	the	Kaminsky	attack,	he	can	now	poison	

the	cache	of	a	major	ISP	directing	queries	for	the	

piggybank.nu	domain	to	his	own	server;

•	 	He	can	now	lead	users	to	his	own	modified	ver-

sion	of	the	PiggyBank	website.	This	website	is	

identical	to	the	original,	except	that	the	link		

to	https://my.piggybank.nu	now	refers	to		

https://my.secure-piggybank.nu;

•	 	Anyone	can	request	SSL	certificates	from	most	

suppliers	as	long	as	they	can	prove	they	own	a	

domain.	As	our	attacker	owns	the		

secure-piggybank.nu	domain,	he	can	request		

a	certificate	for	my.secure-piggybank.nu;

•	 	Users	will	end	up	on	an	SSL	secured	site,	padlock	

present,	and	all	that	looks	completely	valid	from	

their	point	of	view	whereas	in	fact	they	are	on	a	

phishing	site.	Only	a	user	who	notices	that	the	ad-

dress	bar	shows	https://my.secure-piggybank.nu	

rather	than	https://my.piggybank.nu	might	realise	

that	there	is	something	wrong.

Had	both	PiggyBank	and	the	ISP	used	DNSSEC,	then	

the	resolver	of	the	ISP	would	have	been	able	to	

check	the	authenticity	of	the	reply	it	got	in	response	

to	its	queries	for	information	in	the	piggybank.nu		

domain;	DNSSEC	can	effectively	prevent	this	attack	

from	taking	place.

Obviously,	the	scenario	above	applies	to	any	service	

using	DNS:	instant	messaging,	e-mail,	VoIP,	et	cetera.	

All	of	these	services	can	be	subverted	through	the	

Kaminsky	attack.	Deploying	DNSSEC	can	prevent	this	

line	of	attack.	

2.6 How dnSSec solves this problem
The	main	goal	of	DNSSEC	is	to	introduce	authentica-

tion	of	answers	to	DNS	queries.	This	is	achieved	using	

digital	signatures.	To	put	it	simply:	each	DNS	record	is	

signed	using	a	cryptographic	algorithm	and	resolvers	

have	the	means	to	check	these	signatures	thus	proving	

the	authenticity	of	the	information	supplied.	The	

cryptographic	algorithm	is	strong	enough	to	prevent	

casual	subversion	by	an	attacker.	The	way	DNSSEC	

works	is	explained	in	more	detail	in	chapter	3.

To	put	this	solution	in	the	perspective	of	the	analogy	

of	road	signs:	by	using	DNSSEC	a	special	code	is	

printed	on	each	road	sign	that	can	be	checked	for	

authenticity	thus	proving	that	the	road	sign	is		

genuine	and	can	be	trusted.

figure 7 - checking the authenticity of a road sign

14

WHat iS dnSSec?

3

15

3 WHat iS dnSSec?

3.1 definition
DNSSEC	stands	for	“Domain	Name	System	Security	

Extensions”.	DNSSEC	is	an	extension	to	the	DNS	pro-

tocol7.	It	is	defined	in	several	specifications	by	the		

Internet	Engineering	Task	Force	(IETF)8.	This	chapter	

contains	a	high-level	overview	of	DNSSEC	and	the	

mechanisms	involved.

3.2 Security by signing
The	security	that	DNSSEC	provides	is	based	on	sign-

ing	information	cryptographically	using	public	key	

cryptography	(this	means	that	a	key-pair	is	used:	sig-

natures	are	created	using	a	private	key,	and	can	be	

validated	using	the	associated	public	key).	

DNSSEC	is	implemented	on	a	zone	level:	the	DNS	in-

formation	for	an	entire	zone	is	signed.

An	important	feature	of	DNSSEC	is	that	signing	takes	

place	off-line.	It	would	be	infeasible,	because	of	the	

amount	of	computation	this	would	require,	to	create	

on-the-spot	signatures	(this	would	put	a	strain	not	

only	on	the	server	but	also	on	the	resolver	and	cach-

ing	name	servers).	Therefore	a	DNSSEC	Signer	signs	

zones	up-front.	The	signed	zones	are	then	stored	on	

and	served	from	a	DNS	server	that	supports	DNSSEC.

By	providing	signed	zones,	DNSSEC	provides	au-

thenticated	responses	to	DNS	queries.	A	recursive	

caching	name	server	or	even	a	resolver	on	the	client	

can	validate	the	DNS	response	it	receives	by	check-

ing	the	signature	on	the	response	against	the	appro-

priate	public	key.	

It	is	important	to	note	what	DNSSEC	does	not	pro-

vide:	confidentiality.	DNSSEC	only	proves	that	a	re-

sponse	is	genuine,	but	it	does	not	keep	the	response	

hidden.

3.3 chains of trust
As	was	already	discussed	in	section	1.3,	DNS	uses	

delegation	to	assign	the	responsibility	for	domains	to	

different	parties.	For	instance:	the	holder	of	the .nl

top-level	domain	delegates	responsibility	for	the		

surfnet.nl	second-level	domain	to	SURFnet.	This	is	

done	by	adding	an	NS	(Name	Server)	record	in	the		

.nl	zone	that	refers	to	the	authoritative	name	servers	

for	surfnet.nl.

In	a	manner	similar	to	how	domain	delegation	is	per-

formed,	it	is	also	possible	to	delegate	responsibility	

for	the	signing	of	domains.	The	holder	of	a	domain	

can	delegate	signing	of	a	sub-domain	by	expressing	

trust	in	the	key	that	is	used	to	sign	the	sub-domain.

This	practice	creates	chains	of	trust.	The	advantage	

of	these	chains	of	trust	is	that	a	validator	does	not	

have	to	trust	each	sub-domain	public	key	explicitly.	

All	it	needs	to	do	is	to	trust	the	key	at	the	top	of	the	

trust	chain.	Whenever	it	needs	to	validate	a	DNS	re-

sponse,	all	it	has	to	do	is	walk	the	chain	of	trust	from	

the	top	until	it	arrives	at	the	appropriate	sub-domain.	

Figure	8	shows	an	example	of	a	trust	chain	for	the	

fictional	3rd.secondlevel.tld	domain.

7 The DNS protocol is described in RFC 1034

(see [6]) and RFC 1035 (see [7])

8 See [9], [10], [11] and [14]

figure 8 - example of a trust chain

16

3.4 trust anchors
A	resolver	needs	to	have	a	starting	point	for	the	trust	

chain	when	it	wants	to	validate	a	DNS	response.	Ide-

ally,	the	chain	of	trust	would	start	at	the	root	of	the	

domain	name	system.	Unfortunately,	the	root	zone	is	

not	signed	at	this	moment9.	This	means	that	a	com-

plete	trust	chain	from	the	root	down	is	not	possible.	

Another	issue	is	that	there	can	be	gaps	in	a	trust	

chain;	DNSSEC	was	explicitly	designed	to	be	de-

ployed	in	such	a	manner	that	trust	can	start	and	end	

at	any	point	in	a	domain	path.

This	means	that	a	resolver	will	need	to	decide	which	

trust	chains	it	is	going	to	trust.	Once	it	has	decided	

this,	it	needs	to	explicitly	trust	the	public	parts	of	the	

signing	keys	that	form	the	root	of	these	trust	chains.	

These	are	colloquially	called	“trust	anchors”	or	secure	

entry	points.

For	example:	if	the	top-level	domain .nl	is	not	signed	

but	surfnet.nl	and	all	the	domains	below	are	signed,	

a	trust	anchor	for	a	resolver	would	be	the	public	key	

used	to	sign	the	surfnet.nl	zone.

Similarly	to	the	way	in	which	the	hints	file	mentioned	

in	section	1.4	provides	a	resolver	with	information	

about	the	root	servers,	these	trust	anchors	need	to	

be	configured	in	the	resolver.	This	gives	the	adminis-

trator	of	the	resolver	ultimate	control	over	the	parties	

that	are	to	be	trusted.

At	the	time	of	writing	of	this	white	paper,	the	majori-

ty	of	top-level	domains	as	well	as	the	root	zone	re-

main	unsigned.	Only	a	handful	of	top-level	domains	

support	DNSSEC.	A	larger	number	of	top-level	do-

main	administrators	have	announced	that	they	are	

going	to	support	DNSSEC	in	the	future.

3.5 islands of trust
Because	the	root	zone	is	not	yet	signed,	any	domain	

currently	deploying	DNSSEC	will	form	an	island	of	

trust.	The	big	disadvantage	of	this	situation	is	that	

any	resolving	party	has	to	decide	whom	to	trust	(i.e.	

which	islands)	and	will	have	to	negotiate	some	way	

of	establishing	trust	in	key	material	supplied	by	the	

parties	it	wants	to	trust.	Figure	9	below	shows	an	ex-

ample.

As	it	may	be	some	time	before	the	root	zone	is	

signed	–	and	even	then,	because	of	the	deployment	

model	it	is	still	possible	for	islands	of	trust	to	exist	–	it	

is	desirable	to	find	a	means	of	establishing	“archipel-

agos”	of	trust.	An	archipelago	would	be	a	central	off-

tree	entity	holding	the	trust	anchors	for	a	group	of	

trust	islands	which	resolvers	can	decide	to	trust,	thus	

trusting	all	the	islands	that	are	part	of	the	archipela-

go.	A	mechanism	exists	to	achieve	this,	called	DNS-

SEC	Look-a-side	Validation		(DLV,	see	Figure	10).

