
Quantifying the influence of anthropogenic surface processes and

inhomogeneities on gridded global climate data

Ross R. McKitrick1 and Patrick J. Michaels2

Received 26 January 2007; revised 3 May 2007; accepted 8 November 2007; published 14 December 2007.

[1] Local land surface modification and variations in data quality affect temperature
trends in surface-measured data. Such effects are considered extraneous for the purpose of
measuring climate change, and providers of climate data must develop adjustments to
filter them out. If done correctly, temperature trends in climate data should be uncorrelated
with socioeconomic variables that determine these extraneous factors. This hypothesis
can be tested, which is the main aim of this paper. Using a new database for all available
land-based grid cells around the world we test the null hypothesis that the spatial
pattern of temperature trends in a widely used gridded climate data set is independent of
socioeconomic determinants of surface processes and data inhomogeneities. The
hypothesis is strongly rejected (P = 7.1 � 10�14), indicating that extraneous (nonclimatic)
signals contaminate gridded climate data. The patterns of contamination are detectable
in both rich and poor countries and are relatively stronger in countries where real
income is growing. We apply a battery of model specification tests to rule out spurious
correlations and endogeneity bias. We conclude that the data contamination likely leads to
an overstatement of actual trends over land. Using the regression model to filter the
extraneous, nonclimatic effects reduces the estimated 1980–2002 global average
temperature trend over land by about half.
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1. Introduction

[2] It has long been known that local economic condi-
tions and demographic changes leave measurable traces in
meteorological records. Climate data, as used for measuring
global warming and detecting a CO2 influence, originates
with meteorological records, but it then undergoes a mod-
eling step, the aim of which is to identify and remove all
such extraneous signals, in principle yielding an estimate of
the air temperature trend in a location, had there never been
any human settlement there [see, e.g., Mitchell, 1953;
Peterson, 2003]. Typical usage of climate data assumes this
filtering to have taken place, such that contaminating signals
due to socioeconomic factors leave only small, unsystem-
atic, zero-mean and zero-trend noise in climatic data series.
If true, the spatial pattern of observed climatic trends should
be uncorrelated with socioeconomic measures that account
for variations in extraneous, nonclimatic signals in the
underlying meteorological data. This hypothesis can be
tested, which is the main aim of this paper. Our data and
model allow us to test for a range of extraneous signals in
climatic records which are categorized into modifications to
the local environment (anthropogenic surface processes)

and observational difficulties (or data inhomogeneities).
We reject the hypothesis that the spatial pattern of temper-
ature trends in global climate data is independent of
extraneous effects (P = 7.1 � 10�14). We present evidence
that our results are not due to reverse causality (endogeneity
bias) or spurious correlations. The economic imprints are
present in both rich and poor countries but are strongest in
countries experiencing real income growth. The effects are
significant at the global level and likely add a sizable
upward bias to trends in the global mean temperature
anomaly. Our results suggest that as much as half of
measured post-1980 land-based ‘‘global warming’’ may be
attributable to contamination of the basic data.
[3] Over 50 years (a) ago, referring to the use of long-term

weather records for measuring climate change, Mitchell
[1953, p. 244] cautioned: ‘‘The problem remains one of
determining what part of a given temperature trend is
climatically real and what part the result of observational
difficulties and of artificial modification of the local envi-
ronment.’’ These two types of bias continue to affect the
measurement of climate change. Observational difficulties,
or data inhomogeneities (such as station moves and closure,
record discontinuities, equipment change and changes to the
time of observation) are known to have affected records of
mean temperature [e.g., Baker, 1975; Schaal and Dale,
1977; Karl and Williams, 1987; Wilmott et al., 1991;
Peterson, 2003]. Modification of the land surface, including
urbanization and other economic activity, has been shown to
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affect local, regional and possibly global meteorology, and
thus locally measured temperature data [e.g., Feddema et
al., 2005a, 2005b; Pielke et al., 2002; McKendry, 2003; de
Laat and Maurellis, 2004, 2006; McKitrick and Michaels,
2004]. For some local meteorological purposes these extra-
neous effects may not matter, but for applications in which
weather data are used to construct measures of long-term
climate change and detect anthropogenic influences, a
modeling step is required to measure and filter them out.
The variety of methods in common use will be discussed in
the next section. The difficulties in filtering extraneous
effects continue to be noted in empirical climate studies
[e.g., Peterson, 2003] but Intergovernmental Panel on
Climate Change (IPCC) [2001, 2007] assert that such biases
at the global level are extremely small. Also, climate change
attribution studies [e.g., Tett et al., 1999] presuppose that
trends in gridded climate data are only attributable to
climatic ‘‘forcings’’ such as solar flux, atmospheric dust
and greenhouse gas concentrations, on the assumption
(stated or implied) that the spatial configuration of local
modifications to the land surface or determinants of obser-
vational difficulties are not significant or systematic features
of the gridded data.
[4] If this assumption is true, then the spatial pattern of

grid cell temperature trends should be uncorrelated with
variables like Gross Domestic Product, population density,
average income, and other local, nonclimatic factors. The
presence of such correlations, on the other hand, would
indicate that gridded surface climate data contain extraneous
biases, thus measured climatic trends may be inaccurate and
attempts to identify the climatic influences of greenhouse
gases might misattribute the causes of apparent trends.
Alternatively, if the spatial pattern of greenhouse warming
just happens to match the spatial pattern of socioeconomic
development, it suggests conventional signal detection
methodology would be unable to identify which one
explains the observed changes. However, this possibility
is critiqued in sections 4.4 and 4.6 below.
[5] In this study we develop a new database encompass-

ing all available land-based grid cells around the world,
matched to detailed local economic and social conditions, as
well as fixed geographical factors. Our data and model
allow us to test for a range of extraneous signals in climatic
records which are categorized into land surface changes and
observational difficulties (or data inhomogeneity). We find
clear evidence that the spatial pattern of temperature trends
in global climate data is significantly associated with each
type of extraneous effect.
[6] It is sometimes customary to refer to all nonatmo-

spheric, extraneous effects as ‘‘nonclimatic.’’ This termi-
nology is not entirely satisfactory, since land use change can
also be considered a climatic influence [e.g., Feddema et
al., 2005a, 2005b]. Mitchell [1953] proposed a taxonomy in
which effects due to station movement, instrumental
change, etc are denoted ‘‘Apparent’’ effects, those attribut-
able to local environmental change (pollution, urbanization)
are ‘‘Real-local’’ and effects due to atmospheric composi-
tion, solar flux etc. are denoted ‘‘Real-climatic.’’ The latter
category is what gridded temperature anomaly data are said
to measure; the first two are assumed to have been filtered

out. To keep the terminology simple, we refer herein to
apparent and real-local effects as ‘‘extraneous’’ biases.

