
Hardening the
Internet
The impact and importance of DNSSEC

3

Management Summary	 5

Reading guide	 5

1	Th e Domain Name System: road signs on the Internet	 7
	 1.1	 Purpose of DNS	 7

	 1.2	 History	 7

	 1.3	 The solution: the Domain Name System	 7

	 1.4	 Resolving an IP-address	 8

2	 Why the Domain Name System is insecure	 11
	 2.1	 Introduction	 11

	 2.2	 Changing a road sign	 11

	 2.3	 Replacing the road sign company: the Kaminsky attack	 12

	 2.4	 Patching against Kaminsky	 12

	 2.5	 Example: breaking the PiggyBank	 13

	 2.6	 How DNSSEC solves this problem	 13

3	 What is DNSSEC?	 15
	 3.1	 Definition	 15

	 3.2	 Security by signing	 15

	 3.3	 Chains of trust	 15

	 3.4	 Trust anchors	 16

	 3.5	 Islands of trust	 16

	 3.6	 Alternatives	 16

4	Im plementing DNSSEC	 18
	 4.1	 Introduction	 18

	 4.2	 Timeline	 18

	 4.3	 Strategy for rolling out DNSSEC in an organisation	 19

5	C onclusions	 21
	 5.1	 DNSSEC provides trust in DNS responses	 21

	 5.2	 There is no alternative in the long term	 21

	 5.3	 Managing DNSSEC is different from managing DNS	 21

	 5.4	 You need to do it	 21

6	A cknowledgements	 22

7	E ndorsements	 23

Appendix A Terms and abbreviations	 25
	 A.1	 Terms	 25

	 A.2	 Abbreviations	 26

Appendix B References	 27
	 B.1	 Further reading	 28

Appendix C Technical discussion of DNSSEC	 29
	 C.1	 Introduction	 29

	 C.2	 DNSSEC for resolvers	 29

	 C.3	 DNSSEC for authoritative name servers	 30

Appendix D Outsourcing	 34
	 D.1	 Introduction	 34

	 D.2	 Division of responsibilities	 34

	 D.3	 Protecting against vendor lock-in	 34

Appendix E Alternatives	 35
	 E.1	 Introduction	 35

	 E.2	 The DNS arms race	 35

	 E.3	 TSIG and SIG(0)	 35

	 E.4	 DNScurve	 36

	 E.5	 IPsec	 36

	 E.6	 SSL or TLS	 36

table of contents

4

MANAGEMENT SUMMARY
READING GUIDE

5

The Domain Name System (DNS) is one of the basic

building blocks of the Internet. Vulnerabilities in the

DNS system can affect the security of the entire 	

Internet.

DNS converts logical names for resources on the 	

Internet to IP addresses, making it possible for a user

to type a logical name (such as www.surfnet.nl)

rather than an IP address (such as 194.171.26.203).

It has been known for a long time that DNS has a

number of vulnerabilities in its basic design. However,

a recent exploit (the Kaminsky attack, see [5]) has

shown how easy it is to abuse these vulnerabilities,

leading to a renewed sense of urgency within the 	

Internet community.

An extension to DNS has been developed to address

its vulnerabilities: DNSSEC1. Although DNSSEC has

been available for some time now, deployment has

not yet taken off on a large scale. This, however, is

changing rapidly, as the need to secure DNS has be-

come more apparent by the Kaminsky attack. This

specific attack may have been mitigated, but others

are likely to follow.

While DNSSEC deployment can be complex, tools

are now available which handle most of the com-

plexity, resulting in a more straightforward implemen-

tation. It still requires an organisation to make chan-

ges to its systems and to its processes though.

In the long run, every organisation will have to imple-

ment DNSSEC. However, given the stage of develop-

ments, only organisations with relatively high levels

of technical expertise, like universities, research cen-

tres, banks, ISPs and some top-level domain admini-

strators are currently implementing it. At the time of

writing, a number of top-level domains2 have imple-

mented DNSSEC, while many others are in the pro-

cess of implementation3. Any organisation with any

kind of IT infrastructure should at least be planning

an implementation at some time in the near future.

This white paper is aimed at decision-makers, res-

ponsible for the IT infrastructure, in non-commercial

institutes and commercial enterprises. It explains, at

an abstract level, how the current DNS is vulnerable

and what organisations should be doing about it.

The first five chapters give a high-level overview of

the following subjects: what the Domain Name Sy-

stem is and why it was introduced; why it is vulnera-

ble to attacks by design; how DNSSEC can address

these vulnerabilities, what DNSSEC is, a strategy for

deploying DNSSEC and finally the conclusions of this

paper.

The remainder of the document consists of several

appendices that contain more detailed technical in-

formation about DNSSEC; these appendices are ai-

med at DNS administrators to give them a general in-

sight into the technical implications of implementing

DNSSEC within their infrastructure.

Management Summary Reading guide

1 	� DNSSEC: Domain Name System Security Extensions

2 	�Currently (December 2008) the country top-level domains of

Sweden, Brazil, Bulgaria, the Czech Republic, Puerto Rico, as

well as the .museum top-level domain and the ENUM domain.

3	� For example, the US government top-level domain .gov will

implement DNSSEC as of January 1, 2009.

6

The Domain Name System:
road signs on the Internet

1

7

1	Th e Domain Name System: road signs on the Internet

1.1 	Purpose of DNS
To reach a computer (or any other resource) on the

Internet, some form of addressing is needed. The ad-

dress has to be unique, so the network can route

your requests to the correct destination. For this pur-

pose, every computer connected to the Internet has

an IP address – a numerical identifier which routers

and other networking equipment can understand.

IP addresses, however, are meant to be used by ma-

chines, not people. They are hard to remember, and

have no logical structure people can relate to. For

that reason, Internet resources usually have a logical

name in addition to an IP address.

In order to translate logical names into IP addresses,

a translation system is needed. This translation sys-

tem is called the Domain Name System (DNS). DNS

translates logical names, such as www.surfnet.nl, into

IP addresses, such as 194.171.26.2034.

1.2 	History
To understand the workings of the Domain Name

System, a brief explanation of its history is needed.

When the Internet was created, each node on the

network needed to have an address. For this pur-

pose, IP addresses were defined.

Early adopters of the Internet soon ran into the prob-

lem of missing a logical structure to link computer

systems to IP addresses and came up with a simple

solution: they created a file that mapped an IP ad-

dress to a logical name. This file was called the ‘hosts’

file as it contained a list of hosts connected to the

network. An example of such a hosts file is shown in

Table 1.

The hosts file was maintained and shared between

the system administrators of the computer systems

that were connected to the early Internet. But when

the Internet started to expand, it soon became clear

that this solution would not scale to fit the need of

the many new users connecting to the network.

1.3	�T he solution: the Domain Name
System

In response to the fast expansion of the Internet and

with it an increase in IP addresses, the Domain Name

System – or DNS for short – was introduced in 1983.

Domain names, and the DNS system, are hierarchical:

there is a root domain (represented by a single dot

“.”), a set of top-level domains, such as .com or .nl,

and any number of levels under these top level do-

mains. Figure 1 shows an example of the domain

name hierarchy.

The DNS translates human-friendly domain names

(such as www.surfnet.nl) into IP addresses used by

computers to look up its destination.

Information for a certain domain is stored on a com-

puter system, a so-called authoritative name server.

This name server manages what is called a “zone”. 	

A zone contains records, mapping names to resources

– for instance: the zone for surfnet.nl contains a

record that maps the name www to the IP address

194.171.26.203. Each entry in the zone is a domain

name.

A name server may redirect entities that are request-

ing information for a resource within a zone to anoth-

er name server. This is called delegation. For in-

stance: the name server for the ‘.nl’ zone can

delegate management of information for the 	

‘surfnet.nl’ zone to SURFnet’s name server.

The zone containing the top of the hierarchy (the “.”

domain) is called the root zone. The entries in this

zone are the top-level domains. At the moment there

are two types of top-level domains: generic top-level

domains (such as .com for companies, .edu for edu-

cational institutions, etc.) and country code top-level

domains (such as .nl for The Netherlands, .cn for Chi-

na, etc.).

Figure 1 - Example of the DNS hierarchy

4 	�Although all the examples in this paper use IPv4 addresses,

the issues are exactly the same for IPv6.

194.171.26.203 www.surfnet.nl

194.171.26.204 tag.surf.nl

194.171.26.205 redactie.surfnet.nl

... ...

Table 1 - Example of a hosts file

8

1.4	Resolving an IP-address
What has not been discussed yet is how a user can

query the DNS to find the address for a given name.

To do this, a so-called resolver is used. If a resolver is

asked to find the address for www.surfnet.nl, it que-

ries the DNS top-down. The diagram below shows

how this is done:

The diagram shows how a resolver goes about finding

the IP address:

1. �The resolver asks one of the root name servers if it

knows the IP address for www.surfnet.nl. The serv-

er tells the resolver that it doesn’t know, but that

the resolver can ask one of the name servers for

the .nl domain. It also provides the names and ad-

dresses of these .nl name servers.