3.6 alternatives
DNSSEC	solves	the	basic	security	flaw	within	DNS:	

the	fact	that	a	name	server	cannot	know	whether	a	

response	it	receives	from	another	server	is	genuine,	

or	even	that	it	comes	from	the	right	server.	There	are	

several	other	initiatives	to	secure	DNS,	but	none	of	

these	solve	this	basic	flaw	in	a	scalable	manner.		

Appendix	E	discusses	some	of	these	alternatives.

9 Although initiatives are being undertaken to do this at some

point in the future.

figure 9 - islands of trust

figure 10 - archipelago of trust using dlv

17

iMpleMenting dnSSec

4

18

4 iMpleMenting dnSSec

4.1 introduction
This	chapter	gives	a	high-level	overview	of	how	to	

implement	DNSSEC.	It	introduces	a	possible	timeline	

for	DNSSEC	roll-out.	A	high-level	strategy	for	deploy-

ing	DNSSEC	within	an	organisation	will	also	be	pre-

sented.	

A	detailed	technical	discussion	on	how	to	roll-out	

DNSSEC	can	be	found	in	Appendix	C.

4.2 timeline
Before	a	strategy	for	rolling	out	DNSSEC	can	be	dis-

cussed,	it	is	important	to	reflect	on	the	current	state	

of	affairs.	At	the	time	of	writing	of	this	white	paper,	

large	scale	adoption	of	DNSSEC	has	not	yet	taken	

off.	As	was	already	mentioned	in	section	3.4,	howev-

er,	there	are	indications	that	the	adoption	of	DNSSEC	

is	gathering	momentum.	The	diagram	below	shows	a	

possible	timeline	for	DNSSEC	deployment	across	the	

Internet,	based	on	the	current	situation:

The	figure	shows	four	distinct	phases:

•	 	Phase	one	is	the	research	phase11,	which	has	al-

ready	been	completed.	This	is	the	period	during	

which	researchers	realised	that	DNS	needed	to	be	

secured,	and	developed	the	DNSSEC	standard.	

During	this	phase,	some	zones	were	signed	ex-

perimentally.

•	 	Phase	two	is	the	early-adopters	phase.	This	is	the	

phase	we	are	currently	in.	During	this	phase,	ear-

ly-adopters	like	universities,	research	institutions,	

banks,	some	companies	and	a	few	top-level	do-

mains	start	signing	their	zones	and	deploying	

DNSSEC.	These	early-adopters	play	an	important	

role	in	gathering	momentum	to	convince	more	

top-level	domains	to	start	supporting	DNSSEC.	

There	is	some	support	for	DNSSEC	in	major	oper-

ating	systems.	During	this	phase,	preparations	are	

underway	to	sign	the	root	and	the	remaining	top-

level	domains.

•	 	Phase	three	is	the	commodity	phase.	Having	

gained	momentum,	DNSSEC	takes	off	as	a	multi-

tude	of	top-level	domains	start	offering	support	

for	DNSSEC.	Major	operating	systems	start	sup-

porting	DNSSEC	out-of-the-box.	The	number	of	

DNSSEC	enabled	zones	grows	rapidly.	The	root	

zone	is	expected	to	be	signed	somewhere	during	

this	phase.

•	 	Phase	four	is	the	latecomers	phase.	The	growth	in	

usage	of	DNSSEC	diminishes	as	the	majority	of	

zones	are	already	signed.	Growth	is	accounted	for	

by	latecomers	adopting	DNSSEC	and	by	new	do-

mains	being	registered.

figure 11 - possible timeline for dnSSec roll-out across the internet

11 This phase started outside of the diagram during the latter part

of the 1990’s

19

4.3.4 Signing zones
Once	the	resolver	infrastructure	is	in	place,	an	organi-

sation	can	start	signing	their	zones	and	publishing	

the	DNSSEC	enabled	zones	on	their	primary	name	

servers.	This	requires	a	more	significant	effort,	as	

tools	for	signing	zones	are	–	at	the	moment	–	less	

readily	available	and	have	a	higher	learning	curve.	

Managing	the	keys	for	zone	signing	is	too	complex	to	

be	done	manually,	so	a	set	of	tools	is	necessary	to	

automate	parts	of	the	process.	Especially	for	smaller	

organisations	and/or	those	with	less	technical	exper-

tise	it	is	recommended	to	outsource	signing	or	to	in-

vest	in	a	DNSSEC	signer	appliance	–	that	is:	a	dedi-

cated	machine	in	the	network	that	can	perform	all	

the	important	signing	functionality	out-of-the-box12.

As	part	of	the	DNSSEC	deployment,	the	organisation	

will	have	to	establish	a	set	of	procedures	for	key	

management	and	roll-over,	and	ensure	that	there	are	

individuals	within	the	organisation	responsible	for	

these	procedures.	If	IT	functions	such	as	DNS	man-

agement	have	been	outsourced,	some	of	these	re-

sponsibilities	may	well	be	included	in	the	outsourced	

service.	However,	the	organisation	should	take	care	

that	this	does	not	result	in	a	vendor	lock-in.	Appen-

dix	D	provides	some	hints	for	organisations	wishing	

to	outsource	these	activities.

4.3 Strategy for rolling out dnSSec in
an organisation

4.3.1 When to start rolling out
Sooner	or	later,	any	organisation	with	any	kind	of	IT	

infrastructure	will	have	to	implement	DNSSEC.	Even	

organisations	without	a	domain	name	of	their	own	

will	still	need	to	enable	DNSSEC,	in	order	to	validate	

the	DNS	data	from	other	domains.	

The	most	important	question	that	needs	answering	is	

when	to	start	rolling	out	DNSSEC.	This	depends	on	

what	role	an	organisation	has	in	society,	and	on	the	

level	of	expertise	within	an	organisation.	Based	on	

the	phases	from	the	previous	section,	some	recom-

mendations	are	given	below:

•	 	In	phase	two	(early	adopters),	organisations	with	

a	relatively	high-level	of	technical	expertise	can	

start	rolling	out	DNSSEC.	Such	organisations	will	

include	universities,	research	institutions,	ISPs,	

banks	and	some	top-level	registrars.	The	role	of	

these	early	adopters	is	significant,	as	they	are	the	

ones	that	create	the	momentum	for	a	large-scale	

deployment	of	DNSSEC	across	the	Internet.	Dur-

ing	this	phase,	tools	are	still	maturing.

•	 	In	phase	three	(commodity)	almost	any	organisa-

tion	should	be	able	to	deploy	DNSSEC.	Tools	have	

matured	and	are	commonly	available.

•	 	It	is	not	recommended	to	start	as	late	as	phase	

four	(latecomers)	as	this	will	make	an	organisa-

tion	a	likely	target	for	attacks.

4.3.2 What to start with
The	implementation	of	DNSSEC	within	an	organisa-

tion	actually	consists	of	two	separate	activities:	ena-

bling	DNSSEC	on	all	recursive	caching	name	servers,	

and	signing	the	zones	on	the	authoritative	name	

servers.	These	activities	can	be	executed	sequentially.

4.3.3 resolving
An	organisation	that	wants	to	start	deploying		

DNSSEC	should	start	by	updating	or	replacing	their	

recursive	caching	name	servers	(resolvers).	The	reason	

for	resolving	securely	is	twofold:

•	 	It	allows	an	organisation	to	start	validating		

DNSSEC	information	from	zones	that	are	already	

DNSSEC	enabled;

•	 	Without	it,	it	is	impossible	to	validate	one’s	own	

zones.

Many	(commercially)	available	resolvers	already	sup-

port	DNSSEC,	and	will	only	need	an	update	or	a	pa-

rameter	change,	as	well	as	a	configuration	change	to	

set	up	the	trust anchors.	Other	resolvers	may	need	a	

larger	upgrade	or	a	replacement.	Appendix	C	pro-

vides	an	overview	of	these	steps,	under	heading	C.2	

“DNSSEC	for	resolvers”.

12 Such appliances are starting to become available on the mar-

ket and there are also open source initiatives for making such

software available such as the OpenDNSSEC project

(http://www.opendnssec.org)

20

concluSionS

5

21

5.1 dnSSec provides trust in dnS
responses

As	was	shown	in	chapter	2,	DNS	has	major	security	

issues	that	are	there	by	design.	DNSSEC	solves	these	

issues	by	giving	confidence	in	the	authenticity	of	do-

main	information.	Spoofing	is	much	harder,	and	

cache	poisoning	is	no	longer	a	threat	when	DNSSEC	

is	deployed.	

Not	everybody	has	to	participate	at	once	to	make	

DNSSEC	work	–	there	is	no	need	for	a	big-bang	de-

ployment;	the	design	of	DNSSEC	allows	starting	any-

where	within	the	DNS	hierarchy.	Organisations	can	

start	now,	without	waiting	for	others.	The	more	or-

ganisations	adopt	DNSSEC,	the	stronger	it	becomes.

5.2 there is no alternative in the long
term

There	is	no	credible	alternative	to	DNSSEC,	at	least	

not	in	the	long	term.	The	DNS	patching	arms	race	

that	is	currently	ongoing	is	a	battle	that	will	most	

likely	be	lost	in	the	long	run,	simply	because	security	

was	not	one	of	the	design	criteria	when	DNS	was	de-

veloped.	Although	there	are	some	alternatives,	none	

of	these	address	the	actual	problem	of	verifying	the	

authenticity	of	DNS	responses.

