
1

Downsides of Subversion 1.4 for configuration
management in large-scale software development

Sergio Fierens

Abstract

This paper presents a high level analysis on the architectural issues and pitfalls
of Subversion 1.4 SCM tool for large-scale application development in corporate
environments.

No alternative SCM tool is mentioned, though every single downside pre-
sented is effectively solved by other existent applications. This paper´s objective
is to set the ground for reliable ROI (return of investment) analysis on:

1. The acquisition of an alternative SCM tool.
2. A server upgrade and repository migrations to future Subversion releases.
In addition, it may serve as a foundation for future SCM tools development

and improvement of existent projects.

1 Introduction

The Subversion revision control system has become the dominant SCM tool for open
source projects. Since its introduction, it has been more and more often recommended
for large-scale business application development, becoming one of the most popular
mainstream SCM tools [OST 04]. Subversion, and its limitations, have strongly influ-
enced Software Configuration Management processes and techniques.

No alternative SCM tool is mentioned in this paper, though every single downside
presented is effectively solved by other existent SCM applications.

Currently, the Subversion developers are actively working on version 1.5. This new
version addresses some of the problems presented in this paper, as the lack of merge
tracking and change lists [SRN 07]. The release date of Subversion 1.5 has yet to be de-
fined.

2 Commits frequency and When to branch

“When should I create a branch?” and “How often should I commit my changes to the
server?” are two of the most frequently asked questions addressed in SCM best practices
for developers. The subversion documentation recommends following these rules: [SBP
07].

• Rule 1: The trunk branch must compile and pass regression tests at all times.
• Rule 2: A single commit must represent an entire changeset, and must not be so
large to discourage peer-review.

2 Sergio Fierens

• Rule 3: If rules 1 and 2 are in conflict, create a private branch.

Unfortunately, this answer requires the developers to use their judgment based on their
experience (How long is a commit that discourage a peer review?), and does not allow
users to upload changes to the server until the logical unit of work is complete. Many
SCM authors and best practices adopt a simpler approach: Always maintain a private
branch for each developer or change [NAR 03].

This approach is discouraged for subversion users with good reasons: Developers are
isolated from each other, possibly creating unnecessary merge conflicts, and requiring
users to do lots of extra merging [SBP 07].

However, this is an artificial result of the limitation of the Subversion tool, not the
practice itself. With a SCM tool that provides inheritance or automatic pulling of
changes, smarter conflict detection, and easier merging; the users are not isolated, no
unnecessary conflicts are created, and merging does not take much time.

3 Defect tracking in branches

During defect tracking, we may find out that there is a bug in a specific file for a specific
version. Let say, for example, that file foo.java had a critical, and until now undetected,
bug in revision X and was fixed in revision Y.

There is no simple way to answer the question: “What branches and tags contain the
file foo.java with a revision number between X and Y?”. In a large development project,
with several versions of the application deployed in several different environments, this
means that we do not have a simple way of detecting which versions of the released
software are affected by the bug [OSC 05].

4 No replication or caching solution

Subversion clients use a WAN (like the internet) to connect remotely to the repository.
This strategy presents no problem for single users scattered throughout the world or
small remote teams accessing the repository only occasionally, as it is the case with
most open source projects. However, the lack of replication or caching solutions makes
development with geographically distributed teams more complex and expensive, espe-
cially when the enterprise is outsourcing part of the development offshore.

It is worth to note that there is a tool for creating and maintaining read-only mirrors
of subversion repositories: svnsync [SYN 07]. It can be use to maintain synchronized
vendor code branches, but not for concurrent development.

Downsides of Subversion 1.4 in large-scale software development 3

5 Criss cross merge

There is a common problem in SCM called criss cross merge. This happens when the
SCM user tries to re-merge two previously mutually merged branches. Subversion is
particularly susceptible to this and other uncommon merging patterns.

Let us see it with an example. The Foo application has two active development lines:
maintenance of version 1.0 (already in production), and development of new version 2.0
(with many new features) (Fig. 1).

