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ABSTRACT

All industrialized countries have experienced a transition from high birth rates, land-based

production and stagnant standards of living to low birth rates and sustained income growth.

To develop a better understanding of these economic and demographic transformations and

the link between them, we construct a general equilibrium framework merging the Hansen

and Prescott (2002) model of structural change with the Barro and Becker (1989) model of

fertility choice. We find that when the historical changes of youth mortality and sector-specific

productivity are introduced into the model, parameterized to capture key moments of 17th

century England, it does remarkably well at generating the long-run features of economic and

demographic development of England.

Keywords: industrialization, structural transformation, unified growth theory, technological

progress, demographic transition, young-age mortality

JEL Codes: J10, O11, O41, O47, E00
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I. Introduction

All industrialized countries have experienced a transition from stagnant standards of living to sustained

growth in per capita income. Over the same period of time, resources were reallocated from rural to non-

rural production, the land share in total income declined significantly, while the labor income share

increased. In each case, this economic transition was accompanied by a demographic transition from high

to low birth and mortality rates. These key changes together constitute one of the major transformations

of modern times.

What factors were responsible for these changes and to what extents? Did the economic and demo-

graphic changes transpire through common or distinct channels? To study these questions and further

understand the link between economic and population dynamics, we construct a dynamic general equi-

librium two-sector model with endogenous fertility. This model is a hybrid of the two well-known and

widely used models in the literature: Hansen and Prescott (2002) (henceforth “HP”) and Barro and

Becker (1989) (henceforth “BB”). The final good, as in HP, can be produced using two different tech-

nologies, the Malthusian, which takes capital, labor, and land as inputs, and the Solow, which employs

capital and labor only. We associate the Malthusian technology with rural production and the Solow

technology with urban production. This two-technology framework allows us to investigate cross-sector

resource allocation and movements in factor income shares. Fertility choice is modeled after BB. Parents

place value on both the number of surviving children and their children’s well-being,1 and thus face a

quantity-quality trade-off between having many children each with a small inheritance in the form of

capital and land and having few children with a larger inheritance. Parental time is needed for raising

each child, including those not surviving to adulthood. The time cost of raising a surviving child thus

declines as more newborns survive to adulthood. Changes in the time cost can also be interpreted within

our framework as a reduced form representation of such changes as the rise in the value of female time

or the introduction of child labor laws and compulsory education reforms.

We parameterize our model to match key moments of 17th century England, without forcing the

model to match the time series dimension of any variable. We then ask whether the long-run patterns

of development in England are closely captured by the parameterized model dynamics that result when

young-age mortality and the sector-specific total factor productivity (TFP) are stipulated to vary over

time in accordance with historical data. It is found that the model does remarkably well, which suggests

its potential usefulness in future quantitative studies. Because the cost of raising children is not observed

in the data, its changes cannot be introduced into the model in the same manner as is done for sector-

specific productivity or young-age mortality. We do, however, find that a rise in the time cost further

improves the model’s overall performance.

We then use the parameterized model to quantitatively assess the separate contributions of changes

in sector-specific productivity, young-age mortality and the cost of children to shaping the demographic

and economic transformations in England.

It is important to note that we investigate the model behavior resulting from the historical time series

of TFP and young-age mortality without attempting to elucidate the underlying causes for these empirical

1We use two specifications, one introduced in Barro and Becker (1989) and one introduced in Lucas (2002).
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phenomena. Thus, we seek to ascertain the combined influence of all factors on the demographic and

economic transformations that are communicated through the TFP and young-age mortality “channels.”2

A word of caution is needed here to avoid a possible misinterpretation of our results. For example,

our finding that technological progress is quantitatively a major channel through which urbanization

transpired does not imply that changes in young-age mortality, or any other force, had no causal effect

with regard to this phenomenon. In fact, reductions in young-age mortality, by increasing the population

density and thus facilitating the process of idea sharing, could contribute to the productivity growth,

and consequently influence urbanization. Instead, this finding leads to the conclusion that if young-age

mortality contributed to resource reallocation, its influence must have been communicated predominantly

through its effect on TFP. In other words, when evaluating the importance of a specific channel in

accounting for a particular phenomenon, we hold constant the influences it may exert through the other

channels. There are a number of other potential interactions between the channels studied in this paper.

The influence exerted through the productivity channel may cause the mortality decline, as a result of

its tendency to increase the standard of living. Changes in productivity, if skill-biased, can also induce

quality investment in children, thus contributing to the increased cost of raising children.

Related works have provided a number of illuminating dynamical systems that capture potentially

very important mechanisms. However, many of these point to drastically different causes behind the

economic and demographic transformations. To give just a few examples, the mechanisms proposed in

Greenwood and Seshadri (2002), Jones (2001), Kalemli-Ozcan (2002) and Soares (2005) each generates a

drop in fertility and a switch to a sustained growth regime through the exogenous technological change,

institutional change, a decline in young-age mortality, and a decline in adult mortality, respectively. Thus,

the relative importance of each such mechanism for the case of a particular country remains unclear.

There is a pressing need for more quantitative work in this field. By allowing us to disentangle the

roles of the most relevant channels in transforming England, the HP-BB hybrid framework helps us

obtain a better understanding of the link between the economic and demographic changes and elucidates

the relative importance of different mechanisms developed for the purpose of endogenously generating

both the economic and demographic transformations. In fact, most of these existing mechanisms act

through some combination of the following channels: technological progress, young-age, adult-age, old-

age mortality and the cost of raising children. Future work should attempt to incorporate the remaining

channels and attempt to perform a decomposition of the economic and demographic changes into changes

transpiring through each of them.3

One advantage of using our framework for assessing the relative importance of the young-age mortality

and TFP channels on population, output, resource allocation and factor income shares is that it allows a

straightforward mapping to the data. We use standard functional forms, and our choice of parameters is

guided strictly by the observables. The time series used in the design of our experiments represent their

actual historical estimates. Our framework also allows for TFP time series estimation in the rural and

2We choose to focus on the effect of changes in young-age mortality and TFP because empirical evidence and related

historical, demographic, and economic literature overwhelmingly link these factors to economic and demographic variables.

See Section III.
3Such growth/demographic accounting framework would be similar in spirit to the business cycle accounting framework

developed in Chari et al. (2006).
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urban sectors using the available data on wages, land and capital rental rates, and the GDP deflator.4

Moreover, such framework allows us to study the channels under consideration both jointly and in iso-

lation. This contrasts with the situation regarding models incorporating intricate collections of forces,

which cannot be tested in isolation without shutting down the entire mechanism.

The main contributions of this paper are as follows. First, we construct a general equilibrium framework

that combines the HP model of structural change with the BB model of fertility choice and contrast

its results with those of HP (See Sections IV and VI). While our results do not support the strict

form of the HP conclusions, i.e. that stagnation is generated because the Solow sector is not used and

that the structural transformation and takeoff in income growth transpire under constant sector-specific

productivity growth rates, we show that the parameterized HP-BB framework featuring historical changes

in youth mortality and sector-specific productivity can successfully account for the main patterns of the

English economic and demographic transformations. It accounts for roughly 3/4 of the increase in the

GDP/capita observed in the data during the period 1650-1950, for over 90% of the movement in factor

income shares and resources across sectors, and over 60% of the drop in the crude birth rate5 (CBR).

Increasing the cost of children further improves the model’s fit along the demographic dimension, without

compromising its success along the economic dimension. These results lead us to believe that the HP-BB

framework will prove useful in future applied work in this area.

The second important contribution is our quantitative assessment of the separate roles of youth mor-

tality, productivity and the cost of raising children. We find that the influence exerted through the

productivity channel is largely decoupled from those exerted through the youth mortality and the cost of

children channels. Specifically, the productivity channel has a negligible effect on birth rates but accounts

for nearly all of the increase in per capita output, industrialization, urbanization, and the decline of land

share in total income, while the young-age mortality and the cost of children channels account for almost

none of the economic transformation but drive much of the demographic change. Our findings suggest

that the quantitatively relevant channels through which the demographic and economic transformations

transpired were distinct in the case of England. These results can provide guidance to researchers at-

tempting to model the economic and demographic transformations as endogenous phenomena, and they

shed light on the relative importance of several previously proposed theoretical mechanisms.

The third significant contribution is our estimation of the sector-specific productivity changes for the

case of England, which relies on the assumption of profit maximization and utilizes historical data for

factor prices.

Finally, our analysis shows that endogenizing fertility in the two-sector growth model introduces the

possibility of balanced growth even in the presence of differential productivity growth, which represents

a noteworthy contribution to the literature on the structural transformation.

It is instructive to briefly highlight the implications of changes in young-age mortality and TFP growth

rates for birth rates and the level of industrialization.6 One effect of the decline in young-age morality is

4 If, instead, we chose a different framework for modeling production, for example, assuming the agricultural good

production function used in Greenwood and Seshadri (2002), with skilled labor, unskilled labor, and capital as inputs, we

would face a great difficulty in attempting to extract productivity changes for such production function from available data.
5The crude birth rate (crude death rate (CDR)) is the number of births (deaths) in a given year per 1000 people.
6 In this paper we refer to the fraction of non-rural output in the total output as “the level of industrialization” and the

fraction of labor employed by the non-rural sector in the total labor as “the level of urbanization.”
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that fewer births are needed to realize the desired number of surviving children. In addition, declining

young-age mortality lowers the time cost per surviving child, thus relaxing the budget constraint and

allowing parents to optimally adjust the number and quality of their surviving offspring. The transition

to a more rapidly growing TFP and hence income may also alter fertility choices. On one hand, higher

income growth induces higher fertility, because children enter parental utility. On the other hand, it raises

the opportunity cost of rearing children measured in terms of foregone wage earnings, thus dampening

fertility.

Interestingly, when separate experiments are conducted to independently determine the implications of

technological progress and the change in young-age mortality, it is found that each generates full resource

reallocation towards the urban sector in the long run. As, according to our estimates, the Solow TFP

begins to grow more rapidly than the Malthusian TFP, it attracts an increasingly higher proportion of

resources. The result that falling young-age mortality causes an increase in the level of industrialization is

less intuitive. As the probability of survival increases, the time cost of raising a surviving child declines,

which leads to an augmentation of the aggregate labor supply. As a result, resources tend to shift

towards the more labor intensive sector. Although both changes generate a transition from Malthus to

Solow, changes in young-age mortality lead to a much slower transition, representing an insignificant

contribution to industrialization for the period of interest. This point demonstrates that in carrying out

the quantitative analysis it is of utmost importance to solve for the transitional dynamics (from one

balanced growth path towards another) triggered by the examined exogenous changes. Indeed, if we had

focused on the comparative statics alone, we would have erroneously attributed an important role to

youth mortality declines in generating resource reallocation towards the Solow sector.

The remainder of the paper is organized as follows. In Section II we summarize the historical data for

England. Related literature and the relationship of our work to the literature on structural transformation

are discussed in Section III. In Section IV we set up the model, discuss its equilibrium properties and derive

the qualitative differences between the results of this model and those of HP. The model’s calibration

and estimation of TFP time series are presented in Section V. The main results are reported in Section

VI, where we further contrast our quantitative results with those of HP. We investigate the time cost

channel in Section VII. In Section VIII, we present discussion on the correct interpretation of our results

and describe the possible causal links between them. We also discuss how these results can be used to

guide future research and contrast our work with that of Galor and Weil (2000) (henceforth “GW”) -

probably the most well-known unified growth theory. We present a sensitivity analysis in Section IX and

conclude in Section X.

II. Motivating Facts about England

We chose to focus on England because its data are most complete.7 Floud and Johnson (2004) and

Chesnais (1992) describe England during this period. Lee (2006) and Galor (2005) provide general

accounts of the demographic change and facts concerning development.

Figure 1a displays the natural log of the real GDP per capita index.8 After remaining stagnant

7All data sources used in this paper are listed in the appendix.
8Data sources for this figure are Clark (2001a) for 1560-1860 and Maddison (1995) for 1850-1992.
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for centuries, real GDP per capita took off in the beginning of the 19th century. This period is also

characterized by a large-scale shift of the population from the rural sector to the urban sector. As

depicted in Figures 1b and 1c, the share of the urban GDP rose from around 30% in the 1550s to roughly

98% in the 1990s, while the share of employment in non-rural production increased from around 40%

to 98%.9 Further, the land income share fell from as much as 30% at the outset of the 17th century to

nearly 0% today (Figure 1d).