2. �The resolver asks one of the name servers for the

.nl domain if it knows the IP address for www.surf-

net.nl. The server tells the resolver that it doesn’t

know, but that the resolver can ask one of the

name servers for the surfnet.nl domain. It also

provides the names and addresses of these name

servers.

3. �The resolver asks one of the name servers for the

surfnet.nl domain if it knows the IP address for

www.surfnet.nl. It responds by telling the resolver

that www.surfnet.nl is at 194.171.26.203.

This only leaves the question: “how does the resolver

know where to find the root name servers?”. The an-

swer to this is simple: the ‘boot strap’ for a DNS re-

solver is the so-called hints file. This file contains a

list with the names of the root name servers together

with their addresses. Regular updates of this file are

made available by InterNIC on their website5.

5 	�http://www.internic.net/zones/named.root

Figure 2 - Resolving an IP address

9

Instead of having a fully functional resolver on each

client, it is common practice to expedite the resolving

process to a recursive name server. This recursive

name server allows clients to request any name to be

resolved. It then does all the ‘hard work’ for the cli-

ent, resolving the name. An additional bonus is that

the recursive name server can maintain a cache of

answers that it has received (thus becoming a recur-

sive caching name server). The answers can be re-

used when another client asks for the same name to

be resolved. All answers provided by name servers

have a time-to-live; when this period expires the an-

swer is removed from the cache.

In this case, the client has only a very simple resolver

(called a stub resolver) that cannot perform the re-

cursive lookups itself. The stub resolver is configured

to talk to a recursive (caching) name server. Figure 3

below shows a recursive caching name server in ac-

tion.

The first time a client requests the address for 	

www.surfnet.nl (1) the server goes through the entire

resolving process. The second time (2), however, it

can re-use the address that has already been stored

in its cache.

A recursive caching name server actually stores a lot

more information in its cache than just the address 	

of www.surfnet.nl. During the process of resolving

www.surfnet.nl, it also encountered the names and

addresses of the name servers for the .nl zone and

for the surfnet.nl zone. As a result, it now knows

where to go for other names within the surfnet.nl

zone, so that a subsequent query for 	

showcase.surfnet.nl can be directed straight 	

to the surfnet.nl name server.

Figure 3 - A recursive caching name server in action

10

Why the Domain Name
System is insecure

2

11

2	 Why the Domain Name System is insecure

2.1	I ntroduction
The Domain Name System was designed during the

early years of the Internet. During this era all users

were academia, military organisations and computer

enthusiasts, who – in general – could be trusted not

to abuse the network.

All the above implies that security was not one of the

main design goals of the Domain Name System. As a

consequence, there are vulnerabilities in the system

(some of which are even by design). The most signifi-

cant vulnerability results from the fact that name

servers query each other, without a method to verify

that the results are genuine, or even originate from

the proper name server. This allows for a type of at-

tack called cache poisoning.

To illustrate the problem of cache poisoning, an anal-

ogy is used. An apt analogy for DNS is the use of

road signs. Similar to road signs which point you in

the direction of a geographical location if you are

looking for an address, DNS points you in the right

direction if you are looking for a specific Internet 	

address.

2.2	Changing a road sign
As was already described in the previous chapter, it is

common practice for clients to make use of a recur-

sive caching name server that does all the hard work

of resolving, and keeps the answers in a cache so

they can be re-used for other clients. Most LANs

have one or more recursive caching name servers.

Such a server is contacted by clients on the LAN, and

thus its cache is an ideal tool for reducing the strain

put on the Internet’s DNS infrastructure. This is a win-

win situation: clients get their results more quickly,

and downstream DNS servers have less work to do.

But imagine that it would be possible to fool the re-

cursive caching name server into accepting a wrong

answer for a query it has sent downstream. This in-

correct answer would then end up in its cache and be

served out to all clients requesting the same address

until the time-to-live of the wrong answer runs out.

As a result, users could be sent to the wrong bank, or

to a website with malware on it; their e-mails could

be sent to the wrong address and even their tele-

phone calls could be redirected.

This would be the equivalent of replacing a road sign

by a new one pointing in another direction. And if it’s

done correctly, the worst thing is that users can’t tell

the difference between the real and the fake road

sign.

This scenario is exactly what is possible in the Domain

Name System at the moment. When a resolver sends

out a request, it is possible for an attacker to send

wrong answers to the resolver. If the attacker serves

up an acceptable answer quickly enough, then the

resolver will accept that answer6 . The real answer will

be discarded, since the resolver has already received

a response to its request.

Now this attack is only possible if the attacker either

intercepts the original request or generates the re-

quest himself, and if he succeeds in giving the resolver

a spoofed answer before the authoritative server

does.

Figure 4 - �A road sign showing where PiggyBank can be found

Figure 5 - Changing a road sign

6 	�Technically, this involves getting some numbers right, an

excellent – albeit very technical – explanation is given in [15]

12

2.3		�R eplacing the road sign company:
the Kaminsky attack

The trouble doesn’t end there. Going back to the

road sign analogy: what if it would be possible to

trick the local council into hiring a different company

for putting up road signs?

Unfortunately, this is possible in the Domain Name

System. This is known as the Kaminsky attack.

To explain this attack, a little bit more detail is needed.

In the previous chapter the process of resolving was

explained. In this process, name servers can tell a client

that they don’t know the answer but redirect the client

to look elsewhere. The information that is supplied by

the name server is so-called ‘authority’ information.

The name server says “I’m not authoritative for the

domain you’re looking for but this other server is”. It

then very conveniently supplies both the name and

the address for this authoritative name server as part

of the answer to the query. This information is com-

monly known as “glue”. In effect, the answer to every

query consists of 3 parts:

•	 �The answer to the query 	

(can be empty if the query cannot be answered)

•	 �Authority information 	

(who is authoritative for the domain being queried)

•	 �Additional information 	

(the address information for the authoritative

servers)

It is easy to see how this can be abused: the attacker

can try to answer before the name server to which the

request was sent. If the attacker succeeds, he can sup-

ply falsified “glue” referring all further requests for the

domain that is being subverted to his own name serv-

ers (i.e. he replaces the “additional information” sec-

tion of the reply with information of his own).

Three things are particularly troublesome about this

attack:

•	 �The attacker can carry out this attack at any time

(instead of having to wait for cached replies to

time out). He simply queries the recursive caching

name server he wants to subvert for (non-exist-

ent) host names he knows are likely not to be

present in the cache. He knows that the server

will forward this request because the name is not

in the cache, giving the attacker the opportunity

to insert his own incorrect answers which will

then automatically be entered in the cache.

•	 �This attack subverts a whole domain instead of

just one host name. And an attacker will typically

set a long time-to-live on the falsified answer, to

make sure it stays in the cache for a long time.

Because the whole domain has been subverted all

traffic to it can be redirected, including e-mail.

•	 �This attack cannot be mitigated by protecting

your web site using SSL (https). As the example

in section 2.5 will show, it is trivial for an attacker

to redirect users to an SSL secured site that may

seem completely valid from a user’s point of view.

2.4	Patching against Kaminsky
The Kaminsky attack was made public only after a

patch was available for all of the common name server

software, and a large number of caching name servers

had already been patched. This is, however, not a so-

lution that works for the long term since it is part of

an arms race between system administrators and at-

tackers (see also section E.2). The basic flaw in the

Domain Name System – that there is no way to en-

sure that answers to queries are genuine – remains.

Why patching is not the solution is best illustrated by

some numbers:

•	 �Unpatched servers can be poisoned within as

short a time as 3 seconds

•	 �Research performed by CZ.NIC – the top-level

domain registrar for the Czech Republic’s .cz 	

domain – has shown that it is possible to poison 	

a fully patched server within one to eleven hours

So even though patching helps delay an attack – giving

administrators a warning window in which to detect

the attack, for instance using traffic analysis – it

shows that an attack is still viable. And since an at-

tacker has “all the time in the world” there are many

ways in which an attacker can mask the attack, for 	

instance by performing it in small bursts from many

different hosts.

Figure 6 - Replacing the road sign company

13

2.5	Example: breaking the PiggyBank
The example described below shows how insidious

the Kaminsky attack actually is. It also demonstrates

that even an SSL secured web site is not safe.

Assume that there is a bank called PiggyBank. This

bank provides Internet banking services to its cus-

tomers. The bank provides a link to its online banking

portal through its web page on 	

http://www.piggybank.nu. Normally, when a user

clicks on this link, he is redirected to the online 	

banking portal https://my.piggybank.nu.

Now suppose an attacker intends to hack PiggyBank’s 	

on-line banking system and wants to trick customers

into allowing him access to their bank accounts. Us-

ing the Kaminsky attack, this is really straightforward:

•	 �The attacker would begin by copying PiggyBank’s

web site and on-line banking portal to make sure

that they look familiar to the customer;

•	 �Then the attacker would set up his own domain,

secure-piggybank.nu;

•	 �Using the Kaminsky attack, he can now poison

the cache of a major ISP directing queries for the

piggybank.nu domain to his own server;

•	 �He can now lead users to his own modified ver-

sion of the PiggyBank website. This website is

identical to the original, except that the link 	

to https://my.piggybank.nu now refers to 	

https://my.secure-piggybank.nu;

•	 �Anyone can request SSL certificates from most

suppliers as long as they can prove they own a

domain. As our attacker owns the 	

secure-piggybank.nu domain, he can request 	

a certificate for my.secure-piggybank.nu;

•	 �Users will end up on an SSL secured site, padlock

present, and all that looks completely valid from

their point of view whereas in fact they are on a

phishing site. Only a user who notices that the ad-

dress bar shows https://my.secure-piggybank.nu

rather than https://my.piggybank.nu might realise

that there is something wrong.