Fig. 1: Foo application SCM layout

The maintenance line (version 1.1) has many bug fixes that must be included in ver-
sion 2.0, so developers merge the 1.1 branch into the 2.0. However, there is a new fea-
ture already implemented for the unreleased version 2.0 which the end users of the Foo
application needs urgently, and cannot wait for the new version to be released. The de-
velopers decide to include those changes in version 1.1, and they merge some changes
from branch 2.0 into 1.1 (Figure 2).

Fig. 2: Criss cross merge scenario

The criss cross merge problem arise when developers try to merge new changes in
Foo 1.1 v2 and Foo 2.0 v2. Traditional merging methods like diff and diff3 are poorly
effective in these cases, as choosing the correct “base” is not a trivial problem, and

4 Sergio Fierens

choosing unwisely could result in conflicts being ignored, or asking the developer to
merge again changes previously merged.

6 No automatic change pulling or inheritance betwee n
branches

Facing the implementation of issues using private branches, the user commits the
changes to a branch separated from the main line or development base. Changes may be
arriving continuously to the base branch from where the private branch was spawned.
These changes are not inherited nor automatically pulled to the private branch, even
when they affect files not modified by the user. In addition, there is no automatic notifi-
cation of merge conflicts with the base branch. These issues isolate the developer, mak-
ing the final merge task more complex.

7 No “Obliterate” feature

There is no way to permanently delete any data once it has been uploaded to the reposi-
tory [TRK 01]. This may eventually become a problem. Let us say, for example, that an
user unintentionally commits intellectual protected code to the repository. We must re-
move it permanently from the server; otherwise, we will be providing access to intellec-
tual protected code to anyone who has access to the repository.

Many people dislike the idea of having an obliterate function in a SCM tool, arguing
that after all, one of the principal objectives of such tools is to avoid losing data generat-
ed at any time. A good analogy to refute this is how companies archive paper docu-
ments: many large organizations and business offices invest a lot of money and re-
sources to establish a central documentation archive to centralize and backup all their
information, but they also have a paper shredder.

A workaround to this problem is to generate a dump of the repository, manually find
and delete the content we want to erase, and create a new repository with the edited
dump. However, this technique is extremely complicated (due to the large size of the
repository dump) and not always feasible.

8 The repository topology is not self-descriptive

Despite the simplicity of the “copying directories” approach to create new branches, it
hides the real topology of the SCM plan.

In large development projects, there are many branches or development lines. There
are branches for maintenance, feature development isolation, integration, golden releas-
es, release candidates, private workspaces, experimentation features, and more. With
Subversion, it is very difficult to figure out the topology of the SCM, or what SCM pat-
terns are applied.

Downsides of Subversion 1.4 in large-scale software development 5

Who is working in each branch? Where does each branch come from? What is its
purpose? Where and when are they going to be merged? Is there any defined pattern to
follow? Users can always define standards and procedures, but the repository layout will
never be self-descriptive.

9 Renaming files is not handled appropriately

Internally, Subversion does not really handle the concept of renaming, it just process this
operation as a combination of copy and delete. With the only exception of the log com-
mand, Subversion treats renamed files and directories as completely new files, so there
is no possibility of merging their content.

This presents problems in common operations such as source code refactoring, espe-
cially in Java based software projects, when renaming of resources and file content
changes occur simultaneously (e.g. changing the name of a package or class). Quoting
the subversion manual: “Until Subversion improves, be very careful about merging cop-
ies and renames from one branch to another” [CFP 02].

10 The administrative directory of the working copy is saved
locally

Each directory in the working copy contains a subdirectory named .svn, created and
maintained by Subversion. They contain files to help Subversion administrate the work-
ing copy.

These files can become corrupted and, as the .svn directories are scattered all over
the project, they usually make file manipulation outside svn more complicated.

11 Current issues addressed in Subversion 1.5

11.1 Merge tracking

Although merging can be performed in Subversion 1.4, merges are not tracked in the
repository. This is the major feature that version 1.4 lacks, and the first criticism it rece-
ives from its detractors, as it affects:

• Repository audits: It is simple to know when a new development line started, but
there is no tracking on when or where it was merged to an integration branch.