This	means	that	although	DNSSEC	is	more	complex	

than	DNS,	there	is	no	other	option	in	the	long	run.

5.3 Managing dnSSec is different from
managing dnS

As	has	been	explained	in	this	white	paper,	different	

skills	are	required	to	manage	a	DNSSEC	enabled	

zone.	This	may	require	some	changes	in	an	organisa-

tion	and	may	require	administrators	to	acquire	some	

new	skills.	It	is	important	to	note,	however,	that		

there	is	a	lot	of	effort	ongoing	to	make	managing		

a	DNSSEC	enabled	zone	easier.

DNSSEC	is	becoming	easier	every	day.	Appliances	

are	already	starting	to	appear	on	the	market	(includ-

ing	open	source	initiatives	such	as	OpenDNSSEC).	

Tooling	is	also	maturing	quickly,	rapidly	making	it	

easier	to	automate	many	of	the	harder	tasks	in		

DNSSEC.	And	recently	third	parties	have	started		

offering	hosted	DNSSEC.

5.4 you need to do it
To	make	the	Internet	safer,	DNSSEC	should	be	adopt-

ed	by	everyone.	Thus,	organisations	must	start	de-

ploying	it.	Implementing	DNSSEC	will	enable	an	or-

ganisation	to	secure	its	own	domain,	and	to	validate	

DNS	data	from	others.

5 concluSionS

Starting	by	addressing	the	changes	required	for	re-

cursive	caching	name	servers,	the	deployment	can	

take	off,	and	once	set	in	motion,	signing	zones	is	only	

one	step	away.	It	is	of	vital	importance	that	top-level	

domains	get	signed	as	quickly	as	possible,	and	this	

will	only	happen	if	the	stakeholders	in	these	domains	

(the	organisations	that	have	a	second	level	domain	

under	these	top-level	domains)	adopt	DNSSEC	them-

selves,	thus	paving	the	way.	Early	adopters	should	be	

those	organisations	that	have	technical	skills	available,	

such	as	universities,	research	centres,	banks	and	–	of	

course	–	ISPs.

22

6 acknoWledgeMentS

SURFnet	would	like	to	thank	the	following	people	for	

their	contribution	to	this	white	paper:

For	co-authoring	the	white	paper:

•	 Paul	Brand	of	Stratix

•	 Rick	van	Rein	of	OpenFortress

•	 David	Yoshikawa	of	Stratix

For	reviewing	the	white	paper:

•	 Jaap	Akkerhuis	of	NLnetLabs

•	 Anand	Buddhev	of	RIPE	NCC

•	 Aart	Jochem	of	GOVCERT.NL

•	 Piotr	Kijewski	of	NASK/CERT	Polska

•	 Olaf	Kolkman	of	NLnetLabs

•	 Esther	Makaay	of	SIDN

•	 Krzystof	Olesik	of	NASK

•	 Jeroen	van	Os	of	GOVCERT.NL

•	 Carol	Overes	of	GOVCERT.NL

•	 Antoin	Verschuren	of	SIDN

•	 Wouter	Wijngaards	of	NLnetLabs

23

Founded in 1992, the RIPE NCC is an independent,

not-for-profit membership organisation that supports

the infrastructure of the Internet. The most prominent

activity of the RIPE NCC is to act as a Regional Inter-

net Registry (RIR) providing global Internet resources

and related services to a current membership base of

over 6,000 members in 75 countries.

More information about the RIPE NCC is available at:

http://www.ripe.net

SIDN is responsible for the functional stability and de-

velopment of the .nl Internet domain. As well as regis-

tering and allocating .nl domain names, the organisa-

tion enables Internet users all over the world to

make use of these labels at any given moment. SIDN’s

rapidly growing domain name register now contains

more than three million .nl domain names, which are

the subject subject of almost one million successful

searches a day.

SIDN also plays an active role in the technical, regula-

tory and political development of the Internet, at the

national and international levels

SURFnet develops and operates innovative services

for higher education and the research community. We

focus on network infrastructure, authentication and

authorisation services and multimedia platforms for

online collaboration. About one million end-users ac-

cess our services on a daily basis. SURFnet is part of

SURF, an organisation in which universities, polytech-

nics and research institutions collaborate on ground-

breaking ICT innovations. SURFnet has been a leader

in ICT innovation in The Netherlands for over 20 years.

The	organisations	listed	below	have	collaborated	

with	SURFnet	to	make	this	white	paper	possible.		

By	endorsing	this	white	paper,	these	organisations	

underline	the	importance	of	DNSSEC	for	the	security	

of	the	Internet:	

7 endorSeMentS

“GOVCERT.NL is the Computer Emergency Response

Team of the Dutch government. We work on prevent-

ing and dealing with IT security incidents 24/7. We

support organizations that carry out public tasks such

as government agencies, and work together with vital

sectors, such as water boards and energy companies.

We inform the general public about measures and cur-

rent risks regarding computer and Internet use.

Securing the basics of the Internet must be a priroity

of every organisation relying on trustworthy services

or providing public services on the Internet. The opin-

ion of GOVCERT.NL is that DNSSEC is an important

improvement of the integrity of DNS. Spreading

knowledge and advice about implementing the system

is needed and GOVCERT.NL is happy to endorse this

white paper.”

NLnet Labs is a research and development foundation

that focuses on those developments in Internet tech-

nology where bridges between theory and practical

deployment need to be built; areas where engineering

and standardisation takes place.

Since its foundation in 1999, NLnet Labs has been ac-

tive in DNSSEC standardisation, deployment engineer-

ing, training, and software development. NLnet Labs

developed NSD, an authoritative DNSSEC aware, high

performance name server in used by various root-zone

and top-level domain operators. We have assumed re-

sponsibility for the development of Unbound, a DNS-

SEC aware DNS recursive name server and stub resolv-

er and maintain the ldns and Net::DNS software library

suites.

OpenFortress Digital Signatures is a specialist in cryp-

tography, aiming to develop the general availability of

this useful technology in the form of practical applica-

tions that are easy to use. OpenFortress has keenly

awaited a wide adoption of DNSSEC since 2004.

OpenFortress
digital signatures

*

24

appendiceS

25

appendix a terMS and abbreviationS

a.1 terms

authentication
Verifying	the	authenticity	of	one’s	identity

authoritative name server
A	name	server	that	is	the	base	source	of	information	

about	a	certain	domain;	the	fact	that	a	name	server	is	

authoritative	for	a	certain	domain	is	indicated	in	the	

so-called	“start-of-authority”	(SOA)	resource	record.

digital signature
A	cryptographic	operation	based	on	public	key	cryp-

tography	used	to	uniquely	prove	that	a	given	piece	

of	information	is	trusted	by	the	owner	of	a	given	pri-

vate	key;	the	authenticity	of	a	digital	signature	can	

be	verified	using	the	corresponding	public	key.

domain
A	namespace	in	the	Domain	Name	System;	for	in-

stance:	surfnet.nl

Hints file
A	file	containing	the	names	and	addresses	of	the	root	

name	servers;	this	file	is	distributed	by	InterNIC	on	

their	website.

Host name
The	meaningful	name	given	to	a	computer	system.

kaminsky attack
The	cache	poisoning	attack	on	the	Domain	Name	

System	published	in	2008	by	Dan	Kaminsky.

See	also:	reference	[5]

phishing
Identity	theft	by	luring	users	to	a	fraudulent	website	

–	users	are	enticed	to	enter	their	private	data	such	as	

their	usernames,	passwords	and	credit	card	numbers	

on	a	spoofed	website	by	an	e-mail	seemingly	from	a	

party	they	trust.

See	also:	http://en.wikipedia.org/wiki/phishing

public key cryptography
An	asymmetric	cryptographic	scheme	with	two	com-

plementary	keys:	the	public	key	and	the	private	key.	

A	signature	computed	using	the	private	key	can	be	

validated	using	the	public	key,	conversely	a	piece	of	

data	can	be	encrypted	using	the	public	key	and	de-

crypted	using	the	private	key.

See	also: http://en.wikipedia.org/wiki/public-key_

cryptography

recursive (caching) name server
A	name	server	that	can	be	used	by	clients	to	perform	

DNS	resolving	tasks;	a	caching	server	will	store	all	

the	answers	it	receives	to	queries	and	re-use	these	

when	appropriate.

resolver
A	piece	of	software	that	uses	DNS	servers	to	map	a	

DNS	name	to	an	IP-address.

resource record
Usually	abbreviated	to	RR;	a	resource	record	is	an	en-

try	in	the	Domain	Name	System.	There	are	several	

types	of	resource	record.	The	most	commonly	used	

ones	are	A	records	for	mapping	a	name	to	an	(IP-)

address.

See	also:	http://en.wikipedia.org/wiki/list_of_dnS_

record_types

time-to-live
The	time	period	during	which	an	answer	to	a	DNS	

query	remains	valid	and	can	thus	be	cached.

trust anchor
The	top	of	a	trust	chain	that	can	be	used	by	valida-

tors	as	a	starting	point	to	validate	the	authenticity	of	

a	signed	DNS	record	at	any	point	in	the	trust	chain.

validating resolver
A	resolver	that	validates	the	DNSSEC	signatures	on	

the	answers	it	receives	to	DNS	queries.

validator
A	piece	of	software	that	verifies	the	authenticity	of	a	

digital	signature	using	the	public	key	that	was	used	

to	create	the	signature.