Had both PiggyBank and the ISP used DNSSEC, then

the resolver of the ISP would have been able to

check the authenticity of the reply it got in response

to its queries for information in the piggybank.nu 	

domain; DNSSEC can effectively prevent this attack

from taking place.

Obviously, the scenario above applies to any service

using DNS: instant messaging, e-mail, VoIP, et cetera.

All of these services can be subverted through the

Kaminsky attack. Deploying DNSSEC can prevent this

line of attack.

2.6	How DNSSEC solves this problem
The main goal of DNSSEC is to introduce authentica-

tion of answers to DNS queries. This is achieved using

digital signatures. To put it simply: each DNS record is

signed using a cryptographic algorithm and resolvers

have the means to check these signatures thus proving

the authenticity of the information supplied. The

cryptographic algorithm is strong enough to prevent

casual subversion by an attacker. The way DNSSEC

works is explained in more detail in chapter 3.

To put this solution in the perspective of the analogy

of road signs: by using DNSSEC a special code is

printed on each road sign that can be checked for

authenticity thus proving that the road sign is 	

genuine and can be trusted.

Figure 7 - Checking the authenticity of a road sign

14

What is DNSSEC?

3

15

3	 What is DNSSEC?

3.1	D efinition
DNSSEC stands for “Domain Name System Security

Extensions”. DNSSEC is an extension to the DNS pro-

tocol7. It is defined in several specifications by the 	

Internet Engineering Task Force (IETF)8. This chapter

contains a high-level overview of DNSSEC and the

mechanisms involved.

3.2	Security by signing
The security that DNSSEC provides is based on sign-

ing information cryptographically using public key

cryptography (this means that a key-pair is used: sig-

natures are created using a private key, and can be

validated using the associated public key).

DNSSEC is implemented on a zone level: the DNS in-

formation for an entire zone is signed.

An important feature of DNSSEC is that signing takes

place off-line. It would be infeasible, because of the

amount of computation this would require, to create

on-the-spot signatures (this would put a strain not

only on the server but also on the resolver and cach-

ing name servers). Therefore a DNSSEC Signer signs

zones up-front. The signed zones are then stored on

and served from a DNS server that supports DNSSEC.

By providing signed zones, DNSSEC provides au-

thenticated responses to DNS queries. A recursive

caching name server or even a resolver on the client

can validate the DNS response it receives by check-

ing the signature on the response against the appro-

priate public key.

It is important to note what DNSSEC does not pro-

vide: confidentiality. DNSSEC only proves that a re-

sponse is genuine, but it does not keep the response

hidden.

3.3	Chains of trust
As was already discussed in section 1.3, DNS uses

delegation to assign the responsibility for domains to

different parties. For instance: the holder of the .nl

top-level domain delegates responsibility for the 	

surfnet.nl second-level domain to SURFnet. This is

done by adding an NS (Name Server) record in the 	

.nl zone that refers to the authoritative name servers

for surfnet.nl.

In a manner similar to how domain delegation is per-

formed, it is also possible to delegate responsibility

for the signing of domains. The holder of a domain

can delegate signing of a sub-domain by expressing

trust in the key that is used to sign the sub-domain.

This practice creates chains of trust. The advantage

of these chains of trust is that a validator does not

have to trust each sub-domain public key explicitly.

All it needs to do is to trust the key at the top of the

trust chain. Whenever it needs to validate a DNS re-

sponse, all it has to do is walk the chain of trust from

the top until it arrives at the appropriate sub-domain.

Figure 8 shows an example of a trust chain for the

fictional 3rd.secondlevel.tld domain.

7 	�The DNS protocol is described in RFC 1034

(see [6]) and RFC 1035 (see [7])

8 �See [9], [10], [11] and [14]

Figure 8 - Example of a trust chain

16

3.4	Trust anchors
A resolver needs to have a starting point for the trust

chain when it wants to validate a DNS response. Ide-

ally, the chain of trust would start at the root of the

domain name system. Unfortunately, the root zone is

not signed at this moment9. This means that a com-

plete trust chain from the root down is not possible.

Another issue is that there can be gaps in a trust

chain; DNSSEC was explicitly designed to be de-

ployed in such a manner that trust can start and end

at any point in a domain path.

This means that a resolver will need to decide which

trust chains it is going to trust. Once it has decided

this, it needs to explicitly trust the public parts of the

signing keys that form the root of these trust chains.

These are colloquially called “trust anchors” or secure

entry points.

For example: if the top-level domain .nl is not signed

but surfnet.nl and all the domains below are signed,

a trust anchor for a resolver would be the public key

used to sign the surfnet.nl zone.

Similarly to the way in which the hints file mentioned

in section 1.4 provides a resolver with information

about the root servers, these trust anchors need to

be configured in the resolver. This gives the adminis-

trator of the resolver ultimate control over the parties

that are to be trusted.

At the time of writing of this white paper, the majori-

ty of top-level domains as well as the root zone re-

main unsigned. Only a handful of top-level domains

support DNSSEC. A larger number of top-level do-

main administrators have announced that they are

going to support DNSSEC in the future.

3.5	I slands of trust
Because the root zone is not yet signed, any domain

currently deploying DNSSEC will form an island of

trust. The big disadvantage of this situation is that

any resolving party has to decide whom to trust (i.e.

which islands) and will have to negotiate some way

of establishing trust in key material supplied by the

parties it wants to trust. Figure 9 below shows an ex-

ample.

As it may be some time before the root zone is

signed – and even then, because of the deployment

model it is still possible for islands of trust to exist – it

is desirable to find a means of establishing “archipel-

agos” of trust. An archipelago would be a central off-

tree entity holding the trust anchors for a group of

trust islands which resolvers can decide to trust, thus

trusting all the islands that are part of the archipela-

go. A mechanism exists to achieve this, called DNS-

SEC Look-a-side Validation (DLV, see Figure 10).

3.6	Alternatives
DNSSEC solves the basic security flaw within DNS:

the fact that a name server cannot know whether a

response it receives from another server is genuine,

or even that it comes from the right server. There are

several other initiatives to secure DNS, but none of

these solve this basic flaw in a scalable manner. 	

Appendix E discusses some of these alternatives.

9 	�Although initiatives are being undertaken to do this at some

point in the future.

Figure 9 - Islands of trust

Figure 10 - Archipelago of trust using DLV

17

Implementing DNSSEC

4

18

4	Im plementing DNSSEC

4.1	I ntroduction
This chapter gives a high-level overview of how to

implement DNSSEC. It introduces a possible timeline

for DNSSEC roll-out. A high-level strategy for deploy-

ing DNSSEC within an organisation will also be pre-

sented.

A detailed technical discussion on how to roll-out

DNSSEC can be found in Appendix C.

4.2	Timeline
Before a strategy for rolling out DNSSEC can be dis-

cussed, it is important to reflect on the current state

of affairs. At the time of writing of this white paper,

large scale adoption of DNSSEC has not yet taken

off. As was already mentioned in section 3.4, howev-

er, there are indications that the adoption of DNSSEC

is gathering momentum. The diagram below shows a

possible timeline for DNSSEC deployment across the

Internet, based on the current situation:

The figure shows four distinct phases:

•	 �Phase one is the research phase11, which has al-

ready been completed. This is the period during

which researchers realised that DNS needed to be

secured, and developed the DNSSEC standard.

During this phase, some zones were signed ex-

perimentally.

•	 �Phase two is the early-adopters phase. This is the

phase we are currently in. During this phase, ear-

ly-adopters like universities, research institutions,

banks, some companies and a few top-level do-

mains start signing their zones and deploying

DNSSEC. These early-adopters play an important

role in gathering momentum to convince more

top-level domains to start supporting DNSSEC.

There is some support for DNSSEC in major oper-

ating systems. During this phase, preparations are

underway to sign the root and the remaining top-

level domains.

•	 �Phase three is the commodity phase. Having

gained momentum, DNSSEC takes off as a multi-

tude of top-level domains start offering support

for DNSSEC. Major operating systems start sup-

porting DNSSEC out-of-the-box. The number of

DNSSEC enabled zones grows rapidly. The root

zone is expected to be signed somewhere during

this phase.

•	 �Phase four is the latecomers phase. The growth in

usage of DNSSEC diminishes as the majority of

zones are already signed. Growth is accounted for

by latecomers adopting DNSSEC and by new do-

mains being registered.