The dramatic economic transformation described above was accompanied by remarkable demographic

changes (Figure 1e).10 Before the mid 18th century, both birth and death rates remained high, with the

average population growth in the first half of the 18th century remaining low (approximately 04% per

year.) The decrease in the CDR beginning in the second half of the 18th century was due mainly to

declining adult mortality. Sustained decline of the mortality rates for the age groups 5-10, 10-15, and

15-25 began in the mid 19th century, while that for the age group 0-5 began three decades later (Wrigley

et al. (1997)). Major factors behind the decline in mortality were the sanitary revolution, which reduced

fatalities due to water-borne and food-borne disease and advances in medical science, most notably, the

discovery of the benefits of pasteurization, hospitalization, and small pox vaccination.

A sustained fall in birth rates, driven by a fall in marital fertility, occurred from 1870 to 1930, after

which both birth and death rates stabilized at lower levels. Previous changes in birth rates resulted from

changes in the timing and prevalence of marriage (Floud and Johnson (2004) and Wilson and Woods

(1991)). Although the fall in birth rates lagged behind the onset of the fall in death rates, it coincided

with the fall in young-age mortality (Figure 1e).11 Note that the lag between the drop in CDR and the

drop in CBR resulted in a hump-shaped population growth rate. The general fertility rate (GFR),12 a

measure less sensitive to the age structure of the population than CBR, exhibited similar behavior (Figure

1f). Figure 1f reveals that the number of surviving children also declined during 1870-1930.13

Figure 2 plots our own sector-specific TFP estimates. We postpone the discussion of the estimation

methodology to Section V. The rural TFP exhibited a somewhat higher growth than the non-rural TFP

until the second half of the 18th century, when the growth of the urban TFP sharply increased surpassing

that of the rural TFP. Around 1800, the growth of the rural TFP caught up slightly. This short-lived

trend marks a small-scale agricultural revolution subsequent to the industrial revolution.

III. Related Literature

Galor (2005) and Doepke (2008) provide useful discussions of the literature on long-run development.

We limit the present discussion to work emphasizing the channels of child mortality, technological progress

9Data for the level of industrialization and urbanization up to 1860 are taken from Clark (2001a, 2002); the time series

are continued using Maddison’s data (1995).
10Data for CBR and CDR are taken from Wrigley et al. (1997) up to 1871 and continued using the data in Mitchell

(1978).
11The probability of surviving to age 25 is calculated from age-specific mortality rates taken from Wrigley et al. (1997)

and the Human Mortality Database.
12The general fertility rate is the number of births in a given year per 1000 females of ages 15-44.
13To construct this series, we multiply the probability of survival to the age of 25 by the original GFR series. Note that

the Net Reproduction Rate, which is commonly mistaken to reflect the measure of surviving children per woman, instead

reflects the number of daughters that would be born to a woman if she went through her lifetime conforming to age-specific

fertility and mortality rates in a given year.
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and changing time cost of raising children. We also discuss the relationship of our work to the more recent

literature on structural transformation.

Among the studies allowing for an important role of mortality in driving the demographic and/or

economic transition are Ehrlich and Lui (1991), Wolpin (1997), Eckstein et al. (1999), Galor and Weil

(1999), Kalemli-Ozcan et al. (2000), Kalemli-Ozcan (2002), Boucekkine et al. (2002), Lagerlof (2003a),

Cervellati and Sunde (2005), Doepke (2005), Soares (2005), Tamura (2006).14 These mechanism build

on a quantity-quality trade-off. Boldrin and Jones (2002) also explores the role of child mortality in a

framework that reverses the direction of altruism to flow from children to parents. Ehrlich and Lui (1991),

Kalemli-Ozcan (2002), Lagerlof (2003a), Soares (2005) and Tamura (2006) explicitly model children’s

human capital accumulation and assume increasing returns to scale to parents’ human capital and time

spent with children in production of children’s human capital.15 Because the production of the surviving

children’s human capital requires a quantity of parents’ time that is proportional to their fertility, a drop in

young-age mortality raises the return to human capital investment. The necessary parametric restrictions

ensure a transition to a sustained growth regime through the substitution of quality for quantity. Several

of these studies, in particular, Ehrlich and Lui (1991), Kalemli-Ozcan (2002), Lagerlof (2003a), Soares

(2005) and Tamura (2006) conclude that a decline in child mortality results in a significant reduction of

the number of surviving children and pulls the economy onto a sustained growth path.16

The view that technological progress is at the center of the demographic and economic transformation

is also common. (See Becker and Lewis (1973), Becker (1981), Hotz et al. (1997), GW, Fernandez-

Villaverde (2001), Greenwood and Seshadri (2002), HP.) In fact, our findings are qualitatively consistent

with this view, as they imply that changes in TFP growth trigger convergence to a sustained growth

regime characterized by lower fertility. However, we find the quantitative effect of technological progress

on birth rates to be small.

With regard to the method of modeling production, our work is closely related to HP. HP assume

an exogenously given population growth as a function of living standards. Both sectors are assumed to

enjoy constant TFP growth. Stagnation is generated by (1) assuming parameters such that the Solow

sector does not operate and (2) the assumption on the population growth function to guarantee that

the Malthusian output per capita is fixed. For a large enough Solow TFP, the Solow sector begins

operating and pulls resources out of the land-based sector, thus triggering the structural transformation

characterized by increasing standards of living and declining importance of land as a factor of production.

The HP calibration exercise aims to capture both stagnation and the growth rate of postwar US income.

In this paper, we combine the HP production setup with a model of fertility choice and in addition

introduce young-age mortality. In Sections IV and VI, we contrast our results with those in HP.

Fernandez-Villaverde (2001) uses a parameterized framework in which unskilled labor and capital are

substitutes, while skilled labor and capital are complements. Capital-specific technological change that

matches the fall in the relative price of capital equipment during the years of falling birth rates, 1875-

14Empirical results pointing to mortality as one of the most important determinants of fertility and/or the onset and

speed of its decline are reported in Woods (1987), Bos and Bulatao (1990), Shultz (1997) and Mason (1997a), among others.
15Doepke (2005) also studies a setup with human capital accumulation. However, he assumes that children’s human

capital is a decreasing returns to scale function of only parents’ time spent with children.
16Kalemli-Ozcan et al. (2000), Boucekkine et al. (2002), Cervellati and Sunde (2005), Soares (2005) explore the effect of

changes in adult mortality on human capital accumulation.
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1920, is introduced into the model and found to be important in accounting for the observed patterns of

fertility and per capita income in England. However, the empirical fact that after 1920 the relative price

of capital and capital equipment began to increase reaching almost its 1875 level, while fertility remained

roughly constant, is difficult to reconcile with this finding.

Greenwood and Seshadri (2002) uses a two-sector model with exogenous technological progress and

endogenous fertility to study the case of the U.S. The preference parameters ensure that as incomes

increase, the demand for the agricultural good relative to the manufacturing good declines. Because

unskilled labor is not used in the production of the manufacturing good, parents substitute quality

for quantity. GW presents a theoretical model with explicit human capital accumulation, endogenous

technological change and fertility. In that work, children’s human capital is a function of the TFP

growth rate and parental time investment in raising children. This function is chosen so as to satisfy

several assumptions guaranteeing that parents respond to the acceleration of technological progress,

initially fueled by increasing population size, by having fewer, higher quality children. The growing time

investment then feeds back into higher technological progress. 17  18

There is also a number of mechanisms that give a central role to the rise of the time cost of raising

children. The time cost may increase due to changes such as a declining contribution of children to

family production with the shift away from agriculture, the rise in the value of female time (Galor and

Weil, 1996, Lagerlof, 2003), introduction of child labor laws and education reforms (Hazan and Berdugo,

2005, Doepke, 2004, Doepke and Zilibotti, 2005), changes in the public provision of old-age security

or development of credit markets (Boldrin et al. 2005), or parents’ explicit decision to spend more

time educating offspring in response to, for example, a skill-biased technological change (Greenwood and

Seshadri, 2002).

Our paper is also related to the literature on the structural transformation. (See Matsuyama (2005)

for a brief outline of the key issues involved.) One strand of this literature assumes lower income elasticity

for the agricultural good, and thus generates a structural transformation even in the presence of equal

productivity growth rates across sectors. Agricultural productivity growth is necessary for this demand-

side explanation to work,19 and it can be interpreted as releasing labor into the modern sector (See

Murphy et al. ,1989, Matsuyama, 1992, Laitner, 2000, Caselli and Coleman, 2001, Gollin et al., 2002,

Voigtländer and Voth, 2006.). A different strand of this literature advocates the supply-side explanation,

which postulates that the structural transformation is a result of differential productivity growth across

sectors. According to this explanation, depending on the substitutability of the two goods, the sector

experiencing higher productivity growth will either pull or push resources. The pull effect of advances

in industrial productivity is featured in Lewis (1954), Hansen and Prescott (2000), Doepke (2004) and

the present paper. The push effect is featured in Ngai and Pissarides (2006) who aim to obtain balanced

aggregate growth alongside structural reallocation towards low productivity growth sectors. Note that

our observation that beginning in the 17th century factors reallocated towards a more rapidly growing

17Lagerlof (2006) performs a quantitative test of this model.
18Boucekkine et al. (2007) suggests that population density, through lowering the cost of school setups, can foster

productivity growth, thus providing an explanation for the link between population and productivity postulated in Galor

and Weil (2000).
19Growth in income resulting from TFP growth in the modern sector is not sufficient as its effect on relative consumption

demand is offset by the rising relative price of the agricultural good.
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modern sector stands in contrasts to their description of a more recent structural change. In addition,

while their goal of generating balanced growth behavior together with the structural change is justified for

capturing the 20th century experience of developed countries, it is not justified for our period of interest,

characterized by accelerating income growth, changing factor income shares and increasing capital-output

ratio. Although Acemoglu and Guerrieri (2008) assume identical productivity growth across sectors

and instead focus on factor allocation across sectors differentiated by capital intensity, they also aim

to generate approximate balanced growth. Capital deepening results in factor reallocation away from

the capital-intensive sector — a push effect induced by capital accumulation. Our work captures both

the effects of differential productivity growth and capital deepening interaction with differential capital

intensities. In addition, we study the effect of (endogenous) changes in the population size on factor

allocation across sectors with different labor intensities. The important contribution of the present paper

to this literature is to show that endogenizing fertility introduces the possibility of balanced growth even

in the presence of differential productivity growth.

IV. Model

A. Environment

Technology and Firms

As in HP, firms are endowed with one of two possible technologies to be used in production of the

consumption good.20 The Malthusian technology that requires capital, labor, and land as inputs is given

the subscript “1,” and it is associated with traditional land-based production taking place in the rural

sector. The Solow technology that employs capital and labor as inputs is given the subscript “2,” and it is

associated with a modern way of production taking place in the cities. Both technologies exhibit constant

returns to scale, which allows us to assume two aggregate competitive firms (sectors). Output production

of these firms is described by 1 = 1

1


1Λ

1−−
 and 2 = 2


2

1−
2 , where  and  denote

the capital and labor employed by technology  ∈ {1 2}, and Λ denotes the land input. Exogenous
technological change augments TFP in both technologies, so that  = 0

Q−1
=0  ,  ∈ {1 2}. Letting

  and  denote the real wage, capital rental rate, and land rental price at time , we can describe

profit maximization by

max
11Λ

1

1


1Λ

1−−
 − 1 − 1 − Λ

max
22

2

2

1−
2 − 2 − 2.

Preferences, Households and Dynasties

There is a measure 1 of identical dynasties, each populated by  households at time . Households live

for two periods, childhood and adulthood. An adult household derives utility from its own consumption

(), the number of its surviving children (), and its children’s average utility according to  =

 log  + (1− ) log + +1, where   ∈ (0 1)  This utility function, also used in Lucas (2002),

20An alternative interpretation of this setup is that the two sectors produce different goods which satisfy the same need

and hence enter into households’ utility as perfect substitutes (See Zveimüller (2000)).
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is increasing and concave in the number of children, like the utility used in Barro and Becker (1989),

 =  +1− +1. The following proposition states that these preferences are equivalent under certain

parametric restrictions. We also explore the BB utility in the sensitivity section.