Zone
A	collection	of	related	resource	records	that	is	served	

as	a	unit	by	a	name	server.

See	also:	http://en.wikipedia.org/wiki/dnS_zone

Zone walking
The	ability	to	retrieve	the	complete	content	of	a	zone	

using	the	sequence	of	NSEC	records	in	a	zone.

26

a.2 abbreviations

bind
Berkeley	Internet	Name	Domain	(a	commonly	used	Domain	Name	Server	package)

dlv
DNSSEC	Look-aside	Validation	

dnS
Domain	Name	System

dnSSec
Domain	Name	System	Security	Extensions

ietf
Internet	Engineering	Task-Force	

(see	http://www.ietf.org)

ip
Internet	Protocol

iSp
Internet	Service	Provider

kSk
Key	Signing	Key

lan
Local	Area	Network

nSd
Name	Server	Daemon		

(a	commonly	used	Domain	Name	Server	package)

nSec3
Next	Secure	version	3,		

part	of	the	DNSSECprotocol

rfc
Request	For	Comments	(an	IETF	specification)

SSl
Secure	Socket	Layer

tcp
Transmission	Control	Protocol

tlS
Transport	Layer	Security

udp
User	Datagram	Protocol

Wan
Wide	Area	Network

ZSk
Zone	Signing	Key

27

appendix b referenceS

[1]	 	WikiPedia:	The	Domain	Name	System

	 http://en.wikipedia.org/wiki/domain_name_system

[2]	 DNS	and	BIND

	 Paul	Albitz	and	Cricket	Liu,	O’Reilly	Media,	Inc.,	Fifth	Edition,	May	26,	2006

[3]	 WikiPedia:	DNSSEC

	 http://en.wikipedia.org/wiki/dnSSec

[4]	 WikiPedia:	Public-Key	Cryptography

	 http://en.wikipedia.org/wiki/public-key_cryptography

[5]	 	Black	Ops	2008:	It’s	The	End	Of	The	Cache	As	We	Know	It		

(or	64K	should	be	enough	for	anyone)

	 http://www.doxpara.com/dMk_bo2k8.ppt

[6]	 RFC	1034:	Domain	Names	–	Concepts	and	Facilities

	 http://tools.ietf.org/html/rfc1034

[7]	 RFC	1035:	Domain	Names	–	Implementation	and	Specification

	 http://tools.ietf.org/html/rfc1035

[8]	 RFC	2845:	Secret	Key	Transaction	Authentication

	 http://tools.ietf.org/html/rfc2845

[9]	 RFC	4033:	DNS	Security	Introduction	And	Requirements

	 http://tools.ietf.org/html/rfc4033

[10]	 RFC	4034:	Resource	Records	for	the	DNS	Security	Extensions

	 http://tools.ietf.org/html/rfc4034

[11]	 RFC	4035:	Protocol	Modifications	for	the	DNS	Security	Extensions

	 http://tools.ietf.org/html/rfc4035

[12]	 RFC	4431:	The	DNSSEC	Lookaside	Validation	(DLV)	DNS	Resource	Record

	 http://tools.ietf.org/html/rfc4431

[13]	 RFC	4635:	HMAC	SHA	TSIG	Algorithm	Identifiers

	 http://tools.ietf.org/html/rfc4635

[14]	 RFC	4641:	DNSSEC	Operational	Practices

	 http://tools.ietf.org/html/rfc4641

[15]	 An	illustrated	guide	to	the	Kaminsky	DNS	vulnerability

	 http://www.unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html

[16]	 ISC’s	DNSSEC	look-aside	validation	registry

	 https://www.isc.org/solutions/dlv

[17]	 Bootstrapping	the	adoption	of	Internet	security	protocols

	 http://weis2006.econinfosec.org/docs/46.pdf

28

b.1 further reading
For	more	information	on	the	various	aspects	of		

DNSSEC	the	reader	is	referred	to	the	following	sources:

• the dnSSec consortium web-site
	 http://www.dnssec.net

This	site	is	a	source	of	up-to-date	information	about	

DNSSEC	and	the	deployment	of	DNSSEC	on	the		

Internet.

• the dnSSec HoW-to by nlnetlabs
	 	http://www.nlnetlabs.nl/downloads/publications/

dnssec/dnssec_howto.pdf

A	technical	resource	with	hands-on	information	

about	configuring	a	signed	zone;	examples	are	based	

on	BIND.

• nic.cZ information page
	 http://www.nic.cz/page/513/about-dnssec/

High-level	information	about	DNSSEC;	contains	a	

testing	widget	that	shows	(using	either	a	red	or	a	

green	key)	whether	or	not	you	arrived	on	the	page	

from	a	DNSSEC	secured	domain.

29

appendix c tecHnical diScuSSion of dnSSec

c.1 introduction
This	appendix	addresses	the	technical	and	organisa-

tional	implications	of	implementing	DNSSEC	within	a	

DNS	infrastructure.	It	addresses	both	the	issues	for	

resolvers	as	well	as	for	authoritative	name	servers.

c.2 dnSSec for resolvers

c.2.1 introduction
DNSSEC	requires	resolvers	to	implement	validation	

procedures	for	DNSSEC.	Although	not	all	software	is	

equipped	with	these	extra	capabilities,	the	most	im-

portant	resolvers	are.	With	BIND9	it	is	a	matter	of	

setting	a	few	flags	in	the	configuration	files,	and	Win-

dows	Server	7	will	also	support	DNSSEC	in	its	role	as	

a	resolver.

c.2.2 computing power
Validating	resolvers	are	configured	just	like	any	

cache,	but	may	need	a	bit	more	computing	power	to	

perform	their	task,	as	a	result	of	the	public	key	cryp-

tography	involved	in	the	validation	process.	The	add-

ed	performance	requirement	is	a	result	of	centralising	

the	cryptographic	validation	procedures	(rather	than	

have	each	desktop	complete	the	validation	on	its	

own)	but	it	does	save	on	total	computing	effort,	as	

validated	results	can	be	shared	among	independent	

desktops.	It	is	important	to	realise	that	delays	in	DNS	

are	experienced	as	delays	“in	the	Internet”.	Experi-

ments	by	the	DNS	experts	at	NLnetLabs	indicate	that	

delays	are	not	expected	to	be	severe	enough	that	

they	warrant	dedicated	cryptographic	accelerator	

boards	in	validating	resolvers.	In	the	estimated	10%	

to	30%	of	queries	that	cannot	be	answered	from	the	

cache,	validating	the	trust	chain	may	cause	a	some-

what	slower	response,	but	bearable	on	a	human	

scale.	Note	that	scaling	up	only	means	that	more	hits	

are	delivered	from	a	cache.

c.2.3 Setting up trust anchors
Without	going	into	details	for	specific	applications,		

it	is	good	to	be	aware	of	the	need	to	configure	trust	

anchors.	As	with	X.509	certificates,	DNSSEC	needs	a	

starting	point	for	its	relationships	(see	sections	3.3	

and	3.4).	DNSSEC	has	been	designed	to	support	

multiple	starting	points	for	chains	of	trust.	For	each	

of	these	entry	points	into	the	DNSSEC	hierarchy,	

there	is	a	so-called	trust	anchor,	which	comprises	of	

DNSKEY	records	or	their	secure	hashes	that	have	

usually	been	validated	out-of-band	before	they	are	

trusted.	The	name	server	software	should	be	config-

ured	to	rely	on	these	trust	anchors.

IANA	has	been	commissioned	to	setup	an	Interim	

Trust	Anchor	Repository	that	will	host	validating	in-

formation	for	the	keys	used	to	sign	top-level	domains	

until	the	root	zone	has	been	signed.	This	is	a	tempo-

rary	solution	that	will	allow	time	for	the	resolution	of	

the	complex	issues	related	to	the	central	position	of	

the	root	zone.

	

c.2.4 look-aside validation
The	introduction	of	DNSSEC	for	a	parent	zone	such	

as	a	TLD	or	a	ccTLD	is	more	difficult	than	simply	

signing	one’s	end-user	zones.	This	is	a	result	of	gath-

ering	a	lot	of	information,	handling	lots	of	key	rollo-

vers	and	a	more	general	responsibility.	As	a	result,	

child	zones	are	likely	to	be	signed	before	their	parent	

zones.	As	a	pragmatic	solution	to	this	generation	

gap,	a	temporary	construct	of	DNSSEC	look-aside	

validation	(or	DLV	for	short,	see	[12],	[16])	has	been	

defined.	Instead	of	registering	a	domain’s	DNSSEC	

keys	with	a	parent,	this	works	by	registering	them	in	

another	domain	that	happens	to	collect	such	keys,	

and	makes	them	available	for	look-aside	validation

To	setup	look-aside	validation,	the	look-aside	domain	

collects	DLV	records	(which	are	similar	to	the	DS	

records	generated	for	the	parent,	except	for	the	re-

source	record	type,	see	[12]	for	more	details).	Such	

records	are	created	under	another	domain,	so	that	

the	DLV	record	for	surfnet.nl	could	be	stored	for	

look-aside	validation	under	dlv.isc.org	by	creating	

the	DLV	record	under	surfnet.nl.dlv.isc.org.	A	resolver	

configured	with	a	trust	anchor	for	dlv.isc.org	would	

lookup	anything	without	a	DS	in	the	parent	as	a	DLV	

record	under	the	dlv.isc.org	domain,	and	if	it	finds	

one	it	will	treat	it	in	a	way	similar	to	a	DS	record	that	

should	have	been	found	in	the	parent	zone.	