Figure 11 - Possible timeline for DNSSEC roll-out across the Internet

11 	�This phase started outside of the diagram during the latter part

of the 1990’s

19

4.3.4	 Signing zones
Once the resolver infrastructure is in place, an organi-

sation can start signing their zones and publishing

the DNSSEC enabled zones on their primary name

servers. This requires a more significant effort, as

tools for signing zones are – at the moment – less

readily available and have a higher learning curve.

Managing the keys for zone signing is too complex to

be done manually, so a set of tools is necessary to

automate parts of the process. Especially for smaller

organisations and/or those with less technical exper-

tise it is recommended to outsource signing or to in-

vest in a DNSSEC signer appliance – that is: a dedi-

cated machine in the network that can perform all

the important signing functionality out-of-the-box12.

As part of the DNSSEC deployment, the organisation

will have to establish a set of procedures for key

management and roll-over, and ensure that there are

individuals within the organisation responsible for

these procedures. If IT functions such as DNS man-

agement have been outsourced, some of these re-

sponsibilities may well be included in the outsourced

service. However, the organisation should take care

that this does not result in a vendor lock-in. Appen-

dix D provides some hints for organisations wishing

to outsource these activities.

4.3		� Strategy for rolling out DNSSEC in
an organisation

4.3.1	 When to start rolling out
Sooner or later, any organisation with any kind of IT

infrastructure will have to implement DNSSEC. Even

organisations without a domain name of their own

will still need to enable DNSSEC, in order to validate

the DNS data from other domains.

The most important question that needs answering is

when to start rolling out DNSSEC. This depends on

what role an organisation has in society, and on the

level of expertise within an organisation. Based on

the phases from the previous section, some recom-

mendations are given below:

•	 �In phase two (early adopters), organisations with

a relatively high-level of technical expertise can

start rolling out DNSSEC. Such organisations will

include universities, research institutions, ISPs,

banks and some top-level registrars. The role of

these early adopters is significant, as they are the

ones that create the momentum for a large-scale

deployment of DNSSEC across the Internet. Dur-

ing this phase, tools are still maturing.

•	 �In phase three (commodity) almost any organisa-

tion should be able to deploy DNSSEC. Tools have

matured and are commonly available.

•	 �It is not recommended to start as late as phase

four (latecomers) as this will make an organisa-

tion a likely target for attacks.

4.3.2	 What to start with
The implementation of DNSSEC within an organisa-

tion actually consists of two separate activities: ena-

bling DNSSEC on all recursive caching name servers,

and signing the zones on the authoritative name

servers. These activities can be executed sequentially.

4.3.3	R esolving
An organisation that wants to start deploying 	

DNSSEC should start by updating or replacing their

recursive caching name servers (resolvers). The reason

for resolving securely is twofold:

•	 �It allows an organisation to start validating 	

DNSSEC information from zones that are already

DNSSEC enabled;

•	 �Without it, it is impossible to validate one’s own

zones.

Many (commercially) available resolvers already sup-

port DNSSEC, and will only need an update or a pa-

rameter change, as well as a configuration change to

set up the trust anchors. Other resolvers may need a

larger upgrade or a replacement. Appendix C pro-

vides an overview of these steps, under heading C.2

“DNSSEC for resolvers”.

12 ��Such appliances are starting to become available on the mar-

ket and there are also open source initiatives for making such

software available such as the OpenDNSSEC project

(http://www.opendnssec.org)

20

Conclusions

5

21

5.1	�DN SSEC provides trust in DNS
responses

As was shown in chapter 2, DNS has major security

issues that are there by design. DNSSEC solves these

issues by giving confidence in the authenticity of do-

main information. Spoofing is much harder, and

cache poisoning is no longer a threat when DNSSEC

is deployed.

Not everybody has to participate at once to make

DNSSEC work – there is no need for a big-bang de-

ployment; the design of DNSSEC allows starting any-

where within the DNS hierarchy. Organisations can

start now, without waiting for others. The more or-

ganisations adopt DNSSEC, the stronger it becomes.

5.2	�There is no alternative in the long
term

There is no credible alternative to DNSSEC, at least

not in the long term. The DNS patching arms race

that is currently ongoing is a battle that will most

likely be lost in the long run, simply because security

was not one of the design criteria when DNS was de-

veloped. Although there are some alternatives, none

of these address the actual problem of verifying the

authenticity of DNS responses.

This means that although DNSSEC is more complex

than DNS, there is no other option in the long run.

5.3	�Managing DNSSEC is different from
managing DNS

As has been explained in this white paper, different

skills are required to manage a DNSSEC enabled

zone. This may require some changes in an organisa-

tion and may require administrators to acquire some

new skills. It is important to note, however, that 	

there is a lot of effort ongoing to make managing 	

a DNSSEC enabled zone easier.

DNSSEC is becoming easier every day. Appliances

are already starting to appear on the market (includ-

ing open source initiatives such as OpenDNSSEC).

Tooling is also maturing quickly, rapidly making it

easier to automate many of the harder tasks in 	

DNSSEC. And recently third parties have started 	

offering hosted DNSSEC.

5.4	You need to do it
To make the Internet safer, DNSSEC should be adopt-

ed by everyone. Thus, organisations must start de-

ploying it. Implementing DNSSEC will enable an or-

ganisation to secure its own domain, and to validate

DNS data from others.

5	C onclusions

Starting by addressing the changes required for re-

cursive caching name servers, the deployment can

take off, and once set in motion, signing zones is only

one step away. It is of vital importance that top-level

domains get signed as quickly as possible, and this

will only happen if the stakeholders in these domains

(the organisations that have a second level domain

under these top-level domains) adopt DNSSEC them-

selves, thus paving the way. Early adopters should be

those organisations that have technical skills available,

such as universities, research centres, banks and – of

course – ISPs.

22

6	A cknowledgements

SURFnet would like to thank the following people for

their contribution to this white paper:

For co-authoring the white paper:

•	 Paul Brand of Stratix

•	 Rick van Rein of OpenFortress

•	 David Yoshikawa of Stratix

For reviewing the white paper:

•	 Jaap Akkerhuis of NLnetLabs

•	 Anand Buddhev of RIPE NCC

•	 Aart Jochem of GOVCERT.NL

•	 Piotr Kijewski of NASK/CERT Polska

•	 Olaf Kolkman of NLnetLabs

•	 Esther Makaay of SIDN

•	 Krzystof Olesik of NASK

•	 Jeroen van Os of GOVCERT.NL

•	 Carol Overes of GOVCERT.NL

•	 Antoin Verschuren of SIDN

•	 Wouter Wijngaards of NLnetLabs

23

Founded in 1992, the RIPE NCC is an independent,

not-for-profit membership organisation that supports

the infrastructure of the Internet. The most prominent

activity of the RIPE NCC is to act as a Regional Inter-

net Registry (RIR) providing global Internet resources

and related services to a current membership base of

over 6,000 members in 75 countries.

More information about the RIPE NCC is available at:

http://www.ripe.net

SIDN is responsible for the functional stability and de-

velopment of the .nl Internet domain. As well as regis-

tering and allocating .nl domain names, the organisa-

tion enables Internet users all over the world to

make use of these labels at any given moment. SIDN’s

rapidly growing domain name register now contains

more than three million .nl domain names, which are

the subject subject of almost one million successful

searches a day.

SIDN also plays an active role in the technical, regula-

tory and political development of the Internet, at the

national and international levels

SURFnet develops and operates innovative services

for higher education and the research community. We

focus on network infrastructure, authentication and

authorisation services and multimedia platforms for

online collaboration. About one million end-users ac-

cess our services on a daily basis. SURFnet is part of

SURF, an organisation in which universities, polytech-

nics and research institutions collaborate on ground-

breaking ICT innovations. SURFnet has been a leader

in ICT innovation in The Netherlands for over 20 years.

The organisations listed below have collaborated

with SURFnet to make this white paper possible. 	

By endorsing this white paper, these organisations

underline the importance of DNSSEC for the security

of the Internet:

7	E ndorsements

“GOVCERT.NL is the Computer Emergency Response

Team of the Dutch government. We work on prevent-

ing and dealing with IT security incidents 24/7. We

support organizations that carry out public tasks such

as government agencies, and work together with vital

sectors, such as water boards and energy companies.

We inform the general public about measures and cur-

rent risks regarding computer and Internet use.

Securing the basics of the Internet must be a priroity

of every organisation relying on trustworthy services

or providing public services on the Internet. The opin-

ion of GOVCERT.NL is that DNSSEC is an important

improvement of the integrity of DNS. Spreading

knowledge and advice about implementing the system

is needed and GOVCERT.NL is happy to endorse this

white paper.”

NLnet Labs is a research and development foundation

that focuses on those developments in Internet tech-

nology where bridges between theory and practical

deployment need to be built; areas where engineering

and standardisation takes place.

Since its foundation in 1999, NLnet Labs has been ac-

tive in DNSSEC standardisation, deployment engineer-

ing, training, and software development. NLnet Labs

developed NSD, an authoritative DNSSEC aware, high

performance name server in used by various root-zone

and top-level domain operators. We have assumed re-

sponsibility for the development of Unbound, a DNS-

SEC aware DNS recursive name server and stub resolv-

er and maintain the ldns and Net::DNS software library

suites.