Proposition 1 The form of the parental utility used in Lucas (2002),  (  +1) =  log  +

(1− ) log++1, represents the same preferences as the Barro and Becker utility,  (  +1) =

 + 1− +1, if  → 0 and 1−−


= 1−−


.

Proof. See the appendix.

A fraction  of children born () survive to adulthood,
21 and thus  =



newborns are needed to

realize  surviving offspring. A household must spend a fraction  of its time with each born child and

an additional fraction  with each child who lives to adulthood.22 Allowing two parameters govern the

cost of raising children enables us to capture the young-age mortality profile. For example, a high value

of  relative to  captures the empirical observation that children not surviving to adulthood tend to die

very early in life. We will return to this discussion when calibrating the model. The total time spent

raising children is hence given by  +  =
³



+ 
´
 We let  ≡ 


+  denote the net time cost

per surviving child. Observe that  is a decreasing function of . Intuitively, as more newborn children

survive to adulthood, fewer newborns are needed to realize one surviving offspring and hence less time is

spent rearing non-survivors.

An adult household rents out its land holdings () and capital (), and devotes all time not spent

raising children to work ( = 1− ). Given {   }∞=0, households choose consumption, the
number of surviving children, the amount of capital (+1) to pass on to each surviving child, and divide

their land holdings equally among its descendants. The problem faced by an adult household is thus

given by

 ( ) = max
+1+1≥0

 log  + (1− ) log + +1 (+1 +1)

subject to  + +1 = (1− ) + ( + 1− )  + 

+1 =





It is common to assume that the conjecture about +1 (+1 +1) formed by a time  adult household

must correspond to the actual level of its children’s utility resulting from their optimal response to

inheriting (+1 +1). In other words, we focus on subgame perfect equilibria of an infinite horizon

dynastic game, in which at each time, current adults solve the above problem. As in Golosov, Jones,

Tertilt (2006), it can be shown that the subgame perfect equilibrium outcome of such game is unique23

and coincides with the unique solution to the dynastic problem below24, where the objective function

21There is no uncertainty in the survival of newborns’ (as in Sah (1991) or Kalemli-Ozcan (2002)) that would give rise to

precautionary motives for having children.
22 If the cost of raising children were to be paid in terms of the final good, the results would not change. In that case, for

the existence of a balanced growth path along which per capita variables grow at constant rates, we would need to assume

that the goods cost grows in proportion to income.
23The only equilibria considered are those that are limits of equilibria of the finite horizon truncations of this infinite

horizon game.
24Bar and Leukhina (2007) prove uniqueness of the solution to DP.
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is obtained applying recursive substitution to household utility. Given {   }∞=0, the dynastic
planner (or the original household) solves

max
{+1+1}≥0

∞X
=0

( log  + (1− ) log)

subject to  + +1 = (1− ) + ( + 1− )  +  ∀
+1 =




   +1 ≥ 0 0 0 given.

Note that we avoid heterogeneity in skills and human capital considerations. This greatly reduces the

difficulty of mapping observables into our model, thus later enabling us to estimate sector-specific TFP

and calibrate the model in a meaningful way. Note that modeling physical capital accumulation is similar

to modeling human capital in the sense that it allows parents to affect future utility of their offspring by

spending resources today.

Population Dynamics and Market Clearing

The number of adult households evolves according to +1 =  We use upper case letters to

denote aggregate quantities:  ≡   ≡  1 ≡ 1 2 ≡ 2  =  1 ≡ 1

2 ≡ 2 The market clearing conditions in the final goods, capital, labor, and land markets are given

by

 ++1 = 1

1


1Λ

1−−
 +2


2

1−
2 + (1− )

1 +2 =  1 + 2 = (1− ) Λ = Λ

B. Equilibrium

Definition 1 A competitive equilibrium, for given parameter values, initial conditions (0 0) and ex-

ogenous sequences {1 2 }∞=0, consists of the allocations {   +1 1 2  1 2 +1}∞=0
and prices {  }∞=0 such that firms’ and dynastic maximization problems are solved, and all markets
clear.

In Bar and Leukhina (2007), we prove that the first-order and transversality conditions25 characterize

the solution to dynastic problem. It is instructive to review the intuition behind the first-order conditions

written in dynastic aggregates,

+1


=  (+1 + 1− ) (1)

(1− − )

+1
=  − +1

+1 + 1− 
(2)

Equation (1) is a standard Euler equation that describes the optimal intertemporal consumption choice.

Condition (2) represents the optimal intratemporal choice between consumption and surviving children:

The marginal rate of substitution between children and consumption equals their relative price, that is,

25 lim→∞ 
(+1−)

(−+1)+(+1−)+Λ−+1
 = 0 and lim→∞  

(−+1)+(+1−)+Λ−+1
 = 0 sum-

marize the transversality conditions.
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forgone parental wages due to the time cost of raising children less the present value of the child’s earnings

at + 1.

Due to decreasing returns to scale in capital and labor, the marginal products of the inputs in the

Malthusian technology become very large when its capital and labor inputs approach zero. This guaran-

tees that the Malthusian technology is always employed, and factor prices are determined by

 = 1
−1
1 


1Λ

1−−(3)

 = 1

1

−1
1 Λ

1−−(4)

 = (1− − )1

1


1Λ

−−(5)

It is profitable to use the Solow technology as long as 1 ≥ 1
2

µ
1

−1
 


 Λ

1−−


¶ µ
1


 

−1
 Λ1−−
1−

¶1−
,

that is, as long as its unit cost computed when all resources are employed in the Malthusian sector does

not exceed 1. With both sectors operating, factor prices equalize across them: 1
−1
1 


1Λ

1−− =
2 ( −1)

−1 (− 1)
1− and 1


1

−1
1 Λ1−− = (1− )2 ( −1)

 (− 1)
− 26

The proposition below is important for understanding the first-order effects of changes in the labor

supply and capital levels on optimal resource allocation across sectors. It states that an increase in the

level of an input leads to the reallocation of that input towards the sector in which that input has a

higher share. This result hinges on our assumption of a single consumption good, or alternatively, of

differential goods entering utility as perfect substitutes.27 28 Both sectors exhibit diminishing marginal

returns to labor, but the sector with higher labor intensity less so. When labor endowment rises, it is

optimal to reallocate it in favor of that sector and substitute that sector’s output for the output of the

less labor intensive sector. The same intuition extends to the case of a rise in capital endowment.

This theoretical result also reemphasizes the significance of quantitative analysis as it reveals that the

relative size of factor shares determines important qualitative dynamics.

Proposition 2 Suppose both sectors operate. The following then holds: (a) if 1−   then 


¡
1


¢
 0;

(b) if   , then 


¡
1



¢
 0.

Proof. See the appendix.

Limiting Behavior of Equilibrium Time Paths

We can identify three possible types of limiting behavior of equilibrium time paths (i.e. three types of

qualitatively distinct balanced growth), characterized by the properties that (i) the ratio of the output in

the Solow sector to total output converges to a constant in the interval (0 1),29 (ii) the level of output in

the Solow sector converges to 0, (iii) the ratio of the output in the Malthusian sector to that of the Solow

sector converges to 0. We refer to these types of limiting behavior of equilibrium time paths as convergence

to the Malthus-Solow balanced growth path (BGP), Malthus BGP, and Solow BGP, respectively.

26All formal derivations of optimal resource allocation for given  and  are presented in Bar and Leukhina (2007).
27Zweimüller (2000) also models physically different goods that satisfy the same want as perfect substitutes.
28Bar and Leukhina (2007) theoretically work out the case of a simplified environment but with more general, constant

elasticity of substitution, preferences, showing that this result holds if the goods are substitutes, while the reverse holds if

the two goods are complements. They also discuss the case of preferences with non-constant elasticity.
29Along such a balanced growth path, the two sectors operate side by side forever, with the relative outputs constant.
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The behavior of equilibrium allocations depends on the choice of the parameter values and initial

conditions. In Bar and Leukhina (2007), we derive systems of equations summarizing balanced growth

properties and obtain comparative statics results for each type of these balanced growth paths. We also

discuss in detail how parameter values and initial conditions affect the limiting behavior of equilibrium

time paths.

Along a Malthus-Solow BGP, population growth () and per capita output growth () are determined

by the TFP growth rates in the two sectors:30

(6)  = 
1

1−
2   =

µ
1

− 1−
1−

2

¶ 1
1−−



The growth rate of per capita output is an increasing function of the Solow TFP growth rate, while

population growth increases in the Malthusian TFP growth rate and decreases in the Solow TFP growth

rate (


1
= 0 

2
 0 

1
 0 

2
 0). The time cost of raising children does not enter these

two equations (



= 


= 0), and therefore a rise in  results in a proportional reduction of fertility

( = ) For the class of simulations involving an increase in  such that the type of limiting behavior

of equilibrium paths is unaltered as a result of this increase, we found that during the transition from

the original to a new BGP, population growth exhibits a hump.

Although Malthus BGP and Solow BGP properties do not have a closed-form solution, we derive the

following comparative statics results. Along both types of balanced growth, an increase in TFP growth

dampens population growth and encourages economic growth (


1
 0 

1
 0 

2
 0 

2
 0)

while a decline in young-age mortality leads to a higher population growth (



 0 


 0). Along a

Malthus BGP, a decline in young-age mortality, through its positive effect on population growth, tends

to slow down economic growth
³



 0

´
 while the growth rate of per capita variables along any Solow

BGP,  = 
1

1−
2  is independent of 

Before moving on, we note that the above comparative statics results should be interpreted with

caution. Specifically, it must be kept in mind that it is possible for the dynamic system to undergo a

bifurcation in response to a change in parameter values; i.e., it is possible for the type of limiting behavior

of equilibrium paths to change qualitatively. In such a situation, the comparative statics results given

above are meaningless.

The existence of three types of limiting behavior here contrasts with the situation studied in HP. In

that work, which posits population growth to be a particularly chosen function of living standards, only

Malthus BGP and Solow BGP can emerge.31 The existence of a Malthus-Solow BGP in our model of

endogenous fertility choice is of particular significance. The data reveal that as early as 1600, a substantial

part of output was already produced by the modern sector, for several decades the relative output ratio

fluctuating around a constant (Figure 2). Likewise, output growth, factor shares, birth rates and young-

age mortality exhibited no trend during this period, compelling us to exploit this balanced behavior in

30This result is due to the constancy of the interest rate along a Malthus-Solow BGP and the equality of the marginal

products of capital in the two sectors. Hence, it is robust to the choice of the utility function.
31Note this does not mean that in that work the population growth function could not be chosen to imply existence of a

Malthus-Solow balanced growth.
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the data to identify the model’s parameters. Hence, it is important that the model can generate this

behavior qualitatively. By contrast, HP obtain preindustrial balanced growth, or rather stagnation, by

assuming it unprofitable to employ the Solow technology.

Furthermore, the growth of per capita variables along the Malthus-Solow BGP is given by 
1

1−
2 and

is thus determined by the Solow productivity growth. Because our estimates reveal slow Solow progress

during the period around 1600, our model’s ability to successfully capture the experience of this period is

further validated. Contrastingly, HP obtain stagnation by assuming that population grows at the rate of

the Malthusian output. Thus, our results reveal that the HP production setup when combined with the

BB model of fertility choice can deliver preindustrial behavior without relying on the two assumptions

made in HP.

It is further instructive to note that if when starting on a Malthus-Solow BGP, a change in parameters

causes our dynamical system to exhibit a bifurcation to an asymptotic Solow BGP characterized by a

higher growth rate of per capita variables, then this change in parameters must involve an increase in

2. This is true because the relation  = 
1

1−
2 holds along both Malthus-Solow and Solow BGPs. Even

though there is no closed-form solution for the growth rate along the Malthus BGP, it can be shown that

an increase in 2 is also needed to generate an increase in the growth rate if the system transitions from a

Malthus BGP to either a Malthus-Solow or Solow BGP. Thus, our results do not support the strict form

of the HP result that the takeoff arises in the presence of fixed productivity growth rates.