Since	the	DLV	domain	is	also	a	domain	like	any	other,	

and	since	it	is	usually	validated	through	DNSSEC,	it	

will	be	necessary	to	follow-up	on	key	rollover	at	the	

DLV	domain.	This	can	be	done	manually,	about	once	

a	year,	or	it	can	be	automated	if	your	server	software	

implements	RFC	5011,	and	if	the	published	domain		

also	uses	that	standard	to	revoke	keys	as	they	have	

served	their	useful	life.

c.2.5 Security issues
It	cannot	be	avoided	that	the	same	resolver	handles	

both	secure	and	insecure	domains;	in	fact,	DNSSEC	is	

sometimes	used	to	establish	a	domain’s	insecurity.	

Validating	resolvers	must	be	aware	of	this	mixed	

world-view	because	it	would	be	a	dramatic	failure	if	

an	attack	in	the	style	of	Dan	Kaminsky’s	could	be	

mounted	against	an	insecure	domain	and	let	that	alter	

a	secure	domain’s	validated	records.	If	you	select	re-

solver	software,	pick	one	that	is	mature,	so	you	can	

rely	on	a	strict	separation	between	secure	and	inse-

cure	data.

30

c.2.6 resolver selection
The	following	points	sum	up	the	issues	that	help	to	

select	a	validating	resolver:

•	 Does	the	resolver	support	DNSSEC?

•	 	Can	the	resolver	be	configured	with	the	KSK	for	

selected	domains?

•	 	Can	the	resolver	be	configured	for	look-aside		

validation;	accepting	the	DLV	KSK	and	sending	

DLV	requests	to	a	look-aside	domain?

•	 	Does	the	resolver	have	facilities	to	update	trust	

anchors	automatically?	(optional)

	

c.3 dnSSec for authoritative name servers

c.3.1 Managing a signed zone
In	chapter	3	the	concept	of	zone	signing	was	intro-

duced.	More	specifically:	the	actual	information	being	

signed	are	sets	of	related	Resource	Records,	also	

called	RRsets.	An	RRset	comprises	all	resource	

records	of	one	type,	in	one	class,	pertaining	to	a	sin-

gle	resource	(e.g.	all	address	(A)	records	in	the	Inter-

net	(IN)	class	for	one	specific	host	name).	An	RRset	

can	consist	of	one	or	several	records.

Signed	zones	should	not	be	maintained	by	hand,	as	

the	data	in	the	zones	is	too	complicated	for	that.	In-

stead,	automated	tools	should	be	used	to	manage	

the	signing	of	data	in	the	zones.

c.3.2 key material and key management

C.3.2.1	 Algorithms
DNSSEC	is	based	on	public	key	cryptography.	RFC	

4034	(see	[10])	specifies	that	the	following	crypto-

graphic	algorithms	may	be	used:

•	 DSA/SHA-1

•	 RSA/SHA-1

For	two	reasons	it	is	recommended	only	to	use	the	

RSA/SHA-1	algorithm:

•	 	Security:	DSA	keys	are	constrained	to	a	maximum	

key	length	of	1024	bits;	this	may	impact	the	secu-

rity	of	DSA	keys

•	 	Performance:	Signature	validation	of	DSA	signa-

tures	is	an	order	of	magnitude	slower	than	signa-

ture	validation	of	RSA	signatures.	This	mainly	has	

an	impact	on	validating	resolvers.

In	the	future	elliptic	curve	cryptography	is	also	going	

to	be	supported	for	DNSSEC.	Currently,	however,	its	

use	has	not	been	standardised	yet.

C.3.2.2	 Key	types
The	current	operational	practice	for	DNSSEC	is	to	

use	a	two-tiered	key	model:

•	 	A	Zone	Signing	Key	(ZSK)	is	used	to	sign	RRsets	

within	a	zone

•	 	A	Key	Signing	Key	(KSK)	is	used	to	sign	Zone	

Signing	Keys

Each	of	these	keys	has	its	own	specific	properties:

The	ZSK	is	relatively	short-lived;	the	recommended	

use	period	for	a	single	ZSK	according	to	RFC	4641	

(see	[14])	is	one	month.	It	is	also	recommended	to	

use	a	moderate	key-size	for	the	ZSK	(in	the	order	of	

magnitude	of	1024	bits).	This	is	necessary	in	order	to	

keep	the	time	it	takes	to	sign	a	zone	within	managea-

ble	limits.

The	KSK	is	longer-lived;	the	recommended	use	period	

for	a	single	KSK	according	to	RFC	4641	is	1	year.	It	is	

recommended	to	use	a	minimum	key	size	of	2048	bits.

If	zone	signing	has	been	delegated	by	a	parent	zone	

by	means	of	a	DS	record,	then	this	DS	record	should	

reference	the	KSK.	This	means	that	the	parent	only	

has	to	be	informed	if	the	KSK	is	updated.

C.3.2.3	 Key	rollover
The	KSK	and	ZSK	both	have	a	limited	period	of	valid-

ity.	This	means	that	it	is	necessary	to	perform	key	

rollovers	at	regular	intervals.	To	allow	time	for	infor-

mation	to	propagate	through	the	DNS	and	to	allow	

time	in	case	of	unscheduled	problems	it	is	good	

practice	to	give	subsequent	keys	slightly	overlapping	

validity	periods.	For	instance:	the	validity	period	of	a	

KSK	could	be	13	months	and	the	validity	of	a	ZSK	

could	be	1	month	plus	enough	time	to	let	the	longest	

TTL-values	expire,	for	instance	1	week.	

It	is	also	good	practice	to	make	the	new	keys	availa-

ble	before	their	validity	period	commences.	A	new	

KSK	should	ideally	be	announced	1	month	prior	to	

key	rollover	and	a	new	ZSK	should	ideally	be	an-

nounced	1	week	prior	to	key	rollover13.	Alternatively,	it	

is	possible	to	have	non-overlapping	key	validity,	but	

to	have	temporarily	overlapping	signatures	on	DNS	

records.	The	former	method	is	called	pre-publication	

of	keys,	the	latter	is	the	double-signature	method.

13 Note: the time intervals given in this section are based on

the current best practice as described in RFC 4641 [14]; these

time intervals are not absolute, sensible variations are possible

and likely.

31

	The	diagram	below	shows	how	these	overlapping	

periods	could	work	in	practice:

	

Whenever	a	key	rollover	of	the	KSK	is	to	take	place,	

the	parent	zone	should	be	informed	and	should	be	

supplied	with	a	new	reference	record	(called	delega-

tion	signer,	or	DS)	for	this	key.	The	new	KSK	should	

not	be	used	for	signing	of	ZSKs	until	the	parent	zone	

has	been	updated.

c.3.3 authenticated denial of existence (nSec/
nSec3)

C.3.3.1	 	Why	authenticated	denial	of	existence	is	
necessary

A	practical	aspect	of	DNS	is	that	it	provides	an	ex-

plicit	answer	if	a	requested	resource	record	does	not	

exist.	These	explicit	negative	acknowledgements	

avoid	retries	and	waiting	for	timeouts.	From	a	securi-

ty	perspective,	however,	this	introduces	a	threat	of	

denial-of-service	attacks.

To	avoid	such	attacks,	the	absence	of	a	resource	

record	must	be	signed.	But	DNSSEC	works	with	offline	

zone	signing,	making	it	impossible	to	predict	any	

query	against	any	name	and	sign	for	its	absence.

C.3.3.2	 NSEC	and	zone	walking
The	solution	is	not	to	sign	for	the	name	being	absent,	

but	to	sort	all	names	in	a	zone	in	a	canonical	order	

and	to	sign	for	statements	like	“after	A	comes	C”	so	

resolvers	can	infer	that	B	does	not	exist.	To	facilitate	

this,	the	NSEC	resource	record	was	introduced	(see	

[10]).	This	record	lists	the	following	information	for	a	

given	host	name:

•	 	The	next	host	name	to	be	listed	in	the	zone	ac-

cording	to	canonical	ordering

•	 The	types	of	records	existing	for	the	host	name

As	you	can	see	this	clearly	defines	that	a	given	

record	“A”	is	followed	by	a	given	record	“C”	inferring	

that	no	intermediate	record	“B”	can	exist.	It	also	goes	

on	to	prove	that	for	the	given	record	“A”	only	signed	

RRsets	exist	of	the	specified	types.

So	if	a	name	server	gets	a	request	for	“B”	it	simple	

responds	with	the	NSEC	record	for	“A”	thus	proving	

in	a	secure	way	that	“B”	does	not	exist.

A	long-time	show-stopper	for	DNSSEC	has	been	the	

lack	of	privacy	of	this	construction;	if	one	got	hold	of	

the	name	“A”,	it	would	be	trivial	to	get	a	link	from	A	

to	C	based	on	the	NSEC	record,	from	C	one	could	

then	get	a	link	to	K,	from	K	to	Q	etc.	until	the	entire	

zone	has	effectively	been	enumerated.	This	iterative	

process	that	lists	all	names	in	a	zone	is	commonly	

called	“zone	walking”.	Although	DNS	data	is	usually	

public14,	many	felt	this	to	be	an	unacceptable	assault	

on	their	privacy	and/or	their	ability	to	conceal	experi-

mental	or	private	sub-domains	from	public	viewing	

(which	was	possible	because	it	is	currently	common	

practice	to	deny	zone	transfers	to	any	but	a	few	

trusted	parties).