OpenFortress Digital Signatures is a specialist in cryp-

tography, aiming to develop the general availability of

this useful technology in the form of practical applica-

tions that are easy to use. OpenFortress has keenly

awaited a wide adoption of DNSSEC since 2004.

OpenFortress
digital signatures

*

24

appendices

25

Appendix A Terms and abbreviations

A.1	Terms

Authentication
Verifying the authenticity of one’s identity

Authoritative name server
A name server that is the base source of information

about a certain domain; the fact that a name server is

authoritative for a certain domain is indicated in the

so-called “start-of-authority” (SOA) resource record.

Digital signature
A cryptographic operation based on public key cryp-

tography used to uniquely prove that a given piece

of information is trusted by the owner of a given pri-

vate key; the authenticity of a digital signature can

be verified using the corresponding public key.

Domain
A namespace in the Domain Name System; for in-

stance: surfnet.nl

Hints file
A file containing the names and addresses of the root

name servers; this file is distributed by InterNIC on

their website.

Host name
The meaningful name given to a computer system.

Kaminsky attack
The cache poisoning attack on the Domain Name

System published in 2008 by Dan Kaminsky.

See also: reference [5]

Phishing
Identity theft by luring users to a fraudulent website

– users are enticed to enter their private data such as

their usernames, passwords and credit card numbers

on a spoofed website by an e-mail seemingly from a

party they trust.

See also: http://en.wikipedia.org/wiki/Phishing

Public key cryptography
An asymmetric cryptographic scheme with two com-

plementary keys: the public key and the private key.

A signature computed using the private key can be

validated using the public key, conversely a piece of

data can be encrypted using the public key and de-

crypted using the private key.

See also: http://en.wikipedia.org/wiki/Public-key_

cryptography

Recursive (caching) name server
A name server that can be used by clients to perform

DNS resolving tasks; a caching server will store all

the answers it receives to queries and re-use these

when appropriate.

Resolver
A piece of software that uses DNS servers to map a

DNS name to an IP-address.

Resource record
Usually abbreviated to RR; a resource record is an en-

try in the Domain Name System. There are several

types of resource record. The most commonly used

ones are A records for mapping a name to an (IP-)

address.

See also: http://en.wikipedia.org/wiki/List_of_DNS_

record_types

Time-to-live
The time period during which an answer to a DNS

query remains valid and can thus be cached.

Trust anchor
The top of a trust chain that can be used by valida-

tors as a starting point to validate the authenticity of

a signed DNS record at any point in the trust chain.

Validating resolver
A resolver that validates the DNSSEC signatures on

the answers it receives to DNS queries.

Validator
A piece of software that verifies the authenticity of a

digital signature using the public key that was used

to create the signature.

Zone
A collection of related resource records that is served

as a unit by a name server.

See also: http://en.wikipedia.org/wiki/DNS_zone

Zone walking
The ability to retrieve the complete content of a zone

using the sequence of NSEC records in a zone.

26

A.2	Abbreviations

BIND	
Berkeley Internet Name Domain (a commonly used Domain Name Server package)

DLV	
DNSSEC Look-aside Validation

DNS
Domain Name System

DNSSEC
Domain Name System Security Extensions

IETF
Internet Engineering Task-Force

(see http://www.ietf.org)

IP
Internet Protocol

ISP
Internet Service Provider

KSK
Key Signing Key

LAN
Local Area Network

NSD
Name Server Daemon 	

(a commonly used Domain Name Server package)

NSEC3
Next Secure version 3, 	

part of the DNSSECprotocol

RFC
Request For Comments (an IETF specification)

SSL
Secure Socket Layer

TCP
Transmission Control Protocol

TLS
Transport Layer Security

UDP
User Datagram Protocol

WAN
Wide Area Network

ZSK
Zone Signing Key

27

Appendix b References

[1]	 �WikiPedia: The Domain Name System

	 http://en.wikipedia.org/wiki/Domain_name_system

[2]	 DNS and BIND

	 Paul Albitz and Cricket Liu, O’Reilly Media, Inc., Fifth Edition, May 26, 2006

[3]	 WikiPedia: DNSSEC

	 http://en.wikipedia.org/wiki/DNSSEC

[4]	 WikiPedia: Public-Key Cryptography

	 http://en.wikipedia.org/wiki/Public-key_cryptography

[5]	 �Black Ops 2008: It’s The End Of The Cache As We Know It 	

(or 64K should be enough for anyone)

	 http://www.doxpara.com/DMK_BO2K8.ppt

[6]	 RFC 1034: Domain Names – Concepts and Facilities

	 http://tools.ietf.org/html/rfc1034

[7]	 RFC 1035: Domain Names – Implementation and Specification

	 http://tools.ietf.org/html/rfc1035

[8]	 RFC 2845: Secret Key Transaction Authentication

	 http://tools.ietf.org/html/rfc2845

[9]	 RFC 4033: DNS Security Introduction And Requirements

	 http://tools.ietf.org/html/rfc4033

[10]	 RFC 4034: Resource Records for the DNS Security Extensions

	 http://tools.ietf.org/html/rfc4034

[11]	 RFC 4035: Protocol Modifications for the DNS Security Extensions

	 http://tools.ietf.org/html/rfc4035

[12]	 RFC 4431: The DNSSEC Lookaside Validation (DLV) DNS Resource Record

	 http://tools.ietf.org/html/rfc4431

[13]	 RFC 4635: HMAC SHA TSIG Algorithm Identifiers

	 http://tools.ietf.org/html/rfc4635

[14]	 RFC 4641: DNSSEC Operational Practices

	 http://tools.ietf.org/html/rfc4641

[15]	 An illustrated guide to the Kaminsky DNS vulnerability

	 http://www.unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html

[16]	 ISC’s DNSSEC look-aside validation registry

	 https://www.isc.org/solutions/dlv

[17]	 Bootstrapping the adoption of Internet security protocols

	 http://weis2006.econinfosec.org/docs/46.pdf

28

B.1	Further reading
For more information on the various aspects of 	

DNSSEC the reader is referred to the following sources:

•	T he DNSSEC consortium web-site
	 http://www.dnssec.net

This site is a source of up-to-date information about

DNSSEC and the deployment of DNSSEC on the 	

Internet.

•	T he DNSSEC HOW-TO by NLnetLabs
	 �http://www.nlnetlabs.nl/downloads/publications/

dnssec/dnssec_howto.pdf

A technical resource with hands-on information

about configuring a signed zone; examples are based

on BIND.

•	NIC .CZ information page
	 http://www.nic.cz/page/513/about-dnssec/

High-level information about DNSSEC; contains a

testing widget that shows (using either a red or a

green key) whether or not you arrived on the page

from a DNSSEC secured domain.

29

Appendix C Technical discussion of DNSSEC

C.1	Introduction
This appendix addresses the technical and organisa-

tional implications of implementing DNSSEC within a

DNS infrastructure. It addresses both the issues for

resolvers as well as for authoritative name servers.

C.2	DNSSEC for resolvers

C.2.1	I ntroduction
DNSSEC requires resolvers to implement validation

procedures for DNSSEC. Although not all software is

equipped with these extra capabilities, the most im-

portant resolvers are. With BIND9 it is a matter of

setting a few flags in the configuration files, and Win-

dows Server 7 will also support DNSSEC in its role as

a resolver.

C.2.2	C omputing power
Validating resolvers are configured just like any

cache, but may need a bit more computing power to

perform their task, as a result of the public key cryp-

tography involved in the validation process. The add-

ed performance requirement is a result of centralising

the cryptographic validation procedures (rather than

have each desktop complete the validation on its

own) but it does save on total computing effort, as

validated results can be shared among independent

desktops. It is important to realise that delays in DNS

are experienced as delays “in the Internet”. Experi-

ments by the DNS experts at NLnetLabs indicate that

delays are not expected to be severe enough that

they warrant dedicated cryptographic accelerator

boards in validating resolvers. In the estimated 10%

to 30% of queries that cannot be answered from the

cache, validating the trust chain may cause a some-

what slower response, but bearable on a human

scale. Note that scaling up only means that more hits

are delivered from a cache.

C.2.3	 Setting up trust anchors
Without going into details for specific applications, 	

it is good to be aware of the need to configure trust

anchors. As with X.509 certificates, DNSSEC needs a

starting point for its relationships (see sections 3.3

and 3.4). DNSSEC has been designed to support

multiple starting points for chains of trust. For each

of these entry points into the DNSSEC hierarchy,

there is a so-called trust anchor, which comprises of

DNSKEY records or their secure hashes that have

usually been validated out-of-band before they are

trusted. The name server software should be config-

ured to rely on these trust anchors.

IANA has been commissioned to setup an Interim

Trust Anchor Repository that will host validating in-

formation for the keys used to sign top-level domains

until the root zone has been signed. This is a tempo-

rary solution that will allow time for the resolution of

the complex issues related to the central position of

the root zone.