Because our analysis shows that productivity acceleration is necessary for the HP framework with

endogenized fertility choice to generate the economic transition, the present study has reconciled one

of the key differences between the HP model and the GW model. The latter is the most well-known

unified growth theory, and it emphasizes the role of productivity acceleration in the process of long-run

development.

V. Calibration and TFP estimation

One objective is to calibrate the model parameters so as to match certain key data moments char-

acterizing the English economy at the outset of the 17th century. Because per capita output growth,

birth rates, factor shares in total income, young-age mortality, levels of urbanization and industrializa-

tion exhibited no trend during the period 1580-1650 and because a significant part of output was already

produced non-rurally, we mapped the data moments from this period into the parameters of the model

assumed to be on a Malthus-Solow BGP.32  33 Another objective is to estimate the time series of TFP in

the rural and non-rural sectors. Because there are no data on time series of inputs and outputs for the

two sectors, which are necessary for standard growth accounting, we implemented the dual approach of

TFP estimation. This approach employs the assumption of profit-maximization and requires time series

32This assumption, given the calibrated parameter values, pins down the initial conditions, 0 and 0.
33Note that a Malthus-Solow type balanced growth occurs on a set of parameter values and initial conditions of positive

measure. In Bar and Leukhina (2007), we first show that the Malthus-Solow BGP implied by the calibration is locally

structurally stable. In other words, for a small enough change in each calibrated parameter, the limiting behavior of the

solution is of Malthus-Solow type, i.e. it remains qualitatively unchanged. Second, we show local Lyapunov stability of the

Malthus-Solow BGP for each of these new parameter combinations. In other words, for small enough changes in the initial

conditions 0 and 0, the limiting behavior remains quantitatively unchanged.
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data on wages in the two sectors, land rental prices, capital rental rates, and the GDP deflator. The

procedure we used for TFP estimation is intertwined with calibration, and for this reason we describe

both of them in this section.

We chose each time period to represent 25 years. To be calibrated are the Malthusian parameters,

10 1  and , the Solow parameters, 20 2 and , the preference parameters,  and  the cost of

children parameters,   and  and the remaining parameters, Λ and 

Land is a fixed factor whose value we normalized to 1. Since 10 and Λ always appear as a product¡
10Λ

1−−¢, we are allowed a second degree of normalization, and we set 10 = 100 For simplicity,

we also set 20 = 100, as we lack a criterion for making a more meaningful choice.
34 Thus, we have 11

parameters left to calibrate. In order to pin them down, we rewrite the balanced growth path equations

in terms of moments and parameters only, and then solve for the model parameters using the 11 pieces

of information presented in Table 1.35 The numbers in parenthesis in the table and the rest of the paper

represent annual rates.

Note that we do not aim to match per capita output growth and population growth in our model

because, although stationary, these moments are quite volatile near the beginning of the 17th century. We

do, however, compare these moments to their counterparts predicted by the calibrated model. Historical

estimates of the annual depreciation rate range from 25% (Clark 2002) to over 15% (Allen 1982). We

set  = 0723 to realize 5% annual depreciation. The probability of surviving to age 25 around 1600 was

roughly constant at approximately 67% (Wrigley at al. (1997)). Hence,  is also pinned down directly

by its data counterpart.

Clark (2001a) provides the labor and capital shares of the total output produced in England, as well

as the relative levels of employment and output in the two sectors. The interest rate is taken from Clark

(2001b). The fraction of time spent raising children () is set to 042. There is no obvious way to

infer  from the data, but a simple example may be illustrative. For a person with 100 hours of time

endowment per week, of which he works 40 hours, rests 30 hours and spends 30 hours with children, we

would infer  = 30
30+40

∼= 429, because there is no leisure in our model. Recall that  is the fraction

of time spent on each newborn child, while  represents the additional time cost incurred when a child

lives to become an adult. We set +

= 4, using the data on age-specific mortality and the assumption

that the instantaneous cost function of raising a child is a decreasing linear function of the child’s age.36

The sensitivity of the results to the choice of   and +

is addressed in Section VI. Our method for

obtaining 11600 and 21600 is described below.

Calibrating   

We determine the labor share  = 0537 of the Malthusian technology using 1

 1


 


and the equilib-

rium property that wages equal the marginal product of labor in the Malthusian sector,  

=
³
1
1

´




With  known, we pin down the capital share of the Solow technology, , by using 1

 

 and the equality

of the total labor income and the sum of incomes paid to labor in the two sectors, 1

+ (1− ) 2


= 


.

34The choice of value for 20 affects the magnitude of level variables, such as output or population size. Because we study

growth rates and fractions of level variables, our results are insensitive to this choice.
35For a more technical description of the calibration process, which consists of solving this system of linear equations, see

Bar and Leukhina (2007).
36See the appendix for a more detailed explanation of how we arrive at this quantity.
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This yields  = 0273 Similarly, the capital share of the Malthusian technology, , is determined by 1





 and the equality of the total income paid to capital and the sum of rental incomes paid to capital in

each sector, 1

+  1


= 


. This gives  = 0104.

Calibrating 1 and 2 and Estimating TFP Series

We next explain how 11600 and 21600 are obtained. We first estimate TFP time series for each

sector during 1585-1915.37 Then, for each of these series we fit a trend consisting of two parts, each

characterized by a constant growth rate. The growth rates characterizing the first part of the TFP trends

in the two sectors are denoted by 11600 and 21600. In order to estimate the TFP time series, we use

the inferred factor income shares in the two sectors,   and .

From profit maximization of the firms, we derive

1 =

µ




¶µ
1



¶µ


1− − 

¶1−−
(7)

2 =
³


´ µ 2

1− 

¶1−
(8)

where  (%) is the rental rate of capital,  is the real wage measured in units of the final good per unit

of labor, and  is the land rental price measured in units of the final good per acre. Using Clark’s data

on the time series of  (%), nominal wages 1 and 2 (£), ̃ (% return on land rent), Λ (price of

land in £acre), and the GDP deflator  we infer the real wages  and the real land rental price 

using  =


and  =

̃Λ

. Substituting these into the above (7) and (8) yields equations for TFP

estimates ̂1 and ̂2

Figure 2 displays these time series together with their trends. To see how a constant growth trend

with a regime switch is fitted to a given series, let  represent the data and  its trend, restricted to the

form

 =

(
0


1

0

1

−
2

0 ≤  ≤ 

 ≤  ≤ 


where 1 and 2 denote the growth rates in the first and second growth regimes, and  represents the

timing of the regime switch. To find the trend, we solve min012
P

=0 ( − )
2  Note that this

procedure determines the two growth rates and the timing of the regime switch. Applying this method

to both of the TFP time series, we obtain the TFP growth rates characterizing the first part of the

trends, 11600 = 1042 (016%) and 21600 = 1006 (0025%)  as well as the endpoint growth rates,

11900 = 1126 (04%) and 21900 = 1174 (06%).
38

Interestingly, 11600 and 21600 yield predictions for the growth rate of the population and per capita

output around 1600 (Equation 6). These predictions,  =

µ
1

− 1−
1−

2

¶ 1
1−−

= 1097 (037%) and  =


1

1−
2 = 10085 (000034%), are consistent with the data, according to which population grew at the

annual rate of 04% while output per capita remained roughly constant.

37See the appendix for a complete description that would allow anyone to reproduce our TFP estimates.
38Our estimation results are in line with those in Antras and Voth (2002). In that work, TFP growth in Britain is

estimated for the period 1770-1860, and it is found not to exceed 06% annual rate.
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Calibrating the Remaining Parameters

The value of preference parameter  is determined to be 0415 from the Euler equation  = 

[ + 1− ] 

after we substitute for   and the gross interest rate.

Time spent with children () and the relation +

, together yield  = 0085 and  = 0256. Finally, the

balanced growth path feasibility equation, 

=  


+ 1−  − , gives a prediction for the consumption-

capital ratio. Using 

    and 1


along with the data moments,  


and 1


 in the remaining

balanced growth path equation,
(1−−)(1−)



1
1



1

 = − 

(+1−) , we obtain  = 0582.

The calibrated parameter values are listed in Table 2.

VI. Main Results

In order to quantitatively assess the capability of our model to generate the main features of the

economic and demographic change in England, we solve for the calibrated model dynamics while varying

the probability of surviving to adulthood according to its historical data and the growth rates of TFP in

the two sectors - according to our estimates obtained in Section V. This constitutes our main experiment.

The experimental values of 1 2 and  are plotted in Figure 3a. Because we do not aim at investigating

high-frequency behavior, we smoothed the experimental time series.39

To further assess the separate contributions of young-age mortality and sector-specific productivity

channels, two additional experiments were conducted within the calibrated framework, where we employed

only one of these two exogenous series. In the first experiment, the growth rates of TFP in the two sectors

were varied according to our estimates obtained in Section V with the young-age mortality held fixed at

its 1600 level. Thus, we held constant all influences exerted through the mortality channel, including that

of productivity. In the second experiment, the probability of surviving to adulthood was varied according

to its historical data with the growth rates of TFP in both sectors held at their 1600 values, i.e., holding

constant all influences, including that of mortality, communicated through the productivity channel.

In our experiments, the economy starts off on a Malthus-Solow BGP. Each period in the model repre-

sents a specific 25-year period in the data. With the appropriate exogenous change fed into the model,

the model was solved for the equilibrium dynamics under the assumption of perfect foresight.40 Although

different types of limiting behavior of equilibrium time paths are possible in our model, in all three exper-

iments, the solution converged to a Solow BGP.41 Figures 3 and 4 depict the results of the experiments.

The figures present the time paths of relevant variables in the data and their model counterparts, result-

39The series for  during the period 16125 − 19125 was replaced by its 7-period MA. The series for 1 and 2 were

modified by fitting a logistic function to the endpoint growth rates to minimize the distance between the estimated TFP

time series and the smoothed trend. The smoothing parameter was restricted to be no more than 3.
40The solution method is described in Bar and Leukhina (2007). Briefly, the objective is to find time paths that satisfy

the first order, feasibility and transversality conditions. Because the original variables exhibit exponential growth, we work

with detrended variables. Since our experiments involve parameter changes, a bifurcation of the dynamical system, i.e.,

a qualitative change in the type of a BGP towards which convergence takes place, is possible. This forces us to use a

non-standard detrending method.
41For each of the three experiments, the asymptotic BGP towards which convergence takes place is locally stable (possess-

ing a single eigenvalue that is less than 1). This can be understood by noting that if the Malthusian technology is removed,

 is no longer a state variable. In this case, the only state variable is  and the condition that exactly one eigenvalue be

less that 1 is necessary and sufficient for local stability of the BGP towards which convergence takes place.
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ing from each of the experiments. The results are summarized in Table 3.42 To assess the quantitative

importance of different channels in facilitating birth rate dynamics, we compare the model’s results with

respect to both CBR and GFR. (Recall that GFR is less sensitive to the population structure, as in its

definition it considers births among women of reproductive age.)

Main Experiment: Simultaneous Change in Sector-specific TFP and Young-Age Mortality

The results of this experiment lead us to conclude that the calibrated HP-BB hybrid featuring historical

changes in productivity and survival probabilities does remarkably well at generating the main patterns

of the economic and demographic development. The dynamics generated by the model are represented

by the dashed lines in Figures 3a-3d and 4. Transition from early stagnation to modern growth is well

captured by the main experiment: Initially stagnating GDP per capita takes off around 1800 and exhibits

a sustained growth of nearly 1% per year (Figure 3b). The increase in per capita GDP obtained in this

experiment is approximately 70% of the actual increase in the English per capita GDP during the period

1650−1950. The model further captures nearly the entire process of industrialization and urbanization43
(Figures 3d and 4a), generating convergence of the Malthusian output to zero in relative terms. As a

result of successfully capturing factor reallocation across sectors with different estimates of factor shares,

the model also accounts for over 90% of the long-term trends in the observed income shares (Figures 4b

and 4c).

Finally, the model generates a fall in GFR comprising 61% of the fall observed in the data during the

period 1650− 1950 (Figure 3c). Although the population growth rate does increase from 037% to 08%,

this increase is small. It is important to note that since we do not model changes in adult mortality,

which greatly affect population growth, we deem it more appropriate to compare the model’s predictions

to fertility behavior.44  45

Overall, the model performs remarkably well, especially in generating the economic changes. In Section

VII, we show that introducing an increase in the time cost of children alongside historical changes in

productivity and mortality further improves the model’s performance along the demographic dimension,

without diminishing its success in generating the economic transformation.