C.3.3.3	 How	to	solve	zone	walking:	NSEC3
A	recent	improvement	to	DNSSEC	addresses	just	this	

problem	in	the	so-called	NSEC3	resource	record.	This	

record	type	does	not	link	the	names	in	a	domain,	but	

the	hashes	of	such	names.	A	response	that	explains	

that	B	does	not	exist	under	a	domain	starts	by	calcu-

lating	hash(B)=4323...	and	finds	its	position	in	an	or-

dered	list	of	all	names	that	occur	in	a	domain.	Per-

haps	hash(Q)=381a...	precedes	the	value	of	hash(B)	

and	hash(C)=7bbc...	might	be	the	next.	So	an	offline-

signed	link	“after	381a...	comes	7bbc...”	is	used	to	

prove	that	hash(B)=4323...	does	not	occur.

Key #2

Key is used for signing

Key has been announced but is not yet valid

Key is still valid but no longer used for signing

Key #3

Key #4

Key #1

Rollover #1

Rollover #2

Rollover #3

figure 12 - key rollover period overlaps

14 There are exceptions to this rule, for instance: private DNS

infrastructures behind a firewall

32

Since	the	hashes	used	are	cryptographic/secure	

hashes,	it	is	not	possible	to	derive	the	original	names	

Q	and	C	from	their	hashes,	so	the	privacy	(or	non-it-

erability)	of	the	DNS	zone	is	maintained	while	at	the	

same	time	supporting	the	required	proof	that	a	name	

does	not	exist	in	the	zone.

Thus	the	NSEC3	record	is	made	up	of	3	things:

•	 The	hash	of	the	host	name	it	applies	to

•	 The	types	of	records	existing	for	the	host	name

•	 	The	hash	of	the	next	host	name	in	the	zone	in	

hash	order	(the	zone	is	sorted	from	0	to	

MAX(hash)	and	at	the	end	it	wraps	back	to	the	

beginning)

So,	in	the	example	above,	if	a	name	server	gets	a	re-

quest	for	“B”	it	simply	sends	back	the	NSEC3	record	

for	hash(Q)	allowing	the	resolver	to	verify	that	“B”	

does	not	exist	in	the	given	domain.	Not	every	pub-

lisher	will	prefer	NSEC3	over	NSEC,	so	the	two	will	

probably	continue	to	co-exist.

c.3.4 dynamic dnS updates
Not	all	about	DNSSEC	is	glorious.	If	DNS	records	up-

date	frequently,	as	in	some	dynamic	uses	of	DNS,	

two	problems	arise:

•	 	New	data	is	not	authenticated	until	a	signature	is	

made;

•	 	Old	data	may	float	around	as	authentic	until	its	

signature	expires

This	means	that	DNSSEC	and	dynamicity	in	DNS	are	

not	an	ideal	combination.	Dynamicity	for	DNSSEC	

could	be	implemented	with	short-lived	signatures,	

but	that	leads	to	a	lot	of	additional	stress	on	DNS	

caches	and	resolvers,	especially	if	they	actively	vali-

date	the	signatures	on	DNS	records	(which	is	the	

most	likely	initial	roll-out	of	DNSSEC).	This	is	at	least	

harmful	for	the	scalability	of	DNSSEC.

Below,	a	few	problems	that	are	foreseen	in	existing	

networks	are	discussed,	as	well	as	some	proposed	

workarounds.

C.3.4.1	 Linking	DHCP	to	DNS	entries
The	most	common	example	of	dynamic	data	in	DNS	

is	the	mapping	of	a	fixed	host	name	to	a	dynamic	IP.	

When	acquiring	an	IP	number	through	DHCP,	a	host	

may	provide	a	host	name,	or	its	host	name	may	be	

known	thanks	to	a	registered	MAC	address.	Many	

DHCP	servers	will	not	only	supply	an	IP	lease	to	such	

a	host,	but	will	register	the	mapping	in	DNS	at	the	

same	time.

The	dynamicity	of	these	IP	addresses	is	usually	not	

an	issue.	Other	parts	of	the	network,	notably	firewalls	

and	routers,	already	require	fixed	IP	addresses	for		

exceptional	systems	such	as	servers.	Only	the	client	

systems,	being	those	that	do	not	publish	services,		

are	treated	as	part	of	a	uniform	set	without	further	

discrimination	based	on	their	IP	addresses.

This	means	that	we	expect	the	dynamic	part	of	map-

pings	from	host	name	to	IP	address	to	cover	clients,	

not	servers.	Since	servers	may	be	contacted	from	

any	where,	their	mapping	is	often	vital	to	protect	with	

DNSSEC,	and	since	these	mappings	are	static	that	

ought	to	be	no	problem.	Typical	client	systems	with	

their	dynamic	name-to-IP	mappings	can	be	exempted	

from	DNSSEC	protection	without	much	harm,	since	

nobody	will	want	to	contact	them	using	their	DNS	

name.

DNSSEC	offers	a	way	out	for	such	security	exemp-

tions.	An	insecure	sub-domain	of	a	DNSSEC	domain	

can	be	constructed	by	referring	to	a	sub-domain’s	

name	servers,	but	not	accompanied	by	a	key		

reference;	for	example	the	secured	domain		

harderwijk.edu could	have	a	sub-domain		

dyn.harderwijk.edu	that	does	not	support	DNSSEC	

but	uses	plain	DNS	to	map	names	to	IP	addresses.		

To	construct	this,	the	harderwijk.edu	zone	contains	

NS	records	for	the	dyn.harderwijk.edu	domain,	but	

contains	no	DS	record(s)	for dyn.harderwijk.edu,	so	

exemption	is	explicitly	verifiable	by	way	of	the	signa-

tures	on	the	NS	records	in	harderwijk.edu.

C.3.4.2	DHCP	for	Internet	Service	Providers
A	specific	form	of	the	dynamicity	in	DNS	due	to		

DHCP	concerns	ISPs.	The	clients	of	an	ISP	may	well	

want	to	run	services	on	an	IP	address	that	is	assigned	

to	them	through	DHCP,	which	makes	the	IP	address	

dynamic,	at	least	in	theory.

These	DHCP	assignments	to	cable	and	DSL	custom-

ers	are	usually	constant	over	a	long	period,	and	may	

therefore	almost	be	treated	as	static	assignments	--	

with	the	side	note	that	a	procedure	must	exist	to	al-

ter	them	manually.	This	is	actually	the	sort	of	situation	

that	DNSSEC	supports	quite	nicely,	by	way	of	regular	

resigning	of	a	zone.	Setting	up	a	new	IP	add	ress	under	

DNSSEC	is	just	some	extra	work	that	adds	to	the	pro-

cedure	of	editing	the	usual	DNS	records.	We	do	not	

expect	this	to	cause	major	problems	in	practice.		

DHCP	leases	are	usually	supplied	for	periods	of	a	

week	or	so,	and	these	periods	may	be	synchronised	

with	the	regular	DNSSEC	signing	procedure	to	even	

avoid	the	occurrence	of	signed	faulty	data	in	DNS.

In	the	ideal	situation,	the	ISP	signs	their	dynamically	

assigned	records	with	DNSSEC,	and	given	the	long	

lease	term	from	most	ISPs	that	would	not	lead	to	

scaling	problems	due	to	overloaded	secure	DNS	

caches.	In	any	case,	if	a	customer	of	an	ISP	defines	

their	own	domain	and	points	it	to	the	ISP-supplied	IP	

address,	it	is	possible	to	sign	that;	if	the	ISP	is	using	

DNSSEC	it	could	just	be	a	CNAME	alias,	but	if	the	ISP	

does	not	define	secure	records	it	could	be	an	A	

record	(which	is	formally	wrong	but	also	is	common	

practice).

If	an	ISP	decides	not	to	sign	the	dynamically	bound	

mapping	of	names	to	IP	addresses,	it	can	explicitly	

opt-out	for	such	addresses.	This	is	done	with	a		

DNSSEC-signed	statement	that	a	sub-domain	is		

33

unsigned.	Validating	resolvers	can	use	this	statement	

to	assure	that	nobody	is	suppressing	a	signature	but	

that	it	is	secure	to	assume	that	no	signature	is	availa-

ble.	Note	that	ISPs	failing	to	sign	the	dynamic	map-

pings	will	cause	additional	A	records	in	customer’s	

own	domains,	so	perhaps	it	is	better	to	implement	

DNSSEC	on	ISP’s	DHCP	leases.	It	is	also	worth	noting	

that	the	reverse	translation	(from	IP	to	host	name)	

could	be	signed	at	the	same	time	as	the	forward	

translation	(from	host	name	to	IP).

C.3.4.3	Dynamically	changing	IPv6	addresses
In	the	interest	of	privacy,	Windows	has	a	default	fea-

ture	under	IPv6	to	assign	a	random	bottom	half	in	

IPv6	addresses,	and	to	change	them	regularly.	This	

protects	against	visibility	of	one’s	MAC	address	(in-

cluding	the	manufacturer	code)	in	the	bottom	half	of	

the	address.	Furthermore,	since	with	IPv6	there	is	no	

need	for	NAT,	all	addresses	are	public	and	making	

long-term	addresses	known	on	the	Internet	does	not	

provide	the	by-default	security	of	being	behind	the	

client-only	filter	of	NAT.	Such	dynamic	IP	addresses	

could	be	a	problem	for	DNSSEC	if	it	had	to	update	its	

signatures.	Fortunately	however,	this	does	not	seem	

to	be	necessary	in	the	situations	that	we	currently	

anticipate.