2. Extraneous Biases in Climate Data

[7] The urban heat island (UHI) effect is not the only
source of data contamination, but has been the focus of
particularly extensive investigation. A survey is given by
McKendry [2003]. UHI effects have been documented in,
for example: South Africa [Balling and Hughes, 1996],
Vienna [Böhm, 1998], China [Jones et al., 1990], Alaska
[Magee et al., 1999], Japan [Fujibe, 1995], India [Hingane,
1996], Illinois [Chagnon, 1999], Korea [Chung et al.,
2004], Turkey [Karaka et al., 1995], Poland [Klysik and
Fortuniak, 1999], Singapore and Kuala Lumpur [Tso,
1995], etc. See Parker [2004] and Peterson [2003] for
contrasting arguments. Guidelines exist for setting up cli-
mate monitoring stations so as to minimize the influence of
siting on the recorded temperature data, but it is rare for the
guidelines to be reliably met, even in the US [Davey and
Pielke, 2005]. Typical adjustment models for urbanization
are based on rural-urban comparisons [e.g., Jones et al.,
1990] if sufficient data are available, or, most commonly,
empirical parameterizations based on regressions against
local population growth [McKendry, 2003]. UHI effects
have been shown to arise even at very low levels of
population, i.e., in towns with fewer than 10,000 people
[Karl et al., 1988]. Chagnon [1999] used a unique 64-a
record of below-ground temperatures collected in rural
Illinois to show that an upward bias was present in nearby
weather stations that had been designated ‘‘rural’’ and
assumed to be free of UHI problems. Böhm [1998] identi-
fied a substantial UHI in Vienna temperature records from
1951 to 1995 even though the city population had remained
constant over the interval. Kalnay and Cai [2003] applied a
technique for using 6-hour-ahead weather forecasts con-
strained by atmospheric observations from weather balloons
to produce estimated surface temperature trends unaffected
by land use effects. In a study of the continental US, the
comparison to standard surface temperature data suggested
land use changes, even in rural areas, had an effect on
temperature records two to four times larger than previously
thought.
[8] Other methods for identifying and removing extrane-

ous signals related to local land use include satellite-based
measurement of surface energy flux to determine the
urbanization component of regional temperature trends
[Gallo and Owen, 2002; Streutker, 2002] and satellite
measurement of nighttime lighting [Hansen et al., 2001].
However, these approaches have not been widely applied,
mainly because the necessary data are only available for
the US.
[9] The study of extraneous biases in surface temperature

data has broadened out beyond the simple population-based
approach, in recognition that there are changes that do not
necessarily involve large population increases that can
nevertheless affect regional temperatures (as in the example
from Vienna from Böhm [1998] mentioned above): such as
changes in agricultural activity and vegetation types, soil
moisture, local air pollution levels, groundwater diversion,
etc. These are referred to as ‘‘anthropogenic surface pro-
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cesses’’ [de Laat and Maurellis, 2006]. Economic variables
have recently been introduced in some empirical climato-
logical studies as a way of quantifying these processes, and
have been shown to have significant explanatory power in
regional and global climate data [e.g., Kalnay and Cai,
2003]. de Laat and Maurellis [2004, 2006] proposed
interpreting carbon dioxide emissions as a proxy for local
industrial activity, and thereby as an index of local extra-
neous warming influences on atmospheric temperature
trends. This interpretation implies a particular spatial pattern
of enhanced warming trends not predicted by climate
models in response to greenhouse gas increases, but which
they found to be clearly present in global temperature data
collected both at the surface and the lower atmosphere. In
the work by McKitrick and Michaels [2004] we regressed
the spatial pattern of trends from 93 countries on a matrix of
local climatic variables and socioeconomic indicators such
as income, education, and energy use. Some of the non-
climatic variables yielded significant coefficients. We then
repeated the analysis on the IPCC gridded data covering the
same locations and found approximately the same coeffi-
cients emerged, albeit diminished in size, with many indi-
vidual indicators remaining significant. An error in the
original regression program was found and corrected (see
Erratum listed in citation) with little effect on the results. We
concluded that the IPCC gridded data is contaminated by
extraneous socioeconomic signals, a finding that is con-
firmed and strengthened in the present paper.
[10] Temperature records are also potentially susceptible

to discontinuities if a climate station is moved, malfunc-
tions, or is destaffed, or if the time of day at which the
observations are taken changes [e.g., Baker, 1975; Schaal
and Dale, 1977; Wilmott et al., 1991]. Collectively these
effects are called ‘‘inhomogeneities.’’ Establishing a climate
data series of uniform quality requires quantifying and
removing the inhomogeneities. In some cases, written
records exist of a station’s history, revealing dates at which
discontinuities may have emerged. Comparison of nearby
stations can help identify and quantify sudden inhomoge-
neities at one site that might arise from equipment changes
or construction near the instruments. However, this is only
feasible if there are many stations suitably close together,
which is for the most part only true in parts of the US and
Europe. Also it only removes short-term discontinuities and
does not correct long-term biases affecting multiple stations,
such as those arising from regional urbanization [Mitchell
and Jones, 2005].
[11] The challenge of producing quality global climate

data arises in part because high-quality meteorological data
is very costly to collect [see, e.g., Linacre, 1992] and
therefore changes in local and national economic conditions
may induce inhomogeneities. The number of reliable mon-
itoring sites around the world has fallen dramatically since
the mid-1970s. The Global Historical Climatology Network
reached a peak of 6,000 unique contributing sites in the late
1960s, but the number fell to fewer than 3,000 as of the late
1990s, with the most dramatic drop in the early 1990s
[Peterson and Vose, 1997] when the number of stations fell
by nearly half in 4 a. The drop coincided with the collapse
of the Soviet Union and a major international recession, and
was not spatially uniform. A dramatic visualization of the
loss of monitoring sites in the early 1990s is available at

http://climate.geog.udel.edu/�climate/index.shtml. In its
2001 Third Assessment Report IPCC [2001, p. 78] warned
that ‘‘unless networks [of climate monitoring equipment]
are significantly improved, it may be difficult or impossible
to detect climate change in many regions of the globe.’’
[12] Of the global climate data sets produced from avail-

able historical weather and climate data [Hansen et al.,
2001; Peterson and Vose, 1997; Jones and Moberg, 2003]
the ‘‘gridded’’ series from the Climate Research Unit (CRU)
at the University of East Anglia (http://www.cru.uea.ac.uk/)
are perhaps the best known, and are used for IPCC reports.
The gridded data are disseminated by the IPCC as its
reference climate data set (see http://ipcc-ddc.cru.uea.ac.
uk/obs/cru_climatologies.html). IPCC [2007] has down-
played concerns about extraneous biases by focusing on
urbanization effects, estimating the influence as at most
0.006 C/decade globally [IPCC, 2007, p. 5]. IPCC [2001]
refers to Easterling et al. [1997] and Jones et al. [1990],
both of which are confined to discussing UHI effects.
Easterling et al. [1997] compared trends in global averages
of climate data and reported minimal differences between
pooled (rural and urban) results versus rural-only results.
However, their definition of ‘‘rural’’ included cities up to
50,000 in population, which is large enough to exhibit a
UHI. Jones et al. [1990] ran a similar comparison on three
regions: Eastern Australia, Eastern China and Western
USSR. Their definition of ‘‘rural’’ included towns of up
to 10,000 in the USSR and up to 100,000 in China. They
found relatively strong urban warming in China relative to
the rural and pooled series, and in the USSR they found
stronger relative cooling post-1930 in the rural stations.
Eastern Australia yielded no differences. They also reported
earlier results of strong relative warming in the contiguous
USA. Although the conclusions of each paper were phrased
optimistically, neither study suffices to alleviate concerns
about extraneous effects, including general anthropogenic
surface processes, in gridded IPCC temperature data.
[13] Parker [2004] argued that UHI signals in IPCC

temperature data do not have explanatory power at the
global level, based on the similarity in trends between urban
samples taken on calm nights versus windy nights. How-
ever, elevated wind speed has been disputed as a factor in
reducing UHI effects (see discussion by McKendry [2003]),
so the similarity in trends may simply indicate that the
nonclimatic effects exert a similar influence under both
conditions [see also Pielke and Matsui, 2005]. Peterson
[2003] looked at more general data contamination issues by
applying adjustments to US Historical Climatology Net-
work data for variations in elevation, latitude, instrumental
continuity and time of observation. He found that these
sufficed to remove an observed difference in means between
urban and rural temperatures (differences in trends were not
reported). The time-of-observation bias had the largest
effect, accounting for two thirds of the initial rural-urban
mean difference. One implication of the Peterson [2003]
findings is that multiple sources of extraneous bias (not
merely population growth) must be removed to homogenize
temperature records. The closure of so many weather
stations around the world since the 1980s raises the possi-
bility that few countries, especially outside the developed
world, have the staff or money to engage in such quality
control efforts.
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[14] To summarize, both surface processes and inhomo-
geneities must be successfully filtered from temperature
records to yield data products suitable for measuring global
climate trends. If done correctly this would imply a lack of
local correlations between observed temperature trends and
socioeconomic trends. However, we will show that such
correlations clearly exist, supporting the conclusion that the
filtering methods are not successful.
[15] Another interesting implication of these issues con-