It is useful to further compare our model with the original HP results. As described in Section IV,

our model allows for the possibility of a new type of balanced growth which successfully captures the

historical behavior found in England around 1600 without relying on the two assumptions used in HP.

Furthermore, there is a major difference between the input series for the sector-specific TFP used in the

present work and those used in HP. Contrary to the HP assumption of constant TFP growth rates, our

estimates reveal productivity acceleration in both sectors, with the Solow productivity experiencing it to

a larger extent. Furthermore, HP choose 1 to ensure that output growth matches population growth in

the preindustrial period. Anticipating that the economy will converge to the Solow BGP, they choose 2

42To understand the values in the table, consider, for example, the first line. Real GDP per capita increased by 379.55%

during the period 1600-1950. Experiment 1 generates a smaller change, amounting to 68.34% of 379.55%.
43Levels of urbanization and industrialization are imperfect data counterparts to 2 and 2 in our model. The main

reason is that in the data, rural output is not a perfect substitute for non-rural output, while in the model, the Malthusian

good is a perfect substitute for the Solow good. It is, nonetheless, instructive to make these comparisons.
44Recall that the observed hump in the English population growth rate resulted from the fact that CDR fell before CBR.
45The limiting behavior of the equilibrium time paths is characterized by +1 → 10088 +1 → 1008  → 105,

and  → 045.
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to match the postwar US income growth. (Population growth is then assumed to equal one.) By contrast,

we back out productivity estimates using the dual-approach, which relies on the observed factor prices

and the assumption of profit-maximizing behavior. Moreover, we do not constrain the model to match

any moments beyond the period around 1600. On the contrary, we use the capability of the calibrated

model to generate the observed time series as the main criterion for assessing the model’s quantitative

performance.

Note that, consistently with the main hypothesis emphasized in HP, the equilibrium paths of our

main experiment converge to an asymptotic Solow BGP, the relative output of the Malthusian sector

approaching zero in this limit. We showed that three types of limiting behavior can emerge in our model.

Hence, convergence to the Solow BGP could not be anticipated ex-ante, but it was nonetheless obtained

as a result of the main experiment. In light of the discussion in Section IV, it should then be pointed

out that the uncovered Solow productivity acceleration was necessary for the escape from stagnation

characterizing the initial balanced growth and emergence of sustained growth of living standards.

Thus, while our results do not support the strict form of the HP conclusions, i.e. that stagnation is

generated because the Solow sector is idle and that the structural transformation and takeoff in income

growth transpire under constant productivity growth rates, we conclude that the overall HP production

setup combined with a BB-type model of fertility choice can successfully account for the main features of

economic and demographic transformations. Thus framework thus appears to be a useful tool for future

studies in this area.

Changes in the Growth Rates of Sector-specific TFP

This experiment reveals that the success of the main experiment along the economic dimension is

entirely due to changes in the productivity. In other words, changes in productivity represent an important

force behind the observed patterns in per capita income, the level of industrialization and urbanization,

and patterns of labor, capital, and land income shares. By contrast, changes in productivity are found

to be quantitatively unimportant in driving fertility behavior.

Figures 3b, 3d, 4a-4c indeed reveal that the solid line, which represents the model dynamics when TFP

is varied, closely follows the dashed line, which captures the dynamics of the main experiment. In fact,

changes in TFP alone generate a slightly larger increase in living standards, explaining 73% of the actual

increase in the English per capita GDP during the period 1650 − 1950. The implication of the relative
acceleration in the Solow TFP for resource reallocation relies on our assumption of a single consumption

good, or alternatively, of differential goods entering utility as perfect substitutes.46 Resources tend to

reallocate towards the faster growing sector, because from the households’ perspective, output of that

sector can be substituted for the output of the slower growing sector.

Interestingly, we find that changes in productivity have a very small quantitative impact on fertility

behavior (see Figure 3c47). Because children are normal goods, higher income growth exerts upward

46Bar and Leukhina (2007) work out the case of a simplified environment but with more general, constant elasticity of

substitution, preferences, showing that this result holds if the goods are substitutes, while it reverses if the two goods are

complements. For the case of Stone-Geary utility with the Malthusian good assumed to be a necessity (which implies the

goods are complements), the relative acceleration is not necessary: reallocation towards the Solow sector is implied by the

Malthusian TFP acceleration. We will return to this discussion when discussing the sensitivity of our results with respect

to more general preferences.
47To compare the results of the experiments to the data we use a 3-period MA representation of CBR and GFR.
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pressure on fertility. TFP acceleration also causes an increase in the cost of rearing children through

both channels: a rising time cost measured in terms of wages and parents choosing to have higher

quality children. Indeed, we can interpret +1 as a measure of quality, and the ratio +1 increases

from 00675 to 0113. We find that these two effects nearly offset each other. Through their combined

influence, fertility rises slightly, and then declines, with the overall change being small. Similarly, this

experiment yields a quantitatively insignificant hump in the population growth rate (see Figure 4d).

Starting at the calibrated level of a 037% annual rate, the population growth rate increases slightly, and

then decreases, converging to a 036% annual rate in the limit.48

Changes in Young-age Mortality

The results of this experiment suggest that changes in young-age mortality were an important driving

force behind the demographic transformation in England but had little influence on the economic changes.

Interestingly, the results of the main experiment appear to be a simple sum of changes generated by

separately applying TFP growth changes and mortality changes.

Because every child requires an investment of time from the parents, declining young-age mortality

lowers the time cost of surviving children, thus relaxing the budget constraint and allowing parents to

optimally adjust fertility and the quality of surviving children. The resource cost of children evolves

endogenously. In fact, we find that parents choose to raise higher quality children as the ratio +1

increases from 00675 to 01021. Finally, fertility is pressured downwards, because with more newborns

living to adulthood, fewer births are needed to realize the desired number of surviving children. The

downward pressure on birth rates appears to be stronger overall, as changes in young-age mortality

account for nearly 60% of GFR during the period 1650− 1950 (Figure 3c).

Note that additional factors must have played a role in generating birth rate dynamics. In fact, we

explore the significance of the time cost of children channel in the next section.

As  increases, the time spent raising surviving children decreases. As a result, there is more time

for work, and the aggregate labor supply increases. Because our calibration of factor shares implies that

conditions of Proposition 2 are satisfied, this results in the relative expansion of the urban sector, but the

reallocation of resources occurs slowly. Even in 2400, as much as 10% of the total output is still produced

in the rural sector. For the period 1650 − 1950 the influence of mortality changes on urbanization
and industrialization is found to be quantitatively insignificant (Figures 3d and 4a). Note that if, on the

contrary, we performed the comparative statics analysis alone, we would erroneously conclude that a drop

in young-age mortality was as important in driving the industrialization/urbanization as sector-specific

technical change. Changes in the probability of survival are also found to be quantitatively insignificant

in accounting for the GDP per capita dynamics (Figure 3b).49

48The limiting behavior of the equilibrium time paths is characterized by +1 → 10088 +1 → 10036  →
1045, and  → 0398, given in annualized rates.

49The limiting behavior of the equilibrium time paths is characterized by +1 → 100034 +1 → 1008  → 104,

and  → 0357
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VII. On the Time Cost of Raising Children

Throughout the analysis above, we kept  and  constant. With the change in young-age mortality (

rising from 067 to 098) featured in the main experiment, the time cost of raising children  =  + 

declined in the long run, while the resource cost of children (bequests) evolved endogenously. There are

a number of theoretical frameworks, however, that rely on the channel of rising time cost (see Section

III) in order to generate a fall in the number of surviving children. The rising time cost within our

framework can be interpreted as a reduced-form representation of such changes as a declining contribution

of children to family production with the shift away from agriculture, a rise in the value of female time,

the introduction of child labor laws and compulsory education, or parents’ explicit decision to spend more

time educating offspring in response to, for example, a skill-biased technological change. The time cost

channel in our model should be interpreted very generally as a channel capturing all factors generating

income reallocation between consumption spending and spending on children, whether or not these factors

directly influence the cost of children relative to consumption.50

Because the time cost is not observed in the data, the analysis of the time cost channel cannot be

carried out in the same manner as was done for the sector-specific productivity or young-age mortality.

It is, however, instructive to investigate whether the rise in the time cost, which can substantially improve

the model’s match of adult population dynamics, contributes to the model’s overall performance, and if

so, whether it contributes to both the demographic and the economic dimensions. Indeed, movements in

the aggregate labor supply, which is closely tied to the adult population dynamics, have a direct impact

on resource allocation and therefore factor shares in total income and economic growth (Proposition 2).

We raise  from its original value of 0256 to 04351 to guarantee that when sector-specific productivity52

and young-age mortality are changed according to their historical paths, the model generates a fall in

GFR comparable to that observed historically (from 131 to 66). In other words, we obtain the change in

 assuming it to be the residual explanation for the fall in GFR. Such an approach is justified by the more

general interpretation of the time cost channel in our model as a reduced form of all factors generating

income reallocation between consumption and children. Note that the model’s prediction for  () 

surviving children per woman, also reflects its fall in the data (from 88 to 65). We implement the change

in  by raising it linearly during the period 1887-1987, i.e. beginning at the onset of the fertility decline.

Figures 5b-5f display the model dynamics that result when the original changes in sector-specific TFP

and young-age mortality are implemented (dashed line),53 when these changes are accompanied by the

rising time cost (circle markers), and when the rise in time cost is implemented alone (solid line). First of

all, our results reveal that adding the rising time cost to mortality and productivity changes considerably

50A non-homothetic utility is able to generate income reallocation in the absence of the relative price change.
51As a result, the time cost increases from 0383 to 0517
52Recall that the time series of TFP growth rates were estimated on the basis of the data up to 1915. For later years,

sector-specific TFP were assumed to retain their constant growth trends

11900 and 21900


 although 21900 is slightly

below the estimates obtained when focusing on more recent data. Since the goal here is to obtain the change in the time

cost as a residual explanation for the fall in GFR, instead of using 21900 from Table 2, we use 21900 = 128 (098%), which

guarantees that the model matches the growth rate of per capita income in the 20th century (14%).
53Because we are using a slightly higher 21900 than that used in the original main experiment, this experiment does

slightly better along the economic dimension. We present this experiment here in order to allow assessment of the additional

contribution of the time cost channel.
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improves the model’s fit along the demographic dimension54 (Figures 5a and 5b), without compromising

its capability to successfully capture the economic behavior. In fact, the GDP per capita fit further

improves (Figure 5d), while the industrialization and factor shares fit worsens, but only slightly. This

finding reinforces our original conclusion that our model, combining the main features of the HH and BB

models, appears to be a useful tool for analyzing the long-run development.55

Examining the model dynamics resulting from changing the time cost alone reveals that while substan-

tially contributing to the fertility decline, the rising time cost causes resources to reallocate away from

the Solow sector (Figure 5c), thus discouraging industrialization. Consequently, it generates movements

in factor shares in the opposite direction of their movement in the data (Figures 5e and 5f). These pre-

dictions result from the fact that the rising cost of children works to reduce the aggregate labor supply,

which, in light of Proposition 2 and our calibration of factor shares, tends to hamper industrialization.

Despite its effect on resource allocation away from the faster growing sector, the rising time cost generates

a slight increase in the growth rate of GDP/capita because of its dampening effect on population growth

(Figure 5d). Comparing the dashed lines with the circles reveals that the additional contribution of the

time cost channel to fertility behavior is very important, even more so than the contribution of the mor-

tality channel, while the additional contribution to the economic change is negligible. Interestingly, we

see that in the presence of the other channels, the detrimental effect of the rising time cost on structural

transformation, present in the experiment involving the cost change alone, is significantly reduced. Our

results suggest that, similarly to the influence of the mortality channel, the influence of the time cost

channel is largely distinct from the influence of the productivity channel.56

VIII. Discussion

In addition to our main result, i.e. that the model combining the HP model of structural change with

the BB model of fertility choice, does remarkably well at capturing the main features of the economic

and demographic transformation, our analysis of the relative roles of three different channels in the

development of England also provides insight. Here, we present a short discussion to avoid the possible

misinterpretation of our findings. We then also discuss how our results can provide guidance to researchers

attempting to model the economic and demographic transformations as endogenous phenomena. Finally,

we contrast our results with those of GW.