C.2.4	L ook-aside validation
The introduction of DNSSEC for a parent zone such

as a TLD or a ccTLD is more difficult than simply

signing one’s end-user zones. This is a result of gath-

ering a lot of information, handling lots of key rollo-

vers and a more general responsibility. As a result,

child zones are likely to be signed before their parent

zones. As a pragmatic solution to this generation

gap, a temporary construct of DNSSEC look-aside

validation (or DLV for short, see [12], [16]) has been

defined. Instead of registering a domain’s DNSSEC

keys with a parent, this works by registering them in

another domain that happens to collect such keys,

and makes them available for look-aside validation

To setup look-aside validation, the look-aside domain

collects DLV records (which are similar to the DS

records generated for the parent, except for the re-

source record type, see [12] for more details). Such

records are created under another domain, so that

the DLV record for surfnet.nl could be stored for

look-aside validation under dlv.isc.org by creating

the DLV record under surfnet.nl.dlv.isc.org. A resolver

configured with a trust anchor for dlv.isc.org would

lookup anything without a DS in the parent as a DLV

record under the dlv.isc.org domain, and if it finds

one it will treat it in a way similar to a DS record that

should have been found in the parent zone.

Since the DLV domain is also a domain like any other,

and since it is usually validated through DNSSEC, it

will be necessary to follow-up on key rollover at the

DLV domain. This can be done manually, about once

a year, or it can be automated if your server software

implements RFC 5011, and if the published domain 	

also uses that standard to revoke keys as they have

served their useful life.

C.2.5	 Security issues
It cannot be avoided that the same resolver handles

both secure and insecure domains; in fact, DNSSEC is

sometimes used to establish a domain’s insecurity.

Validating resolvers must be aware of this mixed

world-view because it would be a dramatic failure if

an attack in the style of Dan Kaminsky’s could be

mounted against an insecure domain and let that alter

a secure domain’s validated records. If you select re-

solver software, pick one that is mature, so you can

rely on a strict separation between secure and inse-

cure data.

30

C.2.6	R esolver selection
The following points sum up the issues that help to

select a validating resolver:

•	 Does the resolver support DNSSEC?

•	 �Can the resolver be configured with the KSK for

selected domains?

•	 �Can the resolver be configured for look-aside 	

validation; accepting the DLV KSK and sending

DLV requests to a look-aside domain?

•	 �Does the resolver have facilities to update trust

anchors automatically? (optional)

C.3	�DNSSEC for authoritative name servers

C.3.1	 Managing a signed zone
In chapter 3 the concept of zone signing was intro-

duced. More specifically: the actual information being

signed are sets of related Resource Records, also

called RRsets. An RRset comprises all resource

records of one type, in one class, pertaining to a sin-

gle resource (e.g. all address (A) records in the Inter-

net (IN) class for one specific host name). An RRset

can consist of one or several records.

Signed zones should not be maintained by hand, as

the data in the zones is too complicated for that. In-

stead, automated tools should be used to manage

the signing of data in the zones.

C.3.2	K ey material and key management

C.3.2.1	 Algorithms
DNSSEC is based on public key cryptography. RFC

4034 (see [10]) specifies that the following crypto-

graphic algorithms may be used:

•	 DSA/SHA-1

•	 RSA/SHA-1

For two reasons it is recommended only to use the

RSA/SHA-1 algorithm:

•	 �Security: DSA keys are constrained to a maximum

key length of 1024 bits; this may impact the secu-

rity of DSA keys

•	 �Performance: Signature validation of DSA signa-

tures is an order of magnitude slower than signa-

ture validation of RSA signatures. This mainly has

an impact on validating resolvers.

In the future elliptic curve cryptography is also going

to be supported for DNSSEC. Currently, however, its

use has not been standardised yet.

C.3.2.2	 Key types
The current operational practice for DNSSEC is to

use a two-tiered key model:

•	 �A Zone Signing Key (ZSK) is used to sign RRsets

within a zone

•	 �A Key Signing Key (KSK) is used to sign Zone

Signing Keys

Each of these keys has its own specific properties:

The ZSK is relatively short-lived; the recommended

use period for a single ZSK according to RFC 4641

(see [14]) is one month. It is also recommended to

use a moderate key-size for the ZSK (in the order of

magnitude of 1024 bits). This is necessary in order to

keep the time it takes to sign a zone within managea-

ble limits.

The KSK is longer-lived; the recommended use period

for a single KSK according to RFC 4641 is 1 year. It is

recommended to use a minimum key size of 2048 bits.

If zone signing has been delegated by a parent zone

by means of a DS record, then this DS record should

reference the KSK. This means that the parent only

has to be informed if the KSK is updated.

C.3.2.3	 Key rollover
The KSK and ZSK both have a limited period of valid-

ity. This means that it is necessary to perform key

rollovers at regular intervals. To allow time for infor-

mation to propagate through the DNS and to allow

time in case of unscheduled problems it is good

practice to give subsequent keys slightly overlapping

validity periods. For instance: the validity period of a

KSK could be 13 months and the validity of a ZSK

could be 1 month plus enough time to let the longest

TTL-values expire, for instance 1 week.

It is also good practice to make the new keys availa-

ble before their validity period commences. A new

KSK should ideally be announced 1 month prior to

key rollover and a new ZSK should ideally be an-

nounced 1 week prior to key rollover13. Alternatively, it

is possible to have non-overlapping key validity, but

to have temporarily overlapping signatures on DNS

records. The former method is called pre-publication

of keys, the latter is the double-signature method.

13 ��Note: the time intervals given in this section are based on

the current best practice as described in RFC 4641 [14]; these

time intervals are not absolute, sensible variations are possible

and likely.

31

 The diagram below shows how these overlapping

periods could work in practice:

Whenever a key rollover of the KSK is to take place,

the parent zone should be informed and should be

supplied with a new reference record (called delega-

tion signer, or DS) for this key. The new KSK should

not be used for signing of ZSKs until the parent zone

has been updated.

C.3.3	�A uthenticated denial of existence (NSEC/
NSEC3)

C.3.3.1	 �Why authenticated denial of existence is
necessary

A practical aspect of DNS is that it provides an ex-

plicit answer if a requested resource record does not

exist. These explicit negative acknowledgements

avoid retries and waiting for timeouts. From a securi-

ty perspective, however, this introduces a threat of

denial-of-service attacks.

To avoid such attacks, the absence of a resource

record must be signed. But DNSSEC works with offline

zone signing, making it impossible to predict any

query against any name and sign for its absence.

C.3.3.2	 NSEC and zone walking
The solution is not to sign for the name being absent,

but to sort all names in a zone in a canonical order

and to sign for statements like “after A comes C” so

resolvers can infer that B does not exist. To facilitate

this, the NSEC resource record was introduced (see

[10]). This record lists the following information for a

given host name:

•	 �The next host name to be listed in the zone ac-

cording to canonical ordering

•	 The types of records existing for the host name

As you can see this clearly defines that a given

record “A” is followed by a given record “C” inferring

that no intermediate record “B” can exist. It also goes

on to prove that for the given record “A” only signed

RRsets exist of the specified types.

So if a name server gets a request for “B” it simple

responds with the NSEC record for “A” thus proving

in a secure way that “B” does not exist.

A long-time show-stopper for DNSSEC has been the

lack of privacy of this construction; if one got hold of

the name “A”, it would be trivial to get a link from A

to C based on the NSEC record, from C one could

then get a link to K, from K to Q etc. until the entire

zone has effectively been enumerated. This iterative

process that lists all names in a zone is commonly

called “zone walking”. Although DNS data is usually

public14, many felt this to be an unacceptable assault

on their privacy and/or their ability to conceal experi-

mental or private sub-domains from public viewing

(which was possible because it is currently common

practice to deny zone transfers to any but a few

trusted parties).

C.3.3.3	 How to solve zone walking: NSEC3
A recent improvement to DNSSEC addresses just this

problem in the so-called NSEC3 resource record. This

record type does not link the names in a domain, but

the hashes of such names. A response that explains

that B does not exist under a domain starts by calcu-

lating hash(B)=4323... and finds its position in an or-

dered list of all names that occur in a domain. Per-

haps hash(Q)=381a... precedes the value of hash(B)

and hash(C)=7bbc... might be the next. So an offline-

signed link “after 381a... comes 7bbc...” is used to

prove that hash(B)=4323... does not occur.

Key #2

Key is used for signing

Key has been announced but is not yet valid

Key is still valid but no longer used for signing

Key #3

Key #4

Key #1

Rollover #1

Rollover #2

Rollover #3

Figure 12 - Key rollover period overlaps

14 ��There are exceptions to this rule, for instance: private DNS

infrastructures behind a firewall

32

Since the hashes used are cryptographic/secure

hashes, it is not possible to derive the original names

Q and C from their hashes, so the privacy (or non-it-

erability) of the DNS zone is maintained while at the

same time supporting the required proof that a name

does not exist in the zone.

Thus the NSEC3 record is made up of 3 things:

•	 The hash of the host name it applies to

•	 The types of records existing for the host name

•	 �The hash of the next host name in the zone in

hash order (the zone is sorted from 0 to

MAX(hash) and at the end it wraps back to the

beginning)

So, in the example above, if a name server gets a re-

quest for “B” it simply sends back the NSEC3 record

for hash(Q) allowing the resolver to verify that “B”

does not exist in the given domain. Not every pub-

lisher will prefer NSEC3 over NSEC, so the two will

probably continue to co-exist.