cerns the attribution of climate change to greenhouse gas
emissions. The roles of surface processes and inhomogene-
ities are ignored in attribution studies [e.g., Tett et al., 1999]
on the assumption that they have already been removed
from climate data. Measured temperature changes are
regressed on a matrix of model-generated ‘‘forcing vectors’’
that predict the climatic responses to various combinations
of solar irradiance, volcanic dust, greenhouse gases and
sulfate aerosols. The test is whether observed data are
consistent with the climate having an assumed sensitivity
to greenhouse gas levels, and are inconsistent with zero
sensitivity. Critical to the methodology are the assumptions
that the climate model used to generate the forcings is
substantially ‘‘true’’ and that the temperature data are free of
extraneous nonclimatic patterns that might be confounded
with the pattern of climatic changes resulting from green-
house gases and sulfate emissions [Allen and Tett, 1999]. If
the latter assumption is not true, components of observed
climate change arising from, e.g., land surface processes
may be wrongly attributed to greenhouse gas accumulation
in the atmosphere (as pointed out by, e.g., Pielke et al.
[2002]).
[16] The next section outlines the empirical model and the

data set used in this paper. Subsequent sections present
results and discussion.

3. Model and Data

3.1. A Model of Climate Measurement Distortions

[17] Suppose there are i = 1, . . ., n locations around the
world at which temperature is measured. In each location i a
climatic trend Ti over the interval t = [1979:1–2002:12] in
�C/decade is sought, but what is actually measured is an
observed trend qi:

qi ¼ Ti þ f Sið Þ þ g Iið Þ; ð1Þ

where f and g are functions of unknown form, Si represents
surface processes and Ii represents inhomogeneities. Surface
processes are represented using the percentage changes over
the time interval t in four socioeconomic variables: local
population pi, per capita income mi, total Gross Domestic
Product (GDP) yi and coal consumption ci. Inhomogene-
ities, or factors affecting data quality, are represented using
three socioeconomic variables: GDP density gi as of 1979,
the average level of educational attainment ei as late in the
interval t as possible, and the number of missing months in
the observed temperature series xi over the interval t.
Educational attainment is measured herein as the sum of
national literacy and national postsecondary education rates.
It is included not as an indicator of skill of the specific staff
responsible for handling meteorological data, but as a
measure of the difficulty of recruiting and retaining trained

technical staff in general in that country. GDP density is
national Gross Domestic Product per square kilometer.
Countries with low GDP density (large land areas relative to
their total national income) may have a measurement
advantage if the low density arises because of high
agricultural intensity. Some agricultural-based economies,
even in low-income countries, have made a point of high-
quality weather data collection in support of their food-
producing industry. However, low GDP density is also a
disadvantage if the country has a lot of uninhabited land to
monitor relative to its resources. By using the GDP density
at 1979 we capture the measurement conditions going into
the interval rather than as they would have developed over
the interval, and we ensure the measure is ‘‘predetermined’’
in an econometric sense. Possible endogeneity bias is
discussed in section 4.4. Other details on data sources are
below.
[18] In general, surface processes and inhomogeneities

may introduce cold or warm biases into the data, and no a
priori restrictions are imposed. For example, Feddema et al.
[2005a, 2005b] estimate that global land surface changes
since before industrialization have yielded a net cooling
effect on the climate system. The terms in f and g in (1) are
observable, and a linear functional form will be assumed
(though a RESET test will be applied to check for a
nonlinear alternative: see section 4.3 below). To put equa-
tion (1) into a form useful for estimation would require
observations of Ti, which are not available. Instead we
assume Ti is a function of atmospheric data Ai that can
represent the surface climatic temperature trend up to a
multiplicative constant, so as to condition the estimated
coefficients in (1):

Ti ¼ h Aið Þ � b0 þ b1TROPi þ b2PRESSi þ b3DRYi

þ b4DSLPi þ b5WATERi þ b6ABSLATi: ð2Þ

The uniqueness up to a multiplicative constant arises since
replacing Ti in equation (2) with kTi, where k is an arbitrary
constant to be estimated, would yield the same estimation
results from equation (3) below, but k would not be
identifiable. In effect, equation (2) assumes it has a value of
1, but the conclusions herein would be unchanged if k took
a different value.
[19] TROPi is the time trend of Microwave Sounding Unit

(MSU)-derived temperatures in the lower troposphere in the
same grid cell as qi over the same time interval, based on
Spencer and Christy [1990] and published by the Global
Hydrology and Climate Center at the University of Alabama
[Global Hydrology and Climate Center, 2005]. Our inter-
pretation assumes the Spencer-Christy data are substantially
free of extraneous biases due to surface conditions, but de
Laat and Maurellis [2004, 2006] have presented evidence
that even MSU data exhibit some contamination by socio-
economic activity (see also section 4.6). We comment on
the implications of potential contamination of MSU data
below in section 6. We selected the Christy and Spencer
series as it is a well-known data product that has been
validated against independent data from weather balloons
and other meteorological sources in overlapping regions
[Pielke et al., 2004]. We have not reexamined these results
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using other MSU-based tropospheric data series, but we do
not expect any of the results reported herein to be contingent
on the choice of MSU product. We use MSU version 5.2,
released September 2005, reflecting corrections for all
known errors due to orbital drift, instrument heating and
diurnal averaging. The MSU data are expressed as monthly
averages and are divided into grid cells that can be matched
with IPCC data grid cells.
[20] Geographic variables are defined as follows. PRESSi

is the mean sea level air pressure in grid cell i. The source of
the pressure data is the climatology of Jenne [1974], which
is the most recent global database of mean pressure readings
we were able to find. DRYi is a dummy variable denoting
when a grid cell is characterized by predominantly dry
conditions (which is indicated by the mean dewpoint being
below 0�C). DSLPi is DRYi � PRESSi. Surface warming
due to greenhouse gases is hypothesized to occur faster in
regions with relatively dry air and high atmospheric pres-
sure [Staley and Jurica, 1970; Michaels et al., 2000] so
pressure enters (2) as a linear spline function with a different
intercept and slope in dry regions versus moist regions.
WATERi is a dummy variable indicating the grid cell
contains a major coastline. ABSLATi denotes the absolute
latitude of the grid cell. This is included to account for
latitudinal changes in the rate of surface warming. It is
sometimes conventional to use the cosine of latitude, which
adjusts for declining grid cell size toward the poles, but this
makes only trivial differences in the results. (Data and
STATA code allowing readers to reproduce all our results,
and experiment with different specifications, are archived as
auxiliary material.1)
[21] Equation (2) takes the observed temperature trend

from the lower layers of the atmosphere above the surface,
which are presumed to be closely coupled to surface trends
but largely unaffected by the extraneous distortions in the
surface record, and allows for location-specific geographical
factors to account for differences between the trend aloft

and that at the surface. Using (1) and (2) we can write out an
estimating equation as follows:

qi ¼ b0 þ b1TROPi þ b2PRESSi þ b3DRYi þ b4DSLPi

þ b5WATERi þ b6ABSLATi þ b7pi þ b8mi

þ b9yi þ b10ci þ b11ei þ b12gi þ b13xi þ ui: ð3Þ

where ui is the regression residual. While (3) cannot identify
Ti, except under fortuitous circumstances which are not
themselves testable, it allows us to test specific hypotheses
regarding the independence of observed temperature trends
from surface processes and determinants of inhomogene-
ities. Potential multicollinearity in (3) will be discussed in
the results section below.