By quantifying the influence of a particular channel with regard to a particular phenomenon, we

54The rise in  faithfully captures the fall in GFR, but it does not capture its rise during ~1750-1850. Certainly, this

rise could be easily generated with a decline in  However, it seems more likely that gains in adult survival rates played an

important role during this period by simply raising marriage rates among the population. In fact, the data given in Wilson

and Wood (1991) shows that this rise in GFR is almost entirely due to the rise in marriage prevalence (with marital fertility

almost unchanged), while its fall during 1870-1930 is almost entirely due to the fall in marital fertility.
55Although this joint variation of the three channels delivers somewhat of a delay in urbanization/industrialization, just

as in the original experiment, we believe this is a result of the model’s failure to generate a sufficient rise in the labor supply

around 1750—1850, which could most likely be attributed to the declining adult mortality. Note that if adult mortality (or,

alternatively, the time endowment) were a part of the model, it would also help explain the rise in GFR that preceded its

fall.
56We also conducted separate mortality and productivity experiments, each accompanied by a change in the time cost.

The results reveal that, even in the presence of a rising time cost, which improves the match of the population dynamics for

each of these experiments, our previous finding of largely distinct effects of mortality and productivity channels continues

to hold.
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ascertained the combined influence of all factors that communicate their effect through that channel.

Our finding that the influence exerted by the productivity channel is decoupled from those exerted by

the mortality and the time cost channels should thus be interpreted with caution: To the extent that

there exist causal links between productivity, mortality and the cost of raising children, the actual effects

of these variables on the economic and demographic change need not be decoupled. The limitation of

our analysis is that we do not model such causal links. Specifically, when evaluating the influences of a

particular channel on the economic and demographic transitions, we held constant the influences that it

may exert through the other channels. In what follows, we highlight several potential overlaps between

the examined channels.

The influence exerted through the productivity channel may have a causal effect on the mortality

decline, as a result of its tendency to increase the standard of living, and consequently improve nutrition

and living conditions. Thus, productivity acceleration may influence the demographic change, but the

described influence would have to be communicated through the mortality channel. Furthermore, if

technological progress is skill-biased, it may induce quality spending at the expense of quantity, the

productivity channel thus exerting an additional effect on the demographic change, communicated through

the cost channel.

Similarly, factors that tend to lower mortality or the cost of children may affect the economic transfor-

mation, but this effect would have to be communicated through productivity acceleration. For example,

reductions in young-age mortality could contribute to productivity growth, as described by a number

of theories tying increased population size or density to aggregate productivity. If the rural and urban

goods are not perfect substitutes, changes in mortality and the cost of children through their effect on

the population size would influence the relative price, and hence affect the productivity estimates.

How do our results help guide researchers attempting to model the economic and demographic trans-

formations as endogenous phenomena? First, if human capital accumulation is necessarily associated with

a simultaneously rising cost of children, then our results suggest that the technical change in England

around the turn of the 19th century could not have been fueled by human capital accumulation, and that

it had little causal connection to the demographic behavior. Such a take on English history is consistent

with the thesis in Mokyr (2005). Our results, however, do not exclude the possibility that beginning later

in the 19th century, technological progress could be fueled by time-intensive human capital accumulation

and, through the quantity-quality trade-off, have a stronger connection to the demographic behavior.

This means that theories that attempt to endogenize TFP throughout the time period investigated here

should allow for the influence of factors other than time-intensive human capital production. Such factors

include a surge in the knowledge spillover arising due to the increased population density that results

from growing population and urbanization, an improvement in the effectiveness of cross-generational

knowledge transmission due to the decline in adult mortality (Bar and Leukhina 2008), the scale effect

from the working population size (GW), or the rise in the population quality (Galor and Moav, 2002).

Further, our results suggest that forces that manifest themselves through the cost of raising children can

potentially account for a large part of the fall in fertility (possibly larger than the direct effect of youth

mortality).

It is instructive to contrast the features and predictions of our model with those of GW - the influential

unified growth theory. The goal of GW is to generate stylized features of the development process, such
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as stagnation and then takeoff, a hump-shaped population growth and productivity acceleration, without

any exogenous change. They successfully accomplish this goal. Moreover, because, in addition to the

influence of schooling, they allow for the influence of population size on productivity growth, their model

is capable of generating productivity acceleration that precedes the fertility decline. In light of the

discussion above, this is an important accomplishment. However, as we argue below, their model is a less

useful tool for future quantitative studies than the HP-BB hybrid explored in the present study.

First, while the structural transformation was a major part of the economic transformation, the GW

model is silent with regard to structural change and, in contrast to empirical observations, generates

constant land and labor shares over time.

Second, because the mortality rate is fixed in the GW model, fertility and population growth are

represented by the same variable, and hence the increase in the population growth is obtained by modeling

the increase in fertility choice.57 According to the data, however, the rise in the population growth was

largely brought about by declining mortality in the presence of roughly unchanging fertility.58 Thus,

introducing mortality into the model is essential if one wanted to capture differential empirical behavior

of fertility and population growth. Note, however, that as argued in Galor (2005), introducing declining

mortality into the GW model would only reinforce the underlying mechanism, which hinges on the early

population expansion.

Third, two major predictions of the GW model, human capital and productivity series, do not have

observable counterparts in the data, and this makes it difficult to assess the model’s validity and to employ

it in quantitative studies. Human capital refers to the embodied knowledge used to adopt available

techniques for output production. As innovation destroys this knowledge, human capital declines along

the simulated time paths. (This does not mean that labor becomes less productive, as gains in technology

more than offset the decline in human capital.) Because measures of human capital do not exist in the

data, this prediction cannot be tested against the data. More importantly, because both TFP and

human capital enter the output production function as unobserved components, it is impossible to infer

the empirical counterpart of the GW productivity series from the data, and as a result, the empirical

relevance of the productivity series endogenously generated by their model cannot be assessed.

Fourth, the main predictions of the GW model result from the assumptions made regarding the human

capital formation function. It is chosen so that education (child quality) increases in the growth rate of

technology. An additional assumption is then made to ensure that the optimal education is zero for low

levels of productivity growth; i.e., the non-negativity constraint binds. Because the measure of human

capital is hard to construct based on the data, it is difficult to assess the empirical relevance of the

assumptions made regarding the human capital formation function.

IX. Sensitivity Analysis

TFP Estimates

Recall that the time series of TFP growth rates were estimated on the basis of the data up to 1915. For

57Precisely, fertility increases as a result of income growth in the face of a binding subsistence consumption constraint.
58 In a few countries, fertility did rise slightly, as marriage prevalence increased with growing incomes (Dyson and Murphy

(1985)).



26

later years, sector-specific TFP were assumed to retain their constant growth trends
¡
11900 and 21900

¢
.

Would changes in TFP growth rates be more successful in accounting for the demographic and economic

changes if the growth rate of TFP increased further since 1915? In this sensitivity exercise, we repeat

Exp. 1 and 3, but this time with the Solow TFP series updated to guarantee that the model generates the

growth rate of per capita income in the 20th century (14%). Because there is convergence to the Solow

BGP, we can determine 21900 using  = 
1

1−
21900 = 14156 (14%). This yields 21900 = 128 (098%), a

slightly higher growth rate than 1174 (064%) used in the original experiments. The original result, that

changes in the TFP growth rates drive the economic transformation while having a negligible effect on

birth rates, is reconfirmed (Table 4).

Barro and Becker Parental Utility

As proved in the appendix, the parental utility used here,  (  +1) =  log  + (1− ) log +

+1, is a special case of the BB parental utility,  (  +1) =  +1− +1 realized when  → 0

and 1−−


= 1−−


. Note that this implies that → 1. A natural question is whether our main results

would change if we used the BB parental utility form with   0 and   1

First we recalibrated the model under the assumption of the BB utility59, using the procedure similar

to that described in Section IV, with the only difference being that the calibration procedure used here

does not fix both  and . Instead, it pins down the ratio 1−−


= 00129, thus allowing one free choice.

We performed experiments using several values of  in the admissible range of (0 1). For  = 09, which

implies that  = 00987 the results are very close to the original results. Here we report the results for

a more extreme case, with  = 07 (and implied  = 02962).

In this case, again we find the demographic transition is driven mainly by changes in young-age

mortality, while the economic transformation is driven mainly by technological progress. However, here

we observe that the overall effect on birth rates is weakened.

Sensitivity to  (+ )  and 

We find that all of the quantitative results obtained here are extremely robust with respect to changes

in . Since the estimates of  vary from 25% to 15% in the literature, as mentioned above, we investigated

 in this range.

Recall that (+ )  is an estimate of the average time cost of surviving children relative to that of

non-surviving children. This quantity only affects the calibration of  and  and it has no bearing on

. In particular,  decreases and  increases in (+ ) . An increase of (+ )  slightly raises the

importance of  in driving the fertility behavior. We examined values of (+ )  ranging from 1 to 7

and we found that the results were not affected significantly.

Finally, we set the fraction of time spent raising children, , to 042. Unfortunately, for  ≤ 0411
we have 1 −  −   0 or equivalently 1 −  −   0 for the Barro-Becker preferences, which implies

that the dynastic utility decreases as the population increases. Although this does not imply that the

equilibrium population size will equal zero, as households would still be valued as a factor of production,

strict concavity of the objective function would not be guaranteed. For this reason, we only analyzed

values of  in the range [0411−07] For this range, we found little quantitative dependence of the main

59We describe the solution and calibration of the model under the assumption of the Barro and Becker parental utility

in Bar and Leukhina (2007).
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results on the choice of .

Fixed Relative Price - Implications for TFP Estimates

We assumed that the two sectors produce a single consumption good. Under the alternative interpre-

tation of two distinct goods entering utility as perfect substitutes, there is an implicit relative price, fixed

by the weights of the goods in the utility. While the relative price is fixed in the model, it may change

over time in the data. Thus, estimating TFP under this alternative interpretation further requires taking

a stand on whether to use the relative price series implied by the model or one implied by the data.

Adopting the alternative interpretation (with the relative price series taken from the data) is reasonable,

because even though there is a significant overlap of products and services produced in the rural and

urban sectors, the rural sector predominately specializes in agricultural and forestry products, and we

know that the relative price of these products increased over time.60 Note that if the relative price were

fixed over time, the interpretation would be inconsequential for the estimated productivity growth rates,

and hence for the model results.

Assuming the Solow good as the numeraire under the alternative interpretation, profit maximization

implies


1 =

1

1

µ




¶µ




¶µ


1− − 

¶1−−
(9)


2 =

³


´ µ 

1− 

¶1−
(10)

where 1  and  are now in terms of the numeraire good. We infer the relative price, real wages and

the real land rental price from 1 =
1
2
  =


2
and  = ̃Λ

2
, where 1 and 2 are the price indices

of the rural and urban goods, 1 and 2 are the nominal wages (in £), ̃ is the return on land rent (in

%) and Λ is the price of land (in £acre). Substituting these into the above yields equations for the

alternative productivity estimates:

̂
1 =

2

1

µ




¶µ
1

2

¶µ
̃Λ

(1− − )2

¶1−−
(11)

̂
2 =

³


´ µ 2

(1− )2

¶1−
(12)

Under the first interpretation of physically identical goods, or under the alternative interpretation but

with the relative price taken to be implied by the model, 1 would be set to 1 in (9) and we would infer

the productivity estimates ̂1 and ̂2 as given in Section V.

To determine the difference between the original and alternative estimates, we compute ̂1̂

1 =

1
2

³

2

´1−
and ̂2̂


2 =

¡
2


¢1−
, where  is the overall price index in the economy, employed in the

original TFP estimates. Clark’s data on relative prices reveal that while 1
2
fluctuated around a constant,

it began to rise around 1750. 
2
also rose, but less so. Consequently, ̂1̂


1 increased, while ̂2̂


2

decreased. This means that the alternative TFP estimates would exhibit a larger rise in the industrial

sector and a smaller rise in the agricultural sector since 1750. In light of the first discussion given in

60The GDP deflator and 1 are taken from Clark (2001a), and industrial prices were provided by Clark upon our request.
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this section, we know that such estimates would further improve the fit of the model without changing

the overall conclusions. Note that these alternative estimates would be consistent with any other utility

choice that allows for differential relative prices of the Malthusian and Solow goods.

