Yosemite National Park Half Dome
 
Home > Nature & History > Nature > Geology
Geology

Half Dome

Trip Planning
Yosemite Today
Nature & History
Students & Teachers
Park Management
Working in the Park
Support  Your Park
Search/Help
Home
Experience Your America

 

Also in this section
Air Resources
Geology
·Landforms
·Rocks
·Data & Links
Vegetation
Water
Wildlife
Nature Home
The Making of the Landscape

Although many geologists have worked in Yosemite, beginning with the amateur geologist John Muir and his studies of remnant glaciers, Dr. King Huber of the U.S. Geological Survey has authored the definitive works on the geology of Yosemite National Park.  In The Geologic Story of Yosemite National Park (Yosemite Association, 1989), Dr. King provides a clear and concise overview of the rocks, the landscape, and the processes that formed the landscape:

Topographically, the Sierra Nevada is an asymmetric mountain range with a long, gentle west slope and a short, steep east escarpment that culminates in the crest of the Sierra Nevada.  It is 50 to 80 miles wide and extends in altitude from near sea level along its west edge to more than 13,000 feet along the crest in the Yosemite area, and more than 14,000 feet along the crest in the Sequoia-Kings Canyon area.  The highest peak in the Sierra Nevada, and in the continental United States, can be found to the south: Mount Whitney in Sequoia National Park.  Geologically, the Sierra Nevada is a huge block of the Earth’s crust that has broken free on the east along a bounding fault system and has been uplifted and tilted westward.  This combination of uplift and tilt, which is the underlying geologic process that created the present range, is still going on today.

Massive Granite Slab With Large Linear Cracks (Joints)
Jointed granite, Olmsted Point. NPS Photo.

Massive granite dominates the Yosemite area and much of the Sierra Nevada as well.  Mount Hoffmann and most of the terrain visible from it are composed of granite, formed deep within the Earth by solidification of formerly molten rock material and subsequently exposed by erosion of the overlying rocks.  Because of its massiveness and durability, granite is shaped into bold forms: the cliffs of Yosemite and Hetch Hetchy Valleys, many of the higher peaks in the park, and the striking sheeted domes that can form only in massive, unlayered rock.  Although granite dominates nearly the entire length of the Sierra, the granite is not monolithic.  Instead, it is a composite of hundreds of smaller bodies of granitic rock that, as magma (molten material), intruded one another over a timespan of more than 100 million years.  This multiplicity of intrusions is one of the reasons why there are so many varieties of granitic rock in Yosemite and the rest of the Sierra.  The differences are not always apparent to the casual observer, but they are reflected in sometimes subtle differences in appearance and in differences in response to weathering and erosion acting on the rocks.

Layered metamorphic rocks in the foothills at the west edge of the park and along the eastern margin in the summit area are remnants of ancient sedimentary and volcanic rocks that were deformed and metamorphosed in part by the invading granitic intrusions.  Other metamorphic rocks that once formed the roof beneath which the granitic rocks solidified were long ago eroded away to expose the granitic core of the range, and only small isolated remnants are lefts.  Because Yosemite is centered on this deeply dissected body of granite, metamorphic rocks are sparse; they occupy less than 5 percent of the area of the park.

Upper End Of Lyell Glacier Rimed With Jagged Granite Peaks
Lyell Glacier, East Lobe. NPS Photo.

Evolution of the landscape is as much a part of the geologic story as the rocks themselves, and Yosemite is a place where the dynamism of geologic processes is well displayed.  By the end of Cretaceous time, about 65 million years ago, after the granitic core of the range had been exposed, the area had a low relief in comparison with the mountains of today.  Then, about 25 million years ago, this lowland area began to be uplifted and tilted toward the southwest, a construction that would eventually lead to the present Sierra Nevada.  As the rate and degree of southwest tile increased, the gradients of streams flowing southwestward to California’s Central Valley also increased, and the faster flowing streams cut deeper and deeper canyons into the mountain block.  About 10 million years ago, from the Tuolumne River northward, these canyons were inundated and buried by volcanic lava flows and mudflows, and the streams were forced to begin their downcutting anew, in many placed shifting laterally to find a new route to the Central Valley.  The streams were equal to the task, however, and the present river courses and drainage patterns throughout the Sierra became well established.

Stark Alpine Granite Landscape With Craggy Peaks
McClure Basin from Upper Lyell Base Camp. NPS Photo.

As the world grew colder, beginning about 2 or 3 million years ago, the Sierra Nevada had risen high enough for glaciers and a mountain icefield to form periodically along the range crest.  When extensive, the icefield covered much of the higher Yosemite area and sent glaciers down many of the valleys.  Glacial ice quarried loose and transported vast volumes of rubble, and used it to help scour and modify the landscape.  Much of this debris eventually accumulated along the margins of the glaciers and in widely distributed, hummocky piles.  The greatest bulk of this debris, however, was flushed out of the Sierra to the Central Valley by streams swollen with meltwater formerly stored in the glaciers as ice and released as the glaciers melted away.

Although many of today’s general landforms existed before modification by glacial action, some of them surely did not.  Can you imagine the Yosemite landscape with no lakes?  Virtually all the innumerable natural lakes in the park are the result of glacial activity.  But even these lakes are transitory, doomed to be filled with sediment and become meadows; many lakes already have undergone this transformation.  Yosemite Valley itself once contained a lake.

The geologic story of Yosemite National Park can be considered in two parts: (1) deposition and deformation of the metamorphic rocks and emplacement of the granitic rocks during the Paleozoic and Mesozoic; and (2) later uplift, erosion, and glaciation of the rocks during the Cenozoic to form today’s landscape.

 
spacer
Yosemite National Park Home Page
http://www.nps.gov /archive/yose/nature/geo_landforms.htm
Last modified Wednesday, 22-Dec-2004 10:15:06 Eastern Standard Time
Yosemite National Park Web Manager
 
  spacer