3.2. Other Data Sources

[22] The variable names, definitions and summary statis-
tics are shown in Table 1. The observed surface temperature
trend qi consists of linear (Ordinary Least Squares) trends
through monthly temperature anomalies (not subject to
annual averaging) within 5� � 5� grid cells over 1979:1
to 2002:12 in 469 land-based grid cells in the ‘‘crutem2v’’
data set available through the IPCC Data Distribution
Centre (http://ipcc-ddc.cru.uea.ac.uk/). Because of the need
for a trend across 23 a we required each cell to have data for
at least 90% of the years, where a year is considered intact if
at least 8 months are available. This left 451 usable
locations. 11 cells are in Antarctica, where there is no
economy to speak of, several countries share jurisdiction
over different research sites, and there is an anomalously
high rate of missing values, probably due to the extreme
conditions in which data are collected, so these were also
removed. Hence there were 440 observations in the final
data set. Of these, 348 (79%) were from the Northern
Hemisphere and 92 were from the Southern Hemisphere.
The imbalance is partly due to the fact that there is more
land in the Northern Hemisphere, but also reflects the
relative sparseness of continuous data in many parts of
South America and Africa (see Figure 4 in section 6). The
TROPi variable is an OLS time trend through monthly data
for grid cell i over the same interval.

Table 1. Model Variablesa

Variable Definition Observations Mean Standard Deviation Minimum Maximum

Surf surface temperature trend (qi) 440 0.3015 0.2574 �0.7 1.02
Trop tropospheric temperature trend 440 0.2325 0.1838 �0.1969 0.6832
Press sea level air pressure 440 1016.2 5.3024 993 1029
Dry dummy for dry region 440 0.4614 0.4991 0 1
Dslp dry � press 440 469.40 507.78 0 1029
Water grid cell contains a coast line 440 0.6045 0.4895 0 1
Abslat absolute latitude 440 40.602 17.953 2.5 82.5
g 1979 Real National GDP per sq km in millions 440 0.2965 0.5999 0.0014 3.0023
e literacy + postsecondary education rates 440 106.52 26.200 11.6 144.2
x number of missing months in grid cell temperature record 440 0.7636 2.5522 0 24
p % growth in populationb 440 0.2792 0.2089 �0.0692 1.2353
m % growth in real average incomeb 440 0.3799 0.6142 �0.7901 2.1472
y % growth in real national GDPc 440 0.7710 0.8391 �0.6686 3.0025
c % growth in coal consumptionb 440 1.0158 4.0557 �1 39.333
Rich 1999 real income > median 440 0.4932 0.5005 0 1
Grow 1999 real income > 1979 real income 440 0.7614 0.4267 0 1
aDefinitions discussed further in text.
bOver the interval 1979 to 1999.
cOver the interval 1980 to 2000. % Changes should be multiplied by 100, e.g., mean population growth is 27.92%.

1Auxiliary materials are available in the HTML. doi:10.1029/
2007JD008465.
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3.2.1. Surface Process Data
[23] Each grid cell was assigned to a country. Where a grid

cell contained a border the country was considered the one
with the most land area in the grid cell. Annual real (inflation
adjusted) GDP for 1979, 1989 and 1999 for each country was
obtained primarily from Easterly and Sewadeh [2003] or the
Central Intelligence Agency (CIA)World Fact Book web site
http://www.odci.gov/cia/publications/factbook/index.html.
Conversions from local currency to US dollars was done
using the purchasing power parity method.
[24] There were small adjustments made to the economic

data for some countries to provide consistency in quantities
where direct measures were unavailable. In most cases the
adjustment took the form of using an available observation
for 1 or 2 a after the desired year, and adjusting it backward.
[25] Population data are obtained from Easterly and

Sewadeh [2003] and the percent change pi is measured
from 1979 to 1999. Income growth mi is the percentage
change in real GDP per capita from 1979 to 1999. GDP
growth yi is defined as the percentage change in real GDP
from 1979 to 1999. National coal consumption data were
obtained from the US Energy Information Administration
(http://www.eia.doe.gov/emeu/iea) and the coal growth
measure is the percentage growth of short tons of coal
consumed between 1980 and 2000.
[26] Population and GDP density varies considerably

within countries, as well as between countries. Hence
national averages will not capture all the important varia-
tions that may influence the temperature data. However, the
trade-off we face is between encompassing the full range of
variables we want to include versus matching the grids of
measurement of climatic and economic data. Since national
governments bear primary responsibility for climate data
collection, the nationally defined economic measures will
capture important information about the availability of
resources to monitor the whole country’s climate. Also,
the substantial variation among countries implies that some
of the effects of interest are definitely measured by the data
we have available, albeit at a more coarse resolution than we
would like. In the concluding section we will discuss the
possibilities for future research arising from the develop-
ment of some new socioeconomic databases at the grid cell
level.
3.2.2. Determinants of Inhomogeneities
[27] We measure the abundance of human capital using

data on international educational attainment. McKitrick and
Michaels [2004] used national literacy rates as an indicator
of the ease of maintaining a staff of trained meteorological
technicians to operate weather stations. For the present
study we have updated the literacy data to the 1999 (or
closest year) national literacy rate (United Nations Educa-
tion, Scientific and Cultural Organization (UNESCO),
http://unescostat.unesco.org/en/stats/stats0.htm, World Edu-
cation Indicators available at http://www.uis.unesco.org/
TEMPLATE/html/Exceltables/education/View_Table_dist_
pop_edu_attainment.xls) and augmented it with estimates of
the percentage completing postsecondary education (PSE),
obtained from UNESCO. The two measures are summed
together to yield ei. Qualitatively similar results would be
obtained if we used either literacy or PSE alone, but by
using the sum it controls for changes in one or the other. In

the current sample, literacy averages 90% and PSE averages
16.6%. Literacy ranges from a low of 11% in Niger to over
99% throughout the industrialized countries. PSE ranges
from less than 1% in many African countries up to 45% in
the United States.
[28] Land area estimates (excluding water) for each

country were obtained from the CIA World Fact Book
(CIA 2003). GDP density gi is measured as $million/km2.
The 1979 value is used to help ensure the right-hand side
variables are predetermined with respect to the dependent
variable, but see the further discussion of endogeneity in
section 4.4. A country with a low GDP density has
relatively fewer national resources for monitoring its do-
mestic land surface. gi varies widely across the sample, from
less than 0.01 in parts of Africa up to 4.5 in Japan and 4.8 in
Taiwan. Canada, China and the US have comparable land-
masses (9.2, 9.3 and 9.5 million square km, respectively).
However, GDP density in China is 0.16 million$/square km
while in the US it is three times higher, at 0.47 million$/
square km and in Canada it is only one third as large, at
0.05 million$/square km. The global sample mean is 0.41,
just below the US level, and most countries fall in the range
between Canada and the US.
[29] The variable xi is the indicator of technical problems

in maintaining continuous weather records. It is measured as
the number of months over the period 1979–2002 in which
an observation was missing for a grid cell. After removing
the Antarctic stations only 95 out of 440 remaining cells
(22%) had at least one missing month, and only 5 (1% of
the sample) had more than 12 months missing. The distri-
bution of missing data shows no pattern across months.