Dynamic	IPv6	addresses	are	intended	for	client	side	

systems,	and	contacting	them	normally	isn’t	a	re-

quirement.	Server	machines	will	use	a	manually	set	

fixed	IPv6	address	over	which	their	services	will	be	

acquired.	Such	fixed	addresses	are	suitable	for	publi-

cation	in	DNS,	including	signatures.	

Normal	setups	do	not	require	the	lookup	of	client	

systems	in	DNS,	so	they	need	not	support	DNSSEC;	

but	even	client	systems	(can)	automatically	create	a	

fixed	IPv6	address	based	on	a	MAC	address,	making	

them	suitable	for	publication	in	signed	DNS.

Note	that	operating	systems	support	fixed	and	dy-

namic	IPv6	addresses	at	the	same	time;	it	is	common	

practice	to	have	multiple	IPv6	addresses	co-existing	

on	one	interface.	Only	the	static	addresses	would	end	

up	in	DNS,	with	DNSSEC	protection.	The	dynamic		

addresses,	if	they	occur	in	DNS	at	all,	can	be	in	an		

unsigned	sub-domain,	and	DNSSEC	can	explicitly	

opt-out	that	sub-domain.

C.3.4.4	Dynamic	signing	in	name	servers
The	problems	of	signing	dynamic	content	in	DNS	

stem	from	the	current	practice	of	off-line	signing.		

Future	versions	of	BIND	–	the	most	commonly	used	

software	for	DNS	servers	–	are	most	likely	going	to	

support	on-line	signing.	Microsoft	is	also	working	on	

DNSSEC	support	for	Windows	Server	2008	R2	and	

for	Windows	Server	7;	it	is	likely	that	these	will	also	

support	on-line	signing	since	this	would	be	required	

for	Active	Directory.

34

appendix d outSourcing

d.1 introduction
For	most	organisations,	managing	the	IT	infrastruc-

ture	is	not	part	of	their	core	business.	In	order	to	

maintain	a	professional	IT	service,	they	tend	to	out-

source	at	least	part	of	their	IT	management	to	spe-

cialised	vendors.	In	many	cases	the	authoritative	DNS	

servers	for	the	organisation’s	domain	will	be	hosted	

on	an	ISP’s	servers,	and	resolvers	may	be	installed	in-

house	but	managed	by	an	outside	provider.	This	situ-

ation	has	implications	for	the	deployment	of	DNSSEC.

d.2 division of responsibilities
As	in	any	outsourcing	arrangement,	the	division	of	

responsibilities	between	the	organisation	and	outside	

vendor	(or	vendors)	will	have	to	be	defined	carefully.	

Some	areas	that	an	organisation	may	want	to	out-

source,	in	relation	to	DNSSEC,	are:

•	 	Installing	and	configuring	DNSSEC	enabled	re-

solvers,	authoritative	servers	and	signers;

•	 	Managing	DNS	related	equipment	on-site	or	off-

site,	or	hosting	DNS	servers	on	the	vendor’s	plat-

forms;

•	 	Creating,	storing,	and	deploying	Key	Signing	Keys	

and	Zone	Signing	Keys;

•	 	Signing	zones	and	deploying	signed	zones	on	the	

authoritative	servers.

For	each	of	these	activities,	there	should	be	someone	

within	the	organisation	with	the	overall	responsibility,	

who	can	monitor	the	vendor’s	activities	and	address	

any	issues	that	arise.	The	outsourcing	contract	

should	make	clear	what	the	vendor’s	responsibilities	

are	in	case	of	a	problem,	and	who	will	assume	liability	

for	any	resulting	damages.

d.3 protecting against vendor lock-in
Any	outsourcing	agreement	will	have	provisions	in	

case	the	organisation	wants	to	migrate	to	a	different	

vendor,	or	bring	activities	back	in-house.	However,	

DNSSEC	introduces	a	few	points	that	require	extra	

care	to	avoid	future	difficulties	in	switching	vendors:

•	 	Clear	agreement	on	the	legal	ownership	of	con-

figuration	data	and	cryptographic	keys;	

•	 	Agreed	procedures	to	hand	over	configuration	

data	and	cryptographic	keys	to	the	organisation	

or	to	a	future	vendor	at	the	end	of	the	contract	

(or	earlier,	if	necessary);

•	 	Agreed	procedures	to	ensure	keys	remain	availa-

ble	to	the	organisation	in	the	case	of	disputes,	

take-over	or	bankruptcy	of	the	vendor.

35

appendix e alternativeS

e.1 introduction
In	this	appendix	the	possible	alternatives	to	DNSSEC	

are	considered.	

Although	DNSSEC	is	a	pragmatic	solution	rather	than	

an	ideal	one,	it	has	clear	advantages	over	the	alterna-

tives	available.	Many	of	the	alternatives	below	fail	on	

account	of	not	protecting	the	origin	of	DNS	data.		

Although	it	is	possible	to	protect	DNS	data	by	pro-

tecting	every	transaction	between	every	client	and	

server,	this	is	unreliable	for	a	number	of	reasons:

1.	 	A	chain	of	protected	links	can	break	at	its	weak-

est	link,	meaning	that	it	is	not	possible	to	enforce	

minimum	validation	standards	merely	by	config-

uring	one’s	local	resolver.	Specifically,	it	is	not	

possible	to	know	if	all	links	are	individually	se-

cured	or	not.	Being	dependent	on	independently	

managed	parts	of	the	DNS	infrastructure	erodes	

the	reliability	of	the	system	as	a	whole.

2.	 	Between	every	two	secured	links	sits	a	name	

server,	either	an	authoritative	name	server	or	a	re-

cursive	resolver.	Even	if	the	links	are	secure,	then	

there	is	still	the	risk	that	the	name	server	itself	is	

poisoned	with	false	data,	which	it	will	happily	sign	

upon	forwarding.

3.	 	At	some	point	in	DNS,	there	is	a	need	to	connect	

from	a	local	domain	to	a	remote	domain.	This	

happens	most	often	when	a	recursive/caching	

name	server	starts	at	the	root	name	servers	and	

proceeds	downward	in	the	DNS	tree	in	order	to	

resolve	a	query.	There	are	quite	a	few	practical	

problems	related	to	protecting	each	link	sepa-

rately,	especially	because	of	the	multitude	of	

servers	to	be	contacted.

e.2 the dnS arms race
The	easiest	“alternative”	to	DNSSEC	is	to	do	nothing.	

That	is,	not	roll	out	anything	to	secure	DNS	and	con-

tinue	patching	software	as	soon	as	a	security	prob-

lem	arises.

DNS	has	not	been	designed	for	security,	and	name	

server	software	can	only	compensate	to	some	degree.	

For	example,	in	defence	of	Dan	Kaminsky’s	attack	

there	have	been	patches	that	use	a	random	port	for	

sending/receiving	the	DNS	information.	This	effective-

ly	extends	the	information	to	be	guessed	by	the	at-

tacker	from	16	bits	to	32	bits.	This	may	defer	the	

cache	poisoning	problems	from	all	but	the	most	de-

termined	attackers	in	the	short	term,	but	it	is	solely	

dependent	on	the	possibility	to	squeeze	these	extra	

bits	out	of	the	existing	systems.	And	the	resulting	32	

bits	can	by	no	means	be	classified	as	a	securely	large	

search	space	to	defer	attacks.	It	merely	makes	it	sim-

pler	to	detect	attacks	with	an	intrusion	protection	sys-

tem,	and	it	improves	the	chances	of	shutting	down	an	

attacker	by	way	of	an	intrusion	prevention	system.

Rolling	out	intrusion	detection	and	protection	sys-

tems	to	protect	a	light-weight	system	like	DNS	can	

be	considered	overkill.	The	intrusion	detection	sys-

tems	must	be	very	powerful	since	DNS,	thanks	to	its	

light-weight	nature,	can	handle	quite	a	lot	of	load	on	

a	single	server.	For	instance,	it	is	not	uncommon	for	

ISPs	to	service	a	whole	country	with	only	a	few	re-

cursive	DNS	servers	(DNS	caches).	Also,	a	deter-

mined	attacker	may	simply	fire	at	random	in	the	full	

32-bit	search	space	over	a	long	period	of	time,	call-

ing	for	intrusion	detection	systems	that	recognise	

patterns	over	a	long	period,	which	is	infeasible	as	the	

system	would	have	to	consider	so	many	attack	pat-

terns	at	the	same	time.

The	sort	of	attacks	and	defences	that	are	currently	

applied	to	DNS	are	an	arms	race,	battling	to	manipu-

late	or	protect	the	technical	data	contained	in	the	IP	

and	UDP	headers	and	the	DNS	payload.	The	attacks,	

if	they	are	published	at	all,	usually	demand	instant	

patches	of	one’s	systems,	so	time	is	of	the	essence.

The	major	advantage	of	DNSSEC	is	that	it	introduces	

cryptography	by	way	of	digital	signatures.	The	bene-

fit	of	cryptography	is	that	it	creates	an	incredible	gap	

between	the	abilities	of	the	domain	owner	and	an	at-

tacker:	The	simple	fact	that	a	private	key	is	in	the	

possession	of	a	domain	owner	but	unknown	to	an	at-

tacker	places	the	latter	in	a	greatly	disadvantaged	

position.	Potential	attackers	know	this,	and	will	gen-

erally	avoid	attacking	the	cryptographic	aspects.	If	

the	remaining	software	is	well-written,	no	attacks	can	

realistically	be	mounted.