• Merging of changes twice: This is a common problem while merging branches.

6 Sergio Fierens

Fig. 3: Remerge scenario

Figure 3 illustrates a very simplified example with two development branches. The
green dotted lines represent a merge. The interesting part occurs in the second merge.
We have a conflict in the second line (“2 CATS” v “MOUSE”) that has to be manually
solved as “2 MICE”, and an new addition in one of the branches (new “RABBIT” line),
that should be automatically merged by the tool. However, as there is no tracking of the
previous merge, the original file is taken as base, and the entire file is marked as con-
flicting, resulting in unnecessary manual conflict solving efforts.

As a workaround for the lack of merge tracking, the Subversion documentation re-
commends manually tracking merges in the commit log [SBP 07][CFP-02]. Neverthe-
less, this solution is error prone, as it puts the burden on the developers, forcing them to
go through the log to see what merges have already occurred, and manually add specific
comments to the log while merging.

Alternatively, many people uses an open source tool contributed and maintained by
Subversion community members called svnmerge, written in python scripting language.
The Subversion project does not maintain this tool, but distributes it for our users' con-
venience [CON 07].

11.2 No built-in change package

We define change package as the collection of changes necessary to perform a task with
a given scope (e.g. fix a specific bug or add a new feature). In Subversion 1.4, we can
associate a set of changes with a revision number. Revision number N contains all the
necessary changes to transform revision number N-1 to N. This allows the author of the
changes to say “the task was completed in revision 328”.

However, there is no way to associate scattered revision numbers to a specific
change package. If the necessary changes to complete the task are added to the reposito-
ry in multiple commit operations, we lose track of our change package. A common wor-
karound is the use of third party issue tracker plug-ins that parse comment logs, though
this is error prone as it requires the user to manually enter the issue number into the
comment of each commit operation.

Downsides of Subversion 1.4 in large-scale software development 7

12 Conclusion

Subversion is a very stable tool and a healthy open source project. Its main goal is to
create a compelling replacement for CVS in the open source community and it has been
fulfilled. It has a vast user base, and several big organizations supporting it.

The subversion SCM tool is best suited for open source and small to medium com-
mercial development projects. However it may not be the best option for large-scale ap-
plication development in corporate environments, with more change management re-
quirements, complex deployment and maintenance topologies, and distributed
concurrent development; as its total cost of ownership may be greater than other alterna-
tive open source or commercial applications.

References

[CFP 02] Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato, Version Control with

Subversion - For Subversion 1.4, Chapter 4 - Branching and Merging, http://svnbook.red-

bean.com/en/1.4

[NAR 03] Uttam Narsu, SCM Best Practices, Page 4.

[OSC 05] Collabnet, Notes from Version Control BOF, EuroOSCON 2005, Tuesday, 18 Oct.

http://svn.collab.net/repos/svn/trunk/notes/EuroOSCON-2005-vc-bof.txt

[TRK 01] Tigris, Subversion Issues Tracker, Issue 516 - svn obliterate.

http://subversion.tigris.org/issues/show_bug.cgi?id=516

[SBP 07] Subversion Best Practices - CollabNet - Subversion best practices, version 1.4.6,

http://svn.collab.net/repos/svn/tags/1.4.6/doc/user/svn-best-practices.html

[SRN 07] Collabnet, Subversion 1.5 release notes, http://subversion.tigris.org/svn_1.5_releasenotes.html

[OST 04] Tigris, Open source projects using subversion and Testimonials,

http://subversion.tigris.org/testimonials.html

[CON 07] Collabnet, Subversion Tools and Contrib, http://subversion.tigris.org/tools_contrib.html

[SYN 07] Collabnet, Svnsync release notes, http://svn.collab.net/repos/svn/branches/1.4.x/notes/svnsync.txt

http://www.jadeferret.com/docs/scm/svn-14-downsides.pdf