Fixed Relative Price - Implications for the Overall Results

As discussed above, while the relative price of the Malthusian good is fixed in the model, it rises in the

data. This rise can potentially lead to changes in the demand for children relative to consumption goods

thus influencing the demographics, or to changes in the relative demand of the Malthusian and Solow

goods thus contributing to the structural transformation. To the extent that changes in productivity and

youth mortality have a causal influence on the relative price behavior in the data, the concern is that the

HP-BB framework, by failing to capture the relative price behavior, may miss these additional effects of

the examined channels on the demographic and the economic transformations.

First, the effect of changes in the relative price on fertility is present in our model through the time

cost channel. To understand this, note that if to raise children, one must feed them with the Malthusian

good (e.g., Strulik and Weisdorf (2008)), then a change in its relative price directly affects the cost and

hence the demand for children. This effect is captured in our model by the time cost channel. Even

if a change in the relative price of the Malthusian good is not directly tied to the cost of children,

its influence on fertility, if any, must transpire through income reallocation between consumption and

children. Given the general interpretation of our time cost channel, such an effect is also captured by the

time cost channel. Hence, the contribution to the drop in fertility that we attributed to productivity or

the young-age mortality channels excludes their effect on fertility exerted through their influence on the

relative price, but the contribution of the cost channel includes it. Our model, however, does not allow

us to identify different sources of the rise in the cost of children. Put differently, our finding that the

productivity channel exerted insignificant influence on the demographic change does not contradict the

hypothesis that it contributed to the fertility decline by increasing the relative price of the Malthusian

good.

Second, the effect of changes in the relative price on the structural transformation is missing from our

model. We can thus only discuss how we would expect the influence of productivity and youth mortality

to change qualitatively under more general preferences.

To obtain some intuition for how these effects may change, we worked with a simple setup61 employing

several different preferences found in the literature on structural transformation: (1) constant elasticity

of substitution utility [

1 + (1− ) 


2]
1

with  = 1 (perfect substitutes), 0    1 (substitutes),

 = 0 (Cobb-Douglas), −∞    0 (complements),  = −∞ (perfect complements), (2) Stone-Geary

utility  (1 2) =  ln (1 − ̃1) + (1− ) ln (2 − ̃2) (the two goods always acting as complements), (3)

quasi-linear utility  (1 2) =  ln (1) + 2 (the two goods always acting as substitutes).
62

If the two goods are complements, regardless of a particular utility formulation, increasing the labor

supply leads to resource reallocation towards the less labor intensive Malthusian sector, i.e., the sector

experiencing a larger decline in the marginal product as inputs increase, and thus it cannot be responsible

for the structural transformation. This is consistent with our conclusion that young-age mortality, which

61max1212  (1 2) subject to 1 = 1
1
1  2 = 2

2
2 and 1 + 2 =  0  1 2 ≤ 1

62See Bar and Leukhina (2007) for derivations.
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results in a larger labor supply, was an important driving force of the structural transformation. As long as

the two goods are substitutes, an increase in the labor supply resulting from declining mortality generates

resource reallocation towards the more labor intensive Solow sector in the long run, which is consistent

with the predictions of our model. Because mortality increased prior to its decline, we expect that

mortality would not contribute to the structural transformation in a quantitatively significant manner,

as is the case in our model.

Now we turn to the robustness of our result that the structural transformation was a consequence

of changes in productivity. As discussed above, taking into account the relative price change when

estimating productivity changes would only reinforce our finding that the Solow TFP experienced a

larger acceleration. Hence, qualitatively, the exogenous input series of the TFP experiment would be

unaltered.

We find that, as long as the two goods are substitutes, in the productivity experiment resources shift

towards the faster growing Solow sector, thus generating the economic transformation. This behavior

is consistent with our results. Moreover, the relative price movement implied by this experiment is

consistent with the trend observed in the data, i.e., the rural good becoming relatively more expensive.

When the two goods complement each other, increasing TFP of a particular sector tends to push the

resources out and into the other, slower growing sector. Nonetheless, the Stone-Geary utility with the

Malthusian good assumed to be a necessity can generate a structural transformation,63 and it does so

through the Malthusian TFP pushing resources out of that sector, with the Solow TFP having no effect

on resource allocation. This is a competing explanation for the structural change.64

Although we cannot assert unequivocally that the structural transformation was not driven by the

push effect of the Malthusian TFP, we discuss several factors indicating that the implication of the

productivity change with regard to the direction of the structural change in the Stone-Geary mechanism

is not robust when considered in the context of several generalizations. By itself, the increase in the

Malthusian TFP, which drives the push effect, also counterfactually implies a decline in the Malthusian

price. If the relative increase in the Solow TFP is large enough, however, this simple environment can

potentially generate both a structural transformation and a relative price series consistent with the data.

Here, several caveats need to be mentioned. First, if we opened up the model economy and the relative

price series were determined by the rest of the world, then even the Stone-Geary mechanism would work

through the pull effect. Indeed, because  is exogenous, 1 must decline in response to 2 increasing

faster than 1. In addition, it is reasonable to assume that the Solow good is also a necessity; after all,

63CES utility with −∞    0 cannot generate a structural transformation in either experiment.
64To understand the mechanics of the push effect, consider a simple framework with technology given by 1 = 1


1 and

2 = 22 and households maximizing Stone-Geary utility from above with ̃2 = 0 subject to 1 + 2 =  +  where 

denotes profits Households’ maximization yields 1 = ̄+ 

( +  − ̄) and 2 = (1− ) ( +  − ̄)  After ensuring the

subsistence level, the rest of the income is spent according to preference weights and relative prices. The share of income

spent on 1 is
1
+

= (1− ) ̄

+
+; i.e., when income is low or the Malthusian good is expensive, the share spent on the

Malthusian good is close to 1, subsistence consumption crowding out both the Solow good and children. As income grows,

or the Malthusian good becomes cheaper, the share declines and converges to  Profit maximization gives  = 2 and

 = (1− 1)21 Equating the marginal products of labor gives  = 2
1


1−
1  After substituting the optimal  

and  into the market clearing condition for the Malthusian good, we obtain (1− ) ̄+  1


1−
1

+ 
(1−1)11


=

1

1




An increase in 1 leads to a decrease in 1 because the demand for the Malthusian good has a lower elasticity than the

demand for the industrial good. A change in 2 has no effect on 1, as increases in income are offset by increases in the

price of the Malthusian good.
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people need shelter and clothing. In this case, depending on the exact parameter values, the push effect

originating in the Solow sector may be strong enough to reverse the direction of the structural change,

even if ̃2  ̃1.

Disentangling the relative contributions of the push and pull effects seems to be an important research

agenda. However, it is a difficult task for several reasons. Most significantly, it is difficult to construct

a model containing both the pull and the push effects. Indeed, none of the models discussed here have

both; i.e. it is never the case that  (1) 2  0 and  (1) 1  0 for some parameters

and endogenous variables. This fact also reflects the dichotomy of push and pull models present in the

literature on structural transformation, discussed in Section III.

X. Conclusion

Mokyr (2005) claims that “the exact connection between the demographic changes and the economic

changes in the post-1750 period are far from being understood.” He makes this claim despite the existence

of numerous theoretical models connecting the economic change to the demographic variables. The

problem is that the existing theoretical models disagree on the main forces behind the economic and

demographic transformations. This situation implies the need for more quantitative work.

In order to obtain a better understanding of the relation between the demographic and economic trans-

formations, we constructed a general equilibrium framework that combines the HP model of structural

change with the BB model of fertility choice. Our framework possesses standard ingredients, and it maps

to observables in a straightforward way. This is a key feature of our model, and a point we wish to

emphasize, because it enables us to calibrate the model’s parameters using meaningful criteria based on

empirical data. It further enables us to estimate sector-specific TFP time series, which are necessary for

the quantitative analysis carried out in this work, by utilizing historical data on factor prices. The model

also allows the possibility of balanced growth with the relative sector-specific outputs remaining constant

in the presence of differential productivity growth rates, which is a significant contribution to the more

recent literature on structural transformation.

While our results do not support the HP conclusions in a strict sense — i.e. that stagnation is generated

because the Solow sector is idle and that the structural transformation and takeoff in income growth

transpire under constant sector-specific productivity growth rates — we show that the parameterized HP-

BB hybrid proposed in this paper does remarkably well at generating the main patterns of the English

economic and demographic transformations. We find that when historical changes of youth mortality and

sector-specific productivity are introduced, the model accounts for nearly all of the increase in per capita

output, industrialization, urbanization, and the decline of land share in total income, while capturing

over 60% of the demographic change. Increasing the cost of children further improves the model’s fit

along the demographic dimension.

This framework also allows us to study the separate contributions of technological progress, changes

in young-age mortality, and the cost of raising children channels to the economic and demographic

transformations. In fact, many of the proposed mechanisms developed for the purpose of endogenously

generating these transformations act through one or more of these channels. By pinning down the

important channels through which the change transpired in a particular country, our framework points to
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the class of mechanisms most relevant to the case under study. For the case of England, we find that the

influence exerted through the productivity channel is largely decoupled from those exerted through the

youth mortality and the cost of children channels. Specifically, the productivity channel has a negligible

effect on birth rates but accounts for nearly the entire economic transformation, while the young-age

mortality and the cost of children channels account for almost none of the economic transformation but

drive much of the demographic change. Our findings suggest that the quantitatively relevant channels

through which the demographic and economic transformations transpired were distinct in the case of

England.
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Appendix

Data Sources65

Fraction of non-rural labor in total labor (2): [1565-1865] - Clark (2001a), Table 1, p. 8 (England);

[1820 - 1992] - Maddison (1995), p. 253 (UK).

Index of Real GDP per capita (): [1565-1865] - Clark (2001a), Table 7, p. 30, rescaled to equal 100

in 1565 (England and Wales); [1820-1990] - Maddison (1995), p. 194, rescaled to match Clark’s index in

1850 (UK).

Labor Share in Total Income ( ): [1585 - 1865] - Clark (2001a), Table 9, p. 46 (England); [1924 -

1973] - Matthews et al. (1982), p. 164 (UK); Average for [1973 - 1982] - Maddison (1987), p. 659 (UK);

1992 - Gollin (2002), p. 470, Table 2, Adjustment 3 (UK).

Land Share in Total Income (Λ ): [1585 - 1865] - Clark (2001a), Table 9, p. 46 (England); [1873 -

1913] - Matthews et al. (1982), p. 643 (UK); [1987 - 1998] - UK National Statistics.

Capital Share in Total Income: Imputed according to the relation  = 1−  − Λ

Fraction of non-rural output in total output (2 ): [1555-1865] Imputed by dividing the nominal net

farm output (alternative labor) obtained from Clark (2002), Table 4, p. 14 (England), by the nominal

GDP obtained from Clark (2001a), Table 3, p. 19 (England and Wales), but adjusted for population

differential between England and Wales, with the resulting fraction indexed to match Mitchell’s estimates

in 1800; [1788-1991] - Mitchell, 1978 (UK)

Crude Birth and Crude Death Rates: [1541 - 1871] - Wrigley et al. (1997) (England); [1871 - 1986] -

Mitchell, 1978 (England and Wales).

General Fertility Rate: Computed using CBR and the fraction of females in the total population, taken

from Wrigley et al. (1997) for [1541 - 1841] (England) and Human Mortality Database for [1841 - 1999]

(England and Wales).

Population Growth Rate: [1541 - 1836] - Wrigley et al. (1997) (England); [1841 - 1999] - Human

Mortality Database (England and Wales).

Age-specific survival probabilities: [1580-1837] - Wrigley et al. (1997) (England); [1841 - 1999] - Human

Mortality Database (England and Wales).

Data used in TFP Estimation: See the appendix on TFP estimation.