4. Estimation and Testing

4.1. Model Results

[30] Equation (3) was estimated using Generalized Least
Squares (GLS) as follows. Rewrite (3) in matrix notation as
follows:

q ¼ Xbþ u; ð4Þ

where q, b and u are n-vectors (dependent variable,
coefficients and residuals, respectively) and X is the n � k
matrix of independent variables. Coefficients were obtained
using the least squares estimator b̂ = (X0X)�1X0q. The GLS
variance-covariance estimator is

Var b̂GLS

� �
¼ V̂ X0WXð ÞV̂; ð5Þ

where V = (X0X)�1, and the n � n matrix W is the
covariance matrix of u. Following White [1980], a robust
estimator of X0WX can be obtained by replacing W with a
diagonal matrix formed with the squared residuals from (4),
even if this is itself an inconsistent estimator of W [see
Davidson and MacKinnon, 2004, p. 198], as long as
observations are independent. In our database some of the
socioeconomic variables are constant within the 81
countries in our sample, resulting in possible nonindepen-
dence (clustering) of errors within country groups. Denote
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the country groups as C(1), . . .,C(81). To allow within-
cluster nonindependence the estimator (5) is rewritten as

Var b̂
c

GLS

� �
¼ V̂

X81
j¼1

x0jxj

 !
V̂; ð6Þ

where xj =
P

k2C jð Þ

 
ukxk

!
, k 2 C(j) denotes the elements of

cluster j, and xk is the k th row of X [Stata Corporation,
2003, pp. 274–275]. OLS parameter estimates and the
variances from (6) were estimated using STATA 8.0 [Stata
Corporation, 2003]. Estimates for equation (3) and various
submodels are presented in Table 2.
[31] Coefficient standard errors at the global level

(Table 2, SURF) were also checked by the bootstrap method
using 500 repetitions. Confidence intervals were quite
stable. In all cases where a parameter is significant under
GLS its confidence interval did not expand to encompass
zero under bootstrap resampling.
[32] The coefficient on TROPi is positive and significant

as expected, and has a value of approximately 0.9 in all
models, reflecting the expected correlation between temper-
ature trends at the surface and those in the atmospheric layer
just above the surface. The remaining geographical varia-
bles are mostly insignificant. In a regression of the surface
trends just on the geographic variables (Model G1), the
other variables besides TROPi are insignificant, the R2 is
0.45 and the log likelihood is 105.0. In the full model
(SURF, column 1) the R2 score rises to 0.53 and the log
likelihood rises to 139, indicating that there is a fraction of
variability in the surface temperature data unexplained by
the atmospheric temperature trend submodel, for which the
socioeconomic indicators provide significant explanatory
power. The joint F test on the socioeconomic indicators is
highly significant (P = 7.1 � 10�14).

[33] It is noteworthy in the SURF column that population
is significant and the coefficient is large. The IPCC gridded
data are supposed to have been prefiltered for the influence
of population growth, and if this contamination had suc-
cessfully been removed the coefficient would be zero. The
coefficient size, if extrapolated linearly, indicates that a
100% increase in population (pi = 1.00) would add
0.38�C/decade to the observed trend in a grid cell. Model
G2 introduces population growth as the only nonclimatic
factor. It is positive and significant, though smaller, but the
overall R2 increases very little, indicating this variable alone
has limited explanatory power. Population growth alone
cannot explain the role of other economic factors, which
need to be controlled separately.
[34] In Model G3 the inhomogeneity factors gi, ei and xi

are introduced, and two of the three are significant. In-
creased educational attainment (ei) is associated with less
measured warming (identical to the finding by McKitrick
and Michaels [2004]), while higher GDP density (gi) is
associated with more measured warming (the effect was
insignificant in the work by McKitrick and Michaels
[2004]). Adding in a squared GDP density variable did
not improve the model: both gi and its square became
insignificant. Missing data counts (xi) had a slightly positive
effect but the effect is insignificant. In Model G4 the surface
process measures are introduced and all four are significant.
Positive GDP growth is associated with lower measured
warming trends; population, income and coal use add to
warming trends.
[35] The surface process measures are clearly significant.

The negative coefficient on GDP growth (yi) suggests that
an increase in GDP is associated with a cooling trend. This
is consistent with the findings of Feddema et al. [2005a,
2005b] regarding overall land surface modification since
industrialization. However, yi cannot be interpreted on its
own in this model because of the way it interacts with

Table 2. Main Parameter Estimatesa

Variable SURF G1 G2 G3 G4 G5

trop 0.8631 (8.62) 0.9054 (10.28) 0.9195 (9.73) 0.8884 (8.94) 0.8855 (8.89)
slp 0.0044 (1.02) �0.0012 (�0.22) 0.0009 (0.16) 0.0041 (0.92) �0.0006 (�0.13) 0.0043 (0.91)
dry 0.5704 (0.10) �4.3301 (�0.59) �2.6643 (�0.37) 1.5847 (0.29) �4.8544 (�0.70) �9.2581 (�1.58)
dslp �0.0005 (�0.09) 0.0043 (0.60) 0.0027 (0.38) �0.0015 (�0.27) 0.0048 (0.71) 0.0092 (1.61)
water �0.0289 (�1.37) �0.0374 (�1.63) �0.0308 (�1.37) �0.0245 (�1.19) �0.0403 (�1.73) �0.0024 (�0.09)
abslat 0.0006 (0.51) �0.0014 (�1.63) �0.0002 (�0.16) �0.0003 (�0.29) 0.0004 (0.38) 0.0061 (3.39)
g 0.0432 (3.36) 0.0480 (3.81) 0.0798 (3.15)
e �0.0027 (�5.14) �0.0028 (�5.49) �0.0030 (�4.26)
x 0.0041 (1.66) 0.0029 (1.10) �0.0057 (�1.52)
p 0.3839 (2.72) 0.1798 (2.23) 0.4143 (3.59) 0.5432 (2.80)
m 0.4093 (2.39) 0.3374 (2.47) 0.6334 (2.66)
y �0.3047 (�2.22) �0.2287 (�2.17) �0.4834 (�2.57)
c 0.0062 (3.45) 0.0036 (2.42) 0.0093 (3.56)
Constant �4.2081 (�0.96) 1.3425 (0.24) �0.8378 (�0.15) �3.7889 (�0.84) 0.6149 (0.13) �4.1492 (�0.85)
N 440 440 440 440 440 440.00
R2 0.53 0.45 0.46 0.51 0.48 0.34
ll 139.22 105.03 109.92 131.53 116.88 63.18
P(I) 0.0000 0.0000 0.0000
P(S) 0.0004 0.0001 0.0022
P(all) 0.0000 0.0000

aCoefficient t statistics are in parentheses, based on robust standard errors. Bold denotes significant at 95%. Variable codes are as follows: g, 1979 GDP
density; e, educational attainment; x, count of missing months; p, % change in population; m, % income growth; y, % growth in GDP; c, growth in coal
consumption; ll, log likelihood value; P(I), prob value of test that all inhomogeneity factors (g–x) are jointly zero; P(S) = prob value of test that all surface
process coefficients (p–c) are jointly zero; P(all), prob value of test that g–c are jointly zero.
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average income mi and population pi. If yi is used on its own
(as is pi in G2) then the coefficient becomes positive (0.037)
and significant (t = 2.82). GDP growth is defined as yi =
GDP(1999)/GDP(1979)–1, and similarly for mi and pi.
Since income is just GDP/population the three variables
factorize as (1 + yi) = (1 + pi)(1 + mi), implying mi + pi + yi =
2mi + 2pi + mipi. If yi is replaced by (mipi) the estimated
coefficient is identical, though the coefficients on mi and pi
change (not shown). Hence the surface process coefficients
should be examined jointly, and the individual effects should
be interpreted with some care.
[36] The p values for joint hypothesis tests (using stan-

dard F statistics) are listed in the bottom rows of Table 3.
The test P(I) is the prob value of the test that the inhomo-
geneity variables gi, ei and xi are jointly zero. The test P(S)
is the prob value of the test that the four surface process
growth rates are jointly zero, and P(all) tests whether all the
nonclimatic factors (pi through xi) are jointly zero. Every
entry indicates a significant rejection of the hypothesis, and
the overall conclusion is unambiguously that the socioeco-
nomic data have significant explanatory power on the
spatial pattern of trends in the surface climate data. The
hypothesis that the temperature data are independent of
socioeconomic influences can be confidently rejected.
[37] Multicollinearity can be a concern in a regression