C.3.4	D ynamic DNS updates
Not all about DNSSEC is glorious. If DNS records up-

date frequently, as in some dynamic uses of DNS,

two problems arise:

•	 �New data is not authenticated until a signature is

made;

•	 �Old data may float around as authentic until its

signature expires

This means that DNSSEC and dynamicity in DNS are

not an ideal combination. Dynamicity for DNSSEC

could be implemented with short-lived signatures,

but that leads to a lot of additional stress on DNS

caches and resolvers, especially if they actively vali-

date the signatures on DNS records (which is the

most likely initial roll-out of DNSSEC). This is at least

harmful for the scalability of DNSSEC.

Below, a few problems that are foreseen in existing

networks are discussed, as well as some proposed

workarounds.

C.3.4.1	 Linking DHCP to DNS entries
The most common example of dynamic data in DNS

is the mapping of a fixed host name to a dynamic IP.

When acquiring an IP number through DHCP, a host

may provide a host name, or its host name may be

known thanks to a registered MAC address. Many

DHCP servers will not only supply an IP lease to such

a host, but will register the mapping in DNS at the

same time.

The dynamicity of these IP addresses is usually not

an issue. Other parts of the network, notably firewalls

and routers, already require fixed IP addresses for 	

exceptional systems such as servers. Only the client

systems, being those that do not publish services, 	

are treated as part of a uniform set without further

discrimination based on their IP addresses.

This means that we expect the dynamic part of map-

pings from host name to IP address to cover clients,

not servers. Since servers may be contacted from

anywhere, their mapping is often vital to protect with

DNSSEC, and since these mappings are static that

ought to be no problem. Typical client systems with

their dynamic name-to-IP mappings can be exempted

from DNSSEC protection without much harm, since

nobody will want to contact them using their DNS

name.

DNSSEC offers a way out for such security exemp-

tions. An insecure sub-domain of a DNSSEC domain

can be constructed by referring to a sub-domain’s

name servers, but not accompanied by a key 	

reference; for example the secured domain 	

harderwijk.edu could have a sub-domain 	

dyn.harderwijk.edu that does not support DNSSEC

but uses plain DNS to map names to IP addresses. 	

To construct this, the harderwijk.edu zone contains

NS records for the dyn.harderwijk.edu domain, but

contains no DS record(s) for dyn.harderwijk.edu, so

exemption is explicitly verifiable by way of the signa-

tures on the NS records in harderwijk.edu.

C.3.4.2	DHCP for Internet Service Providers
A specific form of the dynamicity in DNS due to 	

DHCP concerns ISPs. The clients of an ISP may well

want to run services on an IP address that is assigned

to them through DHCP, which makes the IP address

dynamic, at least in theory.

These DHCP assignments to cable and DSL custom-

ers are usually constant over a long period, and may

therefore almost be treated as static assignments --

with the side note that a procedure must exist to al-

ter them manually. This is actually the sort of situation

that DNSSEC supports quite nicely, by way of regular

resigning of a zone. Setting up a new IP address under

DNSSEC is just some extra work that adds to the pro-

cedure of editing the usual DNS records. We do not

expect this to cause major problems in practice. 	

DHCP leases are usually supplied for periods of a

week or so, and these periods may be synchronised

with the regular DNSSEC signing procedure to even

avoid the occurrence of signed faulty data in DNS.

In the ideal situation, the ISP signs their dynamically

assigned records with DNSSEC, and given the long

lease term from most ISPs that would not lead to

scaling problems due to overloaded secure DNS

caches. In any case, if a customer of an ISP defines

their own domain and points it to the ISP-supplied IP

address, it is possible to sign that; if the ISP is using

DNSSEC it could just be a CNAME alias, but if the ISP

does not define secure records it could be an A

record (which is formally wrong but also is common

practice).

If an ISP decides not to sign the dynamically bound

mapping of names to IP addresses, it can explicitly

opt-out for such addresses. This is done with a 	

DNSSEC-signed statement that a sub-domain is 	

33

unsigned. Validating resolvers can use this statement

to assure that nobody is suppressing a signature but

that it is secure to assume that no signature is availa-

ble. Note that ISPs failing to sign the dynamic map-

pings will cause additional A records in customer’s

own domains, so perhaps it is better to implement

DNSSEC on ISP’s DHCP leases. It is also worth noting

that the reverse translation (from IP to host name)

could be signed at the same time as the forward

translation (from host name to IP).

C.3.4.3	Dynamically changing IPv6 addresses
In the interest of privacy, Windows has a default fea-

ture under IPv6 to assign a random bottom half in

IPv6 addresses, and to change them regularly. This

protects against visibility of one’s MAC address (in-

cluding the manufacturer code) in the bottom half of

the address. Furthermore, since with IPv6 there is no

need for NAT, all addresses are public and making

long-term addresses known on the Internet does not

provide the by-default security of being behind the

client-only filter of NAT. Such dynamic IP addresses

could be a problem for DNSSEC if it had to update its

signatures. Fortunately however, this does not seem

to be necessary in the situations that we currently

anticipate.

Dynamic IPv6 addresses are intended for client side

systems, and contacting them normally isn’t a re-

quirement. Server machines will use a manually set

fixed IPv6 address over which their services will be

acquired. Such fixed addresses are suitable for publi-

cation in DNS, including signatures.

Normal setups do not require the lookup of client

systems in DNS, so they need not support DNSSEC;

but even client systems (can) automatically create a

fixed IPv6 address based on a MAC address, making

them suitable for publication in signed DNS.

Note that operating systems support fixed and dy-

namic IPv6 addresses at the same time; it is common

practice to have multiple IPv6 addresses co-existing

on one interface. Only the static addresses would end

up in DNS, with DNSSEC protection. The dynamic 	

addresses, if they occur in DNS at all, can be in an 	

unsigned sub-domain, and DNSSEC can explicitly

opt-out that sub-domain.

C.3.4.4	Dynamic signing in name servers
The problems of signing dynamic content in DNS

stem from the current practice of off-line signing. 	

Future versions of BIND – the most commonly used

software for DNS servers – are most likely going to

support on-line signing. Microsoft is also working on

DNSSEC support for Windows Server 2008 R2 and

for Windows Server 7; it is likely that these will also

support on-line signing since this would be required

for Active Directory.

34

Appendix D Outsourcing

D.1	Introduction
For most organisations, managing the IT infrastruc-

ture is not part of their core business. In order to

maintain a professional IT service, they tend to out-

source at least part of their IT management to spe-

cialised vendors. In many cases the authoritative DNS

servers for the organisation’s domain will be hosted

on an ISP’s servers, and resolvers may be installed in-

house but managed by an outside provider. This situ-

ation has implications for the deployment of DNSSEC.

D.2	Division of responsibilities
As in any outsourcing arrangement, the division of

responsibilities between the organisation and outside

vendor (or vendors) will have to be defined carefully.

Some areas that an organisation may want to out-

source, in relation to DNSSEC, are:

•	 �Installing and configuring DNSSEC enabled re-

solvers, authoritative servers and signers;

•	 �Managing DNS related equipment on-site or off-

site, or hosting DNS servers on the vendor’s plat-

forms;

•	 �Creating, storing, and deploying Key Signing Keys

and Zone Signing Keys;

•	 �Signing zones and deploying signed zones on the

authoritative servers.

For each of these activities, there should be someone

within the organisation with the overall responsibility,

who can monitor the vendor’s activities and address

any issues that arise. The outsourcing contract

should make clear what the vendor’s responsibilities

are in case of a problem, and who will assume liability

for any resulting damages.

D.3	Protecting against vendor lock-in
Any outsourcing agreement will have provisions in

case the organisation wants to migrate to a different

vendor, or bring activities back in-house. However,

DNSSEC introduces a few points that require extra

care to avoid future difficulties in switching vendors:

•	 �Clear agreement on the legal ownership of con-

figuration data and cryptographic keys;

•	 �Agreed procedures to hand over configuration

data and cryptographic keys to the organisation

or to a future vendor at the end of the contract

(or earlier, if necessary);

•	 �Agreed procedures to ensure keys remain availa-

ble to the organisation in the case of disputes,

take-over or bankruptcy of the vendor.

35

Appendix E Alternatives

E.1	I ntroduction
In this appendix the possible alternatives to DNSSEC

are considered.

Although DNSSEC is a pragmatic solution rather than

an ideal one, it has clear advantages over the alterna-

tives available. Many of the alternatives below fail on

account of not protecting the origin of DNS data. 	

Although it is possible to protect DNS data by pro-

tecting every transaction between every client and

server, this is unreliable for a number of reasons:

1.	 �A chain of protected links can break at its weak-

est link, meaning that it is not possible to enforce

minimum validation standards merely by config-

uring one’s local resolver. Specifically, it is not

possible to know if all links are individually se-

cured or not. Being dependent on independently

managed parts of the DNS infrastructure erodes

the reliability of the system as a whole.