Proof of Proposition 1 (Barro and Becker vs. Lucas Utility)

Proof. Let 1−−


= 1−−


 Consider the following transformation of the BB utility,  (  +1) =

(1− ) (  +1) :

 ( +1) = (1− )  + 1− +1

65Due to data limitations for England, we were forced to draw on the data sources available for England and Wales and

UK. Although this inconsistency introduces some degree of error, we believe that it is small for the following reasons. (1)

We do not consider level variables, such as GDP or population size, but instead growth rates, indices, and fractions of level

variables. (2) For the period under consideration, the population of Wales is less than 6% of that of England. (3) Scotland’s

population size relative to that of England and Wales falls from 17% in 1820 (the earliest date for which we are forced to

use UK data sources) to less than 10% today. (4) Appropriate rescaling was made in all cases.
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Next, consider the transformation,  ( +1) = ( +1)


(1−) , given by

 (  +1) =

∙
(1− )  + 1− 

(1−)


+1

¸ 
(1−)

=

Ã∙
(1− )  + 

µ

1−


 
(1−)


+1

¶¸ 1


! 
(1−)



Now, taking the limit  → 0 while varying  in such a manner that 1−−


= 1−−


, we have

lim
→0

 (  +1) =

Ã
lim
→0

∙
(1− )  + 

µ

1−


 
(1−)


+1

¶¸ 1


! 
(1−)

=

Ã

1−


µ

1−


 
(1−)


+1

¶
! 

(1−)



Note that 
1−


 and 
(1−)


+1 remain fixed as  → 0. Consider the final transformation,  (  +1) =

log  (  +1)  which takes the form

 (  +1) =


(1− )

∙
(1− ) log  +

1− 


 log +

(1− )


+1

¸


Simplifying and using the assumption that 1−−


= 1−−


 i.e., 1−

=

(1−)(1−)


 we obtain

 (  +1) =  log  +


(1− )

(1− ) (1− )


 log + +1

=  log  + (1− ) log + +1

Proof of Proposition 2 (Effect of Changes in the Labor Supply and Capital Stock on Resource Allocation)

Proof. We drop the time subscript throughout the proof. Let  = 1 and  = 1. The resource

allocation problem can be written in terms of  and  as follows:

max


n
1

Λ1−− +2 (1− ) (1− )1− 1−
o


The first order conditions are

1
−1Λ1−− = 2 (1− )−1 (1− )1− 1−(13)

1
−1Λ1−− = (1− )2 (1− ) (1− )− 1−(14)

Dividing (2) by (1) gives 



=
¡
1−


¢ (1−)
(1−)  Solving for  in terms of  gives

³

1−

´
= 



¡
1−


¢ ³

1−

´


The solution to this equation is  (), which is an increasing function. Substituting this solution into (1)

gives

1
Λ1−− ()−1  = 2

1− (1−  ())−1 (1− )1−  i.e.,

̄1 () ()−1  − ̄2 () (1−  ())−1 (1− )1− = 0

where ̄ denotes the maximum possible output in sector , i.e. output under full employment of available
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inputs. In other words, ̄ are the end points of the PPF. At the optimal point, the slope of the PPF

(in absolute value), i.e., the marginal rate of substitution, equals 1 because the two goods are perfect

substitutes:

 =
̄2 () (1−  ())−1 (1− )1−

̄1 () ()−1 
= 1

Define

Ψ () ≡ 



̄2 ()

̄1 ()

 ()1−

(1−  ())1−
(1− )1−


− 1

which can be used to obtain 

= −Ψ

Ψ
 In particular, a reallocation from Malthus to Solow will occur

if   0. Notice that holding the total resources fixed, we must have Ψ  0 because the PPF is

strictly concave and the slope in absolute value gets steeper as we move downwards along the PPF. The

sign of Ψ is the same as the sign of



³
̄2()

̄1()

´
, thus we have

Ψ ∝
̄2()


̄1 ()− ̄1()


̄2 ()

̄1 ()2


Hence, Ψ  0 if and only if

̄2 ()


̄1 () 

̄1 ()


̄2 ()  i.e.,

̄2 ()





̄2 ()


̄1 ()





̄1 ()
 i.e.,

(1− )
̄2





̄2
 

̄1





̄1 ()
 i.e.,

1−   

The proof of part (b) is similar.

Cost of Raising Children, Measuring (+ ) 

In this appendix we explain our method of determining the average time cost of a surviving child

relative to that of a non-surviving child, (+ )  = 4. Denoting the momentary cost of raising a child

by  (), the total cost of raising a child to age  is given by  () =
R 
0
 ()  Under the assumption that

the momentary cost is a decreasing linear function of the form  () =  − 
25
, we have  () =  − 2

50


and the total cost of raising a surviving child becomes +  =  (25) = 25 − 252

50
 = 125

Consider the age-specific mortality distribution for people who died before reaching age 25 in early 17th

century England. For the five groups corresponding to the age ranges 0-1, 1-5, 5-10, 10-15, and 15-25,

mortality rates are given by .45,.22,.12,.05,.16. (Below, we refer to the beginning and ending ages of the

th group as 
 and 


 , respectively.) The first number, for example, indicates that of all the people who

died before reaching age 25, 45% died before age 1. The pattern of age-specific mortality, conditional

on dying before age 25, persists throughout the years considered in this paper. Then, assigning to every
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child belonging to group  the time cost associated with a child that dies at age

+




2
, we obtain

 = 045 (05) + 022 (3) + 012 (75) + 005 (125) + 016 (20) = 4

 = 125 − 4 = 85

It follows that 

= 215 and +


= 315 If, instead, we assign to each child in group  the time cost

associated with a child that dies at age 
 , we find



= 345, and hence +


= 445. Finally, because

it is reasonable to assume that the average age of death for the children belonging to a given group is

closer to 
 than to 


 , we choose the value

+

= 4; this corresponds to the assumption that all children

belonging to each group  die at age 
 + 01(


 −

).

Estimation of TFP Time Series

Given the calibrated values of   and  and using the assumption of profit maximization, we back

out the time series for 1 and 2 given by (7) and (8), where  is the rental rate of capital (%100), 

is the real wage (final goods per unit of labor), and  is the rental price of land (final goods per acre).

We work with historical data for  (%100), 1 (nominal rural wages in £), ̃ (rental rate of land

in %100), Λ (price of land in £acre), and the GDP deflator,  These series yield the real wage and

the rental price of land through the identities  =


and  =

̃Λ




The GDP deflator, , is obtained from Table 9 in Clark (2001a), and for the time period 1875-1910,

it is imputed under the assumption that it grew at the same rate as the agricultural prices given in Table

1 of Clark (2002).

Table 1 in Clark (2002) contains nominal wages in the rural sector 1 (pence per day). Dividing these

time series by 240 changes the units into pounds. Further, multiplying the resulting time series by 300

gives the annual nominal wage, 1, under the assumption that 300 days are worked per year. We infer

2 using the time series for the wage bill in the rural sector, 11, the total wage bill in the economy,

11+22, the fraction of rural labor in total labor,
1

, and the identity 11+22

22
= 11

22
+1 which

implies 2 =
1

11+22
22

−1
1

1
1


−1 

The time series of the wage bill in the rural sector, 11, is given in Table 3 of Clark (2002). The total

wage bill in the economy, 11 + 22, is taken from Table 3 in Clark (2001a), and for the period 1875-

1910, it is imputed using the time series of 11 and the assumption that the ratio 11(11+22)

continued to fall at the same rate as it did between 1865 and 1875. The fraction of the total labor

constituted by rural labor, 1

, is obtained from Table 1 of Clark (2001a), and for the period 1875-1910

from Maddison (1995) (page 253).

Having obtained 1 and 2 we back out real wages according to the relation  =


.

We obtain ̃ (rental rate of land in %100) from Table 2 in Clark (2002). Following Clark (2002) (p.

6), we infer  = ̃ + 004, allowing 15% for risk premium and 25% for depreciation.

Table 4 in Clark (2002b) provides us with “Total Land Rents and Local Taxes,” which represents

̃ΛΛ where Λ is the price of land, £acre. Dividing this time series by Λ = 26524 M acres, taken

from Clark (2002) (p. 10), and by , we obtain  =
̃Λ




Mapping of the Model to the Data: Population Size, CBR, GFR
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We need to estimate the average size of the population in period  The number of adults is constant

at 2 over the duration of a period. The number of children changes during each period due to child

mortality. In the beginning of each period, 2 children are born. Using age-specific child mortality

rates for the age groups 0-1,1-5,5-10,10-15, 15-25 and the simplifying assumption made above that all

children belonging to group  die at age 
+(

 −
), with  =

1
10
, we compute the average population

size in each period according to

 = 2 + [
¡
 + (1− )10

¢
+ 4

¡
10 + (1− )50

¢
+ 5

¡
50 + (1− )100

¢
+5
¡
50 + (1− )100

¢
+ 10

¡
50 + (1− )250

¢
]
1

25
2

The model counterpart of CBR is then given by  = 10002


 Further, GFR is computed as  =

10002

= 2000
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Table 1: England Around 1600: Data Moments Used for Calibration

Data Moment Description

 = 0723 (005) Depreciation

 = 067 Probability of survival to 25
1

= 06 Fraction of rural labor in total labor

1

= 067 Fraction of rural output in total output



= 016 Capital share in total income



= 06 Labor share in total income

 + 1−  = 2666 (104) Interest rate

 = 042 Fraction of time spent with children (or not working)
+

= 4 Time cost of a surviving child / that of a non-surviving child

11600 = 1042 (10016) Growth of rural TFP around 1600

21600 = 1006 (100025) Growth of non-rural TFP around 1600

Table 2: Calibrated Parameter Values
Malthusian Technology: 10 = 100 11600 = 1042  = 104  = 0537 11900 = 1126

Solow Technology: 20 = 100 21600 = 1006  = 0273 21900 = 1174

Preferences:  = 0582  = 0415

Cost of Children:  = 067  = 0085  = 0256

Other:  = 0723 Λ = 1

Table 3: Main Results
1600-1950 1650-1950

%Accounted for by Model with 4in %Accounted for by Model with 4in
%4Data TFP&Mortality TFP Mortality %4Data TFP&Mortality TFP Mortality

 37955 6578 6834 223 34889 6933 7277 168

CBR −4873 4585 −024 4467 −3995 6072 −000 5906

GFR −4628 4423 −056 4135 −3645 6110 −001 5691
Λ


−9532 9190 9226 −197 −9568 9168 9190 −089



1667 11151 11193 −239 2069 9095 9005 −088
2


18788 9470 9503 −203 17738 10330 10035 −100
2


13725 9789 9818 −254 11326 12217 11861 −146
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Table 4: Sensitivity to the Endpoint Solow TFP Growth, 21900 = 128

%Accounted for by Model with 4in
1600-1950 1650-1950

TFP TFP&Mortality TFP TFP&Mortality

 8193 7903 8734 8342

CBR −026 4588 −003 6075

GFR −061 4429 −007 6118
Λ


9588 9559 9551 9531



11632 11598 9358 9456
2


9876 9850 10430 10740
2


10140 10117 12251 12622

Table 5: Sensitivity to the Choice of Parental Utility, Barro and Becker Form

%Accounted for by Model with 4in
1600-1950 1650-1950

TFP Mortality TFP&Mortality TFP Mortality TFP&Mortality

 6145 109 5580 6558 034 5849

CBR −820 4101 3667 −938 5426 4962

GFR −1977 3217 2053 −2353 4440 3122
Λ


9764 −146 9742 9726 022 9716



11845 −177 11823 9527 022 9707
2


10057 −151 10045 10614 025 11145
2


10296 −193 10287 12432 026 13059
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Figure 1: (a) Log of the Real GDP/capita Index, (b) Industrialization, (c) Urbanization, (d) Land Share

in Total Income, (e) Demographic Transition, (f) General Fertility Rate and Surviving Children
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Figure 3: (a) Experimental Inputs, (b) Model vs. Data: Real GDP/capita, (c) Model vs. Data: General

Fertility Rate, (d) Model vs. Data: Industrialization
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Figure 4: (a) Model vs. Data: Urbanization, (b) Model vs. Data: Land Share in Total Income, (c) Model

vs. Data: Labor Share in Total Income, (d) Model vs. Data: Population Growth
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Figure 5: (a) Model vs. Data: Surviving Children, (b) Model vs. Data: General Fertility Rate, (c) Model

vs. Data: Industrialization, (d) Model vs. Data: Real GDP/capita, (e) Model vs. Data: Land Share in

Total Income, (f) Model vs. Data: Labor Share in Total Income