It	could	be	argued	that	cryptography	is	an	arms	race	

of	its	own.	This,	however,	is	not	an	arms	race	that	in-

volves	every	single	DNS	administrator;	it	involves	ac-

ademic	and	government	institutions	that	work	on	

general	cryptographic	mechanisms	such	as	RSA	and	

SHA1.	These	mechanisms	are	widely	used	and	widely	

tested	by	highly	skilled	people,	and	the	general	ten-

dency	is	to	be	open	about	any	possible	problems	

that	could	compromise	security.	A	few	decennia	

worth	of	experience	with	cryptographic	algorithms	

suggests	that	practical	attacks	hardly	ever	break	an	

algorithm	completely,	but	merely	let	their	protection	

erode	to	such	a	level	that	the	introduction	of	alterna-

tives	is	required.	This	all	happens	at	a	much	slower	

pace	than	the	arms	race	of	DNS	as	it	stands	today.

e.3 tSig and Sig(0)
Early	attempts	to	standardise	DNSSEC	have	involved	

different	kinds	of	resource	records:	TSIG	and	SIG(0).	

As	will	be	explained,	these	are	not	without	their		

use	but	they	are	unsuitable	for	a	broad	roll-out	of	

DNSSEC.

TSIG	is	a	facility	for	a	shared	secret	between	a	pair	of	

hosts.	These	hosts	can	exchange	normal	DNS	infor-

mation,	and	end	with	a	signature	based	on	that		

36

secret.	If	no	party	but	these	two	hosts	holds	that	in-

formation,	it	can	be	inferred	that	no	third	party	could	

have	created	the	signature.	The	mechanism	is	light-

weight	and	even	has	facilities	for	key	rollover15.	It	is	

useful	between	paired	hosts	that	have	a	long-term	re-

lationship	(such	as	primary	and	secondary	name	ser-

vers	for	a	domain)	but	it	cannot	scale	up	to	a	general	

solution	for	DNSSEC.	For	example,	if	the	.com	top-level	

domain	were	to	be	signed	with	TSIG,	a	shared	secret	

would	have	to	be	negotiated	between	the	.com	au-

thoritative	name	servers	and	every	resolving	name	

server	on	the	Internet.	Even	if	this	would	be	technical-

ly	feasible,	there	would	still	be	the	problem	of	co-ordi-

nating	the	initiation	of	the	shared	secrets.	Clearly,	a	

public-key	mechanism	is	more	suited	to	the	situation	

of	general	servers	that	are	open	to	clients	anywhere.	

In	situations	where	the	pairing	can	be	fixed	and	secrets	

can	be	exchanged	however,	TSIG	remains	a	valuable	

mechanism	due	to	its	small	footprint.

SIG(0)	is	a	public-key	based	mechanism	that	signs	for	

selected	queries	and	responses.	As	with	TSIG,	the	sig-

natures	are	made	for	a	transaction	between	a	client	

and	a	server,	but	it	does	not	make	the	origin	of	data	

verifiable.	Because	SIG(0)	signatures	must	be	con-

structed	by	the	resolver,	it	would	overload	that	device	

if	used	to	support	validation	of	every	query;	it	should	

be	used	sparingly.

A	useful	application	of	TSIG,	TKEY	and	SIG(0)	in	a	

DNSSEC-rollout	is	to	establish	a	secure	link	between	a	

validating	resolver	and	a	relatively	dumb	local	resolver,	

such	as	a	modem/router	or	a	single	host	on	the	net-

work.	These	would	request	a	TKEY	record	signed	with	

SIG(0)	using	a	trusted	key	for	the	connection	to	the	

validating	cache.	The	TKEY	record	would	relay	a	

shared	secret	to	the	client,	which	can	henceforth	be	

used	for	light-weight	TSIG	security.	These	mechanisms	

have	their	uses,	but	not	in	a	global	roll-out	of	DNSSEC.

e.4 dnScurve
DNSCurve	solves	another	issue	than	DNSSEC;	DNSSEC	

takes	the	viewpoint	that	information	in	DNS	is	public,	

and	does	not	need	encryption.	It	could	however	be	ar-

gued	that	the	actual	DNS	traffic	does	count	as	a	secu-

rity	threat,	even	if	the	knowledge	that	is	exchanged	is	

public.	On	a	broadcast	network	(cable	Internet,	WiFi)	

one	shares	a	medium	with	potentially	unreliable	users	

who	may	be	quite	interested	in	learning	that	you	are	

requesting	domain	information	for	a	sensitive	domain	

(such	as	a	bank).

Just	like	TSIG	and	SIG(0),	DNSCurve	protects	the		

query/response	exchange	between	a	client	and	a		

server.	It	does	not	provide	authentication	of	the	origin	

of	data.	Novel	about	DNSCurve	is	its	use	of	elliptic	

curve	cryptography,	being	a	modern	set	of	public	key	

algorithms	that	has	hitherto	not	been	standardised	for	

use	in	DNSSEC.

e.5 ipsec
Assuming	that	IPsec	would	be	omnipresent,	it	could	

spark	the	idea	of	being	an	alternative	to	DNSSEC.	This	

is	not	true	however	--	it	may	help	to	authenticate	the	

remote	party	being	contacted,	but	not	the	origin	of	

data	that	is	received.	If	the	remote	party	is	in	any	way	

compromised,	it	can	be	loaded	with	invalid	data.		

DNSSEC	is	about	validating	data	to	have	come	from	

the	desired	origin,	and	not	just	the	proxy	through	

which	the	information	was	obtained.

In	addition	to	that,	rolling	out	IPsec	requires	even	more	

critical	mass	than	DNSSEC,	making	it	unlikely	to	ever	

hit	the	global	Internet.	Making	this	unlikely	is	the	fact	

that	IPsec	is	widely	regarded	to	be	a	“board	standard”,	

full	of	compromises	to	keep	too	many	parties	happy.	

The	resulting	standards	are	so	full	of	options	and	alter-

natives	that	one	cannot	assume	interoperability	of	solu-

tions	based	on	the	mere	premise	that	they	support	

IPsec.

IPsec	remains	useful	for	generic	traffic	encryption	

and/or	authentication	in	a	locally	controlled	environ-

ment,	acting	as	a	standardised	VPN,	but	it	is	not	likely	

to	gain	sufficient	traction	for	a	globe-spanning	secure	

network.

e.6 SSl or tlS
First	and	foremost,	no	proposals	have	been	made	to	

secure	DNS	with	TLS	or	its	predecessor	SSL.	The	only	

relation	between	DNS	and	these	protocols	is	that	facil-

ities	have	been	proposed	to	store	X.509	certificates	in	

DNS	resource	records.	This	approach	treats	DNS	as	a	

database,	but	it	has	no	security	implications	for	DNS	

itself.

Using	TLS	(or	SSL)	in	combination	with	certificates	

could	have	worked,	if	the	whole	infrastructure	behind	

it	wouldn’t	have	been	so	riddled	with	questions	and	

problems,	ranging	from	who	controls	the	list	of	trust-

ed	root	certificates	to	what	it	means	to	sign	a	certifi-

cate.	DNSSEC	on	the	other	hand	gives	a	clear	defini-

tion	of	these	technical	issues.

The	standards	for	TLS	and	SSL	are	easily	misinterpret-

ed	and	there	is	ample	room	for	disagreement	on	their	

interpretation.	Keeping	that	in	mind	it	is	a	small	mira-

cle	that	both	standards	have	been	so	widely	adopted.	

The	main	cause	for	their	popularity	is	that	they	are	

embedded	in	browsers.	Given	a	choice,	cryptogra-

phers	generally	prefer	other,	more	technically-inclined	

ways	of	application-packaging	their	cryptographic	

structures.

Finally,	DNS	has	its	own	requirements,	including	

densely	packed	data	(which	rules	out	X.509	certifi-

cates	completely)	for	optimal	use	of	cache	and	band-

width.	Furthermore,	it	is	desirable	to	keep	the	valida-

tion	process	as	simple	as	possible,	in	order	to	retain	

the	light-weight	and	almost-instant	nature	of	DNS	as	

much	as	possible;	interpreting	complex	structures	

such	as	certificate	chains	introduces	counter-produc-

tive	overhead	that	is	unbearable	in	a	DNS	environment.

15 By means of the TKEY extension

37

colopHon

authors

Paul	Brand

Rick	van	Rein

Roland	van	Rijswijk

David	Yoshikawa

editor

Roland	van	Rijswijk

layout and graphic design

Paul	Eversdijk

illustrations

Tycho	van	der	Klip

copyright © Surfnet b.v. 2008-2009

This	paper	is	distributed	under	the	terms	of	the		
Creative	Commons	License	version	3.0		
“Attribution-Non	Commercial-Share	Alike”	Netherlands

A	copy	of	this	license	can	be	obtained	online:
http://creativecommons.org/licenses/by-nc-sa/3.0/nl/deed.en

38

SURFnet	

Postbus	19035

3501	DA	Utrecht

The	Netherlands

T	+31	302	305	305

F	+31	302	305	329

E		admin@surfnet.nl

I			www.surfnet.nl

January	2009