model with many explanatory variables, however the usual
indication of its presence is a combination of insignificant
coefficient t statistics and significant joint F or model F
scores. In our case the joint and model F scores are
significant, but the socioeconomic variables are almost
always individually significant as well. Hence if some
variance inflation occurs because of partial correlations
among regressors, it is not sufficient to obscure the basic
results. Of the 78 correlation coefficients among regressors,
71 were less than 0.5. Only two were above 0.9, that
between DRYi and DSLPi(r = 1.00) and that between mi

and yi (r = 0.958). The first pair is not important since they
are part of a spline function and are identical by construc-
tion in the overlap segment. The second pair are related by

factorization, as noted above, and the interpretation is
primarily in their joint significance. The variance inflation
factors of mi and yi were 110.8 and 124.9 respectively. For
the remaining nine variables, the variance inflation factors
were all less than 10.0; indeed eight were less than 5.0 and
six were less than 2.0, indicating that the model has
sufficient data to identify independent effects of the included
regressors.
[38] Another model run (G5) used all variables except

TROP. The remaining geography variables became more
significant, especially latitude, but the socioeconomic
measures hardly changed and all the individual and joint
hypothesis tests remained highly significant.

4.2. Influential Outliers

[39] In this and the next few sections we consider tests of
specification and endogeneity, to test whether the model is
merely generating fluke correlations. We begin with a test
for the role of influential outliers. The global model was
rerun as follows. For each observation, the corresponding
diagonal element of the OLS hat matrix was evaluated, and
the observation removed if the value exceeded twice the
mean of the hat matrix diagonal elements [Kmenta, 1986,
pp. 424–426]. This resulted in removal of 29 observations,
leaving a sample size of 411. There was no obvious spatial
pattern to the 29 outliers (see Figure 1), though there is
some indication of a cluster in the North Sea region. A
comparison of summary statistics between the samples
suggests that the outlier regions have much higher rates
of missing data and relatively high growth in coal con-
sumption. The coefficients of the model without outliers
were quite similar to the SURF results in Table 2, though
growth in coal use was no longer significant. The vector of
coefficients was compared to that of the Table 2 SURF
results using a Hausman-type chi-square statistic. The joint
variance-covariance matrix was estimated and the model
coefficients were compared, yielding a c2 (14) score of
18.82, which is insignificant (P = 0.17), indicating that we
do not reject the hypothesis that there are no systematic
differences in the coefficients between the models with and
without outliers. Consequently it is unlikely that the results

Table 3. Comparison of Basic Model and Version With

Dependent Variable Surface Trends Replaced by Tropospheric

Trendsa

Variable SURF TROP

trop 0.8631 (8.62)
slp 0.0044 (1.02) �0.0001 (�0.03)
dry 0.5704 (0.10) �11.3879 (�3.01)
dslp �0.0005 (�0.09) 0.0112 (3.02)
water �0.0289 (�1.37) 0.0307 (1.37)
abslat 0.0006 (0.51) 0.0064 (5.39)
g 0.0432 (3.36) 0.0424 (1.81)
e �0.0027 (�5.14) �0.0004 (�0.58)
x 0.0041 (1.66) �0.0114 (�3.22)
p 0.3839 (2.72) 0.1845 (1.42)
m 0.4093 (2.39) 0.2596 (1.55)
y �0.3047 (�2.22) �0.2069 (�1.59)
c 0.0062 (3.45) 0.0036 (2.11)
_cons �4.2081 (�0.96) 0.0682 (0.02)
N 440 440.00
R2 0.53 0.49
ll 139.22 269.02
aBold denotes significant at 95%. T statistics are in parentheses.

Figure 1. Global distribution of influential outliers
removed from sample for calculation of results in section
4.2.
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in Table 2 are merely due to uncharacteristic outlier
observations.

4.3. Regression Error Specification Test Against
General Nonlinear Alternative

[40] A regression error specification (RESET) test was
applied to check for biases due to unmodeled nonlinear
structural components in the error term. The RESET test
evaluates whether the dependent variable is a nonlinear
function of the explanatory variables, in which case the
linear model would be a misspecification. The test is run as
follows. Predicted values q̂i were obtained from fitting the
SURF model and the regression was rerun using the same
model augmented with q̂i

2 on the right-hand side. The t
statistic on q̂i

2 is an exact test of the null hypothesis that
there is no nonlinear structure in the residuals, including any
monotonic function of the right-hand side variables up to a
quadratic [Davidson and MacKinnon, 2004, pp. 653–655].
The coefficient was �0.0225 and the t statistic was �0.06
(P = 0.956), clearly failing to reject the null, indicating
support for the linear model specification in (3).

4.4. Endogeneity

[41] Endogeneity (also called simultaneity) bias arises in
a regression model if the regressors are themselves partly
determined by the value of the dependent variable. This
implies that they are not orthogonal to the random error
terms, violating the assumptions of classical linear regres-
sion and yielding biased and inconsistent coefficients. It
could arise in this model if the right-hand side variables
were not predetermined with respect to temperature
trends, e.g., if economic agents were forward looking with
respect to climate change and adjusted productive activity
in a region based on anticipated temperature changes. We
find the concern about endogeneity implausible for three
reasons.
[42] First, as was noted by Schelling [1992], among

others, very little economic activity in developed countries
is affected by the weather. Agriculture, fishing and forestry
are, but greenhouse warming does not involve predictions
of uniformly deleterious outcomes [e.g., Mendelsohn et al.,
2000], and in any case these sectors make up small fractions
of the world’s economies, typically less than 5% in devel-
oped countries.
[43] Second, region-specific climate change prediction

was not available in 1979 and is not even reliably available
today. However, suppose agents did have rational expect-
ations and accurate forecasts as of 1979. Then we would
expect to see the largest economic adjustments coinciding
with the regions of the largest forecasted climate change
from conventional global climate models, such as those
used for the IPCC reports. However, the pattern of large
economic changes is uncorrelated with the regional
pattern of predicted greenhouse warming [see de Laat and
Maurellis, 2006, Figure 1]. Consequently, it is highly
unlikely that changes in economic activity can be explained
by expectations of regional warming, since it occurs in
places other than where the warming is expected.
[44] Third, a Hausman test provides no support for a

charge of inconsistency. A Hausman test compares two
versions of the regression model, one in which the estimates
are efficient but potentially inconsistent, and one in which

the estimates are consistent but inefficient. ‘‘Consistency,’’
in statistical terms, means that the expected value of an
estimate converges to the true value as the sample size
approaches infinity. ‘‘Efficiency’’ means that the estimated
variance is the lowest among the class of unbiased estima-
tors. The two vectors of coefficient estimates are compared,
with the null hypothesis that there is no systematic differ-
ence between them. The variables that might be susceptible
to endogeneity are the surface process measures (pi, mi, yi,
ci). A Hausman test was implemented as follows. First, an
efficient estimator was obtained using OLS on equation (3).
Second, we regressed each surface process variable on
predetermined explanatory variables and obtained the mod-
el-predicted values:

q
j
i ¼ a0 þ a1gi þ a2g

2
i þ a3ei þ a4e

2
i þ a5giei þ a6xi

þ a7popden79i þ a8GDPden79i þ a9coal80i þ a10GDP79i
þ a11pop79i þ a12Sovieti þ a13slpi þ a14dryi þ a14slpi
þ a15wateri þ a16abslati þ vi;

ð7Þ

where qi
1�4 represents the four surface variables, popden79i

is 1979 population density, GDPden79i is 1979 GDP
density, coal80i is 1980 national coal consumption, GDP79i
is 1979 national GDP, pop79i is 1979 total population,
Sovieti is a dummy variable for membership in the former
Soviet Union and vi is a regression residual. Since the right-
hand side variables are all predetermined as of 1979, and all
temperature data (either surface or tropospheric) is left out
of (7), the OLS predicted values q̂i

1�4 are strictly exogenous
with respect to post-1979 temperature. Third, equation (3)
was rerun with (pi, mi, yi, ci) replaced by q̂i

1�4, obtaining
consistent estimators. The variance-covariance matrix
comparing the efficient and consistent estimators was
obtained and the Hausman c2 (14) score was 3.83, which
has a P value of 0.9964, indicating no grounds whatsoever
for finding a difference between the efficient and consistent
estimators. Consequently, on both ex ante and ex post
grounds we can rule out endogenous temperature effects on
the right-hand side of (3) as the explanation of our main
results.