2.	 �Between every two secured links sits a name

server, either an authoritative name server or a re-

cursive resolver. Even if the links are secure, then

there is still the risk that the name server itself is

poisoned with false data, which it will happily sign

upon forwarding.

3.	 �At some point in DNS, there is a need to connect

from a local domain to a remote domain. This

happens most often when a recursive/caching

name server starts at the root name servers and

proceeds downward in the DNS tree in order to

resolve a query. There are quite a few practical

problems related to protecting each link sepa-

rately, especially because of the multitude of

servers to be contacted.

E.2	The DNS arms race
The easiest “alternative” to DNSSEC is to do nothing.

That is, not roll out anything to secure DNS and con-

tinue patching software as soon as a security prob-

lem arises.

DNS has not been designed for security, and name

server software can only compensate to some degree.

For example, in defence of Dan Kaminsky’s attack

there have been patches that use a random port for

sending/receiving the DNS information. This effective-

ly extends the information to be guessed by the at-

tacker from 16 bits to 32 bits. This may defer the

cache poisoning problems from all but the most de-

termined attackers in the short term, but it is solely

dependent on the possibility to squeeze these extra

bits out of the existing systems. And the resulting 32

bits can by no means be classified as a securely large

search space to defer attacks. It merely makes it sim-

pler to detect attacks with an intrusion protection sys-

tem, and it improves the chances of shutting down an

attacker by way of an intrusion prevention system.

Rolling out intrusion detection and protection sys-

tems to protect a light-weight system like DNS can

be considered overkill. The intrusion detection sys-

tems must be very powerful since DNS, thanks to its

light-weight nature, can handle quite a lot of load on

a single server. For instance, it is not uncommon for

ISPs to service a whole country with only a few re-

cursive DNS servers (DNS caches). Also, a deter-

mined attacker may simply fire at random in the full

32-bit search space over a long period of time, call-

ing for intrusion detection systems that recognise

patterns over a long period, which is infeasible as the

system would have to consider so many attack pat-

terns at the same time.

The sort of attacks and defences that are currently

applied to DNS are an arms race, battling to manipu-

late or protect the technical data contained in the IP

and UDP headers and the DNS payload. The attacks,

if they are published at all, usually demand instant

patches of one’s systems, so time is of the essence.

The major advantage of DNSSEC is that it introduces

cryptography by way of digital signatures. The bene-

fit of cryptography is that it creates an incredible gap

between the abilities of the domain owner and an at-

tacker: The simple fact that a private key is in the

possession of a domain owner but unknown to an at-

tacker places the latter in a greatly disadvantaged

position. Potential attackers know this, and will gen-

erally avoid attacking the cryptographic aspects. If

the remaining software is well-written, no attacks can

realistically be mounted.

It could be argued that cryptography is an arms race

of its own. This, however, is not an arms race that in-

volves every single DNS administrator; it involves ac-

ademic and government institutions that work on

general cryptographic mechanisms such as RSA and

SHA1. These mechanisms are widely used and widely

tested by highly skilled people, and the general ten-

dency is to be open about any possible problems

that could compromise security. A few decennia

worth of experience with cryptographic algorithms

suggests that practical attacks hardly ever break an

algorithm completely, but merely let their protection

erode to such a level that the introduction of alterna-

tives is required. This all happens at a much slower

pace than the arms race of DNS as it stands today.

E.3	TSIG and SIG(0)
Early attempts to standardise DNSSEC have involved

different kinds of resource records: TSIG and SIG(0).

As will be explained, these are not without their 	

use but they are unsuitable for a broad roll-out of

DNSSEC.

TSIG is a facility for a shared secret between a pair of

hosts. These hosts can exchange normal DNS infor-

mation, and end with a signature based on that 	

36

secret. If no party but these two hosts holds that in-

formation, it can be inferred that no third party could

have created the signature. The mechanism is light-

weight and even has facilities for key rollover15. It is

useful between paired hosts that have a long-term re-

lationship (such as primary and secondary name ser

vers for a domain) but it cannot scale up to a general

solution for DNSSEC. For example, if the .com top-level

domain were to be signed with TSIG, a shared secret

would have to be negotiated between the .com au-

thoritative name servers and every resolving name

server on the Internet. Even if this would be technical-

ly feasible, there would still be the problem of co-ordi-

nating the initiation of the shared secrets. Clearly, a

public-key mechanism is more suited to the situation

of general servers that are open to clients anywhere.

In situations where the pairing can be fixed and secrets

can be exchanged however, TSIG remains a valuable

mechanism due to its small footprint.

SIG(0) is a public-key based mechanism that signs for

selected queries and responses. As with TSIG, the sig-

natures are made for a transaction between a client

and a server, but it does not make the origin of data

verifiable. Because SIG(0) signatures must be con-

structed by the resolver, it would overload that device

if used to support validation of every query; it should

be used sparingly.

A useful application of TSIG, TKEY and SIG(0) in a

DNSSEC-rollout is to establish a secure link between a

validating resolver and a relatively dumb local resolver,

such as a modem/router or a single host on the net-

work. These would request a TKEY record signed with

SIG(0) using a trusted key for the connection to the

validating cache. The TKEY record would relay a

shared secret to the client, which can henceforth be

used for light-weight TSIG security. These mechanisms

have their uses, but not in a global roll-out of DNSSEC.

E.4	DNSCurve
DNSCurve solves another issue than DNSSEC; DNSSEC

takes the viewpoint that information in DNS is public,

and does not need encryption. It could however be ar-

gued that the actual DNS traffic does count as a secu-

rity threat, even if the knowledge that is exchanged is

public. On a broadcast network (cable Internet, WiFi)

one shares a medium with potentially unreliable users

who may be quite interested in learning that you are

requesting domain information for a sensitive domain

(such as a bank).

Just like TSIG and SIG(0), DNSCurve protects the 	

query/response exchange between a client and a 	

server. It does not provide authentication of the origin

of data. Novel about DNSCurve is its use of elliptic

curve cryptography, being a modern set of public key

algorithms that has hitherto not been standardised for

use in DNSSEC.

E.5	IPsec
Assuming that IPsec would be omnipresent, it could

spark the idea of being an alternative to DNSSEC. This

is not true however -- it may help to authenticate the

remote party being contacted, but not the origin of

data that is received. If the remote party is in any way

compromised, it can be loaded with invalid data. 	

DNSSEC is about validating data to have come from

the desired origin, and not just the proxy through

which the information was obtained.

In addition to that, rolling out IPsec requires even more

critical mass than DNSSEC, making it unlikely to ever

hit the global Internet. Making this unlikely is the fact

that IPsec is widely regarded to be a “board standard”,

full of compromises to keep too many parties happy.

The resulting standards are so full of options and alter-

natives that one cannot assume interoperability of solu-

tions based on the mere premise that they support

IPsec.

IPsec remains useful for generic traffic encryption

and/or authentication in a locally controlled environ-

ment, acting as a standardised VPN, but it is not likely

to gain sufficient traction for a globe-spanning secure

network.

E.6	SSL or TLS
First and foremost, no proposals have been made to

secure DNS with TLS or its predecessor SSL. The only

relation between DNS and these protocols is that facil-

ities have been proposed to store X.509 certificates in

DNS resource records. This approach treats DNS as a

database, but it has no security implications for DNS

itself.

Using TLS (or SSL) in combination with certificates

could have worked, if the whole infrastructure behind

it wouldn’t have been so riddled with questions and

problems, ranging from who controls the list of trust-

ed root certificates to what it means to sign a certifi-

cate. DNSSEC on the other hand gives a clear defini-

tion of these technical issues.

The standards for TLS and SSL are easily misinterpret-

ed and there is ample room for disagreement on their

interpretation. Keeping that in mind it is a small mira-

cle that both standards have been so widely adopted.

The main cause for their popularity is that they are

embedded in browsers. Given a choice, cryptogra-

phers generally prefer other, more technically-inclined

ways of application-packaging their cryptographic

structures.

Finally, DNS has its own requirements, including

densely packed data (which rules out X.509 certifi-

cates completely) for optimal use of cache and band-

width. Furthermore, it is desirable to keep the valida-

tion process as simple as possible, in order to retain

the light-weight and almost-instant nature of DNS as

much as possible; interpreting complex structures

such as certificate chains introduces counter-produc-

tive overhead that is unbearable in a DNS environment.

15	 �By means of the TKEY extension

37

Colophon

Authors

Paul Brand

Rick van Rein

Roland van Rijswijk

David Yoshikawa

Editor

Roland van Rijswijk

Layout and graphic design

Paul Eversdijk

Illustrations

Tycho van der Klip

Copyright © SURFnet B.V. 2008-2009

This paper is distributed under the terms of the 	
Creative Commons License version 3.0 	
“Attribution-Non Commercial-Share Alike” Netherlands

A copy of this license can be obtained online:
http://creativecommons.org/licenses/by-nc-sa/3.0/nl/deed.en

38

SURFnet

Postbus 19035

3501 DA Utrecht

The Netherlands

T +31 302 305 305

F +31 302 305 329

E admin@surfnet.nl

I www.surfnet.nl

January 2009