4.5. Out of Sample Prediction

[45] A rigorous test of a regression model is its ability to
predict data not included in the estimation. This is especially
useful for testing whether both dependent and independent
variables are jointly determined by omitted ‘‘third’’ factors,
resulting in fluke regression coefficients. Our test consisted
of randomly removing 30% of the observations, then
running the regression (3) on the remaining 70% of the
grid cells and using the resulting coefficients to predict
the withheld sample, yielding the vector SURF̂i. Then, for
the 30% withheld sample, the actual grid cell trends were
regressed on the predicted trends. A perfect predictor would
yield a 45� line (zero intercept, unit slope) between pre-
dicted and actual observations. In 500 repetitions the
constant term was typically near zero (mean approximately
0.01), the slope coefficient was typically near one (mean
approximately 0.96) and the R2 indicated a high level of
explained variance (mean approximately 0.50). An F test
that the regression is a 45� line was consistently not rejected
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(mean P approximately 0.37). An example is shown in
Figure 2. Consequently, in repeated tests of out-of-sample
prediction, the closeness of a scatter of predicted and actual
data to a 45� line and the high significance level of the
predictions, gives us confidence that equation (3) is a valid
empirical model.

4.6. Tropospheric Model

[46] If the surface regression results are simply spurious
spatial correlations based on a coincidental similarity to the
spatial pattern of the Earth’s general atmospheric circula-
tion, then we would find the same right hand side coef-
ficients and significance levels if the dependent variable
SURFi were replaced with TROPi. However, if the surface
processes are genuine effects they ought to be substantially
weaker in the tropospheric data compared to the surface
(though not necessarily zero). The results of this regression
are in Table 3.
[47] The surface processes (pi, mi, yi, ci) are, as expected,

smaller and in three cases insignificant. The coal use effect
is about half the size but remains significant. The four
measures are jointly insignificant (P = 0.2114). The inho-
mogeneity measures show an ambiguous change. Educa-
tional attainment vanishes, GDP density retains its size
(though not its significance) and xi, the missing data score,
becomes larger and significant. Obviously, problems in
measuring surface data would not affect satellite records,
so this indicates that xi is serving as a proxy for something
else that would have an atmospheric interpretation, in the
5% of grid cells with missing data. In particular, greater
rates of missing data at the surface correlate with lower
temperature trends aloft. We regressed xi on the five

variables dry through abslat, and there was an interesting
contrast between the moist and dry regions. The results
were

x̂i ¼ 135:02� 0:132� slpi þ :ð Þ moist regionsð Þ

x̂i ¼ �9:97þ 0:0:010� slpi þ :ð Þ dry regionsð Þ

where (.) denotes the water and abslat variables (which are
both significant). In the moist regions, missing data is less
prevalent the higher the air pressure and the relationship is
significant (P = 0.003). In dry regions the relationship
vanishes and the pressure coefficient is insignificant (P =
0.726). Low air pressure is associated with the more storm-
prone regions, hence xi may be acting as a marker for moist,
storm-prone regions. In that case the negative coefficient on
xi in the second column of Table 3 may be a spurious effect
reflecting the fact that air temperature trends are smaller
over moist, unstable regions such as the tropics. However,
to the extent that this raises a question about the
interpretation of xi in Table 2 it does not matter much,
since at the global level the variable is insignificant in all
specifications (but see next section).

5. Economic Subsamples

[48] Some further detail emerges in subsamples defined
on economic grounds. The sample was split into rich and
poor locations, and growing/declining groups. ‘‘Rich’’ was
defined as having above-median income based on the 1999
data (217 of 440 observations); ‘‘growing’’ was defined as
1999 real per capita income exceeding that in 1979 (335 of
440 observations). The results are in Table 4.
[49] When divided into rich and poor subgroups, a

distinction emerges between inhomogeneity effects and
surface processes, whereby the former are uniformly sig-
nificant across income groups while the latter become
uniformly insignificant. It is noteworthy that in the global
sample, missing data is insignificant, but this masks signif-
icant, contrasting effects between rich and poor regions.
However, as indicated in section 4.6, xi is potentially
confounded with a local climate extremity.
[50] The disappearance of the surface process effects

within subgroups suggests that they have a step-function-
like character, such that the significant effects in the pooled
global sample derive from differences between rich and
poor groups, whereas the within-group effects appear to be
insignificant.
[51] An even sharper contrast emerges between growing

and declining economies. In growing regions (76% of the
sample) the inhomogeneity effects are close to those in the
global sample, while three of the four surface process
effects are roughly double the size of those in the global
sample, and all are significant, individually and jointly.
However, in declining economies, neither inhomogeneity
nor surface process effects exert significant effects on the
temperature trends. The absence of inhomogeneity effects is
somewhat unexpected, though the overall GDP density
effect (gi) is larger and nearly significant in the declining
region. The disappearance of the education effect may

Figure 2. Observed values of temperature trends in
randomly selected subset of data comprising 30% of
original data set (horizontal axis) and predicted values for
same locations from regression equation (3) applied to
global data with randomly selected 30% of data withheld
(vertical axis). Line shown is 45� (not regression fit).
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indicate that constraints on human capital are offset by the
low opportunity cost of labor of all kinds (including skilled
labor) during periods of decline.
[52] Overall, the global results appear to be particularly

associated with growing economies. Since only 24% of the
grid cells are in countries that experienced real declines in
income, the growth effects are sufficiently widespread to
affect the global results. While the relative strength of
surface process effects in growing countries accords well
with intuition, the relative strength of inhomogeneity effects
in rich countries compared to poor countries does not. We
would have expected resource constraints to have stronger
effects in poor countries, though we note that the inhomo-
geneity effects are jointly significant in both regions.

6. Identifying Nonclimatic Trends

[53] Focusing on the results at the global level, we can
reject the hypothesis that adjustments to climatic data are
successful in removing the extraneous influences of socio-
economic conditions in the regions of origin. While it is not
possible to use the coefficients from (3) to identify the
vector of ‘‘true’’ climatic trends Ti, it is possible to try and
simulate ideal climatic measurement conditions.
[54] Peterson [2003] shows that US data can, in principle,

be adjusted to remove extraneous biases of significant size.
On this basis we postulate that countries with public sector
resources and general public skill levels comparable to
those in the US would be, in principle, able to provide
uncontaminated climatic data. We therefore generated an
adjusted vector of predicted values q̂i

ADJ under the assump-
tions that all countries have GDP density and educational
levels equivalent to those in the USA and that all other
surface and inhomogeneity effects were set equal to zero:

q̂ADJi ¼ b̂0 þ b̂1TROPi þ b̂2PRESSi þ b̂3DRYi

þ b̂4DSLPi þ b̂5WATERi þ b̂6ABSLATi

þ b̂11 � 144:2þ b̂12 � 0:36762: ð8Þ

The resulting average temperature trend using (8) is 0.17�C/
decade, a drop of just under one half of the observed sample
average grid cell trend of 0.30�C/decade, and below the
MSU average of 0.23�C/decade. If the data are weighted by
relative grid cell size (using the cosine of latitude) the effect
is a bit larger. The weighted average grid cell trend is
0.27�C/decade, the weighted MSU average is 0.20�C/
decade and (8) yields a weighted average of 0.13�C/decade,
a drop of just over one half. Additionally, the sample
density is lowest in regions like Africa and South America,
the majority of whose grid cells show a warm bias. If these
cells were weighted relatively more heavily to adjust for the
extent of missing data, the drop in the global average trend
would be even larger.
[55] Frequency histograms are shown in Figure 3. The

effect of removing the local distortions as estimated by the
model is to bring the shape of the surface data distribution
more closely into line with that of the satellite-measured
lower troposphere data, primarily by removing the large
upper tail. While we do not assert that the ‘‘true’’ average
land-based climatic warming trend is 0.17�C/decade, our
analysis does suggest that nonclimatic effects are present in
the gridded temperature data used by the IPCC and that they
likely add up to a net warming bias at the global level that
may explain as much as half the observed land-based
warming trend. This result mirrors that given by McKitrick
and Michaels [2004], as well as the findings by de Laat and
Maurellis [2004, 2006] and Kalnay and Cai [2003], all of
whom found the overall effect of surface processes to be a
positive bias to observed temperature trends. Since this
analysis takes the tropospheric record to be ‘‘clean,’’ where-
as the results in section 4.6 suggest that even the MSU
series may reflect anthropogenic surface process effects,
our findings should be viewed as a lower bound, or
conservative estimate of the magnitude of the global data
contamination.
[56] The positive biases found here are not uniformly

distributed around the world. Figure 4 shows the differences
(qi � q̂i

ADJ) on a global map. Note the regions where the

Table 4. Rich/Poor, Growing/Declining Subsamplesa

Variable Sglobe Rich Poor Growing Declining

trop 0.8631 (8.62) 1.1224 (8.59) 0.6257 (4.52) 0.9378 (8.20) 0.6085 (2.47)
slp 0.0044 (1.02) 0.0084 (1.57) 0.0121 (1.33) 0.0043 (1.20) �0.0017 (�0.05)
dry 0.5704 (0.10) 6.4594 (0.85) 5.3143 (0.54) 4.4592 (0.82) �12.1839 (�0.33)
dslp �0.0005 (�0.09) �0.0063 (�0.84) �0.0051 (�0.52) �0.0043 (�0.80) 0.0121 (0.33)
water �0.0289 (�1.37) �0.0350 (�2.19) �0.0326 (�1.11) �0.0295 (�1.15) �0.0358 (�0.96)
abslat 0.0006 (0.51) 0.0009 (0.47) �0.0021 (�1.32) 0.0002 (0.14) 0.0026 (0.85)
g 0.0432 (3.36) 0.0517 (3.27) 0.0614 (0.47) 0.0385 (3.03) 0.4325 (1.91)
e �0.0027 (�5.14) �0.0047 (�6.79) �0.0018 (�2.02) �0.0026 (�4.54) �0.0029 (�1.27)
x 0.0041 (1.66) �0.0066 (�2.29) 0.0053 (2.88) 0.0044 (0.99) 0.0002 (0.05)
p 0.3839 (2.72) 0.8761 (1.40) 0.2554 (1.71) 0.8867 (4.22) �0.0002 (�0.01)
m 0.4093 (2.39) 0.5398 (1.04) 0.2659 (1.48) 0.8687 (3.87) �0.2361 (�0.59)
y �0.3047 (�2.22) �0.4365 (�1.02) �0.2003 (�1.41) �0.6453 (�3.62) 0.2913 (1.12)
c 0.0062 (3.45) 0.0043 (1.07) 0.0022 (0.50) 0.0075 (3.49) �0.0105 (�0.42)
_cons �4.2081 (�0.96) �8.1950 (�1.49) �11.9809 (�1.30) �4.1058 (�1.14) 1.9676 (0.06)
N 440 217 223 335 105
R2 0.53 0.63 0.47 0.56 0.44
ll 139.22 75.61 79.80 107.13 40.38
P(I) 0.0000 0.0000 0.0078 0.0000 0.2372
P(S) 0.0005 0.2775 0.3282 0.0000 0.1623
P(all) 0.0000 0.0000 0.0009 0.0000 0.1030
aColumn 1 shows Sglobe results from Table 2 for comparison. Variable codes as for Table 2. P(I), prob value of test that all inhomogeneity factors (g–x)

are jointly zero; P(S), prob value of test that all surface process coefficients (p–c) are jointly zero; P(all), prob value of test that g–c are jointly zero. Bold
denotes significant at 95%. T statistics are in parentheses.
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adjustments are minimal are North America, Eastern Europe
and Australia. Widespread positive biases are observed in
Western Europe and Southeast Asia. Africa and South
America contain many regions with missing data, though
the map overstates this, because at the equator, the raster
squares are smaller than the grid cells they represent,
because of the global projection used.

7. Conclusions

[57] The standard interpretation of global climate data is
that extraneous effects, such as urbanization and other land
surface effects, and data quality problems due to inhomo-
geneities in the temperature series, are removed by adjust-
ment algorithms, and therefore do not bias the large-scale
trends. Our empirical model of the post-1980 interval
embeds this assumption as a null hypothesis, and it is
rejected at very high confidence levels. We show that our
results cannot be explained away as outlier effects, model
misspecification or reverse causality (endogeneity) bias.
Out-of-sample prediction tests consistently perform well,
and we show that variables representing changes in eco-
nomic activity have significant explanatory power on the
pattern of trends in published climatic data measured at the
Earth’s surface, but not in trends measured in the lower part
of the atmosphere, thus showing that our results are not
likely due to spurious correlation. Taken together, our
findings show that trends in gridded climate data are, in
part, driven by the varying socioeconomic characteristics of
the regions of origin, implying a residual contamination
remains even after adjustment algorithms have been ap-
plied. Users of gridded climate data products need to
interpret their results accordingly.

[58] These results are also consistent with previous find-
ings showing that nonclimatic factors, such as those related
to land use change and variations in data quality, likely add
up to a net warming bias in climate data, suggesting an
overstatement of the rate of global warming over land. They
also provide support for attribution of some observed
climate changes in recent decades to land surface modifi-
cations, rather than greenhouse gas emissions, a factor not
typically evaluated in studies that attempt to attribute the
causes of recent global warming.
[59] Our data set has a low resolution for strictly local

measures of economic density within countries. Since we
detect significant effects on temperature trends even with

Figure 4. Differences between observed and adjusted
trends around the world. Raster squares correspond to center
of 5� � 5� grid cell, but not to size of grid cell itself. Units
are �C/decade. A value of, say, 0.1–0.2 means that the
observed trend in that cell was between 0.1 and 0.2�C/
decade higher than the trend as adjusted using equation (8).

Figure 3. Distributions of temperature trends 1979–2002. (top) IPCC surface data. (middle) Satellite
(MSU) tropospheric data. (bottom) Adjusted surface data. Smoothed kernel density is shown.
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low spatial resolution we conjecture that if future studies are
able to examine the issues at the subnational level, even
more significant and detailed results will emerge. There is
some prospect for future subnational studies, possibly by
merging the EDGAR database (as used by de Laat and
Maurellis [2004, 2006]) with the new G-Econ data set
(http://gecon.yale.edu/) developed by Nordhaus [2006].
Additionally, there is always the possibility in cross-sec-
tional regressions that unobservable heterogeneity may
explain both climate and economic processes in such a
way as to eliminate the significance of results reported
herein. That could be formally tested in a panel data set
where the time dimension provides additional identification
of fixed cross-sectional effects, which is a direction for
future research.
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